WO2022246878A1 - 一种中红外供暖的智能环保天花吊顶装置 - Google Patents
一种中红外供暖的智能环保天花吊顶装置 Download PDFInfo
- Publication number
- WO2022246878A1 WO2022246878A1 PCT/CN2021/097589 CN2021097589W WO2022246878A1 WO 2022246878 A1 WO2022246878 A1 WO 2022246878A1 CN 2021097589 W CN2021097589 W CN 2021097589W WO 2022246878 A1 WO2022246878 A1 WO 2022246878A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared
- mid
- heating
- layer
- energy
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 398
- -1 polyethylene Polymers 0.000 claims abstract description 73
- 238000009413 insulation Methods 0.000 claims abstract description 65
- 239000004698 Polyethylene Substances 0.000 claims abstract description 53
- 229920000573 polyethylene Polymers 0.000 claims abstract description 53
- 230000003595 spectral effect Effects 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 27
- 238000000554 physical therapy Methods 0.000 claims description 23
- 229920003023 plastic Polymers 0.000 claims description 23
- 238000002834 transmittance Methods 0.000 claims description 22
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 21
- 239000004033 plastic Substances 0.000 claims description 19
- 239000004743 Polypropylene Substances 0.000 claims description 18
- 229920001155 polypropylene Polymers 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 239000004744 fabric Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229920001971 elastomer Polymers 0.000 claims description 10
- 239000005060 rubber Substances 0.000 claims description 10
- 229920000728 polyester Polymers 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000005034 decoration Methods 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 229920001169 thermoplastic Polymers 0.000 claims description 7
- 239000004416 thermosoftening plastic Substances 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 239000003063 flame retardant Substances 0.000 claims description 3
- 229920001684 low density polyethylene Polymers 0.000 claims description 3
- 239000004702 low-density polyethylene Substances 0.000 claims description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229910001093 Zr alloy Inorganic materials 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 229920001903 high density polyethylene Polymers 0.000 claims description 2
- 239000004700 high-density polyethylene Substances 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 2
- 239000000956 alloy Substances 0.000 claims 2
- 229910052726 zirconium Inorganic materials 0.000 claims 2
- 229910000851 Alloy steel Inorganic materials 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 229910001220 stainless steel Inorganic materials 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 130
- 238000005265 energy consumption Methods 0.000 abstract description 24
- 230000005540 biological transmission Effects 0.000 abstract description 16
- 230000000712 assembly Effects 0.000 abstract 1
- 238000000429 assembly Methods 0.000 abstract 1
- 239000012774 insulation material Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 130
- 239000000306 component Substances 0.000 description 103
- 238000000034 method Methods 0.000 description 29
- 230000000694 effects Effects 0.000 description 24
- 238000013461 design Methods 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 13
- 239000003245 coal Substances 0.000 description 10
- 229910021389 graphene Inorganic materials 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 238000010292 electrical insulation Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000003086 colorant Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000004579 marble Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000012536 packaging technology Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- GUYIZQZWDFCUTA-UHFFFAOYSA-N (pentadecachlorophthalocyaninato(2-))-copper Chemical compound [Cu+2].N1=C([N-]2)C3=C(Cl)C(Cl)=C(Cl)C(Cl)=C3C2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC2=C(C(Cl)=C(C(Cl)=C3)Cl)C3=C1[N-]2 GUYIZQZWDFCUTA-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008897 memory decline Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ZZSIDSMUTXFKNS-UHFFFAOYSA-N perylene red Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=C(OC=5C=CC=CC=5)C=1)C(=O)C2=CC(OC=1C=CC=CC=1)=C3C(C(OC=1C=CC=CC=1)=CC1=C2C(C(N(C=3C(=CC=CC=3C(C)C)C(C)C)C1=O)=O)=C1)=C2C4=C1OC1=CC=CC=C1 ZZSIDSMUTXFKNS-UHFFFAOYSA-N 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000006100 radiation absorber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000003075 superhydrophobic effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000002937 thermal insulation foam Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/04—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
- E04B9/045—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D13/00—Electric heating systems
- F24D13/02—Electric heating systems solely using resistance heating, e.g. underfloor heating
- F24D13/022—Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
- F24D13/024—Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements in walls, floors, ceilings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1096—Arrangement or mounting of control or safety devices for electric heating systems
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/08—Electric heater
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Definitions
- the invention relates to mid-infrared optical engineering, thermal insulation engineering, indoor heating and energy-saving green engineering, nano-engineering and intelligent manufacturing technology, and is specifically applied as a beautiful mid-infrared heating intelligent environmental protection energy-saving ceiling device.
- Indoor heating technology is based on the transfer of heat energy by objects through solid heat conduction, heat convection and infrared radiation, the most common of which is to achieve indoor heating through hot air convection, but in this scheme, the transfer of heat energy is non-selective so that almost All objects receive and consume energy, and the convective energy absorption rate of people and objects is roughly the same. Therefore, convective heating is simple but not efficient.
- infrared radiation can instantly pass through the air from the heat source and be completely absorbed by human skin and common clothing, which makes people feel warm quickly.
- metal surfaces generally reflect and do not absorb infrared radiation. Therefore, as long as the indoor space The objects placed in the environment are made of such materials, and the heating energy consumption can be greatly reduced. Since the oxygen and nitrogen in the air hardly absorb the infrared radiation used for heating, the indoor infrared radiation heating can provide a feeling of basking in the cold outdoor air in winter, which is warm and comfortable without causing the relative humidity of the air to be too low.
- the coal and firewood heating water heaters in old farmhouses are the most classic and have a long history.
- the temperature inside the 20kW heating fuel furnace is higher than 600°C and the surface temperature of the open cast iron furnace shell is lower than 200°C.
- the opening of the furnace door can emit electromagnetic waves with a total radiation intensity of 33kW/m 2 .
- the radiation includes infrared waves with a peak value of 3.3 ⁇ m and weak but still visible red light.
- the area of the furnace door opening is 0.1m 2 , and the radiation power is about 3kW;
- the open furnace shell surface emits mid-infrared electromagnetic waves with a total radiation intensity of about 2kW/m 2 , and the peak value is higher than 6 ⁇ m.
- the furnace shell area is 1m 2
- the radiation power of the furnace shell is about 2kW.
- This analysis shows that this kind of 20kW heating furnace has a small infrared radiation area, and the total radiant power is only 5kW.
- the heating furnace mainly relies on heating air convection for heating, and the infrared radiation power only accounts for 25% of the total energy power. That is to say, the ratio of infrared radiation heating to convection heating is only 0.33. This situation is a wasteful consumption of high energy consumption for heating that has nothing to do with human warmth.
- the "central” heating furnaces that are commonly used in households in domestic and foreign cities increase the efficiency by increasing the temperature inside the furnace, while modern buildings have better thermal insulation.
- a “central” heating furnace with a rated power of 10kW is enough for an indoor space of 100m 2
- the furnace core of a nearly sealed heater usually operates at a hot temperature of >1000°C, mainly relying on direct blowing of heated convective air to all corners of the indoor space, and the ratio of infrared radiation heating/convective heating is extremely low.
- the temperature of the radiator plate is about 40-80°C, and it relies on low power density and large-area convection for heating, and also uses infrared radiation for heating, which can slightly increase the infrared radiation.
- the ratio of infrared radiation heating/convection heating is a key parameter to judge the energy saving degree of heating.
- the standard value of radiator plate and floor heating heating is about 1. In the future, green and environmentally friendly heating should increase this ratio to no less than 2 to reduce waste of energy. The share reduction of the convection heating.
- the energy power density of convection heating is generally calculated by the following formula 1:
- T is the temperature difference in degrees Celsius between the surface temperature of the heating and cooling plate and the room temperature.
- the energy power density transmitted by infrared radiation can be calculated by the following formulas 2 and 3 derived from Planck's law [6]:
- the power density of infrared heating R the sum of the infrared radiation spectral intensity of the heater at a wavelength of 3 ⁇ m-50 ⁇ m - the energy power density of ambient infrared heating
- Formula 4 can be obtained from formula 2 and formula 3:
- FIG. 1 shows the emission spectrum of a blackbody at a temperature of 310K (37°C, human body temperature).
- the total spectral intensity of the radiation with a wavelength shorter than 3 ⁇ m is about 0.02% of its entire spectrum, the total spectral intensity of the wavelength above 50 ⁇ m is only 2%, and 98% of the total radiation is located in the wavelength range of 3 ⁇ m-50 ⁇ m.
- the black body spectra at these two temperatures are also included in Figure 1 to further confirm that the thermal radiation related to human health is actually only at 3 ⁇ m-50 ⁇ m In the infrared region of the wavelength range.
- the energy power density of the infrared radiation of a blackbody at a temperature of 310K is 524W/m 2 , representing the sum of the spectral intensity in Figure 1 within the wavelength range of 3 ⁇ m-50 ⁇ m.
- a floor heater with a surface temperature of 34°C on the market has an effective convection heating energy power density of 96W/m 2 and an effective infrared radiation heating energy power density of 90W/m 2 at a room temperature of 16°C.
- the ratio of infrared radiation heating/convection heating is 0.94.
- infrared radiation in the wavelength range of 3 ⁇ m-50 ⁇ m has been fully confirmed and evaluated [7-10]. All in all, the human body is exposed to infrared radiation in the wavelength range of 3 ⁇ m-50 ⁇ m, which can improve blood circulation and immunity [11-14], enhance wound healing ability [15], relieve pain [16-17], reduce depression and stress [18], improve Sleep quality [19], and delay memory decline [20]. Synergistically integrating this knowledge of infrared radiation with the emerging field of personal thermal management [21-22], new areas of scientific research have emerged and new products have been created. However, the wavelength span in current practice is somewhat arbitrary, which hinders the development of this emerging industry and the sustainable acceptance of the market.
- the exemplary works in refs 11–20 alone show the following vastly different spectral bands in the infrared from narrow to broad wavelength spans: “5 ⁇ m–12 ⁇ m” [11], “3 ⁇ m–14 ⁇ m” [ 14], “3 ⁇ m-15 ⁇ m” [18], “4 ⁇ m-16 ⁇ m” [16,17,19], “5 ⁇ m-20 ⁇ m” [20], “4 ⁇ m-20 ⁇ m” [13] and “5.6 ⁇ m-25 ⁇ m” [ 15].
- the range of spectral bands in this industry must be regulated and standardized.
- Infrared Radiation Optical radiation with wavelengths longer than visible light, ranging from 780nm to 1mm.
- IR-A 780nm to 1400nm, or 0.78 ⁇ m to 1.4 ⁇ m
- IR-B 1.4 ⁇ m to 3.0 ⁇ m
- IR-C 3 ⁇ m to 1mm.
- the infrared spectrum is also divided into “near”, “medium” and “far” infrared.
- the boundaries necessarily vary with application domains (eg, meteorology, photochemistry, optical design, thermophysics, etc.).
- the present invention By adopting the ISO20473 standard to correct errors in the industry, and correctly refer to the spectral band in the 3 ⁇ m-50 ⁇ m wavelength range as mid-infrared, the present invention also requires all personnel who research, manufacture and sell mid-infrared products to be aware of the mid-infrared of these products The performance is quantified.
- the present invention advocates the use of a universal reference blackbody to calibrate the spectral radiant intensity and emissivity of thermal radiation emitters at a specific temperature (especially when the human body can withstand it instantaneously) as the emission function of the radiation wavelength of the device, assuming a temperature range of 0°C to 90°C.
- emissivity refers to the average emissivity in a specific spectral band calibrated with a black body.
- radiation intensity as a function of radiation wavelength can be measured using a high-end infrared spectrometer that can cover the mid-infrared band from 3 ⁇ m to 50 ⁇ m.
- the present invention adopts and advocates this measurement method to determine the spectral radiation characteristics and emissivity characteristics of all mid-infrared emitters. This standardized approach compensates for unprofessionalism in the design and application of spectral specifications for thermal radiation products relevant to the human body.
- the radiation emissivity measuring instrument is equipped with an internal blackbody emitter with a temperature of 100°C, which can irradiate the test sample, and detect and measure the emissivity of the test sample through the temperature change of the blackbody-like radiation absorber .
- the radiation emissivity measuring instrument covers the emissivity range of 0.5%-98%, and the spectral range is 2.5 ⁇ m-40 ⁇ m. Since Planck's law stipulates that at 100°C, a black body only emits 0.14% of its total radiation in the range of 2.5 ⁇ m-3 ⁇ m, the actual starting measurement wavelength of this emissivity measuring instrument is about 3 ⁇ m-40 ⁇ m.
- this emissivity meter design is effective for quickly measuring mid-infrared emissivity, this design only provides the average emissivity across the entire mid-infrared spectral range without information on specific wavelength emissivity. This deficiency is also easily overcome by using an infrared spectrometer equipped with a blackbody. In conclusion, all heating products can be tested and verified using readily available radiometers or infrared spectrometers.
- the heating elements in graphene floor heaters do contain graphene, all floor heater heating elements are covered by wooden or ceramic floors, and all wooden or ceramic floors are impermeable to mid-infrared radiation and therefore heat The mid-infrared radiation produced by the components is unlikely to penetrate the flooring material.
- the floor heats up by absorbing infrared radiation from the heating element of the heater, and also heats up by obtaining heat energy from the heating element through the general solid heat conduction principle, and then the hot floor heats up by air convection and infrared radiation.
- the floor still emits mid-infrared radiation, but the spectral signature depends on the nature of the floor surface material, not the heating element or the body of the floor.
- the heating elements of all heaters are covered with encapsulation materials to ensure the safety and durability of the heater.
- encapsulation materials include plastic, cloth, metal, ceramics, etc., except polyethylene. Impenetrable to mid-infrared radiation, the mid-infrared radiation of the heater is determined by the optical properties of its top surface material, not by the infrared spectrum of the heating element inside the heater. For example, the infrared radiation of all wearable heaters and carpet heaters packaged in the most common fabrics such as colored cotton, cotton-like plastic, silicone, and leather-like PVC is dominated by the mid-infrared spectral characteristics of the fabric, which is different from that of the fabric.
- the heater heating element contains graphene or not. Since the mid-infrared emissivity of cotton is known to be in the range of 68%-88% [32-33], cotton without surface engineering to increase mid-infrared emissivity is not ideal for producing energy-efficient heating products . Similarly, the wearable heaters and carpet heaters encapsulated by common fabrics such as cotton-like plastics, silica gel, and leather-like polyvinyl chloride do not meet the design and design requirements of the present invention to promote the infrared radiation of the heater to achieve energy saving without exception. feature request. In another example, although Yue et al.
- the innovation of the heating industry must also meet the aesthetic requirements of users for heating products.
- even scientists/engineers with conventional industry skills may mistakenly equate the visible light emissivity with Mid-infrared emissivity, because the human eye can only see visible colors and cannot see mid-infrared light. Therefore, one might think that a heating product trimmed in black does not emit mid-infrared light because it does not emit visible light. Likewise, people may perceive heating products with different visible colors to have large differences in mid-infrared emission.
- the present invention corrects this misperception again by insisting on a scientifically rigorous and evidence-based approach.
- the wavelength dispersive emissivity of a kind of black polyester wear-resistant cloth is tested, as shown in the curve represented by Fig. 2 black polyester fabric, the spectral curve of this black polyester and The spectral curve of the reference black body is very close, and the total emissivity is 96% in the measured spectral range of 3 ⁇ m-33 ⁇ m.
- a layman with no knowledge of the mid-infrared might think that exchanging a black dye for a white dye would greatly reduce the emissivity, however the present invention shows that a near perfect spectral profile and high emissivity can be preserved by choosing an appropriate white dye, as in Figure 2 shows the curve represented by the white polyester fabric.
- a recent authorized invention patent [ZL202010847951.8] provides a thermal insulation package mid-infrared emission screen for heating and physiotherapy and its preparation method.
- the mid-infrared emission screen has a laminated structure, including a top surface covering layer, The first gas thermal insulation layer, the first mid-infrared transparent plastic thermal insulation layer, the second gas thermal insulation layer, the second mid-infrared transparent plastic thermal insulation layer, the third gas thermal insulation layer, the first electrical insulation layer, and electric transfer to mid-infrared The emission film layer, the second electrical insulation layer, and the bottom surface covering layer.
- the infrared radiation density of the receiving heating point outside the mid-infrared emitting screen decreases with the square value of the distance.
- a person with a body width of 50 cm 20% of the total infrared radiation scattered by the infrared emitting screen can be received at a distance of 50 cm from the emitting screen, but only 1.25% can be received when the distance is increased to 2 meters (close to the height of the floor).
- the distance between indoor heating users is limited, so it is not suitable to be installed on the ceiling with a long distance.
- the present invention comprehensively solves all the above-mentioned drawbacks in the heating industry, with the goal of greatly reducing heating energy consumption and allowing customers to enjoy energy-saving, healthy and comfortable warmth as its purpose, and provides technical and scientific basis for reforming the development of the heating industry.
- the key point is to provide the reform method and equipment with quantifiable effects from the current "infrared radiation heating/convective heating ratio" generally less than 1 to not less than 2, and the relevant scientific basis, clarifying that convective heating is non-selective to human
- the status quo of energy waste in heating objects that have nothing to do with warmth also clarifies the current situation of false propaganda and scientific fallacies that are common in the infrared radiation heating industry, especially the behavior of violating the international infrared spectrum standards and labeling the mid-infrared for heating as far-infrared, and The mid-infrared emission and absorption principle, which violates the science of infrared spectroscopy, falsely reports the infrared radiation spectral characteristics of heating products out of nothing.
- the present invention more specifically provides a mid-infrared heating component and an intelligent and environmentally friendly use method, as a means of implementing the present invention from the current "infrared radiation heating/convective heating ratio" generally less than 1 to Methods and equipment for reforming the heating industry with quantifiable effects not less than 2. More importantly, the present invention innovatively breaks through the thinking mode and application limitations of ZL202010847951.8, and believes that the ceiling is the most suitable location for energy-saving infrared radiation heating in interior decoration.
- the "infrared radiation heating/convection heating ratio" of the infrared radiation heating facilities installed on the ceiling must be higher, and achieve more energy-saving purposes; secondly, the ceiling can be used for infrared radiation heating.
- the area is larger than the effective area of emerging floor heating, and it is easier to plan and lay more efficient indoor heating; in addition, the ceiling is the most suitable place to lay indoor facilities; finally, the present invention innovatively proposes that the ceiling placed in the ceiling
- a mid-infrared radiation heating component is added with a polyethylene lens that transmits and focuses the mid-infrared, and uses optical principles to overcome the disadvantages of infrared light scattering and infrared optical density weakening with the square value of the distance of the heating component, and focuses the infrared light of the heating component to 1 meter from the ground, that is, put the infrared image of the mid-infrared radiation heating component at the center of the user's warmth, and then use the infrared sensor to accurately determine the user's position to run the nearest mid-infrared radiation heating component.
- the heating component is 50 meters away from the user.
- the space of cm ⁇ 50 cm is the length and width of the heating component unit.
- the energy input into the heating system is automatically concentrated and distributed to the space of 50 cm ⁇ 50 cm around the user, forming the most disruptive energy-saving indoor heating system in history.
- the energy consumption of indoor heating is an important component of the global total energy consumption, so it is urgent to improve the current high energy consumption defect of indoor heating.
- the present invention has reviewed the high energy consumption characteristics and disadvantages of the current indoor heating mainly relying on convection heating in the background chapter.
- this indoor heating mode only part of the energy is used to provide warmth and comfort for the human body, and the rest of energy is wasted heating many objects that have absolutely nothing to do with comfort. To make matters worse, this indiscriminate heating will also cause a sharp increase in the temperature difference between indoor and outdoor air, resulting in a severe drop in indoor relative humidity, which can endanger health, including dry skin and damage to respiratory organs.
- the synergy of the present invention integrates several unorthodox concepts in an all-round way to design a new type of heater with the core heating principle of generating, transmitting, absorbing, reflecting, and focusing mid-infrared radiation to eliminate the above-mentioned defects and deficiencies of the current indoor heating , especially to curb non-energy efficient convection heating.
- the disruptive innovations of the present invention include:
- the present invention provides an innovative method and scientific basis for quantifying the "ratio of infrared radiation heating/convection heating".
- the intelligent electronic control that displays the "ratio of infrared radiation heating/convection heating” can lead to the establishment of new energy-saving standards in the heating industry, and can clean up the current high energy consumption and false publications of heating performance in the heating industry.
- the present invention innovatively proposes the design and preparation of mid-infrared emitting heating components, that is, the components should conform to the mid-infrared band with an emission wavelength of 3 ⁇ m-50 ⁇ m, and the emissivity and transmittance should use mid-infrared components that have been proofread by black bodies. Detector quantification. The importance of this standard lies in the fact that the human body, common clothing, and bed fabrics all have extremely efficient mid-infrared absorption.
- the mid-infrared emitting heating assembly of the present invention is a thermally insulating packaged heater.
- the mid-infrared emitting heating component cuts off the high-energy consumption convection heating through high-efficiency thermal insulation packaging, and the packaging technology and practical application of the mid-infrared radiation are the core innovations of the present invention.
- the thermal insulation packaging of the mid-infrared emitting heating assembly disclosed in the present invention is also an innovative technology.
- the thermal insulation packaging of the mid-infrared emission heating component adopts two different thermal insulation packaging methods, and the mid-infrared emission heating component is packaged by an electric transfer mid-infrared emission film wrapped with an electrical insulating film.
- the present invention proposes to use mid-infrared-transmitting polyethylene as the structural material to ensure high mid-infrared transmittance; furthermore, the air bubble microstructure and composite multi-scale and morphology in the optimized porous polyethylene involved in the present invention
- the air bubble microstructure can achieve the purpose of high-efficiency thermal insulation; most importantly, the present invention has high mechanical properties by optimizing the polyethylene microstructure and composite multi-scale and morphology polyethylene microstructure, which can guarantee the ability to Vinyl made of mid-infrared thermally insulated puncture-resistant encapsulation with a puncture-proof durable electro-middle infrared emitting membrane to safely direct the electro-middle infrared radiation in the mid-infrared emitting heating unit in the direction of the user of the mid-infrared emitting heating unit output.
- the mid-infrared emitting heating component is made of glass or other materials that absorb mid-infrared radiation as a thermal insulation structure
- the top surface of the mid-infrared emitting heating component facing the user will heat up due to absorbing the mid-infrared emitted by it and dissipate heat through air convection, which is convenient Go against the purpose of the non-energy-saving mode convection heating that the present invention will curb.
- another innovative point of the present invention is that the thermal insulation structure and function of the bottom surface covering layer of the mid-infrared emitting heating component away from the user is different from the thermal insulation structure and function of the top surface covering layer facing the user.
- the heat insulation structure of the covering layer adopts a simple heat insulation plastic layer such as foam plastic to prevent energy loss caused by solid heat transfer, and a metal (aluminum, etc.) coating with a mid-infrared emissivity of ⁇ 10% is added to prevent heat loss due to Energy loss due to infrared radiation, the metallic coating also has the property of reflecting mid-infrared radiation emitted by the heating element in the direction of the wall and subsequently returning to the heating element.
- a simple heat insulation plastic layer such as foam plastic to prevent energy loss caused by solid heat transfer
- a metal (aluminum, etc.) coating with a mid-infrared emissivity of ⁇ 10% is added to prevent heat loss due to Energy loss due to infrared radiation
- the metallic coating also has the property of reflecting mid-infrared radiation emitted by the heating element in the direction of the wall and subsequently returning to the heating element.
- the infrared emitting heating component can not only provide the user with a sense of warmth and physical therapy benefits, but also aesthetic enjoyment. A layman, or even a person with basic skills in the room heater industry, may perceive that black objects do not emit light, whereas colored objects (such as colored mid-infrared emitting heating components) will detract from the mid-infrared emission by being decorated with different colors Function.
- the present invention reveals a very different phenomenon, that is, although the mid-infrared emitting heating components of the present invention are presented using lead/chrome-free colors such as black, white, red, yellow, blue, green, and combinations thereof Its decorative aesthetic effect, but as long as the method disclosed in the present invention is followed, the lead/chrome-free pigment can still have a mid-infrared transmittance close to 100%, and the colored mid-infrared emitting heating component can still exert its high-efficiency heating and physical therapy effects.
- lead/chrome-free colors such as black, white, red, yellow, blue, green, and combinations thereof
- the present invention creatively proposes an energy-saving heating system in which the mid-infrared emitting heating assembly is laid on the ceiling.
- the "infrared radiation heating/convection heating ratio" of the infrared radiation heating facilities installed on the ceiling must be higher to achieve the purpose of more energy saving, and the larger the heating space, the higher the energy consumption.
- Large indoor Spatial facilities often take up a lot of space per capita, resulting in extremely high energy consumption per capita.
- the most effective solution to overcome this high energy consumption situation is to dynamically deploy heating elements for heating following the position of the heated person.
- the present invention innovatively proposes a way to realize this seemingly impossible idea.
- the heating elements of the indoor heating system cannot be placed following the dynamic position of the heated person, as long as the heating elements of the heating system are For radiant heating, the image of the light source can not only be projected at a designated location in the space using optical technology, but also the light path can be controlled without changing the position of the light source to adjust the image of the light source.
- the specific innovative content is to set the horizontal section (50 cm ⁇ 50 cm) of the heated space as an infrared heating heating element (light source element), and lay it on the ceiling, with a converging and focusing mid-infrared
- the vinyl lens accurately places the image of the light source element on the horizontal section of the space of the heated person about 1 meter above the ground.
- the heated person is exposed to the infrared radiation formed by the image of the light source element. Create a sense of warmth.
- the mid-infrared emission heating ceiling device of the present invention as long as a polyethylene lens with a suitable focal length is selected to match the height of the floor, and an infrared heating element is assembled on the ceiling at the permanent place of the heated person, then the infrared The sensor detects the dynamic position of the human body and controls each energy-saving mid-infrared heating element to independently switch and operate the electric controller, thus constructing a subversive energy-saving heating system.
- the mid-infrared emitting element of the mid-infrared emitting heating assembly described in the present invention is a low
- the power density and low working temperature of the electro-transferred mid-infrared emitting film, especially the working voltage of the mid-infrared emitting heating component does not exceed 36V, ensuring that there is no danger of leakage when the human body contacts the mid-infrared emitting heating component, and the working surface temperature of the mid-infrared emitting heating component is much lower than 46°C, guaranteed not to cause burns to the skin.
- the present invention discloses low-resistivity ( ⁇ 1 ⁇ -cm) coal-based nanocarbons with low cost ( ⁇ US$700-1000/ton) to prepare mid-infrared emitting films with low sheet resistance less than 100 ⁇ / ⁇ at a practical cost. Satisfy the requirements of innovation and safety under the conditions of efficiency.
- the mid-infrared emitting heating components with a low power density of about 500W/ m2 and a total power of about 1000W are combined with furniture and accessories that do not absorb or reflect mid-infrared, it should meet a standard indoor space of 20 square meters. Heating requirements, and can provide an excellent effect of 50% energy saving.
- the present invention judges according to the thermal conductivity of air (0.027W/m ⁇ K), and the mid-infrared emitting heating component is insulated with porous polyethylene whose thermal insulation effect is equivalent to that of 3mm air, and the mid-infrared emitting heating component uses 500W When operating at a power density of /m 2 , the theoretical heat insulation temperature difference from the electro-transfer mid-infrared emitting film to the top cover of the user-facing mid-infrared emitting heating component is 56°C.
- the temperature of the electrotransfer mid-infrared emitting film is 90°C
- the temperature of the top surface of the mid-infrared emitting heating component facing the user of the mid-infrared emitting heating component is 34°C.
- the mid-infrared emitting heating assembly of the present invention is electrically transferred to the mid-infrared emitting film at 90°C, the surface temperature of the mid-infrared emitting heating assembly is absolutely safe for users of the mid-infrared emitting heating assembly.
- Planck's law[1] when the mid-infrared emissive film with a mid-infrared emissivity of 99% works at 90°C, the mid-infrared power density is about 950W/m 2 .
- the mid-infrared transmittance of the window-like thermal insulation structure of the heating component is not ideal, so that the mid-infrared emitting heating component can only emit 70% of 950W/ m2 , and the user will still feel the heating at 60°C due to the absorption of the transmitted mid-infrared.
- the temperature on the top surface of the heating element remains unbelievably around 34°C.
- the convective transfer energy power density of the commonly used heating model can be measured by the formula 1 (ie 2.17 ⁇ T 1.13 W/m 2 ), where T is the temperature difference in degrees Celsius between the heating surface temperature and the room temperature, and
- T is the temperature difference in degrees Celsius between the heating surface temperature and the room temperature
- the energy power density transmitted by infrared radiation can be calculated by Planck's law (Formulas 2 and 3 in the background section).
- a floor heater with a surface temperature of 34°C on the market when the room temperature is 16°C, its effective convective energy power density is 96W/m 2 , the effective infrared radiation transmission energy power density is 90W/m 2 , and the ratio of infrared radiation heating/convection heating (referred to as R/C) is only 0.94.
- R/C ratio of infrared radiation heating/convection heating
- the mid-infrared emitting heating assembly disclosed by the present invention has an effective convective transmission energy power density of 96W/ m2 and a top surface temperature of 34°C and a power density of 90W/m2.
- the effective infrared radiation transmission energy power density there is also the mid-infrared emission of the built-in infrared source through the top covering layer of the heating component and the thermal insulation penetrating mid-infrared layer. If the infrared transmittance is 70%, the additional effective infrared radiation transmission energy power density can still reach 265W/m 2 , and the total effective infrared radiation transmission energy power density increases to 375W/m 2 , which is four times the effective convective transmission energy power density.
- the R/C is subversively improved to achieve energy-saving effects and avoid the disadvantages of low humidity caused by convection heating air.
- the mid-infrared emitting heating assembly of the present invention provides In addition to being warm and comfortable, it also provides high enough mid-infrared radiation intensity (>375W/m 2 ) to provide its users with scientifically proven mid-infrared physiotherapy benefits.
- the mid-infrared emission heating assembly disclosed by the present invention can adopt [PCT/CN2018/104910] low-cost coal or coke prepared graphene, carbon nanotubes, carbon nanofibers and other conductive nano-carbons, implementing the low-cost method of the present invention A method of fabricating mid-infrared emitting heating components at a cost.
- US9989679 is an infrared reflection method whose concept is opposite to the present invention.
- US10502879 discloses a system with a colored infrared transparent layer, but this invention relates to near infrared rather than mid infrared, where the disclosed colored infrared transparent layer is used as an encapsulation material for near infrared cameras or other near infrared devices, not related to heating and mid infrared physiotherapy .
- US10502879 discloses a coloring method using plasma particles in an infrared-transmitting matrix, but the cost of the plasma particles in this invention is very high, and it cannot be practically used as a decorative heater.
- Reference 30 discloses that lead-based and chromium-based pigments are used to beautify low-infrared radiation paints, but the related applications of lead and chromium have been banned, and the disclosed method is opposite to the technical route of the present invention.
- Reference 31 describes the preparation of colorful, near-infrared reflective, superhydrophobic polymer films to keep buildings cool from solar heating. Said concepts and methods are contrary to those of the present invention.
- this patent provides a heat-insulating encapsulation mid-infrared emission screen for heating and physiotherapy and its preparation method.
- this patent uses two layers of plastic film to sandwich a gas thermal insulation layer to make a heat-insulating mid-infrared emission screen, but the mid-infrared emission screen It is not suitable to be installed on the ceiling far away from the heated person, because the infrared radiation density of the receiving heating point outside the mid-infrared emitting screen decreases with the square value of the distance.
- the present invention discloses an intelligent environmental protection ceiling device for mid-infrared heating, characterized in that, the mid-infrared heating ceiling device includes a plurality of energy-saving mid-infrared heating components installed on the ceiling, and each of the The energy-saving mid-infrared heating component has a laminated structure, including a beautiful transparent top surface covering facing the ground, a polyethylene lens that transmits and focuses mid-infrared light, a thermally insulating mid-infrared layer, a heating element, a thermally insulating layer, Bottom covering layer; wherein, the top covering layer faces the heated person, and the bottom covering layer is away from the heated person relative to the top covering layer; the mid-infrared spectral wavelength range is suitable for
- the mid-infrared emitting heating component can be made into a ceiling decoration, becoming a product that is both beautiful and has the function of heating and physiotherapy.
- the aesthetically pleasing mid-infrared top covering layer includes a mesh structure with pores that can transmit infrared, and the mesh structure can optimize the aesthetics and mechanical properties of the top covering layer.
- the mesh includes plastic mesh, Metal grid, or plastic grid covered with metal coating.
- the main constituent material of the beautiful and transparent top surface covering layer is polyethylene
- the additional material may include one or more of ordinary fabrics, pigments, flame-retardant materials, and additives.
- the top cover layer is also provided with beautiful patterns and at least some embroidery or bedding that customers like, including silk and other fabrics.
- the mid-infrared transmittance of the top cover layer is >50%
- the bottom covering layer is thermally insulated and has a mid-infrared emissivity ⁇ 10%, and the bottom covering layer includes a plastic film covered with a metal coating.
- the heat-insulating mid-infrared transparent layer includes any one or more structures in which polyethylene wraps air.
- the main constituent materials of the heat-insulating mid-infrared transparent layer include polyethylene and air, and the additional materials may include one or more of other plastics, pigments, flame retardants and other functional additives.
- the heat-insulating mid-infrared-transmitting layer includes a single-layer or multi-layer heat-insulating mid-infrared-transmitting film structure with a microstructure optimized for mechanical strength against breakdown; When the shaped marble impacts at a speed of 6 meters per second, the marble will not break through the thermal insulation penetrating mid-infrared anti-penetration layer and contact the heating film.
- the microstructure of the heat-insulating mid-infrared transparent layer includes a two-dimensional air layer with a thickness of 1-3 mm, closed cells of 1-10 mm, open cells of 1-10 mm, closed cells of 1 ⁇ m-1000 ⁇ m, closed cells of 1-1000 ⁇ m
- polyethylene microstructures also include polyethylene fibers, high-density polyethylene microstructures, low-density polyethylene microstructures, directional stretched One or more of polyethylene microstructures, non-directionally stretched polyethylene microstructures, and melt-blown polyethylene microstructures.
- the thermal insulation means that the maximum actual operating thermal insulation temperature difference is greater than or equal to 50°C.
- the material of the electrotransfer mid-infrared emitting film layer includes a conductive nano-carbon plastic compound; the square resistance of the electrotransfer mid-infrared emitting film layer is ⁇ 100 ⁇ / ⁇ , the thickness of the film layer is ⁇ 200 ⁇ m, and the mid-infrared emission rate is ⁇ 95%.
- the mid-infrared emission intensity of the top surface of the mid-infrared emission heating component can reach more than 50% of the emission intensity of the built-in emission source, and the mid-infrared emission intensity of the bottom surface is lower than 10% of the emission intensity of the emission source.
- the heating component displays the infrared heating power emitted by the top surface and the convective heating power emitted by the top surface through hot air convection, and the infrared heating power is more than twice higher than the convective heating power.
- the polyethylene lens that can transmit and focus mid-infrared light has a mid-infrared transmittance ⁇ 50%, and focuses the mid-infrared emitted by the heating element to a distance of about 1 meter from the ground.
- the mid-infrared heating ceiling device includes wires, power supply, infrared sensor, and an electric controller that controls the independent switch operation of each energy-saving mid-infrared heating component.
- the mid-infrared emitting heating assembly can be used for indoor heating, mid-infrared therapy or functional interior design and combinations thereof.
- the novel mid-infrared emitting heating assembly disclosed in the present invention fills the vacancy of current technology, refers to the market demand for low-cost, high-performance mid-infrared emitting heating assembly, and generates warmth in a safe, effective and energy-saving manner , comfort and mid-infrared physiotherapy benefits, and the novel color mid-infrared emission heating assembly disclosed in the present invention also presents a pleasing aesthetic feeling under the premise of ensuring these functions. Furthermore, the present invention follows an approach that emphasizes scientific clarity and evidence-based norms in the design of novel mid-infrared emitting heating components.
- the preparation method of the mid-infrared emitting heating assembly described in the present invention includes:
- Electroporation mid-infrared emitting film layer is prepared by using nano-carbon plastic compound: the plastic is dispersed in an organic solvent to form the first mixed solution, and then the nano-carbon is dispersed in the above-mentioned first mixed solution to form the second mixed solution;
- the electrotransfer mid-infrared emitting film layer is prepared by a slurry film forming process;
- the first electrical insulation layer and the second electrical insulation layer are stacked on the upper and lower sides of the electrotransfer mid-infrared emission film layer respectively to obtain the first electrical insulation layer, the electrotransfer mid-infrared emission film layer and the second electrical insulation layer.
- Layers are respectively added on the upper and lower sides of the stacked structure of the first electrical insulating layer, the electro-transferred mid-infrared emitting film layer, and the second electrical insulating layer, to form a top surface covering layer, a transparent and focusing mid-infrared light
- a mid-infrared emitting heating component consisting of a polyethylene lens, a heat-insulating mid-infrared-transmitting layer, a first electrical insulating layer, an electro-transfer mid-infrared emitting film layer, a second electrical insulating layer, a thermal insulating layer, and a bottom covering layer.
- the functions in some specific usage examples are as follows:
- the mid-infrared emission element of the mid-infrared emission heating component is a kind of electrotransfer mid-infrared emission film comprising a low-cost nano-carbon plastic compound, which has a low sheet resistance of less than 100 ⁇ / ⁇ and is suitable for the mid-infrared
- the emitting heating component exerts its excellent function to ensure that there is no danger of electric leakage when the human body touches the mid-infrared emitting heating component.
- the mid-infrared emitting heating component operates under a safe voltage lower than 36V power supply, and the laying and interior design of the mid-infrared emitting heating component with a low power density of about 500W/ m2 and a total power of about 1000W It is suitable to use furniture and decorations that do not absorb or reflect mid-infrared.
- a 20m 2 indoor space will be evenly distributed indoors due to mid-infrared radiation supplied by mid-infrared emitting heating components and reflected by indoor objects.
- the indoor air temperature can be maintained at 18 Below °C, the user of the mid-infrared emitting heating component still feels warm due to the absorption of mid-infrared radiation, and obtains a comfortable warmth similar to an indoor air temperature of 25°C, while many indoor objects are kept at 18°C due to the low absorption rate of mid-infrared radiation. °C or so.
- the mid-infrared emission heating assembly disclosed by the present invention can provide an excellent effect of saving energy by about 50%.
- the present invention estimates and actually measures that under the low power density working condition of 500W/ m2 of the mid-infrared emitting heating assembly, the actual temperature of the electric transfer mid-infrared emitting film can indeed be maintained when the indoor air temperature is 18°C The operating temperature reaches 90°C. In this state, the electric controller of the mid-infrared emitting heating component can lower the temperature below 90°C according to the actual heating requirements of the user of the mid-infrared emitting heating component.
- the mid-infrared emitting heating component is made of 0.1mm printed polyethylene on the top surface with a beautiful outer layer and a porous polyethylene transparent inner and outer thermal insulation layer structure (thermal insulation effect approximately equivalent to 3mm air layer), when the mid-infrared emitting heating assembly operates at a power density of 500W/m 2 , the theoretical heat insulation temperature difference from the electro-transferred mid-infrared emitting film to the surface facing the user’s surrounding layer is calculated from the following formula (500W/ m 2 /0.027W/m ⁇ K) ⁇ ((3mm) ⁇ 1m/1000mm) was determined to be 56°C.
- the experiment proves that when the temperature of the electro-transfer mid-infrared emission film is 82°C, the temperature of the top surface of the mid-infrared emission heating component facing the user of the mid-infrared emission heating component is 33°C, even if the mid-infrared emission heating
- the mid-infrared transmittance of the plastic layer of the thermal insulation structure of the component is only 70%, which causes its absorption of mid-infrared heating and thermal insulation effect to decline.
- the mid-infrared emitting heating assembly of the present invention is absolutely safe for users of the mid-infrared emitting heating assembly.
- mid-infrared emitting heating assembly is heating at 60°C due to the absorption of mid-infrared, while the temperature of the top and bottom surfaces of the mid-infrared emitting heating assembly is strangely maintained at 33°C. This shows the innovation and energy-saving effect of the present invention.
- the radiant heating element also provides high enough mid-infrared radiation intensity to provide its user with the scientifically proven mid-infrared therapeutic benefits.
- the mid-infrared emission heating assembly disclosed in the present invention can adopt [PCT/CN2018/104910] low-cost coal or coke prepared graphene, carbon nanotubes, carbon nanofibers and other conductive nano-carbons, and estimate the cost It is lower than US$700-1000/ton, and the resistivity is lower than 1 ⁇ -cm, so the coal-based nano-carbon plastic composite mid-infrared emission film has a low sheet resistance of less than 100 ⁇ / ⁇ , and is suitable for preparing the present invention
- a mid-infrared emitting heating assembly is disclosed, and the innovation of the present invention is implemented under practical cost-effective conditions.
- the mid-infrared emitting heating assembly disclosed in the present invention includes a lens plate that can transmit and focus mid-infrared light, and the lens plate is formed by injection molding of mid-infrared-transmitting polyethylene.
- the present invention relates to an innovative design, production, testing, verification and intelligent and environmentally friendly use method of a mid-infrared heating intelligent environmental protection ceiling device.
- the intelligent environmental protection ceiling device for mid-infrared heating can be applied to make users feel warm and comfortable, and can be applied to make users have convenient and safe mid-infrared physiotherapy effects.
- Figure 1 is the distribution diagram of the infrared radiation energy power density of the standard black body at different temperatures
- Figure 2 is the distribution diagram of infrared radiation energy power density of different materials
- Fig. 3 is a structural schematic diagram of the mid-infrared emitting heating assembly of the present invention for heating and physiotherapy through mid-infrared thermal insulation package
- Fig. 4 is a structural schematic diagram of an intelligent environment-friendly ceiling device for mid-infrared heating of the present invention
- Fig. 5 is a structural schematic diagram of the first embodiment of the mid-infrared emitting heating assembly for heating and physiotherapy in the mid-infrared heat insulation package of the present invention
- Fig. 6 is a schematic diagram of the object of the first embodiment of the mid-infrared emission heating assembly of the present invention, which is used for heating and physiotherapy, and a mid-infrared emission effect camera.
- Fig. 7 is a structural schematic diagram (a) of the second embodiment of the mid-infrared emission heating assembly used for heating and physiotherapy in the mid-infrared thermal insulation package of the present invention and the camera (b) of the infrared emission effect in the real scene
- Fig. 8 is a schematic diagram of the scene of the third embodiment of the intelligent environmental protection ceiling device for mid-infrared heating of the present invention
- Fig. 3 shows that in a typical embodiment of the present invention, the basic structure of the beautiful and safe mid-infrared heating intelligent environmental protection ceiling device of the present invention includes multiple mid-infrared heating components, starting from the top surface of the mid-infrared heating component facing the user
- the core component of the infrared heating assembly formed by stacking mid-infrared transparent layers 311-313; wherein, the mid-infrared transparent layer 311 may have a mid-infrared transparent lead-free/chrome visible color in and/or on it to form a beautiful picture, And it can have cloth materials including silk and cotton to meet the aesthetic and hand feeling requirements of market customers on the surface of infrared heating components; wherein, the mid-infrared transparent layer 311 can also have a grid structure that includes infrared-transmitting pores; the grid The structure is prepared by one or more of plastic, metal, and metal coating covering plastic; wherein, the mid-infrared transparent layer 311 is used as a lens plate that transmits and focuses mid-infrared light, and the lens that transmits and focuses mid-infrared light
- the board 312 is formed by injection molding of polyethylene; wherein, the heat-insulating mid-infrared transparent layer 313 has high thermal insulation and high mid-infrare
- the mid-infrared heating ceiling device includes wires 37, infrared sensors 38, and an electric controller 39 that controls the independent switch operation of each energy-saving mid-infrared heating component.
- the electric controller includes A power supply, an infrared sensor for detecting the position and temperature of many people in the room, and a sensing circuit for regulating the power supply of the infrared heating component by using the infrared sensor.
- the primary structural material of each of the mid-infrared transparent layers 311-313 in FIG. 3 is mid-infrared transparent polyethylene whose microstructure includes polyethylene fibers, high-density One or more of polyethylene microstructure, low-density polyethylene microstructure, oriented stretched polyethylene microstructure, non-directional stretched polyethylene microstructure, melt-blown polyethylene microstructure, performance requirements in Under the premise of nearly 100% mid-infrared penetration, it has high mechanical strength to ensure durability and anti-puncture performance.
- the performance of the mid-infrared transparent layer 313 in FIG. Porous polyethylene, the pore microstructure design of the porous polyethylene includes a two-dimensional air layer with a thickness of 1-3mm, closed cells with a diameter of 1mm-10mm, open cells with a diameter of 1mm-10mm, closed cells with a diameter of 1-1000 ⁇ m, and open cells with a diameter of 1 ⁇ m-1000 ⁇ m
- One or more of bubbles, ⁇ 1 ⁇ m closed bubbles, ⁇ 1 ⁇ m open bubbles, the synergistic effect of the combination of pore microstructures should meet the specific thermal insulation, and the maximum temperature difference in normal operation can reach 50 degrees Celsius.
- the mid-infrared transparent layer 311 faces the object to be heated, while the thermal insulation foam plastic layer 36 is away from the object to be heated relative to the mid-infrared transparent layer 311 .
- the mid-infrared transparent layer 311 can be used as the top cover layer, and the mid-infrared transparent layer 311 can be made of polyethylene, polypropylene or other mid-infrared transparent polymers.
- the surface of the mid-infrared transparent layer 311 facing the object to be heated may also include a mid-infrared transparent lead-free/chrome visible color, and the lead-free/chrome-free visible color includes lead-free and chrome-free colors, wherein the non-lead Lead and chrome-free colors include aluminum particles, coated aluminum particles, titanium dioxide particles, coated titanium dioxide particles, nanocarbon black, perylene red, quinonephthalein yellow, bismuth yellow, indigo, phthalocyanine blue, cobalt blue, copper phthalocyanine green, Iron oxide orange, iron oxide brown or lead-free yellow 83 and combinations thereof.
- electrically insulating layers 32 and 34 include thermoplastic polyurethane, thermoplastic polyester, carbon-based rubber, silicone-based rubber, or polypropylene, and combinations thereof.
- the polymers in the high-conductivity nano-carbon polymer composite electrotransfer mid-infrared emission film 33 include thermoplastic polyurethane, thermoplastic polystyrene, thermoplastic polyester, carbon-based rubber, silicon Base rubber, polypropylene, polyvinyl alcohol, polyparaphenylene terephthalamide, and combinations thereof.
- the sheet resistance of the electrotransferred mid-infrared emitting film 33 is ⁇ 100 ⁇ / ⁇ , the thickness of the film layer is ⁇ 200 ⁇ m, and the mid-infrared emission rate is close to 100%.
- the mid-infrared emission rate of the electrotransferred mid-infrared emitting film 33 is ⁇ 90%, preferably ⁇ 95%.
- the nano-carbon in the composite material includes multi-morphology conductive nano-carbon obtained from coal or coke, including one or more of graphene, carbon nanotube, and carbon nanofiber.
- the nano-carbon is composed of coal-based nano-carbon with a resistivity lower than 1 ⁇ cm, and its production cost is at least 50 times lower than that of graphene; Preferably the production cost is ⁇ $700/ton.
- the method disclosed in WO2020051755 is suitable for producing coal-based nanocarbons in the present invention.
- the carbon black is further graphitized to a resistivity lower than 1 ⁇ cm, and used to manufacture the infrared heating component of the present invention.
- the ultra-thin shiny metal layer 35 with extremely low mid-infrared emissivity includes metal-rich carbon oxides of aluminum, aluminum alloys, copper, copper alloys, chromium, and zirconium alloys. Nitrides and combinations thereof.
- the thermal insulation layer 36 comprises foam sheets of thermoplastic polyurethane, thermoplastic polyester, carbon-based rubber, silicone-based rubber or polypropylene and combinations thereof.
- Fig. 4 is a structural schematic diagram of an intelligent and environmentally friendly mid-infrared heating ceiling device of the present invention, and Fig. 4 includes a plurality of mid-infrared emitting heating components of Fig. 3 . The rest of the components are the same as those of the first embodiment and will not be repeated here.
- the structural schematic diagram of the infrared emission heating assembly of the present invention is shown in Figure 5, the only difference between Figure 5 and Figure 3
- the mid-infrared transparent layers 311-313 of the mid-infrared emitting heating assembly in Fig. 5 are all actually made of polyethylene with an infrared transmittance of nearly 100%.
- Table 1-2 lists the results of two specific test examples of the first embodiment and the second embodiment.
- the mid-infrared transparent layers 311-313 of the present invention are actually made of polypropylene whose infrared transmittance is worse than that of polyethylene.
- the physical schematic diagram (left side of Fig. 7 (b)) of the infrared emission heating assembly and the camera (right side of Fig. 7 (b)) of the infrared emission effect in the real object are shown in Fig. 7, the test example of the second embodiment The results are listed in Table 2.
- the results of tests and comparisons of the embodiments show that the mid-infrared transparent layers 311-313 of the infrared emission heating components of the present invention actually use polyethylene with a mid-infrared transmittance of nearly 100% to ensure this.
- the infrared emitting heating element of the invention has optimal functionality.
- the infrared heating assembly of the present invention with a unit area of 50 cm wide and 50 cm long is integrated into the ceiling decoration
- the component units of each infrared heating component can be independently switched and regulated according to the external sensor signal device that detects the position of the human body in the room, and consciously only supply power to the component units of the infrared heating component near the position where there is a need for warmth. To achieve the most energy-saving intelligent mid-infrared heating purpose.
- Figure 8 shows the schematic diagram of the scene (a: there are two people on the ground station, 12 infrared heating components with a unit area of 50 cm x 50 cm are built in the ceiling, and the infrared radiation emitted by the infrared heating components that are automatically opened in the ceiling is focused on the area above the floor. About 1m away), (b: There are two people on the ground station, 12 infrared heating components with a unit area of 50 cm ⁇ 50 cm are built in the ceiling, and the infrared radiation emitted by the infrared heating components that are automatically turned on in the ceiling has no focusing effect); It is obvious that the intelligent method of mid-infrared heating is the most energy-saving heating method according to the current conditions.
- the overall structure of the second embodiment is the same as that of the first embodiment, the only difference is that the materials of the mid-infrared transparent layers 311-313 are different.
- the material of the mid-infrared transparent layers 311-313 includes polyethylene; in the second embodiment, the material of the mid-infrared transparent layers 311-313 includes polypropylene whose mid-infrared transparency is lower than that of polyethylene, As shown in Figure 7(a).
- a high performance mid-infrared emitting heating assembly is produced.
- the mid-infrared emitting film of nano-carbon composite was prepared by standard film casting process.
- the sheet resistance of the obtained film was 26 ⁇ 2 ⁇ / ⁇ and the thickness was 80 ⁇ 2 ⁇ m, and an electrothermal film with a size of 2500cm 2 was prepared.
- the rated powers of the mid-infrared emitting heating components are 150W and 0.06W/cm 2 respectively.
- the structure of the porous polyethylene transparent mid-infrared thermal insulation layer is composed of porous polyethylene whose thermal insulation effect is close to that of a 3mm air layer.
- the user-facing top layer is composed of colored polyethylene with nearly 100% mid-infrared transmittance and nearly 100% mid-infrared emissivity.
- the structure of the mid-infrared emitting heating assembly is shown in Figure 5.
- the mid-infrared emitting heating assembly in this embodiment has an electro-converted mid-infrared emitting film temperature of 82°C, and the temperature of the heating-facing surface of the mid-infrared emitting heating assembly exposed to an indoor environment of 18°C is 33°C.
- the temperature measured by the calibrated thermocouple on the infrared emission film in the electroporation is 82°C, and the temperature measured by the calibrated thermocouple on the surface of the top coating is 33°C.
- the middle-infrared radiation intensity detector is 50 centimeters away from the top covering layer, and the blackbody temperature equivalent of measuring the infrared radiation intensity in the mid-infrared emission heating assembly is 52 °C under the condition of facing the mid-infrared emission heating assembly.
- mid-infrared radiation temperature equivalent (52°C) received outside the mid-infrared emitting heating component is lower than the actual electrotransfer mid-infrared emitting film temperature (82°C) is the mid-infrared transmittance of the porous polyethylene thermal insulation layer and polyethylene lens Neither is 100%, but it is estimated that the actual mid-infrared radiation intensity on the top surface of the heating component is still 70% of the mid-infrared radiation intensity of the built-in emission source.
- the mid-infrared emissivity of the bottom cover of the mid-infrared emitting heating assembly is determined to be 10% under the condition that the mid-infrared emitting heating assembly is directly facing the mid-infrared emitting heating assembly at a distance of 50 cm from the bottom covering layer.
- Fig. 6 shows the real photo and mid-infrared camera of the mid-infrared emitting heating assembly in this embodiment.
- the real mid-infrared emission area is 2500cm2 (length 50cm, width 50cm), and the mid-infrared camera shows an average blackbody temperature equivalent of 52°C under 135W power supply .
- the implementation effect data table in Table 1 shows that the temperature measured by the calibrated thermocouple on the infrared emission film in the electroporation is 82°C, the temperature measured by the calibrated thermocouple on the surface of the top cover layer is 33°C, and the indoor temperature is 18°C. °C.
- the results prove that the mid-infrared emitting heating assembly of this embodiment can emit mid-infrared electromagnetic waves with sufficient radiant intensity under the effect of aesthetics and energy saving, and provide mid-infrared heating and mid-infrared physiotherapy functions.
- the mid-infrared emitting heating assembly of this embodiment still operates normally when the input electric power is 150W, the built-in emission temperature measured by the calibrated thermocouple is 88°C and the top surface temperature is 36°C, and the top surface infrared temperature is measured by an external infrared meter is 55°C.
- a lower performance mid-infrared emitting heating assembly is produced.
- the mid-infrared emitting film of nano-carbon composite was prepared by standard film casting process.
- the sheet resistance of the obtained film was 26 ⁇ 2 ⁇ / ⁇ and the thickness was 80 ⁇ 2 ⁇ m, and an electrothermal film with a size of 2500cm 2 was prepared.
- the rated powers of the mid-infrared emitting heating components are 150W and 0.060W/cm 2 respectively.
- Porous polypropylene mid-infrared thermal insulation layer structure is composed of 5mm thick porous polypropylene.
- the top layer facing the user is composed of colored polypropylene, the actual pattern is shown in Figure 7, and the structure of the mid-infrared emitting heating assembly in this embodiment is shown in Figure 7.
- the temperature measured by the calibrated thermocouple on the electroporation infrared emission film is 80°C
- the temperature measured by the calibrated thermocouple on the surface of the top cover layer is 37.5°C.
- the calibrated mid-infrared radiation intensity detector measures the black body temperature equivalent of the infrared radiation intensity in the mid-infrared emission heating assembly under the condition of facing the mid-infrared emission heating assembly 50 cm away from the top covering layer is 38°C.
- the mid-infrared transmittance of the porous polypropylene mid-infrared thermal insulation layer structure is very low, and the absorption of the mid-infrared emission source leads to temperature rise, thermal insulation failure, and power consumption to maintain the emission source at 80°C 150W, and the temperature of the top surface of the heating component is 37.5°C, which is similar to the infrared black body temperature equivalent of 38°C measured by the external infrared meter, which shows that the infrared radiation measured by the equivalent is mainly from the top surface of the heating component rather than from the built-in electric transfer mid-infrared
- the emissive membrane exits the heating element through the porous polypropylene layer.
- the mid-infrared radiation intensity on the top surface of the heating component is 57% of the mid-infrared radiation intensity of the built-in electrotransmitter, and the surface temperature on the top surface is 37.5°C.
- the effective convective transmission energy power density of the top surface is calculated to be 106W/ m2 and the effective infrared radiation transmission energy The power density is 105W/m 2 , and the built-in infrared source transmits the mid-infrared emission through the top surface covering layer of the heating component and the thermal insulation and anti-puncture layer of porous polypropylene.
- the total effective infrared radiation transmission energy power density is still about 106W/m 2 , so the ratio of the total effective infrared radiation transmission energy power density to the effective convective transmission energy power density is close to 1:1; use this analysis method to compare the first and second Embodiment, the ratio of the total effective infrared radiation transmission energy power density to the effective convection transmission energy power density in the first embodiment is about 3:1, which shows that the second embodiment has no energy-saving effect, and there is still convection heating air that causes the humidity to be too low ills.
- the mid-infrared emission heating assembly of this embodiment is lower than polyethylene because of the mid-infrared transmittance of polypropylene.
- the polypropylene absorbs the radiation of the mid-infrared emission film and heats up, and the porous polypropylene is transparent.
- the thermal insulation of the infrared thermal insulation layer structure is worse than that of the first embodiment.
- 16 infrared heating components with a unit area of 50 cm x 50 cm and a rated input power of 150 W are integrated into the ceiling decoration of a room of 20 square meters, and each infrared heating component unit
- the functionality is the same as that of the first embodiment of the present invention; in this embodiment, the component units of each infrared heating component can be independently switched and regulated according to the external induction signal for detecting the position of the human body in the room, forming Consciously only supply power to component units of infrared heating components near the location where warmth is needed.
- Fig. 8 shows the schematic diagram of the ceiling (Fig.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Central Heating Systems (AREA)
Abstract
本发明提供一种中红外供暖的智能环保天花吊顶装置,所述装置包括多块节能中红外供暖组件,每块节能中红外供暖组件具有叠层状结构,包括面向地面的美观的透中外顶面覆盖层、可透过和聚焦中红外光的聚乙烯透镜、热绝缘透中红外层、发热元件、热绝缘层、底面覆盖层;所述结构创新地把发热元件用透中红外的热绝缘材料封装从而避免高耗能的对流供暖,严格要求红外辐射供暖与对流供暖比例为不少于2的新节能标准;所述供暖组件利用透中红外光的聚乙烯透镜将发热元件散射的中红外聚焦到离地1米有实际供暖需求的空间,再以红外感应器检测人体的动态位置来操控令每块节能中红外供暖组件实现独立开关运行的电控器,构成颠覆性节能供暖系统。
Description
本发明涉及中红外光学工程、热绝缘工程、室内供暖与节能绿色工程、纳米工程和智能制造技术,具体应用为一种美观的中红外供暖的智能环保节能天花吊顶装置。
人类文明在不断进步,但当前的发展模式是不可持续的,因为全球能源消耗速度已远远超过了全球能源储备补充速度并因此衍生能源殆尽危机。由于建筑的室内能源消耗占全球能源消耗的近40%,因此颠覆性降低室内能源消耗的创新显得尤为重要和紧迫[1-5]。室内供暖科技基于物体通过固体热传导、热对流和红外辐射传递热能,其中最普遍的是通过热空气对流来实现室内供暖,但在此方案中,热能的传递都是无选择性地让空间中几乎所有的物体都接收和消耗能量,人与物的对流能量吸收率又大致相同,故此,对流供暖虽简单却不高效,若要改变室内空间环境中所有物体的温度,不仅能耗高而且升降温速率都极其缓慢。除了浪费能源外,这种加热空气的供暖方式还令室内相对湿度严重下降,产生皮肤与呼吸器官等方面的诸多健康问题。尽管补充水蒸气可以提高室内湿度,但由于水蒸发所需的热量很高,因此这种补湿方法消耗的能量较大。总之,全面整改传统室内对流供暖是刻不容缓的。
与对流供暖相比,红外辐射能从热源瞬间穿过空气并被人的皮肤与常用衣物完全吸收,令人迅速产生暖感,而且,金属表面普遍反射且不吸收红外辐射,因此,只要室内空间环境中摆放的物件选用此类材料,供暖能耗可大幅下调。由于空气中的氧与氮几乎不吸收供暖所用的红外辐射,故此室内红外辐射供暖可提供一种身处冬天室外冷空气中晒太阳的感觉,温暖舒适,且不会导致空气相对湿度太低。
在现实众多室内供暖方案中,旧式农舍燃烧煤和柴的供暖烧水炉最为经典且历史悠久,例如20kW供暖燃料炉炉内温度高于600℃而开放式铸铁炉壳表面温度低于200℃,炉门开口可发射总辐射强度达33kW/m
2的电磁波,辐射包括峰值在3.3μm的红外波和强度弱而仍可见的红光,如炉门开口面积为0.1m
2,辐射功率约3kW;同时,开放式炉壳面发射总辐射强度约2kW/m
2的中红外电磁波,峰值高于6μm,如炉壳面积1m
2,炉壳辐射功率约2kW。此分析说明这种20kW供暖炉因红外辐射面积小,总辐射功率只有5kW,供暖炉主靠加热空 气对流供暖,红外辐射功率只占总能量功率的25%。即红外辐射供暖与对流供暖的比例只有0.33,这种情况属于高能耗地把能源用于加热跟人暖感无关的无谓消耗。
国内外城市中普遍家用的“中央”供暖炉利用提高炉内温度来增效,而现代建筑热绝缘较好,一个额定功率为10kW的“中央”供暖器炉已足够用于100m
2的室内空间供暖,近乎密封的供暖器的炉芯通常都在>1000℃的炽热温度下运行,主要依靠直接吹送加热的对流空气到室内空间的各个角落,红外辐射供暖/对流供暖的比例极低。如果炉芯间接输送加热的水或油到室内空间各个角落的散热板,散热板温度在40-80℃左右,靠低功率密度和大面积对流供暖,同时也以红外辐射供暖,可稍增红外辐射供暖/对流供暖的比例来减少能耗。红外辐射供暖/对流供暖的比例是判断供暖节能度的关键参数,目前以散热板和地暖式供暖的标值约为1,未来绿色环保供暖应把这比例提升到不少于2,把浪费能源的对流供暖的分额降减。
在分析红外辐射供暖/对流供暖的比例时,对流供暖的能量功率密度普遍用下面公式1推算:
公式1:
对流供暖的能量功率密度C=2.17×T
1.13W/m
2
公式1中T是供暖散热板表面温度与室温的攝氏温差数。而红外辐射传送能量功率密度可用以下由普朗克定律[6]导出的公式2与公式3计算:
公式2:
公式3:
红外供暖的功率密度R=供暖器红外辐射光谱强度在波长3μm-50μm总和-环境红外供暖的能量功率密度
由公式2与公式3可得出公式4:
公式4:
红外辐射供暖/对流供暖=R/C
此分析方法可通过以下案例来理解。首先,理想的光谱辐射器(称为黑体)在整个辐射光谱中没有任何自吸收而按上述普朗克定律光谱分布发射电磁波,其发射率在理论上被设置为100%。如今,黑体已经通过专业生产和校准,并广泛用作发射率的检测参考标准。例如, 图1所示为温度为310K(37℃、人体温度)时黑体的发射光谱。波长短于3μm的辐射的总光谱强度约为其整个光谱的0.02%,波长50μm以上的总光谱强度仅为2%,总辐射的98%位于3μm-50μm的波长范围内。因为人体不能长期暴露在高于320K和低于290K的温度下,因此图1中还包括了这两个温度下的黑体光谱,以进一步确认与人体健康相关的热辐射实际上只是在3μm-50μm波长范围内的红外区域。温度为310K的黑体的红外辐射的能量功率密度是524W/m
2,代表图1中的光谱强度在3μm-50μm波长范围内的总和。
例如采用公式1与3,可算出市面上一个表温34℃的地暖器在室温16℃时的有效对流供暖能量功率密度为96W/m
2,有效红外辐射供暖能量功率密度为90W/m
2,红外辐射供暖/对流供暖比例为0.94。此分析显示市面上的地暖器超过一半供能用于无选择性的对流供暖,把室内与暖感无关的物件都加温,导致升温慢,湿度低和耗能高。虽然如此,上述供暖已是目前较节能且较舒适的供暖方法;从此可见,供暖确急需有颠覆性革新,红外辐射供暖/对流供暖比例仍需大幅提升,供暖产市场的消费者与产销商都有责任了解红外辐射光谱科学并以此基础协力降低供暖能耗。
实际上,除供暖外,3μm-50μm波长范围内的红外辐射对人类健康的重要性已经得到了充分的证实和评估[7-10]。总而言之,人体被3μm-50μm波长范围内的红外辐射可提高血液循环和免疫力[11-14],增强伤口愈合能力[15],减轻疼痛[16-17],减轻抑郁压力[18],改善睡眠质量[19],并延缓记忆力衰退[20]。将红外辐射的这些知识与个人热管理的新兴领域协同整合[21-22],出现了新的科学研究领域并制造出新的产品。但是,当前实践中的波长跨度具有一定的随意性,这种随意性阻碍了这一新兴行业的发展和市场的可持续接受能力。例如,仅参考文献11-20中的示例性作品就在红外中显示出以下从窄到宽的波长跨度的极大不同的光谱带:“5μm-12μm”[11],“3μm-14μm”[14],“3μm-15μm”[18],“4μm-16μm”[16,17,19],“5μm-20μm”[20],“4μm-20μm”[13]和“5.6μm-25μm”[15]。显然,此行业中的光谱带的范围必须得到规范和标准化。
尽管波长跨度为3μm-50μm波长范围内的红外光谱辐射具有如此重要的意义,并促成了不少堪称典范的著作[7-22],但令人惊讶的是,甚至连波长跨度的命名也被写成相当随意的形式。根据国际光谱标准ISO20473[23],将3μm-50μm的波长范围明确定义为中红外,其中0.78μm-3μm的波长范围为近红外,50μm-1000μm的波长范围为远红外。但是,许多商业产品[24]和参考文献[10-18]中的大多数文献都随意使用了“远红外”一词来描述 3μm-50μm波长范围内的辐射。其中一些文献错误地引用了国际照明委员会对红外辐射的定义,以证明他们随意使用“远红外”来描述波长在3μm-50μm范围内的辐射是合理的。为明确起见,国际照明委员会网站(WWW.CIE.CO.AT)公开公布的确切定义如下:
红外辐射:波长比可见光更长的光辐射,波长为780nm至1mm。
注1:对于红外辐射,通常分为780nm至1mm的范围:IR-A:780nm至1400nm,或0.78μm至1.4μm;IR-B1.4μm至3.0μm;IR-C:3μm至1mm。
注2:无法定义“可见”和“红外”之间的精确边界,因为波长大于780nm的视觉感受是由于波长较长的非常明亮的光源引起的。
注3:在某些应用中,红外光谱也分为“近”,“中”和“远”红外。但是,边界必然随应用领域不同(例如,气象学,光化学,光学设计,热物理等)而变化。
该澄清说明了一个结论,即国际照明委员会仅承认某些光谱应用将红外分区为“近”,“中”和“远”红外,但未对应如何设置这些分区提出意见。相比之下,ISO20473[23]将0.78μm-1.4μm的IR-A波段和1.4μm-3.0μm的IR-B波段明确组合为0.78μm-3.0μm的“近红外”波段,并将宽范围的IR-C波段明确为3.0μm-1000.0μm,其中“中红外”波段为3.0μm-50.0μm,“远红外”波段为50.0μm-1000.0μm。简而言之,本发明提倡严格执行将3μm-50μm的光谱带标记为中红外,以符合ISO20473的要求。
通过采用ISO20473标准来纠正行业中的错误,并正确地将3μm-50μm波长范围的光谱带称为中红外,本发明还要求所有对中红外产品研究、制造和销售的人员对这些产品的中红外性能进行定量说明。特别地,本发明提倡使用通用的基准黑体来校准热辐射发射器的光谱辐射强度和发射率,该光谱辐射强度和发射率在特定温度下(特别是在人体可瞬时承受的情况下)作为发射器的辐射波长的函数,假设温度范围为0℃-90℃。如前所述,在这样的温度下,物体的辐射强度的98%是在3μm-50μm波长范围的中红外光谱带中发射的,因此根据ISO20473,所有此类热辐射发射器都可被归类为中红外发射器。以具有100%发射率的黑体为基准,将中红外发射器的波长通过发射率作为特定温度下发射器波长的函数进行校准。在没有明确规定的情况下,发射率是指用黑体校准的特定光谱带中的平均发射率。在实践中,可以使用高端红外光谱仪测量作为辐射波长的函数的辐射强度,该高端红外光谱仪可以覆盖3μm-50μm的中红外波段。另外,用通常覆盖0.78μm-25μm的光谱范围的普通红外光谱仪测量作为辐射波长的函数的辐射强度也很容易。因此,通过这种方法可 以轻松得到在3μm-50μm的中红外范围内的3-25μm的部分光谱带中的相对发射率。尽管此测量方法仅覆盖3-25μm的光谱带,而不覆盖3μm-50μm的整个中红外范围,但因为黑体的温度范围在0℃-90℃时,整个3μm-50μm的中红外带在3μm-25μm的这个光谱带中发射出其总热辐射的85%,所以所测得的发射率数据已很好地表示了被测对象的发射率特性。因此,本发明采用并提倡这种测量方法来确定所有中红外发射器的辐射光谱特性和发射率特性。这种标准化的做法弥补了在设计和应用与人体相关热辐射产品的光谱规格方面的不专业性。
推动供暖产业需要提升产品的红外辐射供暖/对流供暖比例以达到降减耗能的目的,而除了厘清光谱标准外,还需规范检测和优化中红外发射率的方法与工具。用于检测中红外辐射率的主要工具有两种:(a)通过简单的辐射发射率测量仪测得的非波长色散发射率;(b)通过装有黑体的红外光谱仪测得的波长色散发射率。一篇最近出版的文献[25]描述,校准并验证了一种工业用辐射发射率测量仪。该辐射发射率测量仪配备有一个内部黑体发射器,该内部黑体发射器的温度为100℃,可辐照测试样品,并通过类黑体辐射吸收器的温度变化来检测和计量测试样品的发射率。该辐射发射率测量仪覆盖了0.5%-98%的发射率范围,光谱范围为2.5μm-40μm。由于普朗克定律规定,在100℃时,黑体在2.5μm-3μm中仅发射其总辐射的0.14%,因此该发射率测量仪的实际开始测量波长约为3μm-40μm。虽然,这种发射率测量仪设计对于快速测量中红外发射率是有效的,但是,该设计仅提供了整个中红外光谱范围的平均发射率,而没有特定波长发射率的信息。这种缺陷也容易通过使用配备有黑体的红外光谱仪来克服。总而言之,所有供暖产品都可利用市面上容易获得的辐射计或红外光谱仪进行测试和验证。
设计和验证供暖产品的中红外发射,必须对沿从供暖产品里的热源到用户的路径中的中红外吸收进行彻底的光谱分析。目前供暖产业缺乏此类分析和此类产品性能检测认证,虚假宣传情况严重。例如,目前供暖产业积极地推销石墨烯地板供暖器,虚假声称产品可发射易被人体吸收的石墨烯红外光。实际上,即便石墨烯地板供暖器里的加热元件中确实包含石墨烯,但所有地板供暖器的加热元件都被木质或陶瓷地板覆盖,而所有木质或陶瓷地板都不透中红外辐射,因此加热元件产生的中红外辐射不可能会透过地板材料。实际上,地板通过吸收来自供暖器的加热元件的红外辐射升温,同时也通过一般固体热传导原理从加热元件获得热能而升温,然后热地板以空气对流与红外辐射散热供暖。显然,地板仍会 发出中红外辐射,但光谱特征取决于地板表面材料的性质,而不是加热元件或地板的主体。类似地,所有供暖器的加热元件都被封装材料覆盖着,以保证供暖器的安全性与耐用性,目前市面普用的封装材料,包括塑料、布料、金属、陶瓷等,除聚乙烯外都不透中红外辐射,供暖器的中红外辐射由其顶部面材的光学性质决定,而不是由供暖器内部的加热元件红外光谱决定。例如,所有以最常见的彩棉、仿棉塑料、硅胶、仿皮革聚氯乙烯等面料封装的穿戴式供暖器和地毡式供暖器,其红外辐射都由面料的中红外光谱特征主导,与供暖器加热元件是否含石墨烯无关。由于已知棉料的中红外发射率范围为68%-88%[32-33],因此未经表面工程处理以提高其中红外发射率的棉料对于生产节能供暖产品而言并不是理想的选择。同样,常见的仿棉塑料、硅胶、仿皮革聚氯乙烯等面料封装的穿戴式供暖器和地毡式供暖器都毫不例外地不符合本发明提倡的提升供暖器红外辐射达到节能的设计与功能要求。在另一个例子中,尽管Yue等人[34]发明了一种具有顶底相反功能结构的薄膜,该薄膜也可作为电热供暖器使用,但其顶底相反功能结构中的供暖面包含低发射率的纳米铜,而非供暖面则具有高发射率。显然,这种顶底相反功能结构设计不利于实现中红外供暖器的高性能。
供暖产业的革新除要优化与规范供暖产品的中红外发射外,还必须满足用户对暖产品的美学要求,在这方面即便具有行业常规技能的科学家/工程师都可能错误地将可见光发射率等同于中红外发射率,因为人眼只能看到可见的颜色,并不能看到中红外光。因此,人们可能会觉得用黑色装饰的供暖产品因它不会发出可见光,所以也不会发出中红外光。同样,人们也可能会觉得具有不同可见颜色的供暖产品在中红外发射方面存在很大差异。本发明再次通过坚持对科学严谨的态度和基于证据的规范来纠正这种错误的认识。例如,在本发明的一个实施例中,测试了一种黑色聚酯耐磨布的波长色散发射率,如图2黑色聚酯织物所代表的曲线所示,这种黑色聚酯的光谱曲线与基准黑体的光谱曲线非常接近,在3μm-33μm的测量光谱范围内,总发射率为96%。一个不懂中红外相关知识的外行人可能会认为,将黑色染料换成白色染料会大大降低发射率,然而本发明表明通过选择合适的白色染料可以保留近乎完美的光谱轮廓和高发射率,如图2白色聚酯织物所代表的曲线所示。相比之下,现有技术[26]对黑色和白色聚乙烯薄片的产品性能和光谱特性的研究表明,白色薄片的性能比黑色薄片差,这是因为其在3μm-7μm的谱带发射率下降到83%。从图2的对比中可以看出,通过测量产品的波长色散发射率可以更精确地跟踪产品的中红外性能。总 之,本发明指出虽然供暖器实际上可选用透中红外的颜料美化,但目前供暖产业并无关注这红外光谱与可见光谱的科学原理,甚至未关注融合两种相异的光谱学的供暖产业的应用。
既然供暖产业要提升供暖产品的红外辐射性能,供暖产业有必要了解已有专用于红外辐射的产品情况。相关文献报导在理疗方面[7-20,24]、个人热管理方面[21-24;US7642489;US10457424;US2018/0320067]和军事应用方面[US7313909]介绍了这些应用所需的发射和操作红外辐射的设备,但都出现波段范围和辐射率不符合本发明提供的中红外供暖规范的问题,而且这些红外发射器工作时发射表面温度高于46℃时会增加人体皮肤被灼伤的风险;现有技术中有的采用传统的红外发射器[US8975604;US9249492],具有体积与重量较大的缺点,不满足中红外节能供暖的市场需求。最近一项授权发明专利[ZL202010847951.8]提供了一种用于供暖与理疗的热绝缘封装中红外发射屏及其制备方法,所述中红外发射屏具有叠层结构,包括顶面覆盖层、第一气体热绝缘层、第一透中红外塑料热绝缘层、第二气体热绝缘层、第二透中红外塑料热绝缘层、第三气体热绝缘层、第一电绝缘层、电转中红外发射膜层、第二电绝缘层、及底面覆盖层。该发明专利虽然克服了上述行业中的诸多缺陷,但由于中红外发射屏外接收供暖点的红外辐射密度随距离的平方值增大而减小,如体宽50厘米的人站在距中红外发射屏50厘米处,能接收到红外发射屏散射出的总红外辐射的20%,而将距离增大到2米(接近楼层高度)时只能接收1.25%,因此所述产品的安装位置与室内供暖用户之间距离有限,不宜装置在距离较远的天花吊顶。故此,在ZL202010847951.8引导下,产业发展都不会考虑将中红外发射屏装置于天花吊顶,尤其是楼层较高的大空间室内设施,局限中红外发射屏应用,并且未能实现这种创新型供暖产品的节能意义与产业影响力。而当前在楼层高度大的大空间室内设施中采用传统对流供暖恰好是室内供暖能耗偏高的祸首。
本发明全面地解决了供暖行业中的上述所有弊端,以大幅降减供暖能耗为目标,让客户享受既节能又健康舒适的暖感为宗旨,提供了改革供暖行业发展的技术与科学根据,重点在于提供了从目前“红外辐射供暖/对流供暖比例”普遍小于1转变为不小于2的可量化效果的改革方法与装备,及相关的科学根据,阐明了对流供暖无选择性地向与人暖感无关的物件供暖的能源浪费现状,又阐明了目前红外辐射供暖行业普遍存在的虚假宣传现状和科学谬误,特别是违反国际红外光谱标准把供暖的中红外乱标为远红外的行为,以及违反红外光谱科学的中红外发射与吸收原理无中生有地虚假讹报供暖产品红外辐射光谱特性。 针对供暖行业中的上述所有缺陷,本发明更具体地提供一种中红外供暖组件与智能环保使用方法,作为落实本发明所述的从目前“红外辐射供暖/对流供暖比例”普遍小于1转变为不小于2的可量化效果的改革供暖行业方法与装备。更重要的是,本发明创新性地突破ZL202010847951.8的思维模式与应用局限性,认为天花吊顶是室内装修中最合适设置节能红外辐射供暖的位置。首先,由于热空气向上流动,故设置于天花吊顶的红外辐射供暖设施的“红外辐射供暖/对流供暖比例”必然更高,而且达到更节能的目的;其次,天花吊顶可用于红外辐射供暖的有效面积比新兴地暖的有效面积更多,更易计划更高效的室内供暖铺设;此外,天花吊顶是最宜铺设室内设施的地方;最后,本发明创新性地提出在本发明所述置于天花吊顶的中红外辐射供暖组件添加透过及聚焦中红外的聚乙烯透镜,用光学原理克服所述供暖组件红外光散射与红外光密度随距离平方值减弱的弊病,并将所述供暖组件红外光聚焦到距地面1米,即把中红外辐射供暖组件的红外影像投放于用户的暖感中心位置,再用红外感应器准确测定用户的位置去运行最近的中红外辐射供暖组件,供暖组件以用户周围50厘米×50厘米的空间为供暖组件单元的长阔规格,输入供暖系统的能源自动集中投放到用户周围50厘米×50厘米的空间,构成历来最具颠覆性的室内供暖节能系统。
参考文献:
所有的参考文献可参见中国发明专利ZL202010847951.8,在此全部引入。
发明内容
室内供暖的能耗是全球总能耗的重要组分,故此改善目前室内供暖的高能耗缺陷是当务之急。本发明在背景章节中已综述过目前室内供暖主要靠对流供暖的高能耗特征与缺点,简言之,在这种室内采暖方式下,仅有部分的能量用来为人体提供温暖舒适感,其余的能量则被用于加热许多与舒适性完全无关的物体而浪费掉。更糟糕的是,这种无差别性的加热也会令室内外空气温差剧增导致室内相对湿度严重下降到危害健康,包括皮肤干裂与呼吸器官受损。此外,传统的室内供暖依赖于功率密度和工作温度高的热源,已有众多灼伤与火灾个案。本发明协同性全方位融汇几个非正统的概念去设计以产生、传输、吸收、反射、聚焦中红外辐射为核心供暖工作原理的新型供暖器来排除以上所述目前室内供暖的缺陷与不足,特别是遏制不节能的对流供暖。具体而言,本发明的颠覆性创新内容包括:
(1)为促进与推动以节能与健康为宗旨的供暖产业变革,本发明提供了创新性的量化“红外 辐射供暖/对流供暖比例”的方法与科学根据,本发明所述供暖组件包括可测算显示“红外辐射供暖/对流供暖比例”的智能电控,显示“红外辐射供暖/对流供暖比例”可以导致供暖产业新节能标准的建立,且可以清洗目前供暖产业高能耗与供暖性能虚假宣传现象。
(2)本发明创新性地提出了中红外发射供暖组件的设计与制备,即组件应符合发射波长为3μm-50μm的中红外波段,而发射率与透射率要使用经过黑体校对过的中红外检测仪量化。该标准规定的重要性在于人体与常用衣物、床上布料都存在极高效地中红外吸收。现有科学证据显示,人体吸收中红外具有理疗效益,故量化中红外发射供暖组件的中红外辐射参数和中红外发射供暖组件用户与其周围物件的中红外光学参数,有利于准确地根据中用户温暖舒适感和理疗需求,预设中红外发射供暖组件铺装和运作安排,达到既节能又舒适健康的效果。
(3)在常理中,供暖器与接收供暖者之间并不是热绝缘的。然而,本发明的中红外发射供暖组件是一种热绝缘封装的供暖器。中红外发射供暖组件通过高效热绝缘封装来堵截高能耗的对流供暖,透中红外辐射的封装技术与实际应用是本发明的核心创新点。
(4)本发明公开的中红外发射供暖组件的热绝缘封装也是创新的技术。中红外发射供暖组件的热绝缘封装采用了两种迥异的热绝缘封装方法,将一块电绝缘膜包裹的电转中红外发射膜封装成中红外发射供暖组件。首先,本发明提出采用以透中红外的聚乙烯为结构材料来保障高透中红外度;进而,本发明中涉及的优化多孔聚乙烯里对流受阻的空气泡微结构及复合多尺度与形貌的空气泡微结构可达到高效热绝缘的目的;最重要的是,本发明通过优化聚乙烯微结构及复合多尺度与形貌的聚乙烯微结构具有高机械性能,可以保障能以最少量聚乙烯制成具有防刺穿耐用的电转中红外发射膜的透中红外热绝缘防刺穿封装,从而可以安全地使中红外发射供暖组件里的电转中红外辐射向中红外发射供暖组件用户的方向输出。若中红外发射供暖组件采用玻璃或其他吸收中红外辐射的材料做热绝缘结构,面向用户的中红外发射供暖组件顶面则会因吸收其发射的中红外而升温并以空气对流散热,这便违背了本发明要遏制的非节能方式对流供暖的目的。除此之外,本发明中的另一创新点是,中红外发射供暖组件远离用户的底面覆盖层的热绝缘结构与功能迴异于面向用户的顶面覆盖层的热绝缘结构和功能,底面覆盖层的热绝缘结构采用泡沫塑料等简单热绝缘塑料层,防止因固体传热而产生的能源损耗,另外再配加中红外 发射率≤10%的金属(铝等)涂层,以防止因红外辐射产生的能源损耗,该金属涂层还具有反射由发热元件向墙面方向发射的中红外辐射以及随后返回发热元件的特性。本发明的核心创新性之一是,协同采用这两种结构与功能都迥异的热绝缘封装技术制备中红外发射供暖组件顶面与底面覆盖层。
(5)在本发明的创新设计中,红外发射供暖组件除可令用户同时具有暖感和理疗效益之外还有美感享受。外行人,乃至一个在室内取暖器行业有着基本技能的人都可能会感觉到黑色物体不发光,然而彩色物体(如彩色中红外发射供暖组件)会因装饰了不同的颜色而有损中红外发射功能。与之相反,本发明揭示了一种截然不同的现象,即尽管本发明的中红外发射供暖组件使用了黑色、白色、红色、黄色、蓝色、绿色等无铅/铬颜色及其组合来呈现其装饰性美学效果,但只要遵照本发明公开的方法,无铅/铬颜料仍能具有接近100%的中红外透射率,且彩色中红外发射供暖组件仍能发挥其高效供暖和理疗效果。
(6)本发明创造性地提出一种将所述中红外发射供暖组件铺设于天花吊顶的节能供暖系统。首先,因热空气向上流动,故设置于天花吊顶的红外辐射供暖设施的“红外辐射供暖/对流供暖比例”必然更高,到达更节能的目的,而且供暖空间愈大能耗愈高,大型室内空间设施往往人均占用空间较多,导致人均耗能极高,克服这种高耗能现状的最有效方案是将供暖的发热元件跟随受暖者的位置进行动态投放。本发明创新性地提出了实现这一骤看不可能的设想的办法,虽然室内供暖系统的发热元件实物不可能跟随受暖者的动态位置进行摆放,但只要供暖系统的发热元件是以光辐射供暖,光源的影像不单可以用光学科技在空间指定位置投放,而且还可以因时制宜地不变动光源位置操控光路来调整光源影像。具体的创新内容是,把受暖者的空间水平截面(50厘米×50厘米)设定为红外供暖发热元件(光源元件),并将之铺设于天花吊顶,搭配经透与聚焦中红外的聚乙烯透镜把光源元件影像准确投放到离地面约1米的受暖者的空间水平截面位置,在此光学场景中,受暖者浴晒于由光源元件影像形成的红外辐射中,通过吸收光能产生暖感。在生产与安装本发明所述中红外发射供暖天花吊顶装置时,只要选用焦距合适的聚乙烯透镜使其匹配楼层高度,并在受暖者常驻地点的天花吊顶装配红外供暖元件,再以红外感应器检测人体的动态位置操控每块节能中红外供暖元件独立开关运行的电控器,便构建成颠覆性的节能供暖系统。
除陈述以上创新核心内容外,本发明再以下列比较分析阐述本发明创新内容的可选实施方案。在本发明的一些实施例中,针对传统的室内供暖依赖于功率密度和工作温度都高的热源对人体的危险性,本发明所述的中红外发射供暖组件的中红外发射元件是一种低功率密度和低工作温度的电转中红外发射膜,特别是中红外发射供暖组件工作电压不超36V,确保人体接触中红外发射供暖组件也无漏电危险,中红外发射供暖组件工作表面温度远低于46℃,保证不会对皮肤造成灼伤。此外,本发明公开以低成本(<US$700-1000/吨)低电阻率(<1Ω-cm)煤基纳米碳制备具有小于100Ω/□的低方块电阻的中红外发射膜能在具有实际成本效益条件下满足创新与安全要求。此外,若以大概500W/m
2的低功率密度及总功率为1000W左右的中红外发射供暖组件结合不吸收或反射中红外的家具与饰物在室内铺设,则应满足一间20平米标准室内空间的供暖要求,且可提供节能50%的优秀效果。在此设计考虑中,本发明根据空气的热导率(0.027W/m·K)判断,中红外发射供暖组件以热绝缘效果等同于3mm空气的多孔聚乙烯绝热,当中红外发射供暖组件以500W/m
2的功率密度运作时,从电转中红外发射膜到面向用户中红外发射供暖组件顶面覆盖层的理论隔热温差为56℃。在此条件下,若电转中红外发射膜温度为90℃,中红外发射供暖组件面向中红外发射供暖组件用户的顶面温度为34℃。实验证明,在室温为16℃时,即使中红外发射供暖组件的热绝缘结构的中红外透射率近零而导致其吸收中红外升温和热绝缘效果下降,面向用户的中红外发射供暖组件顶面温度会达38℃,仍远低于46℃的安全上限。换言之,本发明的中红外发射供暖组件即使电转中红外发射膜在90℃时,中红外发射供暖组件的表面温度对中红外发射供暖组件用户来说是绝对安全的。根据普朗克定律[1],当中红外发射率为99%的中红外发射膜在90℃工作时,中红外功率密度约为950W/m
2,实验证明,即便中红外发射率与中红外发射供暖组件窗状热绝缘结构的中红外透射率不理想,导致中红外发射供暖组件只能发射950W/m
2的70%,用户仍会因吸收透出的中红外而感受到60℃的供暖,而供暖组件顶面的温度却难以置信地保持在34℃左右。
如在本发明背景章节所述,常用供暖模型的对流传送能量功率密度可以所述公式1(即2.17×T
1.13W/m
2)测算,公式中T是供暖面温度与室温的摄氏温差,而红外辐射传送能量功率密度可用普朗克定律计算(背景章节所述公式2与3),例如市面上一个表温为34℃的地暖器,在室温16℃时,其有效对流传送能量功率密度为96W/m
2、有效红外辐射传送能量功率密度为90W/m
2,红外辐射供暖/对流供暖比例(简称R/C)只有0.94。在目前新兴地暖 典型方案中,10平米地暖器在这状况下可以以2kW电功率转热供暖,一般足够室内20平米空间供暖需求。本案例分析显示,对于市面上的地暖器,超过一半供暖所散出的能量用于无选择性的对流供暖,把室内与暖感无关的物件都加温,导致升温慢、湿度低和耗能高。与市面地暖竞品相比,在与此案例相同的运作条件下,本发明公开的中红外发射供暖组件除具有顶面表温34℃的96W/m
2有效对流传送能量功率密度和90W/m
2有效红外辐射传送能量功率密度外,还有内置红外源透过供暖组件顶面覆盖层与热绝缘透中红外层的中红外发射。若红外透射率为70%,附加有效红外辐射传送能量功率密度仍可达265W/m
2,总有效红外辐射传送能量功率密度增到375W/m
2,是有效对流传送能量功率密度的四倍,颠覆性地提高了R/C,达到节能效果和避免对流供暖空气导致湿度过低的弊病。
由于在中红外理疗行业中,大多数已知的理疗方法只使用10-20mW/cm
2(即100-200W/m
2)的中红外辐射功率密度,因此本发明的中红外发射供暖组件除了提供温暖舒适外,还提供足够高的中红外辐射强度(>375W/m
2),向其用户提供已有科学确证的中红外理疗益处。
本发明公开的中红外发射供暖组件可采用[PCT/CN2018/104910]的以煤或焦炭制备的低成本而有石墨烯、碳纳米管、碳纳米纤维和其他导电纳米碳,实施本发明的低成本制备中红外发射供暖组件的方法。
与已公开的知识产权相比,尽管文献中已有使用红外透明封装的报导[US6038065;US9951446;US9989679,US10502879],但它们未有明确覆盖3μm-50μm的中红外波段,并且所述红外透明封装都与热绝缘和装饰等功能无关。
此外,尽管文献中已有报导不透可见光但透红外或反射红外的材料[US9951446;US9989679;US10502879],这些报导的概念和方法与本发明中的概念和方法无关或相反。简单地说,US9951446和参考文献21-22披露了在服装中加入染料,以便于人体热量的散失和环境红外线的反射,防止红外线反射回人体;因此,它们是人体降温的方法,而与本发明揭示的人类温暖舒适是截然相反的。US9989679揭示了在制作红外反射薄膜的红外透明材料中加入颜料的方法,目的是制作识别装置。因此,US9989679是一种红外反射方法,其概念与本发明相反。US10502879揭示了具有彩色红外透明层的系统,但此发明涉及近红外而非中红外,其中公开的彩色红外透明层用作近红外相机或其他近红外设备的封装材料, 与供暖和中红外理疗无关。此外,US10502879揭示了使用等离子颗粒的在透红外基体中着色方法,但此发明的等离子体粒子成本非常高,不能实际作装饰供暖器之用。参考文献30揭示了铅基和铬基颜料用于美化低红外辐射涂料,但铅与铬的相关应用现已被禁,其公开的方法与本发明构思技术路线方向相反。参考文献31描述了彩色,近红外反射,超疏水聚合物薄膜的制备,以保持建筑物对太阳加热的冷却。所述概念和方法是与本发明的概念和方法相反。
与最近一项授权发明专利[ZL202010847951.8]相比,该专利提供了一种用于供暖与理疗的热绝缘封装中红外发射屏及其制备方法,所述中红外发射屏依次包括叠层设置的顶面覆盖层、第一气体热绝缘层、第一透中红外塑料热绝缘层、第二气体热绝缘层、第二透中红外塑料热绝缘层、第三气体热绝缘层、第一电绝缘层、电转中红外发射膜层、第二电绝缘层、及底面覆盖层;此专利用两层塑料膜中夹气体热绝缘层来做热绝缘中红外发射屏,但所述中红外发射屏不宜装置在距受暖者较远的天花吊顶,因为中红外发射屏外接收供暖点的红外辐射密度随距离的平方值增加而减小,如体宽50厘米的人站在距中红外发射屏为50厘米处,能接收到红外发射屏散射出的总红外辐射的20%,而将距离增大到2米(接近楼层高度)时只能接收1.25%。按上述创新路线,本发明公开一种中红外供暖的智能环保天花吊顶装置,其特征在于,所述中红外供暖的天花吊顶装置包括装置于天花吊顶的多块节能中红外供暖组件,所述每块节能中红外供暖组件具有叠层状结构,包括面向地面的美观的透中外顶面覆盖层、透和聚焦中红外光的聚乙烯透镜、热绝缘透中红外层、发热元件、热绝缘层、底面覆盖层;其中,所述顶面覆盖层面向受暖者,所述底面覆盖层相对于所述顶面覆盖层远离受暖者;所述中红外的光谱波长范围为切合人体供暖与理疗的3μm-50μm波段。
可选的是,所述中红外发射供暖组件能打造成天花吊顶装饰,成为既美观又具有供暖理疗功能的产品。
可选的是,所述美观透中红外顶面覆盖层包括有孔隙可透红外的网格结构,所述网格结构可优化顶面覆盖层的美观与力学性能,网格包括塑胶网格、金属网格、或金属涂层覆盖的塑胶网格。
可选的是,所述美观透中外顶面覆盖层的主要组成材料为聚乙烯,附加材料可包括普通布面料、颜料、阻燃材料、和添加剂的其中一种或多种。
可选的是,在所述顶面覆盖层上还设置有美观的图案和最少部份刺绣或铺盖客户喜爱的包括丝绸等布面料。
可选的是,所述顶面覆盖层的中红外透射率>50%;
可选的是,所述底面覆盖层热绝缘且中红外发射率≤10%,所述底面覆盖层包括金属涂层覆盖的塑胶膜。
可选的是,所述热绝缘透中红外层包括任何一种或多种聚乙烯包裹空气的结构。
可选的是,所述热绝缘透中红外层的主要组成材料包括聚乙烯和空气,附加材料可包括其他塑料、颜料、阻燃剂和其他功能添加剂的其中一种或多种。
可选的是,所述热绝缘透中红外层包括以微结构优化抗击穿机械强度的单层或多层热绝缘透中红外膜结构;所述热绝缘透中红外层被普通十岁孩童手指形弹子以每秒6米的速度冲击时,弹子不会击穿热绝缘透中红外防刺穿层而接触发热膜。
可选的是,所述热绝缘透中红外层的微结构包括具厚1-3mm的二维空气层、1-10毫米封闭气泡、1-10mm开口气泡、1μm-1000μm封闭气泡、1-1000μm开口气泡、<1μm封闭气泡、<1μm开口气泡的其中一种或多种;聚乙烯的微结构还包括聚乙烯纤维、高密度聚乙烯微结构、低密度聚乙烯微结构、定向拉伸过的聚乙烯微结构、无定向拉伸过的聚乙烯微结构、熔喷聚乙烯微结构的其中一种或多种。
可选的是,所述热绝缘是指最大实际运作热绝缘温差≥50℃。
可选的是,所述电转中红外发射膜层的材料包括导电纳米碳塑料复合物;所述电转中红外发射膜层的方块电阻≤100Ω/□,膜层厚度≤200μm,中红外发射率≥95%。
可选的是,所述中红外发射供暖组件顶面中红外发射强度可达内置发射源发射强度的50%以上,底面中红外发射强度低于发射源发射强度的10%。
可选的是,所述供暖组件显示顶面向外发射红外的红外供暖功率及顶面通过热空气对流散出的对流供暖功率,红外供暖功率比对流供暖功率高两倍以上。
可选的是,所述的可透过和聚焦中红外光的聚乙烯透镜,中红外透射率≧50%,将所述发热元件发射的中红外聚焦到离地面约1米处。
可选的是,所述中红外供暖的天花吊顶装置包括电线、电源、红外感应器、操控每块节能中红外供暖组件独立开关运行的电控器。
可选的是,所述中红外发射供暖组件可用于室内供暖、中红外理疗或功能性室内设计 及其组合。
简而言之,本发明所公开的新型中红外发射供暖组件填补了现今技术的空缺,参考了低成本、高性能的中红外发射供暖组件的市场需求,以安全、有效和节能的方式产生温暖、舒适和中红外理疗效益,而且本发明所公开的新型彩色中红外发射供暖组件还在保证这些功能性的前提下呈现悦目的美感。此外,本发明遵循在设计新颖的中红外发射供暖组件的过程中强调科学清晰性和基于证据的规范的方法。
在本发明的一些实施例中,本发明所述的中红外发射供暖组件的制备方法包括:
(1)采用纳米碳塑料复合物制备电转中红外发射膜层:将塑料分散在有机溶剂中形成第一混合液,再将纳米碳分散在上述第一混合溶液中形成第二混合液;采用标准液浆成膜工艺制备所述电转中红外发射膜层;
(2)在所述电转中红外发射膜层的上下两面分别叠置第一电绝缘层和第二电绝缘层以得到依次为第一电绝缘层、电转中红外发射膜层和第二电绝缘层的层叠结构,其中,所述电转中红外发射膜层被第一电绝缘层和第二电绝缘层包裹;
(3)在所述依次为第一电绝缘层、电转中红外发射膜层和第二电绝缘层的层叠结构的上下两面分别添加叠层,构成包括顶面覆盖层、透和聚焦中红外光的聚乙烯透镜、热绝缘透中红外层、第一电绝缘层、电转中红外发射膜层、第二电绝缘层、热绝缘层、及底面覆盖层的中红外发射供暖组件叠置结构。
按以上在本发明的一些实施例中描述的中红外发射供暖组件设计制成的中红外发射供暖组件,在一些具体使用实施例中的功能如下:
(1)所述中红外发射供暖组件的中红外发射元件是一种包含低成本纳米碳塑料复合物的电转中红外发射膜,该膜具有小于100Ω/□的低方块电阻,适合所述中红外发射供暖组件发挥其优秀功能,保障人体接触中红外发射供暖组件也无漏电危险。
(2)所述中红外发射供暖组件在安全的电压低于36V供电条件下运作,以大概500W/m
2的低功率密度及总功率为1000W左右的所述中红外发射供暖组件铺设和室内设计合适使用不吸收或反射中红外的家具与装饰物,一个20m
2室内空间会因中红外辐射有中红外发射供暖组件的供应和被室内物件反射而均匀分布于室内,室内空气温度可保持在18℃以下,所述中红外发射供暖组件用户仍因吸收中红外辐射而产生暖感,获得类似室内空气温度为25℃的舒适暖感,而室内众多物件因中红外辐射吸收率低而保持在18℃左右。 相比一般巿场上供暖器的规格每20m
2室内空间的供暖要2000W,本发明公开的中红外发射供暖组件可提供节能约为50%的优秀效果。在这设计考虑中,本发明估算和实际测出所述中红外发射供暖组件在500W/m
2的低功率密度工作条件下,室内空气温度为18℃时电转中红外发射膜实际温度确可维持运作温度达90℃,在这状态下,所述中红外发射供暖组件电控器可按中红外发射供暖组件用户实际供暖要求把这温度下调低于90℃。按空气的热导率为0.027W/m·K来估算判断,所述中红外发射供暖组件以顶面0.1mm印花聚乙烯制美观外层配多孔聚乙烯透中外热绝缘层结构(热绝缘效果约等同3mm空气层),当所述中红外发射供暖组件以500W/m
2的功率密度运作时,从电转中红外发射膜到面向用户包围层的表面的理论隔热温差从以下公式(500W/m
2/0.027W/m·K)×((3mm)×1m/1000mm)确定为56℃。在此条件下,实验证明当所述电转中红外发射膜温度为82℃时,所述中红外发射供暖组件面向中红外发射供暖组件用户的顶面温度为33℃,即使所述中红外发射供暖组件的热绝缘结构的塑料层的中红外透射率只有70%而导致其吸收中红外升温和热绝缘效果下降,所述中红外发射供暖组件面向中红外发射供暖组件用户的顶面温度无论如何都远低于46℃的安全上限。换言之,本发明的中红外发射供暖组件对中红外发射供暖组件用户来说是绝对安全的。
(3)根据普朗克定律[1],当中红外发射率为99%的中红外发射膜在90℃工作时,中红外功率密度约为950W/m
2,即使中红外发射率与所述中红外发射供暖组件热绝缘结构的中红外透射率不理想导致中红外发射供暖组件只能发射950W/m
2的70%,即665W/m
2,此中红外辐射状况折合黑体温度为60℃,所述中红外发射供暖组件用户仍会因吸收中红外而感觉所述中红外发射供暖组件以60℃供暖,而所述中红外发射供暖组件顶与底面的温度却奇异地保持在33℃。由此可见本发明的创新性和节能效果。
(4)此外,由于在中红外理疗行业中,大多数已知的理疗方法只使用10-20mW/cm
2(即100-200W/m
2)的中红外辐射功率密度,因此本发明的中红外发射供暖组件除了提供温暖舒适外,还提供足够高的中红外辐射强度,向其用户提供已有科学确证的中红外理疗益处。
(5)本发明公开的中红外发射供暖组件可采用[PCT/CN2018/104910]的以煤或焦炭制备的低成本而有石墨烯、碳纳米管、碳纳米纤维和其他导电纳米碳,估算成本低于US$700-1000/吨,而电阻率低于1Ω-cm,以此制成的煤基纳米碳塑料复合物中红外发 射膜具有小于100Ω/□的低方块电阻,适合用于制备本发明公开的中红外发射供暖组件,并在具实际成本效益条件下实施本发明的创新。
(6)本发明公开的中红外发射供暖组件包括可透过和聚焦中红外光的透镜板,所述透镜板用透中红外聚乙烯压注形成。
总言之,本发明涉及一种中红外供暖的智能环保天花吊顶装置的创新性设计,生产,测试,验证和智能环保使用方法。所述中红外供暖的智能环保天花吊顶装置可应用于使用户产生温暖舒适感,并且可应用于使用户产生有方便安全的中红外理疗效果。
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为不同温度下标准黑体的红外辐射能量功率密度分布图
图2为不同材料的红外辐射能量功率密度分布图
图3为本发明的用于供暖与理疗的透中红外热绝缘封装中红外发射供暖组件的结构示意图
图4为本发明的中红外供暖的智能环保天花吊顶装置的结构示意图
图5为本发明的用于供暖与理疗的透中红外热绝缘封装中红外发射供暖组件的第一实施例的结构示意图
图6为本发明的用于供暖与理疗的透中红外热绝缘封装中红外发射供暖组件的第一实施例的实物示意图和实物中红外发射效果摄像
图7为本发明的用于供暖与理疗的透中红外热绝缘封装中红外发射供暖组件的第二实施例的结构示意图(a)和实物场景中红外发射效果摄像(b)
图8为本发明的中红外供暖的智能环保天花吊顶装置的第三实施例的场景示意图
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本章节按本发明的发明内容章节的创新内容公开本发明的具体实施明细。
首先,图3显示在本发明的典型实施例中,本发明的美观安全的中红外供暖的智能环保天花吊顶装置的基本结构包括多块中红外供暖组件,从中红外供暖组件面向用户的顶面开始的以下多层,如图3所示包括:
(a)中红外透明层311-313叠合成的红外供暖组件核心部件;其中,所述中红外透明层311中和/或之上可具有中红外透明的无铅/铬可见色彩形成美观图画,并且可具有包括丝绸与棉等布面料以符合市场客户对红外供暖组件面相的美观手感要求;其中,所述中红外透明层311也可具有包括有透红外孔隙的网格结构;所述网格结构用塑料、金属、金属涂层覆盖塑料的一种或多种制备;其中,所述中红外透明层311用作透和聚焦中红外光的透镜板,所述透和聚焦中红外光的透镜板312用聚乙烯压注形成;其中,热绝缘透中红外层313具高热绝缘性和高透中红性;
(b)电绝缘层32;
(c)以导电纳米碳为填料,中红外发射率接近100%的高导电性电热塑料复合电转中红外发射膜33;
(d)电绝缘层34;
(e)超薄闪亮金属层35,其中红外发射率接近0;
(f)热绝缘聚合物泡沫层36;
在本发明的一些实施例中,所述中红外供暖的天花吊顶装置包括电线37、红外感应器38、操控每块节能中红外供暖组件独立开关运行的电控器39,所述电控器包括电源、检测室内人多位置与温度的红外感应器和用所述红外感应器调控所述红外供暖组件电源的传感电路。
在本发明的一些实施例中,图3中的中红外透明层311-313的每一个的主要结构材料都是透中红外的聚乙烯,所述聚乙烯的微结构包括聚乙烯纤维、高密度聚乙烯微结构、低密度聚乙烯微结构、定向拉伸过的聚乙烯微结构、无定向拉伸过的聚乙烯微结构、熔喷聚乙烯微结构的其中一种或多种,性能要求在透中红外度近100%前提下具高机械强度保障耐用与防刺穿性能。
在本发明的一些实施例中,图3中的中红外透明层313的性能要求在透中红外度近100% 前提下具高热绝缘性,因此中红外透明层312的主要结构材料是透中红外的多孔聚乙烯,所述多孔聚乙烯的气孔微结构设计包括厚1-3mm的二维空气层、直径为1mm-10mm封闭气泡、1mm-10mm开口气泡、1-1000μm封闭气泡、1μm-1000μm开口气泡、<1μm封闭气泡、<1μm开口气泡的其中一种或多种,气孔微结构组合的协同性效果要符合具体热绝缘性在正常运作中最高温差达摄氏50度。
在本发明的一些实施例中,中红外透明层311面向待供暖对象,而热绝缘泡沫塑料层36相对于中红外透明层311远离所述待供暖对象。
在本发明的一些实施例中,中红外透明层311可作为顶面覆盖层,所述中红外透明层311可由聚乙烯、聚丙烯或其他对中红外透明的聚合物制成。在所述中红外透明层311面对待供暖对象的表面上还可以包括中红外透明的无铅/铬可见颜色,所述无铅/铬可见颜色包括无铅和无铬颜色,其中,所述无铅和无铬颜色包括铝颗粒、涂层铝颗粒、二氧化钛颗粒、涂层二氧化钛颗粒、纳米碳黑、苝红、醌酞黄,铋黄、靛蓝、酞菁蓝、钴蓝、铜酞菁绿、氧化铁橙、氧化铁棕或无铅黄83及其组合。
在本发明的一些实施例中,如图3所示,电绝缘层32和34包括热塑性聚氨酯,热塑性聚酯,碳基橡胶,硅酮基橡胶或聚丙烯及其组合。
在本发明的一些实施例中,如图3所示,高导纳米碳聚合物复合电转中红外发射膜33中的聚合物包括热塑性聚氨酯、热塑性聚苯乙烯、热塑性聚酯、碳基橡胶、硅基橡胶、聚丙烯、聚乙烯醇、聚对亚苯基对苯二甲酰胺及其组合。电转中红外发射膜33的方块电阻≤100Ω/□,膜层厚度≤200μm,中红外发射率接近100%。在一个具体的实施例中,电转中红外发射膜33的中红外发射率≥90%,优选≥95%。所述复合材料中的纳米碳包括从煤或焦炭中获得的包括石墨烯、碳纳米管、碳纳米纤维中的其中一种或几种的多形貌导电纳米碳。在一个具体的实施例中,纳米碳由电阻率低于1Ω·cm的煤基纳米碳组成,其生产成本至少比石墨烯低50倍;具体地,其优选生产成本≤1000美元/吨,更优选生产成本≤700美元/吨。WO2020051755中公开的方法适合于生产本发明中的煤基纳米碳。在一些实施例中,炭黑被进一步石墨化至电阻率低于1Ω·cm,并用于制造本发明中的红外供暖组件。
在本发明的一些实施例中,如图3所示,具有极低中红外发射率的超薄闪亮金属层35包括铝、铝合金、铜、铜合金、铬、锆合金的富金属氧碳氮化物及其组合。
在本发明的一些实施例中,如图3所示,热绝缘层36包括热塑性聚氨酯,热塑性聚 酯,碳基橡胶,硅酮基橡胶或聚丙烯及其组合的泡沫片。
图4为本发明的智能环保中红外供暖的天花吊顶装置的结构示意图,图4包括多块图3的中红外发射供暖组件。其余部件与第一实施例相同,在此不予赘述。
在本发明的一些实施例中,包括在本发明在后续章节中所述的第一实施例中,本发明的红外发射供暖组件的结构示意图如图5所示,图5与图3唯一不同的是图5的中红外发射供暖组件的中红外透明层311-313都实际采用红外透射率近100%的聚乙烯。表1-2列出所述第一实施例与第二实施例的具体两个测试实例的结果。
表1
在本发明的一些实施例中,包括在本发明在后续章节中所述的第一实施例中,本发明的红外发射供暖组件的实物示意图(图6左侧)和实物中红外发射效果摄像(图6右侧)如图6所示。
在本发明的一些实施例中,包括在本发明在后续章节中所述的第二实施例中,本发明所述中红外透明层311-313都实际采用红外透射率比聚乙烯差的聚丙烯,所述红外发射供暖组件的实物示意图(图7(b)左侧)和实物中红外发射效果摄像(图7(b)右侧)如图7所示,所述第二实施例的测试实例的结果如表2所列。在本发明的一些实施例中,测试与比较所述实施例的结果显示本发明所述红外发射供暖组件的中红外透明层311-313实际采用中红外透射率近100%的聚乙烯能保障本发明所述红外发射供暖组件具最优功能性。
在本发明的一些实施例中,包括在本发明在后续章节中所述的第三实施例中,多块单元面积为50厘米宽50厘米长的本发明所述红外供暖组件被融入天花吊顶装饰中,所述每块红外供暖组件的组件单元都可根据检测室内人体的位置的外置感应信号器进行独立开关调控,有意识地只供电到有暖感需求位置附近的红外供暖组件的组件单元,达到的最节能的智慧中 红外供暖目的。图8显示所述场景示意图(a:地面站有两人,天花吊顶内置12块单元面积为50厘米x50厘米的红外供暖组件,天花吊顶中自动开启的红外供暖组件所发出红外辐射聚焦在离地板约1m处),(b:地面站有两人,天花吊顶内置12块单元面积为50厘米×50厘米的红外供暖组件,天花吊顶中自动开启的红外供暖组件所发出红外辐射无聚焦效果);显然易见,中红外供暖智能方法是因时制宜的最节能的供暖方法。
表2
其中,第二实施例的整体结构均与第一实施例相同,唯一不同的仅在于中红外透明层311-313的材料不同。具体地,在第一实施例中,中红外透明层311-313的材料包括聚乙烯;在第二实施例中,中红外透明层311-313的材料包括中红外透明度不及聚乙烯的聚丙烯,如图7(a)所示。
实施例
下面详细阐述一些具体的实施例。需要说明的是,以下内容只是在本发明原则的适用情况的例证或说明。在不背离现有原则和范围的前提下,我们可以做很多修改,用其他成分、方法和系统进行代替。附加要求包含了这些修改和方案。因此,尽管在上文中已详细描述了本发明,但是下面的示例提供了目前被认为是最可行方案的进一步细节。
第一实施例
以多孔聚乙烯透中红外热绝缘层结构制中红外发射供暖组件的制备方法与性能测试
在本发明的这个优选实施例中,生产出了高性能的中红外发射供暖组件。首先,以导电性高的煤基纳米碳为油墨,采用标准的薄膜浇铸工艺,制备了纳米碳复合物中红外发射膜。所得薄膜的方块电阻为26±2Ω/□且厚度为80±2μm,并制备了尺寸为2500cm
2的电热薄膜。在35V的外加电压下,中红外发射供暖组件的额定功率分别为150W和0.06W/cm
2。 多孔聚乙烯透中红外热绝缘层结构由热绝缘效果近于3mm空气层的多孔聚乙烯组成。面向用户的顶层由彩色聚乙烯组成,中红外透射率接近100%,中红外发射率接近100%。中红外发射供暖组件的结构如图5所示。
在实际于135W下操作时,本实施例中的中红外发射供暖组件具有82℃的电转中红外发射膜温度,并且暴露于18℃室内环境中的中红外发射供暖组件面向供暖的表面的温度为33℃。如表1的实施效果数据表所示,以校准的热电偶在电转中红外发射膜测得的温度为82℃,以校准的热电偶在顶覆盖层表面测得的温度是33℃,以校准的中红外辐射强度检测仪在离顶覆盖层50厘米处正对中红外发射供暖组件条件下测定中红外发射供暖组件中红外辐射强度的黑体温度当量是52℃。在中红外发射供暖组件外接收到的中红外辐射温度当量(52℃)比实际电转中红外发射膜温度(82℃)低的原因是多孔聚乙烯热绝缘层与聚乙烯透镜的中红外透射率都并非100%,但估算实际的供暖组件顶面中红外辐射强度仍为内置发射源的中红外辐射强度的70%。在本实施例中,以校准的中红外辐射强度检测仪在离底覆盖层50厘米处正对中红外发射供暖组件条件下测定中红外发射供暖组件底覆盖中红外发射率为10%。
图6显示本实施例中中红外发射供暖组件实物照片和中红外摄像,实物中红外发射面积2500cm
2(长50cm,宽50cm),在135W供电下中红外摄像仪显示平均黑体温度当量为52℃。表1的实施效果数据表显示,以校准的热电偶在电转中红外发射膜测得的温度为82℃,以校准的热电偶在顶覆盖层表面测得的温度是33℃,室内温度为18℃。结果证明本实施例的中红外发射供暖组件既美观又节能的效果下能放射充够辐射强度的中红外电磁波,提供中红外供暖和中红外理疗功能。
本实施例的中红外发射供暖组件在输入电功率在150W时仍正常运作,校对过的热电偶测得内置发射温度为88℃和顶面温度为36℃,外置红外仪测得顶面红外温度为55℃。
第二实施例
以多孔聚丙烯透中红外热绝缘层结构制中红外发射供暖组件的制备方法与性能测试
在本发明的这个优选实施例中,产生了较低性能的中红外发射供暖组件。首先,以导电性高的煤基纳米碳为油墨,采用标准的薄膜浇铸工艺,制备了纳米碳复合物中红外发射膜。所得薄膜的方块电阻为26±2Ω/□且厚度为80±2μm,并制备了尺寸为2500cm
2的电热薄 膜。在35V的外加电压下,中红外发射供暖组件的额定功率分别为150W和0.060W/cm
2。多孔聚丙烯透中红外热绝缘层结构由5mm厚多孔聚丙烯组成。面向用户的顶层由彩色聚丙烯组成,实物图案如图7所示,本实施例中的中红外发射供暖组件的结构如图7所示。
如表2所示,在150W下操作时,以校准的热电偶在电转中红外发射膜测得的温度为80℃,以校准的热电偶在顶覆盖层表面测得的温度是37.5℃,以校准的中红外辐射强度检测仪在离顶覆盖层50厘米处正对中红外发射供暖组件条件下测定中红外发射供暖组件中红外辐射强度的黑体温度当量是38℃。在本实施例中,多孔聚丙烯透中红外热绝缘层结构的中红外透射率很低,吸收发射源的中红外导致温度升高,热绝缘性失效,维持发射源80℃也要耗电功率150W,而且供暖组件顶面温度37.5℃跟外置红外仪测得供暖组件顶面红外黑体温度当量38℃相近,显示当量测得红外辐射主要来源于供暖组件顶面而非来自内置电转中红外发射膜透过多孔聚丙烯层走出供暖组件。总之,供暖组件顶面中红外辐射强度是内置电转发射器中红外辐射强度57%,顶面表温37.5℃,算出顶面的有效对流传送能量功率密度为106W/m
2和有效红外辐射传送能量功率密度为105W/m
2,还有内置红外源透过供暖组件顶面覆盖层与多孔聚丙烯热绝缘防刺穿层的中红外发射,因红外仪测出黑体温度当量是38℃,顶面总有效红外辐射传送能量功率密度仍约为106W/m
2,故总有效红外辐射传送能量功率密度与有效对流传送能量功率密度的比例接近1:1;采用这分析方法进行比较第一与第二实施例,第一实施例总有效红外辐射传送能量功率密度与有效对流传送能量功率密度的比例约为3:1,显示第二实施例没有节能效果,也仍有对流供暖空气导致湿度过低的弊病。
结果证明本实施例的中红外发射供暖组件因聚丙烯的中红外透射率比聚乙烯低,在中红外发射供暖组件工作时聚丙烯吸收部分中红外发射膜的辐射而升温,多孔聚丙烯透中红外热绝缘层结构的热绝缘性比第一实施例差。
第三实施例
中红外供暖的智能环保天花吊顶装置使用方法与性能测试
在本发明的这个优选实施例中,16块单元面积为50厘米x50厘米及额定输入功率为150W的红外供暖组件被融入一间20平米房间的天花吊顶装饰中,所述每块红外供暖组件单元的功能性与本发明的第一实施例无异;在本实施例中所述每块红外供暖组件的组件单元的实都可按外置检测室内人体的位置的感应信号进行独立开关调控,构成有意识地只供电到有暖感需求位置附近的红外供暖组件的组件单元。图8显示所述天花吊顶示意图(图a:地面 站有两人,天花吊顶内置12块单元面积为50厘米x50厘米的红外供暖组件,天花吊顶中自动开启的红外供暖组件所发出红外辐射聚焦在离地板约1m处),(图b:地面站有两人,天花吊顶内置12块单元面积为50厘米x50厘米的红外供暖组件,天花吊顶中自动开启的红外供暖组件所发出红外辐射无聚焦效果);显然易见,中红外供暖智能方法是因时制宜的最节能的供暖方法。
无需进一步详细说明,相信本领域技术人员可以使用本文描述最大程度地利用本发明。这里所描述的实施例应被解释为说明性的,而不是以任何方式限制本发明的其余部分。虽然已经示出和描述了实施例,但是本领域技术人员可以在不脱离本发明的精神和教导的情况下对其进行许多变化和修改。因此,保护范围不受上述说明的限制,而是仅受专利要求的限制,包括专利要求主题的所有等同物。本文引用的所有专利、专利申请和出版物的发明内容在此引入作为参考,只要它们提供与本文所述内容一致和补充的程序或其他细节。
Claims (12)
- 一种中红外供暖的智能环保天花吊顶装置,其特征在于,所述天花吊顶装置包括装置于天花吊顶的多块节能中红外供暖组件,每块组件具有叠层状结构,包括面向地面的透中外顶面覆盖层、可透过和聚焦中红外光的透镜层、热绝缘透中红外层、发热元件、热绝缘层、底面覆盖层;所述中红外的光谱波长范围为切合人体供暖与理疗的3μm-50μm波段;所述顶面覆盖层中红外透射率≧50%;所述热绝缘透中红外层包括一种或多种聚乙烯包裹空气的结构;所述顶面覆盖层中红外发射强度为内置发热元件发射强度的50%以上,底面中红外发射强度低于发热元件中红外发射强度的10%;所述供暖组件显示顶面向外发射红外的红外供暖功率及顶面通过热空气对流散出的对流供暖功率,红外供暖功率比对流供暖功率高两倍以上;所述可透过和聚焦中红外光的透镜层的中红外透射率≧50%,能够将所述发热元件发射的中红外聚焦到离地面约1米处;所述中红外供暖的天花吊顶装置还包括电线、电源、红外感应器、操控每块节能中红外供暖组件实现独立开关运行的电控器。
- 根据权利要求1所述的装置,其特征在于,所述供暖组件具有美观的透中红外顶面覆盖层,所述顶面覆盖层包括与天花吊顶装饰匹配的孔隙百分比极高的网格板结构、美观的高中红外透过率的布面料结构、美观的高中红外透过率的膜料结构的一种或多种,所述结构的主要组成材料为聚乙烯,所述顶面覆盖层的附加材料包括普通布面料、透中红外的颜料、阻燃材料、反射中红外的金属涂层和添加剂的其中一种或多种。
- 根据权利要求1所述的装置,其特征在于,所述热绝缘透中红外层的厚度为1μm-1cm。
- 根据权利要求1所述的装置,其特征在于,所述热绝缘是指最大实际运作热绝缘温差≥50℃。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述热绝缘透中红外层的微结构由厚1mm-3mm的二维空气层、1mm-10mm的封闭气泡、1mm-10mm的开口气泡、1μm-1000μm的封闭气泡、1μm-1000μm的开口气泡、 <1μm的封闭气泡、<1μm的开口气泡的其中一种或多种构成。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述热绝缘透中红外层的微结构包括聚乙烯纤维、高密度聚乙烯微结构、低密度聚乙烯微结构、定向拉伸过的聚乙烯微结构、无定向拉伸过的聚乙烯微结构、熔喷聚乙烯微结构的其中一种或多种。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述天花吊顶装置包括可遥控的电力管理装置;所述电力管理装置包括用于检测中红外发射供暖组件功能的红外光度计、温度计和电表,还包括电源、检测室内人体位置与温度的红外感应器,以及利用红外感应器调控中红外发射供暖组件电源的电控器、遥控器。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述发热元件包括电转中红外发射膜层,该电转中红外发射膜层包括导电纳米碳塑料复合物;所述电转中红外发射膜层的方块电阻≤100Ω/□,膜层厚度≤200μm,中红外发射率≥95%;所述电转中红外发射膜层的聚合物包括热塑性聚氨酯、热塑性聚苯乙烯、热塑性聚酯、碳基橡胶、硅基橡胶、聚丙烯、聚乙烯醇、或聚对亚苯基对苯二甲酰胺及其组合。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述热绝缘层包括热塑性聚氨酯,热塑性聚酯,碳基橡胶,硅酮基橡胶或聚丙烯及其组合的泡沫片。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,所述底面覆盖层的材料包括含锆的富金属氧碳氮化物、锆、铝、铜、锆合金、铝合金、铜合金、铬合金、不锈钢中的其中一种或多种;所述底面覆盖层的厚度≤100nm。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,感应到人体的组件自动开启并供暖,而未感应到人体的组件自动关闭并处于未供暖状态。
- 根据权利要求1-4中任意一项所述的装置,其特征在于,可透过和聚焦中红外光的透镜层包括聚乙烯。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110576982.9A CN113323242B (zh) | 2021-05-26 | 2021-05-26 | 一种中红外供暖的智能环保天花吊顶装置 |
CN202110576982.9 | 2021-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022246878A1 true WO2022246878A1 (zh) | 2022-12-01 |
Family
ID=77416941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/097589 WO2022246878A1 (zh) | 2021-05-26 | 2021-06-01 | 一种中红外供暖的智能环保天花吊顶装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113323242B (zh) |
WO (1) | WO2022246878A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024209134A1 (en) * | 2023-04-03 | 2024-10-10 | The Warming Surfaces Company Oy | A method to create a microclimate and a microclimate creating heating system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114322132A (zh) * | 2021-12-08 | 2022-04-12 | 电子科技大学长三角研究院(湖州) | 一种智能加热散热一体化装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102877610A (zh) * | 2012-10-10 | 2013-01-16 | 浙江友邦集成吊顶股份有限公司 | 红外取暖的集成吊顶 |
CN104930583A (zh) * | 2015-06-30 | 2015-09-23 | 中国科学院自动化研究所 | 聚光型取暖器 |
JP2020070552A (ja) * | 2018-10-29 | 2020-05-07 | 旭化成株式会社 | 熱輻射用のレフレクター、該レフレクターを含む内装材、および該内装材を用いた輻射式冷暖房システム |
CN111298303A (zh) * | 2020-03-09 | 2020-06-19 | 成都石墨烯应用产业技术研究院有限公司 | 石墨烯理疗组件及其应用 |
CN112004273A (zh) * | 2020-08-21 | 2020-11-27 | 佛山巧鸾科技有限公司 | 一种用于供暖与理疗的热绝缘封装中红外发射屏及其制备方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2486890Y (zh) * | 2001-04-16 | 2002-04-17 | 马放 | 智能红外柔强低温辐射供暖装置 |
JP2003194385A (ja) * | 2001-12-28 | 2003-07-09 | Daikin Ind Ltd | 空気調和機 |
DE20218886U1 (de) * | 2002-12-05 | 2003-02-13 | Monzert, Ingo, 56567 Neuwied | Heiz- oder Kühlvorrichtung |
CN100458862C (zh) * | 2006-12-07 | 2009-02-04 | 奥维尔科技(深圳)有限公司 | 一种智能型空调控制方法和系统 |
CN101334645B (zh) * | 2008-07-15 | 2010-06-02 | 西安交通大学 | 基于人行为特征的家用空调智能温度控制系统 |
KR101233267B1 (ko) * | 2010-09-15 | 2013-02-22 | 이승철 | 공간분할 기반 지능자율 에너지절감 방법 및 시스템 |
US20150205021A1 (en) * | 2014-01-20 | 2015-07-23 | Pc Krause And Associates, Inc. | Metamaterial for improved energy efficiency |
EP3045826B1 (de) * | 2015-01-16 | 2021-10-06 | Könighaus, Janine | Heizungsanordnung mit elektrischen infrarotheizelement und deren verwendung |
CN110345553A (zh) * | 2019-07-09 | 2019-10-18 | 曾凡星 | 一种定向热投射装置 |
CN111678196B (zh) * | 2020-05-13 | 2021-09-17 | 北京嘉洁能科技股份有限公司 | 一种基于人体移动检测的供暖控制系统 |
CN111982277B (zh) * | 2020-07-28 | 2021-09-24 | 佛山巧鸾科技有限公司 | 一种低成本可拉伸穿戴式电转中红外发射器及其制备方法 |
-
2021
- 2021-05-26 CN CN202110576982.9A patent/CN113323242B/zh active Active
- 2021-06-01 WO PCT/CN2021/097589 patent/WO2022246878A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102877610A (zh) * | 2012-10-10 | 2013-01-16 | 浙江友邦集成吊顶股份有限公司 | 红外取暖的集成吊顶 |
CN104930583A (zh) * | 2015-06-30 | 2015-09-23 | 中国科学院自动化研究所 | 聚光型取暖器 |
JP2020070552A (ja) * | 2018-10-29 | 2020-05-07 | 旭化成株式会社 | 熱輻射用のレフレクター、該レフレクターを含む内装材、および該内装材を用いた輻射式冷暖房システム |
CN111298303A (zh) * | 2020-03-09 | 2020-06-19 | 成都石墨烯应用产业技术研究院有限公司 | 石墨烯理疗组件及其应用 |
CN112004273A (zh) * | 2020-08-21 | 2020-11-27 | 佛山巧鸾科技有限公司 | 一种用于供暖与理疗的热绝缘封装中红外发射屏及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024209134A1 (en) * | 2023-04-03 | 2024-10-10 | The Warming Surfaces Company Oy | A method to create a microclimate and a microclimate creating heating system |
Also Published As
Publication number | Publication date |
---|---|
CN113323242B (zh) | 2022-03-11 |
CN113323242A (zh) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206807799U (zh) | 一种基于石墨烯技术的电发热板 | |
WO2022036726A1 (zh) | 一种用于供暖与理疗的热绝缘封装中红外发射屏及其制备方法 | |
WO2022246878A1 (zh) | 一种中红外供暖的智能环保天花吊顶装置 | |
WO2022021195A1 (zh) | 一种低成本可拉伸穿戴式电转中红外发射器及其制备方法 | |
CN213186594U (zh) | 一种用于供暖与理疗的热绝缘封装中红外发射屏 | |
CN204063247U (zh) | 一种可变色的红外感应加热装置 | |
CN206320839U (zh) | 一种即热式节能保健型碳纤维电暖空调装置 | |
CN206522839U (zh) | 一种太阳能远红外发热壁画 | |
WO2022246877A1 (zh) | 一种中红外供暖墙布及供暖方法 | |
CN202274539U (zh) | 地脚线节能取暖系统 | |
CN109611939A (zh) | 墙暖供热装置 | |
Zhu et al. | Colored Woven Cloth‐Based Textile for Passive Radiative Heating | |
CN100476303C (zh) | 轻便可移动性智能型加湿电热取暖器 | |
CN217652109U (zh) | 一种中红外供暖的智能环保天花吊顶装置 | |
WO2022241840A1 (zh) | 一种透中红外热绝缘封装的中红外供暖与理疗卷帘 | |
CN216010996U (zh) | 一种中红外供暖墙布 | |
CN208519842U (zh) | 一种石墨烯地暖垫 | |
CN205454121U (zh) | 自限温复合高分子碳晶电热装置 | |
WO2022241841A1 (zh) | 一种可控中红外辐射剂量的可穿戴中红外理疗软垫 | |
CN207084190U (zh) | 一种智能控温纺织品 | |
CN203219520U (zh) | 电热布及基于电热布的取暖装置 | |
CN104470001B (zh) | 一种电热地板电热膜的生产方法 | |
JP3130686U (ja) | 遠赤外線速暖暖房器 | |
CN204091472U (zh) | 一种远红外碳热保健床 | |
CN203771520U (zh) | 一种具有保健功能的碳晶墙暖 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21942449 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21942449 Country of ref document: EP Kind code of ref document: A1 |