WO2022244594A1 - 近接センサ及びコントローラ - Google Patents

近接センサ及びコントローラ Download PDF

Info

Publication number
WO2022244594A1
WO2022244594A1 PCT/JP2022/018534 JP2022018534W WO2022244594A1 WO 2022244594 A1 WO2022244594 A1 WO 2022244594A1 JP 2022018534 W JP2022018534 W JP 2022018534W WO 2022244594 A1 WO2022244594 A1 WO 2022244594A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
contact
detection
proximity sensor
sensing
Prior art date
Application number
PCT/JP2022/018534
Other languages
English (en)
French (fr)
Inventor
貴敏 加藤
博 渡邊
滉平 菅原
浩一 井上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023522583A priority Critical patent/JP7468785B2/ja
Publication of WO2022244594A1 publication Critical patent/WO2022244594A1/ja
Priority to US18/382,611 priority patent/US20240044671A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/96073Amplitude comparison
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/96077Constructional details of capacitive touch and proximity switches comprising an electrode which is floating

Definitions

  • the present invention relates to a proximity sensor that detects the proximity of an object, such as a human finger, and a controller equipped with the same.
  • Patent Document 1 discloses a device for detecting a portable device being held by hand.
  • the device comprises a transmitting electrode that emits an alternating electric field and a receiving electrode to which the alternating electric field is at least partially coupled. Grasping of the hand-held device by the hand is detected by creating capacitive coupling between the transmitting and receiving electrodes.
  • a conductive structure coupled to the ground potential of the portable device is arranged inside the housing of the portable device. This electrically conductive structure is provided to reduce capacitive coupling between the transmitting and receiving electrodes and to substantially prevent the spread of electric field lines from the transmitting electrode to the receiving electrode. It is disclosed that there is substantially no current flow into the receiving electrodes when the handheld device is not grasped by the hand.
  • Patent Document 1 functions as a contact sensor that detects the gripping of the portable device by hand.
  • a proximity sensor function that detects not only finger contact but also proximity.
  • An object of the present invention is to provide a proximity sensor and controller that can accurately detect the proximity of an object that contacts the controller.
  • the proximity sensor in the present invention includes one or more sensing electrodes that are capacitively coupled with an approaching object, a contact electrode that is in contact with the object, and one of the sensing electrode and the contact electrode that is connected to the electrode. and an excitation circuit connected to the other one of the sensing electrode and the contact electrode to generate a first capacitance between the sensing electrode and the object based on the sensing voltage at the electrode.
  • a sensing circuit for generating a sensing signal in response The sensing circuit is responsive to a first capacitance between the contact electrode and the object that is less than a second capacitance to indicate the extent to which an object contacted by the contact electrode is proximate to the sensing electrode. Generate a detection signal.
  • a controller in the present invention includes the proximity sensor described above and a control circuit that generates a control signal based on a detection signal generated by the proximity sensor.
  • the proximity sensor and controller of the present invention it is possible to accurately detect the proximity of an object that contacts the controller.
  • FIG. 2 is a diagram for explaining an outline of a controller and a proximity sensor according to the first embodiment
  • FIG. 2 is a block diagram illustrating the configuration of a controller according to the first embodiment
  • FIG. Block diagram showing a configuration example of a detection circuit in the proximity sensor of the controller Sectional view of the controller in Embodiment 1
  • FIG. 4 is a diagram for explaining the principle of operation of the proximity sensor according to the first embodiment
  • Graph showing relationship between connection capacity and distance error in proximity sensor Diagram for explaining the relationship of parasitic capacitance in a proximity sensor Flowchart showing an operation example of the proximity sensor in the controller Timing chart for explaining an operation example of the proximity sensor in the controller
  • FIG. 1 is a diagram for explaining an outline of a controller and a proximity sensor according to the first embodiment
  • FIG. 2 is a block diagram illustrating the configuration of a controller according to the first embodiment
  • FIG. Block diagram showing a configuration example of a detection circuit in the proximity sensor of the controller Sectional view of the controller in Embodiment 1
  • FIG. 6 is a block diagram illustrating the configuration of a controller according to the second embodiment; Sectional view of the controller in Embodiment 2
  • FIG. 11 is a perspective view illustrating the configuration of a controller according to the third embodiment
  • FIG. 14 is a perspective view illustrating the configuration of a controller according to the fourth embodiment
  • FIG. 12 is a perspective view illustrating the configuration of a controller according to the fifth embodiment
  • FIG. 1 is a diagram for explaining an overview of a controller 1 and a proximity sensor 10 according to this embodiment.
  • the controller 1 of this embodiment is composed of various portable devices that are used while being worn or held by the user 5 on his/her human body 51 .
  • the controller 1 uses the proximity sensor 10 to detect an operation of the user 5 bringing the finger 52 closer to or touching it, and generates various control signals according to the detection result.
  • the controller 1 has, for example, an operation surface 11 which is a principal surface on which the user 5 brings his/her fingers 52 close to each other for operation.
  • the two-dimensional directions along the operation surface 11 of the controller 1 are defined as the X and Y directions, and the normal direction of the operation surface 11 is defined as the Z direction.
  • the +Z side toward the outside of the controller 1 from the operation surface 11 may be referred to as the upper side, and the opposite -Z side may be referred to as the lower side.
  • the finger 52 of the user 5 approaches the controller 1 from above, while the human body 51 of the user 5 is in contact with the main surface of the controller 1 below.
  • the proximity sensor 10 of this embodiment is incorporated into the controller 1 so as to detect the proximity and contact of an object such as the finger 52 of the user 5 .
  • the proximity sensor 10 is a sensor device that detects the degree to which an object approaches (including contact) based on capacitance.
  • the proximity sensor 10 is configured to detect not only the contact of the finger 52 of the user 5 but also the proximity by utilizing the state in which the controller 1 is used in contact with the human body 51 of the user 5. .
  • contact with the controller 1 may be direct or indirect.
  • the user 5 may use the controller 1 while wearing gloves.
  • the proximity sensor 10 can detect the contact of the finger 52 of the user 5 according to the change in capacitance.
  • the proximity sensor 10 of the present embodiment it is possible to solve the problems of the conventional technology as described above.
  • the details of the configurations of the controller 1 and the proximity sensor 10 in this embodiment will be described below.
  • FIG. 2 is a block diagram illustrating the configuration of the controller 1 according to this embodiment.
  • the controller 1 of this embodiment includes a proximity sensor 10 and a control circuit 20, as shown in FIG. 2, for example.
  • the proximity sensor 10 of this embodiment includes, for example, a detection electrode 12, a contact electrode 13, a detection circuit 21, and an excitation circuit 22, as shown in FIGS.
  • the detection electrode 12 is an electrode for detecting the capacitance according to the proximity of the object.
  • the detection electrode 12 is provided near the operation surface 11 of the controller 1 so as to be capacitively coupled with an object such as the finger 52 of the user 5 .
  • two detection electrodes 12 are arranged side by side in the Y direction.
  • the number of detection electrodes 12 in the proximity sensor 10 may be three or more, or may be one.
  • the contact electrode 13 is an electrode for contacting the user 5 while the controller 1 is in use, separately from the detection electrode 12 .
  • the contact electrodes 13 are provided at various positions in the controller 1 that are assumed to come into contact with the human body 51 of the user 5 irrespective of the operation content of the user 5 .
  • the contact electrode 13 is provided on the surface of the housing of the controller 1 opposite to the operation surface 11 (-Z side) (see FIG. 4).
  • the excitation circuit 22 is a circuit that generates an excitation voltage that is a preset AC voltage.
  • the excitation voltage may be of various alternating voltages and may have various waveforms such as, for example, pulsed or sinusoidal waveforms.
  • the excitation voltage has a low AC frequency (for example, several MHz or less) to the extent that the approximation conditions described later are satisfied.
  • excitation circuit 22 may include a pulse oscillator or the like.
  • the excitation circuit 22 is connected to the contact electrode 13 . Further, the excitation circuit 22 may be driven and controlled by the control circuit 20 or the like.
  • the detection circuit 21 is connected to an electrode other than the electrode to which the excitation circuit 22 is connected, of the detection electrode 12 and the contact electrode 13 .
  • the detection circuit 21 generates a detection signal Sd based on the detection voltage input from the connected electrodes, and outputs the detection signal Sd to the control circuit 20, for example.
  • the detection signal Sd indicates the degree to which the object approaches according to the capacitance of the detection electrode 12 .
  • the sensing circuit 21 is provided, for example, so as to be connected to each sensing electrode 12 .
  • An example of the configuration of the detection circuit 21 is shown in FIG.
  • FIG. 3 shows a configuration example of the detection circuit 21 for one detection electrode 12 .
  • the detection circuit 21 includes, for example, a high-impedance input amplifier, an amplitude detection circuit and/or a detection circuit for inputting a detection voltage from the detection electrode 12 via the amplifier, an analog/digital (A/D) converter, and a digital and a signal processing unit.
  • the digital signal processing section and the like of the detection circuit 21 may be configured integrally with the control circuit 20 of the controller 1 .
  • control circuit 20 controls the overall operation of the controller 1, for example.
  • the control circuit 20 generates a control signal according to the operation content of the user 5 based on the detection signal Sd from each detection circuit 21 of the proximity sensor 10 .
  • the control signal may be output to a device external to the controller 1 or may be used for control inside the controller 1 .
  • the control circuit 20 may control driving of the excitation circuit 22 and the like of the proximity sensor 10 .
  • the control circuit 20 is composed of, for example, a CPU, and cooperates with software to realize a predetermined function.
  • the control circuit 20 has internal memories such as ROM and RAM, reads data and programs stored in the ROM into the RAM, performs various arithmetic processing, and realizes various functions.
  • the control circuit 20 may be a hardware circuit such as a dedicated electronic circuit or a reconfigurable electronic circuit designed to achieve a predetermined function.
  • the control circuit 20 may be composed of various semiconductor integrated circuits such as a CPU, MPU, DSP, FPGA, and ASIC.
  • FIG. 4 is a cross-sectional view of the controller 1 in this embodiment viewed from the Y direction.
  • the section of FIG. 4 shows the XZ plane passing through each electrode 12, 13 in the controller 1.
  • FIG. 4 The proximity sensor 10 in the controller 1 further includes a ground electrode 14 and a substrate 15, as shown in FIG. 4, for example.
  • Various electrodes 12, 13, and 14 each have a main surface parallel to the XY plane, for example. In the XY plane, the area of the detection electrode 12 on the +Z side is smaller than the area of the contact electrode 13 on the -Z side, as shown in FIG.
  • the ground electrode 14 is an electrode that constitutes the ground in the controller 1.
  • the ground electrode 14 is connected to various circuits including, for example, the excitation circuit 22 and the detection circuit 21 described above, and provides a shared reference potential to the connected circuits.
  • the ground electrode 14 may be a conductor plate or a mesh conductor.
  • the ground electrode 14 does not necessarily have to be flat.
  • the ground electrode 14 is provided between the detection electrode 12 and the contact electrode 13 inside the housing of the controller 1, for example, as shown in FIG. Further, the ground electrode 14 has an area larger than that of the detection electrode 12 and the area of the ground electrode 14, and is arranged so as to separate the detection electrode 12 and the contact electrode 13 from each other. Thereby, the parasitic capacitance between the detection electrode 12 and the contact electrode 13 can be reduced.
  • the distance D11 between the detection electrode 12 and the ground electrode 14 is set larger than the distance D12 between the contact electrode 13 and the ground electrode 14, as shown in FIG. Thereby, the parasitic capacitance between the detection electrode 12 and the ground electrode 14 can be reduced.
  • the ground electrode 14 is provided on the main surface of the substrate 15 on the +Z side, and the contact electrode 13 is provided on the main surface on the opposite -Z side.
  • the substrate 15 is not particularly limited to a flat surface, and may be curved or bent. Also, the substrate 15 and the like may be omitted from the proximity sensor 10 as appropriate. Further, the outer surface of the housing of the controller 1 does not have to be a collection of flat surfaces, and the housing may be formed of curved surfaces.
  • the detection electrode 12 is provided below the operation surface 11 of the controller 1 by a distance D1 (that is, inside the controller 1). Further, the contact electrode 13 is provided, for example, above the surface of the controller 1 opposite to the operation surface 11 by a distance D2 (that is, inside the controller 1).
  • Each of the distances D1 and D2 is an example of the contact distance, which is the distance when the finger 52 or the like is in contact with the controller 1 .
  • the contact electrode 13 and the detection electrode 12 are arranged such that the contact distance D2 of the contact electrode 13 is shorter than the contact distance D1 of the detection electrode 12 .
  • FIG. 5 is a diagram for explaining the principle of operation of the proximity sensor 10 in this embodiment.
  • FIG. 5 illustrates an equivalent circuit of the proximity sensor 10 in this embodiment.
  • the equivalent circuit of FIG. 5 exemplifies the case where the proximity sensor 10 has one sensing electrode 12 .
  • FIG. 5 illustrates various parasitic capacitances in the proximity sensor 10 of the controller 1.
  • the various parasitic capacitances are the parasitic capacitance Cab between the sensing electrode 12 and the contact electrode 13, the parasitic capacitance Cag between the sensing electrode 12 and the ground electrode 14, and the parasitic capacitance Cag between the contact electrode 13 and the ground electrode 14. and a capacitance Cbg.
  • a human body model 50 that models the user 5 (FIGS. 1 and 2) of the controller 1 is used.
  • the human body model 50 includes a sensing capacitance Cdet representing capacitive coupling with the sensing electrode 12 , an internal resistance Rb in the human body model 50 , a connection capacitance Cc representing capacitive coupling with the contact electrode 13 , and a capacitive coupling with the ground electrode 14 . and the shown ground capacitance Cg.
  • the detection capacitance Cdet is the capacitance to be detected by the proximity sensor 10 .
  • the connection capacitance Cc is the capacitance due to the contact of the user 5 and is larger than the detection capacitance Cdet.
  • the detection capacitance Cdet and the connection capacitance Cc are examples of first and second capacitances in the proximity sensor 10, respectively.
  • the excitation circuit 22 generates an excitation voltage ve having an AC frequency ⁇ and supplies the generated excitation voltage ve to the contact electrode 13 .
  • the excitation voltage ve is defined by the reference potential of the ground electrode 14 .
  • the contact electrode 13 and the detection electrode 12 are connected via the human body model 50 .
  • the detection circuit 21 of the present embodiment sequentially receives the detection voltage vd at the detection electrode 12 while the excitation voltage ve is being supplied by the excitation circuit 22, and the detection signal Sd indicating the detection result of the proximity sensor 10 based on the detection voltage vd. to generate
  • the detection voltage vd is defined by the reference potential of the ground electrode 14 .
  • the detection signal Sd has a value proportional to vd/ve, for example.
  • j is a complex number.
  • Zb is the human body impedance corresponding to the human body model 50 and is represented by the following equation (10).
  • the voltage ratio vd/ve is represented by a capacitance ratio, that is, there is no phase difference between the detection voltage vd and the excitation voltage ve, and it can be specified from the magnitude
  • the approximation condition of the above formula (2) is satisfied when the user 5 is in contact with the contact electrode 13 .
  • the voltage ratio vd/ve since the parasitic capacitances Cab and Cag are fixed amounts in the proximity sensor 10, the voltage ratio vd/ve depends only on changes in the detection capacitance Cdet.
  • the proximity sensor 10 of the present embodiment causes the user 5 to bring his or her finger 52 or the like closer to the detection electrode 12 while the user 5 is in contact with the contact electrode 13 like the human body model 50 , based on the detection signal Sd from the detection circuit 21 . degree can be detected.
  • the approximation condition of the above formula (3) is satisfied when the user 5 is not in contact with the contact electrode 13.
  • the sensitivity for detecting the detection capacitance Cdet is lost in the detection signal Sd. That is, in the detection signal Sd of the proximity sensor 10 , when the human body 51 is not in contact with the contact electrode 13 , even if the finger 52 or the like approaches the detection electrode 12 , it can be prevented from being detected. Similarly, even if a person other than the user 5 who contacts the contact electrode 13 approaches the detection electrode 12 , it can be prevented from being detected by the detection signal Sd of the proximity sensor 10 .
  • the ground capacitance Cg of the human body model 50 occurs unintentionally when the user 5 uses the controller 1 .
  • the proximity sensor 10 of the present embodiment as shown in FIG. 5, when the user 5 is in contact with the contact electrode 13, that is, when the connection capacitance Cc is sufficiently large, the ground capacitance Cg The capacitance Cg is in a parallel relationship with the parasitic capacitance Cbg and is not included in the equations (1) to (3) of the operating principle. Even if the user 5 is not in contact with the contact electrode 13 and the connection capacitance Cc is sufficiently small, the sensitivity of detecting the detection capacitance Cdet is still lost. Therefore, it is possible to prevent the ground capacitance Cg of the user 5 from affecting detection by the proximity sensor 10 .
  • FIG. 1 Various Capacitances Various capacitances in the proximity sensor 10 having the above operating principle will be described with reference to FIGS. 6 and 7.
  • FIG. 1 Various Capacitances in the proximity sensor 10 having the above operating principle will be described with reference to FIGS. 6 and 7.
  • FIG. 1 Various capacitances in the proximity sensor 10 having the above operating principle will be described with reference to FIGS. 6 and 7.
  • FIG. 1 Various capacitances in the proximity sensor 10 having the above operating principle will be described with reference to FIGS. 6 and 7.
  • FIG. 6 is a graph showing the relationship between connection capacity and distance error in the proximity sensor 10.
  • the distance error in the measured distance from the sensing electrode 12 to the object increases as the connection capacitance Cc decreases, as shown in FIG. 6, regardless of the size of the measured distance.
  • the detection accuracy of the proximity sensor 10 can be improved.
  • the connection capacitance Cc is 1 pF or more.
  • the lower limit of the connection capacitance Cc is proportional to the area of the detection electrode 12 .
  • FIG. 7 is a chart for explaining the relationship between the parasitic capacitances Cag and Cab in the proximity sensor 10.
  • FIG. 7A shows the capacitance ratio Cag/Cab and the voltage ratio vd/ve for each parasitic capacitance Cab at a measurement distance of 50 mm.
  • FIG. 7B shows the capacitance ratio Cag/Cab and the voltage ratio vd/ve for each parasitic capacitance Cab at a measurement distance of 10 mm.
  • FIG. 7C shows the signal change rate for each of the parasitic capacitances Cag and Cab when the measurement distance changes between FIGS. 7A and 7B.
  • the parasitic capacitance Cag When the parasitic capacitance Cag is extremely large compared to the parasitic capacitance Cab, as shown in FIGS. 7(A) and (B), only an output with a detection voltage vd smaller than the input excitation voltage ve can be obtained. For example, if the parasitic capacitance Cag exceeds 100 times the parasitic capacitance Cab, the sense voltage vd will have an amplitude of less than 1% of the excitation voltage ve, resulting in poor signal-to-noise ratio. From this point of view, the parasitic capacitance Cag should be suppressed within about 100 times the parasitic capacitance Cab.
  • the parasitic capacitance Cab when the parasitic capacitance Cab is large, the signal change rate becomes small as shown in FIG. 7(C) when the distance to the object changes within the range of FIGS. For example, when the parasitic capacitance Cab is 10 pF, the signal change rate is less than 2%. Such small changes can make it difficult to correctly sense the distance. In order to obtain a signal change rate of 10% or more with respect to a practical distance change of 50 mm to 5 mm in the controller 1 for portable use, the parasitic capacitance Cab is desirably 1 pF or less, and more desirably suppressed as small as possible. However, in the above discussion, the case where the area of the sensing electrode 12 is 100 square mm is used. When the area of the sensing electrode 12 is changed, the upper limit of the parasitic capacitance Cab can also be changed in proportion to it.
  • the area of the detection electrode 12 is 10 mm ⁇ 10 mm, and the detection electrode 12 is arranged on the operation surface 11 10 mm away from the ground electrode 14 and the housing surface of the controller 1 on which the ground electrode 14 is arranged.
  • the parasitic capacitance Cag becomes 88 fF, which is almost the same order as the capacitance to be detected, and proximity detection becomes possible.
  • the parasitic capacitance Cag is 880 fF, which is ten times or more the capacitance value to be detected. Detection can be difficult.
  • FIG. 8 is a flow chart showing an operation example of the proximity sensor 10 in the controller 1.
  • FIG. FIG. 9 is a timing chart for explaining an operation example of the proximity sensor 10.
  • FIG. 9A shows the timing of the excitation signal output from the excitation circuit 22.
  • FIG. 9B shows the voltage waveform of the detection signal Sd input to the detection circuit 21.
  • FIG. 9A shows the timing of the excitation signal output from the excitation circuit 22.
  • FIG. 9B shows the voltage waveform of the detection signal Sd input to the detection circuit 21.
  • the control circuit 20 transmits a trigger signal to the excitation circuit 22 so as to raise the excitation signal corresponding to the excitation voltage ve to a high level (Hi) as shown at time t1 in FIG.
  • the excitation circuit 22 is controlled (S1).
  • the control circuit 20 A/D-converts the voltage input to the detection circuit 21 (S2) at time t2 after a predetermined period has elapsed from time t1 (FIG. 9B), and detects the voltage at time t2.
  • a voltage value indicating the signal Sd is stored in the internal memory (S3).
  • control circuit 20 transmits the trigger signal to the excitation circuit 22 again, and causes the excitation circuit 22 to drop the excitation signal to low level (Lo) as shown at time t3 in FIG. control (S4).
  • control circuit 20 causes the detection circuit 21 to perform A/D conversion (S5) at time t4 (FIG. 9(B)) after a predetermined period of time has elapsed, similarly to step S2, to generate the detection signal Sd at time t4.
  • the indicated voltage value is stored in the internal memory (S6).
  • control circuit 20 calculates the difference between the voltage values stored in steps S3 and S6, and stores the calculation result as the detection level (S7).
  • the control circuit 20 repeats the above steps S1 to S6, for example, a predetermined number of times (S8), and averages the obtained calculation results (S9).
  • the control circuit 20 Based on the detection result of the proximity sensor 10 thus obtained, the control circuit 20 performs various signal processing such as determining the operation of the user 5 and generating a control signal (S10). As a result, the control circuit 20 terminates the processing shown in this flow. For example, the control circuit 20 repeats the process of this flow at a predetermined cycle.
  • the results of proximity detection by the proximity sensor 10 can be appropriately averaged (S1 to S9) and used in the controller 1 for subsequent various signal processing. Note that the averaging steps S9 and S10 may be omitted as appropriate.
  • the proximity sensor 10 in this embodiment includes one or more detection electrodes 12 , the contact electrode 13 , the excitation circuit 22 , and the detection circuit 21 .
  • the user 5 of the controller 1 and its parts are examples of objects in this embodiment.
  • the detection electrode 12 capacitively couples with the user 5 (the finger 52 of the user) as an example of a nearby object.
  • the contact electrode 13 is brought into contact with (the human body 51 of) the user 5 .
  • the excitation circuit 22 is connected to one electrode 13 of the detection electrode 12 and the contact electrode 13 and supplies an excitation voltage ve to the electrode 13 .
  • the detection circuit 21 is connected to the other electrode 12 of the detection electrode 12 and the contact electrode 13, and detects a first capacitance between the detection electrode 12 and the object based on the detection voltage vd at the electrode 12.
  • a detection signal Sd is generated according to the detection capacitance Cdet, which is an example of .
  • the detection circuit 21 detects that the object in contact with the contact electrode 13 is detected by the detection electrode 12 according to a detection capacitance Cdet that is smaller than the connection capacitance Cc, which is an example of a second electrostatic capacitance between the contact electrode 13 and the object.
  • a detection signal Sd is generated to indicate the degree of proximity to .
  • the proximity sensor 10 by utilizing the fact that the user 5 contacts the contact electrode 13 when using the controller 1, the proximity of an object such as the finger 52 of the user 5 contacting the controller 1 can be accurately detected. can be detected well.
  • the contact electrode 13 has an area larger than that of the sensing electrode 12 . This makes it easier to ensure that the connection capacitance Cc is larger than the detection capacitance Cdet, and makes it easier to detect the proximity of the object according to the detection capacitance Cdet within a range smaller than the connection capacitance Cc.
  • the contact distance D2 which is an example of the distance between the object and the contact electrode 13 when the object is in contact with the contact electrode 13, is the distance between the object and the detection electrode 13 when the object is in contact with the detection electrode 12. It is shorter than the contact distance D1, which is an example of the distance between 12. This makes it easier to ensure that the connection capacitance Cc is larger than the detection capacitance Cdet, making it easier to detect the proximity of the object.
  • the contact electrode 13 may be exposed so as to be in direct contact with the object.
  • the detection electrode 12 is provided, for example, so as to indirectly contact the object. This makes it easier to ensure a larger connection capacitance Cc, and makes it easier to detect the proximity of the object.
  • the proximity sensor 10 further includes a ground electrode 14 provided between the detection electrode 12 and the contact electrode 13 and shared by the excitation circuit 22 and the detection circuit 21 .
  • a ground electrode 14 provided between the detection electrode 12 and the contact electrode 13 and shared by the excitation circuit 22 and the detection circuit 21 .
  • the parasitic capacitance Cag which is the electrostatic capacitance between the electrode connected to the detection electrode 12 and the ground electrode 14 among the detection electrode 12 and the contact electrode 13, is the electrostatic capacitance between the detection electrode 12 and the contact electrode 13. It is less than 100 times the parasitic capacitance Cab. As a result, the parasitic capacitance Cag between the detection electrode 12 and the ground electrode 14 can be prevented from becoming excessively large, and the proximity of the object can be accurately detected.
  • the area of the ground electrode 14 is larger than the area of the detection electrode 12 and larger than the area of the contact electrode 13 .
  • the parasitic capacitance Cab can be reduced, and the accuracy of object proximity detection can be improved.
  • the sensing circuit 21 is connected to the sensing electrode 12 .
  • An excitation circuit 22 is connected to the contact electrode 13 .
  • the ground electrode 14 is arranged at a position closer to the contact electrode 13 than the detection electrode 12 is.
  • the controller 1 in this embodiment includes a proximity sensor 10 and a control circuit 20 that generates a control signal based on the detection signal Sd generated by the proximity sensor 10 . According to such a controller 1 , the proximity sensor 10 can accurately detect the proximity of an object that contacts the controller 1 .
  • Embodiment 2 In Embodiment 2, a modification of the principle of operation of the proximity sensor will be described with reference to FIGS. 10 and 11.
  • FIG. 10 In Embodiment 2, a modification of the principle of operation of the proximity sensor will be described with reference to FIGS. 10 and 11.
  • FIG. 10 In Embodiment 2, a modification of the principle of operation of the proximity sensor will be described with reference to FIGS. 10 and 11.
  • FIG. 10 In Embodiment 2, a modification of the principle of operation of the proximity sensor will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a block diagram illustrating the configuration of the controller 1A according to the second embodiment.
  • the detection circuit 21 is connected to the detection electrode 12 and the excitation circuit 22 is connected to the contact electrode 13 .
  • the controller 1A of this embodiment has the same configuration as the controller 1 of Embodiment 1, but as shown in FIG. Connected.
  • each excitation circuit 22 may supply an excitation signal corresponding to the excitation voltage ve to each sensing electrode 12 in a time division manner.
  • the excitation signal from each excitation circuit 22 may be subjected to FM modulation, PWM modulation, or the like.
  • the detection circuit 21 of the present embodiment can detect a voltage change in the detection voltage vd from the contact electrode 13 in response to the detection electrode 12 to which each excitation signal is supplied.
  • the proximity sensor 10A of this embodiment configured as described above operates based on the following equation (21) instead of the equation (1) of the operation principle in the first embodiment.
  • the proximity sensor 10A of the present embodiment distinguishes the user 5 who is using the controller 1 in the same manner as the proximity sensor 10 of the first embodiment, Proximity detection can be performed with high accuracy.
  • the proximity sensor 10 of the first embodiment improves the accuracy of proximity detection by reducing the parasitic capacitance Cag of the detection electrode 12 .
  • the proximity sensor 10A of the present embodiment is configured to reduce the parasitic capacitance Cbg of the contact electrode 13 according to the above equation (22), thereby improving the accuracy of proximity detection.
  • An example of such a configuration will be described with reference to FIG. 11 .
  • FIG. 11 exemplifies a cross-sectional view of the controller 1A in this embodiment in a cross section similar to that of FIG. In the controller 1A of the present embodiment, for example, as shown in FIG. It is set larger than the interval D13. Thereby, the parasitic capacitance Cbg can be reduced and the detection accuracy of the proximity sensor 10A can be improved.
  • the detection electrode 12 is provided on the main surface on the +Z side opposite to the main surface on the +Z side of the substrate 15 on which the ground electrode 14 is provided on the main surface on the -Z side.
  • substrate 15 is arranged near operation surface 11
  • contact electrode 13 is arranged on the main surface opposite to operation surface 11 .
  • the detection circuit 21 is connected to the contact electrode 13 in the proximity sensor 10A of this embodiment.
  • An excitation circuit 22 is connected to the sensing electrode 12 .
  • the ground electrode 14 is arranged at a position closer to the detection electrode 12 than the contact electrode 13 is. As a result, the parasitic capacitance Cbg between the contact electrode 13 and the ground electrode 14 connected to the detection circuit 21 can be reduced, and the proximity of the object can be accurately detected.
  • FIG. 12 is a perspective view illustrating the configuration of the controller 1B according to the third embodiment.
  • the controller 1B of this embodiment has the same configuration as that of the first embodiment, and includes a grip-like grasping member 16 that is grasped by a user's hand.
  • the controller 1B can be applied to various uses such as, for example, for games, or for controlling production lines in factories or vehicles.
  • the contact electrode 13 is provided on the part of the gripping member 16 with which the palm contacts.
  • the contact electrode 13 may be provided at a portion that contacts any or all of the index finger, middle finger, ring finger, little finger, or thumb of the hand that grips the gripping member 16 .
  • the gripping member 16 of the controller 1 is provided with a belt 17, which is an example of an attachment member for fixing the gripping hand.
  • the contact electrode 13 may be provided at a portion of the belt 17 or the like that comes into contact with the gripped hand. According to such arrangement of the contact electrodes 13, it is possible to stably maintain contact between the hand and the contact electrodes 13 during use of the controller 1B.
  • the thumb detection electrode 12a, the index finger detection electrode 12b, the middle finger detection electrode 12c, the ring finger detection electrode 12d, and the little finger detection electrode 12d are used.
  • electrodes 12e are respectively provided.
  • the detection electrode 12a for the thumb is in the vicinity of various operation members (not shown) such as a button to be operated by the thumb, a tiltable lever, and a force sensor, and within the movable range of the thumb.
  • various operation members such as a button to be operated by the thumb, a tiltable lever, and a force sensor
  • One or more are arranged. According to such a detection electrode 12a for the thumb, it is possible to detect the movement of the thumb to operate before it contacts various operation members, and smooth and high-speed control can be realized in the controller 1B.
  • one detection electrode 12b to 12e for each finger may be provided for each finger, or a plurality of detection electrodes 12b to 12e may be provided for each finger.
  • the controller 1B can accurately detect realistic hand movements such as clenching or opening a hand, pointing, or making a peace sign.
  • the controller 1B in this embodiment further includes the grasping member 16 that is grasped by hand.
  • the contact electrode 13 is provided on the gripping member 16 at a position where a hand in a gripping state comes into contact with the gripping member 16 .
  • the detection electrode 12 is provided at a position different from the position of the contact electrode 13 and at a position that can be touched by a finger of the hand in a gripping state. As a result, it is possible to accurately detect the proximity of the fingers while stably maintaining contact with the hand that grips the gripping member 16 .
  • a plurality of sensing electrodes 12a to 12e are arranged on the gripping member 16 according to the plurality of fingers of the hand in the gripping state. This makes it possible to detect the proximity of each finger and detect the operation of various controllers 1B. Needless to say, the number of detection electrodes 12a to 12e does not have to be equal to the number of fingers to be detected, and more detection electrodes may be arranged.
  • FIG. 13 is a perspective view illustrating the configuration of the controller 1C according to the fourth embodiment.
  • the controller 1C of the present embodiment has the same configuration as that of the first embodiment, for example, and constitutes an earphone worn on the user's ear, as shown in FIG.
  • the contact electrode 13 is composed of, for example, an ear pad 18 having conductivity. Thereby, the contact between the user wearing the earphone and the contact electrode 13 can be stably maintained.
  • the ear pad 18 is an example of the wearing member in this embodiment.
  • Information communication includes, for example, information transmission from an earphone to a mobile terminal by short-range wireless communication such as Bluetooth.
  • one or a plurality of detection electrodes 12 are provided in the vicinity of the main surface facing outward opposite to the ear pad 18 of the earphone.
  • the controller 1C of the present embodiment further includes the ear pads 18 as an example of wearing members worn on the human body.
  • the contact electrode 13 is provided in such a wearing member at a position where it comes into contact with the human body in the wearing state. As a result, the contact of the mounting member with the wearer is stably maintained, and the proximity of the wearer can be detected with high accuracy.
  • the earphone was explained as an example of the controller 1C worn on the user's face.
  • the controller 1C and the proximity sensor 10 are not limited to earphones, and may be applied to smart glasses, headsets, immersive VR goggles, and the like.
  • the contact electrode 13 of the proximity sensor 10 is arranged on the tip cell or nose pad, which is the part that is hung on the ear, and the detection electrode 12 is arranged on the temple or frame part, so that the wearer's hand around the eye
  • the controller 1C may be configured to detect motion.
  • the arrangement of the contact electrodes 13 can stably maintain contact with the human body of the wearer of the smart glasses.
  • the smart glasses can be controlled without burdening the ears and nose of the smart glasses.
  • the gesture operation of the wearer can be detected with high accuracy by the plurality of detection electrodes 12, and the controller 1C of the smart glasses can be easily multi-functionalized.
  • a contact electrode 13 is provided on a support member such as a T-shaped bar or an earmuff, and a detection electrode 12 is provided on a headband, an outer surface of a speaker, an outer side of a microphone support, etc.
  • the controller 1C may be configured to detect hand movement.
  • the contact electrode 13 is provided by making the face part a conductive member, and one or a plurality of detection electrodes 12 are provided on the outer part of the goggles so that the hand around the face of the wearer is provided.
  • the controller 1C may be configured to detect motion.
  • this implementation can be used in combination with the function of the VR goggles that can be operated while accurately grasping the position of the hand with an image sensor or TOF.
  • the controller 1C and the proximity sensor 10 of the form may be applied.
  • Embodiment 5 an example of a controller worn on the user's body will be described with reference to FIG. 14 .
  • FIG. 14 is a perspective view illustrating the configuration of the controller 1D according to the fifth embodiment.
  • the controller 1D of this embodiment has the same configuration as that of the first embodiment, for example, and includes an annular member 19 that is worn on the wrist of the user, for example.
  • the annular member 19 may be configured to be worn on various parts such as an arm or a finger, not limited to the user's wrist.
  • the controller 1D of this embodiment may constitute a smart watch or a smart ring, for example.
  • the annular member 19 may be configured so that both ends of a band-shaped member can be connected, or may be configured with an open ring so that the ends are open when worn.
  • the contact electrode 13 is provided on the inner peripheral side of the annular member 19 as shown in FIG. 14, for example.
  • One or a plurality of detection electrodes 12 are provided on the outer peripheral side of the annular member 19 . According to such a controller 1D, effects similar to those of the above embodiments can be obtained. For example, even if a smart watch or a smart ring is operated while wearing clothes or gloves, the controller 1D of the present embodiment can easily detect the operation.
  • the controller 1D further includes the annular member 19 in this embodiment.
  • the detection electrode 12 is provided on the outer peripheral surface of the annular member 19 .
  • the contact electrode 13 is provided on the inner peripheral surface of the annular member 19 .
  • the annular member 19 is used as an example of the controller 1D worn on the user's body has been described.
  • the controller 1D and the proximity sensor 10 are not limited to this, and may be used by being attached to the body, for example.
  • the contact electrode 13 may be provided on the part to be stuck on the skin of the human body, and the detection electrode 12 may be provided on the outside thereof.
  • Safety is often important in such healthcare applications.
  • the controller 1D of the present embodiment it is possible to detect only the motion intended by the wearer himself/herself, thereby improving safety.
  • it is possible to set an operation such that the operation is stopped or an alarm is issued when the wearer brings his or her hand close to or touches the controller 1D.
  • Health care applications include heart rate monitors, electrocardiographs, heart rate monitors, electroencephalographs, SPO2 meters, and various massage machines.
  • Reference Signs List 1 1A to 1D controller 10, 10A proximity sensor 12, 12a to 12e detection electrode 13 contact electrode 14 ground electrode 16 grip member 17, 18 mounting member 19 annular member 20 control circuit 21 detection circuit 22 excitation circuit 5 user 51 human body 52 fingers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Electronic Switches (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

近接センサ(10)は、近接する対象物と容量結合する1つ以上の検知電極(12)と、対象物に接触される接触電極(13)と、検知電極及び接触電極のうちの一方の電極に接続され、当該電極に励起電圧を供給する励振回路(22)と、検知電極及び接触電極のうちの他方の電極に接続され、当該電極における検知電圧に基づいて、検知電極と対象物との間の第1の静電容量(Cdet)に応じた検知信号(Sd)を生成する検知回路(21)とを備える。検知回路は、接触電極と対象物との間の第2の静電容量(Cc)よりも小さい第1の静電容量に応じて、接触電極に接触した対象物が検知電極に近接する程度を示すように検知信号を生成する。

Description

近接センサ及びコントローラ
 本発明は、例えば人の手指を含む対象物の近接を検知する近接センサ及びこれを備えたコントローラに関する。
 特許文献1は、手によって掴持されている携帯用デバイスを検知するためのデバイスを開示している。このデバイスは、交流電場を放出する送信電極と、交流電場が少なくとも部分的に結合される受信電極とを備える。手による携帯用デバイスの掴持は、送信電極と受信電極との間の容量結合をもたらすことで検知される。特許文献1では、携帯用デバイスの接地電位と結合される導電性構造が、携帯用デバイスの筐体の内側に配設されている。この導電性構造は、送信電極と受信電極との間の容量結合を低減させ、送信電極から受信電極までの電気力線の拡散をほぼ阻止するために提供されている。これにより、携帯用デバイスが手によって掴持されていない場合、受信電極内への電流はほぼ存在しないことが開示されている。
特開2016-6775号公報
 特許文献1のデバイスは、手による携帯用デバイスの掴持を検知する接触センサとして機能している。しかしながら、特許文献1のような従来技術では、手指の接触だけではなく近接を検知する近接センサの機能を求めるニーズに応えることが困難である。
 本発明の目的は、コントローラに接触する対象物の近接を精度良く検知することができる近接センサ及びコントローラを提供することにある。
 本発明における近接センサは、近接する対象物と容量結合する1つ以上の検知電極と、対象物に接触される接触電極と、検知電極及び接触電極のうちの一方の電極に接続され、当該電極に励起電圧を供給する励振回路と、検知電極及び接触電極のうちの他方の電極に接続され、当該電極における検知電圧に基づいて、検知電極と対象物との間の第1の静電容量に応じた検知信号を生成する検知回路とを備える。検知回路は、接触電極と対象物との間の第2の静電容量よりも小さい第1の静電容量に応じて、接触電極に接触した対象物が検知電極に近接する程度を示すように検知信号を生成する。
 本発明におけるコントローラは、上記の近接センサと、近接センサによって生成された検知信号に基づいて、制御信号を生成する制御回路とを備える。
 本発明における近接センサ及びコントローラによると、コントローラに接触する対象物の近接を精度良く検知することができる。
実施形態1に係るコントローラ及び近接センサの概要を説明するための図 実施形態1に係るコントローラの構成を例示するブロック図 コントローラの近接センサにおける検知回路の構成例を示すブロック図 実施形態1におけるコントローラの断面図 実施形態1における近接センサの動作原理を説明するための図 近接センサにおける接続容量と距離誤差との関係を示すグラフ 近接センサにおける寄生容量の関係を説明するための図表 コントローラにおける近接センサの動作例を示すフローチャート コントローラにおける近接センサの動作例を説明するためのタイミングチャート 実施形態2に係るコントローラの構成を例示するブロック図 実施形態2におけるコントローラの断面図 実施形態3に係るコントローラの構成を例示する斜視図 実施形態4に係るコントローラの構成を例示する斜視図 実施形態5に係るコントローラの構成を例示する斜視図
 以下、添付の図面を参照して本発明に係る近接センサ及びコントローラの実施の形態を説明する。
 各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。実施形態2以降では実施形態1と共通の事項についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。
(実施形態1)
1.構成
 実施形態1に係るコントローラ及び近接センサの構成について、図1を参照して説明する。図1は、本実施形態に係るコントローラ1及び近接センサ10の概要を説明するための図である。
 本実施形態のコントローラ1は、使用者5が自身の人体51に装着又は把持した状態で使用される、各種の携帯可能な機器で構成される。コントローラ1は、使用者5が手指52を近接させたり接触させたりする操作を近接センサ10で検知して、検知結果に応じて各種の制御信号を生成する。コントローラ1は、例えば使用者5が操作のために手指52を近接させる主面である操作面11を有する。
 以下、コントローラ1の操作面11に沿った2次元方向をX,Y方向とし、操作面11の法線方向をZ方向とする。また、操作面11からコントローラ1の外部に向かう+Z側を上側といい、反対の-Z側を下側という場合がある。図1の例では、使用者5の手指52がコントローラ1の上側から近接する一方で、使用者5の人体51が、コントローラ1の下側の主面に接触している。
 本実施形態の近接センサ10は、使用者5の手指52のような対象物の近接および接触を検知するようにコントローラ1に組み込まれる。近接センサ10は、静電容量に基づき対象物が近接する程度(接触を含む)を検知するセンサ装置である。本実施形態では、コントローラ1が使用者5の人体51に接触して使用される状態を利用して、近接センサ10が、使用者5の手指52の接触だけでなく近接を検知できる構成を備える。
 本実施形態において、コントローラ1への接触は、直接的であってもよいし間接的であってもよい。例えば、使用者5は、手袋を着用した状態でコントローラ1を使用してもよい。この場合であっても、近接センサ10は、静電容量の変化に応じて使用者5の手指52の接触等を検知できる。
 従来の近接センサでは、正確な近接検知が行える要件として、接地を充分に確保して閉回路を確立することが必要であった。こうした要件は、車両またはロボット等の用途であれば満たし易い一方、使用者5が装着する等の携帯用途においては満たし難い。また、従来の近接センサでは、使用者5以外の者の近接も検知してしまう点にも問題があった。
 これに対して、本実施形態の近接センサ10によると、上記のような従来技術の問題点も解消することができる。本実施形態におけるコントローラ1及び近接センサ10の構成の詳細を以下説明する。
1-1.構成の詳細
 図2は、本実施形態に係るコントローラ1の構成を例示するブロック図である。本実施形態のコントローラ1は、例えば図2に示すように、近接センサ10と、制御回路20とを備える。本実施形態の近接センサ10は、例えば図1,2に示すように、検知電極12と、接触電極13と、検知回路21と、励振回路22とを備える。
 検知電極12は、対象物の近接に応じた静電容量を検知するための電極である。検知電極12は、使用者5の手指52といった対象物と容量結合するように、コントローラ1の操作面11近傍に設けられる。図1の例では、2つの検知電極12がY方向に並んで配置されている。近接センサ10における検知電極12の個数は、3つ以上であってもよいし、1つであってもよい。
 接触電極13は、検知電極12とは別に、コントローラ1を使用中の使用者5に接触させるための電極である。接触電極13は、特に使用者5の操作内容に拘わらず、コントローラ1において、使用者5の人体51が接触した状態となることが想定される各種の位置に設けられる。図1の例では、接触電極13は、コントローラ1の筐体において操作面11とは反対側(-Z側)の面に設けられている(図4参照)。
 励振回路22は、予め設定された交流電圧である励起電圧を生成する回路である。励起電圧は、種々の交流電圧であってもよく、例えばパルス波形又は正弦波形など各種の波形を有してもよい。又、励起電圧は、後述する近似条件が成り立つ程度に低周波の交流周波数を有する(例えば数MHz以下)。例えば、励振回路22は、パルス発振器などを含んでもよい。本実施形態において、励振回路22は、接触電極13に接続される。又、励振回路22は、制御回路20等によって駆動制御されてもよい。
 検知回路21は、検知電極12及び接触電極13のうち、励振回路22が接続された電極とは別の電極に接続される。検知回路21は、接続された電極から入力される電圧である検知電圧に基づいて、検知信号Sdを生成して、例えば制御回路20に出力する。検知信号Sdは、検知電極12における静電容量に応じて対象物が近接する程度を示す。本実施形態において、検知回路21は、例えば各検知電極12に接続するように設けられる。検知回路21の構成の一例を図3に示す。
 図3では、1つの検知電極12に関する検知回路21の構成例を示す。検知回路21は、例えば、高インピーダンス入力の増幅器と、増幅器を介して検知電極12から検知電圧を入力する振幅検知回路及び/又は検波回路と、アナログ/デジタル(A/D)変換器と、デジタル信号処理部とを備える。検知回路21のデジタル信号処理部等は、コントローラ1の制御回路20と一体的に構成されてもよい。
 図2に戻り、制御回路20は、例えばコントローラ1の全体動作を制御する。例えば、制御回路20は、近接センサ10の各検知回路21からの検知信号Sdに基づいて、使用者5の操作内容に応じた制御信号を生成する。制御信号は、コントローラ1の外部の機器に出力されてもよいし、コントローラ1内部の制御に用いられてもよい。制御回路20は、近接センサ10の励振回路22等の駆動を制御してもよい。
 制御回路20は、例えばCPUで構成され、ソフトウェアと協働して所定の機能を実現する。制御回路20は、例えばROM及びRAMといった内部メモリを有し、ROMに格納されたデータ及びプログラムをRAMに読み出して種々の演算処理を行い、各種の機能を実現する。なお、制御回路20は、所定の機能を実現するように設計された専用の電子回路や再構成可能な電子回路などのハードウェア回路であってもよい。制御回路20は、CPU、MPU、DSP、FPGA、ASIC等の種々の半導体集積回路で構成されてもよい。
 図4は、本実施形態におけるコントローラ1をY方向から見た断面図である。図4の断面は、コントローラ1において各電極12,13を通るXZ平面を示す。コントローラ1における近接センサ10は、例えば図4に示すように、グランド電極14及び基板15をさらに備える。各種電極12,13,14は、例えばそれぞれXY面に平行な主面を有する。XY面において、検知電極12の+Z側の面積は、例えば図1に示すように、接触電極13の-Z側の面積よりも小さい。
 グランド電極14は、コントローラ1におけるグランドを構成する電極である。グランド電極14は、例えば上記の励振回路22及び検知回路21を含む各種回路に接続され、接続された回路に共有される基準電位を与える。グランド電極14は、導体板であってもよいし、メッシュ状の導体であってもよい。グランド電極14は必ずしも平坦でなくてもよい。
 グランド電極14は、例えば図4に示すように、コントローラ1の筐体内部において検知電極12と接触電極13との間に設けられる。又、グランド電極14は、検知電極12の面積およびグランド電極14の面積よりも大きい面積を有し、検知電極12と接触電極13とを離隔するように配置される。これにより、検知電極12と接触電極13間の寄生容量を低減できる。
 本実施形態のコントローラ1においては、例えば図4に示すように、検知電極12とグランド電極14との間隔D11が、接触電極13とグランド電極14との間隔D12よりも大きく設定される。これにより、検知電極12とグランド電極14間の寄生容量を低減できる。例えば、基板15における+Z側の主面にグランド電極14が設けられ、反対の-Z側の主面に接触電極13が設けられる。
 基板15には、近接センサ10及びコントローラ1における各種回路が設けられてもよい。基板15は、特に平面に限定されず、曲面であってもよいし、折れ曲がっていてもよい。又、基板15等は適宜、近接センサ10から省略されてもよい。また、コントローラ1の筐体の外面も、平面の集合体で構成されている必要はなく、曲面で構成された筐体であってもよい。
 図4の例において、検知電極12は、コントローラ1の操作面11から距離D1だけ下側に(即ちコントローラ1の内側に)設けられる。又、接触電極13は、例えばコントローラ1の操作面11とは反対側の面から距離D2だけ上側に(即ちコントローラ1の内側に)設けられる。各距離D1,D2は、手指52等がコントローラ1に接触した状態における距離である接触距離の一例である。例えば図4に示すように、接触電極13の接触距離D2は、検知電極12の接触距離D1よりも短くなるように、接触電極13及び検知電極12が配置される。
 接触電極13の接触距離D2は、D2=0であってもよく、接触電極13はコントローラ1から露出して設けられてもよい。又、接触電極13は、各種誘電体の積層又はフィルム貼り付け等により薄膜で被覆して設けられてもよい。さらに、検知電極12も、上記と同様に薄膜の被覆により設けられてもよい。こうした薄膜の厚みにより、各電極12,13の接触距離D1,D2がD1<D2となるように規定されてもよい。
2.動作
 以上のように構成されるコントローラ1の近接センサ10の動作について、以下説明する。
2-1.動作原理
 図5は、本実施形態における近接センサ10の動作原理を説明するための図である。図5では、本実施形態における近接センサ10の等価回路を例示している。図5の等価回路は、近接センサ10において検知電極12が1つの場合を例示している。
 図5では、コントローラ1の近接センサ10における各種の寄生容量を例示している。各種の寄生容量は、検知電極12と接触電極13との間の寄生容量Cabと、検知電極12とグランド電極14との間の寄生容量Cagと、接触電極13とグランド電極14との間の寄生容量Cbgとを含む。
 又、図5の例では、コントローラ1の使用者5(図1,2)をモデル化した人体モデル50を用いている。人体モデル50は、検知電極12との容量結合を示す検知容量Cdetと、人体モデル50における内部抵抗Rbと、接触電極13との容量結合を示す接続容量Ccと、グランド電極14との容量結合を示すグランド容量Cgとを含む。
 検知容量Cdetは、近接センサ10において検知対象とする静電容量である。接続容量Ccは、使用者5の接触による静電容量であり、検知容量Cdetよりも大きい。検知容量Cdetと接続容量Ccとは、それぞれ近接センサ10における第1及び第2の静電容量の一例である。
 本実施形態の近接センサ10において、励振回路22は、交流周波数ωを有する励起電圧veを生成して、生成した励起電圧veを接触電極13に供給する。励起電圧veは、グランド電極14の基準電位により規定される。接触電極13と検知電極12とは、人体モデル50を介して結合されることとなる。
 本実施形態の検知回路21は、励振回路22による励起電圧veの供給中に順次、検知電極12における検知電圧vdを入力して、検知電圧vdに基づき近接センサ10による検知結果を示す検知信号Sdを生成する。検知電圧vdは、グランド電極14の基準電位により規定される。検知信号Sdは、例えばvd/veに比例した値を有する。
 上記のように動作する本実施形態の近接センサ10においては、図5の等価回路から次式(1)が成立する。
Figure JPOXMLDOC01-appb-M000001
 上式(1)において、jは複素数である。又、Zbは、人体モデル50に対応した人体インピーダンスであり、次式(10)のように表される。
Figure JPOXMLDOC01-appb-M000002
 上式(1)は、充分に接続容量Ccが大きく、且つ内部抵抗Rbが1/ωCcよりも小さい場合、次式(2)のように近似できる。この近似は、近接検知として容量の大きい場合の意図を意図しており、例えば電極面積100平方mm(10mm×10mm)、距離10mm及び周波数1MHzを想定すると、上式(10)の第1項1/jωCdet=-j1.8MΩとなる。人体の抵抗(即ちRb)は500Ωから最大10kΩと見做されるため、同式の第2項は第1項の大きさ|1/jωCdet|と比べて無視できる程度に十分小さいと言える。又、装置構成の前提よりCdet<<Ccから、同式の第3項も第2項と同様に無視できる。
Figure JPOXMLDOC01-appb-M000003
 上式(2)のように、電圧比vd/veは、容量比で表され、つまり検知電圧vdと励起電圧veとは位相差を生じず、検知電圧vdの大きさ|vd|から特定できる。上式(2)の近似条件は、使用者5が接触電極13に接触している場合に満たされる。上式(2)において、寄生容量Cab,Cagは近接センサ10における固定量であることから、電圧比vd/veは、検知容量Cdetの変化のみに依存することとなる。よって、本実施形態の近接センサ10は、検知回路21による検知信号Sdによって、人体モデル50のように使用者5が接触電極13に接触した状態で自身の手指52等を検知電極12に近接させる程度を検知することができる。
 一方、上記のようなコントローラ1の使用中の近似条件に代えて、充分に接続容量Ccが小さい場合には、上式(1)は、次式(3)のように近似できる。
Figure JPOXMLDOC01-appb-M000004
 上式(3)の近似条件は、使用者5が接触電極13に接触していない場合に満たされる。この場合、上式(3)によると、検知信号Sdにおいて検知容量Cdetを検知する感度が失われることとなる。つまり、近接センサ10の検知信号Sdにおいては、接触電極13に人体51が接触していない場合、手指52等が検知電極12に近接しても、検知されないようにすることができる。これと同様に、接触電極13に接触する使用者5とは別の人物等が検知電極12に近接しても、近接センサ10の検知信号Sdでは検知されないようにすることができる。
 又、人体モデル50のグランド容量Cgは、使用者5がコントローラ1の使用時に意図せず生じることが考えられる。しかしながら、本実施形態の近接センサ10では、グランド容量Cgが、図5に示すように、使用者5が接触電極13に接触している場合、すなわち接続容量Ccが十分に大きい場合には、グランド容量Cgは寄生容量Cbgと並列の関係になり、動作原理の式(1)~(3)に含まれないこととなる。使用者5が接触電極13に接触しておらず、接続容量Ccが十分小さい場合も、検知容量Cdetを検知する感度が失われる状態に変わりはない。よって、使用者5によるグランド容量Cgが、近接センサ10による検知に影響しないようにすることができる。
2-2.各種容量について
 以上のような動作原理の近接センサ10における各種容量について、図6~7を用いて説明する。
 図6は、近接センサ10における接続容量と距離誤差との関係を示すグラフである。上記の動作原理において、検知電極12から対象物までの測定距離の距離誤差は、特に測定距離の大小に拘わらず、図6に示すように、接続容量Ccが小さくなるにつれて増大する。換言すると、接続容量Ccを大きく確保することで、近接センサ10の検知精度を向上できる。たとえば、5mm-50mm程度の距離を精度良く検知するためには、距離誤差は1mm程度以下にすることが望ましいと考えられる。このためには、接続容量Ccが1pF以上であることが望ましい。又、接続容量Ccの下限は、検知電極12の面積に比例する。
 図7は、近接センサ10における寄生容量Cag,Cabの関係を説明するための図表である。図7(A)は、測定距離50mmにおける容量比Cag/Cab及び寄生容量Cab毎の電圧比vd/veを示す。図7(B)は、測定距離10mmにおける容量比Cag/Cab及び寄生容量Cab毎の電圧比vd/veを示す。図7(C)は、図7(A),(B)間で測定距離が変化した場合の信号変化率を、寄生容量Cag,Cab毎に示す。
 寄生容量Cagが寄生容量Cabと比較して極めて大きい場合、図7(A),(B)に示すように、入力の励起電圧veに比べて検知電圧vdが小さな出力しか得られない。例えば寄生容量Cagが寄生容量Cabの100倍を超える場合、検知電圧vdは励起電圧veの1%未満の振幅になり、良好な信号対雑音比が得られない。こうした観点より、寄生容量Cagは寄生容量Cabの100倍程度以内に抑えるべきである。
 又、寄生容量Cabが大きい場合、対象物の距離が図7(A),(B)の範囲内で変化した場合の信号変化率が、図7(C)に示すように小さくなってしまう。例えば寄生容量Cabが10pFの場合、信号変化率は2%に満たない。このように変化が小さいと、距離を正しく検知することは困難になり得る。携帯用途のコントローラ1において実用的な距離50mm~5mmの変化に対し、信号変化率10%以上を得るために、寄生容量Cabは1pF以下が望ましく、極力小さい値に押さえることがより望ましい。但し、上記議論では検知電極12の面積として100平方mmの場合を用いた。検知電極12の面積を変えた場合にはそれに比例して寄生容量Cabの上限も変化し得る。
 たとえば、10mm×20mm程度の指先を3cmの距離を経て検知するためには、平行平板コンデンサ近似で60fF程度の検知容量Cdetを検知する必要がある。検知容量Cdetは、fFオーダーまでの可能な限り小さい容量変化を検知するできることが望ましい。寄生容量Cabが小さくても、寄生容量Cagが大きいと、式(2)の電圧比vd/ve比がゼロ(あるいはCab/(Cab+Cag))に近づき、微小容量変化が検知困難になる場合が想定される。こうした観点から、寄生容量Cagを小さくすることが有用である。
 例えば、検知電極12の面積を10mm×10mmとして、グランド電極14およびグランド電極14を配したコントローラ1の筐体面から10mm離れた操作面11に検知電極12を配した場合を想定する。この場合、寄生容量Cagは88fFというように、検知したい容量とほぼ同程度のオーダーになり、近接検知が可能になる。一方、検知電極12とグランド電極14間の距離を、例えば基板15の厚み程度の1mmまで接近させた場合、寄生容量Cagは880fFと検知したい容量値の10倍以上になるため、精度の高い近接検知が行い難くなり得る。
2-3.動作例
 本実施形態のコントローラ1における近接センサ10の動作の一例について、図8,9を用いて説明する。以下では、コントローラ1の制御回路20が近接センサ10を制御する動作例を説明する。
 図8は、コントローラ1における近接センサ10の動作例を示すフローチャートである。図9は、近接センサ10の動作例を説明するためのタイミングチャートである。図9(A)は、励振回路22から出力される励振信号のタイミングを示す。図9(B)は、検知回路21に入力される検知信号Sdの電圧波形を示す。
 まず、制御回路20は、励振回路22にトリガ信号を送信して、図9(A)の時刻t1に示すように、励起電圧veに対応する励振信号をハイレベル(Hi)に立ち上げるように励振回路22を制御する(S1)。次に、制御回路20は、時刻t1から所定期間経過後の時刻t2において(図9(B))、検知回路21に入力される電圧をA/D変換させて(S2)、時刻t2における検知信号Sdを示す電圧値を内部メモリに格納する(S3)。
 次に、制御回路20は、再び励振回路22にトリガ信号を送信して、図9(A)の時刻t3に示すように、励振信号をローレベル(Lo)に立ち下げるように励振回路22を制御する(S4)。次に、制御回路20は、ステップS2と同様に所定期間経過後の時刻t4において(図9(B))、検知回路21にA/D変換させて(S5)、時刻t4における検知信号Sdを示す電圧値を内部メモリに格納する(S6)。
 次に、制御回路20は、ステップS3,S6で格納した電圧値間の差分を演算して、演算結果を検知レベルとして格納する(S7)。制御回路20は、例えば以上のステップS1~S6を所定回数だけ繰り返し(S8)、得られた演算結果に平均化処理を行う(S9)。
 制御回路20は、こうして得られた近接センサ10の検知結果に基づいて、使用者5の操作を判定して制御信号を生成するなど各種の信号処理を行う(S10)。これにより、制御回路20は本フローに示す処理を終了する。制御回路20は、例えば、所定の周期で本フローの処理を繰り返す。
 以上の処理によると、近接センサ10における近接検知の結果を適宜、平均化して(S1~S9)、コントローラ1において後続の各種信号処理に利用することができる。なお、平均化のステップS9,S10は、適宜省略されてもよい。
3.まとめ
 以上のように、本実施形態における近接センサ10は、1つ以上の検知電極12と、接触電極13と、励振回路22と、検知回路21とを備える。コントローラ1の使用者5及びその各部は、本実施形態における対象物の一例である。検知電極12は、近接する対象物の一例として使用者5(の手指52)と容量結合する。接触電極13は、使用者5(の人体51)に接触される。励振回路22は、検知電極12及び接触電極13のうちの一方の電極13に接続され、当該電極13に励起電圧veを供給する。検知回路21は、検知電極12及び接触電極13のうちの他方の電極12に接続され、当該電極12における検知電圧vdに基づいて、検知電極12と対象物との間の第1の静電容量の一例である検知容量Cdetに応じた検知信号Sdを生成する。検知回路21は、接触電極13と対象物との間の第2の静電容量の一例である接続容量Ccよりも小さい検知容量Cdetに応じて、接触電極13に接触した対象物が検知電極12に近接する程度を示すように検知信号Sdを生成する。
 以上の近接センサ10によると、使用者5がコントローラ1を使用する際に接触電極13に接触することを利用して、コントローラ1に接触する使用者5の手指52等の対象物の近接を精度良く検知することができる。
 本実施形態において、接触電極13は、検知電極12の面積よりも大きい面積を有する。これにより、接続容量Ccを検知容量Cdetよりも大きく確保し易くなり、接続容量Ccよりも小さい範囲内での検知容量Cdetに応じた対象物の近接検知を行い易くすることができる。
 本実施形態において、対象物が接触電極13に接触した状態における対象物と接触電極13間の距離の一例である接触距離D2は、対象物が検知電極12に接触した状態における対象物と検知電極12間の距離の一例である接触距離D1よりも短い。これにより、接続容量Ccを検知容量Cdetよりも大きく確保し易くすることができ、対象物の近接検知を行い易くできる。
 本実施形態において、接触電極13は、対象物と直接的に接触するように露出されてもよい。検知電極12は、例えば対象物と間接的に接触するように設けられる。これにより、接続容量Ccをよりも大きく確保し易くすることができ、対象物の近接検知更にを行い易くできる。
 本実施形態において、近接センサ10は、検知電極12と接触電極13との間に設けられ、励振回路22と検知回路21とに共有されるグランド電極14をさらに備える。グランド電極14の配置により、検知電極12と接触電極13間の寄生容量Cabを低減して、対象物の近接検知の精度を良くすることができる。
 本実施形態において、検知電極12及び接触電極13のうちの検知電極12に接続された電極とグランド電極14間の静電容量である寄生容量Cagは、検知電極12と接触電極13間の静電容量である寄生容量Cabの100倍以下である。これにより、検知電極12とグラント電極14間の寄生容量Cagが過度に大きくなることを回避して、対象物の近接を精度良く検知できる。
 本実施形態において、グランド電極14の面積は、検知電極12の面積よりも大きくて、且つ接触電極13の面積よりも大きい。これにより、寄生容量Cabを低減して、対象物の近接検知の精度を良くすることができる。
 本実施形態において、検知回路21は、検知電極12に接続される。励振回路22は、接触電極13に接続される。グランド電極14は、検知電極12よりも接触電極13に近い位置に配置される。これにより、検知電極12とグラント電極14間の寄生容量Cagを低減して、対象物の近接を精度良く検知できる。
 本実施形態におけるコントローラ1は、近接センサ10と、近接センサ10によって生成された検知信号Sdに基づいて、制御信号を生成する制御回路20とを備える。こうしたコントローラ1によると、近接センサ10により、コントローラ1に接触する対象物の近接を精度良く検知することができる。
(実施形態2)
 実施形態2では、近接センサの動作原理の変形例について、図10~11を用いて説明する。
 図10は、実施形態2に係るコントローラ1Aの構成を例示するブロック図である。実施形態1のコントローラ1における近接センサ10では、検知回路21が検知電極12に接続され、励振回路22が接触電極13に接続された。本実施形態のコントローラ1Aは、実施形態1のコントローラ1と同様の構成において、図10に示すように、近接センサ10Aにおける検知回路21が接触電極13に接続され、励振回路22が検知電極12に接続される。
 例えば、本実施形態において、複数の検知電極12に対応する複数の励振回路22が、各検知電極12にそれぞれ接続される。各励振回路22は、時分割で励起電圧veに対応する励起信号を各々の検知電極12に供給してもよい。或いは、各励振回路22からの励振信号にFM変調或いはPWM変調などが施されてもよい。これにより、本実施形態の検知回路21は、接触電極13からの検知電圧vdにおいて、各励振信号が供給される検知電極12に応答した電圧変化を検知することができる。
 以上のように構成される本実施形態の近接センサ10Aは、実施形態1における動作原理の式(1)の代わりに、次式(21)に基づき動作する。
Figure JPOXMLDOC01-appb-M000005
 この場合、使用者5がコントローラ1の使用中の近似条件を満たすときには、実施形態1の式(2)の代わりに次式(22)が成立する。
Figure JPOXMLDOC01-appb-M000006
 一方、使用者5が接触電極13に接触していない近似条件を満たすときには、実施形態1の式(3)の代わりに次式(23)が成立する。
Figure JPOXMLDOC01-appb-M000007
 以上のような動作原理の式(21)~(23)により、本実施形態の近接センサ10Aは、実施形態1の近接センサ10と同様に、コントローラ1の使用中の使用者5を区別して、近接検知を精度良く行うことができる。
 実施形態1の近接センサ10は、検知電極12の寄生容量Cagを低減することで近接検知の精度が向上される。これに代えて、本実施形態の近接センサ10Aは、上式(22)より、接触電極13の寄生容量Cbgを低減するように構成されることで、近接検知の精度が向上される。こうした構成の一例を、図11を用いて説明する。
 図11は、本実施形態におけるコントローラ1Aの断面図を、図4と同様の断面において例示する。本実施形態のコントローラ1Aにおいては、例えば図11に示すように、近接センサ10Aの検知回路21に接続された接触電極13とグランド電極14との間隔D14が、検知電極12とグランド電極14との間隔D13よりも大きく設定される。これにより、寄生容量Cbgを低減して、近接センサ10Aの検知精度を向上できる。
 例えば、本実施形態では、グランド電極14が-Z側の主面に設けられた基板15の反対の+Z側の主面に、検知電極12が設けられる。コントローラ1Aの筐体において、基板15が操作面11近傍に配置され、接触電極13は、操作面11とは反対側の主面に配置される。これにより、接触電極13と、基板15とを離間した構成が容易に得られる。
 以上のように、本実施形態における近接センサ10Aにおいて、検知回路21は、接触電極13に接続される。励振回路22は、検知電極12に接続される。グランド電極14は、接触電極13よりも検知電極12に近い位置に配置される。これにより、検知回路21に接続された接触電極13とグラント電極14間の寄生容量Cbgを低減して、対象物の近接を精度良く検知できる。
(実施形態3)
 実施形態3では、使用者が把持して用いるコントローラの構成例について、図12を用いて説明する。
 図12は、実施形態3に係るコントローラ1Bの構成を例示する斜視図である。本実施形態のコントローラ1Bは、実施形態1と同様の構成において、使用者の手によって把持されるグリップ状の把持部材16を備える。コントローラ1Bは、例えばゲーム用あるいは工場における製造ライン又は車両などの制御用など様々な用途に適用可能である。
 図12に例示するコントローラ1Bにおいては、把持部材16において、掌が接触する部分に接触電極13が設けられている。本実施形態において、接触電極13は、把持部材16を把持する手の人差し指、中指、薬指、小指若しくは親指の何れか又は全てに接触する部分に設けられてもよい。また、図12の例では、コントローラ1の把持部材16に、把持した手を固定するための装着部材の一例であるベルト17が設けられている。接触電極13は、こうしたベルト17等において把持した手に接触する部分に設けられてもよい。このような接触電極13の配置によると、コントローラ1Bの使用中の手と接触電極13との接触を安定的に維持できる。
 図12の例では、コントローラ1Bにおいて、把持した手の親指用の検知電極12aと、人差し指用の検知電極12bと、中指用の検知電極12cと、薬指用の検知電極12dと、小指用の検知電極12eとがそれぞれ設けられている。
 例えば、親指用の検知電極12aは、コントローラ1Bにおいて、親指が操作すべきボタン、可倒レバー、力センサ等の各種操作部材(不図示)の近傍であって、且つ親指の可動範囲内に、1つ又は複数配置される。こうした親指用の検知電極12aによると、親指が各種操作部材に接触する前から操作しようとする動きを検知でき、コントローラ1Bにおいてスムーズ且つ高速の制御を実現可能である。
 又、他の各指用の検知電極12b~12eも、それぞれ1つの指に対して1つ設けられてもよいし、複数設けられてもよい。例えば、人差し指の根元から指先に到るまでの位置に複数の検知電極12bが設けられることにより、人差し指の曲がり具合などが検知できる。こうした構成によると、コントローラ1Bにおいて、手を握ったり開いたり、指差し動作したりピースサインを出したり、など手のリアルな動きをただしく検知できるようになる。
 以上のように、本実施形態におけるコントローラ1Bは手によって把持される把持部材16をさらに備える。接触電極13は、把持部材16において、把持した状態の手が接触する位置に設けられる。検知電極12は、接触電極13の位置とは別の位置において、把持した状態の手における指が接触可能な位置に設けられる。これにより、把持部材16を把持した手に対する接触を安定的に維持しながら、手指の近接を精度良く検知することができる。
 本実施形態において、把持した状態の手における複数の指に応じて、複数の検知電極12a~12eが、把持部材16に配置される。これにより、個々の指の近接検知が行え、各種のコントローラ1Bの操作を検知できるようにすることができる。なお、検知電極12a~12eの個数が検知したい指の本数と等しくなければならないということはなく、それ以上の数の検知電極を配置しても良いことは言うまでもない。
(実施形態4)
 実施形態4では、使用者の顔に装着して用いられるコントローラの例について、図13を用いて説明する。
 図13は、実施形態4に係るコントローラ1Cの構成を例示する斜視図である。本実施形態のコントローラ1Cは、例えば実施形態1と同様の構成において、図13に示すように、使用者の耳に装着されるイヤホンを構成する。本実施形態のコントローラ1Cにおいて、接触電極13は、例えば導電性を有するイヤーパッド18で構成される。これにより、イヤホンを装着した使用者と接触電極13との接触を安定的に維持できる。イヤーパッド18は、本実施形態における装着部材の一例である。
 本実施形態のコントローラ1Cによると、イヤホンの使用者が手を検知電極12に接近させる操作を検知して、イヤホンの動作を制御したり各種の情報通信を制御したりすることができる。情報通信としては、例えばBluetooth等の近距離無線通信によりイヤホンからモバイル端末への情報送信などが挙げられる。
 本実施形態のコントローラ1Cにおいて、検知電極12は、例えば図13に示すように、イヤホンにおいてイヤーパッド18とは反対に外側へ向いた主面近傍において、1つ又は複数設けられる。これにより、イヤホンに触れたときの耳への負担や接触ノイズなどに煩わされることなくイヤホンの制御が行える。複数の検知電極12それぞれへの近接を正確に検知できることにより、ジャスチャー入力による多機能化も可能であり、かつ精度が高い。また、雑踏の中など、人が密集した場所でのジャスチャー入力等の折、他の人の手等がイヤホンに近づいた場合でも誤動作することはなく、イヤホンを装着した使用者本人が意図した操作を精度良く検知できる。
 以上のように、本実施形態のコントローラ1Cは、人体に装着される装着部材の一例としてイヤーパッド18をさらに備える。接触電極13は、こうした装着部材において、装着した状態の人体に接触する位置に設けられる。これにより、装着部材の装着者との接触を安定的に維持して、装着者の近接検知を精度良く行える。
 上記の説明では、使用者の顔に装着して用いられるコントローラ1Cの一例として、イヤホンについて説明した。本実施形態において、コントローラ1C及び近接センサ10はイヤホンに限らず、例えばスマートグラス、ヘッドセット或いは没入型VRゴーグルなどに適用されてもよい。
 例えば、スマートグラスにおいて、耳に掛ける部分である先セルあるいは鼻あてに近接センサ10の接触電極13を配置し、テンプルやフレーム部分に検知電極12を配置して、装着者の目の周り手の動きを検知するようにコントローラ1Cが構成されてもよい。こうした構成によると、接触電極13の上記配置により、スマートグラスの装着者の人体との接触を安定的に維持できる。又、検知電極12の上記配置により、スマートグラスの耳や鼻への負担などに煩わされることなくスマートグラスの制御が行える。又、実施形態4と同様に、複数の検知電極12によって、装着者のジェスチャー操作を精度良く検知でき、スマートグラスのコントローラ1Cの多機能化も行い易い。
 又、ヘッドセットにおいては、T型バー等の支持部材あるいは耳あてに接触電極13を設け、ヘッドバンド、スピーカ外面、マイクサポート外側に等に検知電極12を設けて、装着者の顔の周りの手の動きを検知するようにコントローラ1Cが構成されてもよい。これにより、ヘッドセットの操作制御について、上記各実施形態と同様の効果を得られる。
 また、VRゴーグルにおいては、顔あて部分を導電性部材することで接触電極13を設けし、ゴーグルの外側部分に1つまたは複数の検知電極12を設けて、装着者の顔の周りの手の動きを検知するようにコントローラ1Cが構成されてもよい。これにより、VRゴーグルの操作制御について、上記各実施形態と同様の効果を得られる。例えば、ゴーグル外面に検知電極12を設けることにより、ゴーグルを触ってゴーグルが揺れたりずれたりすることなく、操作制御が行える。また、ゴーグルによっては実際の手の位置を正確に把握し難いような場合には、イメージセンサやTOFなどで手の位置を正確に把握しながら操作するVRゴーグルの機能と併用して、本実施形態のコントローラ1C及び近接センサ10を適用してもよい。
(実施形態5)
 実施形態5では、使用者の身体に装着して用いられるコントローラの例について、図14を用いて説明する。
 図14は、実施形態5に係るコントローラ1Dの構成を例示する斜視図である。本実施形態のコントローラ1Dは、例えば実施形態1と同様の構成において、例えば使用者の手首に装着される環状部材19を備える。環状部材19は、使用者の手首に限らず腕または指など種々の部分に装着されるように構成されてもよい。本実施形態のコントローラ1Dは、例えばスマートウォッチまたはスマートリングを構成してもよい。また、環状部材19は、バンド状の部材の両端を連結可能に構成されてもよいし、装着時にも開端となるように開環で構成されてもよい。
 本実施形態のコントローラ1Dにおいて、接触電極13は、例えば図14に示すように、環状部材19の内周側に設けられる。また、検知電極12は、環状部材19の外周側に1つまたは複数、設けられる。こうしたコントローラ1Dによると、上記各実施形態と同様の効果が得られる。例えば、スマートウォッチまたはスマートリングが、衣服を介したり手袋を介したりした状態で操作されても、本実施形態のコントローラ1Dによると、当該操作の検知を容易に行える。
 以上のように、本実施形態において、コントローラ1Dは、環状部材19をさらに備える。検知電極12は、環状部材19の外周面に設けられる。接触電極13は、環状部材19の内周面に設けられる。これにより、環状部材19の装着者との接触を確保して、装着者の近接検知を精度良く行える。
 上記の説明では、使用者の身体に装着して用いられるコントローラ1Dの一例として、環状部材19を用いる場合について説明した。本実施形態において、コントローラ1D及び近接センサ10はこれに限らず、例えば身体に貼り付けて用いられるものであってもよい。
 例えば、貼り付け型ウェアラブル生体センサにおいて、人体の皮膚に貼り付ける部分に接触電極13を設け、その外側に検知電極12を設けるようにしてもよい。こうしたヘルスケア用途においては、安全性が重要な場合が多い。これに対して、本実施形態のコントローラ1Dを適用することにより、装着者本人のみが意図した動作のみを検知できるようにでき、安全性を向上できる。或いは、こうしたコントローラ1Dにおいて、装着者本人が手などを近づけたり触れたりしたら動作を止めたり警報を発出するような動作を設定することも可能である。また、看護師又は介護士などが本人の手を握りながら、あるいは体に触れながら操作することもでき、こうした意図をもった支援者の操作のみを許すことによる安全性確保も可能である。ヘルスケア用途としては、心音計、心電計、心拍計、脳波計、SPO2計、或いは各種マッサージ機等が挙げられる。
  1,1A~1D  コントローラ
  10,10A  近接センサ
  12,12a~12e  検知電極
  13  接触電極
  14  グランド電極
  16  把持部材
  17,18  装着部材
  19  環状部材
  20  制御回路
  21  検知回路
  22  励振回路
  5  使用者
  51  人体
  52  手指

Claims (14)

  1.  近接する対象物と容量結合する1つ以上の検知電極と、
     前記対象物に接触される接触電極と、
     前記検知電極及び前記接触電極のうちの一方の電極に接続され、当該電極に励起電圧を供給する励振回路と、
     前記検知電極及び前記接触電極のうちの他方の電極に接続され、当該電極における検知電圧に基づいて、前記検知電極と前記対象物との間の第1の静電容量に応じた検知信号を生成する検知回路とを備え、
     前記検知回路は、前記接触電極と前記対象物との間の第2の静電容量よりも小さい前記第1の静電容量に応じて、前記接触電極に接触した対象物が前記検知電極に近接する程度を示すように前記検知信号を生成する
    近接センサ。
  2.  前記接触電極は、前記検知電極の面積よりも大きい面積を有する
    請求項1に記載の近接センサ。
  3.  前記対象物が前記接触電極に接触した状態における前記対象物と前記接触電極間の距離は、前記対象物が前記検知電極に接触した状態における前記対象物と前記検知電極間の距離よりも短い
    請求項1又は2に記載の近接センサ。
  4.  前記接触電極は、前記対象物と直接的に接触するように露出されており、
     前記検知電極は、前記対象物と間接的に接触するように設けられる
    請求項1~3のいずれか1項に記載の近接センサ。
  5.  前記検知電極と前記接触電極との間に設けられ、前記励振回路と前記検知回路とに共有されるグランド電極をさらに備える
    請求項1~4のいずれか1項に記載の近接センサ。
  6.  前記検知電極及び前記接触電極のうちの前記検知電極に接続された電極と前記グランド電極間の静電容量は、前記検知電極と前記接触電極間の静電容量の100倍以下である
    請求項5に記載の近接センサ。
  7.  前記グランド電極の面積は、前記検知電極の面積よりも大きくて、且つ前記接触電極の面積よりも大きい
    請求項5又は6に記載の近接センサ。
  8.  前記検知回路は、前記検知電極に接続され、
     前記励振回路は、前記接触電極に接続され、
     前記グランド電極は、前記検知電極よりも前記接触電極に近い位置に配置された
    請求項5~7のいずれか1項に記載の近接センサ。
  9.  前記検知回路は、前記接触電極に接続され、
     前記励振回路は、前記検知電極に接続され、
     前記グランド電極は、前記接触電極よりも前記検知電極に近い位置に配置された
    請求項5~7のいずれか1項に記載の近接センサ。
  10.  請求項1~9のいずれか1項に記載の近接センサと、
     前記近接センサによって生成された検知信号に基づいて、制御信号を生成する制御回路と
    を備えたコントローラ。
  11.  手によって把持される把持部材をさらに備え、
     前記接触電極は、前記把持部材において、把持した状態の手が接触する位置に設けられ、
     前記検知電極は、前記接触電極の位置とは別の位置において、前記把持した状態の手における指が接触可能な位置に設けられる
    請求項10に記載のコントローラ。
  12.  前記把持した状態の手における複数の指に応じて、複数の検知電極が、前記把持部材に配置された
    請求項11に記載のコントローラ。
  13.  人体に装着される装着部材をさらに備え、
     前記接触電極は、前記装着部材において、装着した状態の人体に接触する位置に設けられる
    請求項10に記載のコントローラ。
  14.  環状部材をさらに備え、
     前記検知電極は、前記環状部材の外周面に設けられ、
     前記接触電極は、前記環状部材の内周面に設けられる
    請求項10に記載のコントローラ。
PCT/JP2022/018534 2021-05-18 2022-04-22 近接センサ及びコントローラ WO2022244594A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522583A JP7468785B2 (ja) 2021-05-18 2022-04-22 近接センサ及びコントローラ
US18/382,611 US20240044671A1 (en) 2021-05-18 2023-10-23 Proximity sensor and controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021084098 2021-05-18
JP2021-084098 2021-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/382,611 Continuation US20240044671A1 (en) 2021-05-18 2023-10-23 Proximity sensor and controller

Publications (1)

Publication Number Publication Date
WO2022244594A1 true WO2022244594A1 (ja) 2022-11-24

Family

ID=84141348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018534 WO2022244594A1 (ja) 2021-05-18 2022-04-22 近接センサ及びコントローラ

Country Status (3)

Country Link
US (1) US20240044671A1 (ja)
JP (1) JP7468785B2 (ja)
WO (1) WO2022244594A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112959A (ja) * 2004-10-15 2006-04-27 Mitsubishi Electric Corp 自動車用物体近接・接触検知センサ
JP2008511954A (ja) * 2004-08-31 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線装置用の近接センサ
JP2012523191A (ja) * 2009-04-07 2012-09-27 アイデント・テクノロジー・アーゲー 把持および近接検出のためのセンサーデバイスおよび方法
JP2016006775A (ja) * 2009-12-11 2016-01-14 マイクロチップ テクノロジー ジャーマニー ゲーエムベーハー 手による携帯用デバイスの掴持を検出するためのデバイスおよび方法
JP2016100099A (ja) * 2014-11-19 2016-05-30 アイシン精機株式会社 車両用操作検出装置
JP2019050939A (ja) * 2017-09-13 2019-04-04 オムロン株式会社 静電容量センサ、スイッチ及び遊技機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511954A (ja) * 2004-08-31 2008-04-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線装置用の近接センサ
JP2006112959A (ja) * 2004-10-15 2006-04-27 Mitsubishi Electric Corp 自動車用物体近接・接触検知センサ
JP2012523191A (ja) * 2009-04-07 2012-09-27 アイデント・テクノロジー・アーゲー 把持および近接検出のためのセンサーデバイスおよび方法
JP2016006775A (ja) * 2009-12-11 2016-01-14 マイクロチップ テクノロジー ジャーマニー ゲーエムベーハー 手による携帯用デバイスの掴持を検出するためのデバイスおよび方法
JP2016100099A (ja) * 2014-11-19 2016-05-30 アイシン精機株式会社 車両用操作検出装置
JP2019050939A (ja) * 2017-09-13 2019-04-04 オムロン株式会社 静電容量センサ、スイッチ及び遊技機

Also Published As

Publication number Publication date
JPWO2022244594A1 (ja) 2022-11-24
JP7468785B2 (ja) 2024-04-16
US20240044671A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
Anaya et al. Self-powered eye motion sensor based on triboelectric interaction and near-field electrostatic induction for wearable assistive technologies
US11301048B2 (en) Wearable device for detecting light reflected from a user
CN109804331B (zh) 检测和使用身体组织电信号
US20210169402A1 (en) Wearable Wrist Joint-Action Detectors
JP2021072136A (ja) ジェスチャに基づいて制御するための筋活動センサ信号と慣性センサ信号とを結合する方法および装置
US7894888B2 (en) Device and method for measuring three-lead ECG in a wristwatch
JP6415592B2 (ja) ウェアラブル装置
CN110251080A (zh) 检测正在穿戴可穿戴电子设备的肢体
KR200481546Y1 (ko) 착용형 헬스케어 장치
KR101546405B1 (ko) 스마트 기기의 게임 화면을 이용하여 핀치 동작을 훈련시키는 손 재활 훈련 시스템 및 방법
US11921471B2 (en) Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
CN112189178A (zh) 用于电子手指设备的传感器
US20230073303A1 (en) Wearable devices for sensing neuromuscular signals using a small number of sensor pairs, and methods of manufacturing the wearable devices
Fujiwara et al. Identification of hand gestures using the inertial measurement unit of a smartphone: a proof-of-concept study
WO2022244594A1 (ja) 近接センサ及びコントローラ
JP2010051682A (ja) 筋活動測定装置、筋活動測定システム、意思検出システム、筋疲労測定システム、運動機能測定システム、心拍測定システムおよび自立行動支援システム
US11166674B2 (en) Wrist-type body composition measuring apparatus
CN207855687U (zh) 穿戴式心电检测装置
Luan et al. HANDIO: a wireless hand gesture recognizer based on muscle-tension and inertial sensing
CN109106358A (zh) 健身设备的光学心律变化量测装置
KR102604259B1 (ko) 정전용량식 장갑형 입력장치
KR102429231B1 (ko) 웨어러블 장치를 이용한 식사 보조 방법 및 장치
Amarandei et al. Wearable, assistive system for monitoring people in critical environments
JP2006113777A (ja) 情報入力装置
JP2013105269A (ja) 入力器具、つけ爪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522583

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804508

Country of ref document: EP

Kind code of ref document: A1