WO2015147566A1 - 무선전력 송신장치를 구비한 무선전력 전송 시스템 - Google Patents

무선전력 송신장치를 구비한 무선전력 전송 시스템 Download PDF

Info

Publication number
WO2015147566A1
WO2015147566A1 PCT/KR2015/002961 KR2015002961W WO2015147566A1 WO 2015147566 A1 WO2015147566 A1 WO 2015147566A1 KR 2015002961 W KR2015002961 W KR 2015002961W WO 2015147566 A1 WO2015147566 A1 WO 2015147566A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
wireless
unit
transmitter
blocking unit
Prior art date
Application number
PCT/KR2015/002961
Other languages
English (en)
French (fr)
Inventor
박재희
송영길
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140035694A external-priority patent/KR20150112160A/ko
Priority claimed from KR1020140049613A external-priority patent/KR20150123113A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP15769901.8A priority Critical patent/EP3131178B1/en
Priority to CN201580016450.2A priority patent/CN106134032B/zh
Publication of WO2015147566A1 publication Critical patent/WO2015147566A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a wireless power transmission system having a wireless power transmission device.
  • various electronic devices include a battery and are driven by using the electric power charged in the battery. At this time, the battery in the electronic device can be replaced and recharged again.
  • the electronic device is provided with a contact terminal for contacting the external charging device for charging the battery. In other words, the electronic device is electrically connected to the charging device through the contact terminal.
  • the contact terminals are exposed to the outside of the electronic device, they may be contaminated by foreign matters or short-circuited by moisture. In this case, a poor contact occurs between the contact terminal and the charging device, thereby causing a problem in that the battery is not charged in the electronic device.
  • Wireless power transmission system is a technology that delivers power without a space through the space, maximizing the convenience of power supply to mobile devices and digital home appliances.
  • Wireless power transmission systems have the advantages of saving energy through real-time power usage control, overcoming space constraints in power supply, and reducing consumption costs by recharging batteries.
  • Representative methods for implementing a wireless power transmission system include magnetic induction and magnetic resonance.
  • the magnetic induction method is a non-contact energy transmission technology in which two coils are brought close to each other and current flows in one coil and the electromotive force is generated in the other coil through the generated magnetic flux.
  • a frequency of several hundred khz can be used.
  • the magnetic resonance method is a magnetic resonance technology using only an electric field or a magnetic field without using an electromagnetic wave or a current, and has a distance of several meters or more and uses a band of several tens of MHz.
  • the voltage required by the wireless power transmission system is changed by changing the voltage of the power supply in order to determine the power transmission efficiency, impedance matching, and target receiver between the transmitting device and the receiving device. It is important to generate it.
  • a circuit for sensing a voltage or current of a coil included in a transmitter and a receiver and a circuit for controlling a voltage level according to mutual communication between the transmitter and the receiver are provided separately, thereby increasing the volume of the system and There was a problem of increasing complexity.
  • the magnetic induction method and the magnetic resonance method have a transformer and a magnetic resonance method for driving the magnetic induction method because the output voltage range and output form are different. It was necessary to have a transformer to drive the transformer, that is, two independent transformers, but this increased the cost and increased the complexity of the circuit design. As the complexity of the wireless power transmission system increases, heat and electromagnetic waves generated in the component may deteriorate the performance of the component in the wireless power transmitter. In addition, heat and electromagnetic waves generated by components may degrade the performance of the wireless power receiver.
  • An embodiment according to the present invention provides a wireless power transmission system having a wireless power transmitter that can reduce the error of the output voltage of the DC-DC transformer and at the same time change the magnitude of the output voltage according to the power transmission method and efficiency.
  • the embodiment according to the present invention by controlling the output control port of the controller variably, the wireless power having a wireless power transmission apparatus capable of actively controlling the output of the DC-DC transformer regardless of the characteristics of the DC-DC transformer Provide a transmission system.
  • an embodiment according to the present invention is a wireless power transmission having a wireless power transmission apparatus including a selection unit and a control unit for controlling the appropriate method to properly select a magnetic induction method and a magnetic resonance method using one transformer unit Provide a system.
  • an embodiment according to the present invention provides a wireless power transmission apparatus having an improved performance.
  • an embodiment according to the present invention provides a wireless power transmission apparatus having an electromagnetic wave blocking function.
  • an embodiment according to the present invention provides a wireless power transmission apparatus having a heat radiation function.
  • Wireless power transmission apparatus includes a substrate; A first blocking part disposed on the substrate and formed of a metal material; A second blocking unit disposed above the first blocking unit; A wireless transmitter mounted on at least one of the first blocking unit and the second blocking unit, wherein the wireless transmitter comprises: a first wireless transmitter including a first transmission coil; A second wireless transmitter comprising a second transmitter coil; And a control unit controlling AC power to be output to any one of the wireless transmitters of the wireless transmitters according to a power transmission method.
  • the wireless power transmission system has the effect of reducing the error of the output voltage of the DC-DC transformer and at the same time varying the magnitude of the output voltage according to the power transmission method and efficiency.
  • the wireless power transmission system according to the present invention has the effect of actively controlling the output of the DC-DC transformer regardless of the characteristics of the DC-DC transformer by variably controlling the output control port of the control unit.
  • the wireless power transmission system can provide a wireless power transmission system that can select any one of a magnetic induction method, a magnetic resonance method or a plurality of coils using one transformer unit and provide appropriate power.
  • the blocking unit isolates the component and the wireless transmitter from each other between the blocking unit and the wireless transmitter. That is, the blocking unit corresponds to the component to block heat and electromagnetic waves generated by the wireless transmission unit. In addition, the blocking unit blocks the heat and electromagnetic waves generated in the component corresponding to the wireless transmission unit.
  • FIG. 1 is a block diagram illustrating a wireless power transmission system to which an embodiment of the present invention is applied;
  • FIG. 2 is a perspective view showing a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a section cut along A-A in FIG. 2;
  • FIG. 5 is a perspective view showing a wireless power transmission apparatus according to another embodiment of the present invention.
  • FIG. 6 is an exploded perspective view illustrating a wireless power transmitter according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a section cut along B-B in FIG. 5 of the present invention.
  • FIG. 8 is a perspective view showing a wireless power transmission apparatus according to another embodiment of the present invention.
  • FIG. 9 is an exploded perspective view illustrating a wireless power transmitter according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view taken along the line C-C in FIG. 8; FIG.
  • 11 and 12 are block diagrams of a transmitter and a receiver of a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating a transmission method selection unit and a power conversion unit according to an embodiment of the present invention.
  • FIG. 14 is a block diagram illustrating a transformer and a controller according to an exemplary embodiment of the present invention.
  • 15 is a block diagram illustrating a subsystem of a control unit according to an embodiment of the invention.
  • Fig. 16 is an operational flowchart showing the steps from detection of the receiving apparatus to power transmission from the transmitting apparatus to the receiving apparatus.
  • 17 is a cross-sectional view showing a coil arrangement relationship of a transmitter antenna system.
  • FIG. 18 is a diagram illustrating a coil unit including a resonance coil and an induction coil of a transmitter antenna and a coil unit including only an induction coil.
  • FIG. 1 is a block diagram illustrating a wireless power transmission system to which an embodiment of the present invention is applied.
  • a wireless power transmission system 1 to which an embodiment of the present invention is applied includes a wireless power transmitter 100 and a wireless power receiver 1000.
  • the wireless power transmitter 100 is connected to a power source and receives power from the power source.
  • the wireless power transmitter 100 transmits power wirelessly.
  • the wireless power transmitter 100 may transmit AC power.
  • the wireless power transmitter 100 transmits power according to various charging methods.
  • the transmission schemes include an electromagnetic induction scheme, a resonance scheme, and an RF / Micro Wave Radiation scheme. That is, at least one of charging methods is preset in the wireless power transmitter 100.
  • the wireless power transmitter 100 may transmit power using a preset charging method.
  • the wireless power receiver 1000 receives power wirelessly.
  • the wireless power receiver 1000 may receive AC power.
  • the wireless power receiver 1000 may convert AC power into DC power.
  • the wireless power receiver 1000 receives power according to various charging methods.
  • the reception methods include an electromagnetic induction method, a resonance method, and a propagation method. That is, at least one of charging methods is preset in the wireless power receiver 1000.
  • the wireless power receiver 1000 may receive power in a preset charging scheme.
  • the wireless power receiver 1000 may be driven using power.
  • FIG. 2 is a perspective view showing a wireless power transmission apparatus according to an embodiment of the present invention.
  • 2A is a plan perspective view of the wireless power transmitter
  • FIG. 2B is a rear perspective view of the wireless power transmitter.
  • 3 is an exploded perspective view showing the wireless power transmitter according to the first embodiment of the present invention.
  • 4 is a cross-sectional view showing a section cut along A-A in FIG.
  • the wireless power transmitter 100 includes a substrate 110, a blocking unit 120, a wireless transmitter 140, and a housing 160.
  • the substrate 110 supports the blocking unit 120 and the wireless transmitter 140 in the wireless power transmitter 100. At this time, the substrate 110 may be implemented in a flat plate structure.
  • the substrate 110 includes an upper surface 111 to be opposed to the wireless power receiver and a lower surface 113 positioned opposite to the upper surface 111.
  • the substrate 110 controls the overall operation of the wireless power transmitter 100.
  • the substrate 110 may be formed of a dielectric having a plurality of transmission lines (not shown).
  • the substrate 110 may be implemented by stacking a plurality of dielectric layers.
  • the substrate 110 may be a printed circuit board (PCB).
  • PCB printed circuit board
  • This substrate 110 includes a plurality of components 115.
  • the components 115 are mounted on the bottom surface 113 of the substrate 110.
  • the components 115 may be connected to the transmission line, and the transmission line may transmit a signal output from the components 115 or input to the components 115.
  • the components 115 may include control elements, memory elements, and power supply elements.
  • the blocking unit 120 isolates the components 115 and the wireless transmitter 140 from each other in the wireless power transmitter 110.
  • the interrupter 120 is arranged between the components 115 and the wireless transmitter 140.
  • the blocking unit 120 is disposed above the substrate 110.
  • the blocking unit 120 includes a first blocking unit 123 and a second blocking unit 127.
  • the first blocking part 123 is disposed on the substrate 210.
  • the first blocking part 123 is disposed to face the upper surface 111 of the substrate 110. That is, the first blocking part 123 covers the upper surface 111 of the substrate 210.
  • the first blocking part 123 may be disposed to be close to the upper surface 111 of the substrate 110 and may contact the upper surface 111 of the substrate 110.
  • the first blocking unit 123 supports the second blocking unit 127. At this time, the first blocking portion 123 supports the second blocking portion 127 in the edge region. Here, the first blocking portion 123 is fastened to the second blocking portion 127 in the edge region. And the accommodating part 124 is formed in the center area
  • the opening 125 is formed in the first blocking portion 123. The opening 125 penetrates through the first blocking part 123. Here, the opening 125 may expose a portion of the substrate 110.
  • the first blocking unit 123 is formed of a metal material.
  • the metal material includes aluminum (Al) and magnesium (Mg).
  • the first blocking unit 123 is located on the opposite side of the upper surface and the upper surface facing the wireless power receiver and includes a lower surface facing the substrate 110.
  • the second blocking unit 127 is disposed above the first blocking unit 123. At this time, the second blocking portion 127 is fastened to the first blocking portion 123 in the edge region. The second blocking unit 127 is spaced apart from the first blocking unit 123 in the central area.
  • the second blocking unit 127 may have a flat plate shape.
  • the second blocking part 127 is formed of a metal material.
  • the metal material of the second blocking part 127 may be the same as or different from the metal material of the first blocking part 123.
  • the metal material includes aluminum (Al) and magnesium (Mg).
  • the second blocking unit 127 is positioned on an opposite side of the upper surface and the upper surface facing the wireless power receiver and includes a lower surface facing the first blocking unit 123.
  • the wireless transmitter 140 wirelessly transmits power from the wireless power transmitter 100. At this time, the wireless transmitter 140 transmits power according to various charging schemes.
  • the charging methods include an electromagnetic induction method, a resonance method and a radio wave radiation method. Detailed configurations and operations of the wireless transmitter 140 will be described in detail with reference to FIGS. 11 to 18.
  • the wireless transmitter 140 is mounted on the blocking unit 120.
  • the wireless transmitter 140 is mounted on at least one of the first blocking unit 123 or the second blocking unit 127. That is, the wireless transmitter 140 is disposed on the opposite side of the substrate 110 with respect to the blocking unit 120.
  • the wireless transmitter 140 includes a first wireless transmitter 141 and a second wireless transmitter 151. At this time, the first wireless transmitter 141 and the second wireless transmitter 151 transmit power by different charging methods.
  • the first wireless transmitter 141 transmits power according to the first charging method.
  • the first charging method may be an electromagnetic induction method, but is not limited thereto.
  • the first wireless transmitter 141 is mounted on the first blocking unit 123. At this time, the first wireless transmitter 141 is accommodated in the first blocking unit 123.
  • the first wireless transmitter 141 is disposed in the receiver 124 of the first blocking unit 123.
  • the first wireless transmitter 141 is mounted on the upper surface of the first blocking unit 123.
  • the first wireless transmitter 141 includes a first shielding member 143 and at least one first transmitting coil 145.
  • the first shielding member 143 isolates the first blocking unit 123 and the first transmitting coil 145 from each other in the wireless transmitter 140. To this end, the first shielding member 143 is attached to the first blocking part 123. In this case, the first shielding member 143 is attached to the upper surface of the first blocking unit 123.
  • the first shielding member 143 is formed of ferrite.
  • the first shielding member 143 may include metal powders and a resin material.
  • the metal powders are soft magnetic metal powders, and may include aluminum (Al), metal silicon, and iron oxide (FeO; Fe 3 O 4; Fe 2 O 3).
  • the resin material is a thermoplastic resin, and may include a polyolefin elastomer.
  • the first shielding member 143 includes an upper surface facing the wireless power receiver and a lower surface opposite to the upper surface and in contact with the first blocking unit 123.
  • the first transmitting coil 145 transmits power substantially from the wireless transmitter 140.
  • the first transmitting coil 145 is connected to the substrate 110 through both ends.
  • the first transmitting coil 145 passes through the opening 125 of the first blocking unit 123 and is connected to the substrate 110.
  • the first transmission coil 145 receives and transmits power from the substrate 110.
  • an electromagnetic field is formed in the peripheral region of the first transmitting coil 145.
  • This first transmitting coil 145 is attached to the first shielding member 143.
  • the first transmitting coil 145 is attached to the upper surface of the first shielding member 143. That is, the first transmission coil 145 is disposed opposite the first blocking unit 123 with the first shielding member 143 as a boundary.
  • the second wireless transmitter 151 transmits power in accordance with the second charging method.
  • the second charging method may be a resonance method, but is not limited thereto.
  • the second wireless transmitter 151 is mounted to the second blocking unit 127. At this time, the second wireless transmitter 151 is mounted on the upper surface of the second blocking unit 127.
  • the second wireless transmitter 151 includes a second shielding member 153 and at least one second transmitting coil 155.
  • the second shielding member 153 isolates the second blocking unit 127 and the second transmitting coil 155 from each other in the wireless transmitter 140. To this end, the second shielding member 153 is attached to the second blocking portion 127. In this case, the second shielding member 153 is attached to the upper surface of the second blocking unit 127.
  • the second shielding member 153 is formed of ferrite.
  • the second shielding member 153 may include metal powders and a resin material.
  • the metal powders are soft magnetic metal powders, and may include aluminum (Al), metal silicon, and iron oxide (FeO; Fe 3 O 4; Fe 2 O 3).
  • the resin material is a thermoplastic resin, and may include a polyolefin elastomer.
  • the second shielding member 153 includes an upper surface facing the wireless power receiver and a lower surface opposite to the upper surface and in contact with the second blocking unit 127.
  • the second transmitting coil 155 transmits power substantially from the wireless transmitter 140. At this time, the second transmission coil 155 is connected to the substrate 110 through both ends. The second transmission coil 155 receives power from the substrate 110 and transmits the power. Here, when the second transmission coil 155 operates, an electromagnetic field is formed in the peripheral region of the second transmission coil 155. This second transmitting coil 155 is attached to the second shielding member 153. At this time, the second transmission coil 155 is attached to the upper surface of the second shielding member 153. In other words, the second transmission coil 155 is disposed opposite the second blocking unit 153 with the second shielding member 153 as the boundary.
  • the housing 160 supports the substrate 110, the blocking unit 120, and the wireless transmitter 140 in the wireless power transmitter 100.
  • the housing 160 may accommodate at least one of the substrate 110, the blocking unit 120, and the wireless transmitter 140.
  • the housing 160 may be fastened to the blocking unit 120.
  • the housing 160 may be fastened to the edge region of the first blocking part 123.
  • the housing 160 exposes at least a portion of the blocking unit 120.
  • the housing 160 is formed of a plastic material.
  • the blocker 120 isolates the components 115 and the wireless transmitter 140 from each other between the components 115 and the wireless transmitter 140. At this time, when the components 115 are operated, heat and electromagnetic waves are generated in the components 115. Similarly, during operation of the wireless transmitter 140, heat and electromagnetic waves are generated by the wireless transmitter 140. However, the blocking unit 120 blocks the heat and the electromagnetic wave of the wireless transmitter 140 in response to the components 115. In addition, the blocker 120 blocks heat and electromagnetic waves of the components 115 in response to the wireless transmitter 140.
  • FIG. 5 is a perspective view showing a wireless power transmission apparatus according to another embodiment of the present invention.
  • 5A is a plan perspective view of the wireless power transmitter
  • FIG. 5B is a rear perspective view of the wireless power transmitter.
  • 6 is an exploded perspective view illustrating a wireless power transmitter according to another embodiment of the present invention.
  • 7 is a cross-sectional view showing a cross section taken along B-B in FIG. 5 of the present invention.
  • the wireless power transmitter 200 of the present embodiment includes a substrate 210, a blocking unit 220, and a wireless transmitter 240.
  • the substrate 210 and the wireless transmitter 240 are similar to the corresponding configurations in the above-described embodiment, detailed descriptions thereof will be omitted.
  • the blocking unit 220 is disposed above and below the substrate 210.
  • the blocking unit 220 includes an upper blocking unit 221 and a lower blocking unit 231.
  • the upper blocking portion 221 is disposed on the substrate 210.
  • the upper blocking part 221 includes a first blocking part 223 and a second blocking part 227.
  • first blocking unit 223 and the second blocking unit 227 are similar to the corresponding configurations in the above-described embodiment, detailed description thereof will be omitted.
  • the lower blocking portion 231 is disposed under the substrate 210.
  • the lower blocking portion 231 may be fastened to the first blocking portion 223 in the edge region.
  • the lower blocking portion 231 covers the lower surface 213 of the substrate 210.
  • the lower blocking portion 231 is spaced apart from the first blocking portion 223 in the central region.
  • the lower blocking portion 231 also seals the components 215 on the lower surface 213 of the substrate 210.
  • the lower blocking portion 231 is formed of a metal material.
  • the metal material of the lower blocking part 231 may be the same as or different from the metal material of the first blocking part 223.
  • the metal material of the lower blocking part 231 may be the same as or different from the metal material of the second blocking part 227.
  • the metal material includes aluminum (Al) and magnesium (Mg).
  • the lower blocking part 231 includes an upper surface facing the substrate 210 and a lower surface opposite to the upper surface.
  • the blocking unit 220 isolates the components 215 and the wireless transmitter 240 from each other between the components 215 and the wireless transmitter 240. At this time, when the components 215 are operated, heat and electromagnetic waves are generated in the components 215. Similarly, during operation of the wireless transmitter 240, heat and electromagnetic waves are generated by the wireless transmitter 240. However, the blocking unit 220 blocks heat and electromagnetic waves of the wireless transmitter 240 in response to the components 215. In addition, the blocking unit 220 blocks heat and electromagnetic waves of the components 215 in response to the wireless transmitter 240. In addition, the blocking portion 220 seals the components 215 at the bottom as well as the top of the substrate 210. Through this, the blocking unit 220 more effectively isolates the components 215 and the wireless transmitter 240. In addition, the shield 220 protects the components 215 from external physical shocks. As a result, the thickness of the wireless power transmitter 100 may be reduced, and thus the size of the wireless power transmitter 100 may be reduced.
  • FIG. 8 is a perspective view showing a wireless power transmission apparatus according to another embodiment of the present invention.
  • 8A is a plan perspective view of the wireless power transmitter
  • FIG. 8B is a rear perspective view of the wireless power transmitter.
  • 9 is an exploded perspective view illustrating a wireless power transmitter according to another embodiment of the present invention.
  • 10 is a cross-sectional view showing a cross section taken along the line C-C in FIG.
  • the wireless power transmitter 300 includes a substrate 310, a cutoff unit 320, a wireless transmitter 340, and a heat dissipation unit 370.
  • the substrate 310, the blocking unit 320, and the wireless transmitter 340 are similar to the corresponding structures in the above-described embodiment, detailed descriptions thereof will be omitted.
  • the heat dissipation unit 370 dissipates heat generated by the wireless power transmitter 300.
  • the heat dissipation unit 370 is mounted to the lower blocking unit 331.
  • the heat dissipation unit 370 is mounted on the lower surface of the lower blocking unit 331.
  • the heat dissipation unit 370 includes a plurality of heat dissipation fins 371.
  • the heat dissipation unit 370 has an extended surface area.
  • the heat dissipation fins 371 extend from the lower blocking portion 331.
  • the blocking unit 320 isolates the components 315 and the wireless transmitter 340 from each other between the components 315 and the wireless transmitter 340. That is, when the components 315 are operated, heat and electromagnetic waves are generated in the components 315. Similarly, during operation of the wireless transmitter 340, heat and electromagnetic waves are generated by the wireless transmitter 340. However, the blocking unit 320 blocks heat and electromagnetic waves of the wireless transmitter 340 in response to the components 315. In addition, the blocker 320 blocks heat and electromagnetic waves of the components 315 in response to the wireless transmitter 340. In addition, the blocking portion 320 seals the components 315 at the bottom as well as the top of the substrate 310. In addition, the heat radiating portion 370 dissipates heat. In this way, the blocker 320 more effectively isolates the components 315 from the wireless transmitter 340. In addition, the shield 320 protects the components 315 from external physical shocks.
  • the wireless transmitters 140, 240, and 340 include the first wireless transmitters 141, 241, and 341 and the second wireless transmitters 151, 251, and 351 is disclosed. It is not limited. That is, since the wireless transmitters 140, 240, and 340 include at least one of the first wireless transmitters 141, 241, and 341 or the second wireless transmitters 151, 251, and 351, the present invention can be implemented. . In other words, the wireless transmitters 140, 240, and 340 may be configured as either the first wireless transmitters 141, 241, or 341 or the second wireless transmitters 151, 251, or 351.
  • the wireless transmitters 140, 240, and 340 having different reference numbers according to the above-described embodiments may be referred to by reference numerals of one of the reference numbers of the wireless transmitters 140, 240, and 340. 140).
  • the above reference numerals are for simplicity of description and may be applied to all of the wireless transmitters 140, 240, and 340 described above.
  • 11 and 12 are block diagrams of the wireless power transmitter 100 and the wireless power receiver 1000, respectively.
  • the wireless transmitter 140 of the wireless power transmitter 100 constituting the wireless power transmission system 1 includes a transmission power converter 1401 and a transmission antenna ( 1402).
  • the transmission power converter 1401 may include a rectifier and filter unit 1410, a transformer unit 1420, a power converter 1430, a controller 1440, a matching unit 1450, and a transmission method selection unit 1460. have.
  • the rectifier and filter unit 1410 generates a DC voltage to be used in the next stage, and the generated DC voltage may be power provided to the transformer 1420 to be supplied to the transmission antenna 1402.
  • the transformer 1420 may serve to adjust the level of the DC power output from the rectification and filter unit 1410 based on a control signal.
  • the transformer 1420 may convert a DC input voltage into a square wave voltage using a semiconductor device such as a power transistor as a switch, and then obtain a controlled DC output voltage through a filter.
  • control of the DC output voltage can be performed by controlling the on / off period of the switch.
  • the transformer 1420 Since the operation of the transformer 1420 is based on the conversion from the DC input to the DC output, it is also referred to as a switched-mode power supply (SMPS), a DC-DC transformer, or a DC-DC converter.
  • SMPS switched-mode power supply
  • DC-DC transformer DC-DC transformer
  • DC-DC converter DC-DC converter
  • the transformer 1420 may include a buck converter having an output voltage lower than an input voltage, a boost converter having an output voltage higher than an input voltage, and a buck-boost converter having all the characteristics of the converters. It can have any one property.
  • the transformer 1420 may adjust the level of the output DC voltage, and the level of the DC voltage may be controlled by a control signal of the controller 1440.
  • the controller 1440 may be called a microprocessor, a microcontrol unit, or a microcomputer.
  • the controller 1440 may control the magnitude of the DC voltage output from the transformer 1420 in consideration of the maximum power transmission efficiency, the power demand of the receiver 1000, the current charging amount of the receiver 1000, and the like.
  • the controller 1440 not only adjusts the output voltage of the transformer 1420, but also uses an algorithm, a program, or an application required for control read from the transmitter 140 and a storage unit (not shown). The overall operation of the transmitter 140 may be controlled.
  • the transmission power converter 1401 may further include a transmission communication unit 1442, and the transmission communication unit 1442 may communicate with the reception communication unit of the reception apparatus 1000.
  • the transmitting and receiving communication unit may perform bidirectional communication in a predetermined manner, for example, near field communication (NFC), Zigbee communication, infrared communication, visible light communication, Bluetooth communication, Bluetooth low energy (BLE) method, or the like. Communication can be performed using.
  • NFC near field communication
  • Zigbee communication Zigbee communication
  • infrared communication visible light communication
  • Bluetooth communication Bluetooth low energy (BLE) method, or the like.
  • BLE Bluetooth low energy
  • the communication unit may transmit and receive power information from each other, wherein the power information may include at least one of a capacity, a battery remaining amount, a number of charges, a usage amount, a battery capacity, and a battery ratio of the receiver 1000.
  • the transmission communication unit 1442 may transmit a charging function control signal for controlling the charging function of the receiver 1000.
  • the charging function control signal may be a control signal for controlling the receiver 1000 to enable or disable the charging function.
  • the power information may include information such as incoming of the wired charging terminal, switching from the SA mode to the NSA mode, and releasing an error situation.
  • the transmission power converter 1401 may perform communication in the out-band or in-band format.
  • the transmission communication unit 1442 may be configured separately from the control unit 1440.
  • the power converter 1430 may generate power by converting a DC voltage of a predetermined level into an AC voltage by a switching pulse signal of several tens of KHz to several tens of MHz band. That is, the power converter 130 may generate a "wake-up power” or “charge power” used as a target, that is, used by the receiver 1000 entering the charging region by converting the DC voltage into an AC voltage. have.
  • the wake-up power means a small power of 0.1 ⁇ 1mWatt
  • the charging power is the power required to charge the battery of the receiver 1000 or the power consumed for the operation of the receiver 1000
  • the target receiver It means a large power of 1mWatt ⁇ 200Watt consumed at the load of (1000).
  • the power converter 1430 may include a power amplifier for amplifying the DC voltage output from the transformer 1420 according to the switching pulse signal.
  • It may be configured as a full bridge or half bridge inverter.
  • the power converter 1430 may include a plurality of power converters.
  • Any one of the plurality of power converters may supply AC power to the induction coil in order to transmit power in a magnetic induction method, and the other power converter is alternating in the resonance coil to transmit power in a magnetic resonance method.
  • Each of the plurality of power converters may generate an AC signal having a different frequency according to a transmission scheme.
  • the matching unit 1450 may be disposed at the rear of the control unit 1440 and include at least one of at least one passive element and at least one active element, and may perform impedance matching between the transmitter 100 and the receiver 1000. It can be performed to maximize the power transmission efficiency.
  • the impedance viewed from the matching unit 1450 may be adjusted to control the output power to be high efficiency or high output.
  • the matching unit 1450 may adjust the impedance based on the control of the controller 1440 and the transmission communication unit 1442.
  • the matching unit 1450 may include at least one of a coil and a capacitor.
  • the controller 1440 and the transmitter-side communication unit 1442 may control a connection state with at least one of a coil and a capacitor, thereby performing impedance matching.
  • the transmit antenna 1402 may include at least one of an induction coil and a resonance coil.
  • the transmission antenna system 102 may include only an induction coil, and in the case of transmitting power only in a magnetic resonance method, it may include only a resonance coil. In the case of transmitting power by using a magnetic induction method and a magnetic resonance method, both an induction coil and a resonance coil may be provided.
  • the induction coil or the resonant coil may be provided in plural, and may be provided in plural. In the case where a plurality of induction coils or resonant coils are provided, the induction coils or the resonant coils may be overlapped with each other.
  • the transmission method selector 1460 may be abbreviated as a selector, and may allow power generated by the transformer 1420 to be transmitted to any one of a resonant coil and an induction coil based on a selection signal of the controller 1440. have.
  • the transmission method selector 1460 may include a transformer 1420 and a power converter ( When it is determined that any one of the power converters in 1430 can be connected to each other and transmits power in a magnetic induction manner, the transmission method selector 1460 may include a transformer 1420 and the other of the power converter 1430. The power converter may be connected to each other.
  • the receiving apparatus 1000 for receiving the power output from the transmitter 140 may include a receiving power converter 1001 and a receiving antenna 1102 as shown in FIG. 12.
  • the receiving antenna 1102 may receive power through a magnetic induction method or a magnetic resonance method.
  • the reception antenna 1102 may include at least one of an induction coil and a resonance coil according to a power reception method.
  • the reception antenna 1102 may be provided with a near field communication antenna.
  • the reception power converter 1101 may include a matching unit 1110, a rectifier 1120, a receiving side transformer 1130, a load 1140, and a receiving side control unit 1150.
  • the reception side controller 1150 may include a reception side communication unit 1151, and the reception side communication unit 1151 may be configured separately from the reception side control unit 1150.
  • the matching unit 1110 performs impedance matching between the transmitter 140 and the receiver 1000.
  • the rectifier 1120 rectifies the AC voltage output from the receiving antenna 1102 to generate a DC voltage.
  • the receiving transformer 1130 is configured as a DC-DC converter to adjust the level of the DC voltage output from the rectifier 1120 according to the capacity of the load 1140.
  • the load 1140 may include a battery, a display, a voice output circuit, a main processor, and various sensors.
  • the receiving side controller 1150 may be activated by the wake-up power from the transmitting unit 140 of the transmitting apparatus 100, performs communication with the transmitting apparatus 100, and controls the overall configuration of the receiving apparatus 1000. can do.
  • the receiver 1000 may be configured in singular or plural to receive energy simultaneously from the transmitter 100 wirelessly. That is, in the resonant wireless power transmission system, a plurality of target receivers 1000 may receive power from one transmitter 100.
  • the matching unit 1450 included in the transmitting unit 140 of the transmitting apparatus 100 may adaptively perform impedance matching between the plurality of receiving apparatuses 1000.
  • the plurality of receiving apparatuses 1000 when configured, they may be the same type of system or different types of systems.
  • the power converter 1430 may include a first power converter 1431 and a second power converter screw 1432.
  • the transmission common sense selector 1450 may transfer the DC power provided from the transformer 1420 to one of the first power converter 1431 and the second power converter 1432 according to a selection signal of the controller 1440. Can provide.
  • the first power converter 1431 may convert the DC power provided from the transformer 1420 into AC power having a frequency of kHz to MHz and provide it to the induction coil, and the second power converter 1432 may transform the DC power.
  • the DC power supplied from the unit 1420 may be converted into AC power having a frequency of kHz to 15 MHz and provided to the resonance coil.
  • the power converter 1430 includes a first power converter 1431 and a second power converter 1432, respectively, to provide a first AC power having a first frequency and a first amplitude to an induction coil, and a second Although it has been described as providing a second AC power having a frequency and a second amplitude to the resonant coil, AC power having a different frequency and amplitude under the control of the controller 4120 using one power converter 1430. May be generated and provided to the induction coil or the resonant coil.
  • FIG. 14 is a diagram illustrating a transformer, a controller, and a transmission method selector according to an exemplary embodiment of the present invention.
  • the transformer 1420 may include a transformer 1421, a control unit 1422, and a distribution unit 1423.
  • the distribution unit 1423 is illustrated in the drawing as being included in the transformer unit 1420, the present invention is not limited thereto and may be configured separately.
  • the control unit 1422 is a device capable of regulating the output voltage of the transformer 1421.
  • the control unit 1422 may receive feedback of the divided voltage of the output voltage of the transformer 1421 to control an error of the output voltage.
  • the distribution unit 1423 may divide the output voltage of the transformer 1421 and supply the voltage to the control unit 122.
  • the control unit 1422 provides a pulse width modulation (PWM) pulse width modulated (PWM) to the transformer 1421 based on the voltage distributed from the distribution unit 1423, and the transformer 1421 is a pulse of the square wave pulse. It can output a constant DC voltage whose level is adjusted according to the width.
  • PWM pulse width modulation
  • PWM pulse width modulated
  • the distribution unit 1423 may be connected to the first and second output control ports OCP1 and OCP2 of the controller 1440.
  • the controller 1440 outputs a control signal to any one of the first and second output control ports OCP1 and OCP2 according to a power transmission method, and adjusts a value of an input terminal voltage of the control unit 1422 to a transformer ( The output voltage of 4121 can be controlled.
  • 15 is a block diagram of a control unit according to an embodiment of the present invention.
  • a subsystem of the control unit 1422 may include an error amplifier 1424, a comparator 1425, and a switch driver 1426.
  • the error amplifier 1424 outputs an amplified voltage Vc by amplifying an error of the output voltage Vout of the transformer 1421 based on the distribution voltage Vd of the distribution unit 1423.
  • the error amplifier 1424 may be configured as a first operational amplifier OP1, and an output voltage of the transformer 1421 through a distribution unit 1423 is applied to an inverting terminal of the operational amplifier, and a reference to a non-inverting terminal.
  • the voltage Vref is applied.
  • the error amplifier 1424 compares the output voltage of the transformer 1421, which has passed through the distribution unit 1423, with the reference voltage Vref, amplifies the error shown here, and inputs it to the comparator 125.
  • the comparator 1425 generates a square wave pulse based on the output voltage Vc of the error amplifier 124.
  • the comparator 1425 may be configured as a second operational amplifier OP2.
  • the output voltage Vc of the error amplifier 1424 is applied to the non-inverting terminal, and a triangular wave is applied to the inverting terminal.
  • the comparator 1425 may generate a square wave pulse for driving the transformer 1421 by comparing the triangular wave with the output voltage Vc of the error amplifier 1424 and adjusting the pulse width corresponding to the output error of the transformer 1421. By adjusting, the output voltage Vout of the transformer 1421 can be stabilized.
  • the switch driver 1426 may drive the transformer 1421 based on the output of the comparator 1425. That is, by controlling the ON and OFF of the switch included in the transformer 1421, the preset voltage of the transformer 1421 may be kept constant.
  • the control unit 1422 and the transformer 1421 may be integrated chip (IC) to the transformer unit 1420.
  • the transformer 1420 may function to output a constant voltage by reflecting an error of a preset voltage. However, when it is necessary to vary the output voltage of the transformer 1420, the control unit 1440 will control the transformer 1420.
  • the distribution unit 1423 includes a first resistor R1 connected to an output terminal of the transformer 1421, an input terminal (inverting terminal) of the error amplifier 1424, and an input terminal (inverting terminal) of the error amplifier 1424. It may include a second resistor (R2) connected between the ground.
  • the magnitude relationship between the first resistor R1 and the second resistor R2 be R1 ⁇ R2.
  • the distribution voltage Vd of the transformer 1421 may vary according to the values of the first and second resistors R1 and R2. Looking at the principle, the transformer is divided by the first and second resistors R1 and R2. Since the divided voltage Vd of the output voltage Vout of 1421 is divided with the reference voltage Vref and the error is amplified, an error amplifier 1424 when the divided voltage Vd is smaller than the reference voltage Vref. ) Output Vc level rises as the ratio of the input resistance (Rin) and feedback resistor (Rf) of the error amplifier 1424, that is, the slope of Rf / Rin. On the other hand, when the divided voltage Vd is greater than the reference voltage Vref, the output Vc level of the error amplifier 124 falls to the slope of Rf / Rin.
  • the divided voltage Vd may be fixed according to the values of the first and second resistors R1 and R2, but the output voltage of the transformer 121 may be finally adjusted by adjusting the divided voltage Vd.
  • This role may be played by the controller 1440.
  • the controller 1440 needs to adjust the output voltage Vout of the transformer 1421 according to the power transmission environment.
  • a third resistor R3 or a fourth resistor is connected between any one of the first and second output control ports OCP1 and OCP2 of the controller 1440 and the input terminal (inverting terminal) of the error amplifier 124. Since the voltage (R4) is connected, the divided voltage Vd applied to the input terminal of the error amplifier 124 by adjusting the voltage output to any one of the first and second output control ports OCP1 and OCP2. Can be adjusted.
  • the divided voltage Vd is controlled by adjusting the voltages output to the first and second output control ports OCP1 and OCP2,
  • the divided voltage Vd may be controlled by using the third and fourth resistors R3 and R4 as variable resistors in a manner in which the controller 1440 adjusts the resistance value of the variable resistors.
  • the divided voltage Vd may vary according to the control of the controller 1440, and accordingly, the output Vc of the error amplifier 124 based on the comparison of the divided voltage Vd and the reference voltage Vref. Whether the level rises or falls can be controlled.
  • the output Vc of the error amplifier 1424 is compared with the triangular wave of the comparator 1425 so that when the level of the output Vc of the error amplifier 1424 rises, the comparator 1425 receives a square wave having an increased pulse width. When the level of the output Vc of the error amplifier 1424 falls, the comparator 1425 generates a square wave having a reduced pulse width.
  • the magnitude relationship between the first to third resistors R1, R2, and R3 may be R1 ⁇ R3 ⁇ R2 and R1 ⁇ R4 ⁇ R2.
  • the controller 1440 transmits a control signal to the first output control port OCP1 to adjust the divided voltage value and adjusts the adjusted divided voltage value.
  • the transformer 1420 may output a DC voltage corresponding to the voltage.
  • the controller 1440 controls the transmission method selector 1460 to convert the DC voltage output from the transformer 1420 into a first power conversion so that the power provided from the transformer 1420 is transferred to the induction coil.
  • the unit 1431 may be provided.
  • the controller 1440 transmits a control signal to the second output control port OCP2 to adjust the divided voltage value and adjust the adjusted distribution.
  • the transformer 1420 may output a DC voltage corresponding to the voltage value, and at the same time, the control unit 1440 controls the transmission method selection unit 1460 so that the power provided from the transformer 1420 is the second power.
  • the AC power output from the second power converter 1432 may be transmitted to the resonant coil.
  • the transmission method selecting unit 1460 classifies the case where the inductive type output is needed and the case where the resonant type output is required based on the selection control signal of the controller 1440 and transfers the output provided from the transformer 1420 to the corresponding coil. Can provide.
  • the transmission method selector 1460 may be configured of an analog switch, a MOSFET, or a transistor to perform a switch operation.
  • the transmission method selecting unit 1460 electrically connects the transformer 1420 and the induction coil or electrically connects the transformer 1420 and the resonant coil based on the selection control signal from the controller 1440. Can be optional.
  • the controller 1440 constituting the transmitter 140 of the transmitter 100 outputs the output voltage of the transformer 1420 through an output control port. It explains how to control.
  • 16 is a diagram illustrating the steps from detection of the reception device to power transmission from the transmission device to the reception device.
  • the control method can be largely divided into four stages, and each stage includes a detection stage (Selection, S100), a reaction check stage (Ping, S200), an authentication and configuration stage (Identification & Configuration, S300), and power transmission. There is a step (Power Transfer, S400).
  • the receiving apparatus 1000 detecting step (S100) is a step in which the transmitting apparatus 100 emits a signal for detecting the presence of the receiving apparatus 1000 and waits for the response of the receiving apparatus 1000.
  • the reception apparatus 1000 transmits signal strength information, and the transmission apparatus 100 may confirm the existence of the reception apparatus 1000 through the information.
  • the reception apparatus 1000 transmits authentication and required power information, and the transmission apparatus 100 configures power transmission and prepares to transmit power.
  • the reception apparatus 1000 transmits control information, and the transmission apparatus 100 starts power transmission.
  • the signal is interrupted or the signal is bad between these four stages, it may time out and return to the first stage, and if an abnormality is detected during the power transmission, or if the receiving apparatus 1000 is out of the charging area or fully buffered. You can end the power transmission and return to the first stage.
  • FIG. 17 is a diagram illustrating an arrangement relationship of antenna coils of a transmitter
  • FIG. 18 is a diagram of a coil unit having both a resonance coil and an induction coil of a transmitter antenna and a coil unit having only an induction coil.
  • the coil unit may be a first transmission coil 145 and a second transmission coil 155 included in the wireless transmitter 140.
  • the support members for supporting the first transmission coil 145 and the second transmission coil 155 may be shielding members 143 and 153 for shielding electromagnetic waves.
  • the shielding member may be formed of ferrite.
  • the first transmitting coil 145 and the second transmitting coil 155 may be induction coils and resonant coils, respectively.
  • Such a wireless power transmission system may be mounted in a mobile wireless charging system, an electric vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHEV) as well as a mobile phone or a smartphone.
  • a mobile wireless charging system an electric vehicle such as an electric vehicle (EV) or a plug-in hybrid vehicle (PHEV) as well as a mobile phone or a smartphone.
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • mobile phone or a smartphone a mobile phone or a smartphone.
  • it can be installed in industrial equipment applications and household electronics.
  • Applications for industrial applications include power tools, wireless sensors and slip rings for industrial mufflers.
  • home electronics include TVs, digital cameras and game machines. Electric toothbrushes, rechargeable batteries and the like. It can also be applied to contactless IC cards or passive RFID.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 무선전력 송신장치를 포함하는 무선전력 전송 시스템에 관한 것이다. 본 발명의 실시 예에 따른 무선전력 전송장치는 기판; 상기 기판의 상부에 배치되며, 금속 물질로 형성된 제1 차단부; 상기 제1 차단부의 상부에 배치된 제2 차단부; 상기 제1 차단부 또는 제2 차단부 중 적어도 어느 하나에 장착되는 무선 송신부;를 포함하고, 상기 무선 송신부는 제1 전송코일을 포함하는 제1 무선 송신부; 제2 전송 코일을 포함하는 제2 무선 송신부; 전력 전송 방식에 따라 상기 무선 송신부 중 어느 하나의 무선 송신부 전송 코일에 교류 전원이 출력되도록 제어하는 제어부;를 포함한다.

Description

무선전력 송신장치를 구비한 무선전력 전송 시스템
본 발명은 무선전력 송신장치를 구비한 무선전력 전송 시스템에 관한 것이다.
일반적으로 각종 전자기기가 배터리를 구비하고, 배터리에 충전된 전력을 이용하여 구동한다. 이때 전자기기에서 배터리는 교체될 수 있으며 재차 충전될 수도 있다. 여기서 배터리의 충전을 위하여 전자기기는 외부의 충전장치와 접촉하기 위한 접촉 단자를 구비한다. 즉, 전자기기는 접촉 단자를 통해 충전 장치와 전기적으로 연결된다. 그런데 전자기기에서 접촉단자가 외부로 노출됨에 따라 이물질에 의해 오염되거나 습기에 의해 단락될 수 있다. 이러한 경우 접촉단자와 충전 장치 사이에 접촉 불량이 발생되어 전자기기에서 배터리가 충전되지 않는 문제점이 있다.
상기한 문제점을 해결하기 위하여 무선전력 전송시스템이 제안되고 있다.
무선전력전송 시스템은 공간을 통하여 선 없이 전력을 전달하는 기술로써, 모바일 기기 및 디지털 가전 기기들에 대한 전력 공급의 편의성을 극대화한 기술이다.
무선전력 전송 시스템은 실시간 전력 사용 제어를 통한 에너지 절약, 전력 공급의 공간 제약 극복 및 배터리 재충전을 이용한 소모 비용의 절감 등의 강점을 지닌다.
무선전력 전송 시스템의 구현방법으로써 대표적으로 자기유도방식과 자기공진방식이 있다.
자기유도방식은 두 개의 코일을 근접시켜 한쪽의 코일에 전류를 흘려 그에 따라 발생한 자속을 매개로 하여 다른 쪽의 코일에도 기전력이 발생하는 비접촉 에너지 전송기술로써, 수백 khz의 주파수를 사용할 수 있다.
자기 공진 방식은 전자파나 전류를 이용하지 않고 전장 또는 자장만을 이용하는 자기 공명 기술로써 전력 전송이 가능한 거리가 수 미터 이상으로써, 수십 MHz의 대역을 이용하는 것이 특징이다.
무선전력전송 시스템에서는 전력을 전송하는 송신장치와 전력을 수신하는 수신장치 간에 전력 전송 효율이나 임피던스 매칭, 타켓 수신장치의 결정 등에 있어서 전원 공급기의 전압의 높낮이로 바꾸어 무선전력전송 시스템이 필요로 하는 전압을 생성하는 것이 중요하다.
다만 종래에는 송신장치 및 수신장치에 포함된 코일의 전압이나 전류를 센싱하는 회로와 송신장치 및 수신장치 간의 상호 통신에 따라 전압의 높낮이를 제어하는 회로가 별도로 구비되면서 시스템의 부피가 증가하고 회로의 복잡도가 증가하는 문제가 있었다.
또한 자기 유도 방식과 자기 공진 방식을 동시에 구비한 무선전력전송 송신장치에 있어서, 자기 유도 방식과 자기 공진 방식은 출력 전압의 범위와 출력 형태가 다르기 때문에 자기 유도 방식을 구동하기 위한 변압기와 자기 공진 방식을 구동하기 위한 변압기, 즉 독립적인 두 개의 변압기를 구비해야 했으나 이는 비용 증대와 회로 설계의 복잡도를 증가 시키는 문제가 있었다. 이러한 무선전력 전송 시스템 회로의 복잡도 증가에 따라 무선전력 송신장치의 경우 부품에서 발생되는 열 및 전자기파가 부품의 성능을 열화시킬 수 있다. 아울러 부품에서 발생되는 열 및 전자기파가 무선전력 수신장치의 성능을 열화시킬 수 있다.
본 발명에 따른 실시예는 직류-직류 변압기의 출력 전압의 오차를 줄이는 동시에 전력 전송 방식과 효율에 따라서 출력 전압의 크기를 가변 시킬 수 있는 무선전력 송신장치를 구비한 무선전력 전송 시스템을 제공한다.
또한 본 발명에 따른 실시예는 제어부의 출력 제어 포트를 가변적으로 제어함으로써, 직류-직류 변압기의 특성에 관계없이 직류-직류 변압기의 출력을 능동적으로 제어할 수 있는 무선전력 송신장치를 구비한 무선전력 전송 시스템을 제공한다.
또한 본 발명에 따른 실시예는 하나의 변압부를 이용하여 자기 유도 방식과 자기 공진 방식 중 적절한 방식을 적절히 선택할 수 있도록 하는 선택부와 이를 제어하는 제어부를 포함하는 무선전력 송신장치를 구비한 무선전력전송 시스템을 제공한다.
또한 본 발명에 따른 실시예는 향상된 성능을 갖는 무선전력 송신장치를 제공한다.
또한 본 발명에 따른 실시예는 전자기파 차단 기능을 갖는 무선전력 송신장치를 제공한다.
또한 본 발명에 따른 실시예는 방열 기능을 갖는 무선전력송신장치를 제공한다.
본 발명의 실시 예에 따른 무선전력 전송장치는 기판; 상기 기판의 상부에 배치되며, 금속 물질로 형성된 제1 차단부; 상기 제1 차단부의 상부에 배치된 제2 차단부; 상기 제1 차단부 또는 제2 차단부 중 적어도 어느 하나에 장착되는 무선 송신부;를 포함하고, 상기 무선 송신부는 제1 전송코일을 포함하는 제1 무선 송신부; 제2 전송 코일을 포함하는 제2 무선 송신부; 전력 전송 방식에 따라 상기 무선 송신부 중 어느 하나의 무선 송신부 전송 코일에 교류 전원이 출력되도록 제어하는 제어부;를 포함한다.
본 발명에 따른 무선전력 전송 시스템은 직류-직류 변압기의 출력 전압의 오차를 줄이는 동시에 전력 전송 방식과 효율에 따라서 출력 전압의 크기를 가변 시킬 수 있는 효과를 가지고 있다.
또한 본 발명에 따른 무선전력 전송 시스템은 제어부의 출력 제어 포트를 가변적으로 제어함으로써, 직류-직류 변압기의 특성에 관계없이 직류-직류 변압기의 출력을 능동적으로 제어할 수 있는 효과를 가지고 있다.
또한 본 발명에 따른 무선전력 전송 시스템은 하나의 변압부를 이용하여 자기 유도 방식과 자기 공진 방식 또는 복수개의 코일 중 어느 하나를 선택하고 적절한 전력을 제공할 수 있는 무선전력 전송 시스템을 제공할 수 있다.
또한 본 발명에 따른 무선전력 송신장치는 차단부가 차단부가 부품과 무선 송신부 사이에서, 부품과 무선 송신부를 상호로부터 격리시킨다. 즉 차단부가 부품에 대응하여, 무선 송신부에서 발생되는 열과 전자기파를 차단한다. 뿐만 아니라, 차단부가 무선 송신부에 대응하여, 부품에서 발생되는 열과 전자기파를 차단한다.
도 1은 본 발명의 실시예가 적용되는 무선전력 전송 시스템을 도시하는 블록도,
도 2는 본 발명의 실시예에 따른 무선전력 송신장치를 도시하는 사시도,
도 3은 본 발명의 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도,
도 4는 도 2에서 A-A을 따라 절단된 단면을 도시하는 단면도,
도 5는 본 발명의 다른 실시예에 따른 무선전력 송신장치를 도시하는 사시도,
도 6은 본 발명의 다른 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도,
도 7은 본 발명의 도 5에서 B-B을 따라 절단된 단면을 도시하는 단면도,
도 8은 본 발명의 또 다른 실시예에 따른 무선전력 송신장치를 도시하는 사시도,
도 9는 본 발명의 또 다른 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도,
도 10은 도 8에서 C-C을 따라 절단된 단면을 도시하는 단면도.
도 11 및 12는 본 발명의 실시예에 따른 무선전력 전송 시스템의 송신장치 및 수신장치의 블록도.
도 13은 본 발명의 실시예에 따른 전송방식 선택부와 전력변환부를 나타낸 블록도.
도 14는 본 발명의 실시예에 따른 변압부와 제어부를 나타낸 블록도.
도 15는 본 발명의 실시예에 따른 제어 유닛의 서브 시스템을 나타낸 블록도.
도 16은 수신장치의 검출에서 송신장치로부터 수신장치로 전력 전송까지의 단계를 나타낸 동작 흐름도.
도 17은 송신장치 안테나 시스템의 코일 배치관계를 나타낸 단면도.
도 18은 송신장치 안테나의 공진코일과 유도코일을 함께 구비한 코일부와 유도코일만 구비한 코일부를 나타낸 도면.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 보다 상세하게 설명하고자 한다. 이 때 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 그리고 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
도 1은 본 발명의 실시예가 적용되는 무선전력 전송 시스템을 도시한 블록도이다.
도 1을 참조하면, 본 발명의 실시예가 적용되는 무선전력 전송 시스템(1)은 무선전력 송신장치(100) 및 무선전력 수신장치(1000)를 포함한다.
무선전력 송신장치(100)는 전원에 연결되어, 전원으로부터 전력을 수신한다. 그리고 무선전력 송신장치(100)는 무선으로 전력을 송신한다. 여기서, 무선전력 송신장치(100)는 교류 전력을 송신할 수 있다. 이 때 무선전력 송신장치(100)는 다양한 충전 방식들에 따라, 전력을 송신한다. 여기서, 송신 방식들은 전자기 유도(electromagnetic induction) 방식, 공진(resonance) 방식 및 전파 방사(RF/Micro Wave Radiation) 방식을 포함한다. 즉 무선전력 송신장치(100)에, 충전 방식들 중 적어도 어느 하나가 미리 설정되어 있다. 또한 무선전력 송신장치(100)는 미리 설정된 충전 방식으로 전력을 송신할 수 있다.
무선전력 수신장치(1000)는 무선으로 전력을 수신한다. 여기서, 무선전력 수신장치(1000)는 교류 전력을 수신할 수 있다. 그리고 무선전력 수신장치(1000)는 교류 전력을 직류 전력으로 변환할 수 있다. 이 때 무선전력 수신장치(1000)는 다양한 충전 방식들에 따라, 전력을 수신한다. 여기서, 수신 방식들은 전자기 유도 방식, 공진 방식 및 전파 방식을 포함한다. 즉 무선전력 수신장치(1000)에, 충전 방식들 중 적어도 어느 하나가 미리 설정되어 있다. 또한 무선전력 수신장치(1000)는 미리 설정된 충전 방식으로 전력을 수신할 수 있다. 이러한 무선전력 수신장치(1000)는 전력을 이용하여 구동할 수 있다.
도 2는 본 발명의 실시예에 따른 무선전력 송신장치를 도시하는 사시도이다. 이때 도 2의 (a)는 무선전력 송신장치의 평면 사시도이며, 도 2의 (b)는 무선전력 송신장치의 배면 사시도이다. 그리고 도 3은 본 발명의 제 1 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도이다. 또한 도 4는 도 2에서 A-A을 따라 절단된 단면을 도시하는 단면도이다.
도 2, 도 3 및 도 4를 참조하면, 본 실시예의 무선전력 송신장치(100)는 기판(110), 차단부(120), 무선 송신부(140) 및 하우징(160)을 포함한다.
기판(110)은 무선전력 송신장치(100)에서 차단부(120) 및 무선 송신부(140)를 지지한다. 이 때 기판(110)은 평판 구조로 구현될 수 있다. 이러한 기판(110)은 무선전력 수신장치에 대향될 상부면(111)과 상부면(111)의 반대편에 위치되는 하부면(113)을 포함한다.
그리고 기판(110)은 무선전력 송신장치(100)의 전반적인 동작을 제어한다. 이 때 기판(110)은, 다수개의 전송 선로(도시되지 않음)들이 내재된 유전체로 형성될 수 있다. 여기서, 기판(110)은 다수개의 유전층들이 적층되어, 구현될 수 있다. 예를 들면, 기판(110)은 인쇄회로기판(Printed Circuit Board; PCB)일 수 있다. 이러한 기판(110)은 다수개의 부품(115)들을 포함한다. 이 때 부품(115)들은 기판(110)의 하부면(113)에 실장된다. 여기서, 부품(115)들은 전송 선로에 접속할 수 있으며, 전송 선로가 부품(115)들에서 출력되거나 부품(115)들로 입력되는 신호를 전달할 수 있다. 예를 들면, 부품(115)들은 제어 소자, 메모리 소자 및 전력 공급 소자를 포함할 수 있다.
차단부(120)는 무선전력 송신장치(110)에서 부품(115)들과 무선 송신부(140)를 상호로부터 격리시킨다. 이를 위해, 차단부(120)는 부품(115)들과 무선 송신부(140) 사이에 배치된다. 이 때 차단부(120)는 기판(110)의 상부에 배치된다. 이러한 차단부(120)는 제 1 차단부(123)와 제 2 차단부(127)를 포함한다.
제 1 차단부(123)는 기판(210)의 상부에 배치된다. 이 때 제 1 차단부(123)는 기판(110)의 상부면(111)에 대향하여 배치된다. 즉 제 1 차단부(123)는 기판(210)의 상부면(111)을 커버(cover)한다. 여기서, 제 1 차단부(123)는 기판(110)의 상부면(111)에 근접하여 배치되며, 기판(110)의 상부면(111)에 접촉할 수도 있다.
그리고 제 1 차단부(123)는 제 2 차단부(127)를 지지한다. 이 때 제 1 차단부(123)는 가장자리 영역에서, 제 2 차단부(127)를 지지한다. 여기서, 제 1 차단부(123)는 가장자리 영역에서, 제 2 차단부(127)에 체결된다. 그리고 제 1 차단부(123)의 중앙 영역에, 수용부(124)가 형성되어 있다. 여기서, 수용부(124)는 기판(110)의 상부면(111)에 대응하여 오목하게 형성될 수 있다. 또한 제 1 차단부(123)에, 개구부(125)가 형성되어 있다. 개구부(125)는 제 1 차단부(123)를 관통한다. 여기서, 개구부(125)는 기판(110)의 일 부분을 노출시킬 수 있다.
또한 제 1 차단부(123)는 금속 물질로 형성된다. 예를 들면, 금속 물질은 알루미늄(Al) 및 마그네슘(Mg)을 포함한다. 이러한 제 1 차단부(123)는 무선전력 수신장치에 대향되는 상부면과 상부면의 반대편에 위치되며 기판(110)에 대향되는 하부면을 포함한다.
제 2 차단부(127)는 제 1 차단부(123)의 상부에 배치된다. 이 때 제 2 차단부(127)는 가장자리 영역에서 제 1 차단부(123)에 체결된다. 그리고 제 2 차단부(127)는 중앙 영역에서 제 1 차단부(123)로부터 이격된다. 여기서, 제 2 차단부(127)는 평판 형태를 가질 수 있다.
그리고 제 2 차단부(127)는 금속 물질로 형성된다. 이 때 제 2 차단부(127)의 금속 물질은 제 1 차단부(123)의 금속 물질과 동일할 수 있으며, 상이할 수도 있다. 예를 들면, 금속 물질은 알루미늄(Al) 및 마그네슘(Mg)을 포함한다. 이러한 제 2 차단부(127)는 무선전력 수신장치에 대향되는 상부면과 상부면의 반대편에 위치되며 제 1 차단부(123)에 대향되는 하부면을 포함한다.
무선 송신부(140)는 무선전력 송신장치(100)에서 무선으로 전력을 송신한다. 이 때 무선 송신부(140)는 다양한 충전 방식들에 따라, 전력을 송신한다. 여기서, 충전 방식들은 전자기 유도 방식, 공진 방식 및 전파 방사 방식을 포함한다. 상기 무선 송신부(140)의 상세한 구성 및 동작에 대해서는 도 11 내지 도 18을 참조하여 상세히 설명한다.
무선 송신부(140)는 차단부(120)에 장착된다. 이 때 무선 송신부(140)는 제 1 차단부(123) 또는 제 2 차단부(127) 중 적어도 어느 하나에 장착된다. 즉 무선 송신부(140)는 차단부(120)를 경계로, 기판(110)의 맞은편에 배치된다. 이러한 무선 송신부(140)는 제 1 무선 송신부(141)와 제 2 무선 송신부(151)를 포함한다. 이 때 제 1 무선 송신부(141)와 제 2 무선 송신부(151)는 서로 다른 충전 방식으로 전력을 송신한다.
제 1 무선 송신부(141)는 제 1 충전 방식에 따라, 전력을 송신한다. 예를 들면, 제 1 충전 방식은 전자기 유도 방식일 수 있으며, 이에 한정하는 것은 아니다. 그리고 제 1 무선 송신부(141)는 제 1 차단부(123)에 장착된다. 이 때 제 1 무선 송신부(141)는 제 1 차단부(123)에 수용된다. 여기서, 제 1 무선 송신부(141)는 제 1 차단부(123)의 수용부(124) 내에 배치된다. 또한 제 1 무선 송신부(141)는 제 1 차단부(123)의 상부면에 장착된다. 이러한 제 1 무선 송신부(141)는 제 1 차폐 부재(143)와 적어도 하나의 제 1 송신 코일(145)을 포함한다.
제 1 차폐 부재(143)는 무선 송신부(140)에서 제 1 차단부(123)와 제 1 송신 코일(145)을 상호로부터 격리시킨다. 이를 위해, 제 1 차폐 부재(143)는 제 1 차단부(123)에 부착된다. 이 때 제 1 차폐 부재(143)는 제 1 차단부(123)의 상부면에 부착된다. 그리고 제 1 차폐 부재(143)는 페라이트(ferrite)로 형성된다. 여기서, 제 1 차폐 부재(143)는 금속 분말들과 수지 물질을 포함할 수 있다. 예를 들면, 금속 분말들은 연자성계 금속 분말들로, 알루미늄(Al), 메탈 실리콘(metal silicon) 및 산화철(FeO; Fe3O4; Fe2O3)를 포함할 수 있다. 또한 수지 물질은 열가소성 수지로, 폴리올레핀 엘라스토머(Polyolefin Elastomer)를 포함할 수 있다. 이러한 제 1 차폐 부재(143)는 무선전력 수신장치에 대향되는 상부면과 상부면의 반대편에 위치되며 제 1 차단부(123)에 접촉되는 하부면을 포함한다.
제 1 송신 코일(145)은 무선 송신부(140)에서 실질적으로 전력을 송신한다. 이 때 제 1 송신 코일(145)은 양단부를 통해 기판(110)에 연결된다. 여기서, 제 1 송신 코일(145)은 제 1 차단부(123)의 개구부(125)를 통과하여, 기판(110)에 연결된다. 그리고 제 1 송신 코일(145)은 기판(110)으로부터 전력을 수신하여, 송신한다. 여기서, 제 1 송신 코일(145) 동작 시, 제 1 송신 코일(145)의 주변 영역에, 전자기장이 형성된다. 이러한 제 1 송신 코일(145)은 제 1 차폐 부재(143)에 부착된다. 이 때 제 1 송신 코일(145)은 제 1 차폐 부재(143)의 상부면에 부착된다. 즉 제 1 송신 코일(145)은 제 1 차폐 부재(143)를 경계로, 제 1 차단부(123)의 맞은편에 배치된다.
제 2 무선 송신부(151)는 제 2 충전 방식에 따라, 전력을 송신한다. 예를 들면, 제 2 충전 방식은 공진 방식일 수 있으며, 이에 한정하는 것은 아니다. 그리고 제 2 무선 송신부(151)는 제 2 차단부(127)에 장착된다. 이 때 제 2 무선 송신부(151)는 제 2 차단부(127)의 상부면에 장착된다. 이러한 제 2 무선 송신부(151)는 제 2 차폐 부재(153)와 적어도 하나의 제 2 송신 코일(155)을 포함한다.
제 2 차폐 부재(153)는 무선 송신부(140)에서 제 2 차단부(127)와 제 2 송신 코일(155)을 상호로부터 격리시킨다. 이를 위해, 제 2 차폐 부재(153)는 제 2 차단부(127)에 부착된다. 이 때 제 2 차폐 부재(153)는 제 2 차단부(127)의 상부면에 부착된다. 그리고 제 2 차폐 부재(153)는 페라이트로 형성된다. 여기서, 제 2 차폐 부재(153)는 금속 분말들과 수지 물질을 포함할 수 있다. 예를 들면, 금속 분말들은 연자성계 금속 분말들로, 알루미늄(Al), 메탈 실리콘(metal silicon) 및 산화철(FeO; Fe3O4; Fe2O3)를 포함할 수 있다. 또한 수지 물질은 열가소성 수지로, 폴리올레핀 엘라스토머(Polyolefin Elastomer)를 포함할 수 있다. 이러한 제 2 차폐 부재(153)는 무선전력 수신장치에 대향되는 상부면과 상부면의 반대편에 위치되며 제 2 차단부(127)에 접촉되는 하부면을 포함한다.
제 2 송신 코일(155)은 무선 송신부(140)에서 실질적으로 전력을 송신한다. 이 때 제 2 송신 코일(155)은 양단부를 통해 기판(110)에 연결된다. 그리고 제 2 송신 코일(155)은 기판(110)으로부터 전력을 수신하여, 송신한다. 여기서, 제 2 송신 코일(155) 동작 시, 제 2 송신 코일(155)의 주변 영역에, 전자기장이 형성된다. 이러한 제 2 송신 코일(155)은 제 2 차폐 부재(153)에 부착된다. 이 때 제 2 송신 코일(155)은 제 2 차폐 부재(153)의 상부면에 부착된다. 즉 제 2 송신 코일(155)은 제 2 차폐 부재(153)를 경계로, 제 2 차단부(153)의 맞은편에 배치된다.
하우징(160)은 무선전력 송신장치(100)에서 기판(110), 차단부(120) 및 무선 송신부(140)를 지지한다. 이 때 하우징(160)은 기판(110), 차단부(120) 및 무선 송신부(140) 중 적어도 어느 하나를 수용할 수 있다. 그리고 하우징(160)은 차단부(120)에 체결될 수 있다. 여기서, 하우징(160)은 제 1 차단부(123)의 가장자리 영역에 체결될 수 있다. 그리고 하우징(160)은 차단부(120)의 적어도 일부를 노출시킨다. 또한 하우징(160)은 플라스틱 물질로 형성된다.
본 실시예에 따르면, 차단부(120)가 부품(115)들과 무선 송신부(140) 사이에서, 부품(115)들과 무선 송신부(140)를 상호로부터 격리시킨다. 이 때 부품(115)들 동작 시, 부품(115)들에서 열과 전자기파가 발생된다. 마찬가지로, 무선 송신부(140) 동작 시, 무선 송신부(140)에서 열과 전자기파가 발생된다. 그러나, 차단부(120)가 부품(115)들에 대응하여, 무선 송신부(140)의 열과 전자기파를 차단한다. 뿐만 아니라, 차단부(120)가 무선 송신부(140)에 대응하여, 부품(115)들의 열과 전자기파를 차단한다.
도 5는 본 발명의 다른 실시예에 따른 무선전력 송신장치를 도시하는 사시도이다. 이 때 도 5의 (a)는 무선전력 송신장치의 평면 사시도이며, 도 5의 (b)는 무선전력 송신장치의 배면 사시도이다. 그리고 도 6은 본 발명의 다른 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도이다. 또한 도 7은 본 발명의 도 5에서 B-B을 따라 절단된 단면을 도시하는 단면도이다.
도 5, 도 6 및 도 7을 참조하면, 본 실시예의 무선전력 송신장치(200)는 기판(210), 차단부(220) 및 무선 송신부(240)를 포함한다. 이 때 본 실시예에서 기판(210)과 무선 송신부(240)는, 전술된 실시예에서 대응하는 구성과 유사하므로, 상세한 설명을 생략한다.
다만, 본 실시예에서 차단부(220)는 기판(210)의 상부와 하부에 배치된다. 이러한 차단부(220)는 상부 차단부(221)와 하부 차단부(231)를 포함한다.
상부 차단부(221)는 기판(210)의 상부에 배치된다. 이러한 상부 차단부(221)는 제 1 차단부(223)와 제 2 차단부(227)를 포함한다. 여기서, 본 실시예에서 제 1 차단부(223)와 제 2 차단부(227)는, 전술된 실시예에서 대응하는 구성과 유사하므로, 상세한 설명을 생략한다.
하부 차단부(231)는 기판(210)의 하부에 배치된다. 여기서, 하부 차단부(231)는 가장자리 영역에서 제 1 차단부(223)에 체결될 수 있다. 그리고 하부 차단부(231)는 기판(210)의 하부면(213)을 커버한다. 여기서, 하부 차단부(231)는 중앙 영역에서 제 1 차단부(223)로부터 이격된다. 또한 하부 차단부(231)는 기판(210)의 하부면(213)에서 부품(215)들을 밀봉한다.
그리고 하부 차단부(231)는 금속 물질로 형성된다. 이 때 하부 차단부(231)의 금속 물질은 제 1 차단부(223)의 금속 물질과 동일할 수 있으며, 상이할 수도 있다. 그리고 하부 차단부(231)의 금속 물질은 제 2 차단부(227)의 금속 물질과 동일할 수 있으며, 상이할 수도 있다. 예를 들면, 금속 물질은 알루미늄(Al) 및 마그네슘(Mg)을 포함한다. 이러한 하부 차단부(231)는 기판(210)에 대향되는 상부면과 상부면의 반대편에 위치되는 하부면을 포함한다.
본 실시예에 따르면, 차단부(220)가 부품(215)들과 무선 송신부(240) 사이에서, 부품(215)들과 무선 송신부(240)를 상호로부터 격리시킨다. 이 때 부품(215)들 동작 시, 부품(215)들에서 열과 전자기파가 발생된다. 마찬가지로, 무선 송신부(240) 동작 시, 무선 송신부(240)에서 열과 전자기파가 발생된다. 그러나, 차단부(220)가 부품(215)들에 대응하여, 무선 송신부(240)의 열과 전자기파를 차단한다. 뿐만 아니라, 차단부(220)가 무선 송신부(240)에 대응하여, 부품(215)들의 열과 전자기파를 차단한다. 아울러, 차단부(220)가 기판(210)의 상부 뿐만 아니라 하부에서 부품(215)들을 밀봉한다. 이를 통해, 차단부(220)는 부품(215)들과 무선 송신부(240)를 보다 효과적으로 격리시킨다. 게다가, 차단부(220)는 외부의 물리적 충격으로부터 부품(215)들을 보호한다. 이로 인하여, 무선전력 송신장치(100)의 두께가 감소되어, 무선전력 송신장치(100)의 사이즈가 축소될 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 무선전력 송신장치를 도시하는 사시도이다. 이 때 도 8의 (a)는 무선전력 송신장치의 평면 사시도이며, 도 8의 (b)는 무선전력 송신장치의 배면 사시도이다. 그리고 도 9는 본 발명의 또 다른 실시예에 따른 무선전력 송신장치를 분해하여 도시하는 사시도이다. 또한 도 10은 도 8에서 C-C을 따라 절단된 단면을 도시하는 단면도이다.
도 8, 도 9 및 도 10을 참조하면, 본 실시예의 무선전력 송신장치(300)는 기판(310), 차단부(320), 무선 송신부(340) 및 방열부(370)를 포함한다. 이 때 본 실시예에서 기판(310), 차단부(320) 및 무선 송신부(340)는, 전술된 실시예에서 대응하는 구성과 유사하므로, 상세한 설명을 생략한다.
다만, 본 실시예에서 방열부(370)가 무선전력 송신장치(300)에서 발생되는 열을 방산시킨다. 이를 위해, 방열부(370)가 하부 차단부(331)에 장착된다. 이 때 방열부(370)는 하부 차단부(331)의 하부면에 장착된다. 이러한 방열부(370)는 다수개의 방열핀(371)들을 포함한다. 이 때 방열부(370)가 방열핀(371)들을 포함함에 따라, 확장된 표면적을 갖는다. 방열핀(371)들은 하부 차단부(331)로부터 연장된다.
본 실시예에 따르면, 차단부(320)가 부품(315)들과 무선 송신부(340) 사이에서, 부품(315)들과 무선 송신부(340)를 상호로부터 격리시킨다. 즉 부품(315)들 동작 시, 부품(315)들에서 열과 전자기파가 발생된다. 마찬가지로, 무선 송신부(340) 동작 시, 무선 송신부(340)에서 열과 전자기파가 발생된다. 그러나, 차단부(320)가 부품(315)들에 대응하여, 무선 송신부(340)의 열과 전자기파를 차단한다. 뿐만 아니라, 차단부(320)가 무선 송신부(340)에 대응하여, 부품(315)들의 열과 전자기파를 차단한다. 아울러, 차단부(320)가 기판(310)의 상부뿐만 아니라 하부에서 부품(315)들을 밀봉한다. 게다가, 방열부(370)가 열을 방산시킨다. 이를 통해, 차단부(320)는 부품(315)들과 무선 송신부(340)를 보다 효과적으로 격리시킨다. 게다가, 차단부(320)는 외부의 물리적 충격으로부터 부품(315)들을 보호한다.
한편, 전술된 실시예들에서 무선 송신부(140, 240, 340)가 제 1 무선 송신부(141, 241, 341)와 제 2 무선 송신부(151, 251, 351)를 포함하는 예를 개시하였으나, 이에 한정하는 것은 아니다. 즉 무선 송신부(140, 240, 340)가 제 1 무선 송신부(141, 241, 341) 또는 제 2 무선 송신부(151, 251, 351) 중 적어도 어느 하나를 포함함에 따라, 본 발명의 구현이 가능하다. 바꿔 말하면, 무선 송신부(140, 240, 340)가 제 1 무선 송신부(141, 241, 341) 또는 제 2 무선 송신부(151, 251, 351) 중 어느 하나로 이루어질 수 있다.
이하 도 11 내지 도 18에서는 상기한 실시 예들에 포함되는 무선 송신부(140, 240, 340)의 구성 및 동작에 대해 상세히 설명한다.
상기한 실시 예에 따라 참조번호가 상이하게 부여된 무선 송신부(140, 240, 340)는 설명의 용이성 및 간략화를 위하여 상기한 무선 송신부(140, 240, 340)들의 참조 번호 중 하나의 참조번호(140)로 설명한다. 상기한 참조번호는 설명의 간략화를 위한 것으로 상술한 무선 송신부(140, 240, 340)들에 모두 적용될 수 있다.
도 11 및 도 12는 각각 무선전력 송신장치(100) 및 무선전력 수신장치(1000)의 블록 구성도이다.
도 11 및 도 12를 참조하면, 본 발명의 실시 예에 따른 무선전력 전송 시스템(1)을 구성하는 무선전력 송신장치(100)의 무선 송신부(140)는 송신 전력 컨버터(1401)와 전송 안테나(1402)를 포함할 수 있다.
송신 전력 컨버터(1401)는 정류 및 필터부(1410), 변압부(1420), 전력변환부(1430), 제어부(1440), 매칭부(1450) 및 전송방식 선택부(1460)으로 구성될 수 있다.
정류 및 필터부(1410)는 다음 스테이지에서 사용될 직류 전압을 생성하고, 생성된 직류 전압은 변압부(1420)에 제공되어 전송 안테나(1402)에 공급될 전력일 수 있다.
변압부(1420)는 제어신호를 기초하여 상기 정류 및 필터부(1410)로부터 출력된 직류 전원의 레벨을 조절하는 역할을 할 수 있다. 변압부(1420)는 전력용 트랜지스터 등 반도체 소자를 스위치로 사용하여 직류 입력 전압을 구형파 형태의 전압으로 변환한 후 필터를 통하여 제어된 직류 출력 전압을 취득할 수 있다.
이때 직류 출력 전압의 제어는 스위치의 온/오프 기간을 제어하는 것으로 실행될 수 있다.
상기 변압부(1420)의 동작은 직류 입력에서 직류 출력으로 변환을 기본으로 하므로 스위치모드파워서플라이(SMPS: Switched-Mode Power Supply), 직류-직류 변압기 또는 직류-직류 컨버터라고 부르기도 한다.
상기 변압부(1420)는 출력 전압이 입력 전압 보다 낮게 나타나는 벅(buck)컨버터, 출력전압이 입력 전압보다 높게 나타나는 부스트(boost)컨버터, 상기 컨버터들의 특성을 모두 가지는 벅-부스트 컨버터의 세 종류 중 어느 하나의 특성을 가질 수 있다.
상기 변압부(1420)는 출력하는 직류 전압의 레벨이 조절될 수 잇고, 이러한 직류 전압의 레벨은 제어부(1440)의 제어 신호에 의해 제어될 수 있다.
상기 제어부(1440)는 마이크로프로세서, 마이크로컨트롤유닛 또는 마이콤이라고 부를 수 있다.
제어부(1440)는 최대 전력 전송 효율과 수신장치(1000)의 전력 요구량, 수신장치(1000)의 현재 충전량 등을 고려하여 상기 변압부(1420)에서 출력되는 직류 전압의 크기를 제어할 수 있다
또한 상기 제어부(1440)가 상기 변압부(1420)의 출력 전압을 조절하는 역할을 할뿐만 아니라 송신부(140)와 저장부(미도시)로부터 독출한 제어에 요구되는 알고리즘, 프로그램 또는 어플리케이션을 이용하여 송신부(140)의 동작 전반을 제어할 수 있다.
상기 송신 전력 컨버터(1401)는 송신 통신부(1441)를 더 구비할 수 있고, 송신 통신부(1441)는 수신장치(1000)의 수신 통신부와 통신을 수행할 수 있다.
상기 송신 및 수신 통신부는 소정의 방식으로 양방향 통신을 수행할 수 있는데, 그 예로써, NFC(near field communication), Zigbee 통신, 적외선 통신, 가시광선 통신, 블루투스 통신, BLE(bluetooth low energy) 방식 등을 이용하여 통신을 수행할 수 있다.
또한, 통신부는 서로간에 전력 정보를 송 수신할 수 있고, 여기에서 전력 정보는 수신장치(1000)의 용량, 배터리 잔량, 충전 횟수, 사용량, 배터리 용량, 배터리 비율 중 적어도 하나를 포함할 수 있다. 또한, 송신 통신부(1441)는 수신장치(1000)의 충전 기능을 제어하는 충전 기능 제어 신호를 송신할 수 있다.
충전 기능 제어 신호는 수신장치(1000)를 제어하여 충전 기능을 인에이블(enabled) 또는 디스에이블(disabled)하게 하는 제어 신호일 수 있다. 또는, 전력 정보는 유선 충전 단자의 인 입, SA 모드로부터 NSA 모드로의 전환, 에러 상황 해제 등의 정보를 포함할 수도 있다.
한편 도면 상으로 상기 송신 전력 컨버터(1401)은 송신측 통신부(1441)는 아웃-밴드(out-band) 또는 인-밴드(in-band) 형식으로 통신을 수행할 수도 있다.
상기 송신 통신부(1441)는 상기 제어부(1440)와 별도로 구성될 수 있다.
전력변환부(1430)는 수십 KHz ~ 수십 MHz 대역의 스위칭 펄스 신호에 의하여 일정한 레벨의 DC 전압을 AC 전압으로 변환함으로써 전력을 생성할 수 있다. 즉, 전력변환부(130)는 직류 전압을 교류 전압으로 변환함으로써, 타켓이 되는, 즉 충전 영역에 들어온 수신장치(1000)에서 사용되는 "웨이크-업 전력" 또는 "충전 전력"을 생성할 수 있다.
여기서, 웨이크-업 전력은 0.1~1mWatt의 작은 전력을 의미하고, 충전용 전력은 수신장치(1000)의 배터리를 충전하는데 필요한 전력 또는 수신장치(1000)의 동작에 소비되는 전력으로써, 타겟 수신장치(1000)의 부하에서 소비되는 1mWatt~200Watt의 큰 전력을 의미한다.
한편 전력변환부(1430)는 스위칭 펄스 신호에 따라 변압부(1420)으로부터 출력되는 DC 전압을 증폭하는 전력증폭기를 포함할 수 있다.
풀 브리지(full bridge) 또는 하프 브리지(Half bridge) 인버터로 구성될 수 있다.
또한 상기 전력변환부(1430)는 복수개의 전력변환부로 구성될 수 있다.
복수개의 전력변환부 중에서 어느 하나의 전력변환부는 자기 유도 방식으로 전력을 전송하기 위하여 유도 코일에 교류 전력을 공급할 수 있고, 다른 하나의 전력변환부는 자기 공진 방식으로 전력을 전송하기 위하여 공진 코일에 교류 전력을 공급할 수 있다.
상기 복수개의 전력변환부 각각은 전송 방식에 따라 서로 다른 주파수를 가진 교류 신호를 생성할 수 있다.
매칭부(1450)는 제어부(1440)의 후단에 배치되어 적어도 하나의 수동 소자 및 적어도 하나의 능동 소자 중 적어도 하나를 포함할 수 있으며 송신장치(100)와 수신장치(1000) 사이의 임피던스 매칭을 수행하여 전력 전송 효율이 극대화되도록 할 수 있다.
상기 매칭부(1450)로부터 바라본 임피던스를 조정하여, 출력 전력이 고효율 또는 고출력이 되도록 제어할 수 있다. 그리고 매칭부(1450)는 제어부(1440) 및 송신 통신부(1441)의 제어에 기초하여 임피던스를 조정할 수 있다. 또한 매칭부(1450)는 코일 및 커패시터 중 적어도 하나를 포함할 수 있다. 그리고 제어부(1440) 및 송신측 통신부(1441)는 코일 및 커패시터 중 적어도 하나와의 연결 상태를 제어할 수 있으며, 이에 따라 임피던스 매칭을 수행할 수 있다.
상기 전송 안테나(1402)는 유도 코일 및 공진 코일 중 적어도 하나 이상을 포함할 수 있다.
무선전력 전송 시스템(1)이 자기유도방식으로만 전력을 전송하는 경우 상기 전송 안테나 시스템(102)은 유도 코일만을 구비할 수 있고, 자기공진방식으로만 전력을 전송하는 경우 공진 코일만을 구비할 수 있으며, 자기유도방식과 자기공진방식을 혼용하여 전력을 전송하는 경우에는 유도 코일과 공진 코일을 모두 구비할 수 있다.
또한 유도 코일 또는 공진 코일은 단수개로 구비될 수 있고, 복수개로 구비될 수 있다. 유도 코일 또는 공진 코일이 복수개로 구비되는 경우 서로 중첩되어 배치될 수 있고, 중첩되는 면적은 자속 밀도의 편차를 고려하여 결정한다.
전송방식 선택부(1460)는 선택부로 약칭할 수 있고, 제어부(1440)의 선택신호에 기초하여 변압부(1420)에서 생성된 전력이 공진 코일 또는 유도 코일 중 어느 하나의 코일로 전달되도록 할 수 있다.
상기 전송방식 선택부(1460)는 제어부(1440)의 선택 신호에 의하여 자기 공진 방식으로 전력을 전송하는 것으로 결정된 경우, 상기 전송방 식선택부(1460)는 변압부(1420)와 전력변환부(1430) 내의 어느 하나의 전력변환부를 서로 연결할 수 있고, 자기 유도 방식으로 전력을 전송하는 것으로 결정된 경우 상기 전송방식 선택부(1460)는 변압부(1420)와 전력변환부(1430) 내의 다른 하나의 전력변환부를 서로 연결할 수 있다.
상기한 송신부(140)로부터 출력되는 전력을 수신하기 위한 수신장치(1000)는 도 12에 도시된 바와 같이 수신전력 컨버터(1001)와 수신 안테나(1102)를 포함할 수 있다.
또한 수신 안테나(1102)는 자기유도방식 또는 자기공진방식을 통해 전력을 수신할 수 있다. 이와 같이 전력 수신 방식에 따라서 상기 수신 안테나(1102)은 유도 코일 또는 공진 코일 중 적어도 하나 이상을 포함할 수 있다. 그리고 수신 안테나(1102)는 근거리 통신용 안테나(Near Field Communication)를 함께 구비할 수 있다.
수신 전력 컨버터(1101)는 매칭부(1110), 정류부(1120), 수신측 변압기(1130), 부하(1140) 및 수신측 제어부(1150)을 포함할 수 있다.
수신측 제어부(1150)는 수신측 통신부(1151)를 포함할 수 있고, 수신측 통신부(1151)는 수신측 제어부(1150)와 별도로 구성될 수 있다.
매칭부(1110)는 송신부(140)와 수신장치(1000) 사이의 임피던스 매칭을 수행한다.
정류부(1120)는 수신 안테나(1102)로부터 출력되는 AC전압을 정류하여 DC전압을 생성한다.
수신측 변압기(1130)는 DC-DC컨버터로 구성되어 정류부(1120)에서 출력되는 DC전압의 레벨을 부하(1140)의 용량에 맞게 조정할 수 있다.
부하(1140)는 배터리, 디스플레이, 음성 출력 회로, 메인 프로세서 그리고 각종 센서들을 포함할 수 있다.
수신측 제어부(1150)는 송신장치(100)의 송신부(140)로부터 웨이크업 전력에 의해 활성화될 수 있고, 송신장치(100)와 통신을 수행하고, 수신장치(1000)의 구성을 전반적으로 제어할 수 있다.
상기 수신장치(1000)는 단수 또는 복수개로 구성되어 송신장치(100)로부터 동시에 에너지를 무선으로 전달 받을 수 있다. 즉 공진 방식의 무선전력전송 시스템에서는 하나의 송신장치(100)로부터 복수의 타켓 수신장치(1000)가 전력을 공급받을 수 있다.
이때 상기 송신장치(100)의 송신부(140)에 포함되는 매칭부(1450)는 복수개의 수신장치(1000)들 사이의 임피던스 매칭을 적응적으로 수행할 수 있다.
한편 상기 수신장치(1000)가 복수개로 구성된 경우 동일 종류의 시스템이거나 서로 다른 종류의 시스템이 될 수 있다.
이하 도 13에서는 상기 도 11의 송신장치(100)의 송신부(140)에 포함되는 전송방식 선택부(1460)와 전력 변환부(1430)의 구성 및 동작에 대해 상세히 설명한다.
전력변환부(1430)는 제1 전력변환부(1431) 및 제2 전력변호나부(1432)를 포함할 수 있다.
전송상식 선택부(1450)는 제어부(1440)의 선택 신호에 따라 변압부(1420)로부터 제공되는 직류 전원을 상기 제1 전력변환부(1431) 및 제2 전력변환부(1432)중 어느 하나에 제공할 수 잇다.
제1 전력변환부(1431)는 변압부(1420)로부터 제공되는 직류 전원을 kHz~MHz의 주파수를 가진 교류 전력으로 변환하여 유도 코일에 제공할 수 있고, 제2 전력변환부(1432)는 변압부(1420)로부터 제공되는 직류 전원을 kHz~15MHz의 주파수를 가진 교류 전력으로 변환하여 공진 코일에 제공할 수 있다.
상기 전력변환부(1430)가 제1 전력변환부(1431 및 제2 전력변환부(1432)를 각각 구비하여 제1 주파수와 제1 진폭을 가진 제1 교류 전력을 유도 코일에 제공하고, 제2 주파수와 제2 진폭을 가진 제2 교류 전력을 공진 코일에 제공하는 것으로 설명하고 있으나, 하나의 전력변환부(1430)를 이용하여 제어부(4120)의 제어에 따라서 서로 다른 주파수와 진폭을 가진 교류 전력을 생성하여 유도 코일 또는 공진 코일에 제공할 수도 있다.
도 14는 본 발명의 실시 예에 따른 변압부 및 제어부 그리고 전송방식 선택부를 나타낸 도면이다.
도 14를 참조하면, 상기 변압부(1420)는 변압기(1421)와 제어 유닛(1422) 그리고 분배부(1423)를 포함할 수 있다.
도면 상으로 상기 분배부(1423)가 변압부(1420)에 포함되는 구성으로 도시되어 있으나 이에 한정되는 것은 아니고 별도로 구성될 수 있다.
상기 제어 유닛(1422)은 상기 변압기(1421)의 출력 전압을 안정화(regulation)할 수 있는 장치로써, 변압기(1421)의 출력 전압의 분압 전압을 피드백 받아 상기 출력 전압의 오차를 제어 할 수 있다.
상기 분배부(1423)는 상기 변압기(1421)의 출력 전압을 전압 분배하여 상기 제어 유닛(122)으로 공급할 수 있다.
상기 제어 유닛(1422)은 분배부(1423)로부터 분배된 전압을 토대로 펄스 폭이 조정된 구형파 펄스(Pulse width modulation; PWM)를 변압기(1421)으로 제공하고 상기 변압기(1421)는 구형파 펄스의 펄스 폭에 따라 레벨이 조절된 일정한 직류 전압을 출력할 수 있다.
상기 분배부(1423)는 제어부(1440)의 제1 및 제2 출력 제어 포트(Output contror port; OCP1, OCP2)에 연결될 수 있다.
상기 제어부(1440)는 전력 전송 방식에 따라서 상기 제1 및 제2 출력 제어 포트(OCP1, OCP2) 중 어느 하나로 제어 신호를 출력하여 상기 제어 유닛(1422)의 입력 단자 전압의 값을 조절하여 변압기(4121)의 출력 전압을 제어할 수 있다.
도 15는 본 발명의 실시예에 따른 제어 유닛의 블록 구성도이다.
도 15를 참조하면, 상기 제어 유닛(1422)의 서브 시스템은 오차 증폭기(1424), 비교기(1425) 그리고 스위치 구동부(1426)를 포함할 수 있다.
상기 오차 증폭기(1424)는 분배부(1423)의 분배 전압(Vd)을 기초로 변압기(1421)의 출력 전압(Vout)의 오차를 증폭하여 증폭된 전압(Vc)을 출력한다.
상기 오차 증폭기(1424)는 제1 연산증폭기(OP1)로 구성될 수 있고, 상기 연산증폭기의 반전 단자에는 분배부(1423)를 거친 변압기(1421)의 출력 전압이 인가되고, 비 반전 단자에는 기준 전압(Vref)이 인가된다.
상기 오차 증폭기(1424)는 분배부(1423)를 거친 변압기(1421)의 출력 전압을 기준 전압(Vref)과 비교하여 여기서 나타나는 오차를 증폭하여 비교기(125)로 입력한다.
상기 비교기(1425)는 오차증폭기(124)의 출력 전압(Vc)을 기초로 하여 구형파 펄스를 발생한다.
상기 비교기(1425)는 제2 연산증폭기(OP2)로 구성될 수 있고, 비 반전 단자에는 오차증폭기(1424)의 출력 전압(Vc)이 인가되고, 반전 단자에는 삼각파가 인가된다.
상기 비교기(1425)는 삼각파와 오차증폭기(1424)의 출력 전압(Vc)을 비교하여 변압기(1421)를 구동하기 위한 구형파 펄스를 발생할 수 있고, 변압기(1421)의 출력 오차에 상응하여 펄스폭을 조정함으로써 변압기(1421) 출력 전압(Vout)을 안정화시킬 수 있다.
상기 스위치 구동부(1426)는 비교기(1425)의 출력을 기초로 하여 변압기(1421)를 구동할 수 있다. 즉, 상기 변압기(1421) 내에 포함된 스위치의 온(ON), 오프(OFF)를 제어하여 변압기(1421)의 기 설정된 전압을 일정하게 유지시킬 수 있다.
상기 제어 유닛(1422)과 변압기(1421)는 변압부(1420)로 직접화(Integrated Chip; IC)화 될 수 있다.
이처럼 변압부(1420)는 기 설정된 전압의 오차를 반영하여 일정한 전압을 출력하는 기능을 할 수 있다. 그러나 변압부(1420)의 출력 전압을 가변 시킬 필요가 있는 경우, 제어부(1440)가 변압부(1420)를 제어하는 방식을 설명한다.
상기 분배부(1423)는 변압기(1421)의 출력 단자와 오차증폭기(1424)의 입력 단자(반전 단자)에 연결된 제1 저항(R1) 그리고 상기 오차 증폭기(1424)의 입력 단자(반전 단자)와 접지 사이에 연결된 제2 저항(R2)을 포함할 수 있다.
상기 제1 저항(R1)과 상기 제2 저항(R2)의 크기 관계는 R1<R2 관계가 되는 것이 바람직하다.
이 때 상기 제1 및 제2 저항(R1, R2) 값에 따라서 변압기(1421)의 분배 전압(Vd)이 달라질 수 있는데, 그 원리를 살펴보면 제1 및 제2 저항(R1, R2)에 의해 변압기(1421)의 출력 전압(Vout)이 분압된 분압 전압(Vd)은 기준 전압(Vref)과 비교되고 그 오차가 증폭되므로, 분압 전압(Vd)이 기준 전압(Vref)보다 작은 경우 오차증폭기(1424)의 출력(Vc) 레벨은 오차증폭기(1424)의 입력 저항(Rin)과 피드백 저항(Rf)의 비, 즉 Rf/Rin의 기울기로 올라간다. 반면에 분압 전압(Vd)이 기준 전압(Vref)보다 큰 경우 오차증폭기(124)의 출력(Vc) 레벨은 Rf/Rin의 기울기로 내려간다.
이와 같이 상기 분압 전압(Vd)은 제1 및 제2 저항(R1, R2)의 값에 따라서 고정될 것이나, 분압 전압(Vd)을 조정하여 최종적으로 변압기(121)의 출력 전압을 조정할 수도 있다.
이러한 역할은 제어부(1440)에서 담당할 수 있다.
즉 제어부(1440)는 전력 송신 환경에 따라서 상기 변압기(1421)의 출력 전압(Vout)을 조절할 필요가 있다. 이때 상기 제어부(1440)의 제1 및 제2 출력제어포트(OCP1, OCP2) 중 어느 하나의 포트와 오차증폭기(124)의 입력단자(반전단자) 사이에는 제3 저항(R3) 또는 제4 저항(R4)이 연결되기 때문에 상기 제1 및 제2 출력제어포트(OCP1, OCP2) 중 어느 하나의 포트로 출력되는 전압을 조절함으로써, 오차증폭기(124)의 입력 단자로 인가되는 분압 전압(Vd)을 조절할 수 있다.
상기 분압 전압(Vd)를 조절할 수 있는 방법으로써, 전술한 바와 같이 상기 제1 및 제2 출력제어포트(OCP1, OCP2)로 출력되는 전압을 조절하여 분압 전압(Vd)을 제어할 뿐만 아니라, 제3 및 제4 저항(R3, R4)을 가변저항으로 하여 제어부(1440)가 가변저항의 저항 값을 조절하는 방식으로도 분압 전압(Vd)을 제어할 수 있다.
한편 상기 제어부(1440)의 제어에 따라서 분압 전압(Vd) 값이 달라질 수 있고, 그에 따라 분압 전압(Vd)과 기준 전압(Vref)의 비교를 기초로 한 오차증폭기(124)의 출력(Vc) 레벨의 상승 또는 하강 여부가 제어될 수 있다.
상기 오차증폭기(1424)의 출력(Vc)은 비교기(1425)의 삼각파와 비교되어 상기 오차증폭기(1424)의 출력(Vc)의 레벨이 상승하는 경우 비교기(1425)는 펄스폭이 증가된 구형파를 발생하고, 상기 오차증폭기(1424)의 출력(Vc)의 레벨이 하강하는 경우 비교기(1425)는 펄스폭이 줄어든 구형파를 발생하게 된다.
한편 상기 제1 내지 제3 저항(R1, R2, R3)의 크기 관계는 R1<R3<R2 그리고 R1<R4<R2의 관계가 될 수 있다.
이하 전송방식선택부(1460)와 제어부(1440) 그리고 변압부(1420)의 동작관계를 설명한다.
무선전력 전송 시스템(1)이 자기 유도 방식으로 전력을 전송하고자 하는 경우, 제어부(1440)는 제1 출력 제어 포트(OCP1)로 제어 신호를 전송하여 분배 전압 값을 조절하고, 조절된 분배 전압 값에 대응하는 직류 전압을 변압부(1420)가 출력할 수 있다. 동시에 상기 제어부(1440)는 전송방식 선택부(1460)를 제어하여 상기 변압부(1420)로부터 제공되는 전력이 유도 코일로 전달되도록, 상기 변압부(1420)로부터 출력되는 직류 전압을 제1 전력변환부(1431)가 제공받도록 할 수 있다.
이와 달리 무선전력전송 시스템(1)이 자기 공진 방식으로 전력을 전송하고자 하는 경우, 제어부(1440)는 제2 출력 제어 포트(OCP2)로 제어 신호를 전송하여 분배 전압 값을 조절하고, 조절된 분배 전압 값에 대응하는 직류 전압을 변압부(1420)가 출력할 수 있으며, 동시에 상기 제어부(1440)는 전송방식 선택부(1460)를 제어하여 상기 변압부(1420)로부터 제공되는 전력이 제2 전력변환부(1432)로 인가되도록 하여 상기 제2 전력변환부(1432)로부터 출력되는 교류 전력을 공진 코일로 전달할 수 있다.
이와 같이 전송방식 선택부(1460)는 제어부(1440)의 선택제어신호에 기초하여 유도형 출력이 필요한 경우와 공진형 출력이 필요한 경우를 구분하여 변압부(1420)로부터 제공되는 출력을 해당 코일로 제공할 수 있다.
상기 전송방식 선택부(1460)는 아날로그 스위치, 모스펫(Mosfet) 이나 트랜지스터로 구성되어 스위치 동작을 수행할 수 있다.
즉 전송방식 선택부(1460)는 제어부(1440)로부터의 선택 제어신호에 기초하여 변압부(1420)와 유도 코일을 전기적으로 연결시키거나 변압부(1420)와 공진 코일을 전기적으로 연결시키는 동작을 선택적으로 할 수 있다.
이하 송신장치(100) 및 수신장치(1000) 간의 통신 정보를 바탕으로 상기 송신장치(100)의 송신부(140)를 구성하는 제어부(1440)가 출력제어포트를 통해 변압부(1420)의 출력 전압을 제어하는 방법을 설명한다.
먼저 송신측 통신부(1441)와 수신측 통신부(1151)의 통신 방식과 통신 정보를 기초로 한 송신측 제어부(1440)의 제어 방식을 설명한다.
도 16은 수신 장치의 검출에서 송신 장치로부터 수신 장치로 전력 전송까지의 단계를 나타낸 도면이다.
제어 방식은 크게 4 단계로 구분할 수 있고, 각 단계로 수신장치(1000) 검출 단계(Selection, S100), 반응 확인 단계(Ping, S200), 인증과 구성 단계(Identification & Configuration, S300) 그리고 전력 전송 단계(Power Transfer, S400)가 있다.
상기 수신장치(1000) 검출 단계(S100)는 송신장치(100)가 수신장치(1000)의 존재를 검출하기 위한 신호를 발하고, 수신장치(1000)의 반응을 기다리는 단계이다.
상기 반응 확인 단계(S200)은 수신장치(1000)가 신호의 강도 정보를 송출하고, 송신장치(100)는 그 정보를 통해 수신장치(1000)의 존재를 확인할 수 있다.
상기 인증과 구성 단계(S300)는 수신장치(1000)가 인증과 요구 전력 정보를 송출하고, 송신장치(100)는 전력 송출을 구성하고 전력을 송출할 준비를 한다.
상기 전력 전송 단계(S400)는 수신장치(1000)가 제어 정보를 송출하고, 송신 장치(100)가 전력 전송을 개시한다.
이 네 단계 사이에 신호가 차단되거나 신호가 불량할 경우에는 타임 아웃이 되어 처음 단계로 돌아갈 수 있고, 또 송전 도중에 이상이 검출될 경우나 수신 장치(1000)가 충전 영역에서 벗어나는 경우나 완충된 경우에는 송전을 종료하고 처음 단계로 돌아갈 수 있다.
도 17은 송신장치의 안테나 코일의 배치관계를 나타낸 도면이고, 도 18은 송신장치 안테나의 공진코일과 유도코일을 함께 구비한 코일부와 유도코일만 구비한 코일부를 나타낸 도면이다.
코일부는 상기한 도 2 내지 도 10에서 설명한 바와 같이 무선 송신부(140)에 포함되는 제1 송신코일(145)과 제2 송신코일(155)일 수 있다. 또한 상기 제1 송신 코일(145) 및 제2 송신 코일(155)을 지지하는 지지부재는 전자파 차폐를 위한 차폐부재(143,153)일 수 있다. 상기 차폐부재는 페라이트로 형성될 수 있다.
제1 송신 코일(145) 및 제2 송신 코일(155)은 각각 유도코일과 공진코일일 수 있다.
이와 같은 무선전력 전송 시스템은 휴대전화나 스마트폰 뿐만 아니라 차량용 무선충전 시스템, 전기자동차(Electric Vehicle; EV)나 플러그인 하이브리드자동차(PHEV)와 같은 전동 차량에 탑재될 수 있다. 그 외에도 산업기기용 애플리케이션과 가정용 전자기기에도 장착될 수 있다.
산업기기용 애플리케이션으로는 전동공구 류나 무선센서, 산업용 머터의 슬립링(회전자) 등이 포함된다. 또한 가정용 전자기기로는 TV나 디지털 카메라, 게임기. 전동칫솔, 충전식 전지 등이 있다. 그리고 비접촉형 IC카드나 수동 RFID에도 적용될 수 있다.
이상에서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (20)

  1. 기판;
    상기 기판의 상부에 배치되며, 금속 물질로 형성된 제1 차단부;
    상기 제1 차단부의 상부에 배치된 제2 차단부;
    상기 제1 차단부 또는 제2 차단부 중 적어도 어느 하나에 장착되는 무선 송신부;를 포함하고,
    상기 무선 송신부는
    제1 전송코일을 포함하는 제1 무선 송신부;
    제2 전송 코일을 포함하는 제2 무선 송신부;
    전력 전송 방식에 따라 상기 무선 송신부 중 어느 하나의 무선 송신부 전송 코일에 교류 전원이 출력되도록 제어하는 제어부;를 포함하는 무선전력 전송장치.
  2. 제1항에 있어서,
    상기 제1 무선송신부는 상기 제1 차단부의 상부면에 장착되고,
    상기 제2 무선 송신부는 제2 차단부의 상부면에 장착되는 무선전력 전송장치.
  3. 제1항에 있어서,
    상기 제1 무선 송신부와 제2 무선 송신부는 서로 다른 방식으로 전력을 송신하는 무선전력 전송장치.
  4. 제3항에 있어서,
    상기 제1 무선 송신부는 전자기 유도 방식을 수행하기 위한 유도 코일을 포함하고,
    상기 제2 무선 송신부는 공진 방식을 수행하기 위한 공진 코일을 포함하는 무선전력 전송장치.
  5. 제1항에 있어서,
    전원공급부에서 인가된 전력을 직류 전원으로 변환하는 변압부;
    상기 직류 전원을 교류 전원으로 변환하여 상기 무선 송신부로 출력하는 전력 변환부;를 포함하는 무선전력 전송장치.
  6. 제5항에 있어서,
    상기 제어부의 선택제어신호를 기초로 어느 하나의 무선 송신부 전송코일에 상기 교류 전원이 출력되도록 하는 선택부;를 더 포함하는 무선전력 전송장치.
  7. 제6항에 있어서,
    상기 전력변환부는 제1 전력변환부 및 제2 전력변환부를 포함하고,
    상기 선택부는 상기 직류전원을 상기 제1 전력변환부 또는 제2 전력변환부 중 어느 하나에 제공하는 무선전력 전송장치.
  8. 제5항에 있어서
    상기 변압부는 직류-직류 변환기와 상기 직류-직류 변환기의 출력 전압을 피드백 받아 상기 출력전압을 조절하는 제어 유닛을 포함하는 무선전력 전송장치.
  9. 제8항에 있어서,
    상기 제어 유닛은
    상기 직류-직류 변환기의 상기 출력전압을 분배하여 분압 전압을 출력하는 분배부를 포함하는 무선전력 전송장치.
  10. 제9항에 있어서,
    상기 제어유닛은
    상기 선택된 무선 송신부에 따라 상기 분압 전압을 조절하는 무선전력 전송장치.
  11. 제9항에 있어서,
    상기 제어유닛은
    상기 분압 전압과 기준 전압을 비교하여 오차를 증폭하는 오차 증폭기;
    상기 오차 증폭기의 출력에 대응하는 펄스를 출력하는 비교기;를 포함하는 무선전력 전송장치.
  12. 제9항에 있어서,
    상기 제어유닛은
    상기무선전력 전송장치와 무선전력 수신장치 사이의 통신 정보를 기초하여 상기 분압 전압을 조절하는 무선전력 전송장치.
  13. 제1항에 있어서,
    상기 무선송신부는
    상기 제1 차단부에 형성된 개구부를 통과하여 상기 기판에 연결되는 무선전력 전송장치.
  14. 제1항에 있어서,
    상기 제1 차단부는
    상기 제2 차단부의 가장자리 영역에 체결되어 상기 제2 차단부를 지지하는 무선전력 전송장치.
  15. 제1항에 있어서,
    상기 제2 차단부는
    상기 제1 차단부의 금속물질과 동일하거나 상이한 금속물지롤 형성된 무선전력 전송장치.
  16. 제1항에 있어서,
    상기 기판의 하부에 배치되는 하부 차단부를 더 포함하는 무선전력 전송장치.
  17. 제16항에 있어서,
    상기 하부 차단부는
    상기 제1 차단부의 가장자리 영역에 체결되어 상기 제1 차단부를 지지하는 무선전력 송신장치.
  18. 제16항에 있어서,
    상기 하부 차단부에 장착되는 방열부를 더 포함하는 무선전력 송신장치.
  19. 제18항에 있어서,
    상기 방열부는
    상기 하부 차단부로부터 연장되는 다수개의 방열핀들을 포함하는 무선전력 전송장치.
  20. 제1항에 있어서,
    상기 금속물질은 알루미늄 및 마그네슘을 포함하는 무선전력 전송장치.
PCT/KR2015/002961 2014-03-27 2015-03-26 무선전력 송신장치를 구비한 무선전력 전송 시스템 WO2015147566A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15769901.8A EP3131178B1 (en) 2014-03-27 2015-03-26 Wireless power transmission device
CN201580016450.2A CN106134032B (zh) 2014-03-27 2015-03-26 具有无线电力发送装置的无线电力传输系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020140035694A KR20150112160A (ko) 2014-03-27 2014-03-27 무선전력전송 송신 장치를 구비한 무선전력전송 시스템
KR10-2014-0035694 2014-03-27
KR1020140049613A KR20150123113A (ko) 2014-04-24 2014-04-24 무선 전력 송신 장치
KR10-2014-0049613 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015147566A1 true WO2015147566A1 (ko) 2015-10-01

Family

ID=54191689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002961 WO2015147566A1 (ko) 2014-03-27 2015-03-26 무선전력 송신장치를 구비한 무선전력 전송 시스템

Country Status (4)

Country Link
US (1) US9837829B2 (ko)
EP (1) EP3131178B1 (ko)
CN (1) CN106134032B (ko)
WO (1) WO2015147566A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681376B1 (ko) * 2014-10-10 2016-11-30 삼성전기주식회사 전력 공급 장치
US10355528B2 (en) * 2015-05-21 2019-07-16 Aptiv Technologies Limited Dual coil wireless power transmitter
JP6421746B2 (ja) * 2015-12-22 2018-11-14 トヨタ自動車株式会社 送電装置
KR102579117B1 (ko) * 2016-02-05 2023-09-15 삼성전자주식회사 무선 충전 장치
KR102572577B1 (ko) * 2016-04-15 2023-08-30 삼성전자주식회사 무선 충전을 제어하는 충전 장치 및 방법
US10236709B2 (en) 2016-05-05 2019-03-19 Greatbatch Ltd. Apparatus, system, and method for wireless charging of a device within a sterilizable vessel
CN106487101A (zh) * 2016-09-13 2017-03-08 中国农业大学 一种基于负载控制的电流互感器取能装置及方法
US20180090999A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Wireless charging mat with multiple coil arrangements optimized for different devices
FR3060234B1 (fr) * 2016-12-13 2019-05-10 Continental Automotive France Procede de charge d'un terminal mobile par un dispositif mobile destine a etre embarque sur un vehicule automobile et dispositif de charge associe
KR102624324B1 (ko) * 2016-12-29 2024-01-12 주식회사 위츠 무선 전력 송신 장치
EP3346581B1 (en) * 2017-01-04 2023-06-14 LG Electronics Inc. Wireless charger for mobile terminal in vehicle
CN110679060B (zh) * 2017-05-30 2024-05-24 通用电气公司 用于通用无线充电装置的传输组件及其方法
KR102420942B1 (ko) * 2017-08-11 2022-07-15 엘지이노텍 주식회사 무선 통신 코일을 구비한 무선충전장치
US10390468B2 (en) 2017-08-25 2019-08-20 Qualcomm Incorporated Wireless power-transmission shield
US11451093B2 (en) * 2017-09-05 2022-09-20 University Of Florida Research Foundation, Incorporated Wireless power transfer to biomedical implants
US10447084B2 (en) * 2017-09-08 2019-10-15 Apple Inc. Wireless charging mat with dynamic surface texture
CN108063044B (zh) * 2017-11-30 2024-03-26 亿创智联(浙江)电子科技有限公司 一种无线充电线圈和无线充电系统
US10916971B2 (en) 2018-03-26 2021-02-09 Mediatek Singapore Pte. Ltd. Wireless power transfer ecosystem and coils operating on substantially different power levels
CN108448732B (zh) * 2018-06-13 2024-04-26 合肥有感科技有限责任公司 无线供电系统
KR102573798B1 (ko) 2018-09-03 2023-09-01 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
CN116887593A (zh) * 2019-04-30 2023-10-13 北京小米移动软件有限公司 终端设备及保护壳

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120019219A (ko) * 2010-08-25 2012-03-06 한국전자통신연구원 무선 에너지 전송을 위한 자기 공진체에서 전기장 및 복사전력 감소 장치
US20130049484A1 (en) * 2010-04-30 2013-02-28 Powermat Technologies Ltd. System and method for transferring power inductively over an extended region
WO2013103756A1 (en) * 2012-01-06 2013-07-11 Access Business Group International Llc Wireless power receiver system
KR20130098730A (ko) * 2012-02-28 2013-09-05 한국전자통신연구원 에너지 시스템에서 에너지 공급 장치
KR20140031709A (ko) * 2012-09-05 2014-03-13 엘지전자 주식회사 유도 방식과 공진 방식을 지원하는 무선 전력 수신장치 및 무선 전력 수신방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792308B1 (ko) 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법
CN103296784B (zh) * 2008-12-12 2015-09-02 翰林Postech株式会社 非接触输电设备的电力传输的控制方法及非接触输电设备
US9407327B2 (en) * 2009-02-13 2016-08-02 Qualcomm Incorporated Wireless power for chargeable and charging devices
US8525370B2 (en) * 2009-11-30 2013-09-03 Broadcom Corporation Wireless power circuit board and assembly
TWI545597B (zh) * 2010-08-25 2016-08-11 通路實業集團國際公司 多層墊片組件
KR20120069349A (ko) 2010-12-20 2012-06-28 삼성전자주식회사 스위칭 손실을 줄이는 직류-직류 전압 변환기, 상기 직류-직류 전압 변환기를 포함하는 무선전력 수신 장치
KR20120082767A (ko) 2011-01-14 2012-07-24 한국과학기술원 인접한 코일간의 자기장 간섭을 최소화하기 위한 자기 차폐 막을 구비하는 무선전력 전송 장치
CN102170177A (zh) * 2011-04-27 2011-08-31 南京航空航天大学 一种大功率无线输电系统
US20150061581A1 (en) * 2012-03-16 2015-03-05 Powermat Technologies Ltd. Inductively chargeable batteries
KR20130134726A (ko) 2012-05-31 2013-12-10 엘에스전선 주식회사 자기장 확산 방지가 가능한 무선 전력 전송 장치
TWM442642U (en) * 2012-07-11 2012-12-01 ming-xiang Ye Bidirectional wireless power device
KR20140071183A (ko) * 2012-12-03 2014-06-11 삼성전기주식회사 무접점 전력 전송 장치
KR101452093B1 (ko) * 2013-03-13 2014-10-16 삼성전기주식회사 박막 코일, 이를 포함하는 차폐 부재 및 이를 구비하는 무접점 전력 전송 장치
JP6233504B2 (ja) * 2014-03-28 2017-11-22 株式会社村田製作所 アンテナ装置および電子機器
US9958480B2 (en) * 2015-02-10 2018-05-01 Qualcomm Incorporated Apparatus and method for a current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130049484A1 (en) * 2010-04-30 2013-02-28 Powermat Technologies Ltd. System and method for transferring power inductively over an extended region
KR20120019219A (ko) * 2010-08-25 2012-03-06 한국전자통신연구원 무선 에너지 전송을 위한 자기 공진체에서 전기장 및 복사전력 감소 장치
WO2013103756A1 (en) * 2012-01-06 2013-07-11 Access Business Group International Llc Wireless power receiver system
KR20130098730A (ko) * 2012-02-28 2013-09-05 한국전자통신연구원 에너지 시스템에서 에너지 공급 장치
KR20140031709A (ko) * 2012-09-05 2014-03-13 엘지전자 주식회사 유도 방식과 공진 방식을 지원하는 무선 전력 수신장치 및 무선 전력 수신방법

Also Published As

Publication number Publication date
EP3131178A4 (en) 2018-01-17
CN106134032A (zh) 2016-11-16
CN106134032B (zh) 2018-12-25
EP3131178A1 (en) 2017-02-15
US20150280450A1 (en) 2015-10-01
EP3131178B1 (en) 2019-12-11
US9837829B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
WO2015147566A1 (ko) 무선전력 송신장치를 구비한 무선전력 전송 시스템
WO2015137729A1 (ko) 무선전력 전송 장치를 구비한 무선전력전송 시스템
WO2016052865A1 (ko) 무선전력전송 시스템
WO2014062023A1 (ko) 무선 전력 송수신 장치
WO2016195249A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2019004753A1 (ko) 멀티 코일 기반의 무선전력 전송장치 및 방법
WO2014038779A1 (en) Method for communication and power control of wireless power transmitter in magnetic resonant wireless power transmission system
WO2010068062A2 (ko) 무접점 전력 송신장치
WO2010068063A2 (ko) 무접점 전력 수신장치 및 수신장치용 코어를 제작하기 위한 지그
WO2017065526A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2013162336A1 (ko) 무선전력 수신장치 및 그의 전력 제어 방법
WO2014115997A1 (en) Wireless power transmission apparatus and wireless power transmission method
WO2015020432A1 (ko) 무선전력 송신장치
WO2016133322A1 (ko) 무선 전력 송신 장치 및 무선 전력 송신 방법
WO2018194337A1 (ko) 무선 충전을 위한 무선 전력 송신 장치
WO2017007163A1 (ko) 무선 전력 송신 장치의 동작 방법
WO2017188628A1 (ko) 회로 기판 일체형 다중 모드 안테나 및 그를 이용한 장치
WO2016163697A1 (ko) 무선 전력 전송 방법 및 이를 위한 장치
WO2015182961A1 (ko) 무접점 전력 수신 장치 및 수신 방법
WO2015199466A1 (ko) 무선전력전송 시스템
WO2017217684A1 (ko) 무선 전력 송신기 및 수신기.
WO2017119622A1 (ko) 무선 전력 송신기 및 수신기
WO2021215696A1 (ko) 과전압 보호 동작을 수행하는 전자 장치 및 그 제어 방법
WO2018101677A1 (ko) 무선 전력 수신 장치
WO2018131944A1 (ko) 코일 장치 및 코일 장치를 포함하는 무선 전력 송수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769901

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015769901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769901

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE