WO2022244981A1 - 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기 - Google Patents

이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기 Download PDF

Info

Publication number
WO2022244981A1
WO2022244981A1 PCT/KR2022/005075 KR2022005075W WO2022244981A1 WO 2022244981 A1 WO2022244981 A1 WO 2022244981A1 KR 2022005075 W KR2022005075 W KR 2022005075W WO 2022244981 A1 WO2022244981 A1 WO 2022244981A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
sub
various embodiments
disposed
circuit
Prior art date
Application number
PCT/KR2022/005075
Other languages
English (en)
French (fr)
Inventor
최진수
최보환
박성범
유영호
이경민
이상욱
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210171943A external-priority patent/KR20220157857A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN202280036162.3A priority Critical patent/CN117337531A/zh
Priority to EP22804836.9A priority patent/EP4287458A1/en
Priority to US17/664,365 priority patent/US11923698B2/en
Publication of WO2022244981A1 publication Critical patent/WO2022244981A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Definitions

  • Various embodiments of the present disclosure relate to a coil for detecting foreign matter and a wireless power transmitter including the same.
  • This wireless charging technology uses wireless power transmission and reception, and is, for example, a system in which a battery can be automatically charged by simply placing an electronic device on a charging pad without connecting the electronic device to a separate charging connector.
  • These wireless charging technologies include an electromagnetic induction method using a coil, a resonance method using resonance, and an RF/Micro Wave Radiation method that converts electrical energy into microwaves and transmits them.
  • a method of transmitting power by wireless charging is a method of transmitting power between a first coil of a transmitting end and a second coil of a receiving end.
  • a magnetic field is generated at the transmitting end and current is induced or resonated according to the change of the magnetic field at the receiving end to create energy.
  • a wireless charging technology using an electromagnetic induction method or a magnetic resonance method has been popularized around electronic devices such as smart phones.
  • a power transmitting unit (PTU) e.g. wireless charging pad
  • a power receiving unit (PRU) e.g. smart phone
  • PTU power transmitting unit
  • PRU power receiving unit
  • a battery of the power receiving device may be charged by electromagnetic induction or electromagnetic resonance between receiving coils of the device.
  • the wireless power transmitter may include a coil (hereinafter referred to as a detection coil) for detecting the foreign matter (FO).
  • the wireless power transmitter uses this detection coil to detect the presence or absence of a foreign object before and/or during wireless charging, so as not to start transmitting wireless power and/or to stop transmitting wireless power. Fire hazards in power systems can be prevented.
  • the detection coil for the aforementioned foreign object detection is around (eg, above) a conductive pattern (eg, coil) that generates a magnetic field (eg, Tx field) to the outside. ), and an induced voltage (or induced electromotive force) may be generated in the detection coil due to the generated magnetic field.
  • the wireless power transmitter may detect the presence of a foreign substance by checking whether the induced voltage generated in the detection coil fluctuates.
  • a magnetic field (eg, Tx field) may be generated unbalanced.
  • a change in current applied to a conductive pattern eg, a coil
  • a magnetic field may be generated unbalanced, a change in induced voltage may occur regardless of the existence of the foreign material, and the accuracy of detecting the foreign material may be lowered.
  • a detection coil that includes parts (eg, conductors) symmetrical to each other to cancel induced voltage fluctuations due to an unbalanced magnetic field and a wireless power transmitter including the same may be provided.
  • a detection coil having a stacked structure of coils including parts (eg, conductors) symmetric to each other and a wireless power transmitter including the detection coil may be provided.
  • a wireless power transmitter including a circuit for compensating for induced voltage fluctuations due to factors other than the presence of foreign substances, such as fluctuations in system power, may be provided.
  • the detection coil includes a first part and a second part having one end connected to one end of the first part and wound in a direction opposite to the direction in which the first part is wound, A first sub-coil disposed on at least one surface of 1 PCB; and a third portion, and a fourth portion having one end connected to one end of the third portion and wound in a direction opposite to the winding direction of the third portion, disposed on at least one surface of the second PCB different from the first PCB.
  • the first part and the second part have polygonal shapes symmetrical to each other, and the third part and the fourth part have each other when viewed from one direction.
  • the second part is disposed below the first part when viewed from another direction
  • the fourth part is disposed below the third part when viewed from the other direction,
  • the first sub-coil and the second sub-coil may be disposed so that portions overlap each other.
  • the detection coil when viewed from one direction, has a first polygonal shape and is wound in a first winding direction, and one end is connected to one end of the first part, and in one direction
  • the second portion has a second polygonal shape different from the first polygonal shape and is wound in a second winding direction opposite to the first winding direction, wherein the second part, when viewed from the other direction, Disposed below the first portion, the second polygonal shape, when viewed from one direction, has the same size as the first polygonal shape and may be symmetrical with respect to the first polygonal shape based on one axis.
  • a wireless power transmitter includes a detection coil; a transmission coil for supplying wireless power to at least one wireless power receiver; and a control circuit, wherein the detection coil includes a plurality of sub-coils, each of the plurality of sub-coils having a first polygonal shape and being wound in a first winding direction when viewed from one direction.
  • the circuit may include a first voltage value of a first channel corresponding to first sub-coils connected to each other among a plurality of sub-coils and a second channel corresponding to second sub-coils connected to each other. It may be set to obtain a value based on the second voltage value of , and to confirm the presence of a foreign substance based on the obtained value.
  • accuracy of detecting foreign substances may be increased by using a detection coil that cancels induced voltage fluctuations due to an unbalanced magnetic field.
  • accuracy of foreign material detection may be increased by using a detection coil having a multilayer structure.
  • the accuracy of detecting foreign substances may be increased by compensating for induced voltage fluctuations due to factors other than the presence of foreign substances, such as fluctuations in system power.
  • the first detection coil and the second detection coil including unit coils of different sizes are stacked vertically without parallel movement or rotation, an unnecessary detection coil area is reduced and an induced voltage difference between the two detection coils is reduced. can be reduced to prevent saturation of the circuit.
  • null lines of each detection coil do not overlap, and thus induced voltage fluctuations are detected. It is possible to remove null regions that may not be.
  • a signal-to-noise ratio (SNR) of an induced voltage fluctuation may be increased through signal amplification according to the removal of the null region, and complexity of a post-processing circuit may be reduced.
  • SNR signal-to-noise ratio
  • controller means any device, system, or portion thereof that controls at least one operation, and such device may be implemented in hardware, firmware, or software, or a combination of at least two of these. Functions related to a particular controller can be centralized or decentralized, whether local or remote.
  • various functions described below may be implemented or supported by one or more computer programs composed of computer readable program codes and embodied in a computer readable medium.
  • application and “program” refer to one or more computer programs, software components, sequences of instructions, procedures, functions, objects, classes, instances, related data, or parts thereof configured for implementation in an appropriate computer readable program. . password.
  • computer readable program code includes all types of computer code, including source code, object code and executable code.
  • computer readable medium includes any tangible medium that can be accessed by a computer, such as read only memory (ROM), random access memory (RAM), hard disk drives, compact discs (CDs), digital discs, etc. . A video disc (DVD) or other type of memory.
  • Non-transitory computer readable media excludes wired, wireless, optical or other communication links that transmit transitory electrical or other signals.
  • Non-transitory computer readable media include media in which data can be permanently stored, such as rewritable optical discs or removable memory devices, and media in which data is stored and can be overwritten later.
  • FIG. 1A shows an example of a detection coil, according to a comparative example.
  • FIG. 1B shows an example of a detection coil, in accordance with various embodiments.
  • FIG. 2 shows a block diagram of a wireless power transmitter and a wireless power receiver according to various embodiments.
  • 3A illustrates an example of a sub coil included in a detection coil according to various embodiments.
  • FIG. 3B shows a cross-sectional view of the sub-coil of FIG. 3A, in accordance with various embodiments.
  • 4A is a diagram for explaining arrangement and/or connection relationships of adjacent sub-coils according to various embodiments.
  • 4B illustrates a cross-sectional view of a detection coil including a plurality of sub-coils, according to various embodiments.
  • 5A is a diagram for explaining arrangement of detection coils according to various embodiments.
  • 5B is a diagram for describing a region covered by a detection coil, according to various embodiments.
  • FIG. 6 is a diagram for explaining arrangement of sub-coils adjacent to each other according to various embodiments.
  • FIG. 7 is a diagram for explaining arrangement and/or connection relationships between regular hexagonal sub-coils according to various embodiments.
  • 8A is a diagram for explaining an example of arrangement of a plurality of detection coils according to various embodiments.
  • 8B is a diagram for explaining another example of arrangement of a plurality of detection coils according to various embodiments.
  • FIG. 9 is a block diagram illustrating components of a wireless power transmitter according to various embodiments.
  • FIG. 10A shows an example of a method of configuring channels for induced voltage compensation, according to various embodiments.
  • FIG. 10B shows an example of a sensing circuit 215 for induced voltage compensation, in accordance with various embodiments.
  • FIG. 11 illustrates an example of a sub coil included in a detection coil according to various embodiments.
  • FIG. 12 illustrates an example of a detection coil including the sub-coil of FIG. 11 according to various embodiments.
  • FIG. 13 illustrates an example of a stacked structure of detection coils, according to various embodiments.
  • 14 is a diagram for explaining arrangement of detection coils according to various embodiments.
  • 15 is a diagram for explaining arrangement of detection coils according to various embodiments.
  • FIG. 1A shows an example of a detection coil 1 according to a comparative example.
  • the detection coil 1 may include one or more conductors 1a and 1b wound in a winding direction.
  • One or more conductors 1a and 1b may form sub coils, respectively.
  • the detection coil 1 may include a first conductor 1a and a second conductor 1b wound in the same winding direction (eg, clockwise (CW)).
  • the detection coil 1 may be disposed, for example, on a transmission pad of an electronic device that wirelessly transmits power (eg, a wireless power transmitter), and generates a magnetic field (eg, a Tx field) to the outside. It may be disposed above (or at another location) a conductive pattern (eg, a coil).
  • the detection coil 1 may be included in various electronic devices that detect a foreign material FO (eg, a metal material) other than a wireless power transmitter.
  • a magnetic field eg, Tx field
  • an induced voltage eg, induction
  • electromotive force may occur.
  • the magnetic field eg, Tx field
  • the first sub-coil eg, the first conductor 1a
  • the second sub-coil eg, the first conductor 1a
  • An induced voltage having a magnitude of V 0 may be generated in the second conductor 1b).
  • the foreign material 2 when a foreign material 2 is disposed around the first sub-coil (eg, the first conductor 1a) of the detection coil 1, the foreign material 2 causes the first sub-coil (eg, first conductor 1a) to be disposed.
  • the induced voltage of the sub coil eg, the first conductor 1a
  • an induced voltage fluctuation ( ⁇ V x ) having a magnitude of V x may occur in the induced voltage of the first sub-coil (eg, the first conductor 1a). have.
  • An electronic device including the detection coil 1 detects that induced voltage fluctuations ( ⁇ V x ) occur, and/or the generated induced voltage fluctuations ( ⁇ V x ) fall within a specified range.
  • a conductive pattern eg coil located around the detection coil 1 by detecting that it is included (eg, a specified size or more), and/or location can be detected.
  • SNR signal to noise ratio
  • FIG. 1B shows an example of a detection coil 100, in accordance with various embodiments.
  • the detection coil 100 may include one or more conductors 100a and 100b wound in different directions.
  • one or more conductors 100a and 100b may form sub-coils, respectively.
  • a first conductor 100a wound clockwise (CW) forms a first sub-coil
  • a second conductor 100b wound counterclockwise (CCW) forms a second sub-coil. coils can be formed.
  • CW clockwise
  • CCW counterclockwise
  • the first sub-coil eg, the first conductor 100a wound in a clockwise direction (CW)
  • the second sub-coil eg, the second conductor 100a wound in a counterclockwise direction (CCW) 100b)
  • the detection coil 100 may be included in, for example, a transmission pad of an electronic device that wirelessly transmits power (eg, a wireless power transmitter), and may generate a magnetic field (eg, a Tx field) to the outside.
  • the detection coil 100 may be disposed on the upper side of a conductive pattern (eg, coil) and/or ferrite (eg, spoke-type ferrite) that creates a .
  • the detection coil 100 may be included in various electronic devices that detect foreign substances (eg, metal substances) other than the wireless power transmitter.
  • a magnetic field eg, Tx field
  • an induced voltage may be generated in the detection coil 100 positioned above the conductive pattern (eg, coil) due to the generated magnetic field. .
  • the first sub-coil eg, the first conductor 100a
  • the second sub-coil eg, the second sub-coil
  • An induced voltage eg, +V 0 or -V 0
  • the conductors eg, the first conductor 100a and the second conductor 100b wound in different winding directions are connected in series to each other so that the first conductor of one sub-coil is It may constitute a part and a second part.
  • the induced voltages generated in each may cancel each other out. If the magnetic field (eg, Tx field) is not uniform, the parts (eg, the part corresponding to the first conductor 100a and the second conductor ( Corresponding to 100b)), at least a part of the induced voltage generated in each part is not canceled, and an unoffset amount having a magnitude of V dis may occur.
  • the foreign material 2 when a foreign material 2 is disposed around the first part (eg, the first conductor 100a) of the detection coil 100, the foreign material 2 causes the first part (eg, the induced voltage of the first conductor 100a) may vary.
  • an induced voltage fluctuation ( ⁇ V x ) having a magnitude of V x may occur in the induced voltage of the first portion (eg, the first conductor 100a).
  • An electronic device (eg, a wireless power transmitter) including the detection coil 100 detects that an induced voltage fluctuation ( ⁇ V x ) occurs, and/or the generated induced voltage fluctuation ( ⁇ V x ) falls within a specified range.
  • the presence of a foreign substance that may be affected by a magnetic field while wirelessly transmitting power through a conductive pattern (eg, coil) located around the detection coil 100 and/or location can be detected.
  • a conductive pattern eg, coil
  • the signal-to-noise ratio (SNR) can be calculated by Equation 2.
  • V dis in Equation 2 represents the parts (eg, parts corresponding to the first conductor 100a) wound in different directions of the series-connected sub-coils when the magnetic field (eg, Tx field) is not uniform. and a portion corresponding to the second conductor 100b) may indicate an unoffset amount of each induced voltage.
  • the unoffset amount (V dis ) is smaller than the magnitude (V 0 ) of the induced voltage generated in each part (eg, a part corresponding to the first conductor 100a or a part corresponding to the second conductor 100b). can be a value In an ideal case where the magnetic field (eg, Tx field) is uniform, V dis may have a magnitude of 0 and SNR may have an infinite value.
  • a plurality of conductors wound in the same direction are disposed in a horizontal direction (eg, a horizontal direction), and in the detection coil 100 in FIG. 1B, a plurality of conductors wound in different directions are disposed.
  • a plurality of conductors may be disposed in a horizontal direction (eg, a horizontal direction).
  • the SNR according to the detection coil 100 of FIG. 1B may be relatively higher than the SNR according to the detection coil 1 of FIG. 1A.
  • the conductors (eg, the first conductor 100a and the second conductor 100b) of the detection coil 100 of FIG. 1B are connected in series to form a sub-coil, the detection coil of FIG.
  • the number of channels required to detect the foreign matter (2) may be relatively small.
  • each conductor eg, the first conductor 1a
  • the magnitude of the induced voltage (V 0 ) generated in the second conductor (1b) varies, so the accuracy of the foreign matter detection (FOD) is relatively low, whereas the detection coil 100 of FIG.
  • the induced voltages (eg, V 0 and -V 0 ) generated in each part cancel each other so that the foreign matter Accuracy of detection (FOD) may be relatively high.
  • the induced voltages eg, V 0 and -V 0
  • parts of the sub-coil eg, the first conductor 100a and the second conductor 100b
  • the magnetic field generated around the detection coil is unbalanced due to the magnetic field. Due to the non-offset parts of the induced voltages, the existence of the foreign matter may be erroneously detected.
  • parts of the sub coil are disposed on different planes. (eg, stacked in a vertical direction), a first portion disposed on the first surface (eg, a portion corresponding to the first conductor 100a) and a second portion disposed on the second surface (eg, the first conductor 100a)
  • the parts corresponding to the two conductors 100b) may be connected in series to each other to form one sub-coil, which will be described in more detail through the drawings to be described later.
  • the detection coil 100 including parts (eg, a part corresponding to the first conductor 100a and a part corresponding to the second conductor 100b) disposed on the other surface in the vertical direction, For example, it can be called a vertical gradiometer coil.
  • the shape or arrangement of the parts of the series-connected sub-coils described above will be described in more detail through drawings to be described later.
  • a set of two conductors wound in different directions will be described as a 'sub coil', and a conductor wound clockwise or counterclockwise in the 'sub coil' will be referred to as a 'part of the sub coil'.
  • the detection coil 100 will be described as including one or more 'sub coils'.
  • FIG. 2 shows a block diagram of a wireless power transmitter and a wireless power receiver according to various embodiments.
  • the wireless power transmitter 200 may include a power transmission circuit 220, a control circuit 212, a communication circuit 230, a sensing circuit 215, and/or a storage circuit. circuit 216.
  • the wireless power transmitter 200 may provide power to the wireless power receiver 250 through the power transmission circuit 220 .
  • the wireless power transmitter 200 may transmit power according to a resonance method.
  • the wireless power transmitter 200 may be implemented, for example, in a manner defined in the Alliance for Wireless Power (A4WP) standard (or air fuel alliance (AFA) standard).
  • the wireless power transmitter 200 may include a conductive pattern 224 (eg, a coil) capable of generating an induced magnetic field (eg, a Tx field) when current (eg, alternating current) flows according to a resonance method or an induction method.
  • the wireless power transmitter 200 wirelessly transmits power to the wireless power receiver 250.
  • the wireless power receiver 250 may include a conductive pattern 276 (eg, a coil) in which an induced electromotive force is generated by a magnetic field (eg, a Tx field) whose size changes with time formed around it.
  • the wireless power transmitter 200 may transmit power according to an induction method.
  • the wireless power transmitter 200 may be implemented in a method defined in, for example, a wireless power consortium (WPC) standard (or Qi standard).
  • WPC wireless power consortium
  • the power transmission circuit 220 may include a power adapter 221, a power generation circuit 222, a matching circuit 223, a conductive pattern 224 (eg, a coil), or a first communication circuit. (231).
  • the power transmission circuit 220 may be configured to transmit power to the wireless power receiver 250 wirelessly through the conductive pattern 224 .
  • the power transmission circuit 220 may receive power from the outside in the form of a direct current or alternating current waveform, and may supply the supplied power to the wireless power receiver 250 in the form of an alternating current waveform. .
  • the power adapter 221 may receive AC or DC power from the outside or receive a power signal from a battery device, and output DC power having a set voltage value. According to various embodiments, a voltage value of DC power output from the power adapter 221 may be controlled by the control circuit 212 . According to various embodiments, DC power output from the power adapter 221 may be output to the power generation circuit 222 .
  • the power generation circuit 222 may convert the DC current output from the power adapter 221 into AC current and output the converted AC current.
  • the power generating circuit 222 may include a predetermined amplifier (not shown).
  • the power generation circuit 222 uses an amplifier (not shown) to set the gain. DC current can be amplified.
  • the power generation circuit 222 may include a circuit that converts DC current input from the power adapter 221 into AC based on a control signal input from the control circuit 212 .
  • the power generation circuit 222 may convert DC current input from the power adapter 221 into AC through a predetermined inverter (not shown).
  • the power generation circuit 222 may include a gate driving device (not shown). While controlling the DC current input from the power adapter 221 by turning on/off the gate driving device (not shown), the DC current may be changed to AC.
  • the power generating circuit 222 may generate an AC power signal through a wireless power generator (eg, an oscillator).
  • the matching circuit 223 may perform impedance matching. For example, when an AC current (eg, an AC signal) output from the power generation circuit 222 is transmitted to the conductive pattern 224, an electromagnetic field may be formed in the conductive pattern 224 by the AC signal. By adjusting the impedance of the matching circuit 223, the frequency band of the electromagnetic field (eg, electromagnetic field signal) formed may be adjusted. According to various embodiments, the matching circuit 223 may control the output power transmitted to the wireless power receiver 250 through the conductive pattern 224 to be high efficiency or high output by impedance adjustment. According to various embodiments, the matching circuit 223 may adjust the impedance based on the control of the control circuit 212 .
  • an AC current eg, an AC signal
  • the matching circuit 223 may adjust the impedance based on the control of the control circuit 212 .
  • the matching circuit 223 may include at least one of an inductor (eg, coil), a capacitor, or a switch device.
  • the control circuit 212 may control a connection state with at least one of an inductor or a capacitor through a switch device, and accordingly, impedance matching may be performed.
  • the conductive pattern 224 may form a magnetic field for inducing current to the wireless power receiver 250 when current is applied.
  • the first communication circuit 231 eg, a resonant circuit
  • communicates eg, data communication
  • in-band format using electromagnetic waves generated by the conductive pattern 224.
  • the detection coil 100 may include one or more sub-coils (eg, a portion wound in a clockwise direction and a portion wound in a counterclockwise direction connected in series to each other).
  • portions of the sub coils may be disposed on different surfaces in a direction perpendicular to each other.
  • a first part of the sub coil is disposed on a first surface (eg, a lower surface) of the PCB, and is wound in a direction opposite to a direction in which the first part is wound.
  • a wound second portion may be disposed on a second side (eg, top side) of the PCB.
  • the second part may be disposed at a position corresponding to a vertical direction with respect to a position where the first part is disposed.
  • a portion wound in a clockwise direction may be disposed on an upper surface, and a portion wound in a counterclockwise direction may be disposed on a lower surface.
  • a portion wound in a counterclockwise direction may be disposed on an upper surface, and a portion wound in a clockwise direction may be disposed on a lower surface.
  • the first part of the sub coil may be disposed on the first PCB, and the second part wound in the opposite direction to the first part may be disposed on the second PCB.
  • the sub coils may be alternately arranged. For example, a portion wound in a clockwise direction of the first sub coil is disposed on the second surface (eg, upper side), and a portion wound in a counterclockwise direction of the first sub coil is disposed on the first surface (eg, lower side). and the counterclockwise-wound portion of the second sub-coil adjacent to the first sub-coil is disposed on the second surface (eg, upper side), and the clockwise-wound portion of the second sub-coil is disposed on the first surface. (e.g. on the lower side). According to various embodiments, adjacent sub coils may be connected in series with each other.
  • a part disposed on the second surface (eg, upper side) of the first sub-coil is connected in series with a part disposed on the first surface (eg, lower surface) of the adjacent second sub-coil, or
  • a part disposed on the first surface (eg, the lower surface) of the sub coil may be connected in series with a part disposed on the second surface (eg, upper surface) of the adjacent second sub coil.
  • one channel may be formed by connecting sub-coils adjacent to each other in series in either a row direction or a column direction.
  • two or more sub-coils serially connected in a row direction or a column direction may be serially connected to each other to form one channel.
  • all of the sub coils disposed on one PCB may be serially connected to each other to form one channel.
  • adjacent sub-coils may be arranged so that at least a portion overlaps each other when viewed from one direction (eg, a vertical direction).
  • directions (eg, clockwise or counterclockwise) in which adjacent sub-coils are wound in regions overlapping each other may be identical to each other, and will be described in more detail through drawings to be described later. do.
  • parts wound in different directions constituting the sub-coils of the detection coil 100 have the same size (eg area) when viewed from one direction (eg vertical direction).
  • the wireless power transmitter 200 may include two or more detection coils (eg, the detection coil 100).
  • the wireless power transmitter 200 includes a first detection coil disposed on a first PCB and a second detection coil disposed on a second PCB (eg, another PCB substantially parallel to the first PCB).
  • the first detection coil and the second detection coil may form independent channels with respect to each other.
  • the first detection coil and the second detection coil may be connected to each other to form one channel.
  • the first detection coil and the second detection coil when viewed from one direction (eg, a vertical direction), the first detection coil and the second detection coil may be disposed to partially overlap each other.
  • the first detection coil and the second detection coil may be disposed such that at least one null region of the sub-coil of the first detection coil is covered by an area other than the null region of the sub-coil of the second detection coil. have.
  • at least one null area of the sub-coil of the second detection coil may be covered by an area other than the null area of the sub-coil of the first detection coil, which will be described later.
  • the sub-coils of the second detection coil located at one point are constant in the row direction and/or column direction of the sub-coils of the first detection coil located at the same point. It may have a pattern that is translated by a distance and/or rotated by a certain angle. It will be described in more detail through the drawings to be described later.
  • the sensing circuit 215 may sense a change in current/voltage applied to the conductive pattern 224 of the power transmission circuit 220 .
  • the amount of power to be transmitted to the wireless power receiver 250 may vary according to a change in current/voltage applied to the conductive pattern 224 .
  • the sensing circuit 215 may sense and/or compensate a current and/or voltage corresponding to at least one channel of the detection coil 100 .
  • the sensing circuit 215 may sense a temperature change of the wireless power transmitter 200 .
  • the sensing circuit 215 may include at least one of a current/voltage sensor or a temperature sensor.
  • control circuit 212 may control the operation of the wireless power transmitter 200 .
  • the control circuit 212 may control the operation of the wireless power transmitter 200 using an algorithm, program, or application required for control stored in the storage circuit 216 .
  • the control circuit 212 may be implemented in the form of a CPU, microprocessor, or mini computer.
  • the control circuit 212 may display the state of the wireless power receiver 250 on the display unit 217 based on a message received from the wireless power receiver 250 through the communication circuit 230.
  • the control circuit 212 may control to wirelessly transmit power to the wireless power receiver 250 through the power transmission circuit 220 . According to various embodiments, the control circuit 212 may control to receive information wirelessly from the wireless power receiver 250 through the communication circuit 230 . According to various embodiments, the control circuit 212 may check an induced voltage output from the sensing circuit 215 and/or a value related to the induced voltage variation. According to various embodiments, the control circuit 212 may control at least a portion of the sensing circuit 215 (eg, a compensation circuit 910 to be described below) based on a value output from the sensing circuit 215. And, it will be described in more detail through the drawings to be described later.
  • the control circuit 212 based on the value output from the sensing circuit 215, is located around the detection coil 100 and wirelessly transmits power through the conductive pattern 224 while It is possible to detect the presence and/or location of foreign matter that can be affected by the generated magnetic field.
  • the control circuit 212 may perform a designated operation corresponding to foreign material detection when a foreign material located around the detection coil 100 is detected. For example, the control circuit 212 may not initiate an operation of wirelessly transmitting power to the wireless power receiver 250 and/or stop an operation of wirelessly transmitting power to the wireless power receiver 250.
  • control circuit 212 outputs a notification (eg, a warning sound) through an output device (eg, a speaker) of the wireless power transmitter 200, and/or the wireless power receiver 250 outputs an output device (eg, a speaker). : It can be controlled to output notifications (e.g., warning sounds) through the speaker).
  • the information received from the wireless power receiver 250 includes charging setting information related to the battery state of the wireless power receiver 250 and the amount of power related to adjusting the amount of power transmitted to the wireless power receiver 250. It may include at least one of control information, environmental information related to the charging environment of the wireless power receiver 250, and time information of the wireless power receiver 250.
  • the charging setting information may be information related to a battery state of the wireless power receiver 250 at a time of wireless charging between the wireless power transmitter 200 and the wireless power receiver 250.
  • the charging setting information may include at least one of the total battery capacity of the wireless power receiver 250, the remaining battery capacity, the number of times of charging, the battery usage, the charging mode, the charging method, or the wireless reception frequency band.
  • the power amount control information controls the amount of initial power transmitted according to a change in the amount of power charged in the wireless power receiver 250 during wireless charging between the wireless power transmitter 200 and the wireless power receiver 250.
  • information may be included.
  • the environment information is information obtained by measuring the charging environment of the wireless power receiver 250 by the sensing circuit 255 of the wireless power receiver 250, for example, At least one of temperature data including at least one of an internal temperature and an external temperature, illuminance data representing illuminance (brightness) around the wireless power receiver 250, or sound data representing sound (noise) around the wireless power receiver 250. may contain one.
  • control circuit 212 may generate or transmit power to be transmitted to the wireless power receiver 250 based on charging setting information among information received from the wireless power receiver 250. have. Alternatively, the control circuit 212 transmits information received from the wireless power receiver 250 to the wireless power receiver 250 based on at least some (eg, at least one of power amount control information, environment information, or time information). The amount of power consumed can be determined or changed. Alternatively, the control circuit 212 may control the matching circuit 223 to change the impedance.
  • the display unit 217 may display overall information related to the state of the wireless power transmitter 200, environment information, or charging state.
  • the communication circuit 230 may communicate with the wireless power receiver 250 in a predetermined manner.
  • the communication circuit 230 may perform data communication with the communication circuit 280 of the wireless power receiver 250 .
  • the communication circuitry 230 may unicast, multicast, or broadcast a signal.
  • the communication circuit 230 is implemented as a single piece of hardware with the power transmission circuit 220 so that the wireless power transmitter 200 can communicate in an in-band format.
  • 1 communication circuit 231 or power transmission circuit 220 is implemented in hardware different from the wireless power transmitter 200 is a second communication that can perform communication in an out-of-band format
  • At least one of the circuits 232 may be included.
  • the first communication circuit 231 when the communication circuit 230 includes a first communication circuit 231 capable of performing communication in an in-band format, the first communication circuit 231 is the power transmission circuit 220 The frequency and signal level of the electromagnetic field signal received through the conductive pattern 224 may be received.
  • the control circuit 212 may extract information received from the wireless power receiver 250 by decoding the frequency and signal level of the electromagnetic field signal received through the conductive pattern 224 .
  • the first communication circuit 231 applies a signal for information of the wireless power transmitter 200 to be transmitted to the wireless power receiver 250 to the conductive pattern 224 of the power transmission circuit 220 (eg, turned on).
  • Information on the wireless power transmitter 200 may be transmitted to the wireless power receiver 250 by adding a signal for information on the wireless power transmitter 200 to the electromagnetic field signal.
  • the control circuit 212 changes the connection state with at least one of the inductor and the capacitor of the matching circuit 223 through on/off control of the switch device included in the matching circuit 223, thereby changing the information of the wireless power transmitter 200. can be controlled to be output.
  • the second communication circuit 232 may include a near field (NFC) communication), Zigbee communication, infrared communication, visible ray communication, Bluetooth communication, or BLE (bluetooth low energy) communication circuit 280 (eg, second communication circuit 282) of the wireless power receiver 250 using ) and can communicate with.
  • NFC near field
  • Zigbee communication Zigbee communication
  • infrared communication visible ray communication
  • Bluetooth communication Bluetooth communication
  • BLE (bluetooth low energy) communication circuit 280 eg, second communication circuit 282 of the wireless power receiver 250 using
  • the above-described communication method of the communication circuit 230 is merely exemplary, and the scope of rights of the embodiments of the present disclosure is not limited to a specific communication method performed by the communication circuit 230 .
  • the wireless power receiver 250 may include a power receiving circuit 270, a control circuit 252, a communication circuit 280, a sensing circuit 255, and/or A display unit 257 may be included.
  • the power receiving circuit 270 may receive power from the power transmitting circuit 220 of the wireless power transmitter 200 .
  • the power receiving circuit 270 may be implemented in the form of a built-in battery or may be implemented in the form of a power receiving interface to receive power from the outside.
  • the power reception circuit 270 may include a matching circuit 271 , a rectification circuit 272 , an adjustment circuit 273 , a battery 275 , and/or a conductive pattern 276 .
  • the power receiving circuit 270 transmits wireless power in the form of electromagnetic waves generated in response to the current/voltage applied to the conductive pattern 224 of the power transmitting circuit 220 through the conductive pattern 276. can be received through
  • the power receiving circuit 270 may receive power using the induced electromotive force formed on the conductive pattern 224 of the power transmitting circuit 220 and the conductive pattern 276 of the power receiving circuit 270. have.
  • the matching circuit 271 may perform impedance matching. For example, power transmitted through the conductive pattern 224 of the wireless power transmitter 200 may be transferred to the conductive pattern 276 to form an electromagnetic field. According to various embodiments, the matching circuit 271 may adjust a frequency band of an electromagnetic field (eg, an electromagnetic field signal) formed by adjusting an impedance. According to various embodiments, the matching circuit 271 may control input power received from the wireless power transmitter 200 through the conductive pattern 276 to have high efficiency and high output by such impedance adjustment. According to various embodiments, the matching circuit 271 may adjust the impedance based on the control of the control circuit 252 .
  • an electromagnetic field eg. an electromagnetic field signal
  • the matching circuit 271 may include at least one of an inductor (eg, coil), a capacitor, or a switch device.
  • the control circuit 252 may control a connection state with at least one of an inductor or a capacitor through a switch device, and accordingly, impedance matching may be performed.
  • the rectifier circuit 272 may rectify the wireless power received by the conductive pattern 276 in a direct current form, and may be implemented in the form of a bridge diode, for example. .
  • the adjustment circuit 273 may convert the rectified power into a set gain.
  • the adjustment circuit 273 may include a DC/DC converter (not shown).
  • the adjustment circuit 273 may convert the rectified power so that the voltage of the output terminal becomes 5V.
  • the minimum or maximum value of the voltage that can be applied may be set at the front end of the adjustment circuit 273 .
  • the switch circuit 274 may connect the adjustment circuit 273 and the battery 275 . According to various embodiments, the switch circuit 274 may maintain an on/off state under the control of the control circuit 252 .
  • the battery 275 may be charged by receiving power input from the adjustment circuit 273 .
  • the sensing circuit 255 may sense a power state change received by the wireless power receiver 250 .
  • the sensing circuit 255 may periodically or non-periodically measure a current/voltage value received by the conductive pattern 276 through a predetermined current/voltage sensor 255a.
  • the wireless power receiver 250 may calculate the amount of power received by the wireless power receiver 250 based on the current/voltage measured through a predetermined current/voltage sensor 255a.
  • the sensing circuit 255 may sense a change in the charging environment of the wireless power receiver 250.
  • the sensing circuit 255 may periodically or non-periodically measure at least one of an internal temperature or an external temperature of the wireless power receiver 250 through a predetermined temperature sensor 255b.
  • the display unit 257 may display overall information related to the charging state of the wireless power receiver 250 .
  • the display unit 257 may display at least one of the total battery capacity of the wireless power receiver 250, the remaining battery capacity, the battery charging capacity, the battery usage, or the expected charging time.
  • the communication circuit 280 may perform communication with the wireless power transmitter 200 in a predetermined manner.
  • the communication circuit 280 may perform data communication with the communication circuit 230 of the wireless power transmitter 200 .
  • the communication circuit 280 may operate similarly or identically to the communication circuit 230 of the wireless power transmitter 200 .
  • the control circuit 252 transmits charging setting information for receiving a required amount of power based on information related to the battery state of the wireless power receiver 250 through the communication circuit 280 to the wireless power transmitter ( 200) can be sent. For example, when the wireless power transmitter 200 capable of transmitting wireless power is identified, the control circuit 252 determines the total battery capacity of the wireless power receiver 250, the remaining battery capacity, the number of times of charging, the battery usage, the charging mode, and the charging mode. Charging setting information for receiving a required amount of power based on at least one of a method and a wireless reception frequency band may be transmitted to the wireless power transmitter 200 through the communication circuit 280 .
  • control circuit 252 controls the amount of power received from the wireless power transmitter 200 according to the change in the amount of power charged in the wireless power receiver 250 through the communication circuit 280.
  • Power amount control information for processing may be transmitted to the wireless power transmitter 200 .
  • control circuit 252 may transmit environment information according to a change in the charging environment of the wireless power receiver 250 to the wireless power transmitter 200 through the communication circuit 280 .
  • control circuit 252 may transmit the measured temperature data to the wireless power transmitter 200 when the temperature data value measured by the sensing circuit 255 is equal to or greater than a set temperature reference value.
  • the wireless power receiver 250 may include the detection coil 100.
  • the wireless power receiver 250 may use the detection coil 100 to detect the presence and/or location of the foreign material FO when a change in the induced voltage is confirmed.
  • the wireless power receiver 250 eg, the control circuit 252 controls the switch circuit 274 to be off, and/or information indicating that the foreign substance has been detected by the wireless power transmitter 200. can also be sent.
  • the wireless power transmitter 200 and the wireless power receiver 250 may include only the power transmission circuit 220 and the power reception circuit 270, respectively, but the wireless power transmitter 200 and the wireless power receiver 250 ) may include both the power transmission circuit 220 and the power reception circuit 270, respectively. Accordingly, the wireless power transmitter 200 and the wireless power receiver 250 according to various embodiments may perform functions of both a power transmitter and a power receiver.
  • FIG. 3A illustrates an example of a sub coil 300 included in a detection coil (eg, the detection coil 100 of FIG. 1B ) according to various embodiments.
  • 3B shows a cross-sectional view of the sub-coil 300 of FIG. 3A according to various embodiments.
  • the sub coil 300 may include parts 301 and 303 wound in different directions.
  • the sub coil 300 may include a first portion 301 wound in a counterclockwise direction (CCW) and a second portion 303 wound in a clockwise direction (CW).
  • CCW counterclockwise direction
  • CW clockwise direction
  • the portions 301 and 303 wound in different directions of the sub coil 300 may be formed in a polygonal shape.
  • the first part 301 may have a triangular (eg, equilateral triangle) shape when viewed from one direction (eg, the front direction of the sub coil 300).
  • the second part 303 may have a triangular (eg, inverted triangle) shape.
  • the portions 301 and 303 wound in different directions of the sub coil 300 may be formed to have a polygonal shape different from a triangular shape, such as a quadrangle, a pentagon, or a hexagon, or a circular shape. may be
  • the portions 301 and 303 wound in different directions of the sub coil 300 may have substantially the same size (eg, area).
  • an area formed by the first part 301 eg, a triangular area
  • an area formed by the second part 303 eg, an inverted triangular area. You can, but there is no limit.
  • the portions 301 and 303 wound in different directions of the sub coil 300 have different polygonal shapes when viewed from one direction (eg, the front direction of the sub coil 300).
  • the first part 301 may have an equilateral triangle shape when viewed from one direction (eg, the front direction of the sub coil 300).
  • the second part 303 may have an inverted triangle shape when viewed from one direction (eg, the front direction of the sub coil 300).
  • the portions 301 and 303 wound in different directions of the sub coil 300 may have shapes symmetrical to each other.
  • the center (O) eg, center of gravity
  • the center (eg, center of gravity) of the second part 303 O) eg, centers of gravity
  • the first part 301 and the second part 303 may have symmetrical shapes with respect to one axis.
  • the second part 303 is based on an axis passing through the center O (eg, the center of gravity) in a vertical direction (eg, the front direction of the sub coil 300), and the first part 301 It can have a shape rotated by 180 degrees in shape (eg point symmetry).
  • the second part 303 is the first part 301 based on an axis passing through the center O (eg, the center of gravity) in a horizontal direction (eg, the lateral direction of the sub coil 300). It may have a shape that is reversed in shape (eg upside down) (eg line symmetry).
  • the parts 301 and 303 wound in different directions of the sub coil 300 share the same center O and have symmetrical shapes, detection including the sub coil 300 Even if the coil 100 is disposed in an unbalanced magnetic field (eg, a Tx field), induced voltages generated in the sub coil 300 can be effectively canceled out.
  • the first part 301 and the second part 303 may overlap each other by the first area 305 . Based on the overlapping of the first portion 301 and the second portion 303 by the first area 305 wound in different directions, the organic reaction occurring in the first portion 301 and the second portion 303, respectively. Voltages can mostly cancel out.
  • the induced voltages eg, fluctuations in the induced voltages
  • the induced voltage fluctuations may not be detected, and the first region 305 may not be detected.
  • 305 may be described as a null area.
  • the parts 301 and 303 wound in different directions of the sub coil 300 have symmetrical shapes, at least some of the regions formed by the parts 301 and 303 do not overlap each other. can For example, the first part 301 and the second part 303 may not overlap each other as much as the second region 307 .
  • the induced voltages eg, induced voltage fluctuations
  • the induced voltage generated in the first portion 301 and the second portion 303 may not be offset.
  • the induced voltage generated in the first portion 301 may vary, but the second portion 303 There may not be a change in the induced voltage, and the induced voltages may not completely cancel each other out.
  • the induced voltage fluctuation occurring in the sub coil 300 can be detected, and the second region 307 can be described as a detection region.
  • the voltage difference (V out ) between the other end 301b of the first portion 301 and the other end 303b of the second portion 303 may be calculated according to Equation 3, for example.
  • Equation 3 'V CW -V CCW ' represents a voltage difference between the other end 301b of the first portion 301 and the other end 303b of the second portion 303 .
  • 'N CCW ' and 'N CW ' indicate the number of turns of the first part 301 and the number of turns of the second part 303 .
  • 'V 0 ' represents the magnitude of the induced voltage generated in the first part 301 or the second part 303 per unit turn (per 1 turn).
  • 'V xCCW ' and 'V xCW ' indicate magnitudes of induced voltage fluctuations generated in the first portion 301 and the second portion 303 per unit turn (per 1 turn).
  • the size of the sub coil 300 is sufficiently small (for example, smaller than the surrounding foreign matter), the density of the magnetic field linking the first part 301 and the second part 303 of the sub coil 300 is the same.
  • an induced voltage of the same size (V 0 ) may be generated in each of them.
  • the portions 301 and 303 wound in different directions of the sub coil 300 may be wound multiple times, respectively.
  • the first part 301 may be formed by winding a plurality of times in a counterclockwise direction.
  • the second part 303 may be formed by winding a plurality of times in a clockwise direction.
  • each of the first part 301 or the second part 303 may be wound a plurality of times in a counterclockwise or clockwise direction to form a polygonal shape (eg, a triangle shape or an inverted triangle shape).
  • portions 301 and 303 wound in different directions of the sub coil 300 may be connected to each other.
  • one end 301a of the first part 301 may be connected to one end 303a of the second part 303, so that the first part 301 and the second part 303 may be connected.
  • the sub coil 300 further includes a connection conductor extending in a vertical direction for connecting one end 301a of the first part 301 and one end 303a of the second part 303 to each other. You may. If the first part 301 and the second part 303 are disposed on both sides of the PCB, the connection conductor is connected to the first part 301 and the second part 303 through the via hole penetrating the PCB.
  • a sub coil 300 including a first part 301 and a second part 303 wound in different directions may be formed.
  • FIG. 3B a cross-sectional view of the sub coil 300 taken along line A-A' of FIG. 3A is shown.
  • the first part 301 of the sub coil 300 is wound in a counterclockwise direction to a first point.
  • the first part 301 is elongated from the first point 301c to one end 301a, and the one end 301a may be connected to the one end 303a of the second part 303.
  • the second part 303 of the sub coil 300 is wound in a clockwise direction, and the sub coil 300 is wound at a third point 303c. ) and may be formed in a direction entering the front direction of the sub coil 300 at the fourth point 303d.
  • the other end 301b of the first portion 301 and/or the other end 303b of the second portion 303 may be connected to a sensing circuit (eg, the sensing circuit 215 of FIG. 2 ).
  • a sensing circuit eg, the sensing circuit 215 of FIG. 2
  • the detection coil 100 includes a plurality of sub coils 300 shown in FIG. 3
  • the other end 303b of may be connected (eg, series connection) to the first part and/or the second part of the adjacent sub coil, and will be described in more detail through drawings to be described later.
  • the parts 301 and 303 wound in different directions of the sub coil 300 may be disposed on different planes.
  • the first portion 301 may be disposed on a first surface
  • the second portion 303 may be disposed on a second surface different from the first surface.
  • the sub coils 300 may be disposed on both sides of the PCB
  • the first portion 301 is disposed on the first side (eg, the lower side) of the PCB
  • the second portion 303 is disposed on the PCB. It may be disposed on the second side (eg, the upper side) of the.
  • One end 301a of the first part 301 and one end 303a of the second part 303 may pass through the PCB and be connected to each other.
  • the other end 301b of the first part 301 is adjacent to the sub-coil (eg, the same PCB).
  • the other end 303b of the second part 303 is connected to the first part of the adjacent sub coil disposed on the same PCB), and/or the second part 303 of the second part 303 is connected to the second part of the adjacent sub coil disposed on the same PCB). It can be connected to the part, and will be described in more detail through the drawings to be described later.
  • the first part of the adjacent sub coil may be disposed on the second surface (eg, upper side surface), and the second part of the adjacent sub coil may be disposed on the first surface (eg, lower surface).
  • the other end 301b of the first part 301 disposed on the first surface passes through the PCB and is connected to one end of the first part disposed on the second surface of the adjacent sub-coil, and/or the second end 301b.
  • the other end 303b of the second part 303 disposed on the surface may pass through the PCB and be connected to one end of the second part disposed on the first surface of the adjacent sub coil.
  • the sub coil 300 may be connected to at least one adjacent sub coil (eg, series connection) to form one channel.
  • sub-coils of the detection coil 100 may form independent (eg, individual) channels respectively (respectively).
  • FIG. 4A is a diagram for explaining the arrangement and/or connection relationship of adjacent sub coils 410 and 430 (eg, the sub coil 300 of FIG. 3A ) according to various embodiments.
  • 4B is a cross-sectional view of a detection coil 100 including a plurality of sub-coils 410 and 430 according to various embodiments.
  • the first sub-coil 410 eg, the sub-coil 300 of FIG. 3A
  • the second sub-coil 430 has a first portion 431 wound counterclockwise (CCW) and clockwise (CW).
  • a wound second portion 433 may be included.
  • the first sub-coil 410 may be arranged to be connected to an adjacent second sub-coil 430 (eg, connected in series).
  • an adjacent second sub-coil 430 eg, connected in series.
  • one end 412 eg, the other end 303b of FIG. 3A
  • one end 432 eg, one end 303a of FIG. 3A
  • the second part 433 of the coil 430 may be connected to one end 432 (eg, one end 303a of FIG. 3A ) of the second part 433 of the coil 430 .
  • the first part 411 of the first sub-coil 410 or the first part 431 of the second sub-coil 430 ) may be disposed to be connected (eg, serially connected) to the first part of the adjacent third sub-coil (not shown).
  • the center of gravity is the center (O 1 ) of the first sub coil 410 (eg, the center of gravity) and the center (O 2 ) of the second sub coil 430 (eg, center of gravity) may be arranged (eg, parallel to the row direction) on an extension line connecting the center of gravity).
  • adjacent sub-coils 410 and 430 may be arranged so that at least a portion overlaps with each other when viewed from one direction (eg, a frontal direction of the sub-coils 410 and 430). .
  • portions of the first sub-coil 410 and the second sub-coil 430 wound in the same direction may overlap at least a portion of each other.
  • the first sub coil 410 and the second sub coil 430 are wound counterclockwise with the first portion 411 wound counterclockwise.
  • the first portion 431 may overlap at least a portion of each other, and the second portion 413 wound in a clockwise direction and the second portion 433 wound in a clockwise direction may overlap at least a portion of each other.
  • the first part (or the second sub-coil 430) wound in the counterclockwise direction of the first sub-coil 410 ( 411) (or the first portion 431) is at least partially overlapped with a first portion wound counterclockwise of an adjacent third sub coil (not shown), and the first sub coil 410 (or,
  • the second part 413 (or the second part 433) wound clockwise of the second sub coil 430 is clockwise wound of an adjacent third sub coil (not shown) and They may overlap at least part of each other.
  • adjacent sub coils 410 and 430 may be alternately arranged.
  • the first part 411 is located on the first surface (eg, the lower surface) of the PCB and the second part 413 may be disposed to be located on the second surface (eg, upper surface) of the PCB.
  • the first part 431 is located on the second surface (eg, the upper surface) of the PCB, and the second part 433 is located on the second surface of the PCB. It may be arranged to be located on one side (eg, the lower side).
  • the third sub-coil (not shown) adjacent to the second sub-coil 430 has a first part located on a first surface (eg, a lower surface) of the PCB and a second part located on a second surface of the PCB. (eg, upper side) may be arranged to be located.
  • Arrangements of the plurality of sub-coils described above may be summarized in a table, illustratively, as shown in Table 1.
  • 5A is a diagram for explaining the arrangement of a detection coil (eg, the detection coil 100 of FIG. 2 ) according to various embodiments.
  • 5B is a diagram for explaining a region covered by a detection coil (eg, the detection coil 100 of FIG. 2 ) according to various embodiments.
  • a coverage area 501 indicates an area where the detection coil 100 is disposed.
  • the detection coil 100 may be disposed to cover the conductive pattern 224 .
  • the detection coil 100 may be disposed to exceed the area of the conductive pattern 224 based on an x-y plane.
  • sub-coils eg, the sub-coils 300 of FIG.
  • FIG. 5B Referring to (a) of (a), a sub coil included in the detection coil 100 (eg, any one of the sub coils 300 of FIG. 3A is shown.
  • the sub coil 300 has a horizontal length (eg, the length in the x-axis direction) is a, and the vertical length (or height) (eg, the length in the y-axis direction) is h (eg, the first part 301 of FIG. 3A) of an equilateral triangle and a second part of an inverted triangle (eg, the second part 303 of FIG. 3A).
  • the coverage area 501 may have a horizontal length (eg, the length in the x-axis direction) of X and a vertical length (eg, length in the y-axis direction) of Y.
  • the detection coil ( 100) may include m sub-coils in the horizontal direction (eg, x-axis direction) and n sub-coils in a vertical direction (eg, y-axis direction), and the relationship between m and n is calculated by Equations 4 to 6 can
  • FIG. 6 is a diagram for explaining the arrangement of sub coils 410 and 430 adjacent to each other according to various embodiments.
  • the detection coil 100 may include sub coils (eg, the sub coil 300 of FIG. 3A ) disposed to occupy a coverage area 501 .
  • sub-coils eg, the sub-coil 300
  • the sub-coil 300 may be connected in series with adjacent sub-coils, and when viewed from one direction (eg, the front direction of the detection coil 100) , It may be arranged so that at least a part overlaps with an adjacent sub coil.
  • the first sub coil 410 and the second sub coil 430 may be alternately disposed on the same PCB.
  • parts marked with 'dotted lines' of each sub coil indicate parts located on the first surface (eg, lower side) of the PCB, and parts marked with 'solid lines' of each sub coil. Denotes portions located on the second side (eg, upper side) of the PCB. In this way, on the first surface (eg, the lower surface), the first part 411 of the first sub coil 410 and the second part 433 of the second sub coil 430 do not overlap with each other.
  • the second part 413 of the first sub-coil 410 and the first part 431 of the second sub-coil 430 do not overlap each other on the second surface (eg, the upper surface) may be placed adjacent to each other.
  • other sub coils may be further disposed on the left side of the first sub coil 410 or on the right side of the second sub coil 430, and the center of the other sub coils is the first sub coil 410. It may be disposed on an extension line connecting the center (O 1 ) of the second sub-coil 430 and the center (O 2 ) of the second sub-coil 430 .
  • the first sub-coil 410 and the second sub-coil 430 are wound in the same direction when viewed from one direction (eg, a front direction of the sub-coils 410 and 430).
  • the parts may be arranged so as to overlap each other.
  • the first part 411 wound in a counterclockwise direction of the first sub coil 410 is adjacent to the first part 411. It may overlap with the first part 431 wound in the counterclockwise direction of the second sub-coil 430 .
  • the second part 413 wound in the clockwise direction of the first sub coil 410 is adjacent to the second sub coil 430. ) may overlap with the second part 433 wound clockwise.
  • the first sub-coil 410 and the second sub-coil 430 are wound in different directions when viewed from one direction (eg, a front direction of the sub-coils 410 and 430).
  • the parts may be arranged so that they do not overlap each other.
  • the first part 411 wound in a counterclockwise direction of the first sub coil 410 is adjacent to the first part 411. It may not overlap with the second part 433 wound in the clockwise direction of the second sub-coil 430 .
  • the second part 413 wound in the clockwise direction of the first sub coil 410 is adjacent to the second sub coil 430. ) may not overlap with the first portion 431 wound counterclockwise.
  • reference numeral 601 denotes a first region (eg, first region 305 of FIG. 3A ) of the first sub coil 410 and/or the second sub coil 430 (in other words, null region), and reference numeral 603 denotes a second region (eg, the second region 307 of FIG. 3A ) of the first sub coil 410 and/or the second sub coil 430 (in other words, detection area).
  • first region eg, first region 305 of FIG. 3A
  • reference numeral 603 denotes a second region (eg, the second region 307 of FIG. 3A ) of the first sub coil 410 and/or the second sub coil 430 (in other words, detection area).
  • the detection area of the first sub-coil 410 overlaps the detection area of the second sub-coil 430 and the detection area of the sub-coil (not shown) adjacent to the left side
  • the second sub-coil 430 may overlap the detection area of the first sub-coil 410 and the detection area of the sub-coil (not shown) adjacent to the right side.
  • lower regions among regions indicated by reference numeral 603 are regions in which detection regions formed by first portions (eg, portions wound in a counterclockwise direction) of adjacent sub-coils overlap each other.
  • upper regions may represent regions in which detection regions formed by second portions (eg, portions wound in a clockwise direction) of adjacent sub-coils overlap each other.
  • the accuracy of foreign object detection (FOD) through the overlapping detection area may be increased. For example, based on overlapping of detection areas by portions (eg, first portion or second portion) wound in the same direction (eg, clockwise or counterclockwise), each detection area is generated.
  • the signal-to-noise ratio (SNR) of the induced voltage fluctuation may increase by the number of overlapping times (eg, 2 times).
  • FIG. 7 is a diagram for explaining the arrangement and/or connection relationship between the regular hexagonal sub-coils 710, 730, and 750 (eg, the sub-coil 300 of FIG. 3A) according to various embodiments.
  • the first sub-coil 710 includes a first portion 711 wound in a counterclockwise direction and a second portion 713 wound in a clockwise direction.
  • each of the first portion 711 and the second portion 713 may have a regular hexagonal shape.
  • the second portion 713 is rotated by 180 degrees (eg, point symmetry) from the shape of the first portion 711 based on an axis passing through the point O in a vertical direction.
  • the second portion 713 has a shape that is upside down (eg, line symmetrical) from the shape of the first portion 711 based on an axis passing through the point O in a vertical direction. can have
  • the first part 711 and the second part 713 may be connected to each other (eg, series connection).
  • the first portion 711 is disposed on a first side (eg, lower side) of the PCB
  • the second portion 713 is disposed on a second side (eg, upper side) of the PCB.
  • parts marked with 'dotted lines' represent parts disposed on the first surface (eg, lower surface) of the PCB
  • parts marked with 'solid lines' represent parts disposed on the PCB.
  • the first part 711 and the second part 713 wound in different directions are based on at least a portion overlapping each other, and thus a null area (eg, the first area 305 of FIG. 3A ). )) can be formed.
  • the first part 711 and the second part 713 wound in different directions are based on the fact that at least some of them do not overlap with each other, and the detection area (eg, the second area of FIG. 3A ) (305)) may be formed.
  • a plurality of sub coils may be alternately disposed on the same PCB.
  • the second sub coil 730 and the third sub coil 750 may be disposed adjacent to the first sub coil 710 .
  • the first portion 731 wound in a counterclockwise direction is located on the second surface (eg, the upper side)
  • the second portion 733 wound in a clockwise direction is located on the first surface. (eg, lower side) may be arranged to be located.
  • the first portion 751 wound in a counterclockwise direction is positioned on the second surface (eg, the upper side), and the second portion 753 wound in a clockwise direction is positioned on the first surface. (eg, lower side) may be arranged to be located.
  • the detection area of the first sub coil 710 when viewed from one direction (eg, a front direction of the sub coils 710, 730, and 750), is the area of the second sub coil 730. It may at least partially overlap the detection area and/or the detection area of the third sub coil 750 . As described above with reference to FIG. 6 , accuracy of foreign object detection (FOD) through the overlapping detection regions may increase based on overlapping detection regions formed by portions wound in the same direction.
  • FOD foreign object detection
  • the first sub coil 710 when viewed from one direction (eg, a front direction of the sub coils 710, 730, and 750), the first sub coil 710 includes the second sub coil 730 and the third sub coil 730.
  • the sub coil 750 and parts wound in different directions may be arranged so as not to overlap each other.
  • the first part 711 wound in a counterclockwise direction of the first sub-coil 710 may be the second part 733 wound in a clockwise direction of the adjacent second sub-coil 730 and the third adjacent part 733 of the second sub-coil 730. It may not overlap with the second part 753 wound in the clockwise direction of the sub coil 750 .
  • the clockwise-wound second part 713 of the first sub-coil 710 is formed by the counter-clockwise-wound first part 731 of the adjacent second sub-coil 730 and the adjacent third sub-coil 750 ) may not overlap with the first portion 751 wound counterclockwise.
  • 8A is a diagram for explaining an example of arrangement of a plurality of detection coils 810 and 830 according to various embodiments.
  • 8B is a diagram for explaining another example of arrangement of a plurality of detection coils 810 and 830 according to various embodiments.
  • a wireless power transmitter may include two or more detection coils (eg, the detection coil 100 of FIG. 2 ).
  • the wireless power transmitter 200 may include a first detection coil 810 and a second detection coil 830 .
  • the first detection coil 810 is disposed on at least one surface of the first PCB 801a
  • the second detection coil 830 may be disposed on at least one surface of the second PCB 801b located under the first PCB 801a.
  • each part constituting the first detection coil 810 and the second detection coil 830 (eg, parts wound clockwise or counterclockwise), as described above with reference to FIG. 6,
  • first and second surfaces eg, lower and upper surfaces
  • first and second surfaces eg, lower and upper surfaces
  • portions indicated by 'solid lines' are portions disposed on at least one surface of the first PCB 801a, and 'dotted lines' Parts marked with ' indicate parts disposed on at least one surface of the second PCB 801b.
  • Areas marked with 'hatch' represent null areas (eg, the first area 305 of FIG. 3A ) within each detection coil 810 or 830 .
  • null region eg, the first region 305 of FIG. 3A
  • induced voltages eg, fluctuations in induced voltages
  • the first detection coil 810 and the second detection coil 830 may be disposed to have a difference by a predetermined distance.
  • the second detection The coil 830 when viewed from one direction (eg, the front direction of the first detection coil 810 and the second detection coil 830), the second detection The coil 830 may be arranged to have a difference by a distance d in a direction (eg, a row direction ( ⁇ )) perpendicular to the one direction (eg, a front direction) based on a point O.
  • the second detection coil 830 when viewed from one direction (eg, the front direction of the first detection coil 810 and the second detection coil 830), the second detection coil 830 has a point O As a reference, it may be arranged to have a difference by a distance in a direction (eg, a front direction) horizontal to the one direction (eg, a front direction).
  • the second detection coil 830 when viewed from one direction (eg, the front direction of the first detection coil 810 and the second detection coil 830), the second detection coil 830 has a point O
  • a first distance in a direction perpendicular to the one direction (eg, the front direction) (eg, the row direction ( ⁇ )) and a direction horizontal to the one direction (eg, the front direction) (eg, the front direction) may be arranged to have a difference by the second distance.
  • the first detection coil 810 and the second detection coil 830 may be disposed to have a difference by a predetermined angle.
  • the second detection The coil 830 when viewed from one direction (eg, the front direction of the first detection coil 810 and the second detection coil 830), the second detection The coil 830 may be disposed to have a difference by an angle ⁇ based on a point O.
  • the null area (e.g. : hatched area) may be offset.
  • a detection area (eg, a non-hatched area) of the second detection coil 830 may be positioned below a part of the null area (eg, hatched area) of the first detection coil 810 .
  • the first detection coil ( 810) As the detection area (eg, non-hatched area) of the second detection coil 830 is located under a part of the null area (eg, hatched area) of the first detection coil 810, the first detection coil ( 810), when the foreign material 2 is disposed on a part of the null area (eg, hatched area), the induced voltage fluctuation is detected through the second detection coil 830, and through this, the first detection coil 810 The existence of the foreign material 2 positioned on a part of the null area (eg, hatched area) can be confirmed. For example, referring to (d) of FIG. 8A or (d) of FIG.
  • the presence of foreign matter 2 is confirmed when only the first detection coil 810 is included in the regions 853 marked with 'dots'.
  • the areas that do not e.g., hatched areas in FIG. 8A (b) or FIG. 8B (b)
  • the area where the second detection coil 830 is included is changed so that the presence of the foreign material 2 can be confirmed.
  • the foreign matter detection FOD is possible (eg, the area other than the hatched area in FIG. 8A(b) or FIG.
  • an area in which FOD can be detected (eg, an area other than the area indicated by reference numeral 851) may be as wide as the area indicated by reference numeral 853.
  • FIG. 9 is a block diagram illustrating components of a wireless power transmitter 200 according to various embodiments.
  • the power adapter eg, the power adapter 221 of FIG. 2
  • the power adapter 221 of the low-cost wireless power transmitter may include a filter capacitor without including a PFC circuit. Since the low-cost wireless power transmitter does not include a PFC circuit, fluctuations in external power (eg, grid power), fluctuations in input voltage of an inverter (eg, power generation circuit 222 in FIG. 2), and/or an inverter (eg, : Depending on the operation of the power generation circuit 222, a magnetic field generated from a transmission coil (eg, the conductive pattern 224 of FIG. 2) may vary.
  • PFC power factor correction
  • a change may occur in an AC voltage input to a filter capacitor (eg, the power adapter 221) from the system power supply.
  • total harmonic distortion TDD
  • TDD total harmonic distortion
  • the magnitude of the current input to the transmission coil may vary. For example, depending on whether the wireless power transmitter is in a mode before transmitting output power (eg, a pre-power mode), a mode in which output power is being transmitted (eg, during-power mode), or an amount of output power being transmitted.
  • the control circuit 212 may adjust the operating frequency (eg, switching frequency) of the inverter (eg, the power generation circuit 222), and the frequency of the current input to the transmission coil (eg, the conductive pattern 224) is may fluctuate. Due to the above factors, as the magnitude and/or frequency of the current (eg, Tx current) input to the transmission coil (eg, the conductive pattern 224) changes, the transmission coil (eg, the conductive pattern 224) The magnitude and/or frequency of the generated magnetic field is varied, and the induced voltage of the detection coil 100 may be varied regardless of the presence or absence of foreign matter (FO).
  • the operating frequency eg, switching frequency
  • the wireless power transmitter 200 may include a detection coil 100 , a sensing circuit 215 and/or a control circuit 212 .
  • the sensing circuit 215 may include a compensation circuit 910 and/or an amplification circuit 930 .
  • the sensing circuit 215 may sense a voltage (eg, an induced voltage) of the detection coil 100 . According to various embodiments, the sensing circuit 215 may output a value based on the sensed voltage (eg, induced voltage) to the control circuit 212 .
  • the compensation circuit 910 may compensate the voltage (eg, the induced voltage) of the detection coil 100 based on the value of the reference point 950 .
  • the reference point 950 is an output terminal of a part of the detection coil 100, an input terminal of an inverter (eg, the power generation circuit 222) (eg, an output terminal of a filter capacitor (eg, the power adapter 221)) , or at least one of the output terminal of the control circuit 212 (or the output terminal of the PWM (pulse width modulation) circuit), or the inverter (eg, the power generation circuit 222) (eg, the input terminal of the detection coil 100).
  • an inverter eg, the power generation circuit 222
  • the inverter eg, the power generation circuit 222
  • the compensation circuit 910 determines the voltage (eg, induced voltage) of the detection coil 100 based on the voltage (eg, induced voltage) sensed at an output terminal of a part of the detection coil 100.
  • the detection coil 100 may include first sub-coils connected in series with each other and second sub-coils connected in series with each other.
  • the first sub-coils are sub-coils located in the first part (eg, the inner part) of the coverage area (eg, the coverage area 501 of FIG. 5 ), and the second sub-coils are located in the coverage area 501 It may be sub-coils located in the second portion (eg, a peripheral portion of the first portion).
  • the compensation circuit 910 receives the voltage (eg, induced voltage) corresponding to the second sub-coils as a value of the second channel, and converts the voltage (eg, induced voltage) corresponding to the first sub-coils to the first sub-coils. It can be input as a channel value.
  • the compensation circuit 910 calculates the value of the first channel (eg, the induced voltage sensed from the first sub-coils) based on the value of the second channel (eg, the induced voltage sensed from the second sub-coils). can compensate
  • the compensation circuit 910 is an input terminal of an inverter (eg, the power generation circuit 222) (eg, an output terminal of a filter capacitor (eg, the power adapter 221), or a control circuit 212).
  • the voltage (eg, induced voltage) of the detection coil 100 may be compensated based on the value sensed by the output terminal).
  • the compensation circuit 910 may receive a voltage (eg, DC link voltage) sensed at an output terminal of a filter capacitor (eg, the power adapter 221) as a value of the second channel.
  • the voltage at the output terminal of the filter capacitor may be sensed by a voltage sensor (eg, a voltage divider circuit), and the compensation circuit 910 converts the output value of the voltage sensor to the second channel. It can be entered as a value.
  • the compensation circuit 910 may receive the voltage sensed by the output terminal of the control circuit 212 as a value of the second channel.
  • the control circuit 212 may include a PWM circuit or control a PWM circuit disposed outside the control circuit 212 .
  • a PWM circuit included in the control circuit 212 or disposed externally may be connected to an inverter (eg, the power generation circuit 222).
  • the control circuit 212 may adjust the operating frequency of the inverter (eg, the power generation circuit 222) by adjusting the duty cycle of the PWM circuit.
  • the compensation circuit 910 may receive the output voltage of the PWM circuit as a value of the second channel.
  • a voltage (eg, an induced voltage) corresponding to at least a part of the detection coil 100 may be input as a value of the first channel.
  • the compensation circuit 910 may compensate the value of the first channel (eg, the induced voltage) based on the value of the second channel (eg, the DC link voltage or the output voltage of the PWM circuit).
  • the compensation circuit 910 based on the value sensed at the output terminal (eg, the input terminal of the detection coil 100) of the inverter (eg, the power generation circuit 222), the detection coil 100
  • the voltage of (eg, induced voltage) can be compensated.
  • the compensation circuit 910 may receive a current (eg, Tx current) (or Tx voltage) sensed at an input terminal of the detection coil 100 as a value of the second channel.
  • the current (eg, Tx current) sensed at the input terminal of the detection coil 100 may be sensed by a current sensor (eg, a sensing resistor and/or a hall sensor), and the compensation circuit 910 can receive the output value of the current sensor as the value of the second channel.
  • the compensation circuit 910 may receive a voltage (eg, an induced voltage) corresponding to at least a part of the detection coil 100 as a value of the first channel.
  • the compensation circuit 910 may compensate the value of the first channel (eg, the induced voltage) based on the value of the second channel (eg, the Tx current) (or the Tx voltage).
  • the compensation circuit 910 normalizes the voltage (eg, the induced voltage) of the detection coil 100 based on the value of the reference point 950 described above, so that the detection coil 100 ) can compensate for the voltage (eg, induced voltage), which will be described in more detail through drawings to be described later.
  • the compensation circuit 910 may compensate the voltage (eg, the induced voltage) of the detection coil 100 based on the correction value input from the control circuit 212 .
  • the control circuit 212 determines the existence of a wireless power receiver (eg, the wireless power receiver 250 of FIG. 2 ), the arrangement of the wireless power receiver 250, and/or the operation mode of the wireless power transmitter 200. Based on , a pre-specified correction value (eg, an offset value) may be input to the compensation circuit 910 .
  • the control circuit 212 measures the impedance of the transmission coil (eg, the conductive pattern 224) to determine whether the wireless power receiver 250 is present on the wireless power transmitter 200 (eg, on the charging pad).
  • the control circuit 212 based on the impedance of the transmission coil (eg, the conductive pattern 224) and the received power information (eg, the amount of received power) of the wireless power receiver 250, transmits the coil (eg, the conductive pattern 224). )), checks the arrangement of the wireless power receiver 250, and provides a different correction value according to the alignment (eg, alignment or misalignment) of the wireless power receiver 250. Compensation circuit (910).
  • the control circuit 212 varies depending on whether the wireless power transmitter 200 is in a mode before transmitting output power (eg, a pre-power mode) or a mode in which output power is being transmitted (eg, during-power mode).
  • a correction value may be input to the compensation circuit 910 .
  • the compensation circuit 910 may correct (eg, apply an offset) the voltage (eg, induced voltage) of the detection coil 100 based on the correction value input from the control circuit 212 .
  • the compensation circuit 910 may apply (eg, subtract) an offset from the voltage (eg, the induced voltage) of the detection coil 100 by a voltage corresponding to an input correction value.
  • the voltage to which the offset is applied may be different according to a correction value input from the control circuit 212 and may be set in advance.
  • the amplifier circuit 930 may amplify a voltage (eg, a compensated voltage) output from the compensation circuit 910 .
  • the amplifier circuit 930 may include at least one operational amplifier (OP-amp).
  • the amplifier circuit 930 may amplify the output voltage of the compensation circuit 910 to an integer multiple (eg, 5 times) voltage.
  • control circuit 212 may be implemented as a microprocessor or a micro controlling unit (MCU), but is not limited thereto. According to various embodiments, the control circuit 212 may be implemented to include analog elements. According to various embodiments, the control circuit 212 generates a conductive pattern (eg, the conductive pattern 224 of FIG. 2 ) based on a value output from the sensing circuit 215 (eg, the amplifier circuit 930). It is possible to determine whether to transmit wireless power through, and/or control to output a notification through an output device. According to various embodiments, the control circuit 212 performs a predetermined correction based on the existence of the wireless power receiver 250, the arrangement of the wireless power receiver 250, and/or the operation mode of the wireless power transmitter 200. A value (eg, an offset value) may be input to the compensation circuit 910 .
  • a value eg, an offset value
  • 10A shows an example of a method of configuring channels for induced voltage compensation, according to various embodiments.
  • 10B shows an example of a sensing circuit 215 for induced voltage compensation, in accordance with various embodiments.
  • a pattern of sub coils disposed in a coverage area (eg, the coverage area 501 of FIG. 5 ) according to various embodiments is shown.
  • a part of the detection coil 100 may be set as the second channel.
  • sub-coils located in the inner portion of the coverage area 501 are the first channel (eg, CH#1).
  • sub-coils located in the outer part may be set as the second channel (eg, CH#2).
  • sub coils set to the same channel may be connected to each other (eg, series connection).
  • a filter capacitor eg, power adapter 221), a control circuit 212 (or PWM circuit), or an inverter (eg, power generation circuit 222) may be used in a second channel (eg, CH #2) can also be set.
  • a second channel eg, CH #2
  • all or some of the sub-coils constituting the detection coil 100 may be set as the first channel (eg, CH#1).
  • a part of the detection coil 100, a filter capacitor (eg, the power adapter 221), a control circuit 212 (or a PWM circuit), or an inverter (eg, the power generation circuit 222) Two or more may be set as second channels.
  • FIG. 10B a circuit diagram of a sensing circuit 215 is shown, in accordance with various embodiments.
  • the sensing circuit 215 includes a first compensation circuit 911 (eg, the compensation circuit 910 of FIG. 9 ) and a second compensation circuit 913 (eg, the compensation circuit of FIG. 9 ( 910)) and/or an amplifier circuit 930.
  • a first compensation circuit 911 eg, the compensation circuit 910 of FIG. 9
  • a second compensation circuit 913 eg, the compensation circuit of FIG. 9 ( 910)
  • an amplifier circuit 930 eg., an embodiment in which a part of the detection coil 100 is set as the second channel (eg, CH#2) will be described.
  • the first compensation circuit 911 receives the voltage (eg, the induced voltage (V 1 ) of the first channel (eg, CH# 1 of FIG. 10A )) of the detection coil 100 as input. , Based on the value of the reference point (eg, the induced voltage (V 2 ) of the second channel (eg, CH#2 in FIG. 10A)), the received voltage (eg, the induced voltage (V 1 ) of the first channel) can compensate for
  • the first compensation circuit 911 may include RC circuits 911a and 911d (eg, a lowpass filter (LPF)), multipliers 911b and 911e, and a peak detector (peak detectors) 911c and 911f and a normalization circuit 911g.
  • the peak detector 911f may include a voltage divider including at least one resistor R 10 and R 11 .
  • the first compensation circuit 911 may further include a dummy load 911h, and the dummy load 911h may be implemented as a voltage divider including at least one resistor.
  • resistors (R 1 , R 9 , R 18 ) have 1 k ⁇
  • resistors (R 5 , R 21 ) have 200 k ⁇
  • resistor (R 26 ) have 510 k ⁇
  • other resistors have 100 k ⁇ .
  • the capacitors C 1 , C 4 , and C 7 may have 1nF
  • the capacitors C 2 and C 5 may have 10nF
  • the capacitors C 3 , C 6 and C 8 may have 100nF.
  • Diodes D 1 to D 9 may be implemented as Schottky diodes.
  • the filtered voltage V 11 when the first voltage (eg, the induced voltage V 1 ) of the first channel CH# 1 is applied to the RC filter 911a, the filtered voltage V 11 may be output.
  • the output voltage V 12 of the peak detector 911c may be input to the normalization circuit 911g.
  • the output voltage (V 12 ) may have a magnitude of 2V 11 when elements in the circuit diagram have element values according to the above-described example.
  • a voltage V d when V cc is applied to the dummy load 911h, a voltage V d may be output and input to the normalization circuit 911g.
  • the voltage V d may be 1V
  • V cc of a magnitude such that a voltage of 1V is input to the normalization circuit 911g may be applied to the dummy load 911h.
  • the second voltage eg, induced voltage (V 2 )
  • the RC circuit (911d) eg, RC filter
  • the output voltage V 22 of the peak detector 911f may be input to the normalization circuit 911g.
  • the output voltage (V 22 ) may be calculated by Equation 7.
  • 'a' may have a value of 2 when the elements of the circuit diagram have element values according to the above-described example.
  • voltages may be input to the normalization circuit 911g.
  • the output voltage V 3 of the normalization circuit 911g may be input to the second compensation circuit 913 .
  • the output voltage (V 3 ) may be calculated by Equation 8.
  • a transmission coil (eg, FIG. 2 ) may have a value independent of (eg, unaffected by changes in the Tx current) the variation of the current (eg, Tx current) input to the conductive pattern 224 of .
  • the output voltage (V 3 ) may be a variation of an external power source (eg, grid power), a variation of an input voltage of an inverter (eg, the power generation circuit 222 of FIG. 2 ), and/or an inverter (eg, power generation circuit 222). It may have a value that is not affected by the operation of the generating circuit 222.
  • the second compensation circuit 913 may obtain a voltage value (eg, an induced voltage V 1 ) of the first channel CH# 1 from the first compensation circuit 911 and a second channel ( CH#2) receives a voltage value (eg, V 3 ) to the ratio of the voltage value (eg, induced voltage (V 2 )), and receives the correction value (eg, V EE ) input from the control circuit 212. Based on this, it is possible to compensate for the voltage value (eg, V 3 ) for the input ratio.
  • a voltage value eg, an induced voltage V 1
  • V 2 induced voltage
  • the second compensation circuit 913 may include a negative offset circuit 913a and a negative voltage selector 913b.
  • the negative voltage selector 913b converts the voltage (-V neg ) corresponding to the correction value (V EE ) input from the control circuit (eg, the control circuit 212 of FIG. 2) to a negative offset. It can be input to the circuit 913a.
  • the control circuit 212 may include a PWM circuit or may control a PWM circuit disposed outside the control circuit 212 .
  • the negative voltage selector 913b may include an RC filter and an OP-amp.
  • a PWM circuit included in the control circuit 212 or disposed externally may be connected to the negative voltage selector 913b through at least one input/output terminal (eg, general-purpose input/output, GPIO).
  • the control circuit 212 may input a PWM output (eg, an output having a duty cycle of 50%) to the negative voltage selector 913b using a PWM circuit.
  • the RC filter of the negative voltage selector 913b outputs a voltage (eg, DC voltage) having a magnitude corresponding to the PWM output, and the output voltage (eg, DC voltage) is an OP-amp of the negative voltage selector 913b. Inverted by , it can be input to the negative offset circuit 913a.
  • a negative voltage (-V neg ) included in the range of 0V to 3.3V may be input to the negative offset circuit 913a from the negative voltage selector 913b.
  • the second compensation circuit 913 applies an offset to the input output voltage (V 3 ) based on the negative voltage (-V neg ), and applies the offset-applied voltage (V 4 ).
  • V 4 the voltage V 4 to which the offset is applied may be calculated by Equation 9.
  • the amplification circuit 930 may include a voltage value (eg, an induced voltage (eg) of the first channel CH#1 output from the compensation circuit 910 (eg, the second compensation circuit 913) By amplifying a value (eg, V 4 ) based on the ratio of the voltage value (eg, induced voltage (V 2 )) of the second channel (V 1 )) and the voltage value (eg, induced voltage (V 2 )) of the second channel (CH#2), the amplified voltage value (eg, V ADC ) to the control circuit 212 (eg, the ADC of the control circuit 212).
  • a voltage value eg, an induced voltage (eg) of the first channel CH#1 output from the compensation circuit 910 (eg, the second compensation circuit 913)
  • the amplifier circuit 930 may include at least one OP-amp (eg, A 8 ), and if the gain of the OP-amp (eg, A 8 ) is G A , amplification
  • the output voltage (V ADC ) of the circuit 930 may be calculated by Equation 10. Equation 10 is calculated on the premise that R 25 and R 26 have the same device value.
  • V ADC of Equation 10 may have a preset voltage value based on element values of elements of the circuit diagram and a negative voltage (V neg ).
  • the first channel CH#1 A change ( ⁇ V 1 ) occurs in a voltage (eg, induced voltage (V 1 )) of and an output value of the sensing circuit 215 (eg, the amplifier circuit 930) may be calculated by Equation 11.
  • the control circuit 212 includes a preset voltage value (eg, V ADC in Equation 10) (in other words, a threshold value) and the sensing circuit 215 ( Example: Based on the difference between the output values (eg, V' ADC of Equation 11) of the amplifying circuit 930, the presence or absence of the foreign material 2 may be confirmed. For example, the control circuit 212 monitors the output value of the sensing circuit 215 (eg, the amplification circuit 930), so that a value other than a preset value (eg, V ADC ) is detected by the sensing circuit 215.
  • a preset voltage value eg, V ADC in Equation 10
  • the control circuit 212 does not initiate an operation of wirelessly transmitting power to the wireless power receiver 250 and/or supplies power to the wireless power receiver 250 wirelessly.
  • the sending operation can be stopped.
  • the control circuit 212 outputs a notification (eg, a warning sound) through an output device (eg, a speaker) of the wireless power transmitter 200, and/or the wireless power receiver 250 outputs a notification (eg, a speaker) through an output device (eg, a speaker).
  • the control circuit 212 may set a preset value (eg, V ADC ) and a value within an error range (eg, a difference of less than a specified magnitude (eg, 200mV)) to a preset value (eg, V ADC ).
  • the control circuit 212 starts an operation of wirelessly transmitting power to the wireless power receiver 250 and/or wirelessly supplies power to the wireless power receiver 250 when the presence of the foreign material 2 is not confirmed. The transmission operation can be continued.
  • the value (eg, second voltage) of the second channel (CH#2) input to the RC circuit 911d is an input terminal (eg, filter) of an inverter (eg, power generation circuit 222). It may be replaced with a value (eg, a DC link voltage or an output voltage of a PWM circuit) sensed by a capacitor (eg, an output terminal of the power adapter 221 or an output terminal of the control circuit 212).
  • the RC circuit 911d may be replaced with a highpass filter.
  • the value (eg, second voltage) of the second channel (CH#2) input to the RC circuit 911d is an output terminal (eg, detection It may be replaced with a value (eg, Tx current or Tx voltage) sensed at the input terminal of the coil 100).
  • the value of the second channel (CH#2) may be set to a plurality. For example, by including a plurality of elements (eg, 911d, 911e, 911f, 911g, A2, and A3) corresponding to each second channel, the value of each second channel (eg, corresponding to each second channel) As the value of the input terminal of the RC circuit), any one of the voltage value of the output terminal of the filter capacitor (eg, the power adapter 221), the voltage value of the output terminal of the control circuit 212, or the current value of the input terminal of the detection coil 100 can be entered.
  • elements eg, 911d, 911e, 911f, 911g, A2, and A3
  • the detection coil may have a stacked structure of a plurality of detection coils (eg, the detection coil 100 of FIG. 1B), and the plurality of detection coils may have sub-coils of different sizes (eg, the sub-coils of FIG. 3A). Coil 300) may be included.
  • 11(a) and 11(b) may be sub-coils included in each of the plurality of detection coils.
  • a sub coil (eg, the sub coil 300 of FIG. 3A ) has a horizontal length (eg, a length in the x-axis direction) of a, and a vertical length (or , height) (eg, the length in the y-axis direction) is h (eg, the first part 301 of FIG. 303)).
  • a sub coil (eg, the sub coil 300 of FIG. 3A ) has a horizontal length (eg, a length in the x-axis direction) of a' and a vertical length ( Alternatively, the first part of an equilateral triangle (eg, the first part 301 of FIG. 3A) and the second part of an inverted triangle (eg, the second part of FIG. 3A) of which the height) (eg, the length in the y-axis direction) is h' portion 303).
  • the horizontal length a' of the sub coil shown in FIG. 11(b) is longer than the horizontal length a of the sub coil shown in FIG. 11(a), and the sub coil shown in FIG.
  • the vertical length h' may be longer than the vertical length h of the sub coil shown in FIG. 11(a).
  • 11(a) and 11(b) show that the sub-coil has a triangular shape according to an embodiment, but is not limited thereto and may have a polygonal or circular shape.
  • FIG. 12(a) is a detection coil (eg, the detection coil 100 of FIG. 1B) including the sub-coil (eg, the sub-coil 300 of FIG. 3A) shown in FIG. 11(a).
  • 12(b) may be a detection coil (eg, the detection coil 100 of FIG. 1B) including the sub-coil (eg, the sub-coil 300 of FIG. 3A) shown in FIG. 11(b).
  • a detection coil 1210 (eg, the detection coil 100 of FIG. 1B) has a horizontal length (eg, a length in the x-axis direction) of A, and a vertical length of A.
  • the length (or height) (eg, length in the y-axis direction) may be B.
  • the detection coil 1210 has a horizontal length (eg, the length in the x-axis direction) shown in FIG. 11 (a) and a vertical length (or height) (eg, the length in the y-axis direction).
  • a sub-coil including a first part of an equilateral triangle (eg, the first part 301 of FIG. 3A) and a second part of an inverted triangle (eg, the second part 303 of FIG. 3A) (eg, The sub coil 300 of FIG. 3A) may be included.
  • the detection coil 1220 (eg, the detection coil 100 of FIG. 1B) has a horizontal length (eg, a length in the x-axis direction) of A, and a vertical length of A.
  • the length (or height) (eg, length in the y-axis direction) may be B.
  • the detection coil 1220 has a horizontal length (eg, the length in the x-axis direction) shown in FIG.
  • a sub coil including a first part of an equilateral triangle (eg, the first part 301 of FIG. 3A) and a second part of an inverted triangle (eg, the second part 303 of FIG. 3A) of which length) is h' Example: The sub coil 300 of FIG. 3A) may be included.
  • the number of included sub-coils may be different.
  • the horizontal and vertical lengths of the sub-coils included in the detection coil 1210 shown in FIG. 12(a) are the horizontal lengths of the sub-coils included in the detection coil 1220 shown in FIG. 12(b). and the vertical length, the number of sub coils included in the detection coil 1210 shown in FIG. 12 (a) may be greater than the number of sub coils included in the detection coil 1220 shown in FIG. 12 (b). have.
  • FIG. 13 illustrates an example of a stacked structure of detection coils, according to various embodiments.
  • FIG. 13 shows the detection coil 1210 shown in FIG. 12(a) (hereinafter, the first detection coil 1210) and the detection coil 1220 shown in FIG. 12(b) (hereinafter, the second detection coil 1210).
  • a structure in which the detection coils 1220 are vertically stacked without parallel movement or rotation may be shown.
  • the number of null lines 1310 of the first detection coil 1210 and the number of null lines 1320 of the second detection coil 1220 are are different and may not overlap with each other.
  • the null line is formed by canceling the induced voltage generated in each part as the sub-coil includes parts wound in different directions (eg, parts 301 and 303 of FIG. 3A). It may be a line connecting center points of a null region where induced voltage fluctuations may not be detected.
  • the unnecessary detection coil area is reduced and the induced voltage difference between the two detection coils is reduced to prevent circuit saturation. can do.
  • the first detection coil 1210 and the second detection coil 1220 including unit coils of different sizes are stacked, a null line of each detection coil Therefore, it is possible to remove a null region in which an induced voltage fluctuation may not be detected.
  • the signal-to-noise ratio (SNR) of the induced voltage fluctuation may be increased through signal amplification according to the removal of the null region, and complexity of a post-processing circuit may be reduced.
  • FIG. 14 is a diagram for explaining arrangement of detection coils according to various embodiments.
  • FIG. 14 is a diagram for explaining a detection coil disposed in a symmetrical conductive pattern (eg, a circular coil).
  • FIG. 14(a) shows the arrangement of detection coils in the x-y plane
  • FIG. 14(b) shows a cross section taken along line DD′ of FIG. 14(a).
  • a detection coil 1410 (eg, the detection coil 100 of FIG. 1B) includes a first detection coil 1420 including sub-coils having different sizes, and A second detection coil 1430 may be included, and the first detection coil 1420 and the second detection coil 1430 may be vertically stacked without parallel movement or rotation.
  • the detection coil 1410 may be disposed to cover the conductive pattern 224 .
  • the detection coil 1410 may be disposed to exceed the area of the conductive pattern 224 based on the x-y plane.
  • the detection coil 1410 may have the same horizontal length and vertical length.
  • each of the first detection coil 1420 and the second detection coil 1430 included in the detection coil 1410 may be disposed symmetrically with respect to the center of the conductive pattern 224 .
  • the ferrite 1440, the conductive pattern 224, and the detection coil 1410 may be arranged in this order.
  • a shielding structure 1450 may be further included, and the shielding structure 1450 may be disposed on one side of the ferrite 1440 .
  • the shielding structure 1450 may be disposed on a surface opposite to one surface of the ferrite 1440 on which the conductive pattern 224 is disposed.
  • each detection coil is symmetrical with respect to the center of the conductive pattern, it is possible to be less affected by the characteristics and arrangement environment of the power transmitter or receiver.
  • FIG. 15 is a diagram for explaining arrangement of detection coils according to various embodiments.
  • FIG. 15 is a diagram for explaining a detection coil disposed in an asymmetrical conductive pattern (eg, a DD coil).
  • FIG. 15 (a) shows the arrangement of detection coils in the x-y plane
  • FIG. 15 (b) shows a cross section taken along line E-E' in FIG. 15 (a)
  • FIG. 15 (c ) shows a cross section of F-F' in FIG. 15 (a).
  • a detection coil 1510 (eg, the detection coil 100 of FIG. 1B) includes a first detection coil 1520 including sub-coils having different sizes and A second detection coil 1530 may be included, and the first detection coil 1520 and the second detection coil 1530 may be vertically stacked without parallel movement or rotation.
  • the detection coil 1510 may be disposed to cover the conductive pattern 224 .
  • the detection coil 1510 may be disposed to exceed an area of the conductive pattern 224 based on an x-y plane.
  • the detection coil 1510 may have different horizontal and vertical lengths.
  • each of the first detection coil 1520 and the second detection coil 1530 included in the detection coil 1510 may be disposed symmetrically with respect to the center of the conductive pattern 224 .
  • the conductive pattern 224 and the detection coil 1510 may be arranged sequentially.
  • each detection coil is symmetrical with respect to the center of the conductive pattern, it is possible to be less affected by the characteristics and arrangement environment of the power transmitter or receiver.
  • the detection coil includes a first part and a second part having one end connected to one end of the first part and wound in a direction opposite to the direction in which the first part is wound, A first sub-coil disposed on at least one surface of 1 PCB; and a third portion, and a fourth portion having one end connected to one end of the third portion and wound in a direction opposite to the winding direction of the third portion, disposed on at least one surface of the second PCB different from the first PCB.
  • the first part and the second part have polygonal shapes symmetrical to each other, and the third part and the fourth part have each other when viewed from one direction.
  • the second part is disposed below the first part when viewed from another direction
  • the fourth part is disposed below the third part when viewed from the other direction,
  • the first sub-coil and the second sub-coil may be disposed so that portions overlap each other.
  • the first portion is disposed on the upper side of the first PCB
  • the second portion is disposed on the lower side of the first PCB
  • the third portion is disposed on the upper side of the second PCB
  • the fourth part may be disposed on the lower side of the second PCB.
  • the first sub-coil when viewed from one direction, includes a first region in which a first part and a second part overlap, and the second sub-coil, when viewed from one direction,
  • the third part and the fourth part include a second region overlapping each other, and the first sub-coil and the second sub-coil are such that the first region and the second region do not partially overlap each other when viewed from one direction. can be placed.
  • the second sub-coil may be disposed to differ from the first sub-coil by a predetermined angle when viewed from one direction.
  • the second sub-coil when viewed from one direction, may be disposed to have a difference from the first sub-coil by a predetermined distance in a direction perpendicular or horizontal to one direction. have.
  • the first part may have one of a triangular shape or an inverted triangle shape
  • the second part may have the other one of a triangular shape and an inverted triangle shape
  • the first sub-coil is disposed so that the center of the first part and the center of the second part correspond to each other when viewed from one direction, and the second sub-coil,
  • the center of the third portion and the center of the fourth portion may be disposed to correspond to each other.
  • the detection coil may further include a third sub coil disposed on at least one surface of the first PCB and at least partially overlapping the first sub coil, wherein the third sub coil extends in one direction.
  • the fifth portion wound in the same direction as the first portion overlaps the first portion
  • the sixth portion wound in the same direction as the second portion overlaps the second portion.
  • the third sub-coil may be disposed such that the fifth portion does not overlap the second portion and the sixth portion does not overlap the first portion when viewed from one direction.
  • the fifth portion is disposed on a side different from the first portion among the first PCB, and the sixth portion is disposed on a different side from the second portion among the first PCB.
  • the third sub-coil may be connected to the first sub-coil by having the fifth part connected to the other end of the first part or the sixth part connected to the other end of the second part.
  • a detection coil when viewed from one direction, a first portion having a first polygonal shape and wound in a first winding direction, and one end connected to one end of the first portion, When viewed from, a second portion having a second polygonal shape different from the first polygonal shape and wound in a second winding direction opposite to the first winding direction, the second part, when viewed from another direction , Disposed below the first part, the second polygonal shape, when viewed from one direction, has the same size as the first polygonal shape and may be symmetrical with respect to the first polygonal shape based on one axis.
  • the first polygon shape may be any one of a triangle or an inverted triangle
  • the second polygon shape may be another one of a triangle or an inverted triangle
  • the center of the first portion and the center of the second portion may correspond to each other.
  • the first part and the second part may be disposed such that at least a part does not overlap when viewed from one direction.
  • the detection coil further includes a sub-coil connected to the other end of the second part, and when viewed from one direction, the third part wound in the same direction as the first part is the sub-coil.
  • a fourth portion overlapping the first portion and wound in the same direction as the second portion may be disposed to overlap the second portion.
  • a detection coil in a wireless power transmitter, a detection coil; a transmission coil for supplying wireless power to at least one wireless power receiver; and a control circuit, wherein the detection coil includes a plurality of sub-coils, each of the plurality of sub-coils having a first polygonal shape and being wound in a first winding direction when viewed from one direction.
  • the circuit may include a first voltage value of a first channel corresponding to first sub-coils connected to each other among a plurality of sub-coils and a second channel corresponding to second sub-coils connected to each other. It may be set to obtain a value based on the second voltage value of , and to confirm the presence of a foreign substance based on the obtained value.
  • the wireless power transmitter further includes a sensing circuit, and the sensing circuit obtains a first voltage value and a second voltage value, and a value based on a ratio of the first voltage value and the second voltage value. can be set to provide to the control circuit.
  • control circuitry may be configured to identify the presence of a foreign object based on a difference between a threshold value and a value based on a provided ratio.
  • control circuit determines a correction value based on at least one of existence of at least one wireless power receiver, arrangement of the at least one wireless power receiver, or operation mode of the wireless power transmitter, and the determined correction value. Based on the value, it may be further configured to control the sensing circuit to apply an offset to the ratio.
  • the horizontal length and the vertical length of the first part and the second part included in the first sub-coil are the same, and the third part and the fourth part included in the second sub-coil are identical.
  • the horizontal and vertical lengths of the portions may be the same, and the horizontal and vertical lengths of the first portion and the third portion may be different from each other.
  • the second sub-coil may be disposed so that there is no difference in angle with respect to the first sub-coil when viewed from the one direction.
  • the second sub-coil may be disposed such that there is no difference in distance from the first sub-coil in a direction perpendicular to and horizontal to the one direction when viewed from the one direction. .
  • first, second, or first or secondary may simply be used to distinguish a given component from other corresponding components, and may be used to refer to a given component in another aspect (eg, importance or order) is not limited.
  • a (e.g., first) component is said to be “coupled” or “connected” to another (e.g., second) component, with or without the terms “functionally” or “communicatively.”
  • the certain component may be connected to the other component directly (eg by wire), wirelessly, or through a third component.
  • module used in various embodiments of this document may include a unit implemented in hardware, software, or firmware, and is interchangeable with terms such as, for example, logic, logical blocks, parts, or circuits.
  • a module may be an integrally constructed component or a minimal unit of components or a portion thereof that performs one or more functions.
  • the module may be implemented in the form of an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • a storage medium eg, internal memory 136 or external memory 138
  • a machine eg, electronic device 101
  • a processor eg, processor 120
  • a device eg, electronic device 101
  • the one or more instructions may include code generated by a compiler or code executable by an interpreter.
  • the device-readable storage medium may be provided in the form of a non-transitory storage medium.
  • the storage medium is a tangible device and does not contain a signal (e.g. electromagnetic wave), and this term refers to the case where data is stored semi-permanently in the storage medium. It does not discriminate when it is temporarily stored.
  • a signal e.g. electromagnetic wave
  • the method according to various embodiments disclosed in this document may be provided by being included in a computer program product.
  • Computer program products may be traded between sellers and buyers as commodities.
  • a computer program product is distributed in the form of a device-readable storage medium (eg compact disc read only memory (CD-ROM)), or through an application store (eg Play Store TM ) or on two user devices ( It can be distributed (eg downloaded or uploaded) online, directly between smart phones.
  • a device-readable storage medium eg compact disc read only memory (CD-ROM)
  • an application store eg Play Store TM
  • It can be distributed (eg downloaded or uploaded) online, directly between smart phones.
  • at least part of the computer program product may be temporarily stored or temporarily created in a device-readable storage medium such as a manufacturer's server, an application store server, or a relay server's memory.
  • each component (eg, module or program) of the above-described components may include a single object or a plurality of entities, and some of the plurality of entities may be separately disposed in other components. have.
  • one or more components or operations among the aforementioned corresponding components may be omitted, or one or more other components or operations may be added.
  • a plurality of components eg modules or programs
  • the integrated component may perform one or more functions of each of the plurality of components identically or similarly to those performed by a corresponding component of the plurality of components prior to the integration. .
  • the actions performed by a module, program, or other component are executed sequentially, in parallel, iteratively, or heuristically, or one or more of the actions are executed in a different order, or omitted. or one or more other actions may be added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

검출 코일은, 제1 PCB 상에 배치되는 제1 서브 코일을 포함하고, 제1 서브 코일은 제1 부분, 및 제1 부분의 아래에 배치되며, 일단이 제1 부분의 일단과 연결되고 제1 부분이 권취된 방향과 반대 방향으로 권취된 제2 부분을 포함한다. 검출 코일은 제2 PCB 상에 배치되며, 제3 부분, 및 제3 부분의 아래에 배치되는 제4 부분을 포함한다. 제4 부분은 일단이 제3 부분의 일단과 연결되고 제3 부분이 권취된 방향과 반대 방향으로 권취된 제4 부분을 포함한다. 제1 부분 및 제2 부분은, 서로 대칭된 다각형 형상을 가진다. 제3 부분 및 제4 부분은, 서로 대칭된 다각형 형상을 가진다. 제1 서브 코일 및 제2 서브 코일은, 일부가 서로 중첩되도록 배치된다.

Description

이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기
본 개시의 다양한 실시예들은, 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기에 관한 것이다.
최근 무선 충전 기술이 발전하면서, 하나의 충전 장치에 다양한 전자 장치에 대해서 전력을 공급하여 충전하는 방법이 연구되고 있다.
이러한 무선 충전 기술은 무선 전력 송수신을 이용한 것으로서, 예를 들어, 전자 장치를 별도의 충전 커넥터로 연결하지 않고, 단지 충전 패드에 올려놓기만 하면 자동으로 배터리가 충전이 될 수 있는 시스템이다.
이러한 무선 충전 기술에는 크게 코일을 이용한 전자기 유도방식과, 공진(resonance)을 이용하는 공진 방식과, 전기적 에너지를 마이크로파로 변환시켜 전달하는 전파 방사(RF/Micro Wave Radiation) 방식이 있다.
무선 충전에 의한 전력 전송 방법은 송신단의 제1 코일과 수신단의 제2 코일 간의 전력을 전송하는 방식이다. 송신단에서 자기장을 발생시키고 수신단에서 자기장의 변화에 따라 전류가 유도 또는 공진 되어 에너지를 만들어 낸다.
최근 스마트 폰과 같은 전자 장치를 중심으로 전자기 유도 방식 또는 자기 공명 방식을 이용한 무선 충전 기술이 보급되고 있다. 전력 송신기(power transmitting unit, PTU)(예: 무선 충전 패드)와 전력 수신 장치(power receiving unit, PRU)(예: 스마트 폰)가 접촉하거나 일정 거리 이내로 접근하면, 전력 송신기의 전송 코일과 전력 수신 장치의 수신 코일 사이의 전자기 유도 또는 전자기 공진에 의해 전력 수신 장치의 배터리가 충전될 수 있다.
한편, 무선 충전 시, 무선 전력 송신기와 무선 전력 수신기 사이에 이물질(foreign object, FO)(예: 금속 물질(metal object, MO))이 존재하면, 무선 전력 송신기와 무선 전력 수신기 사이에 발생된 자기장으로 인하여 이물질의 온도가 상승하고, 무선 전력 송신기 및/또는 무선 전력 수신기에 화재 위험이 발생할 수 있다. 무선 전력 송신기는, 상술한 이물질(FO)을 검출하기 위한 코일 (이하, 검출 코일)을 포함할 수 있다. 무선 전력 송신기는, 이러한 검출 코일을 이용하여, 무선 충전 전 및/또는 무선 충전 동안, 이물질의 존재 여부를 검출하여, 무선 전력의 송신을 개시하지 않거나 및/또는 무선 전력의 송신을 중단함으로써, 무선 전력 시스템에서의 화재 위험을 방지할 수 있다.
상술한 이물질 검출(foreign object detection, FOD)을 위한 검출 코일은, 외부로 자기장(예: Tx 필드(field))을 생성하는 도전성 패턴(예: 코일)의 주변에(예: 상측에(above)) 배치될 수 있으며, 생성된 자기장으로 인하여, 검출 코일에는 유기 전압(또는, 유도 기전력)이 발생할 수 있다. 무선 전력 송신기는, 검출 코일에 발생하는 유기 전압이 변동하는지 여부를 확인하여, 이물질의 존재 여부를 검출할 수 있다.
하지만, 자기장(예: Tx 필드)이 불균형하게 생성될 수 있다. 예를 들어, 무선 전력 송신기에 있어서, 계통 전원(system power source)의 변동 등 요인으로 인하여, 도전성 패턴(예: 코일)에 인가되는 전류에 변동이 발생할 수 있다. 이로 인하여, 자기장이 불균형하게 생성되고, 이물질의 존재 여부와 무관하게 유기 전압의 변동이 발생하고 이물질 검출의 정확도가 낮아질 수 있다.
다양한 실시예들에 따르면, 서로 대칭된 부분(예: 도전체)들을 포함하여, 불균형한 자기장으로 인한 유기 전압 변동을 상쇄하는 검출 코일 및 이를 포함하는 무선 전력 송신기가 제공될 수 있다.
다양한 실시예들에 따르면, 서로 대칭된 부분(예: 도전체)들을 포함하는 코일들의 적층 구조를 가지는 검출 코일 및 이를 포함하는 무선 전력 송신기가 제공될 수 있다.
다양한 실시예들에 따르면, 계통 전원의 변동 등 이물질 존재 외 요인으로 인한 유기 전압 변동을 보상하는 회로를 포함하는 무선 전력 송신기가 제공될 수 있다.
다양한 실시예들에 따르면, 검출 코일은, 제1 부분(part), 및 일단이 제1 부분의 일단과 연결되고 제1 부분이 권취된 방향과 반대 방향으로 권취된 제2 부분을 포함하며, 제1 PCB의 적어도 일면 상에 배치되는 제1 서브 코일; 및 제3 부분, 및 일단이 제3 부분의 일단과 연결되고 제3 부분이 권취된 방향과 반대 방향으로 권취된 제4 부분을 포함하며, 제1 PCB와 상이한 제2 PCB의 적어도 일면 상에 배치되는 제2 서브 코일을 포함하고, 제1 부분 및 제2 부분은, 일 방향에서 바라보았을 때, 서로 대칭된 다각형 형상을 가지고, 제3 부분 및 제4 부분은, 일 방향에서 바라보았을 때, 서로 대칭된 다각형 형상을 가지고, 제2 부분은, 타 방향에서 바라보았을 때, 제1 부분에 대하여 아래에 배치되고, 제4 부분은, 타 방향에서 바라보았을 때, 제3 부분에 대하여 아래에 배치되고, 제1 서브 코일 및 제2 서브 코일은, 일 방향에서 바라보았을 때, 일부가 서로 중첩되도록 배치될 수 있다.
다양한 실시예들에 따르면, 검출 코일은, 일 방향에서 바라보았을 때, 제1 다각형 형상을 가지고 제1 권취 방향으로 권취된 제1 부분, 및 일단이 제1 부분의 일단에 연결되고, 일 방향에서 바라보았을 때, 제1 다각형 형상과 상이한 제2 다각형 형상을 가지고 제1 권취 방향에 대하여 반대인 제2 권취 방향으로 권취된 제2 부분을 포함하고, 제2 부분은, 타 방향에서 바라보았을 때, 제1 부분의 아래에 배치되고, 제2 다각형 형상은, 일 방향에서 바라보았을 때, 제1 다각형 형상과 동일한 크기를 가지고, 일 축을 기준으로, 제1 다각형 형상에 대하여 대칭될 수 있다.
다양한 실시예들에 따르면, 무선 전력 송신기는, 검출 코일; 적어도 하나의 무선 전력 수신기로 무선 전력을 공급하기 위한 전송 코일; 및 제어 회로를 포함하고, 검출 코일은, 복수의 서브 코일들을 포함하고, 복수의 서브 코일들의 각각은, 일 방향에서 바라보았을 때, 제1 다각형 형상을 가지고 제1 권취 방향으로 권취된 제1 부분, 및 일단이 제1 부분의 일단에 연결되고, 제1 다각형 형상과 상이한 제2 다각형 형상을 가지고 제1 권취 방향에 대하여 반대인 제2 권취 방향으로 권취되고 타 방향에서 바라보았을 때, 제1 부분의 아래에 배치된 제2 부분을 포함하고, 일 방향에서 바라보았을 때, 제2 다각형 형상은, 제1 다각형 형상과 동일한 크기를 가지고, 일 축을 기준으로, 제1 다각형 형상에 대하여 대칭되고, 제어 회로는, 무선 전력이 외부로 전송되는 동안, 복수의 서브 코일들 중 서로 연결된 제1 서브 코일들에 대응하는 제1 채널의 제1 전압 값 및 서로 연결된 제2 서브 코일들에 대응하는 제2 채널의 제2 전압 값에 기반한 값을 획득하고, 획득된 값에 기반하여, 이물질의 존재를 확인하도록 설정될 수 있다.
다양한 실시예들에 따르면, 불균형한 자기장으로 인한 유기 전압 변동을 상쇄하는 검출 코일을 이용하여, 이물질 검출의 정확도가 높아질 수 있다.
다양한 실시예들에 따르면, 적층 구조를 가지는 검출 코일을 이용하여, 이물질 검출의 정확도가 높아질 수 있다.
다양한 실시예들에 따르면, 계통 전원의 변동 등 이물질 존재 외 요인으로 인한 유기 전압 변동을 보상하여, 이물질 검출의 정확도가 높아질 수 있다.
본 개시에 의하여 발휘되는 다양한 효과들은 상술한 효과에 의하여 제한되지 아니한다.
다양한 실시 예들에 따르면, 서로 다른 크기의 단위 코일을 포함하는 제1 검출 코일 및 제2 검출 코일을 평행 이동 또는 회전 없이 수직 적층함에 따라, 불필요한 검출 코일 면적을 줄이고, 두 검출 코일 간 유기 전압 차이를 줄여 회로의 포화를 방지할 수 있다.
다양한 실시 예에 따르면, 서로 다른 크기의 단위 코일을 포함하는 제1 검출 코일 및 제2 검출 코일을 적층함에 따라, 각 검출 코일의 널(null) 라인이 겹치지 않게 되고, 이에 따라 유기 전압 변동이 검출되지 않을 수 있는 널 영역을 제거할 수 있다.
다양한 실시 예에 따르면, 널 영역의 제거에 따라 신호 증폭을 통해 유기 전압 변동의 신호대잡음비(SNR)가 증가되고, 후처리 회로의 복잡도를 줄일 수 있다.
아래의 상세한 설명을 수행하기 전에 이 특허 문서 전체에 사용된 특정 단어 및 구문의 정의를 설명하는 것이 유리할 수 있다. "포함하다" 및 "구성하다" 및 그 파생어는 제한 없는 포함을 의미한다. "또는"이라는 용어는 포괄적이며 의미 및/또는; "~와 관련된" 및 "~와 연관된"이라는 문구와 그 파생어는 포함(include), 안에 포함(be included within), 상호 연결, 포함(contain), 안에 포함(be contained within), 연결 또는 함께(connect to or with), 연결 또는 함께(coupled to or with), 통신 가능, ~과 협력하다, 끼워 넣다, 병치시키다, ~에 근접하다, ~에 속박되다, ~의 속성을 가지다, 소유하다를 의미할 수 있다; "컨트롤러"라는 용어는 적어도 하나의 동작을 제어하는 임의의 장치, 시스템 또는 그 일부를 의미하며, 이러한 장치는 하드웨어, 펌웨어 또는 소프트웨어, 또는 이들 중 적어도 2개의 조합으로 구현될 수 있다. 특정 컨트롤러와 관련된 기능은 로컬이든 원격이든 중앙 집중화되거나 분산될 수 있다.
또한, 이하에서 설명하는 다양한 기능은 컴퓨터가 읽을 수 있는 프로그램 코드로 구성되어 컴퓨터가 읽을 수 있는 매체에 구현된 하나 이상의 컴퓨터 프로그램에 의해 구현 또는 지원될 수 있다. "응용 프로그램" 및 "프로그램"이라는 용어는 하나 이상의 컴퓨터 프로그램, 소프트웨어 구성 요소, 일련의 명령, 절차, 기능, 개체, 클래스, 인스턴스, 관련 데이터 또는 적절한 컴퓨터 판독 가능 프로그램에서 구현하도록 구성된 그 일부를 나타낸다. 암호. "컴퓨터가 읽을 수 있는 프로그램 코드"라는 문구에는 소스 코드, 목적 코드 및 실행 코드를 포함한 모든 유형의 컴퓨터 코드가 포함된다. "컴퓨터 판독 가능 매체"라는 문구는 ROM(Read Only Memory), RAM(Random Access Memory), 하드 디스크 드라이브, CD(Compact Disc), 디지털 디스크 등과 같이 컴퓨터에서 액세스할 수 있는 모든 유형의 매체를 포함한다. 비디오 디스크(DVD) 또는 기타 유형의 메모리. "비일시적" 컴퓨터 판독 가능 매체는 일시적인 전기 신호 또는 기타 신호를 전송하는 유선, 무선, 광학 또는 기타 통신 링크를 제외한다. 비일시적 컴퓨터 판독 가능 매체는 재기록 가능한 광 디스크 또는 소거 가능한 메모리 장치와 같이 데이터가 영구적으로 저장될 수 있는 매체 및 데이터가 저장되고 나중에 덮어쓸 수 있는 매체를 포함한다.
특정 단어 및 구에 대한 정의는 이 특허 문서 전체에 제공되며, 당업자는 대부분의 경우는 아니더라도 이러한 정의가 이러한 정의된 단어 및 구의 이전 사용뿐만 아니라 미래의 사용에도 적용된다는 것을 이해해야 한다.
본 개시 및 그 이점의 보다 완전한 이해를 위해, 유사한 참조 번호가 유사한 부분을 나타내는 첨부 도면과 함께 취해진 다음 설명을 이하에서 참조한다:
도 1a는, 비교 예에 따른, 검출 코일의 일 예를 도시한다.
도 1b는, 다양한 실시예들에 따른, 검출 코일의 일 예를 도시한다.
도 2는, 다양한 실시예들에 따른 무선 전력 송신기 및 무선 전력 수신기의 블록도를 도시한다.
도 3a는, 다양한 실시예들에 따른, 검출 코일에 포함되는 서브 코일의 일 예를 도시한다.
도 3b는, 다양한 실시예들에 따른, 도 3a의 서브 코일의 단면도를 도시한다.
도 4a는, 다양한 실시예들에 따른, 인접한 서브 코일들의 배치 및/또는 연결 관계를 설명하기 위한 도면이다.
도 4b는, 다양한 실시예들에 따른, 복수의 서브 코일들을 포함하는 검출 코일의 단면도를 도시한다.
도 5a는, 다양한 실시예들에 따른, 검출 코일의 배치를 설명하기 위한 도면이다.
도 5b는, 다양한 실시예들에 따른, 검출 코일이 커버하는 영역을 설명하기 위한 도면이다.
도 6은, 다양한 실시예들에 따른, 서로 인접한 서브 코일들의 배치를 설명하기 위한 도면이다.
도 7은, 다양한 실시예들에 따른, 정육각형 형상의 서브 코일들 간의 배치 및/또는 연결 관계를 설명하기 위한 도면이다.
도 8a는, 다양한 실시예들에 따른, 복수의 검출 코일들의 배치의 일 예를 설명하기 위한 도면이다.
도 8b는, 다양한 실시예들에 따른, 복수의 검출 코일들의 배치의 다른 예를 설명하기 위한 도면이다.
도 9는, 다양한 실시예들에 따른, 무선 전력 송신기의 구성 요소들을 설명하기 위한 블록도이다.
도 10a는, 다양한 실시예들에 따른, 유기 전압 보상을 위해 채널들을 설정하는 방법의 일 예를 도시한다.
도 10b는, 다양한 실시예들에 따른, 유기 전압 보상을 위한 센싱 회로(215)의 일 예를 도시한다.
도 11은, 다양한 실시예들에 따른, 검출 코일에 포함되는 서브 코일의 일 예를 도시한다.
도 12는, 다양한 실시예들에 따른, 도 11의 서브 코일을 포함하는 검출 코일의 일 예를 도시한다.
도 13은, 다양한 실시예들에 따른, 검출 코일의 적층 구조의 일 예를 도시한다.
도 14는, 다양한 실시예들에 따른, 검출 코일의 배치를 설명하기 위한 도면이다.
도 15는, 다양한 실시예들에 따른, 검출 코일의 배치를 설명하기 위한 도면이다.
하기 논의되는 도 1a 내지 도 15, 및 이 특허 문서에서 본 개시의 원리를 설명하기 위해 사용된 다양한 실시예는 단지 예시를 위한 것이며 개시의 범위를 제한하는 것으로 어떤 식으로든 해석되어서는 안 된다. 당업자는 본 개시의 원리가 임의의 적절하게 배열된 시스템 또는 장치에서 구현될 수 있음을 이해할 것이다.
도 1a는, 비교 예에 따른, 검출 코일(1)의 일 예를 도시한다.
도 1a의 (a)를 참조하면, 검출 코일(1)은, 일 권취 방향(a winding direction)으로 권취된 하나 이상의 도전체들(1a, 1b)을 포함할 수 있다. 하나 이상의 도전체들(1a, 1b)은, 서브 코일(sub coil)들을 각각 형성할 수 있다. 예를 들어, 검출 코일(1)은, 동일한 권취 방향(예: 시계 방향(clockwise, CW))으로 권취된 제1 도전체(1a) 및 제2 도전체(1b)를 포함할 수 있다. 검출 코일(1)은, 예를 들어, 전력을 무선으로 송신하는 전자 장치(예: 무선 전력 송신기)의 송신 패드(pad)에 배치될 수 있으며, 외부로 자기장(예: Tx 필드)을 생성하는 도전성 패턴(예: 코일)의 상측(above)(또는, 다른 위치)에 배치될 수 있다. 다른 예로, 검출 코일(1)은, 무선 전력 송신기가 아닌, 이물질(FO)(예: 금속 물질)을 검출하는 다양한 전자 장치에 포함될 수도 있다. 도전성 패턴(예: 코일)을 통해 자기장(예: Tx 필드)이 생성되면, 생성된 자기장으로 인하여, 도전성 패턴(예: 코일)의 상측에 위치하는 검출 코일(1)에 유기 전압(예: 유도 기전력)이 발생할 수 있다. 예를 들어, 자기장(예: Tx 필드)이 균일하다고 가정할 때, 동일한 권취 방향(예: CW)으로 권취된 제1 서브 코일(예: 제1 도전체(1a)) 및 제2 서브 코일(예: 제2 도전체(1b))에 V0의 크기를 가지는 유기 전압이 각각 발생할 수 있다.
도 1a의 (b)를 참조하면, 검출 코일(1)의 제1 서브 코일(예: 제1 도전체(1a)) 주변에 이물질(2)이 배치되면, 이물질(2)로 인하여, 제1 서브 코일(예: 제1 도전체(1a))의 유기 전압이 변동될 수 있다. 예를 들어, 이물질(2)의 배치로 인하여, 제1 서브 코일(예: 제1 도전체(1a))의 유기 전압에, Vx의 크기를 가지는 유기 전압 변동(±Vx)이 발생할 수 있다. 검출 코일(1)을 포함하는 전자 장치(예: 무선 전력 송신기)는, 유기 전압 변동(±Vx)이 발생함을 검출하거나, 및/또는 발생한 유기 전압 변동(±Vx)이 지정된 범위에 포함(예: 지정된 크기 이상)됨을 검출하여, 검출 코일(1) 주변에 위치하여 도전성 패턴(예: 코일)을 통해 전력을 무선으로 송신하는 동안에 자기장의 영향을 받을 수 있는 이물질의 존재 및/또는 위치를 검출할 수 있다. 만일, 검출 코일(1)이 N개의 서브 코일들을 포함한다면, 신호대잡음비(signal to noise ratio, SNR)은, 수학식 1로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000001
도 1b는, 다양한 실시예들에 따른, 검출 코일(100)의 일 예를 도시한다.
도 1b의 (a)를 참조하면, 검출 코일(100)은, 서로 다른 방향으로 권취된 하나 이상의 도전체들(100a, 100b)을 포함할 수 있다. 다양한 실시예들에 따르면, 하나 이상의 도전체들(100a, 100b)은, 서브 코일들을 각각 형성할 수 있다. 예를 들어, 시계 방향(CW)으로 권취된 제1 도전체(100a)는 제1 서브 코일을 형성하고, 반시계 방향(counterclockwise, CCW)으로 권취된 제2 도전체(100b)는 제2 서브 코일을 형성할 수 있다. 도 1b의 (a)에서는 제1 서브 코일(예: 시계 방향(CW) 권취된 제1 도전체(100a)) 및 제2 서브 코일(예: 반시계 방향(CCW) 권취된 제2 도전체(100b))를 각각 하나씩 도시하였으나, 시계 방향(CW) 또는 반시계 방향(CCW)으로 권취된 도전체들이 둘 이상씩 포함될 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)은, 예를 들어, 전력을 무선으로 송신하는 전자 장치(예: 무선 전력 송신기)의 송신 패드에 포함될 수 있으며, 외부로 자기장(예: Tx 필드)을 생성하는 도전성 패턴(예: 코일) 및/또는 페라이트(ferrite)(예: 스포크(spoke) 타입의 페라이트)의 상측에 배치될 수 있다. 다른 예로, 검출 코일(100)은, 무선 전력 송신기가 아닌, 이물질(예: 금속 물질)을 검출하는 다양한 전자 장치에 포함될 수도 있다. 도전성 패턴(예: 코일)을 통해 자기장(예: Tx 필드)이 생성되면, 생성된 자기장으로 인하여, 도전성 패턴(예: 코일)의 상측에 위치하는 검출 코일(100)에 유기 전압이 발생할 수 있다. 예를 들어, 자기장(예: Tx 필드)이 균일하다고 가정할 때, 서로 다른 권취 방향으로 권취된 제1 서브 코일(예: 제1 도전체(100a)) 및 제2 서브 코일(예: 제2 도전체(100b))에 반대 크기를 가지는 유기 전압(예: +V0 또는 -V0)이 각각 발생할 수 있다. 다양한 실시예들에 따르면, 서로 다른 권취 방향으로 권취된 도전체들(예: 제1 도전체(100a) 및 제2 도전체(100b))은 서로 직렬로 연결되어, 하나의 서브 코일의 제1 부분(part) 및 제2 부분을 구성할 수 있다. 이 경우, 자기장(예: Tx 필드)이 균일하다고 가정할 때, 각각에 발생한 유기 전압들은 서로 상쇄될 수 있다. 만일, 자기장(예: Tx 필드)이 균일하지 않다면, 직렬 연결로 형성된 서브 코일의 서로 다른 권취 방향으로 권취된 부분들(예: 제1 도전체(100a)에 대응하는 부분 및 제2 도전체(100b)에 대응하는 부분) 각각에 발생한 유기 전압의 적어도 일부는 상쇄되지 않으며, Vdis의 크기를 가지는 미상쇄량이 발생할 수 있다.
도 1b의 (b)를 참조하면, 검출 코일(100)의 제1 부분(예: 제1 도전체(100a)) 주변에 이물질(2)이 배치되면, 이물질(2)로 인하여, 제1 부분(예: 제1 도전체(100a))의 유기 전압이 변동될 수 있다. 예를 들어, 이물질(2)의 배치로 인하여, 제1 부분(예: 제1 도전체(100a))의 유기 전압에, Vx의 크기를 가지는 유기 전압 변동(±Vx)이 발생할 수 있다. 검출 코일(100)을 포함하는 전자 장치(예: 무선 전력 송신기)는, 유기 전압 변동(±Vx)이 발생함을 검출하거나, 및/또는 발생한 유기 전압 변동(±Vx)이 지정된 범위에 포함(예: 지정된 크기 이상)됨을 검출하여, 검출 코일(100) 주변에 위치하여 도전성 패턴(예: 코일)을 통해 전력을 무선으로 송신하는 동안 자기장의 영향을 받을 수 있는 이물질의 존재 및/또는 위치를 검출할 수 있다. 이때, 신호대잡음비(SNR)은, 수학식 2로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000002
수학식 2의 Vdis는, 자기장(예: Tx 필드)이 균일하지 않을 때, 직렬 연결로 구성된 서브 코일의 서로 다른 방향으로 권취된 부분들(예: 제1 도전체(100a)에 대응하는 부분 및 제2 도전체(100b)에 대응하는 부분) 각각의 유기 전압들의 미상쇄량을 나타낼 수 있다. 미상쇄량(Vdis)은, 각 부분(예: 제1 도전체(100a)에 대응하는 부분 또는 제2 도전체(100b)에 대응하는 부분)에 발생한 유기 전압의 크기(V0)보다 작은 값일 수 있다. 만일, 자기장(예: Tx 필드)이 균일한 이상적인(ideal) 경우라면, Vdis은 0의 크기를 가지며, SNR은 무한대의 값을 가질 수 있다.
도 1a의 비교 예에서의 검출 코일(1)에는 동일한 방향으로 권취된 복수의 도전체들이 수평 방향(예: 가로 방향)으로 배치되고, 도 1b의 검출 코일(100)에는 서로 다른 방향으로 권취된 복수의 도전체들이 수평 방향(예: 가로 방향)으로 배치될 수 있다. 도 1b의 검출 코일(100)에 따른 SNR은, 도 1a의 검출 코일(1)에 따른 SNR보다 상대적으로 높을 수 있다. 또한, 도 1b의 검출 코일(100)의 도전체들(예: 제1 도전체(100a) 및 제2 도전체(100b))이 서로 직렬로 연결되어 서브 코일을 구성한다면, 도 1a의 검출 코일(1)과 비교할 때, 이물질(2)을 검출하기 위해 요구되는 채널 수가 상대적으로 적을 수 있다. 또한, 검출 코일의 주변에 발생한 자기장이 불균형할 때, 도 1a의 검출 코일(1)의 경우에는, 이물질(2)의 존재 여부와 무관하게, 각 도전체(예: 제1 도전체(1a) 또는 제2 도전체(1b))에서 발생하는 유기 전압(V0)의 크기가 변동되어 이물질 검출(FOD)의 정확도가 상대적으로 낮은 반면, 도 1b의 검출 코일(100)은 직렬 연결된 서브 코일의 각 부분(예: 제1 도전체(100a)에 대응하는 부분 또는 제2 도전체(100b)에 대응하는 부분)에서 발생하는 유기 전압들(예: V0 및 -V0)이 서로 상쇄되어 이물질 검출(FOD)의 정확도가 상대적으로 높을 수 있다. 한편, 서브 코일의 부분들(예: 제1 도전체(100a) 및 제2 도전체(100b))이 서로 중첩되지 않도록 배치된 경우, 검출 코일의 주변에 발생한 자기장이 불균형할 때 자기장으로 인해 발생한 유기 전압들의 상쇄되지 않은 부분들로 인하여, 이물질의 존재가 오검출이 될 수도 있다.
한편, 본 도면에서는 도시되지 않았으나, 다양한 실시예들에 따르면, 서브 코일의 부분들(예: 제1 도전체(100a) 및 제2 도전체(100b))은 서로 다른 면(plane) 상에 배치(예: 수직 방향으로 적층)될 수 있고, 제1 면에 배치된 제1 부분(예: 제1 도전체(100a)에 대응하는 부분) 및 제2 면에 배치된 제2 부분(예: 제2 도전체(100b)에 대응하는 부분)이 서로 직렬로 연결되어 하나의 서브 코일을 구성할 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다. 이러한 수직 방향으로 다른 면 상에 배치된 부분들(예: 제1 도전체(100a)에 대응하는 부분 및 제2 도전체(100b)에 대응하는 부분)을 포함하는 검출 코일(100)은, 예를 들어, 수직형 구배측정기(gradiometer) 코일이라고 불려질 수 있다. 상술한 직렬 연결된 서브 코일의 부분들의 형상 또는 배치에 대하여는, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다. 이하에서는, 서로 다른 방향으로 권취된 2개의 도전체들의 집합을 '서브 코일'이라고 설명하고, 상기 '서브 코일'에서 시계 방향 또는 반시계 방향으로 권취된 도전체를 '서브 코일의 부분(part)'라고 설명하고, 검출 코일(100)이 상기 '서브 코일'을 하나 이상 포함하는 것으로 설명하도록 한다.
도 2는, 다양한 실시예들에 따른 무선 전력 송신기 및 무선 전력 수신기의 블록도를 도시한다.
다양한 실시예들에 따르면, 무선 전력 송신기(200)(예: 무선 전력 장치)는, 전력 송신 회로(220), 제어 회로(212), 통신 회로(230), 센싱 회로(215) 및/또는 저장 회로(216)를 포함할 수 있다.
다양한 실시예들에 따르면, 무선 전력 송신기(200)는, 전력 송신 회로(220)를 통해, 무선 전력 수신기(250)로 전력을 제공할 수 있다. 예를 들어, 무선 전력 송신기(200)는, 공진 방식에 따라 전력을 송신할 수 있다. 공진 방식에 의한 경우에는, 무선 전력 송신기(200)는, 예를 들어, A4WP(Alliance for Wireless Power) 표준(또는, AFA(air fuel alliance) 표준)에서 정의된 방식으로 구현될 수 있다. 무선 전력 송신기(200)는, 공진 방식 또는 유도 방식에 따라 전류(예: 교류 전류)가 흐르면 유도 자기장(예: Tx 필드)을 생성할 수 있는 도전성 패턴(224)(예: 코일)을 포함할 수 있다. 무선 전력 송신기(200)가 도전성 패턴(224)을 통하여 자기장(예: Tx 필드)을 생성하는 과정을 무선 전력을 출력한다고 표현할 수 있고, 도전성 패턴(224)을 통하여 생성된 자기장(예: Tx 필드)에 기반하여 무선 전력 수신기(250)에 유도 기전력이 생성되는 과정을 무선 전력을 수신한다고 표현할 수 있다. 이와 같은 과정을 통해, 무선 전력 송신기(200)가 무선 전력 수신기(250)에 전력을 무선으로 송신한다고 표현할 수 있다. 아울러, 무선 전력 수신기(250)는, 주변에 형성된 시간에 따라 크기가 변경되는 자기장(예: Tx 필드)에 의하여 유도 기전력이 발생되는 도전성 패턴(276)(예: 코일)을 포함할 수 있다. 무선 전력 수신기(250)의 도전성 패턴(276)에서 유도 기전력을 발생됨에 따라서, 도전성 패턴(276)으로부터 교류 전류가 출력되거나, 또는 도전성 패턴(276)에 교류 전압이 인가되는 과정을, 무선 전력 수신기(250)가 전력을 무선으로 수신한다고 표현할 수 있다. 다른 예로, 무선 전력 송신기(200)는, 유도 방식에 따라 전력을 송신할 수 있다. 유도 방식에 의한 경우에는, 무선 전력 송신기(200)는, 예를 들어, WPC(wireless power consortium) 표준 (또는, Qi 표준)에서 정의된 방식으로 구현될 수 있다.
다양한 실시예들에 따르면, 전력 송신 회로(220)는, 전력 어댑터(221), 전력 생성 회로(222), 매칭 회로(223), 도전성 패턴(224)(예: 코일), 또는 제1 통신 회로(231)를 포함할 수 있다. 다양한 실시예들에 따르면, 전력 송신 회로(220)는, 도전성 패턴(224)을 통하여 무선으로 무선 전력 수신기(250)에 전력을 전송하도록 구성될 수 있다. 다양한 실시예들에 따르면, 전력 송신 회로(220)는, 외부로부터 직류 또는 교류 파형의 형태로 전력을 공급 받을 수 있으며, 공급 받은 전력을 교류 파형의 형태로 무선 전력 수신기(250)에 공급할 수 있다.
다양한 실시예들에 따르면, 전력 어댑터(221)는, 외부로부터 교류 또는 직류 전원을 입력 받거나 배터리 장치의 전원 신호를 수신하여, 설정된 전압 값을 가지는 직류 전력을 출력할 수 있다. 다양한 실시예들에 따르면, 전력 어댑터(221)에서 출력되는 직류 전력의 전압 값은 제어 회로(212)에 의하여 제어될 수 있다. 다양한 실시예들에 따르면, 전력 어댑터(221)로부터 출력되는 직류 전력은 전력 생성 회로(222)로 출력될 수 있다.
다양한 실시예들에 따르면, 전력 생성 회로(222)는, 전력 어댑터(221)로부터 출력된 직류 전류를 교류 전류로 변환하여 출력할 수 있다. 다양한 실시예들에 따르면, 전력 생성 회로(222)는, 소정의 증폭기(미도시)를 포함할 수도 있다. 다양한 실시예들에 따르면, 전력 생성 회로(222)는, 전력 어댑터(221)를 통해 입력되는 직류 전류가 설정된 이득(gain)보다 작으면, 증폭기(미도시)를 이용하여 설정된 이득(gain)으로 직류 전류를 증폭할 수 있다. 또는, 전력 생성 회로(222)는, 제어 회로(212)로부터 입력되는 제어 신호에 기초하여 전력 어댑터(221)로부터 입력되는 직류 전류를 교류로 변환하는 회로를 포함할 수 있다. 예를 들어, 전력 생성 회로(222)는, 소정의 인버터(미도시)를 통해 전력 어댑터(221)로부터 입력되는 직류 전류를 교류로 변환할 수 있다. 또는, 전력 생성 회로(222)는, 게이트 구동 장치(미도시)를 포함할 수 있다. 게이트 구동 장치(미도시)가 전력 어댑터(221)로부터 입력되는 직류 전류를 온(on)/오프(off)하여 제어하면서, 직류 전류를 교류로 변경할 수도 있다. 또는, 전력 생성 회로(222)는 무선 전원 발생기(예: 오실레이터)를 통해 교류 전원 신호를 생성할 수도 있다.
다양한 실시예들에 따르면, 매칭 회로(223)는, 임피던스 매칭을 수행할 수 있다. 예를 들어, 전력 생성 회로(222)로부터 출력된 교류 전류(예: 교류 신호)가 도전성 패턴(224)에 전달되면, 전달된 교류 신호에 의하여 도전성 패턴(224)에 전자기장이 형성될 수 있다. 매칭 회로(223)의 임피던스를 조정하여, 형성되는 전자기장(예: 전자기장 신호)의 주파수 대역이 조정될 수 있다. 다양한 실시예들에 따르면, 매칭 회로(223)는, 임피던스 조정에 의해, 도전성 패턴(224)을 통해 무선 전력 수신기(250)로 전송되는 출력 전력이 고효율 또는 고출력이 되도록 제어할 수 있다. 다양한 실시예들에 따르면, 매칭 회로(223)는, 제어 회로(212)의 제어에 기초하여 임피던스를 조정할 수 있다. 매칭 회로(223)는, 인덕터(예: 코일), 커패시터 또는 스위치 장치 중 적어도 하나를 포함할 수 있다. 제어 회로(212)는, 스위치 장치를 통해 인덕터 또는 커패시터 중 적어도 하나와의 연결 상태를 제어할 수 있으며, 이에 따라 임피던스 매칭을 수행할 수 있다.
다양한 실시예들에 따르면, 도전성 패턴(224)은, 전류가 인가되면 무선 전력 수신기(250)에 전류를 유도시키기 위한 자기장을 형성할 수 있다. 다양한 실시예들에 따르면, 제1 통신 회로(231)(예: 공진 회로)는 도전성 패턴(224)에 의해 발생되는 전자기파를 이용하여 인-밴드(in-band) 형식으로 통신(예: 데이터 통신)을 수행할 수 있다.
다양한 실시예들에 따르면, 검출 코일(100)은, 하나 이상의 서브 코일(예: 시계 방향으로 권취된 부분 및 반시계 방향으로 권취된 부분이 서로 직렬 연결된 서브 코일)들을 포함할 수 있다. 다양한 실시예들에 따르면, 서브 코일의 부분들은, 서로 수직 방향으로 상이한 면 상에 배치될 수 있다. 예를 들어, 하나의 PCB(printed circuit board)를 기준으로, 서브 코일의 제1 부분이 상기 PCB의 제1 면(예: 하측면)에 배치되고, 제1 부분이 권취된 방향과 반대 방향으로 권취된 제2 부분이 상기 PCB의 제2 면(예: 상측면)에 배치될 수 있다. 더욱 상세하게는, 제2 부분은, 제1 부분이 배치된 위치에 대하여 수직 방향에 대응하는 위치에 배치될 수 있다. 일 예로, 시계 방향으로 권취된 부분이 상측면에 배치되고, 반시계 방향으로 권취된 부분이 하측면에 배치될 수 있다. 다른 예로, 반시계 방향으로 권취된 부분이 상측면에 배치되고, 시계 방향으로 권취된 부분이 하측면에 배치될 수 있다. 일 실시예에 따르면, 2개의 PCB를 기준으로, 서브 코일의 제1 부분이 제1 PCB에 배치되고, 제1 부분과 반대 방향으로 권취된 제2 부분이 제2 PCB에 배치될 수도 있다. 다양한 실시예들에 따르면, 서브 코일들은, 교번적으로(alternately) 배치될 수 있다. 예를 들어, 제1 서브 코일의 시계 방향으로 권취된 부분이 제2 면(예: 상측면)에 배치되고 제1 서브 코일의 반시계 방향으로 권취된 부분이 제1 면(예: 하측면)에 배치되고, 제1 서브 코일에 인접한 제2 서브 코일의 반시계 방향으로 권취된 부분이 제2 면(예: 상측면)에 배치되고 제2 서브 코일의 시계 방향으로 권취된 부분이 제1 면(예: 하측면)에 배치될 수 있다. 다양한 실시예들에 따르면, 인접한 서브 코일들은, 서로 직렬로 연결될 수 있다. 예를 들어, 제1 서브 코일의 제2 면(예: 상측면)에 배치된 부분이 인접한 제2 서브 코일의 제1 면(예: 하측면)에 배치된 부분과 직렬로 연결되거나, 제1 서브 코일의 제1 면(예: 하측면)에 배치된 부분이 인접한 제2 서브 코일의 제2 면(예: 상측면)에 배치된 부분과 직렬로 연결될 수 있다. 일 예로, 행(row) 방향 또는 열(column) 방향 중 어느 하나의 방향으로 인접한 서브 코일들이 서로 직렬로 연결되어 하나의 채널이 형성될 수 있다. 다른 예로, 행 방향 또는 열 방향으로 직렬로 연결된 서브 코일들이 둘 이상 서로 직렬로 연결되어, 하나의 채널이 형성될 수도 있다. 또 다른 예로, 하나의 PCB 상에 배치된 서브 코일들 모두가 서로 직렬로 연결되어, 하나의 채널이 형성될 수도 있다.
다양한 실시예들에 따르면, 인접한 서브 코일들은, 일 방향(예: 수직 방향)에서 바라보았을 때, 서로 적어도 일부가 중첩되도록 배치될 수 있다. 다양한 실시예들에 따르면, 서로 중첩된 영역에서, 인접한 서브 코일들이 권취된 방향(예: 시계 방향 또는 반시계 방향)은 서로 동일(identical)할 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 검출 코일(100)의 서브 코일을 구성하는 서로 다른 방향으로 권취된 부분들은, 일 방향(예: 수직 방향)에서 바라보았을 때, 동일한 크기(예: 면적)의 형상을 가지거나, 및/또는 상이한 다각형 형상(예: 서로 대칭된 다각형 형상)을 가질 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 무선 전력 송신기(200)는, 둘 이상의 검출 코일(예: 검출 코일(100))들을 포함할 수 있다. 예를 들어, 무선 전력 송신기(200)는, 제1 PCB에 배치된 제1 검출 코일 및 제2 PCB(예: 제1 PCB에 실질적으로 평행한 다른(other) PCB)에 배치된 제2 검출 코일을 포함할 수 있다. 다양한 실시예들에 따르면, 제1 검출 코일 및 제2 검출 코일은 서로에 대하여 독립적인(independent) 채널을 형성할 수 있다. 일 실시예에 따르면, 제1 검출 코일 및 제2 검출 코일은 서로 연결되어, 하나의 채널을 형성할 수도 있다. 다양한 실시예들에 따르면, 제1 검출 코일 및 제2 검출 코일은, 일 방향(예: 수직 방향)에서 바라보았을 때, 서로 일부가 중첩되도록 배치될 수 있다. 예를 들어, 제1 검출 코일의 서브 코일의 적어도 하나의 널 영역을, 제2 검출 코일의 서브 코일의 널 영역 이외의 영역이 커버할 수 있도록 제1 검출 코일 및 제2 검출 코일이 배치될 수 있다. 아울러, 제2 검출 코일의 서브 코일의 적어도 하나의 널 영역이, 제1 검출 코일의 서브 코일의 널 영역 이외의 영역에 의하여 커버될 수도 있으며 이에 대하여서는 후술하도록 한다. 예를 들어, 일 방향(예: 수직 방향)에서 바라보았을 때 일 지점에 위치한 제2 검출 코일의 서브 코일은, 동일한 지점에 위치한 제1 검출 코일의 서브 코일이 행 방향 및/또는 열 방향으로 일정 거리만큼 평행 이동하거나, 및/또는 일정 각도만큼 회전한 패턴을 가질 수 있다. 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 센싱 회로(215)는, 전력 송신 회로(220)의 도전성 패턴(224)에 인가되는 전류/전압의 변화를 센싱할 수 있다. 도전성 패턴(224)에 인가되는 전류/전압의 변화에 따라서, 무선 전력 수신기(250)로 전송될 전력의 양이 변화할 수 있다. 또는, 센싱 회로(215)는, 검출 코일(100)의 적어도 하나의 채널에 대응하는 전류 및/또는 전압을 센싱 및/또는 보상할 수 있다. 또는, 센싱 회로(215)는, 무선 전력 송신기(200)의 온도 변화를 센싱할 수 있다. 다양한 실시예들에 따르면, 센싱 회로(215)는, 전류/전압 센서 또는 온도 센서 중 적어도 하나를 포함할 수 있다.
다양한 실시예들에 따르면, 제어 회로(212)는, 무선 전력 송신기(200)의 동작을 제어할 수 있다. 예를 들어, 제어 회로(212)는 저장 회로(216)에 저장된 제어에 요구되는 알고리즘, 프로그램 또는 어플리케이션을 이용하여 무선 전력 송신기(200)의 동작을 제어할 수 있다. 제어 회로(212)는, CPU, 마이크로프로세서, 또는 미니 컴퓨터와 같은 형태로 구현될 수 있다. 예를 들어, 제어 회로(212)는, 통신 회로(230)를 통해 무선 전력 수신기(250)로부터 수신한 메시지에 기반하여 무선 전력 수신기(250)의 상태를 표시부(217)에 표시할 수 있다.
다양한 실시예들에 따르면, 제어 회로(212)는, 전력 송신 회로(220)를 통해 무선 전력 수신기(250)로 무선으로 전력을 송신하도록 제어할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 통신 회로(230)를 통해 무선 전력 수신기(250)로부터 무선으로 정보를 수신하도록 제어할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 센싱 회로(215)로부터 출력된, 유기 전압 및/또는 유기 전압 변동과 관련된 값을 확인할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 센싱 회로(215)로부터 출력된 값에 기반하여, 센싱 회로(215)의 적어도 일부(예: 후술하는 보상 회로(910))를 제어할 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다. 다양한 실시예들에 따르면, 제어 회로(212)는, 센싱 회로(215)로부터 출력된 값에 기반하여, 검출 코일(100) 주변에 위치하여 도전성 패턴(224)을 통해 전력을 무선으로 송신하는 동안에 생성되는 자기장의 영향을 받을 수 있는 이물질의 존재 및/또는 위치를 검출할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 검출 코일(100) 주변에 위치하는 이물질이 검출되면, 이물질 검출에 대응하는 지정된 동작을 수행할 수 있다. 예를 들어, 제어 회로(212)는, 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 개시하지 않거나, 및/또는 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 중단할 수 있다. 다른 예로, 제어 회로(212)는, 무선 전력 송신기(200)의 출력 장치(예: 스피커)를 통해 알림(예: 경고음)을 출력하거나, 및/또는 무선 전력 수신기(250)가 출력 장치(예: 스피커)를 통해 알림(예: 경고음)을 출력하도록 제어할 수 있다.
일 실시예에 따르면, 무선 전력 수신기(250)로부터 수신된 정보는, 무선 전력 수신기(250)의 배터리 상태와 관련된 충전 설정 정보, 무선 전력 수신기(250)로 전송되는 전력의 양의 조절과 관련된 전력량 제어 정보, 무선 전력 수신기(250)의 충전 환경과 관련된 환경 정보 또는 무선 전력 수신기(250)의 시간 정보 중 적어도 하나를 포함할 수 있다. 일 실시예에 따르면, 충전 설정 정보는, 무선 전력 송신기(200)와 무선 전력 수신기(250) 간 무선 충전 시점에서의 무선 전력 수신기(250)의 배터리 상태와 관련된 정보일 수 있다. 예를 들어, 충전 설정 정보는 무선 전력 수신기(250)의 배터리 전체 용량, 배터리 잔량, 충전 횟수, 배터리 사용량, 충전 모드, 충전 방식 또는 무선 수신 주파수 대역 중 적어도 하나를 포함할 수 있다. 일 실시예에 따르면, 전력량 제어 정보는, 무선 전력 송신기(200)와 무선 전력 수신기(250) 간 무선 충전 중 무선 전력 수신기(250)에 충전된 전력량의 변화에 따라 전송된 초기 전력의 양을 제어하기 위한 정보를 포함할 수 있다. 일 실시예에 따르면, 환경 정보는, 무선 전력 수신기(250)의 센싱 회로(255)에 의해 무선 전력 수신기(250)의 충전 환경을 측정한 정보로서, 예를 들어, 무선 전력 수신기(250)의 내부 온도 또는 외부 온도 중 적어도 하나를 포함하는 온도 데이터, 무선 전력 수신기(250) 주변의 조도(밝기)를 나타내는 조도 데이터, 또는 무선 전력 수신기(250) 주변의 소리(소음)를 나타내는 소리 데이터 중 적어도 하나를 포함할 수 있다. 일 실시예들에 따르면, 제어 회로(212)는, 무선 전력 수신기(250)로부터 수신된 정보 중 충전 설정 정보에 기반하여, 무선 전력 수신기(250)로 전송될 전력을 생성하거나 전송하도록 제어할 수 있다. 또는, 제어 회로(212)는, 무선 전력 수신기(250)로부터 수신된 정보 중 적어도 일부(예: 전력량 제어 정보, 환경 정보 또는 시간 정보 중 적어도 하나)에 기반하여, 무선 전력 수신기(250)로 전송되는 전력의 양을 결정하거나 변경할 수 있다. 또는, 제어 회로(212)는, 매칭 회로(223)가 임피던스를 변경하도록 제어할 수 있다.
다양한 실시예들에 따르면, 표시부(217)는, 무선 전력 송신기(200)의 상태, 환경 정보 또는 충전 상태와 관련된 전반적인 정보를 표시할 수 있다.
다양한 실시예들에 따르면, 통신 회로(230)는, 무선 전력 수신기(250)와 소정의 방식으로 통신을 수행할 수 있다. 통신 회로(230)는, 무선 전력 수신기(250)의 통신 회로(280)와 데이터 통신을 수행할 수 있다. 예를 들어, 통신 회로(230)는, 신호를 유니캐스트(unicast), 멀티캐스트(multicast) 또는 브로드캐스트(broadcast)할 수 있다.
일 실시예에 따르면, 통신 회로(230)는, 전력 송신 회로(220)와 하나의 하드웨어로 구현되어 무선 전력 송신기(200)가 인-밴드(in-band) 형식으로 통신을 수행할 수 있는 제1 통신 회로(231), 또는 전력 송신 회로(220)와 상이한 하드웨어로 구현되어 무선 전력 송신기(200)가 아웃-오브-밴드(out-of-band) 형식으로 통신을 수행할 수 있는 제2 통신 회로(232) 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 통신 회로(230)가 인-밴드 형식으로 통신을 수행할 수 있는 제1 통신 회로(231)를 포함하는 경우, 제1 통신 회로(231)는 전력 송신 회로(220)의 도전성 패턴(224)을 통해 수신되는 전자기장 신호의 주파수 및 신호 레벨을 수신할 수 있다. 제어 회로(212)는, 도전성 패턴(224)을 통해 수신된 전자기장 신호의 주파수 및 신호 레벨을 복호화하여 무선 전력 수신기(250)로부터 수신되는 정보를 추출할 수 있다. 또는, 제1 통신 회로(231)는 전력 송신 회로(220)의 도전성 패턴(224)에 무선 전력 수신기(250)로 전송하고자 하는 무선 전력 송신기(200)의 정보에 대한 신호를 인가(예: 온/오프 키잉(on/off keying) 변조 방식에 따라 로드(예: 도전성 패턴(224))의 임피던스를 변경)하거나, 매칭 회로(223)로부터 출력되는 신호가 도전성 패턴(224)에 인가됨으로써 발생하는 전자기장 신호에 무선 전력 송신기(200)의 정보에 대한 신호를 추가하여 무선 전력 수신기(250)로 무선 전력 송신기(200)의 정보를 전송할 수 있다. 제어 회로(212)는, 매칭 회로(223)에 포함된 스위치 장치의 온/오프 제어를 통해 매칭 회로(223)의 인덕터 및 커패시터 중 적어도 하나와 연결 상태를 변화시켜 무선 전력 송신기(200)의 정보가 출력되도록 제어할 수 있다.
일 실시예에 따르면, 통신 회로(230)가 아웃-오브-밴드 형식으로 통신을 수행할 수 있는 제2 통신 회로(232)를 포함하는 경우, 제2 통신 회로(232)는, NFC(near field communication), Zigbee 통신, 적외선 통신, 가시광선 통신, 블루투스 통신, 또는 BLE(bluetooth low energy) 방식 등을 이용하여 무선 전력 수신기(250)의 통신 회로(280)(예: 제2 통신 회로(282))와 통신을 수행할 수 있다.
상술한 통신 회로(230)의 통신 방식은 단순히 예시적인 것이며, 본 개시의 실시예들은 통신 회로(230)에서 수행하는 특정 통신 방식으로 그 권리범위가 한정되지 않는다.
다양한 실시예들에 따르면, 무선 전력 수신기(250)(예: 무선 전력 수신 장치)는 전력 수신 회로(270), 제어 회로(252), 통신 회로(280), 센싱 회로(255), 및/또는 표시부(257)를 포함할 수 있다.
다양한 실시예들에 따르면, 전력 수신 회로(270)는 무선 전력 송신기(200)의 전력 송신 회로(220)로부터 전력을 수신할 수 있다. 전력 수신 회로(270)는, 내장된 배터리의 형태로 구현될 수도 있으며, 또는 전력 수신 인터페이스의 형태로 구현되어 외부로부터 전력을 수신하도록 구현될 수도 있다. 전력 수신 회로(270)는, 매칭 회로(271), 정류 회로(272), 조정 회로(273), 배터리(275) 및/또는 도전성 패턴(276)을 포함할 수 있다.
다양한 실시예들에 따르면, 전력 수신 회로(270)는, 전력 송신 회로(220)의 도전성 패턴(224)에 인가된 전류/전압에 대응하여 발생된 전자기파 형태의 무선 전력을 도전성 패턴(276)을 통해 수신할 수 있다. 예를 들어, 전력 수신 회로(270)는, 전력 송신 회로(220)의 도전성 패턴(224)과 전력 수신 회로(270)의 도전성 패턴(276)에 형성된 유도된 기전력을 이용하여 전력을 수신할 수 있다.
다양한 실시예들에 따르면, 매칭 회로(271)는 임피던스 매칭을 수행할 수 있다. 예를 들어, 무선 전력 송신기(200)의 도전성 패턴(224)을 통해 전송된 전력이 도전성 패턴(276)에 전달되어 전자기장이 형성될 수 있다. 다양한 실시예들에 따르면, 매칭 회로(271)는, 임피던스를 조정하여 형성된 전자기장(예: 전자기장 신호)의 주파수 대역을 조정할 수 있다. 다양한 실시예들에 따르면, 매칭 회로(271)는, 이러한 임피던스 조정에 의해 도전성 패턴(276)을 통해 무선 전력 송신기(200)로부터 수신되는 입력 전력이 고효율 및 고출력이 되도록 제어할 수 있다. 다양한 실시예들에 따르면, 매칭 회로(271)는, 제어 회로(252)의 제어에 기초하여 임피던스를 조정할 수 있다. 매칭 회로(271)는, 인덕터(예: 코일), 커패시터 또는 스위치 장치 중 적어도 하나를 포함할 수 있다. 제어 회로(252)는, 스위치 장치를 통해 인덕터 또는 커패시터 중 적어도 하나와의 연결 상태를 제어할 수 있으며, 이에 따라 임피던스 매칭을 수행할 수 있다.
다양한 실시예들에 따르면, 정류 회로(272)는, 도전성 패턴(276)에 수신되는 무선 전력을 직류 형태로 정류할 수 있으며, 예를 들어, 브릿지 다이오드(bridge diode)의 형태로 구현될 수 있다.
다양한 실시예들에 따르면, 조정 회로(273)는, 정류된 전력을 설정된 이득(gain)으로 컨버팅할 수 있다. 조정 회로(273)는, DC/DC 컨버터(미도시)를 포함할 수 있다. 예를 들어, 조정 회로(273)는, 출력단의 전압이 5V가 되도록 정류된 전력을 컨버팅할 수 있다. 또는, 조정 회로(273)의 전단에는 인가될 수 있는 전압의 최소값 또는 최대값이 설정될 수 있다.
다양한 실시예들에 따르면, 스위치 회로(274)는, 조정 회로(273) 및 배터리(275)를 연결할 수 있다. 다양한 실시예들에 따르면, 스위치 회로(274)는 제어 회로(252)의 제어에 따라 온(on)/오프(off) 상태를 유지할 수 있다.
다양한 실시예들에 따르면, 배터리(275)는, 조정 회로(273)로부터 입력되는 전력을 공급 받아 충전될 수 있다.
다양한 실시예들에 따르면, 센싱 회로(255)는, 무선 전력 수신기(250)에 수신되는 전력 상태 변화를 센싱할 수 있다. 예를 들어, 센싱 회로(255)는, 소정의 전류/전압 센서(255a)를 통해 도전성 패턴(276)에 수신되는 전류/전압 값을 주기적으로 또는 비주기적으로 측정할 수 있다. 다양한 실시예들에 따르면, 무선 전력 수신기(250)는 소정의 전류/전압 센서(255a)를 통해 측정된 전류/전압에 기반하여 무선 전력 수신기(250)에 수신되는 전력의 양을 산출할 수 있다. 다양한 실시예들에 따르면, 센싱 회로(255)는, 무선 전력 수신기(250)의 충전 환경 변화를 센싱할 수 있다. 예를 들어, 센싱 회로(255)는, 소정의 온도 센서(255b)를 통해 무선 전력 수신기(250)의 내부 온도 또는 외부 온도 중 적어도 하나를 주기적으로 또는 비주기적으로 측정할 수 있다.
다양한 실시예들에 따르면, 표시부(257)는, 무선 전력 수신기(250)의 충전 상태와 관련된 전반적인 정보를 표시할 수 있다. 예를 들어, 표시부(257)는 무선 전력 수신기(250)의 배터리 전체 용량, 배터리 잔량, 배터리 충전량, 배터리 사용량 또는 충전 예상 시간 중 적어도 하나를 표시할 수 있다.
다양한 실시예들에 따르면, 통신 회로(280)는, 무선 전력 송신기(200)와 소정의 방식으로 통신을 수행할 수 있다. 통신 회로(280)는, 무선 전력 송신기(200)의 통신 회로(230)와 데이터 통신을 수행할 수 있다. 다양한 실시예들에 따르면, 통신 회로(280)는, 무선 전력 송신기(200)의 통신 회로(230)와 유사하거나 동일하게 동작할 수 있다.
다양한 실시예들에 따르면, 제어 회로(252)는 통신 회로(280)를 통해, 무선 전력 수신기(250)의 배터리 상태와 관련된 정보에 기반하여 필요한 전력량을 수신하기 위한 충전 설정 정보를 무선 전력 송신기(200)로 송신할 수 있다. 예를 들어, 제어 회로(252)는 무선 전력을 전송할 수 있는 무선 전력 송신기(200)가 식별되면, 무선 전력 수신기(250)의 배터리 전체 용량, 배터리 잔량, 충전 횟수, 배터리 사용량, 충전 모드, 충전 방식 또는 무선 수신 주파수 대역 중 적어도 하나에 기반하여 필요한 전력량을 수신하기 위한 충전 설정 정보를, 통신 회로(280)를 통해 무선 전력 송신기(200)로 송신할 수 있다.
다양한 실시예들에 따르면, 제어 회로(252)는, 통신 회로(280)를 통해, 무선 전력 수신기(250)에 충전된 전력량의 변화에 따라 무선 전력 송신기(200)로부터 수신되는 전력의 양을 제어하기 위한 전력량 제어 정보를 무선 전력 송신기(200)로 송신할 수 있다.
다양한 실시예들에 따르면, 제어 회로(252)는, 통신 회로(280)를 통해, 무선 전력 수신기(250)의 충전 환경 변화에 따른 환경 정보를 무선 전력 송신기(200)로 송신할 수 있다. 예를 들어, 제어 회로(252)는, 센싱 회로(255)에 의해 측정된 온도 데이터 값이 설정된 온도 기준값 이상이면, 측정된 온도 데이터를 무선 전력 송신기(200)로 전송할 수 있다.
일 실시예에 따르면, 무선 전력 수신기(250)는, 검출 코일(100)을 포함할 수도 있다. 무선 전력 수신기(250)는, 검출 코일(100)을 이용하여, 유기 전압의 변동이 확인되면, 이물질(FO)의 존재 및/또는 위치를 검출할 수 있다. 무선 전력 수신기(250)(예: 제어 회로(252))는, 이물질이 검출되면, 스위치 회로(274)를 오프 상태로 제어하거나, 및/또는 무선 전력 송신기(200)로 이물질이 검출되었음을 나타내는 정보를 전송할 수도 있다.
도 2에서 무선 전력 송신기(200)와 무선 전력 수신기(250)가 각각 전력 송신 회로(220) 및 전력 수신 회로(270)만을 포함하는 것으로 도시하였으나, 무선 전력 송신기(200)와 무선 전력 수신기(250)는, 각각 전력 송신 회로(220) 및 전력 수신 회로(270)를 모두 포함할 수도 있다. 이에 따라, 다양한 실시예들에 따른 무선 전력 송신기(200)와 무선 전력 수신기(250)는, 전력 송신기 및 전력 수신 장치의 기능을 모두 수행할 수도 있다.
도 3a는, 다양한 실시예들에 따른, 검출 코일(예: 도 1b의 검출 코일(100))에 포함되는 서브 코일(300)의 일 예를 도시한다. 도 3b는, 다양한 실시예들에 따른, 도 3a의 서브 코일(300)의 단면도를 도시한다.
도 3a를 참조하면, 다양한 실시예들에 따르면, 서브 코일(300)은, 서로 다른 방향으로 권취된 부분(part)들(301, 303)을 포함할 수 있다. 예를 들어, 서브 코일(300)은, 반시계 방향(CCW)으로 권취된 제1 부분(301) 및 시계 방향(CW)으로 권취된 제2 부분(303)을 포함할 수 있다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 다각형 형상으로 형성될 수 있다. 예를 들어, 제1 부분(301)은, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 삼각형(예: 정삼각형) 형상을 가질 수 있다. 제2 부분(303)은, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 삼각형(예: 역삼각형) 형상을 가질 수 있다. 일 실시예에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 사각형, 오각형 또는 육각형과 같은, 삼각형 형상과 상이한 다각형 형상, 또는 원형 형상을 가지도록 형성될 수도 있다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 실질적으로 동일한 크기(예: 면적)의 형상을 가질 수 있다. 예를 들어, 서브 코일(300)에서, 제1 부분(301)이 형성하는 면적(예: 삼각형 면적)은, 제2 부분(303)이 형성하는 면적(예: 역삼각형 면적)과 실질적으로 동일할 수 있으나 제한은 없다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 상이한 다각형 형상을 가질 수 있다. 예를 들어, 제1 부분(301)은, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 정삼각형 형상을 가질 수 있다. 제2 부분(303)은, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 역삼각형 형상을 가질 수 있다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 서로 대칭된 형상을 가질 수 있다. 예를 들어, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 제1 부분(301)의 중심(O)(예: 무게 중심) 및 제2 부분(303)의 중심(O)(예: 무게 중심)은 일치할 수 있으며, 제1 부분(301) 및 제2 부분(303)은, 일 축을 기준으로 서로 대칭된 형상을 가질 수 있다. 일 예로, 제2 부분(303)은, 중심(O)(예: 무게 중심)을 수직 방향(예: 서브 코일(300)의 정면 방향)으로 관통하는 축을 기준으로, 제1 부분(301)의 형상에서 180도만큼 회전(예: 점 대칭)된 형상을 가질 수 있다. 다른 예로, 제2 부분(303)은, 중심(O)(예: 무게 중심)을 수평 방향(예: 서브 코일(300)의 측면 방향)으로 관통하는 축을 기준으로, 제1 부분(301)의 형상에서 반전(예: 상하 반전)(예: 선 대칭)된 형상을 가질 수 있다. 이와 같이, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)이 동일한 중심(O)을 공유하고, 서로 대칭된 형상을 가짐에 따라서, 서브 코일(300)들을 포함하는 검출 코일(100)이 불균형한 자기장(예: Tx 필드) 내에 배치되더라도, 서브 코일(300)에 발생하는 유기 전압들이 효과적으로 상쇄될 수 있다. 예를 들어, 제1 부분(301) 및 제2 부분(303)은, 제1 영역(305) 만큼 서로 중첩될 수 있다. 상이한 방향들로 권취된 제1 부분(301) 및 제2 부분(303)이 제1 영역(305) 만큼 중첩됨에 기반하여, 제1 부분(301) 및 제2 부분(303) 각각에서 발생하는 유기 전압들이 대부분 상쇄될 수 있다. 제1 영역(305) 상에(또는, 주변에) 이물질(2)이 배치되더라도, 유기 전압들(예: 유기 전압들의 변동)이 상쇄되어, 유기 전압 변동이 검출되지 않을 수도 있으며, 제1 영역(305)은, 널(null) 영역이라고 설명될 수도 있다. 또한, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)이 서로 대칭된 형상을 가짐에 따라서, 부분들(301, 303)이 형성하는 영역 중 적어도 일부가 서로 중첩되지 않을 수 있다. 예를 들어, 제1 부분(301) 및 제2 부분(303)은, 제2 영역(307) 만큼 서로 중첩되지 않을 수 있다. 제1 부분(301) 및 제2 부분(303)이 제2 영역(307) 만큼 중첩되지 않음에 기반하여, 제2 영역(307)의 적어도 일부 상에(또는, 주변에) 이물질(2)이 배치되면, 제1 부분(301) 및 제2 부분(303) 각각에서 발생하는 유기 전압들(예: 유기 전압 변동) 중 적어도 일부가 상쇄되지 않을 수 있다. 예를 들어, 제2 부분(303)의 좌측 하단에 이물질(2)이 배치되는 경우에 제1 부분(301)에서 발생하는 유기 전압에는 변동이 발생할 수 있으나, 제2 부분(303)에서 발생하는 유기 전압에는 변동이 발생하지 않을 수 있으며, 유기 전압들이 서로 완전히 상쇄되지 않을 수 있다. 이를 통해, 서브 코일(300)에 발생하는 유기 전압 변동이 검출될 수 있으며, 제2 영역(307)은, 검출 영역이라고 설명될 수 있다. 다양한 실시예들에 따르면, 제1 부분(301)의 타단(301b) 및 제2 부분(303)의 타단(303b)의 전압차(Vout)는, 예를 들어, 수학식 3에 따라서 산출될 수 있다.
Figure PCTKR2022005075-appb-M000003
수학식 3에서, 'VCW-VCCW'는 제1 부분(301)의 타단(301b) 및 제2 부분(303)의 타단(303b)의 전압차를 나타낸다. 'NCCW' 및 'NCW'는 제1 부분(301)의 권취수(turns) 및 제2 부분(303)의 권취수를 나타낸다. 'V0'는 제1 부분(301) 또는 제2 부분(303)에서 발생하는 유기 전압의, 단위 권취수 당(per 1 turn) 크기를 나타낸다. 'VxCCW' 및 'VxCW'는 제1 부분(301) 및 제2 부분(303)에서 발생하는 유기 전압 변동의, 단위 권취수 당(per 1 turn) 크기를 나타낸다. 서브 코일(300)의 크기가 충분히 작다면(예: 주변에 위치한 이물질보다 작다면), 서브 코일(300)의 제1 부분(301) 및 제2 부분(303)을 쇄교하는 자기장 밀도가 동일하여, 각각에 동일한 크기(V0)의 유기 전압이 발생할 수 있다. 만일, 제1 부분(301) 및 제2 부분(303)의 권취수들이 서로 동일하다면(예: NCCW=NCW), 각각에 발생하는 유기 전압들이 서로 상쇄(예: V0(NCW-NCCW)≒0)될 수 있다. 따라서, 제1 부분(301)의 타단(301b) 및 제2 부분(303)의 타단(303b)의 전압차(Vout)를 측정함으로써, 서브 코일(300) 주변에 위치한 이물질의 존재 및/또는 위치가 검출될 수 있다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은 각각, 복수 회 권취될 수 있다. 예를 들어, 반시계 방향으로 복수 회 권취되어 제1 부분(301)이 형성될 수 있다. 시계 방향으로 복수 회 권취되어 제2 부분(303)이 형성될 수 있다. 예를 들어, 제1 부분(301) 또는 제2 부분(303) 각각은, 반시계 방향 또는 시계 방향으로 복수 회 권취되어 다각형 형상(예: 삼각형 형상 또는 역삼각형 형상)으로 형성될 수 있다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 서로 연결될 수 있다. 예를 들어, 제1 부분(301)의 일단(301a)이 제2 부분(303)의 일단(303a)에 연결되어, 제1 부분(301) 및 제2 부분(303)이 연결될 수 있다. 하나의 예에서는, 서브 코일(300)은 제1 부분(301)의 일단(301a) 및 제2 부분(303)의 일단(303a)을 서로 연결하기 위한 수직 방향으로 연장되는 연결용 전도체를 더 포함할 수도 있다. 만약, 제1 부분(301) 및 제2 부분(303)이 PCB의 양면 상에 배치되는 경우에는, 연결용 전도체는 PCB를 관통하는 비아 홀을 통하여 제1 부분(301) 및 제2 부분(303)을 연결할 수 있으나, 양 부분들(301,303)을 서로 연결하기 위한 커넥터에는 제한이 없다. 더욱 상세하게는, 반시계 방향으로 1회 이상 권취된 제1 부분(301)이 형성되고 제1 부분(301)의 일단(301a)으로부터 시계 방향으로 1회 이상 권취된 제2 부분(303)이 형성되어, 서로 다른 방향으로 권취된 제1 부분(301) 및 제2 부분(303)을 포함하는 서브 코일(300)이 형성될 수 있다. 예를 들어, 도 3b를 참조하면, 도 3a의 A-A'을 기준으로 절취된 서브 코일(300)의 단면도가 도시된다. 다양한 실시예들에 따르면, 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 서브 코일(300)의 제1 부분(301)은, 반시계 방향으로 권취되어, 제1 지점(301c)에서 서브 코일(300)의 정면 방향으로 들어가고 제2 지점(301d)에서 서브 코일(300)의 정면 방향에서 나오는 방향으로 형성될 수 있다. 제1 부분(301)은, 제1 지점(301c)으로부터 일단(301a)으로 연장되고(elongated), 일단(301a)은 제2 부분(303)의 일단(303a)과 연결될 수 있다. 일 방향(예: 서브 코일(300)의 정면 방향)에서 바라보았을 때, 서브 코일(300)의 제2 부분(303)은, 시계 방향으로 권취되어, 제3 지점(303c)에서 서브 코일(300)의 정면 방향에서 나오고 제4 지점(303d)에서 서브 코일(300)의 정면 방향으로 들어가는 방향으로 형성될 수 있다.
다양한 실시예들에 따르면, 제1 부분(301)의 타단(301b) 및/또는 제2 부분(303)의 타단(303b)은, 센싱 회로(예: 도 2의 센싱 회로(215))와 연결될 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)이 도 3에 도시된 서브 코일(300)을 복수 개 포함하는 경우, 제1 부분(301)의 타단(301b) 및/또는 제2 부분(303)의 타단(303b)은, 인접한 서브 코일의 제1 부분 및/또는 제2 부분과 연결(예: 직렬 연결)될 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 서브 코일(300)의 서로 다른 방향으로 권취된 부분들(301, 303)은, 서로 다른 면(plane) 상에 배치될 수 있다. 예를 들어, 도 3b를 참조하면, 제1 부분(301)은 제1 면 상에 배치되고, 제2 부분(303)은 제1 면과 상이한 제2 면 상에 배치될 수 있다. 일 예로, 서브 코일(300)은 PCB의 양 면에 배치될 수 있으며, 제1 부분(301)이 상기 PCB의 제1 면(예: 하측면)에 배치되고 제2 부분(303)이 상기 PCB의 제2 면(예: 상측면)에 배치될 수 있다. 제1 부분(301)의 일단(301a)과 제2 부분(303)의 일단(303a)은, 상기 PCB를 관통하여 서로 연결될 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)이 도 3a에 도시된 서브 코일(300)을 복수 개 포함하는 경우, 제1 부분(301)의 타단(301b)이 인접한 서브 코일(예: 동일한 PCB 상에 배치된 인접한 서브 코일)의 제1 부분과 연결되거나, 및/또는 제2 부분(303)의 타단(303b)이 인접한 서브 코일(예: 동일한 PCB 상에 배치된 인접한 서브 코일)의 제2 부분과 연결될 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다. 이 경우, 인접한 서브 코일의 제1 부분은 제2 면(예: 상측면)에 배치되고, 인접한 서브 코일의 제2 부분은 제1 면(예: 하측면)에 배치될 수 있다. 일 예로, 제1 면에 배치된 제1 부분(301)의 타단(301b)이 상기 PCB를 관통하여 인접한 서브 코일의 제2 면에 배치된 제1 부분의 일단에 연결되거나, 및/또는 제2 면에 배치된 제2 부분(303)의 타단(303b)이 상기 PCB를 관통하여 인접한 서브 코일의 제1 면에 배치된 제2 부분의 일단에 연결될 수 있다.
다양한 실시예들에 따르면, 서브 코일(300)은, 인접한 적어도 하나의 서브 코일과 연결(예: 직렬 연결)되어, 하나의 채널을 형성할 수 있다. 일 실시예에 따르면, 검출 코일(100)의 서브 코일들은, 독립적인(예: 개별적인) 채널을 각각(respectively) 형성할 수도 있다.
도 4a는, 다양한 실시예들에 따른, 인접한 서브 코일들(410, 430)(예: 도 3a의 서브 코일(300))의 배치 및/또는 연결 관계를 설명하기 위한 도면이다. 도 4b는, 다양한 실시예들에 따른, 복수의 서브 코일들(410, 430)을 포함하는 검출 코일(100)의 단면도를 도시한다.
도 4a의 (a), (b)를 참조하면, 복수의 서브 코일들을 포함하는 검출 코일(100)을 형성하는 방법이 도시된다. 다양한 실시예들에 따르면, 제1 서브 코일(410)(예: 도 3a의 서브 코일(300))은, 반시계 방향(CCW)으로 권취된 제1 부분(411) 및 시계 방향(CW)으로 권취된 제2 부분(413)을 포함할 수 있다. 다양한 실시예들에 따르면, 제2 서브 코일(430)(예: 도 3a의 서브 코일(300))은, 반시계 방향(CCW)으로 권취된 제1 부분(431) 및 시계 방향(CW)으로 권취된 제2 부분(433)을 포함할 수 있다.
다양한 실시예들에 따르면, 제1 서브 코일(410)은, 인접한 제2 서브 코일(430)과 연결(예: 직렬 연결)되도록 배치될 수 있다. 예를 들어, 도 4a의 (a)를 참조하면, 제1 서브 코일(410)의 제2 부분(413)의 일단(412)(예: 도 3a의 타단(303b))은, 인접한 제2 서브 코일(430)의 제2 부분(433)의 일단(432)(예: 도 3a의 일단(303a))과 연결되도록 배치될 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)이 3개 이상의 서브 코일들을 포함한다면, 제1 서브 코일(410)의 제1 부분(411) 또는 제2 서브 코일(430)의 제1 부분(431)이, 인접한 제3 서브 코일(미도시)의 제1 부분과 연결(예: 직렬 연결)되도록 배치될 수 있다. 제3 서브 코일(미도시)는, 무게 중심이, 제1 서브 코일(410)의 중심(O1)(예: 무게 중심) 및 제2 서브 코일(430)의 중심(O2)(예: 무게 중심)을 연결한 연장선 상에 위치하도록(예: 행 방향으로 나란하도록) 배치될 수 있다.
다양한 실시예들에 따르면, 인접한 서브 코일들(410, 430)은, 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 서로 적어도 일부가 중첩되도록 배치될 수 있다. 예를 들어, 제1 서브 코일(410) 및 제2 서브 코일(430)의 동일한 방향(예: 시계 방향 또는 반시계 방향)으로 권취된 부분들이 서로 적어도 일부가 중첩될 수 있다. 예를 들어, 도 4a의 (b)를 참조하면, 제1 서브 코일(410) 및 제2 서브 코일(430)은, 반시계 방향으로 권취된 제1 부분(411)과 반시계 방향으로 권취된 제1 부분(431)이 서로 적어도 일부가 중첩되고, 시계 방향으로 권취된 제2 부분(413)과 시계 방향으로 권취된 제2 부분(433)이 서로 적어도 일부가 중첩되도록 배치될 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)이 3 이상의 서브 코일들을 포함한다면, 제1 서브 코일(410)(또는, 제2 서브 코일(430))의 반시계 방향으로 권취된 제1 부분(411)(또는, 제1 부분(431))이 인접한 제3 서브 코일(미도시)의 반시계 방향으로 권취된 제1 부분과 서로 적어도 일부가 중첩되고, 제1 서브 코일(410)(또는, 제2 서브 코일(430))의 시계 방향으로 권취된 제2 부분(413)(또는, 제2 부분(433))이 인접한 제3 서브 코일(미도시)의 시계 방향으로 권취된 제2 부분과 서로 적어도 일부가 중첩될 수 있다. 다양한 실시예들에 따르면, 인접한 서브 코일들의 제1 부분들이 중첩된 영역 및/또는 제2 부분들이 중첩된 영역을 통해, 서브 코일들(410, 430) 주변에 이물질이 배치될 때 발생하는 유기 전압 변동이 증가(예: 2배)할 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 인접한 서브 코일들(410, 430)은, 교번적으로 배치될 수 있다. 예를 들어, 도 4b의 (a) 및 (b)를 참조하면, 제1 서브 코일(410)은, 제1 부분(411)이 PCB의 제1 면(예: 하측면)에 위치하고 제2 부분(413)이 상기 PCB의 제2 면(예: 상측면)에 위치하도록 배치될 수 있다. 제1 서브 코일(410)에 인접한 제2 서브 코일(430)은, 제1 부분(431)이 상기 PCB의 제2 면(예: 상측면)에 위치하고 제2 부분(433)이 상기 PCB의 제1 면(예: 하측면)에 위치하도록 배치될 수 있다. 도시되지 않았으나, 제2 서브 코일(430)에 인접한 제3 서브 코일(미도시)는, 제1 부분이 PCB의 제1 면(예: 하측면)에 위치하고 제2 부분이 상기 PCB의 제2 면(예: 상측면)에 위치하도록 배치될 수 있다. 상술한 복수의 서브 코일들의 배치를 표로 정리해보면, 예시적으로 표 1과 같을 수 있다.
제1 서브 코일 제2 서브 코일 제3 서브 코일 ...
권취 방향 CCW CW CW CCW CCW CW ...
배치된 면(layer) ...
도 5a는, 다양한 실시예들에 따른, 검출 코일(예: 도 2의 검출 코일(100))의 배치를 설명하기 위한 도면이다. 도 5b는, 다양한 실시예들에 따른, 검출 코일(예: 도 2의 검출 코일(100))이 커버(cover)하는 영역을 설명하기 위한 도면이다.도 5a의 (a) 및 (b)를 참조하면, 커버리지(coverage) 영역(501)은, 검출 코일(100)이 배치되는 영역을 나타낸다. 다양한 실시예들에 따르면, 검출 코일(100)은, 도전성 패턴(224)을 커버하도록 배치될 수 있다. 예를 들어, 검출 코일(100)은, x-y 평면을 기준으로, 도전성 패턴(224)의 면적을 초과하도록 배치될 수 있다. 예를 들어, 검출 코일(100)의 서브 코일(예: 도 3a의 서브 코일(300))들은, 육각형의 커버리지 영역(501)을 점유(occupy)하도록 배치될 수 있다. 다양한 실시예들에 따르면, 다양한 실시예들에 따르면, 검출 코일(100)은, 도전성 패턴(224) 및 페라이트(503)에 대하여, 상측에(예: + z 방향) 배치될 수 있다.도 5b의 (a)를 참조하면, 검출 코일(100)이 포함하는 서브 코일(예: 도 3a의 서브 코일(300)들 중 어느 하나가 도시된다. 예를 들어, 서브 코일(300)은, 가로 길이(예: x축 방향의 길이)가 a이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 h인 정삼각형의 제1 부분(예: 도 3a의 제1 부분(301))과 역삼각형의 제2 부분(예: 도 3a의 제2 부분(303))을 포함할 수 있다.
도 5b의 (b)를 참조하면, 정육각형의 커버리지 영역(501)이 도시된다. 예를 들어, 커버리지 영역(501)은, 가로 길이(예: x축 방향의 길이)가 X이고, 세로 길이(예: y축 방향의 길이)가 Y일 수 있다. 다양한 실시예들에 따르면, 검출 코일(100)의 서브 코일들(예: 서브 코일(300))이 가로 길이가 X이고, 세로 길이가 Y인 커버리지 영역(501)을 점유하기 위하여, 검출 코일(100)은 가로 방향(예: x축 방향)으로 m개, 세로 방향(예: y축 방향)으로 n개의 서브 코일들을 포함할 수 있으며, m과 n의 관계는 수학식 4 내지 6로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000004
Figure PCTKR2022005075-appb-M000005
Figure PCTKR2022005075-appb-M000006
도 6은, 다양한 실시예들에 따른, 서로 인접한 서브 코일들(410, 430)의 배치를 설명하기 위한 도면이다.
도 6의 (a)를 참조하면, 검출 코일(100)은, 커버리지 영역(501)을 점유하도록 배치된 서브 코일들(예: 도 3a의 서브 코일(300))을 포함할 수 있다. 다양한 실시예들에 따르면, 서브 코일들(예: 서브 코일(300))은 인접한 서브 코일들과 서로 직렬로 연결될 수 있고, 일 방향(예: 검출 코일(100)의 정면 방향)에서 바라보았을 때, 인접한 서브 코일과 적어도 일부가 중첩되도록 배치될 수 있다.
도 6의 (b)를 참조하면, 검출 코일(100)의 행(row) 방향의 일부를 확대한 모습이 도시된다.
다양한 실시예들에 따르면, 제1 서브 코일(410) 및 제2 서브 코일(430)은, 동일한 PCB에서, 교번적으로 배치될 수 있다. 도 6의 (b)를 참조하면, 각 서브 코일의 '점선'으로 표시된 부분들은 상기 PCB의 제1 면(예: 하측면)에 위치하는 부분들을 나타내고, 각 서브 코일의 '실선'으로 표시된 부분들은 상기 PCB의 제2 면(예: 상측면)에 위치하는 부분들을 나타낸다. 이와 같이, 제1 면(예: 하측면) 상에서, 제1 서브 코일(410)의 제1 부분(411)과 제2 서브 코일(430)의 제2 부분(433)이 서로 중첩되지 않으면서 서로 인접하도록 배치되고, 제2 면(예: 상측면) 상에서, 제1 서브 코일(410)의 제2 부분(413)과 제2 서브 코일(430)의 제1 부분(431)이 서로 중첩되지 않으면서 서로 인접하도록 배치될 수 있다. 도시되지 않았으나, 제1 서브 코일(410)의 좌측 또는 제2 서브 코일(430)의 우측에, 다른 서브 코일들이 더 배치될 수 있으며, 상기 다른 서브 코일들은, 중심이 제1 서브 코일(410)의 중심(O1)과 제2 서브 코일(430)의 중심(O2)을 이은 연장선 상에 위치하도록 배치될 수 있다.
다양한 실시예들에 따르면, 제1 서브 코일(410) 및 제2 서브 코일(430)은, 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 동일한 방향으로 권취된 부분들이 서로 중첩되도록 배치될 수 있다. 예를 들어, 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(410)의 반시계 방향으로 권취된 제1 부분(411)은, 인접한 제2 서브 코일(430)의 반시계 방향으로 권취된 제1 부분(431)과 중첩될 수 있다. 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(410)의 시계 방향으로 권취된 제2 부분(413)은, 인접한 제2 서브 코일(430)의 시계 방향으로 권취된 제2 부분(433)과 중첩될 수 있다.
다양한 실시예들에 따르면, 제1 서브 코일(410) 및 제2 서브 코일(430)은, 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 상이한 방향으로 권취된 부분들이 서로 중첩되지 않도록 배치될 수 있다. 예를 들어, 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(410)의 반시계 방향으로 권취된 제1 부분(411)은, 인접한 제2 서브 코일(430)의 시계 방향으로 권취된 제2 부분(433)과 중첩되지 않을 수 있다. 일 방향(예: 서브 코일들(410, 430)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(410)의 시계 방향으로 권취된 제2 부분(413)은, 인접한 제2 서브 코일(430)의 반시계 방향으로 권취된 제1 부분(431)과 중첩되지 않을 수 있다.
다양한 실시예들에 따르면, 참조 부호 601은, 제1 서브 코일(410) 및/또는 제2 서브 코일(430)의 제1 영역(예: 도 3a의 제1 영역(305))(다른 말로, 널 영역)을 나타내고, 참조 부호 603은, 제1 서브 코일(410) 및/또는 제2 서브 코일(430)의 제2 영역(예: 도 3a의 제2 영역(307))(다른 말로, 검출 영역)을 나타낸다. 도시된 바와 같이, 제1 서브 코일(410)의 검출 영역은, 제2 서브 코일(430)의 검출 영역 및 좌측에 인접한 서브 코일(미도시)의 검출 영역과 중첩되고, 제2 서브 코일(430)의 검출 영역은, 제1 서브 코일(410)의 검출 영역 및 우측에 인접한 서브 코일(미도시)의 검출 영역과 중첩될 수 있다. 예를 들어, 참조 부호 603가 지시하는 영역들 중 하측 영역들은, 인접한 서브 코일들의 제1 부분들(예: 반시계 방향으로 권취된 부분들)이 형성하는 검출 영역들이 중첩된 영역이고, 참조 부호 603가 지시하는 영역들 중 상측 영역들은, 인접한 서브 코일들의 제2 부분들(예: 시계 방향으로 권취된 부분들)이 형성하는 검출 영역들이 중첩된 영역을 나타낼 수 있다. 다양한 실시예들에 따르면, 각 서브 코일의 검출 영역이, 인접한 서브 코일들의 검출 영역과 적어도 일부 중첩됨에 기반하여, 중첩된 검출 영역을 통한 이물질 검출(FOD)의 정확도가 증가할 수 있다. 예를 들어, 서로 동일한 방향(예: 시계 방향 또는 반시계 방향)으로 권취된 부분들(예: 제1 부분 또는 제2 부분)에 의한 검출 영역들이 서로 중첩됨에 기반하여, 각 검출 영역을 통해 발생하는 유기 전압 변동의 신호대잡음비(SNR)은, 중첩된 횟수만큼(예: 2배) 증가할 수 있다.
도 7은, 다양한 실시예들에 따른, 정육각형 형상의 서브 코일들(710, 730, 750)(예: 도 3a의 서브 코일(300)) 간의 배치 및/또는 연결 관계를 설명하기 위한 도면이다.
도 7의 (a)를 참조하면, 다양한 실시예들에 따르면, 제1 서브 코일(710)은, 반시계 방향으로 권취된 제1 부분(711) 및 시계 방향으로 권취된 제2 부분(713)을 포함할 수 있다. 다양한 실시예들에 따르면, 제1 부분(711) 및 제2 부분(713)은 각각 정육각형 형상을 가질 수 있다. 다양한 실시예들에 따르면, 제2 부분(713)은, 일 지점(O)을 수직 방향으로 관통하는 축을 기준으로, 제1 부분(711)의 형상에서 180도만큼 회전(예: 점 대칭)된 형상을 가질 수 있다. 다양한 실시예들에 따르면, 제2 부분(713)은, 일 지점(O)을 수직 방향으로 관통하는 축을 기준으로, 제1 부분(711)의 형상에서 상하 반전(예: 선 대칭)된 형상을 가질 수 있다.
다양한 실시예들에 따르면, 제1 부분(711) 및 제2 부분(713)은, 서로 연결(예: 직렬 연결)될 수 있다. 다양한 실시예들에 따르면, 제1 부분(711)은 PCB의 제1 면(예: 하측면) 상에 배치되고, 제2 부분(713)은 상기 PCB의 제2 면(예: 상측면) 상에 배치될 수 있다. 도 7의 (a) 및 (b)를 참조하면, '점선'으로 표시된 부분들은 상기 PCB의 제1 면(예: 하측면) 상에 배치된 부분들을 나타내고, '실선'으로 표시된 부분들은 상기 PCB의 제2 면(예: 상측면) 상에 배치된 부분들을 나타낸다.
다양한 실시예들에 따르면, 서로 다른 방향으로 권취된 제1 부분(711)과 제2 부분(713)은, 적어도 일부가 서로 중첩됨에 기반하여, 널 영역(예: 도 3a의 제1 영역(305))이 형성될 수 있다. 다양한 실시예들에 따르면, 서로 다른 방향으로 권취된 제1 부분(711)과 제2 부분(713)은, 적어도 일부가 서로 중첩되지 않음에 기반하여, 검출 영역(예: 도 3a의 제2 영역(305))이 형성될 수 있다.
도 7의 (b)를 참조하면, 다양한 실시예들에 따르면, 동일한 PCB 상에서, 복수의 서브 코일들이 교번적으로 배치될 수 있다. 도 7의 (b)를 참조하면, 제2 서브 코일(730) 및 제3 서브 코일(750)이 제1 서브 코일(710)에 인접하도록 배치될 수 있다. 인접한 제2 서브 코일(730)은, 반시계 방향으로 권취된 제1 부분(731)이 제2 면(예: 상측면)에 위치하고, 시계 방향으로 권취된 제2 부분(733)이 제1 면(예: 하측면)에 위치하도록 배치될 수 있다. 인접한 제3 서브 코일(750)은, 반시계 방향으로 권취된 제1 부분(751)이 제2 면(예: 상측면)에 위치하고, 시계 방향으로 권취된 제2 부분(753)이 제1 면(예: 하측면)에 위치하도록 배치될 수 있다.
다양한 실시예들에 따르면, 일 방향(예: 서브 코일들(710, 730, 750)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(710)의 검출 영역은 제2 서브 코일(730)의 검출 영역 및/또는 제3 서브 코일(750)의 검출 영역과 적어도 일부 중첩될 수 있다. 도 6에서 상술한 바와 같이, 서로 동일한 방향으로 권취된 부분들에 의한 검출 영역들이 서로 중첩됨에 기반하여, 중첩된 검출 영역을 통한 이물질 검출(FOD)의 정확도가 증가할 수 있다.
다양한 실시예들에 따르면, 일 방향(예: 서브 코일들(710, 730, 750)의 정면 방향)에서 바라보았을 때, 제1 서브 코일(710)은, 제2 서브 코일(730) 및 제3 서브 코일(750)과, 상이한 방향으로 권취된 부분들이 서로 중첩되지 않도록 배치될 수 있다. 예를 들어, 제1 서브 코일(710)의 반시계 방향으로 권취된 제1 부분(711)은, 인접한 제2 서브 코일(730)의 시계 방향으로 권취된 제2 부분(733) 및 인접한 제3 서브 코일(750)의 시계 방향으로 권취된 제2 부분(753)과 중첩되지 않을 수 있다. 제1 서브 코일(710)의 시계 방향으로 권취된 제2 부분(713)은, 인접한 제2 서브 코일(730)의 반시계 방향으로 권취된 제1 부분(731) 및 인접한 제3 서브 코일(750)의 반시계 방향으로 권취된 제1 부분(751)과 중첩되지 않을 수 있다.
도 8a는, 다양한 실시예들에 따른, 복수의 검출 코일들(810, 830)의 배치의 일 예를 설명하기 위한 도면이다. 도 8b는, 다양한 실시예들에 따른, 복수의 검출 코일들(810, 830)의 배치의 다른 예를 설명하기 위한 도면이다.
다양한 실시예들에 따르면, 무선 전력 송신기(예: 도 2의 무선 전력 송신기(200))는, 둘 이상의 검출 코일(예: 도 2의 검출 코일(100))들을 포함할 수 있다. 예를 들어, 무선 전력 송신기(200)는, 제1 검출 코일(810) 및 제2 검출 코일(830)을 포함할 수 있다. 도 8a의 (a) 또는 도 8b의 (a)를 참조하면, 다양한 실시예들에 따르면, 제1 검출 코일(810)은 제1 PCB(801a)의 적어도 일면 상에 배치되고, 제2 검출 코일(830)은 제1 PCB(801a)의 아래에 위치하는 제2 PCB(801b)의 적어도 일면 상에 배치될 수 있다. 예를 들어, 제1 검출 코일(810) 및 제2 검출 코일(830)을 구성하는 각 부분들(예: 시계 방향 또는 반시계 방향으로 권취된 부분들)은, 도 6에서 상술한 바와 같이, 제1 PCB(801a)의 제1, 2 면(예: 하측면 및 상측면) 또는 제2 PCB(801b)의 제1, 2 면(예: 하측면 및 상측면) 상에 교번적으로 배치될 수 있다.
도 8a의 (b), (c) 및 도 8b의 (b), (c)를 참조하면, '실선'으로 표시된 부분들은 제1 PCB(801a)의 적어도 일면 상에 배치된 부분들이고, '점선'으로 표시된 부분들은 제2 PCB(801b)의 적어도 일면 상에 배치된 부분들을 나타낸다. '빗금'으로 표시된 영역들은 각 검출 코일(810, 830) 내에서의 널 영역(예: 도 3a의 제1 영역(305))를 나타낸다. 널 영역(예: 도 3a의 제1 영역(305)) 상에서는, 이물질(예: 도 1a의 이물질(2))이 배치되더라도, 유기 전압들(예: 유기 전압들의 변동)이 상쇄되어, 유기 전압 변동이 검출되지 않을 수도 있다.
다양한 실시예들에 따르면, 제1 검출 코일(810)과 제2 검출 코일(830)은, 일정 거리만큼 차이를 가지도록 배치될 수 있다. 예를 들어, 도 8a의 (b), (c)를 참조하면, 일 방향(예: 제1 검출 코일(810) 및 제2 검출 코일(830)의 정면 방향)에서 바라보았을 때, 제2 검출 코일(830)은, 일 지점(O)을 기준으로, 상기 일 방향(예: 정면 방향)에 수직한 방향(예: 행 방향(→))으로, 거리(d)만큼 차이를 가지도록 배치될 수 있다. 일 실시예에 따르면, 일 방향(예: 제1 검출 코일(810) 및 제2 검출 코일(830)의 정면 방향)에서 바라보았을 때, 제2 검출 코일(830)은, 일 지점(O)을 기준으로, 상기 일 방향(예: 정면 방향)에 수평한 방향(예: 정면 방향)으로, 거리만큼 차이를 가지도록 배치될 수도 있다. 일 실시예에 따르면, 일 방향(예: 제1 검출 코일(810) 및 제2 검출 코일(830)의 정면 방향)에서 바라보았을 때, 제2 검출 코일(830)은, 일 지점(O)을 기준으로, 상기 일 방향(예: 정면 방향)에 수직한 방향(예: 행 방향(→))으로 제1 거리만큼 및 상기 일 방향(예: 정면 방향)에 수평한 방향(예: 정면 방향)으로 제2 거리만큼 차이를 가지도록 배치될 수도 있다.
다양한 실시예들에 따르면, 제1 검출 코일(810)과 제2 검출 코일(830)은, 일정 각도만큼 차이를 가지도록 배치될 수 있다. 예를 들어, 도 8b의 (b), (c)를 참조하면, 일 방향(예: 제1 검출 코일(810) 및 제2 검출 코일(830)의 정면 방향)에서 바라보았을 때, 제2 검출 코일(830)은, 일 지점(O)을 기준으로, 각도(θ)만큼 차이를 가지도록 배치될 수 있다.
다양한 실시예들에 따르면, 제1 검출 코일(810)과 제2 검출 코일(830)이 일정 거리(d) 및/또는 일정 각도(θ)만큼 차이를 가지도록 배치됨에 기반하여, 널 영역(예: 빗금 영역)의 적어도 일부가 상쇄될 수 있다. 예를 들어, 도 8a의 (d) 또는 도 8b의 (d)를 참조하면, 일 방향(예: 제1 검출 코일(810) 및 제2 검출 코일(830)의 정면 방향)에서 바라보았을 때, 제1 검출 코일(810)의 널 영역(예: 빗금 영역) 중 일부의 아래에, 제2 검출 코일(830)의 검출 영역(예: 빗금이 없는 영역)이 위치할 수 있다. 제1 검출 코일(810)의 널 영역(예: 빗금 영역) 중 일부의 아래에 제2 검출 코일(830)의 검출 영역(예: 빗금 표시되지 않은 영역)이 위치함에 따라서, 제1 검출 코일(810)의 널 영역(예: 빗금 영역) 중 일부 상에 이물질(2)이 배치될 때 제2 검출 코일(830)을 통해 유기 전압 변동이 검출되고, 이를 통해, 제1 검출 코일(810)의 널 영역(예: 빗금 영역) 중 일부 상에 위치하는 이물질(2)의 존재가 확인될 수 있다. 예를 들어, 도 8a의 (d) 또는 도 8b의 (d)를 참조하면, '점'으로 표시된 영역(853)들은, 제1 검출 코일(810)만이 포함될 때 이물질(2)의 존재가 확인되지 않는 영역(예: 도 8a의 (b) 또는 도 8b의 (b)의 빗금 영역) 중, 제2 검출 코일(830)이 포함됨에 따라서 이물질(2)의 존재가 확인 가능하도록 변경된 영역을 나타낸다. 다시 말해, 제1 검출 코일(810)만을 이용할 때 이물질 검출(FOD)이 가능한 영역(예: 도 8a의 (b) 또는 도 8b의 (b)의 빗금 영역을 제외한 나머지 영역)보다, 제1, 2 검출 코일(810, 830)을 이용할 때 이물질 검출(FOD)이 가능한 영역(예: 참조 부호 851이 지시하는 영역을 제외한 나머지 영역)이 참조 부호 853이 지시하는 영역만큼 더 넓을 수 있다.
도 9는, 다양한 실시예들에 따른, 무선 전력 송신기(200)의 구성 요소들을 설명하기 위한 블록도이다.
다양한 실시예들에 따르면, 고가형 무선 전력 송신기의 전력 어댑터(예: 도 2의 전력 어댑터(221))는 PFC(power factor correction) 회로를 포함하는 반면, 저가형 무선 전력 송신기의 전력 어댑터(221)는, PFC 회로를 포함하지 않고, 필터 커패시터(filter capacitor)를 포함할 수 있다. 저가형 무선 전력 송신기는, PFC 회로를 포함하지 않기 때문에, 외부 전원(예: 계통 전원)의 변동, 인버터(예: 도 2의 전력 생성 회로(222))의 입력 전압의 변동 및/또는 인버터(예: 전력 생성 회로(222))의 동작에 따라서, 전송 코일(예: 도 2의 도전성 패턴(224))로부터 생성되는 자기장에 변동이 발생할 수 있다. 예를 들어, 계통 전원으로부터 필터 커패시터(예: 전력 어댑터(221))에 입력되는 교류 전압에 변동이 발생할 수 있다. 예를 들어, 필터 커패시터(예: 전력 어댑터(221))로부터 출력되어 인버터(예: 전력 생성 회로(222))로 입력되는 전압에 고조파 왜곡(total harmonic distortion, THD)이 발생할 수 있다. 이로 인해, 전송 코일(예: 도전성 패턴(224))에 입력되는 전류의 크기가 변동될 수 있다. 예를 들어, 무선 전력 송신기가 출력 전력을 송신하기 전 모드(예: pre-power mode)인지, 출력 전력을 송신하는 중인 모드(예: during-power mode)인지 또는 송신 중인 출력 전력의 양에 따라서, 제어 회로(212)는 인버터(예: 전력 생성 회로(222))의 동작 주파수(예: 스위칭 주파수)를 조정할 수 있으며, 전송 코일(예: 도전성 패턴(224))에 입력되는 전류의 주파수가 변동될 수 있다. 상술한 요인들로 인하여, 전송 코일(예: 도전성 패턴(224))에 입력되는 전류(예: Tx 전류)의 크기 및/또는 주파수가 변동됨에 따라서 전송 코일(예: 도전성 패턴(224))로부터 생성되는 자기장의 크기 및/또는 주파수가 변동되고, 이물질(FO)의 존재 여부와 무관하게, 검출 코일(100)의 유기 전압에 변동이 발생할 수 있다.
이하에서는, 전력 어댑터(221)로 PFC 회로를 포함하지 않고 필터 커패시터를 포함하는 저가형 무선 전력 송신기의 동작들을 설명하도록 한다.
다양한 실시예들에 따르면, 무선 전력 송신기(200)는, 검출 코일(100), 센싱 회로(215) 및/또는 제어 회로(212)를 포함할 수 있다. 다양한 실시예들에 따르면, 센싱 회로(215)는, 보상 회로(910) 및/또는 증폭 회로(930)를 포함할 수 있다.
다양한 실시예들에 따르면, 센싱 회로(215)는, 검출 코일(100)의 전압(예: 유기 전압)을 센싱할 수 있다. 다양한 실시예들에 따르면, 센싱 회로(215)는, 센싱된 전압(예: 유기 전압)에 기반한 값을 제어 회로(212)로 출력할 수 있다.
다양한 실시예들에 따르면, 보상 회로(910)는, 레퍼런스 포인트(950)의 값에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있다. 예를 들어, 레퍼런스 포인트(950)는, 검출 코일(100)의 일부의 출력단, 인버터(예: 전력 생성 회로(222))의 입력단(예: 필터 커패시터(예: 전력 어댑터(221))의 출력단, 또는 제어 회로(212)(또는, PWM(pulse width modulation) 회로)의 출력단), 또는 인버터(예: 전력 생성 회로(222))의 출력단(예: 검출 코일(100)의 입력단) 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 보상 회로(910)는, 검출 코일(100)의 일부의 출력단에서 센싱된 전압(예: 유기 전압)에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있다. 예를 들어, 검출 코일(100)은, 서로 직렬로 연결된 제1 서브 코일들 및 서로 직렬로 연결된 제2 서브 코일들을 포함할 수 있다. 일 예로, 제1 서브 코일들은 커버리지 영역(예: 도 5의 커버리지 영역(501))의 제1 부분(예: 내측 부분)에 위치하는 서브 코일들이고, 제2 서브 코일들은 커버리지 영역(501)의 제2 부분(예: 제1 부분의 주변 부분)에 위치하는 서브 코일들일 수 있다. 보상 회로(910)는, 제2 서브 코일들에 대응하는 전압(예: 유기 전압)을 제2 채널의 값으로 입력 받고, 제1 서브 코일들에 대응하는 전압(예: 유기 전압)을 제1 채널의 값으로 입력 받을 수 있다. 보상 회로(910)는, 제2 채널의 값(예: 제2 서브 코일들로부터 센싱된 유기 전압)에 기반하여, 제1 채널의 값(예: 제1 서브 코일들로부터 센싱된 유기 전압)을 보상할 수 있다.
일 실시예에 따르면, 보상 회로(910)는, 인버터(예: 전력 생성 회로(222))의 입력단(예: 필터 커패시터(예: 전력 어댑터(221))의 출력단, 또는 제어 회로(212)의 출력단)에서 센싱된 값에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있다. 예를 들어, 보상 회로(910)는, 필터 커패시터(예: 전력 어댑터(221))의 출력단에서 센싱된 전압(예: DC 링크 전압)을 제2 채널의 값으로 입력 받을 수 있다. 필터 커패시터(예: 전력 어댑터(221))의 출력단에서의 전압은 전압 센서(예: 전압 분배 회로)에 의해 센싱될 수 있으며, 보상 회로(910)는, 전압 센서의 출력 값을 제2 채널의 값으로 입력 받을 수 있다. 다른 예로, 보상 회로(910)는, 제어 회로(212)의 출력단에서 센싱된 전압을 제2 채널의 값으로 입력 받을 수 있다. 더욱 상세하게는, 제어 회로(212)는 PWM 회로를 포함하거나, 제어 회로(212)의 외부에 배치된 PWM 회로를 제어할 수 있다. 제어 회로(212)에 포함되거나 외부에 배치된 PWM 회로는, 인버터(예: 전력 생성 회로(222))와 연결될 수 있다. 제어 회로(212)는, PWM 회로의 듀티 싸이클(duty cycle)을 조정하여, 인버터(예: 전력 생성 회로(222))의 동작 주파수를 조정할 수 있다. 보상 회로(910)는, PWM 회로의 출력 전압을 제2 채널의 값으로 입력 받을 수 있다. 검출 코일(100)의 적어도 일부에 대응하는 전압(예: 유기 전압)을 제1 채널의 값으로 입력 받을 수 있다. 보상 회로(910)는, 제2 채널의 값(예: DC 링크 전압 또는 PWM 회로의 출력 전압)에 기반하여, 제1 채널의 값(예: 유기 전압)을 보상할수 있다.
일 실시예에 따르면, 보상 회로(910)는, 인버터(예: 전력 생성 회로(222))의 출력단(예: 검출 코일(100)의 입력단)에서 센싱된 값에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있다. 예를 들어, 보상 회로(910)는, 검출 코일(100)의 입력단에서 센싱된 전류(예: Tx 전류)(또는, Tx 전압)을 제2 채널의 값으로 입력 받을 수 있다. 예를 들어, 검출 코일(100)의 입력단에서 센싱된 전류(예: Tx 전류)는 전류 센서(예: 센싱 저항 및/또는 홀(hall) 센서)에 의해 센싱될 수 있으며, 보상 회로(910)는, 전류 센서의 출력 값을 제2 채널의 값으로 입력 받을 수 있다. 보상 회로(910)는, 검출 코일(100)의 적어도 일부에 대응하는 전압(예: 유기 전압)을 제1 채널의 값으로 입력 받을 수 있다. 보상 회로(910)는, 제2 채널의 값(예: Tx 전류)(또는, Tx 전압)에 기반하여, 제1 채널의 값(예: 유기 전압)을 보상할 수 있다.
다양한 실시예들에 따르면, 보상 회로(910)는, 상술한 레퍼런스 포인트(950)의 값에 기반하여 검출 코일(100)의 전압(예: 유기 전압)을 정규화(normalize)하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있으며, 후술하는 도면을 통해 더욱 상세하게 설명하도록 한다.
다양한 실시예들에 따르면, 보상 회로(910)는, 제어 회로(212)로부터 입력된 보정 값에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보상할 수 있다. 예를 들어, 제어 회로(212)는, 무선 전력 수신기(예: 도 2의 무선 전력 수신기(250))의 유무, 무선 전력 수신기(250)의 배치 및/또는 무선 전력 송신기(200)의 동작 모드에 기반하여, 미리 지정된 보정 값(예: 오프셋(offset) 값)을 보상 회로(910)에 입력할 수 있다. 제어 회로(212)는, 전송 코일(예: 도전성 패턴(224))의 임피던스를 측정하여, 무선 전력 송신기(200) 상에(예: 충전 패드 상에) 무선 전력 수신기(250)의 존재 여부를 확인하고, 무선 전력 수신기(250)의 존재 여부에 따라서 상이한 보정 값을 보상 회로(910)에 입력할 수 있다. 제어 회로(212)는, 전송 코일(예: 도전성 패턴(224))의 임피던스 및 무선 전력 수신기(250)의 수신 전력 정보(예: 수신 전력량)에 기반하여, 전송 코일(예: 도전성 패턴(224))에 대한 무선 전력 수신기(250)가 배치된 정렬 상태를 확인하고, 무선 전력 수신기(250)의 정렬 상태(예: 정렬(align) 또는 미정렬(misalign))에 따라서 상이한 보정 값을 보상 회로(910)에 입력할 수 있다. 제어 회로(212)는, 무선 전력 송신기(200)가 출력 전력을 송신하기 전 모드(예: pre-power mode)인지, 출력 전력을 송신하는 중인 모드(예: during-power mode)인지에 따라서 상이한 보정 값을 보상 회로(910)에 입력할 수 있다. 보상 회로(910)는, 제어 회로(212)로부터 입력된 보정 값에 기반하여, 검출 코일(100)의 전압(예: 유기 전압)을 보정(예: 오프셋을 적용)할 수 있다. 예를 들어, 보상 회로(910)는, 검출 코일(100)의 전압(예: 유기 전압)에서, 입력된 보정 값에 대응하는 전압만큼 오프셋을 적용(예: 감산)할 수 있다. 예를 들어, 오프셋이 적용되는 전압은, 제어 회로(212)로부터 입력되는 보정 값에 따라서 상이할 수 있으며, 미리 설정될 수 있다.
다양한 실시예들에 따르면, 증폭 회로(930)는, 보상 회로(910)로부터 출력된 전압(예: 보상된 전압)을 증폭할 수 있다. 예를 들어, 증폭 회로(930)는, 적어도 하나의 OP-amp(operational amplifier)를 포함할 수 있다. 예를 들어, 증폭 회로(930)는, 보상 회로(910)의 출력 전압을 정수배(예: 5배)의 전압으로 증폭할 수 있다.
다양한 실시예들에 따르면, 제어 회로(212)는, 마이크로프로세서 또는 MCU(micro controlling unit)로 구현될 수도 있으나, 제한은 없다. 다양한 실시예들에 따르면, 제어 회로(212)는, 아날로그 소자를 포함하도록 구현될 수도 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 센싱 회로(215)(예: 증폭 회로(930))로부터 출력된 값에 기반하여, 도전성 패턴(예: 도 2의 도전성 패턴(224))을 통한 무선 전력의 송신 여부를 결정하거나, 및/또는 출력 장치를 통해 알림을 출력하도록 제어할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 무선 전력 수신기(250)의 유무, 무선 전력 수신기(250)의 배치 및/또는 무선 전력 송신기(200)의 동작 모드에 기반하여, 미리 지정된 보정 값(예: 오프셋 값)을 보상 회로(910)에 입력할 수 있다.
도 10a는, 다양한 실시예들에 따른, 유기 전압 보상을 위해 채널들을 설정하는 방법의 일 예를 도시한다. 도 10b는, 다양한 실시예들에 따른, 유기 전압 보상을 위한 센싱 회로(215)의 일 예를 도시한다.
도 10a를 참조하면, 다양한 실시예들에 따른, 커버리지 영역(예: 도 5의 커버리지 영역(501))에 배치된 서브 코일들의 패턴이 도시된다. 다양한 실시예들에 따르면, 검출 코일(100)의 일부가 제2 채널로 설정될 수 있다. 예를 들어, 검출 코일(100)의 서브 코일들(예: 도 3a의 서브 코일(300)) 중 커버리지 영역(501)의 내측 부분에 위치하는 서브 코일들이 제1 채널(예: CH#1)로 설정되고, 외측 부분에 위치하는 서브 코일들이 제2 채널(예: CH#2)로 설정될 수 있다. 다양한 실시예들에 따르면, 동일한 채널로 설정된 서브 코일들은 서로 연결(예: 직렬 연결)될 수 있다.
일 실시예에 따르면, 필터 커패시터(예: 전력 어댑터(221)), 제어 회로(212)(또는, PWM 회로), 또는 인버터(예: 전력 생성 회로(222))가 제2 채널(예: CH#2)로 설정될 수도 있다. 이 경우, 검출 코일(100)을 구성하는 서브 코일들의 전부 또는 일부가 제1 채널(예: CH#1)로 설정될 수 있다. 일 실시예에 따르면, 검출 코일(100)의 일부, 필터 커패시터(예: 전력 어댑터(221)), 제어 회로(212)(또는, PWM 회로) 또는 인버터(예: 전력 생성 회로(222)) 중 둘 이상이 제2 채널들로 설정될 수도 있다.
도 10b를 참조하면, 다양한 실시예들에 따른, 센싱 회로(215)의 회로도가 도시된다.
다양한 실시예들에 따르면, 센싱 회로(215)는, 제1 보상 회로(911) (예: 도 9의 보상 회로(910)), 제2 보상 회로(913)(예: 도 9의 보상 회로(910)) 및/또는 증폭 회로(930)를 포함할 수 있다. 이하에서는, 검출 코일(100)의 일부가 제2 채널(예: CH#2)로 설정된 실시예로 설명하도록 한다.
다양한 실시예들에 따르면, 제1 보상 회로(911)는, 검출 코일(100)의 전압(예: 제1 채널(예: 도 10a의 CH#1)의 유기 전압(V1))을 입력 받고, 레퍼런스 포인트의 값(예: 제2 채널(예: 도 10a의 CH#2)의 유기 전압(V2))에 기반하여, 입력 받은 전압(예: 제1 채널의 유기 전압(V1))을 보상할 수 있다.
다양한 실시예들에 따르면, 제1 보상 회로(911)는, RC 회로(911a, 911d)(예: 저역통과필터(lowpass filter, LPF)), 배율기(multiplier)(911b, 911e), 피크 검출기(peak detector)(911c, 911f) 및 정규화 회로(911g)를 포함할 수 있다. 피크 검출기(911f)는, 적어도 하나의 저항(R10, R11)을 포함하는 전압 분배기를 포함할 수 있다. 제1 보상 회로(911)는, 더미 로드(dummy load)(911h)를 더 포함할 수 있으며, 더미 로드(911h)는, 적어도 하나의 저항을 포함하는 전압 분배기로 구현될 수 있다. 일 예로, 저항(R1, R9, R18)은 1kΩ을 가지고, 저항(R5, R21)은 200kΩ을 가지고, 저항(R26)은 510kΩ을 가지고, 그 외 저항들은 100kΩ을 가지도록 설정될 수 있다. 커패시터(C1, C4, C7)는 1nF을 가지고, 커패시터(C2, C5)는 10nF을 가지고, 커패시터(C3, C6, C8)는 100nF을 가지도록 설정될 수 있다. 다이오드(D1 내지 D9)는 쇼트키(schottky) 다이오드로 구현될 수 있다.
다양한 실시예들에 따르면, RC 필터(911a)에 제1 채널(CH#1)의 제1 전압(예: 유기 전압(V1))이 인가되면, 필터된 전압(V11)이 출력될 수 있다. 다양한 실시예들에 따르면, 피크 검출기(911c)의 출력 전압(V12)은, 정규화 회로(911g)에 입력될 수 있다. 예를 들어, 출력 전압(V12)은, 회로도의 소자들이 상술한 예시에 따른 소자값들을 가질 때, 2V11의 크기를 가질 수 있다.
다양한 실시예들에 따르면, 더미 로드(911h)에 Vcc이 인가되면, 전압(Vd)가 출력되어 정규화 회로(911g)에 입력될 수 있다. 다양한 실시예들에 따르면, 전압(Vd)은 1V일 수 있으며, 1V의 전압이 정규화 회로(911g)에 입력되도록 하는 크기의 Vcc가 더미 로드(911h)에 인가될 수 있다. 다양한 실시예들에 따르면, RC 회로(911d)(예를 들어, RC 필터)에 제2 채널(CH#2)의 제2 전압(예: 유기 전압(V2))이 인가되면, 필터된 전압(V21)이 출력될 수 있다. 다양한 실시예들에 따르면, 피크 검출기(911f)의 출력 전압(V22)은, 정규화 회로(911g)에 입력될 수 있다. 예를 들어, 출력 전압(V22)은, 수학식 7로 산출될 수 있다. 'a'는, 회로도의 소자들이 상술한 예시에 따른 소자값들을 가질 때, 2의 값을 가질 수 있다.
Figure PCTKR2022005075-appb-M000007
다양한 실시예들에 따르면, 정규화 회로(911g)에 전압들(예: V12, Vd, V22)이 입력될 수 있다. 다양한 실시예들에 따르면, 정규화 회로(911g)의 출력 전압(V3)은, 제2 보상 회로(913)에 입력될 수 있다. 예를 들어, 출력 전압(V3)은, 수학식 8로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000008
다양한 실시예들에 따르면, 정규화 회로(911g)의 출력 전압(V3)은, 2개의 채널들의 전압들(예: 유기 전압들)로부터 연산된 값들의 비율이기 때문에, 전송 코일(예: 도 2의 도전성 패턴(224))에 입력되는 전류(예: Tx 전류)의 변동과 무관한(예: Tx 전류의 변동에 영향을 받지 않는) 값을 가질 수 있다. 예를 들어, 출력 전압(V3)은, 외부 전원(예: 계통 전원)의 변동, 인버터(예: 도 2의 전력 생성 회로(222))의 입력 전압의 변동 및/또는 인버터(예: 전력 생성 회로(222))의 동작에 영향을 받지 않는 값을 가질 수 있다.
다양한 실시예들에 따르면, 제2 보상 회로(913)는, 제1 보상 회로(911)로부터 제1 채널(CH#1)의 전압 값(예: 유기 전압(V1)) 및 제2 채널(CH#2)의 전압 값(예: 유기 전압(V2))의 비율에 대한 전압 값(예: V3)을 입력 받고, 제어 회로(212)로부터 입력된 보정 값(예: VEE)에 기반하여, 입력 받은 비율에 대한 전압 값(예: V3)을 보상할 수 있다.
다양한 실시예들에 따르면, 제2 보상 회로(913)는, 네거티브(negative) 오프셋 회로(913a) 및 네거티브 전압 셀렉터(negative voltage selector)(913b)를 포함할 수 있다. 다양한 실시예들에 따르면, 네거티브 전압 셀렉터(913b)는, 제어 회로(예: 도 2의 제어 회로(212))로부터 입력된 보정 값(VEE)에 대응하는 전압(-Vneg)을 네거티브 오프셋 회로(913a)로 입력할 수 있다. 예를 들어, 제어 회로(212)는 제어 회로(212)는 PWM 회로를 포함하거나, 제어 회로(212)의 외부에 배치된 PWM 회로를 제어할 수 있다. 네거티브 전압 셀렉터(913b)는, RC 필터 및 OP-amp를 포함할 수 있다. 제어 회로(212)에 포함되거나 외부에 배치된 PWM 회로는, 적어도 하나의 입/출력 단자(예: general-purpose input/output, GPIO)를 통해 네거티브 전압 셀렉터(913b)와 연결될 수 있다. 제어 회로(212)는, PWM 회로를 이용하여, 네거티브 전압 셀렉터(913b)에 PWM 출력(예: 듀티 싸이클이 50%인 출력)을 입력할 수 있다. 네거티브 전압 셀렉터(913b)의 RC 필터는 상기 PWM 출력에 대응하는 크기를 가지는 전압(예: DC 전압)을 출력하고, 출력된 전압(예: DC 전압)은 네거티브 전압 셀렉터(913b)의 OP-amp에 의해 반전되어, 네거티브 오프셋 회로(913a)에 입력될 수 있다. 이를 통해, 예를 들어, 0V 내지 3.3V 범위에 포함되는 네거티브 전압(-Vneg)이 네거티브 전압 셀렉터(913b)로부터 네거티브 오프셋 회로(913a)에 입력될 수 있다. 다양한 실시예들에 따르면, 제2 보상 회로(913)는, 네거티브 전압(-Vneg)에 기반하여, 입력된 출력 전압(V3)에 오프셋을 적용하고, 오프셋이 적용된 전압(V4)을 출력할 수 있다. 예를 들어, 오프셋이 적용된 전압(V4)은, 수학식 9로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000009
다양한 실시예들에 따르면, 증폭 회로(930)는, 보상 회로(910)(예: 제2 보상 회로(913))로부터 출력된 제1 채널(CH#1)의 전압 값(예: 유기 전압(V1)) 및 제2 채널(CH#2)의 전압 값(예: 유기 전압(V2))의 비율에 기반한 값(예: V4)을 증폭하여, 증폭된 전압 값(예: VADC)을 제어 회로(212)(예: 제어 회로(212)의 ADC)로 출력할 수 있다. 예를 들어, 증폭 회로(930)는, 적어도 하나의 OP-amp(예: A8)를 포함할 수 있으며, 상기 OP-amp(예: A8)의 이득(gain)이 GA라면, 증폭 회로(930)의 출력 전압(VADC)는, 수학식 10으로 산출될 수 있다. 수학식 10은, R25 및 R26이 동일한 소자 값을 가지는 것을 전제로 산출된 것이다.
Figure PCTKR2022005075-appb-M000010
다양한 실시예들에 따르면, 수학식 10의 VADC는, 회로도의 소자들의 소자값들 및 네거티브 전압(Vneg)에 기반하여 미리 설정된 전압 값을 가질 수 있다.
다양한 실시예들에 따르면, 제1 채널(CH#1)에 대응하는 영역 상에(또는, 주변에) 이물질(예: 도 1a의 이물질(2))이 배치되면 제1 채널(CH#1)의 전압(예: 유기 전압(V1))에 변동(△V1)이 발생하며, 센싱 회로(215)(예: 증폭 회로(930))의 출력 값은 수학식 11로 산출될 수 있다.
Figure PCTKR2022005075-appb-M000011
다양한 실시예들에 따르면, 제어 회로(212)는, 이물질(2)이 배치되기 전 미리 설정된 전압 값(예: 수학식 10의 VADC)(다른 말로, 임계값)과 센싱 회로(215)(예: 증폭 회로(930))의 출력 값(예: 수학식 11의 V'ADC)의 차이에 기반하여, 이물질(2)의 존재 여부를 확인할 수 있다. 예를 들어, 제어 회로(212)는, 센싱 회로(215)(예: 증폭 회로(930))의 출력 값을 모니터링하여, 미리 설정된 값(예: VADC)이 아닌 값이 센싱 회로(215)(예: 증폭 회로(930))로부터 출력되거나, 및/또는 미리 설정된 값(예: VADC)과 지정된 크기(예: 200mV) 이상의 차이를 가지는 값이 센싱 회로(215)(예: 증폭 회로(930))로부터 출력됨을 확인하면, 검출 코일(예: 도 2의 검출 코일(100)) 상에(또는, 주변에) 이물질(2)이 존재한다고 확인할 수 있다. 제어 회로(212)는, 이물질(2)의 존재가 확인되면, 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 개시하지 않거나, 및/또는 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 중단할 수 있다. 제어 회로(212)는, 무선 전력 송신기(200)의 출력 장치(예: 스피커)를 통해 알림(예: 경고음)을 출력하거나, 및/또는 무선 전력 수신기(250)가 출력 장치(예: 스피커)를 통해 알림(예: 경고음)을 출력하도록 제어할 수 있다. 다양한 실시예들에 따르면, 제어 회로(212)는, 미리 설정된 값(예: VADC)과 오차 범위 이내(예: 지정된 크기(예: 200mV) 미만의 차이)의 값이 미리 설정된 값(예: VADC), 검출 코일(예: 도 2의 검출 코일(100)) 상에(또는, 주변에) 이물질(2)이 존재하지 않는다고 확인할 수 있다. 제어 회로(212)는, 이물질(2)의 존재가 확인되지 않으면, 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 개시하거나, 및/또는 무선 전력 수신기(250)로 무선으로 전력을 송신하는 동작을 지속할 수 있다.
일 실시예에 따르면, RC 회로(911d)에 입력되는 제2 채널(CH#2)의 값(예: 제2 전압)은, 인버터(예: 전력 생성 회로(222))의 입력단(예: 필터 커패시터(예: 전력 어댑터(221))의 출력단, 또는 제어 회로(212)의 출력단)에서 센싱된 값(예: DC 링크 전압, 또는 PWM 회로의 출력 전압)으로 대체될 수 있다. 이 경우, RC 회로(911d)는, 고역 통과 필터(highpass filter)로 대체될 수도 있다. 일 실시예에 따르면, RC 회로(911d)에 입력되는 제2 채널(CH#2)의 값(예: 제2 전압)은, 인버터(예: 전력 생성 회로(222))의 출력단(예: 검출 코일(100)의 입력단)에서 센싱된 값(예: Tx 전류 또는 Tx 전압)으로 대체될 수 있다.
일 실시예에 따르면, 제2 채널(CH#2)의 값은, 복수 개로 설정될 수도 있다. 예를 들어, 각 제2 채널마다 대응하는 소자들(예: 911d, 911e, 911f, 911g, A2, A3)을 복수 개씩 포함하여, 각 제2 채널의 값(예: 각 제2 채널에 대응하는 RC 회로의 입력단의 값)으로, 필터 커패시터(예: 전력 어댑터(221))의 출력단의 전압 값, 제어 회로(212)의 출력단의 전압 값 또는 검출 코일(100)의 입력단의 전류 값 중 어느 하나씩 입력될 수 있다.
도 11은, 다양한 실시예들에 따른, 검출 코일에 포함되는 서브 코일의 일 예를 도시한다. 일 실시 예에 따라, 검출 코일은 복수의 검출 코일(예: 도 1b의 검출 코일(100))의 적층 구조일 수 있으며, 복수의 검출 코일은 각각 다른 크기의 서브 코일(예: 도 3a의 서브 코일(300))을 포함할 수 있다. 도 11(a) 및 도 11(b)는 복수의 검출 코일 각각에 포함된 서브 코일일 수 있다.
도 11(a)를 참조하면, 다양한 실시예들에 따라, 서브 코일(예: 도 3a의 서브 코일(300))은 가로 길이(예: x축 방향의 길이)가 a이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 h인 정삼각형의 제1 부분(예: 도 3a의 제1 부분(301))과 역삼각형의 제2 부분(예: 도 3a의 제2 부분(303))을 포함할 수 있다.
도 11(b)를 참조하면, 다양한 실시예들에 따라, 서브 코일(예: 도 3a의 서브 코일(300))은 가로 길이(예: x축 방향의 길이)가 a'이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 h'인 정삼각형의 제1 부분(예: 도 3a의 제1 부분(301))과 역삼각형의 제2 부분(예: 도 3a의 제2 부분(303))을 포함할 수 있다. 일 실시 예에 따르면, 도 11(b)에 도시된 서브 코일의 가로 길이 a'는 도 11(a)에 도시된 서브 코일의 가로 길이 a보다 길고, 도 11(b)에 도시된 서브 코일의 세로 길이 h'는 도 11(a)에 도시된 서브 코일의 세로 길이 h보다 길 수 있다.
일 실시 예에 따라, 도 11(a) 및 도 11(b)는 서브 코일이 삼각형인 것으로 도시하였으나, 이에 한정되지 않으며, 다각형 또는 원형일 수 있다.
도 12는, 다양한 실시예들에 따른, 도 11의 서브 코일을 포함하는 검출 코일의 일 예를 도시한다. 일 실시 예에 따라, 도 12(a)는 도 11(a) 도시된 서브 코일(예: 도 3a의 서브 코일(300))을 포함하는 검출 코일(예: 도 1b의 검출 코일(100))이고, 도 12(b)는 도 11(b) 도시된 서브 코일(예: 도 3a의 서브 코일(300))을 포함하는 검출 코일(예: 도 1b의 검출 코일(100))일 수 있다.
도 12(a)를 참조하면, 다양한 실시예들에 따라, 검출 코일(1210)(예: 도 1b의 검출 코일(100))은 가로 길이(예: x축 방향의 길이)가 A이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 B일 수 있다. 일 실시 예에 따라, 검출 코일(1210)은 도 11(a)에 도시된 가로 길이(예: x축 방향의 길이)가 a이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 h인 정삼각형의 제1 부분(예: 도 3a의 제1 부분(301))과 역삼각형의 제2 부분(예: 도 3a의 제2 부분(303))을 포함하는 서브 코일(예: 도 3a의 서브 코일(300))을 포함할 수 있다.
도 12(b)를 참조하면, 다양한 실시예들에 따라, 검출 코일(1220)(예: 도 1b의 검출 코일(100))은 가로 길이(예: x축 방향의 길이)가 A이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 B일 수 있다. 일 실시 예에 따라, 검출 코일(1220)은 도 11(b)에 도시된 가로 길이(예: x축 방향의 길이)가 a'이고, 세로 길이(또는, 높이)(예: y축 방향의 길이)가 h'인 정삼각형의 제1 부분(예: 도 3a의 제1 부분(301))과 역삼각형의 제2 부분(예: 도 3a의 제2 부분(303))을 포함하는 서브 코일(예: 도 3a의 서브 코일(300))을 포함할 수 있다.
일 실시 예에 따라, 도 12(a)에 도시된 검출 코일(1210) 및 도 12(b)에 도시된 검출 코일(1220)이 같은 가로 길이 및 같은 세로 길이인 경우, 포함된 서브 코일의 개수는 다를 수 있다. 예를 들어, 도 12(a)에 도시된 검출 코일(1210)에 포함된 서브 코일의 가로 길이 및 세로 길이가 도 12(b)에 도시된 검출 코일(1220)에 포함된 서브 코일의 가로 길이 및 세로 길이보다 작으므로, 도 12(a)에 도시된 검출 코일(1210)에 포함된 서브 코일의 개수가 도 12(b)에 도시된 검출 코일(1220)에 포함된 서브 코일 개수보다 많을 수 있다.
도 13은, 다양한 실시예들에 따른, 검출 코일의 적층 구조의 일 예를 도시한다. 예를 들어, 도 13은 도 12(a)에 도시된 검출 코일(1210)(이하, 제1 검출 코일(1210)) 및 도 12(b)에 도시된 검출 코일(1220)(이하, 제2 검출 코일(1220))을 평행 이동 또는 회전 없이 수직 적층한 구조를 도시한 것일 수 있다.
일 실시 예에 따라, 도 13을 참조하면, 적층 구조에서 제1 검출 코일(1210)의 널(null) 라인(1310) 및 제2 검출 코일(1220)의 널(null) 라인(1320)은 개수가 다르고, 서로 겹치지 않을 수 있다. 예를 들어, 널(null) 라인은, 서브 코일이 상이한 방향으로 권취된 부분들(예: 도 3a의 부분들(301, 303))이 포함됨에 따라 각 부분들에서 발생하는 유기 전압이 상쇄됨으로써 유기 전압 변동이 검출되지 않을 수 있는 널(null) 영역의 중심점을 연결한 라인일 수 있다.
이와 같이, 제1 검출 코일(1210) 및 제2 검출 코일(1220)을 평행 이동 또는 회전 없이 수직 적층함에 따라, 불필요한 검출 코일 면적을 줄이고, 두 검출 코일 간 유기 전압 차이를 줄여 회로의 포화를 방지할 수 있다.
또한, 본 개시의 다양한 실시 예에 따르면, 서로 다른 크기의 단위 코일을 포함하는 제1 검출 코일(1210) 및 제2 검출 코일(1220)을 적층함에 따라, 각 검출 코일의 널(null) 라인이 겹치지 않게 되고, 이에 따라 유기 전압 변동이 검출되지 않을 수 있는 널 영역을 제거할 수 있다.
또한, 본 개시의 다양한 실시 예에 따르면, 널 영역의 제거에 따라 신호 증폭을 통해 유기 전압 변동의 신호대잡음비(SNR)가 증가되고, 후처리 회로의 복잡도를 줄일 수 있다.
도 14는, 다양한 실시예들에 따른, 검출 코일의 배치를 설명하기 위한 도면이다. 예를 들어, 도 14는 대칭형 도전성 패턴(예: 원형 코일)에 배치된 검출 코일을 설명하기 위한 도면이다. 예를 들어, 도 14(a)는 x-y 평면에서의 검출 코일의 배치를 도시한 것이고, 도 14(b)는 도 14(a)의 D-D'의 단면을 도시한 것이다.
도 14(a) 및 도 14(b)를 참조하면, 검출 코일(1410)(예: 도 1b의 검출 코일(100))은 서로 다른 크기의 서브 코일을 포함하는 제1 검출 코일(1420) 및 제2 검출 코일(1430)을 포함하고, 제1 검출 코일(1420) 및 제2 검출 코일(1430)은 평행 이동 또는 회전 없이 수직 적층된 것일 수 있다.
일 실시 예에 따라, 검출 코일(1410)은 도전성 패턴(224)를 커버하도록 배치된 것일 수 있다. 예를 들어, 검출 코일(1410)은, x-y 평면을 기준으로, 도전성 패턴(224)의 면적을 초과하도록 배치될 수 있다. 예를 들어, 도전성 패턴(224)이 대칭형임에 기반하여, 검출 코일(1410)은 가로 길이와 세로 길이가 같을 수 있다.
일 실시 예에 따라, 검출 코일(1410)에 포함된 제1 검출 코일(1420) 및 제2 검출 코일(1430) 각각은 도전성 패턴(224)의 중심에 대해 대칭이 되게 배치될 수 있다.
일 실시 예에 따라, 페라이트(1440), 도전성 패턴(224) 및 검출 코일(1410) 순으로 배치될 수 있다. 일 실시 예에 따라, 차폐 구조(1450)가 더 포함될 수 있으며, 차폐 구조(1450)는 페라이트(1440)의 일측에 배치될 수 있다. 예를 들어, 차폐 구조(1450)는 도전성 패턴(224)이 배치된 페라이트(1440)의 일면의 대향면에 배치될 수 있다.
이와 같이, 서로 다른 크기의 단위 코일을 포함하는 제1 검출 코일 및 제2 검출 코일을 적층함에 따라, 각 검출 코일의 널(null) 라인이 겹치지 않게 되고, 이에 따라 유기 전압 변동이 검출되지 않을 수 있는 널 영역을 제거할 수 있으며, 각 검출 코일은 도전성 패턴의 중심에 대해 대칭이므로, 전력 송신기 또는 수신기의 특성 및 배치 환경에 대한 영향을 적게 받을 수 있다.
도 15는, 다양한 실시예들에 따른, 검출 코일의 배치를 설명하기 위한 도면이다. 예를 들어, 도 15는 비대칭형 도전성 패턴(예: DD 코일)에 배치된 검출 코일을 설명하기 위한 도면이다. 예를 들어, 도 15(a)는 x-y 평면에서의 검출 코일의 배치를 도시한 것이고, 도 15(b)는 도 15(a)의 E-E'의 단면을 도시한 것이고, 도 15(c)는 도 15(a)의 F-F'의 단면을 도시한 것이다.
도 15(a) 내지 도 15(c)를 참조하면, 검출 코일(1510)(예: 도 1b의 검출 코일(100))은 서로 다른 크기의 서브 코일을 포함하는 제1 검출 코일(1520) 및 제2 검출 코일(1530)을 포함하고, 제1 검출 코일(1520) 및 제2 검출 코일(1530)은 평행 이동 또는 회전 없이 수직 적층된 것일 수 있다.
일 실시 예에 따라, 검출 코일(1510)은 도전성 패턴(224)를 커버하도록 배치된 것일 수 있다. 예를 들어, 검출 코일(1510)은, x-y 평면을 기준으로, 도전성 패턴(224)의 면적을 초과하도록 배치될 수 있다. 예를 들어, 도전성 패턴(224)이 비대칭형임에 기반하여, 검출 코일(1510)은 가로 길이와 세로 길이가 다를 수 있다.
일 실시 예에 따라, 검출 코일(1510)에 포함된 제1 검출 코일(1520) 및 제2 검출 코일(1530) 각각은 도전성 패턴(224)의 중심에 대해 대칭이 되게 배치될 수 있다.
일 실시 예에 따라, 페라이트(1540). 도전성 패턴(224) 및 검출 코일(1510) 순으로 배치될 수 있다.
이와 같이, 서로 다른 크기의 단위 코일을 포함하는 제1 검출 코일 및 제2 검출 코일을 적층함에 따라, 각 검출 코일의 널(null) 라인이 겹치지 않게 되고, 이에 따라 유기 전압 변동이 검출되지 않을 수 있는 널 영역을 제거할 수 있으며, 각 검출 코일은 도전성 패턴의 중심에 대해 대칭이므로, 전력 송신기 또는 수신기의 특성 및 배치 환경에 대한 영향을 적게 받을 수 있다.
다양한 실시예들에 따르면, 검출 코일은, 제1 부분(part), 및 일단이 제1 부분의 일단과 연결되고 제1 부분이 권취된 방향과 반대 방향으로 권취된 제2 부분을 포함하며, 제1 PCB의 적어도 일면 상에 배치되는 제1 서브 코일; 및 제3 부분, 및 일단이 제3 부분의 일단과 연결되고 제3 부분이 권취된 방향과 반대 방향으로 권취된 제4 부분을 포함하며, 제1 PCB와 상이한 제2 PCB의 적어도 일면 상에 배치되는 제2 서브 코일을 포함하고, 제1 부분 및 제2 부분은, 일 방향에서 바라보았을 때, 서로 대칭된 다각형 형상을 가지고, 제3 부분 및 제4 부분은, 일 방향에서 바라보았을 때, 서로 대칭된 다각형 형상을 가지고, 제2 부분은, 타 방향에서 바라보았을 때, 제1 부분에 대하여 아래에 배치되고, 제4 부분은, 타 방향에서 바라보았을 때, 제3 부분에 대하여 아래에 배치되고, 제1 서브 코일 및 제2 서브 코일은, 일 방향에서 바라보았을 때, 일부가 서로 중첩되도록 배치될 수 있다.
다양한 실시예들에 따르면, 제1 부분은 제1 PCB의 상측면 상에 배치되고, 제2 부분은 제1 PCB의 하측면 상에 배치되고, 제3 부분은 제2 PCB의 상측면 상에 배치되고, 제4 부분은 제2 PCB의 하측면 상에 배치될 수 있다.
다양한 실시예들에 따르면, 제1 서브 코일은, 일 방향에서 바라보았을 때, 제1 부분과 제2 부분이 중첩된 제1 영역을 포함하고, 제2 서브 코일은, 일 방향에서 바라보았을 때, 제3 부분과 제4 부분이 중첩된 제2 영역을 포함하고, 제1 서브 코일 및 제2 서브 코일은, 일 방향에서 바라보았을 때, 제1 영역과 제2 영역이 서로 적어도 일부가 중첩되지 않도록 배치될 수 있다.
다양한 실시예들에 따르면, 제2 서브 코일은, 일 방향에서 바라보았을 때, 제1 서브 코일에 대하여, 미리 설정된 각도만큼 차이를 가지도록 배치될 수 있다.
다양한 실시예들에 따르면, 제2 서브 코일은, 일 방향에서 바라보았을 때, 제1 서브 코일에 대하여, 일 방향에 수직한 방향 또는 수평한 방향으로, 미리 설정된 거리만큼 차이를 가지도록 배치될 수 있다.
다양한 실시예들에 따르면, 제1 부분은 삼각형 형상 또는 역삼각형 형상 중 어느 하나를 가지고, 제2 부분은 삼각형 형상 또는 역삼각형 형상 중 다른 하나를 가질 수 있다.
다양한 실시예들에 따르면, 제1 서브 코일은, 일 방향에서 바라보았을 때, 제1 부분의 중심과 제2 부분의 중심이 서로 대응하도록 배치되고, 제2 서브 코일은,
일 방향에서 바라보았을 때, 제3 부분의 중심과 제4 부분의 중심이 서로 대응하도록 배치될 수 있다.
다양한 실시예들에 따르면, 검출 코일은, 제1 PCB의 적어도 일면 상에 배치되고, 제1 서브 코일과 적어도 일부가 중첩된 제3 서브 코일을 더 포함하고, 제3 서브 코일은, 일 방향에서 바라보았을 때, 제1 부분과 동일한 방향으로 권취된 제5 부분이 제1 부분과 중첩되고, 제2 부분과 동일한 방향으로 권취된 제6 부분이 제2 부분과 중첩되도록 배치될 수 있다.
다양한 실시예들에 따르면, 제3 서브 코일은, 일 방향에서 바라보았을 때, 제5 부분이 제2 부분과 중첩되지 않고, 제6 부분이 제1 부분과 중첩되지 않도록 배치될 수 있다.
다양한 실시예들에 따르면, 제5 부분은, 제1 PCB의 다면 중, 제1 부분과 상이한 면에 배치되고, 제6 부분은, 제1 PCB의 다면 중, 제2 부분과 상이한 면에 배치될 수 있다.
다양한 실시예들에 따르면, 제3 서브 코일은, 제5 부분이 제1 부분의 타단과 연결되거나, 제6 부분이 제2 부분의 타단과 연결되어, 제1 서브 코일과 연결될 수 있다.
다양한 실시예들에 따르면, 검출 코일에 있어서, 일 방향에서 바라보았을 때, 제1 다각형 형상을 가지고 제1 권취 방향으로 권취된 제1 부분, 및 일단이 제1 부분의 일단에 연결되고, 일 방향에서 바라보았을 때, 제1 다각형 형상과 상이한 제2 다각형 형상을 가지고 제1 권취 방향에 대하여 반대인 제2 권취 방향으로 권취된 제2 부분을 포함하고, 제2 부분은, 타 방향에서 바라보았을 때, 제1 부분의 아래에 배치되고, 제2 다각형 형상은, 일 방향에서 바라보았을 때, 제1 다각형 형상과 동일한 크기를 가지고, 일 축을 기준으로, 제1 다각형 형상에 대하여 대칭될 수 있다.
다양한 실시예들에 따르면, 제1 다각형 형상은, 삼각형 또는 역삼각형 중 어느 하나이고, 제2 다각형 형상은, 삼각형 또는 역삼각형 중 다른 하나일 수 있다.
다양한 실시예들에 따르면, 일 방향에서 바라보았을 때, 제1 부분의 중심과 제2 부분의 중심이 서로 대응할 수 있다.
다양한 실시예들에 따르면, 제1 부분과 제2 부분은, 일 방향에서 바라보았을 때, 적어도 일부가 중첩되지 않도록 배치될 수 있다.
다양한 실시예들에 따르면, 검출 코일은, 제2 부분의 타단과 연결된 서브 코일을 더 포함하고, 서브 코일은, 일 방향에서 바라보았을 때, 제1 부분과 동일한 방향으로 권취된 제3 부분이 제1 부분과 중첩되고, 제2 부분과 동일한 방향으로 권취된 제4 부분이 제2 부분과 중첩되도록 배치될 수 있다.
다양한 실시예들에 따르면, 무선 전력 송신기에 있어서, 검출 코일; 적어도 하나의 무선 전력 수신기로 무선 전력을 공급하기 위한 전송 코일; 및 제어 회로를 포함하고, 검출 코일은, 복수의 서브 코일들을 포함하고, 복수의 서브 코일들의 각각은, 일 방향에서 바라보았을 때, 제1 다각형 형상을 가지고 제1 권취 방향으로 권취된 제1 부분, 및 일단이 제1 부분의 일단에 연결되고, 제1 다각형 형상과 상이한 제2 다각형 형상을 가지고 제1 권취 방향에 대하여 반대인 제2 권취 방향으로 권취되고 타 방향에서 바라보았을 때, 제1 부분의 아래에 배치된 제2 부분을 포함하고, 일 방향에서 바라보았을 때, 제2 다각형 형상은, 제1 다각형 형상과 동일한 크기를 가지고, 일 축을 기준으로, 제1 다각형 형상에 대하여 대칭되고, 제어 회로는, 무선 전력이 외부로 전송되는 동안, 복수의 서브 코일들 중 서로 연결된 제1 서브 코일들에 대응하는 제1 채널의 제1 전압 값 및 서로 연결된 제2 서브 코일들에 대응하는 제2 채널의 제2 전압 값에 기반한 값을 획득하고, 획득된 값에 기반하여, 이물질의 존재를 확인하도록 설정될 수 있다.
다양한 실시예들에 따르면, 무선 전력 송신기는, 센싱 회로를 더 포함하고, 센싱 회로는, 제1 전압 값 및 제2 전압 값을 획득하고, 제1 전압 값과 제2 전압 값의 비율에 기반한 값을 제어 회로로 제공하도록 설정될 수 있다.
다양한 실시예들에 따르면, 제어 회로는, 제공된 비율에 기반한 값과 임계값과의 차이에 기반하여, 이물질의 존재를 확인하도록 설정될 수 있다.
다양한 실시예들에 따르면, 제어 회로는, 적어도 하나의 무선 전력 수신기의 유무, 적어도 하나의 무선 전력 수신기의 배치 또는 무선 전력 송신기의 동작 모드 중 적어도 하나에 기반하여, 보정 값을 결정하고, 결정된 보정 값에 기반하여, 비율에 오프셋을 적용하도록 센싱 회로를 제어하도록 더 설정될 수 있다.
다양한 실시예들에 따르면, 상기 제1 서브 코일에 포함된 상기 제1 부분과 상기 제2 부분의 가로 길이 및 세로 길이는 동일하고, 상기 제2 서브 코일에 포함된 상기 제3 부분과 상기 제4 부분의 가로 길이 및 세로 길이는 동일하고, 상기 제1 부분과 상기 제3 부분의 가로 길이 및 세로 길이는 서로 다를 수 있다.
다양한 실시예들에 따르면, 상기 제2 서브 코일은, 상기 일 방향에서 바라보았을 때, 상기 제1 서브 코일에 대하여, 각도의 차이가 없도록 배치될 수 있다.
다양한 실시예들에 따르면, 상기 제2 서브 코일은, 상기 일 방향에서 바라보았을 때, 상기 제1 서브 코일에 대하여, 상기 일 방향에 수직한 방향 및 수평한 방향으로 거리 차이가 없도록 배치될 수 있다.
본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술적 특징들을 특정한 실시예들로 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 또는 관련된 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 아이템에 대응하는 명사의 단수 형은 관련된 문맥상 명백하게 다르게 지시하지 않는 한, 상기 아이템 한 개 또는 복수 개를 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및 B 중 적어도 하나", "A 또는 B 중 적어도 하나", "A, B 또는 C", "A, B 및 C 중 적어도 하나", 및 "A, B, 또는 C 중 적어도 하나"와 같은 문구들 각각은 그 문구들 중 해당하는 문구에 함께 나열된 항목들 중 어느 하나, 또는 그들의 모든 가능한 조합을 포함할 수 있다. "제 1", "제 2", 또는 "첫째" 또는 "둘째"와 같은 용어들은 단순히 해당 구성요소를 다른 해당 구성요소와 구분하기 위해 사용될 수 있으며, 해당 구성요소들을 다른 측면(예: 중요성 또는 순서)에서 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에, "기능적으로" 또는 "통신적으로"라는 용어와 함께 또는 이런 용어 없이, "커플드" 또는 "커넥티드"라고 언급된 경우, 그것은 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로(예: 유선으로), 무선으로, 또는 제 3 구성요소를 통하여 연결될 수 있다는 것을 의미한다.
본 문서의 다양한 실시예들에서 사용된 용어 "모듈"은 하드웨어, 소프트웨어 또는 펌웨어로 구현된 유닛을 포함할 수 있으며, 예를 들면, 로직, 논리 블록, 부품, 또는 회로와 같은 용어와 상호 호환적으로 사용될 수 있다. 모듈은, 일체로 구성된 부품 또는 하나 또는 그 이상의 기능을 수행하는, 상기 부품의 최소 단위 또는 그 일부가 될 수 있다. 예를 들면, 일 실시예에 따르면, 모듈은 ASIC(application-specific integrated circuit)의 형태로 구현될 수 있다.
본 문서의 다양한 실시예들은 기기(machine)(예: 전자 장치(101)) 의해 읽을 수 있는 저장 매체(storage medium)(예: 내장 메모리(136) 또는 외장 메모리(138))에 저장된 하나 이상의 명령어들을 포함하는 소프트웨어(예: 프로그램(140))로서 구현될 수 있다. 예를 들면, 기기(예: 전자 장치(101))의 프로세서(예: 프로세서(120))는, 저장 매체로부터 저장된 하나 이상의 명령어들 중 적어도 하나의 명령을 호출하고, 적어도 하나의 저장된 명령을 실행할 수 있다. 이것은 기기가 상기 호출된 적어도 하나의 명령어에 따라 적어도 하나의 기능을 수행하도록 운영되는 것을 가능하게 한다. 상기 하나 이상의 명령어들은 컴파일러에 의해 생성된 코드 또는 인터프리터에 의해 실행될 수 있는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장 매체는, 비일시적(non-transitory) 저장 매체의 형태로 제공될 수 있다. 여기서, '비일시적'은 저장 매체가 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않는다는 것을 의미할 뿐이며, 이 용어는 데이터가 저장 매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다.
일 실시예에 따르면, 본 문서에 개시된 다양한 실시예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory(CD-ROM))의 형태로 배포되거나, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 또는 두 개의 사용자 장치들(예: 스마트 폰들) 간에 직접, 온라인으로 배포(예: 다운로드 또는 업로드)될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 기기로 읽을 수 있는 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.
다양한 실시예들에 따르면, 상기 기술한 구성요소들의 각각의 구성요소(예: 모듈 또는 프로그램)는 단수 또는 복수의 개체를 포함할 수 있으며, 복수의 개체 중 일부는 다른 구성요소에 분리 배치될 수도 있다. 다양한 실시예들에 따르면, 전술한 해당 구성요소들 중 하나 이상의 구성요소들 또는 동작들이 생략되거나, 또는 하나 이상의 다른 구성요소들 또는 동작들이 추가될 수 있다. 대체적으로 또는 추가적으로, 복수의 구성요소들(예: 모듈 또는 프로그램)은 하나의 구성요소로 통합될 수 있다. 이런 경우, 통합된 구성요소는 상기 복수의 구성요소들 각각의 구성요소의 하나 이상의 기능들을 상기 통합 이전에 상기 복수의 구성요소들 중 해당 구성요소에 의해 수행되는 것과 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따르면, 모듈, 프로그램 또는 다른 구성요소에 의해 수행되는 동작들은 순차적으로, 병렬적으로, 반복적으로, 또는 휴리스틱하게 실행되거나, 상기 동작들 중 하나 이상이 다른 순서로 실행되거나, 생략되거나, 또는 하나 이상의 다른 동작들이 추가될 수 있다.
본 개시는 다양한 실시예로 설명되었지만, 다양한 변경 및 수정이 본 기술 분야의 통상의 지식을 가진 자에게 제안될 수 있다. 본 개시는 첨부된 청구범위의 범위 내에 속하는 그러한 변경 및 수정을 포함하도록 의도된다.

Claims (15)

  1. 검출 코일에 있어서,
    제1 PCB(printed circuit board)의 적어도 일면 상에 배치되며, 제1 부분(part), 및 일단이 상기 제1 부분의 일단과 연결되고 상기 제1 부분이 권취된 방향과 반대 방향으로 권취된 제2 부분을 포함하는 제1 서브 코일; 및
    제2 PCB의 적어도 일면 상에 배치되며, 제3 부분, 및 일단이 상기 제3 부분의 일단과 연결되고 상기 제3 부분이 권취된 방향과 반대 방향으로 권취된 제4 부분을 포함하는 제2 서브 코일을 포함하고,
    상기 제1 부분 및 상기 제2 부분은, 제1 방향에서 바라보았을 때, 서로 대칭된 다각형 형상이고,
    상기 제3 부분 및 상기 제4 부분은, 상기 제1 방향에서 바라보았을 때, 서로 대칭된 다각형 형상이고,
    상기 제2 부분은, 상기 제1 방향과 다른 제2 방향에서 바라보았을 때, 상기 제1 부분에 대하여 아래에 배치되고,
    상기 제4 부분은, 상기 제2 방향에서 바라보았을 때, 상기 제3 부분에 대하여 아래에 배치되고,
    상기 제1 서브 코일 및 상기 제2 서브 코일은, 상기 제1 방향에서 바라보았을 때, 일부가 서로 중첩되도록 배치되는 검출 코일.
  2. 제1항에 있어서,
    상기 제1 부분은 상기 제1 PCB의 상측면 상에 배치되고,
    상기 제2 부분은 상기 제1 PCB의 하측면 상에 배치되고,
    상기 제3 부분은 상기 제2 PCB의 상측면 상에 배치되고,
    상기 제4 부분은 상기 제2 PCB의 하측면 상에 배치되는 검출 코일.
  3. 제1항에 있어서,
    상기 제1 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 부분과 상기 제2 부분이 서로 중첩된 제1 영역을 포함하고,
    상기 제2 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제3 부분과 상기 제4 부분이 서로 중첩된 제2 영역을 포함하고,
    상기 제1 서브 코일 및 상기 제2 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 영역과 상기 제2 영역이 서로 적어도 일부가 중첩되지 않도록 배치되는 검출 코일.
  4. 제1항에 있어서,
    상기 제2 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 서브 코일에 대하여, 미리 설정된 각도만큼 다르도록 배치되는 검출 코일.
  5. 제1항에 있어서,
    상기 제2 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 서브 코일에 대하여, 상기 제1 방향에 수직한 방향 또는 수평한 방향으로, 미리 설정된 거리만큼 다르도록 배치되는 검출 코일.
  6. 제1항에 있어서,
    상기 제1 부분은 삼각형 형상 또는 역삼각형 형상을 가지고,
    상기 제2 부분은 상기 삼각형 형상 또는 상기 역삼각형 형상의 다른 것을 가지는 검출 코일.
  7. 제1항에 있어서,
    상기 제1 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 부분의 중심과 상기 제2 부분의 중심이 서로 대응하도록 배치되고,
    상기 제2 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제3 부분의 중심과 상기 제4 부분의 중심이 서로 대응하도록 배치되는 검출 코일.
  8. 제1항에 있어서,
    상기 검출 코일은,
    상기 제1 PCB의 적어도 일면 상에 배치되고, 상기 제1 서브 코일과 적어도 일부가 중첩된 제3 서브 코일을 더 포함하고,
    상기 제3 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제1 부분과 동일한 방향으로 권취된 제5 부분이 상기 제1 부분과 중첩되고, 상기 제2 부분과 동일한 방향으로 권취된 제6 부분이 상기 제2 부분과 중첩되도록 배치되는 검출 코일.
  9. 제8항에 있어서,
    상기 제3 서브 코일은,
    상기 제1 방향에서 바라보았을 때, 상기 제5 부분이 상기 제2 부분과 중첩되지 않고, 상기 제6 부분이 상기 제1 부분과 중첩되지 않도록 배치되는 검출 코일.
  10. 제8항에 있어서,
    상기 제5 부분은, 상기 제1 PCB의 다면 중, 상기 제1 부분과 상이한 면에 배치되고,
    상기 제6 부분은, 상기 제1 PCB의 다면 중, 상기 제2 부분과 상이한 면에 배치되는 검출 코일.
  11. 제8항에 있어서,
    상기 제3 서브 코일은,
    상기 제5 부분이 상기 제1 부분의 타단과 연결되거나, 상기 제6 부분이 상기 제2 부분의 타단과 연결되어, 상기 제1 서브 코일과 연결되는 검출 코일.
  12. 검출 코일에 있어서,
    제1 방향에서 바라보았을 때, 제1 다각형 형상으로 형성되고 제1 권취 방향으로 권취된 제1 부분, 및 일단이 상기 제1 부분의 일단에 연결되고, 상기 제1 다각형 형상과 상이한 제2 다각형 형상으로 형성된 제2 부분을 포함하고,
    상기 제2 부분은, 상기 제1 방향에서 바라보았을 때, 상기 제1 권취 방향과 반대인 제2 권취 방향으로 권취되고, 제2 방향에서 바라보았을 때, 상기 제1 부분의 아래에 배치되고,
    상기 제2 다각형 형상은, 상기 제1 방향에서 바라보았을 때, 상기 제1 다각형 형상과 동일한 크기를 가지고, 일 축을 기준으로, 상기 제1 다각형 형상에 대하여 대칭되는 검출 코일.
  13. 제12항에 있어서,
    상기 제1 다각형 형상은, 삼각형 또는 역삼각형이고,
    상기 제2 다각형 형상은, 상기 삼각형 또는 상기 역삼각형 중 다른 하나인 검출 코일.
  14. 제12항에 있어서,
    상기 제1 방향에서 바라보았을 때, 상기 제1 부분의 중심과 상기 제2 부분의 중심이 서로 대응하는 검출 코일.
  15. 제12항에 있어서,
    상기 제1 부분과 제2 부분은,
    상기 제1 방향에서 바라보았을 때, 적어도 일부가 중첩되지 않도록 배치되는 검출 코일.
PCT/KR2022/005075 2021-05-21 2022-04-07 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기 WO2022244981A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280036162.3A CN117337531A (zh) 2021-05-21 2022-04-07 用于检测异物的线圈以及包括该线圈的无线电力发送器
EP22804836.9A EP4287458A1 (en) 2021-05-21 2022-04-07 Coil for detecting foreign material, and wireless power transmitter comprising same
US17/664,365 US11923698B2 (en) 2021-05-21 2022-05-20 Coil for foreign object detection and wireless power transmitter comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0065821 2021-05-21
KR20210065821 2021-05-21
KR10-2021-0171943 2021-12-03
KR1020210171943A KR20220157857A (ko) 2021-05-21 2021-12-03 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/664,365 Continuation US11923698B2 (en) 2021-05-21 2022-05-20 Coil for foreign object detection and wireless power transmitter comprising the same

Publications (1)

Publication Number Publication Date
WO2022244981A1 true WO2022244981A1 (ko) 2022-11-24

Family

ID=84140746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005075 WO2022244981A1 (ko) 2021-05-21 2022-04-07 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기

Country Status (1)

Country Link
WO (1) WO2022244981A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146580A1 (en) * 2009-09-24 2012-06-14 Panasonic Corporation Noncontact charger system
US20160118806A1 (en) * 2014-10-27 2016-04-28 Qualcomm Incorporated Wireless power multi-coil mutual induction cancellation methods and apparatus
KR20160070709A (ko) * 2014-12-10 2016-06-20 삼성전자주식회사 무선 전력 수신기
US20180090955A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Wireless charging mats with multi-layer transmitter coil arrangements
KR20190009639A (ko) * 2017-07-19 2019-01-29 엘지전자 주식회사 이물질 검출 장치 및 무선 충전 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120146580A1 (en) * 2009-09-24 2012-06-14 Panasonic Corporation Noncontact charger system
US20160118806A1 (en) * 2014-10-27 2016-04-28 Qualcomm Incorporated Wireless power multi-coil mutual induction cancellation methods and apparatus
KR20160070709A (ko) * 2014-12-10 2016-06-20 삼성전자주식회사 무선 전력 수신기
US20180090955A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Wireless charging mats with multi-layer transmitter coil arrangements
KR20190009639A (ko) * 2017-07-19 2019-01-29 엘지전자 주식회사 이물질 검출 장치 및 무선 충전 시스템

Similar Documents

Publication Publication Date Title
WO2015147566A1 (ko) 무선전력 송신장치를 구비한 무선전력 전송 시스템
WO2018174536A1 (en) Apparatus for transmitting wireless power and method of transmitting wireless power according to position type
WO2020080804A1 (en) Electronic device and method for wired or wireless charging in electronic device
WO2018004130A1 (ko) 무선 전력 송신 코일 형상 및 코일의 배치 방법
WO2019143028A1 (ko) 높은 품질 인자를 가지는 무선 충전 코일
WO2015060570A1 (en) Wireless power transfer method, apparatus and system
WO2010068062A2 (ko) 무접점 전력 송신장치
WO2016175537A1 (ko) 무선 전력 수신 장치
WO2021194140A1 (en) Device and method for wireless charging
WO2019059571A1 (en) METHOD AND ELECTRONIC DEVICE FOR DETECTING BATTERY SWELLING
WO2021172782A1 (en) Wireless charging device and method for charging electronic device using the same
WO2021045524A1 (en) Electronic device including helical antenna
WO2017188628A1 (ko) 회로 기판 일체형 다중 모드 안테나 및 그를 이용한 장치
WO2020027432A1 (en) Electronic device including a plurality of wireless charge coils and operating method thereof
AU2019359728B2 (en) Electronic device and method for wired or wireless charging in electronic device
WO2017217684A1 (ko) 무선 전력 송신기 및 수신기.
WO2022244981A1 (ko) 이물질 검출을 위한 코일 및 이를 포함하는 무선 전력 송신기
WO2021015493A1 (ko) 무선으로 전력을 수신하는 전자 장치와 그 동작 방법
WO2018131944A1 (ko) 코일 장치 및 코일 장치를 포함하는 무선 전력 송수신 장치
WO2021210855A1 (ko) 전자 장치 및 상기 전자 장치의 충전 상태 정보를 제공하는 방법
WO2020004836A1 (en) Stacked coil structure and electronic device including the same
WO2021034015A1 (en) Display apparatus and method of controlling the same
WO2016072706A1 (ko) 무선 전력 전송 시스템의 전력 제어 방법 및 장치
WO2023054856A1 (ko) 전력 수신 장치 및 그 전력 수신 장치의 충전을 제어하는 방법
WO2022164091A1 (ko) 무선 전력을 송신하는 전자 장치 및 이를 이용한 무선 충전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022804836

Country of ref document: EP

Effective date: 20230830

WWE Wipo information: entry into national phase

Ref document number: 202280036162.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE