WO2022244560A1 - 蓄電セルの制御装置、蓄電装置、制御方法 - Google Patents

蓄電セルの制御装置、蓄電装置、制御方法 Download PDF

Info

Publication number
WO2022244560A1
WO2022244560A1 PCT/JP2022/017669 JP2022017669W WO2022244560A1 WO 2022244560 A1 WO2022244560 A1 WO 2022244560A1 JP 2022017669 W JP2022017669 W JP 2022017669W WO 2022244560 A1 WO2022244560 A1 WO 2022244560A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
vehicle
current
storage cell
battery
Prior art date
Application number
PCT/JP2022/017669
Other languages
English (en)
French (fr)
Inventor
敦史 福島
成輝 服部
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202280045814.XA priority Critical patent/CN117581443A/zh
Priority to DE112022002621.9T priority patent/DE112022002621T5/de
Publication of WO2022244560A1 publication Critical patent/WO2022244560A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to technology for ensuring vehicle safety by suppressing power loss.
  • a battery mounted on a mobile object such as a car has a current interrupting device as one of the protective devices.
  • the battery can be protected by opening the current interrupter to interrupt the current (Patent Document 1 below).
  • a storage cell may have a first region and a second region in which the battery performance is lower than the first region in terms of battery performance. If the current interrupting device is opened to cut off the current immediately after the storage cell moves from the first region to the second region, the vehicle may lose power. According to one aspect of the present invention, the power loss is suppressed and the safety of the vehicle is ensured by closing the current interruption device for at least a predetermined period of time after the storage cell moves from the first region to the second region.
  • a storage cell has a first region and a second region in which the battery performance is lower than the first region in terms of battery performance.
  • the control device for the storage cell outputs a signal notifying the shift of the region to a vehicle control unit that controls the vehicle, and after outputting the signal, At least for a predetermined period of time, the current interrupting device that interrupts the current of the storage cell is kept closed to enable power supply to the vehicle.
  • This technology can also be applied to control methods for storage cells (or storage devices) and control programs for storage cells (or storage devices).
  • This technology can ensure vehicle safety by suppressing power loss.
  • the storage cell has a first region and a second region in which the battery performance is lower than the first region in terms of battery performance.
  • the control device When the storage cell shifts from the first region to the second region, the control device outputs a signal notifying of the shift of the region to a vehicle control unit that controls the vehicle, and waits at least a predetermined time after outputting the signal. maintains the current interrupting device that interrupts the current of the storage cell closed to enable power supply to the vehicle.
  • the control device when the storage cell shifts from the first region to the second region, the control device outputs a signal that notifies the vehicle control unit that controls the vehicle of the region shift. After outputting the signal, the control device does not switch the current interrupting device from closed to open, but keeps it closed for a predetermined time.
  • the storage cell has, in addition to the first region and the second region, a third region in which the battery performance is even lower than that in the second region, and the control device controls, after outputting the signal, the storage cell When the second area is shifted to the third area, the current interrupting device may be opened to interrupt the current.
  • the current interrupting device is opened to interrupt the current. By interrupting the current, it is possible to prevent the storage cell from being used in the third region.
  • the predetermined time may be changed based on at least one of the voltage, current, and temperature of the storage cell at the stage of transition from the first area to the second area.
  • the progress of deterioration of the battery performance of the storage cell and the time required for transition between regions depend on voltage, current, and temperature. For example, if the current is small and it is expected that the transition between regions will take a long time, the predetermined time is lengthened. In this way, it is possible to set the time according to the state of the storage cell at the time of movement.
  • the charging of the storage cell may be prohibited after the vehicle stops or the engine stops. It is possible to suppress the storage cell from shifting to the third region due to charging after the vehicle stops or the engine stops.
  • the discharge of the storage cell after the vehicle stops may be permitted regardless of the elapse of the predetermined time.
  • the SOC of the storage cell is lowered.
  • the storage cell is replaced after the vehicle is stopped, it can be removed from the vehicle while the SOC is lowered, so that work safety can be ensured.
  • an emergency signal e.g., a signal for turning on the hazard lamps
  • the current interruption device When the vehicle equipped with the power storage cell is running, the current interruption device is kept closed for at least the predetermined time after the power storage cell moves from the first region to the second region, and When the vehicle equipped with the storage cell is not running, the current interruption device may be switched from closed to open when the storage cell moves from the first area to the second area.
  • the connection state of the current interrupting device is switched depending on whether the vehicle equipped with the storage cell is running or not. Therefore, the use of the storage cell in the second region can be minimized while ensuring the safety of the vehicle. That is, when the vehicle is running, after the transition from the first area to the second area, the current interrupting device is closed for a predetermined time to maintain the power supply, thereby ensuring the safety of the vehicle. When the vehicle is not running, after the transition from the first area to the second area, the current interruption device is opened to cut off the current, thereby minimizing the use of the storage cells in the second area. I can.
  • the current interruption device may be switched from closed to open at the stage where the region shifts.
  • the storage cell is not mounted on the vehicle, there is little need to maintain the power supply, as in the case when the vehicle is not running.
  • By opening the current interrupter to interrupt the current it is possible to minimize the use of the non-vehicle storage cell in the second area.
  • the vehicle 10 is equipped with an engine 20 and a battery 50 that is used when the engine 20 is started.
  • Battery 50 is an example of a "storage device.”
  • the battery 50 includes an assembled battery 60 , a circuit board unit 65 and a container 71 .
  • Vehicle 10 may be equipped with a power storage device for driving the vehicle or a fuel cell instead of engine 20 (internal combustion engine).
  • the container 71 includes a main body 73 and a lid 74 made of synthetic resin material.
  • the main body 73 has a cylindrical shape with a bottom.
  • the main body 73 has a bottom portion 75 and four side portions 76 .
  • An upper opening 77 is formed at the upper end portion by the four side portions 76 .
  • the housing body 71 houses the assembled battery 60 and the circuit board unit 65 .
  • the circuit board unit 65 is arranged above the assembled battery 60 .
  • the lid 74 closes the upper opening 77 of the main body 73 .
  • An outer peripheral wall 78 is provided around the lid body 74 .
  • the lid 74 has a projecting portion 79 that is substantially T-shaped in plan view.
  • a positive electrode external terminal 51 is fixed to one corner of the front portion of the lid 74 , and a negative electrode external terminal 52 is fixed to the other corner.
  • the secondary battery cell 62 has an electrode body 83 housed in a rectangular parallelepiped case 82 together with a non-aqueous electrolyte.
  • the secondary battery cell 62 is, for example, a lithium ion secondary battery.
  • the case 82 has a case main body 84 and a lid 85 that closes the upper opening.
  • the electrode body 83 shown in FIG. 4 has a negative electrode element in which an active material is applied to a base material made of copper foil and a positive electrode element in which an active material is applied to a base material made of aluminum foil.
  • a separator made of a porous resin film is arranged. Each of these is strip-shaped, and is wound flat so as to be accommodated in the case main body 84 with the negative electrode element and the positive electrode element shifted to opposite sides in the width direction with respect to the separator. .
  • the electrode body 83 may be of the laminated type instead of the wound type.
  • a positive terminal 87 is connected to the positive element through a positive current collector 86, and a negative terminal 89 is connected to the negative element through a negative current collector 88, respectively.
  • the positive electrode current collector 86 and the negative electrode current collector 88 are composed of a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90 .
  • a through hole is formed in the base portion 90 .
  • Leg 91 is connected to the positive or negative element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 are composed of a terminal main body portion 92 and a shaft portion 93 projecting downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally formed of aluminum (single material).
  • the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled together.
  • the terminal body portions 92 of the positive electrode terminal 87 and the negative electrode terminal 89 are arranged at both ends of the lid 85 via gaskets 94 made of an insulating material and are exposed to the outside through the gaskets 94 .
  • the lid 85 has a pressure relief valve 95 .
  • a pressure relief valve 95 is located between the positive terminal 87 and the negative terminal 89 .
  • Pressure release valve 95 is a safety valve. The pressure release valve 95 opens to reduce the internal pressure P of the case 82 when the internal pressure P of the case 82 exceeds the limit value P3.
  • FIG. 5 is a block diagram showing the electrical configuration of the battery 50.
  • the battery 50 includes an assembled battery 60 , a current detection resistor 54 that is a current measuring section, a current interrupting device 53 , a voltage detection circuit 110 , a temperature sensor 58 and a management device 130 .
  • the two external terminals 51 and 52 of the battery 50 are connected to a vehicle ECU (Electronic Control Unit) 140, an alternator 150 that is a generator that generates power from the power of the engine 20, and a vehicle load 160 mounted on the vehicle. They are electrically connected to each other.
  • Vehicle ECU 140 is a vehicle control unit that controls vehicle 10 . Vehicle ECU 140 controls alternator 150 and vehicle load 160 . A drive system such as an engine may also be controlled.
  • the vehicle ECU 140 is not limited to one, and may be plural.
  • the battery 50 is charged by the alternator 150 when the power generation amount of the alternator 150 is greater than the power consumption of the vehicle load 160 while the engine 20 is running. If the amount of power generated by alternator 150 is less than the power consumed by vehicle load 160, battery 50 discharges to make up for the shortage.
  • the alternator 150 stops generating power while the engine 20 is stopped.
  • the battery 50 is not charged and is only discharged to the vehicle ECU 140 and the vehicle load 160 .
  • the assembled battery 60 is composed of a plurality of secondary battery cells 62 .
  • FIG. 5 represents three secondary battery cells 62 connected in parallel with one battery symbol.
  • the secondary battery cell 12 is an example of a "storage cell.”
  • the battery 50 is rated at 12V.
  • the assembled battery 60, current interrupting device 53, and current detection resistor 54 are connected in series via power lines 55P and 55N.
  • the power lines 55P and 55N can use a bus bar BSB, which is a plate-shaped conductor made of a metal material such as copper.
  • the power lines 55P and 55N are examples of current paths.
  • the power line 55P connects the positive external terminal 51 and the positive electrode of the assembled battery 60 .
  • the power line 55N connects the negative external terminal 52 and the negative electrode of the assembled battery 60 .
  • the current interrupting device 53 is provided on the power line 55P on the positive electrode side.
  • the current interrupting device 53 may be a semiconductor switch such as an FET, or a relay having mechanical contacts.
  • the current interrupting device 53 is normally closed and is controlled to be closed during normal operation.
  • the current detection resistor 54 is provided on the power line 55N on the negative electrode side. Based on the voltage Vr across the current detection resistor 54, the current I of the assembled battery 60 can be measured.
  • the voltage detection circuit 110 can detect the voltage V of the secondary battery cell 62 and the total voltage Vab of the assembled battery 60 .
  • the temperature sensor 58 is attached to the assembled battery 60 and detects the temperature T of the assembled battery 60 .
  • the management device 130 is mounted on the circuit board 100 and has a CPU 131 , a memory 132 and a communication section 133 .
  • the management device 130 is an example of a "control device.”
  • the communication unit 133 is connected to the vehicle ECU 140 via a signal line and communicates with the vehicle ECU 140 .
  • the management device 130 can receive a signal regarding the operating state of the vehicle 10 (running, stopping, parking, etc.) from the vehicle ECU 140 through communication.
  • the management device 130 monitors the state of the battery 50 based on the outputs of the voltage detection circuit 110, the current detection resistor 54, and the temperature sensor 58. That is, the temperature T, current I, and total voltage Vab of the assembled battery 60 are monitored.
  • the management device 130 performs processing for estimating the SOC [%] of the assembled battery 60 based on the current I of the assembled battery 60 .
  • the SOC state of charge is the ratio of the remaining capacity to the full charge capacity, and is expressed by the following formula (1).
  • the SOC can be estimated based on the integral value of the current I with respect to time, as shown by the following formula (2).
  • the sign of the current is positive during charging and negative during discharging.
  • the memory 132 stores a program for estimating the SOC and an execution program for the control flow shown in FIG. Data necessary for executing these programs are stored.
  • the program can be stored in a recording medium such as a CD-ROM and transferred.
  • the program can also be distributed using telecommunication lines.
  • FIG. 6 is a graph showing the SOC-P characteristics of the secondary battery cell 62, with the horizontal axis representing SOC [%] and the vertical axis representing the internal pressure P [Pa] of the secondary battery cell. .
  • the internal pressure P is the pressure inside the case 82 of the secondary battery cell 62 .
  • the secondary battery cell 62 has three regions A1 to A3 in which the amount of change in internal pressure P with respect to the amount of change in SOC, that is, the slope of the graph differs.
  • the first area A1 is an area with an SOC of 100[%] or less
  • the second area A2 is an area with an SOC of 100[%] to 108[%]
  • the third area A3 is an area with an SOC of 108[%] or more. area.
  • the first area A1 is the normal use area of the secondary battery cell 62, and is the area where the internal pressure P is equal to or lower than the upper limit of use P1.
  • the use upper limit value P1 is the upper limit value of the internal pressure P at which the secondary battery cell 62 can be safely used.
  • the second area A2 is an area where the internal pressure P is higher than the use upper limit value P1 and higher than the internal pressure P in the first area A1. In the second area A2, the use of the secondary battery cell 62 almost never leads to an unsafe event, but the use is not recommended.
  • the third area A3 is an unsafe area where the internal pressure P is higher than that of the second area A2 and it is difficult to ensure the safety of the secondary battery cells 62 .
  • use of the secondary battery cell 62 may lead to an unsafe event.
  • the limit value P3 at which the pressure release valve 95 operates is included in the third region A3. 95 is opened to lower the internal pressure P.
  • the amount of change in internal pressure P with respect to the amount of change in SOC is larger in the order of the third area A3, the second area A2, and the first area A1.
  • the amount of change in the internal pressure P is small and is equal to or less than a predetermined value.
  • the reason why the amount of change in internal pressure differs is that the higher the SOC, the higher the voltage V of the secondary battery cell 62, and the more easily the electrolyte inside the cell decomposes and evaporates.
  • the "internal pressure P" and “battery performance” of the secondary battery cell 62 are correlated, and the higher the internal pressure P, the lower the battery performance.
  • indices of "battery performance” the internal resistance [ ⁇ ], capacity retention rate [%], and battery output [W] of the secondary battery cell 62 can be cited.
  • the battery performance may be determined by comprehensively judging these indices, or may be determined by using any one of them as a representative value.
  • the second area A2 When used under the same conditions (for example, the same C rate), the second area A2 has a higher internal pressure P than the first area A1, so the battery performance is lowered.
  • the second region A2 is a region where the deterioration of the battery performance accelerates (a region where the amount of deterioration of the battery performance with respect to the SOC change is large) because the amount of change in the internal pressure P is larger than that in the first region A1.
  • the third region A3 has a higher internal pressure P than the second region A2, so the battery performance is further reduced. In the third region A3, since the amount of change in the internal pressure P is larger than in the second region A2, the deterioration of the battery performance is further accelerated (the region in which the deterioration of the battery performance with respect to the SOC change is even greater).
  • Vehicle ECU 140 controls charging of alternator 150 so as not to exceed 100% SOC, which is the upper limit value of first region A1. However, if charging control becomes impossible due to a failure of the alternator 150 or the like, charging will continue even if the SOC exceeds 100%, and the internal pressure P will be high and the battery performance will decrease from the first region A1, which is the normal use region of the assembled battery 60. It may shift to the second region A2 where it decreases.
  • the management device 130 monitors the SOC and voltage, and when the battery pack 60 shifts to the second region A2 (time t1 shown in FIG. 7), outputs a signal to notify the vehicle ECU 140 of the shift to region A.
  • the vehicle ECU 140 receives the signal, the vehicle ECU 140 requests or prompts the driver to stop the vehicle 10 in an emergency, such as by turning on a warning lamp.
  • the management device 130 After outputting the signal to the vehicle ECU 140, the management device 130 does not switch the current breaking device 53 from closed to open, and keeps it closed for a predetermined time Tw (t1 to t2 shown in FIG. 7).
  • the management device 130 may switch the current interruption device 53 from closed to open to prohibit reuse of the battery 50 .
  • the reason for prohibiting reuse is that the internal pressure P of the secondary battery cell 62 is the upper limit of use at which the assembled battery 60 can be safely used because the predetermined time Tw after the signal output is used in the second area A2. This is because it is larger than P1.
  • the amount of change in the internal pressure P of the secondary battery cell 62 that has shifted to the second region A2 depends on the temperature T of the assembled battery 60. That is, the higher the temperature T of the battery 50, the greater the change in the internal pressure P.
  • the SOC change depends on the total voltage Vab and the charging current I, and the higher the total voltage Vab and the larger the charging current I, the easier it is to shift from the second region A2 to the third region A3.
  • region A shifts more easily as the total voltage Vab is higher is that the higher the total voltage, the higher the charging voltage, and thus the charging current I increases.
  • the predetermined time Tw may be changed according to the total voltage Vab, charging current I, and temperature T of the assembled battery 60 at the time of signal output. That is, the lower the total voltage Vab of the battery 50 at the time of signal output, the longer the predetermined time Tw.
  • the predetermined time Tw may be longer as the charging current I is smaller.
  • the predetermined time Tw may be longer as the temperature T is lower. It is preferable that the predetermined time Tw can be secured for approximately 2 to 3 minutes.
  • FIG. 8 is a control flow of the current interrupting device 53. As shown in FIG. The control flow consists of 9 steps S10 to S90, and is executed when the battery 50 receives from the vehicle ECU 140 a travel start signal that tells the vehicle 10 to start traveling.
  • the management device 130 Upon receiving the travel start signal, the management device 130 detects the presence or absence of charging based on the measured value of the current detection resistor 54 and its polarity (S10).
  • the management device 130 detects the areas A1 to A3 of the battery 50 based on the current SOC value (S20). Since the SOC is usually 100% or less, the battery 50 is included in the first area A1.
  • the management device 130 determines whether or not the assembled battery 60 has moved from the first area A1 to the second area A2 (S30). If not, the process returns to S20.
  • the battery 50 may continue to be charged while the vehicle is running, and the SOC may exceed 100%.
  • the management device 130 calculates a predetermined time Tw based on the total voltage Vab of the battery 50, the charging current I, and the temperature T (S40, S50).
  • a two-dimensional data table with I and V as two variables can be used.
  • FIG. 9 shows an example of a data table.
  • the data table of FIG. 9 is created for each temperature T.
  • the management device 130 selects a data table corresponding to the assembled battery temperature at the time of transition to the second region, and determines the predetermined time Tw from the total voltage Vab and charging current I of the assembled battery 60 at the time of transition to the second region.
  • the management device 130 then transmits to the vehicle 10 a signal notifying that the area A of the assembled battery 60 has changed. At this time, the predetermined time Tw may also be notified.
  • the management device 130 After outputting the signal, the management device 130 keeps the current interrupter 53 closed (S60). Then, the elapsed time after the signal output is counted, and it is determined whether or not a predetermined time Tw has elapsed since the signal output (S70).
  • the management device 130 gives a command to the current interrupting device 53 to switch the current interrupting device 53 from closed to open. By switching the current interrupting device 53, the current I of the assembled battery 60 can be interrupted.
  • the management device 130 determines whether the assembled battery 60 has moved from the second area A2 to the third area A3 while counting the predetermined time Tw (S90).
  • the current interrupting device 53 is switched from closed to open even before the predetermined time Tw elapses. By switching the current interrupting device 53 to open, it is possible to prevent the assembled battery 60 that has moved to the third area A3 from leading to an unsafe event. The opening of the pressure release valve 95 can be suppressed.
  • the management device 130 when the battery pack 60 shifts from the first area A1 to the second area A2, the management device 130 outputs a signal to notify the vehicle ECU 140 of the transition to the area A.
  • the management device 130 After outputting the signal, the management device 130 does not switch the current breaking device 53 from closed to open, but keeps it closed for a predetermined time Tw.
  • the power supply of the vehicle 10 can be maintained for a predetermined time Tw after the signal is output, and the driver can take safety measures such as emergency stopping the vehicle 10 in a safe place while the vehicle is running. Therefore, the safety of the vehicle 10 can be ensured.
  • the current interrupting device 53 is opened to interrupt the current. By interrupting the current, it is possible to prevent the battery 50 that has moved to the third region A3 from leading to an unsafe event.
  • Embodiment 2 discloses control of the current interrupting device 53 after an emergency stop.
  • FIG. 10 is a control flow of the current interrupting device 53 after an emergency stop.
  • control device 130 After the control device 130 outputs a signal notifying the vehicle ECU 140 of the shift to the region A along with the shift to the second region A2, the control device 130 closes the current interrupting device 53. It is done in parallel with the control to maintain.
  • the management device 130 detects whether or not the vehicle 10 in emergency operation that has received the signal notifying the transition to the area A has stopped (S100).
  • the decision to stop the vehicle may be made by comparing the current I of the assembled battery 60 with a threshold value, or by communicating with the vehicle ECU 140 . In other words, if a signal regarding the operating state of the vehicle 10 (running, stopped, parked, etc.) can be received from the vehicle ECU 140, determination may be made based on whether or not the signal is received.
  • the management device 130 determines which of the first region A1, the second region A2, and the third region A3 the assembled battery 60 is in based on the current value of the SOC. (S120).
  • the management device 130 determines that the assembled battery 60 is included in the third area A3 (S120: NO), it switches the current interrupt device 53 from closed to open (S150).
  • the management device 130 determines that the assembled battery 60 can be temporarily used except for charging. , the current interrupting device 53 is kept closed (S130).
  • the management device 130 monitors the output of the current detection resistor 54 and determines whether the assembled battery 60 is “charged” or “discharged” (S140). "Charging” and “discharging” can be determined from the polarity of the current measurement value.
  • the management device 130 switches the current interrupter 53 to open to interrupt the current, thereby prohibiting charging (S150). By prohibiting charging, it is possible to prevent the assembled battery 60 from moving to the third area A3.
  • the management device 130 keeps the current interrupting device 53 closed and permits discharging (S130). The closed state is maintained even after the predetermined time Tw has passed since the signal was output.
  • the battery 50 is used as a power source, and an emergency signal such as the lighting of the hazard lamps can be issued to notify the outside that the vehicle 10 is in an emergency stop.
  • the SOC of the assembled battery 60 decreases due to discharge. Therefore, when replacing the battery 50 that has moved to the second area A2, it can be removed from the vehicle 10 in a state where the SOC has decreased, so safety can be ensured.
  • the current interruption conditions may be (B) to (D).
  • All of (A) to (F) may be set as "interruption conditions", and the current may be interrupted when any one of (A) to (F) is satisfied.
  • a part of (A) to (F) may be used as the blocking condition.
  • (A) and (C) may be set as cutoff conditions, and the current may be cut off when (A) or (C) is established.
  • the cutoff condition is not limited to the combination of (A) and (C), and other combinations may also be used. The number of combinations may be two or more, such as (A) to (C).
  • the reason why (B) is included in the shutdown condition is that it is no longer necessary to supply power to the vehicle 10 when the safety of the driver is confirmed.
  • the presence or absence of safety confirmation may be determined based on whether or not the vehicle 10 has moved to parking after the emergency stop. Whether or not the vehicle is parked may be determined through communication with the vehicle ECU 140 . You can judge by the current value,
  • (C) is included in the shutdown condition is that the battery 50 that has experienced the second region A2 is used for the same purposes as normal (discharging to the vehicle load and charging by the alternator) by restarting the vehicle 10. This is for suppression.
  • the presence or absence of rerunning may be determined through communication with the vehicle ECU 140 .
  • Embodiments 1 to 3 when the assembled battery 60 shifts from the first area A1 to the second area A2, the current interruption device 53 is kept closed for the predetermined time Tw in order to maintain the power supply of the vehicle 10 for emergency stop. did.
  • the management device 130 switches the current interruption device 53 from closed to open in the following cases (S350).
  • the battery 50 can be prevented from being used in the second area A2 by switching the current interrupting device 53 open to interrupt the current. By preventing use in the second area A2, the battery 50 can be reused.
  • FIG. 11 is a control flow of the current interrupting device 53 after the battery 50 has shifted to the second area A2.
  • the current interrupting device 53 is closed before the transition to the second area A2.
  • the management device 130 determines whether the battery 50 is "non-vehicle mounted" (S310).
  • Non-vehicle can be determined by the presence or absence of a communication line connection, or by the current value. That is, when the communication line is not connected or when the current value is substantially zero for a long period of time, it can be determined that the battery 50 is "not in-vehicle.”
  • the management device 130 determines that the battery 50 is "not in-vehicle” (S310: NO), it immediately switches the current interrupting device 53 to open (S350).
  • the management device 130 determines that the battery 50 is "in-vehicle” (S310: YES), it determines whether the vehicle 10 is "running” (S320).
  • Whether or not the vehicle 10 is running can be determined through communication with the vehicle ECU 140. That is, when communication with the vehicle ECU 140 is frequently performed, it can be determined that the vehicle is running, and when there is no communication for a predetermined period of time, it can be determined that the vehicle is not running. If a signal regarding the operating state of the vehicle 10 (driving, stopped, parked, etc.) can be received from the vehicle ECU 140, the determination may be made based on whether or not the signal is received.
  • the management device 130 determines that the vehicle is "non-running" (S320: NO), it immediately switches the current breaking device 53 to open (S350).
  • the management device 130 determines that the vehicle is "driving" (S320: YES)
  • the management device 130 outputs a signal to notify the vehicle ECU 140 of the transition to the area A.
  • Management device 130 keeps current interrupt device 53 closed (S330).
  • the management device 130 After outputting the signal to the vehicle ECU 140, the management device 130 counts the elapsed time. Then, after a predetermined time Tw has elapsed after the signal is output, the current interrupting device 53 is switched from closed to open.
  • the current interruption device 53 is closed for the predetermined time Tw to maintain the power supply, so the safety of the vehicle can be ensured.
  • the current interruption device 53 is opened to interrupt the current. can be minimized.
  • Embodiment 5 the battery 50 is divided into three regions A1 to A3 based on the relationship between the SOC and the internal pressure P of the assembled battery 60.
  • FIG. 1 the battery 50 is divided into three regions A1 to A3 based on the relationship between the SOC and the internal pressure P of the assembled battery 60.
  • FIG. 1 the battery 50 is divided into three regions A1 to A3 based on the relationship between the SOC and the internal pressure P of the assembled battery 60.
  • FIG. 1 the battery 50 is divided into three regions A1 to A3 based on the relationship between the SOC and the internal pressure P of the assembled battery 60.
  • FIG. 1 the battery 50 is divided into three regions A1 to A3 based on the relationship between the SOC and the internal pressure P of the assembled battery 60.
  • FIG. 1 the battery 50 is divided into three regions A1 to A3 based on the
  • FIG. 12 is a graph showing the TP characteristics of the secondary battery cell 62, with the temperature T of the secondary battery cell 62 on the horizontal axis and the internal pressure P of the secondary battery cell 62 on the vertical axis.
  • the secondary battery cell 62 has three regions A1 to A3 in which the amount of change in internal pressure P with respect to the amount of change in temperature T, that is, the slope of the graph differs.
  • the first region A1 is a region where the temperature T of the assembled battery 60 is T1 [° C.] or less
  • the second region A2 is a region where the temperature of the assembled battery 60 is T1 [° C.] to T2 [° C.]
  • the third region A3 is , the temperature T of the assembled battery 60 is T2 [° C.] or higher.
  • the reason why the amount of change in the internal pressure P is different is that the higher the temperature T, the easier it is for a chemical reaction to occur inside the battery, and the easier it is for the electrolyte to decompose and evaporate.
  • the management device 130 monitors the temperature T of the assembled battery 60 based on the output of the temperature sensor 58, and when the temperature T is included in the first region A1, which is the normal use region, the current interrupt device 53 is kept closed. do.
  • the management device 130 When the temperature T of the assembled battery 60 shifts to the second region A2 where the internal pressure is high, the management device 130 outputs a signal notifying the shift to the region A to the vehicle ECU 140 . After outputting the signal, the management device 130 keeps the current interruption device 53 closed for a predetermined time Tw.
  • the predetermined time Tw may be changed according to the total voltage Vab and the current I of the assembled battery 60 at the stage (at the time of transition) when the temperature T of the assembled battery 60 shifts from the first region A1 to the second region A2.
  • the management device 130 monitors the temperature T of the assembled battery 60 after outputting the signal to the vehicle 10 .
  • the management device 130 sends a command to the current interrupting device 53 to switch the current interrupting device 53 from closed to open.
  • Embodiment 6 the battery 50 is divided into three regions A1 to A3 based on the relationship between the temperature T and the internal pressure P of the assembled battery 60.
  • FIG. The temperature T of the assembled battery 60 is correlated with the current I, and the larger the current I, the easier the temperature of the assembled battery 60 rises.
  • the battery 50 is divided into three regions A1 to A3 based on the relationship between the current I and the internal pressure P of the assembled battery 60.
  • FIG. 6 is a diagrammatic representation of the battery 50 in Embodiment 6, the battery 50 is divided into three regions A1 to A3 based on the relationship between the current I and the internal pressure P of the assembled battery 60.
  • FIG. 13 is a graph showing the IP characteristics of the secondary battery cell 62, with the current I of the secondary battery cell 62 on the horizontal axis and the internal pressure P of the secondary battery cell 62 on the vertical axis.
  • the current I may be a charging current or a discharging current.
  • the first region A1 is a region in which the current I of the assembled battery 60 is I1 [A] or less
  • the second region A2 is a region in which the current I of the assembled battery 60 is I1 [A] to I2 [A]
  • the third region A3 is , the current I of the assembled battery 60 is I2 [A] or more.
  • the management device 130 monitors the current I of the assembled battery 60 based on the output of the current detection resistor 54. When the current I is included in the first area A1, which is the normal use area, the management device 130 keeps the current interrupter 53 closed.
  • the management device 130 When the current I of the assembled battery 60 shifts to the second region A2 where the internal pressure is high, the management device 130 outputs a signal notifying the shift to the region A to the vehicle ECU 140 . After outputting the signal, the management device 130 keeps the current interruption device 53 closed for a predetermined time Tw.
  • the predetermined time Tw may be changed according to the total voltage Vab and the temperature T of the assembled battery 60 at the stage (at the time of transition) when the current I of the assembled battery 60 shifts from the first region A1 to the second region A2.
  • the management device 130 monitors the current I of the assembled battery 60 after outputting the signal to the vehicle 10 .
  • the management device 130 sends a command to the current interrupting device 53 to switch the current interrupting device 53 from closed to open.
  • the secondary battery cells 62 are not limited to lithium ion secondary batteries, and may be other non-aqueous electrolyte secondary batteries.
  • the secondary battery cells 62 are not limited to connecting a plurality of cells in series and parallel, but may be connected in series or may be a single cell.
  • a capacitor can also be used instead of the secondary battery cell 62 .
  • Any type of storage cell can be used as long as it has a plurality of regions with different internal pressures P (a first region and a second region with a higher internal pressure than the first region). Secondary battery cells and capacitors are examples of storage cells.
  • the transition from the first area A1 to the second area A2 and the transition from the second area A2 to the third area A3 are determined by the "SOC" of the secondary battery cell 62.
  • Region transition may be determined based on other physical quantity as long as it is a physical quantity that correlates with deterioration of battery performance.
  • the “voltage” of the secondary battery cell 62 may be used for determination.
  • the "temperature” and “current” of the secondary battery cell may be used for determination.
  • the secondary battery cell 62 has three areas A1 to A3, the first area A1, the second area A2, and the third area A3, regarding battery performance.
  • the secondary battery cell 62 only needs to have at least a first region A1 and a second region A2 in which the battery performance is lower than that of the first region A1, and may have a third region A3, It can be omitted.
  • the second area A2 may be an area where the battery performance is lower than that in the first area A1, and it does not matter whether the deterioration of the battery performance is accelerated or not.
  • the second region A2 may be a region where the internal pressure P is higher than the first region A1 (a region where the battery performance is lowered), and the slope of the graph is , may or may not have changed.
  • the third area A3 may be an area where the battery performance is lower than that in the first area A1, and it does not matter whether the deterioration of the battery performance is accelerated or not.
  • the predetermined time Tw is changed based on the total voltage, current, and temperature of the assembled battery 60 at the time of transition to the second region.
  • the predetermined time Tw may be a fixed value.
  • the predetermined time Tw may be changed based on any one of the total voltage, current, and temperature.
  • the predetermined time Tw may be changed based on the two.
  • the current interrupting device 50 may switched the connection status of the That is, when the vehicle 10 is running, after the transition from the first area A1 to the second area A2, the current interruption device 53 is closed for a predetermined time Tw to maintain the power supply. Immediately after the transition from A1 to the second area A2, the current interruption device 53 was opened to interrupt the current. The current interruption device 53 is closed for a predetermined time Tw after the transition from the first area A1 to the second area A2, not only when the vehicle is running, but also when the vehicle is not running (stopped, parked, etc.). may be used to maintain power. By maintaining the power supply, it is possible to secure electric power for performing necessary vehicle control when the driver leaves the vehicle 10, such as window opening/closing control and door locking control. Therefore, vehicle safety is improved.
  • the management device 130 is provided inside the battery 50 .
  • the battery 50 may include at least instruments such as the current detection resistor 54 and the voltage detection circuit 110 , and the management device 130 and the current interrupting device 53 may be provided outside the battery 50 .
  • the exterior body of the secondary battery cell 62 is the "rectangular parallelepiped case (metal can or plastic case) 82", but the exterior body may be a laminated film (pouch cell).
  • vehicle 10 50 battery (storage device) 53 current interrupter 54 current detection resistor 58 temperature sensor 60 assembled battery 130 management device (control device) 140 vehicle ECU (vehicle control unit) 150 Alternator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

車載用の蓄電セルの制御装置130は、前記蓄電セル62は、電池性能に関し、第1領域と前記第1領域よりも電池性能が低下する第2領域とを有し、前記蓄電セル62が前記第1領域A1から前記第2領域A2に移行した場合、車両10を制御する車両制御部140に対して領域Aの移行を通知する信号を出力し、信号出力後、少なくとも所定時間Twは、前記蓄電セル62の電流Iを遮断する電流遮断装置53をクローズに維持して、車両10への電力供給を可能にする。

Description

蓄電セルの制御装置、蓄電装置、制御方法
 本発明は、電源喪失を抑制することにより、車両の安全性を確保する技術に関する。
 自動車等の移動体に搭載されたバッテリは、保護装置の1つとして電流遮断装置を有している。異常を検出した場合、電流遮断装置をオープンして電流を遮断することで、バッテリを保護することが出来る(下記特許文献1)。
特開2017-5985号公報
 蓄電セルは、電池性能に関し、第1領域と、前記第1領域よりも電池性能が低下する第2領域を有する場合がある。蓄電セルが第1領域から第2領域に移行した段階で、直ちに、電流遮断装置をオープンして電流を遮断すると、車両は電源を失ってしまう場合がある。
 本発明の一態様は、蓄電セルが第1領域から第2領域に移行した以降、少なくとも所定時間は、電流遮断装置をクローズすることにより、電源喪失を抑制し車両の安全性を確保する。
 蓄電セルは、電池性能に関し、第1領域と、前記第1領域よりも電池性能が低下する第2領域と、を有する。蓄電セルの制御装置は、前記蓄電セルが前記第1領域から前記第2領域に移行した場合、車両を制御する車両制御部に対して領域の移行を通知する信号を出力し、信号出力後、少なくとも所定時間は、前記蓄電セルの電流を遮断する電流遮断装置をクローズに維持して、車両への電力供給を可能にする。
 本技術は、蓄電セル(又は蓄電装置)の制御方法や、蓄電セル(又は蓄電装置の)の制御プログラムにも適用することが出来る。
 本技術は、電源喪失を抑制することにより、車両の安全性を確保することが出来る。
車両の側面図 バッテリの分解斜視図 二次電池セルの平面図 図3のA-A線断面図 バッテリの電気的構成を示すブロック図 バッテリのSOC-P特性 故障発生後における電流遮断装置のクローズ/オープンの説明図 電流遮断装置の制御フロー データテーブル 電流遮断装置の制御フロー 電流遮断装置の制御フロー バッテリのT-P特性 バッテリのI-P特性 故障発生後における充電の禁止タイミングを示す図 故障発生後における充電の禁止タイミングを示す図
 車載用の蓄電セルの制御装置の概要を説明する。
 蓄電セルは、電池性能に関し、第1領域と、前記第1領域よりも電池性能が低下する第2領域と、を有する。制御装置は、前記蓄電セルが前記第1領域から前記第2領域に移行した場合、車両を制御する車両制御部に対して領域の移行を通知する信号を出力し、信号出力後、少なくとも所定時間は、前記蓄電セルの電流を遮断する電流遮断装置をクローズに維持して、車両への電力供給を可能にする。
 この構成では、蓄電セルが第1領域から第2領域に移行した場合、制御装置から車両を制御する車両制御部に対して領域の移行を通知する信号が出力される。制御装置は、信号の出力後、電流遮断装置をクローズからオープンに切り換えず、所定時間はクローズに維持する。
 上記構成により、信号出力後の所定時間、車両の電源を維持することが可能となり、車両が走行中の場合、ドライバーは車両を安全な場所に緊急停車するなど、安全措置を講じることが出来る。そのため、車両の安全性を確保することが出来る。車両が非走行の場合も、電流遮断装置をクローズに維持することで、窓の開閉制御やドアの施錠制御などドライバーが車両から離れる際に必要な車両制御を行うための電力を確保することが出来る。
 前記蓄電セルは、前記第1領域と前記第2領域に加えて、前記第2領域よりも電池性能が更に低下する第3領域を有し、制御装置は、前記信号出力後、前記蓄電セルが前記第2領域から前記第3領域に移行した場合、前記電流遮断装置をオープンして電流を遮断してもよい。
 この構成では、信号出力後、蓄電セルが第2領域から第3領域に移行した場合、電流遮断装置をオープンして電流を遮断する。電流の遮断により、蓄電セルの第3領域における使用を防止することが出来る。
 前記第1領域から前記第2領域に移行した段階における前記蓄電セルの電圧、電流、及び温度の、少なくともいずれか1つに基づいて、前記所定時間を変更してもよい。蓄電セルの電池性能の劣化進行や、領域間の移行に要する時間は、電圧、電流、温度に依存する。例えば、電流が小さく領域間の移行に要する時間が長いことが予想される場合、所定時間を長くする。このように、移動時点の蓄電セルの状態に応じた時間設定が可能となる。
 車両停車後又はエンジン停止後における前記蓄電セルの充電を禁止してもよい。車両停車後やエンジン停止後の充電により、蓄電セルが、第3領域に移行することを抑制することが出来る。
 車両停車後における前記蓄電セルの放電を、前記所定時間の経過によらず、許可してもよい。車両停車後の放電が許可されることにより、蓄電セルのSOCは低下する。車両停車後に蓄電セルを交換する時、SOCが下がった状態で車両から取り外すことができるので、作業の安全性を確保することが出来る。車両停車後の放電の許可により、例えば蓄電装セルを電源として非常信号(ハザードランプ点灯のための信号等)を出すことで、車両が緊急停車中であることを、外部に報知することが出来る。
 前記蓄電セルを搭載した車両が走行中である場合、前記蓄電セルが前記第1領域から前記第2領域に移行した以降、少なくとも、前記所定時間は、前記電流遮断装置のクローズを維持し、前記蓄電セルを搭載した車両が非走行である場合、前記蓄電セルが前記第1領域から前記第2領域に移行した段階で、前記電流遮断装置をクローズからオープンに切り換えてもよい。
 この構成では、蓄電セルを搭載した車両が、走行中か非走行かにより、電流遮断装置の接続状態を切り換える。そのため、車両の安全性を確保しつつ、蓄電セルの第2領域における使用を最小限に抑えることが出来る。つまり、車両が走行中である場合、第1領域から第2領域への移行後、所定時間は電流遮断装置をクローズして電源を維持することで車両の安全性を確保する。車両が非走行である場合、第1領域から第2領域への移行後、電流遮断装置をオープンして電流を遮断することで、蓄電セルの第2領域での使用を最小限に抑えることが出来る。
 前記蓄電セルが非車載の状態において前記第1領域から前記第2領域に移行した場合、領域が移行した段階で、前記電流遮断装置をクローズからオープンに切り換えてもよい。蓄電セルが非車載の場合、非走行の場合と同様に、電源を維持する必要性は小さい。電流遮断装置をオープンして電流を遮断することで、非車載の蓄電セルの第2領域での使用を最小限に抑えることが出来る。
 <実施形態1>
1.バッテリ50の説明
 図1に示すように、車両10には、エンジン20と、エンジン20の始動時等に用いられるバッテリ50と、が搭載されている。バッテリ50は「蓄電装置」の一例である。図2に示すように、バッテリ50は、組電池60と、回路基板ユニット65と、収容体71を備える。車両10には、エンジン20(内燃機関)に代えて、車両駆動用の蓄電装置や、燃料電池が搭載されていてもよい。
 収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。
 収容体71は、組電池60と回路基板ユニット65を収容する。回路基板ユニット65は、組電池60の上部に配置されている。
 蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極の外部端子51が固定され、他方の隅部に負極の外部端子52が固定されている。
 図3及び図4に示すように、二次電池セル62は、直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。二次電池セル62は一例としてリチウムイオン二次電池である。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。
 図4に示す電極体83は、詳細は図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。
 電極体83は、巻回タイプのものに代えて、積層タイプのものであってもよい。
 正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。
 蓋85は、圧力開放弁95を有している。圧力開放弁95は、正極端子87と負極端子89の間に位置している。圧力開放弁95は、安全弁である。圧力開放弁95は、ケース82の内圧Pが制限値P3を超えた場合に、開放して、ケース82の内圧Pを下げる。
 図5は、バッテリ50の電気的構成を示すブロック図である。バッテリ50は、組電池60と、電流計測部である電流検出抵抗54と、電流遮断装置53と、電圧検出回路110と、温度センサ58と、管理装置130と、を備える。
 バッテリ50の2つの外部端子51、52は、車両ECU(Electronic Control Unit:電子制御ユニット)140と、エンジン20の動力により発電する発電機であるオルタネータ150と、車載された車両負荷160と、にそれぞれ電気的に接続されている。車両ECU140は、車両10を制御する車両制御部である。車両ECU140は、オルタネータ150や車両負荷160を制御する。エンジン等の駆動系も制御してもよい。車両ECU140は1つに限らず、複数でもよい。
 エンジン20の駆動中において、オルタネータ150の発電量が車両負荷160の電力消費より大きい場合、バッテリ50はオルタネータ150により充電される。オルタネータ150の発電量が車両負荷160の電力消費より小さい場合、バッテリ50は、その不足分を補うため、放電する。
 エンジン20の停止中、オルタネータ150は発電を停止する。バッテリ50は、充電されない状態となり、車両ECU140や車両負荷160に対して放電のみ行う状態となる。
 組電池60は、複数の二次電池セル62から構成されている。二次電池セル62は、12個あり、3並列で4直列に接続されている。図5は、並列に接続された3つの二次電池セル62を1つの電池記号で表している。二次電池セル12は、「蓄電セル」の一例である。バッテリ50は、定格12Vである。
 組電池60、電流遮断装置53及び電流検出抵抗54は、パワーライン55P、パワーライン55Nを介して、直列に接続されている。パワーライン55P、55Nは、銅などの金属材料からなる板状導体であるバスバーBSBを用いることが出来る。パワーライン55P、パワーライン55Nは電流経路の一例である。
 パワーライン55Pは、正極の外部端子51と組電池60の正極とを接続する。パワーライン55Nは、負極の外部端子52と組電池60の負極とを接続する。
 電流遮断装置53は、正極側のパワーライン55Pに設けられている。電流遮断装置53は、FETなどの半導体スイッチでもよいし、機械式の接点を有するリレーでもよい。電流遮断装置53は、ノーマリクローズであり、正常時、クローズに制御される。
 電流検出抵抗54は、負極側のパワーライン55Nに設けられている。電流検出抵抗54の両端電圧Vrに基づいて、組電池60の電流Iを計測することができる。
 電圧検出回路110は、二次電池セル62の電圧Vと、組電池60の総電圧Vabを検出することができる。温度センサ58は、組電池60に取り付けられており、組電池60の温度Tを検出する。
 管理装置130は、回路基板100上に実装されており、CPU131と、メモリ132と、通信部133を備える。管理装置130は、「制御装置」の一例である。
 通信部133は、信号線を介して、車両ECU140に対して接続されており、車両ECU140と通信する。管理装置130は、車両ECU140から、車両10の動作状態(走行中、停車中、駐車中など)に関する信号を通信により受信できる。
 管理装置130は、電圧検出回路110、電流検出抵抗54、温度センサ58の出力に基づいて、バッテリ50の状態を監視する。つまり、組電池60の温度T、電流I、総電圧Vabを監視する。
 管理装置130は、組電池60の電流Iに基づいて、組電池60のSOC[%]を推定する処理を行う。
 SOC(state of charge:充電状態)は、満充電容量に対する残存容量の比率であり、下記の(1)式にて表される。
 SOC=(Cr/Co)×100・・・・・・・・・・(1)
 Coは二次電池の満充電容量、Crは二次電池の残存容量である。
 SOCは、下記の(2)式で示すように、電流Iの時間に対する積分値に基づいて推定することが出来る。電流の符号を、充電時はプラス、放電はマイナスとする。
 SOC=SOCo+100×(∫Idt/Co)・・・(2)
 SOCoは、SOCの初期値、Iは電流である。
 メモリ132には、SOCを推定するプログラムや、図8に示す制御フローの実行プログラムが記憶されている。これらプログラムの実行に必要なデータが記憶されている。プログラムは、CD-ROM等の記録媒体に記憶して、譲渡等することが出来る。プログラムは、電気通信回線を用いて配信することも出来る。
2.二次電池セル62の特性
 図6は、横軸をSOC[%]、縦軸を二次電池セルの内圧P[Pa]とした、二次電池セル62のSOC-P特性を示すグラフである。内圧Pは、二次電池セル62のケース82の内部の圧力である。二次電池セル62は、SOCの変化量に対する内圧Pの変化量、つまりグラフの傾きが、異なる3つの領域A1~A3を有している。
 第1領域A1は、SOCが100[%]以下の領域、第2領域A2は、SOCが100[%]~108[%]の領域、第3領域A3は、SOCが108[%]以上の領域である。
 第1領域A1は、二次電池セル62の正常使用領域であり、内圧Pが使用上限値P1以下の領域である。使用上限値P1は、二次電池セル62を安全に使用できる内圧Pの上限値である。
 第2領域A2は、内圧Pが使用上限値P1よりも大きく、第1領域A1に比べて内圧Pが高い領域である。第2領域A2は、使用により二次電池セル62が不安全事象に至ることはほぼないが、使用を推奨する領域ではない。
 第3領域A3は、第2領域A2に比べて内圧Pが更に高く、二次電池セル62の安全性の確保が困難な不安全領域である。第3領域A3は、使用により二次電池セル62が不安全事象に至る可能性がある。
 圧力開放弁95が動作する制限値P3は、第3領域A3に含まれており、二次電池セル62が第3領域A3に移行した後、内圧Pが制限値P3まで上昇すると、圧力開放弁95が開放して内圧Pを下げる。
 SOCの変化量に対する内圧Pの変化量は、第3領域A3、第2領域A2、第1領域A1の順に大きい。第1領域A1は、内圧Pの変化量が小さく、所定値以下である。
 内圧変化量の大小関係:A3>A2>A1
 内圧変化量が異なる理由は、SOCが高いほど、二次電池セル62の電圧Vが高くなり、セル内部の電解液が分解して、気化し易いことが考えられる。
 二次電池セル62の「内圧P」と「電池性能」は相関性があり、内圧Pが高い程、電池性能が低下する。「電池性能」の指標として、二次電池セル62の内部抵抗[Ω]、容量維持率[%]や電池出力[W]を挙げることが出来る。電池性能は、これらの指標を総合的に判断するものでもよいし、いずれか一つを代表値として、判断するものでもよい。
 同一条件(例えば、同じCレート)で使用した場合、第2領域A2は、第1領域A1に比べて内圧Pが高いことから、電池性能が低下する領域である。第2領域A2は、第1領域A1に比べて内圧Pの変化量が大きいことから、電池性能の低下が加速する領域(SOC変化に対する電池性能の低下量が大きい領域)である。第3領域A3は、第2領域A2に比べて内圧Pが高いことから、電池性能が更に低下する領域である。第3領域A3は、第2領域A2に比べて、内圧Pの変化量が大きいことから、電池性能の低下が更に加速する領域(SOC変化に対する電池性能の低下量が更に大きい領域)である。
 電解液の分解は不可逆であることから、第2領域A2や第3領域A3を一度でも経験すると、その後、第1領域A1に戻っても、内圧Pは元には戻らず、電池性能も回復しない。
2.車両10の安全性確保と不安全事象の抑制
 車両ECU140は、第1領域A1の上限値であるSOC100%を超えないように、オルタネータ150を充電制御する。しかし、オルタネータ150の故障などにより、充電制御が不能になると、SOC100%を超えても、充電が継続し、組電池60が正常使用領域である第1領域A1から、内圧Pが高く電池性能が低下する第2領域A2に移行する場合がある。
 管理装置130は、SOCや電圧を監視し、組電池60が第2領域A2に移行した場合(図7に示す時刻t1)、車両ECU140に対して領域Aの移行を通知する信号を出力する。車両ECU140は信号を受信した場合、警告ランプを点灯するなど、ドライバーに対して車両10の緊急停車を要求する又は促す。
 管理装置130は、車両ECU140に対して信号出力後、電流遮断装置53をクローズからオープンに切り換えず、所定時間Tw(図7に示すt1~t2)は、クローズを維持する。
 信号出力後、所定時間Twはクローズを維持することで、故障したオルタネータ150から車両10への電力供給が停止した場合でも、バッテリ50から車両10への電力供給が可能である。
 そのため、所定時間Twは車両10の電源を維持することが可能となり、走行中の場合、ドライバーは車両10を安全な場所に緊急停車することが出来る。
 管理装置130は、所定時間Twの経過後(図7のt2以降)、電流遮断装置53をクローズからオープンに切り換えて、バッテリ50の再使用を禁止してもよい。再使用を禁止する理由は、信号出力後の所定時間Twは、第2領域A2での使用になることから、二次電池セル62の内圧Pが、組電池60を安全に使用できる使用上限値P1よりも大きいからである。
 第2領域A2に移行した二次電池セル62の内圧Pの変化量は、組電池60の温度Tに依存する。つまり、バッテリ50の温度Tが高いほど、内圧Pの変化が大きい。SOC変化は、総電圧Vabや充電電流Iに依存し、総電圧Vabが高いほど、充電電流Iが大きいほど、第2領域A2から第3領域A3に移行しやすい。総電圧Vabが高い程、領域Aが移行し易い理由は、総電圧が高い程、充電電圧が高くなることから、充電電流Iが大きくなるからである。
 そのため、所定時間Twは、信号出力時点の組電池60の総電圧Vab、充電電流I、温度Tにより、変更してもよい。つまり、信号出力時点のバッテリ50の総電圧Vabが低いほど、所定時間Twを長くしてもよい。充電電流Iが小さいほど、所定時間Twを長くしてもよい。温度Tが低いほど、所定時間Twを長くしてもよい。所定時間Twは、概ね2分~3分程度、確保できるとよい。
 図8は、電流遮断装置53の制御フローである。
 制御フローは、S10~S90の9ステップから構成されており、車両10の走行開始を伝える走行開始信号をバッテリ50が車両ECU140から受信した場合に実行される。
 管理装置130は、走行開始信号を受信すると、電流検出抵抗54の計測値とその極性に基づいて、充電の有無を検出する(S10)。
 充電を検出すると、管理装置130は、SOCの現在値に基づいて、バッテリ50の領域A1~A3を検出する(S20)。通常、SOCは100%以下であることから、バッテリ50は、第1領域A1に含まれている。
 管理装置130は、その後、組電池60が第1領域A1から第2領域A2に移行したか、否か判定する(S30)。移行していなければ、S20に戻る。
 オルタネータの故障等により車両ECU140の充電制御が不能になると、走行中、バッテリ50は充電され続けることがあり、SOCが100%を超える可能性がある。
 管理装置130は、SOCが100%を超え、組電池60が第2領域A2に移行すると、バッテリ50の総電圧Vab、充電電流I、温度Tに基づいて、所定時間Twを算出する(S40、S50)。
 所定時間Twの算出は、例えば、I、Vを2つの変数とした2次元のデータテーブルを用いることが出来る。図9はデータテーブルの一例を示す。
 この実施形態では、図9のデータテーブルを温度Tごとに作成している。管理装置130は、第2領域移行時点の組電池温度に対応するデータテーブルを選択し、第2領域移行時点の組電池60の総電圧Vab、充電電流Iから所定時間Twを決定する。
 管理装置130は、その後、組電池60の領域Aの移行を通知する信号を車両10に送信する。このとき、所定時間Twも併せて通知してもよい。
 管理装置130は信号出力後、電流遮断装置53をクローズに維持する(S60)。そして、信号出力後の経過時間をカウントとし、信号出力から所定時間Twが経過したか、判断する(S70)。
 管理装置130は、信号出力から所定時間Twが経過した場合、電流遮断装置53に指令を与えて、電流遮断装置53をクローズからオープンに切り換える。電流遮断装置53の切り換えにより、組電池60の電流Iを遮断することが出来る。
 管理装置130は、所定時間Twのカウント中、組電池60が第2領域A2から第3領域A3に移行したかどうかを判断する(S90)。
 二次電池セル62が第3領域A3に移行した場合、所定時間Twの経過前であっても、電流遮断装置53をクローズからオープンに切り換える。電流遮断装置53をオープンに切り換えることで、第3領域A3に移行した組電池60が不安全事象に至ることを、抑制することが出来る。圧力開放弁95が開くことを抑制することが出来る。
3.効果説明
 この構成では、組電池60が第1領域A1から第2領域A2に移行した場合、管理装置130は、車両ECU140に対して領域Aの移行を通知する信号を出力する。管理装置130は、信号出力後、電流遮断装置53をクローズからオープンに切り換えず、所定時間Twはクローズに維持する。
 信号出力後の所定時間Twは、車両10の電源を維持することが可能となり、走行中の場合、ドライバーは車両10を安全な場所に緊急停車するなど、安全措置を講じることが出来る。そのため、車両10の安全性を確保することが出来る。
 この構成は、信号出力後、組電池60が第2領域A2から第3領域A3に移行した場合、電流遮断装置53をオープンして電流を遮断する。電流の遮断により、第3領域A3に移行したバッテリ50が不安全事象に至ることを抑制することが出来る。
 この構成では、電源確保により車両10の安全性を維持しつつ、バッテリ50が不安全事象に至ることを抑制することが出来る。
 <実施形態2>
 実施形態2は、緊急停車後における電流遮断装置53の制御を開示する。図10は、緊急停車後における電流遮断装置53の制御フローである。
 図10の制御フローは、第2領域A2への移行に伴って、管理装置130から車両ECU140に領域Aの移行を通知する信号が出力された後、管理装置130が電流遮断装置53をクローズに維持する制御と並行して行われる。
 管理装置130は、領域Aの移行を通知する信号を受けた緊急動作中の車両10が停車したか、否かを検出する(S100)。停車の判断は、組電池60の電流Iを閾値と比べることにより判断してもいいし、車両ECU140との通信により、判断してもよい。つまり、車両ECU140から車両10の動作状態(走行中、停車中、駐車中など)に関する信号の受信できる場合、その信号の受信の有無で判断してもよい。
 管理装置130は、車両10の停車を検出すると、SOCの現在値に基づいて、組電池60が第1領域A1、第2領域A2、第3領域A3のうち、どの領域に有るのか、判断する(S120)。
 管理装置130は、組電池60が第3領域A3に含まれると判定した場合(S120:NO)、電流遮断装置53をクローズからオープンに切り換える(S150)。
 電流遮断装置53をオープンに切り換えて電流Iを遮断することで、第3領域A3に移行した組電池60が不安全事象に至ることを、抑制することが出来る。
 管理装置130は、組電池60が第1領域A1又は第2領域A2に含まれている場合(S120:YES)、組電池60は、充電を除き、一時的な使用が可能であると判断し、電流遮断装置53をクローズに維持する(S130)。
 その後、管理装置130は、電流検出抵抗54の出力を監視し、組電池60が「充電」されているか、「放電」されているか、判定する(S140)。「充電」、「放電」は、電流計測値の極性から判断できる、
 管理装置130は、組電池60が充電中の場合(S140:YES)、電流遮断装置53をオープンに切り換え、電流を遮断することで、充電を禁止する(S150)。充電禁止により、組電池60が、第3領域A3に移行することを防止することが出来る。
 管理装置130は、組電池60が放電中の場合(S140:NO)、電流遮断装置53をクローズに維持し、放電を許容する(S130)。クローズ維持は、信号出力から所定時間Twが経過した以降も、維持される。
 放電の許容により、バッテリ50を電源として、ハザードランプ点灯など非常信号を出すことで、車両10が緊急停車中であることを、外部に報知することが出来る。
 車両10の緊急停車後、組電池60のSOCは、放電により低下する。そのため、第2領域A2に移行したバッテリ50を交換する時に、SOCが下がった状態で車両10から取り外すことができるので、安全性を確保することが出来る。
 <実施形態3>
 実施形態2は、緊急停車後、組電池60が充電された場合、電流遮断装置53をオープンして電流を遮断した(S140:YES、S150)。
 電流の遮断条件は、(B)~(D)でもよい。
(A)緊急停車後の充電
(B)ドライバーの安全が確認できた場合
(C)緊急停車後の再走行での使用
(D)所定値以上の大電流での放電
(E)電池温度が所定値以上での使用
(F)過放電での使用
 (A)~(F)の全てを、「遮断条件」として、(A)~(F)のうち、いずれかの条件が成立した場合に、電流を遮断してもよい。(A)~(F)のうち、一部を遮断条件としてもよい。例えば、(A)と(C)を遮断条件とし、(A)又は(C)が成立した場合、電流を遮断してもよい。(A)と(C)の組み合わせに限らず、他の組み合わせを、遮断条件としてもよい。組み合わせの数は、(A)~(C)など、2以上でもよい。
 (B)を遮断条件に含める理由は、ドライバーの安全が確認できた場合、それ以上、車両10に対して電力供給する必要はないからである。安全確認の有無は、緊急停車後、車両10が駐車に移行したか、否かで判断してもよい。駐車の有無は、車両ECU140との通信で判断してもよい。電流値で判断してもよい、
 (C)を遮断条件に含める理由は、第2領域A2を経験したバッテリ50が、車両10の再走行により、通常と同じ用途(車両負荷への放電やオルタネータによる充電)で使用されることを抑制するためである。再走行の有無は、車両ECU140との通信で判断してもよい。
 (D)、(E)を遮断条件に含める理由は、第2領域A2を経験したバッテリ50が、異常発熱して、不安全事象に至ることを、抑制するためである。
 (F)を遮断条件に含める理由は、過放電になると、それ以上、車両10に対して電力供給することが出来ないためである。
 <実施形態4>
 実施形態1~3では、組電池60が第1領域A1から第2領域A2に移行した場合、緊急停車する車両10の電源を維持するため、所定時間Twは、電流遮断装置53をクローズに維持した。
 組電池60が第1領域A1から第2領域A2に移行する原因として、走行中のオルタネータ150の故障以外に、以下が考えられる。
(a)充電電圧が異なる外部充電器(例えば、24V用充電器)による充電
(b)ジャンプスタートにおけるブースタケーブルの逆接続
(c)バッテリの外部短絡(外部端子51、52間の短絡)
 組電池60が第1領域A1から第2領域A2に移行しても、バッテリ50が非車載の場合や車両10が非走行である場合、電源を維持する必要性は小さい。
 管理装置130は、組電池60が第1領域A1から第2領域A2に移行した場合において、以下の場合、電流遮断装置53をクローズからオープンに切り換える(S350)。
(1)バッテリが非車載の場合(S310:NO)
(2)車両10が非走行である場合(S320:NO)
 (1)、(2)の場合、電流遮断装置53をオープンに切り換えて電流を遮断することで、バッテリ50が第2領域A2で使用されることを防止することが出来る。第2領域A2での使用を防止することで、バッテリ50を再利用することが可能となる。
 図11は、バッテリ50が第2領域A2に移行した以降における、電流遮断装置53の制御フローである。第2領域A2への移行前、電流遮断装置53はクローズである。
 管理装置130は、バッテリ50が第1領域A1から第2領域A2に移行した場合、バッテリ50が「非車載」か否か、判定する(S310)。
 「非車載」の判断は、通信線接続の有無で判断してもいいし、電流値で判断してもよい。つまり、通信線が未接続である場合や、長期間電流値がほぼゼロの場合、バッテリ50は「非車載」と判定することが出来る。
 管理装置130は、バッテリ50は「非車載」と判定した場合(S310:NO)、直ちに、電流遮断装置53をオープンに切り換える(S350)。
 管理装置130は、バッテリ50は「車載」と判定した場合(S310:YES)、車両10が「走行中」か否か、判定する(S320)。
 車両10が走行中か否かは、車両ECU140との通信で判定することが出来る。つまり、車両ECU140との間での通信が頻繁に行われている場合、走行中と判断し、所定期間通信が無い場合、非走行と判断できる。車両ECU140から車両10の動作状態(走行中、停車中、駐車中など)に関する信号の受信できる場合、その信号の受信の有無で判断してもよい。
 管理装置130は、「非走行」と判定した場合(S320:NO)、直ちに、電流遮断装置53をオープンに切り換える(S350)。
 管理装置130は、「走行中」と判定した場合(S320:YES)、車両ECU140に対して、領域Aの移行を通知する信号を出力する。管理装置130は、電流遮断装置53をクローズに維持する(S330)。
 管理装置130は、車両ECU140への信号出力後、経過時間をカウントする。そして、信号出力後、所定時間Twが経過すると、電流遮断装置53をクローズからオープンに切り換える。
 この構成では、組電池60の領域Aが第1領域A1から第2領域A2に移行した場合、バッテリ50を搭載した車両10が、走行中か非走行かにより、電流遮断装置50の接続状態を切り換える。
 そのため、車両の安全性を確保しつつ、内圧が高い第2領域A2において、組電池60が使用されることを最小限に抑えることが出来る。つまり、車両10が走行中である場合、第1領域A1から第2領域A2への移行後、所定時間Twは電流遮断装置53をクローズして電源を維持するため、車両の安全性を確保できる。車両10が非走行である場合、第1領域A1から第2領域A2への移行後、ただちに、電流遮断装置53をオープンして電流を遮断するため、組電池60の第2領域A2における使用を最小限に抑えることが出来る。
 車両10が非走行の場合、組電池60の第2領域A2での使用を防止することで、バッテリ50の低下を抑えることが出来、バッテリ50の再使用が可能となる。バッテリ50が「非車載」の場合も同様である。
 <実施形態5>
 実施形態1では、組電池60のSOCと内圧Pとの関係に基づいて、バッテリ50を3つの領域A1~A3に区分した。実施形態5では、組電池60の温度Tと内圧Pとの関係に基づいて、バッテリ50を3つの領域A1~A3に区分する。
 図12は、横軸を二次電池セル62の温度T、縦軸を二次電池セル62の内圧Pとした、二次電池セル62のT-P特性を示すグラフである。
 二次電池セル62は、温度Tの変化量に対する内圧Pの変化量、つまりグラフの傾きが異なる3つの領域A1~A3を有している。
 第1領域A1は、組電池60の温度TがT1[℃]以下の領域、第2領域A2は、組電池60の温度がT1[℃]~T2[℃]の領域、第3領域A3は、組電池60の温度TがT2[℃]以上の領域である。
 内圧Pの変化量が異なる理由は、温度Tが高いほど、電池内部の化学反応が起き易く、電解液が分解して気化し易いことが考えられる。
 管理装置130は、温度センサ58の出力に基づいて組電池60の温度Tを監視し、度Tが正常使用領域である第1領域A1に含まれている場合、電流遮断装置53をクローズに維持する。
 管理装置130は、組電池60の温度Tが、内圧の高い第2領域A2に移行した場合、車両ECU140に対して領域Aの移行を通知する信号を出力する。管理装置130は、信号出力後、所定時間Twは、電流遮断装置53をクローズに維持する。
 電流遮断装置53のクローズを所定時間Twは維持することにより、車両10が緊急停車するまでの間、電源を維持することが出来る。所定時間Twは、組電池60の温度Tが第1領域A1から第2領域A2に移行した段階(移行した時点)の組電池60の総電圧Vab、電流Iにより変更してもよい。
 管理装置130は、車両10への信号出力後、組電池60の温度Tを監視する。管理装置130は、組電池60の温度Tが、不安全領域である第3領域A3に移行した場合、電流遮断装置53に指令を送り、電流遮断装置53をクローズからオープンに切り換える。
 電流遮断装置53をオープンして電流を遮断することで、第3領域A3に移行したバッテリ50が不安全事象に至ることを抑制できる。
 この構成では、実施形態1~4と同様に、緊急停車時における電源確保により車両10の安全性を維持しつつ、バッテリ50が不安全事象に至ることを抑制することが出来る。
 <実施形態6>
 実施形態5では、組電池60の温度Tと内圧Pとの関係に基づいて、バッテリ50を3つの領域A1~A3に区分した。組電池60の温度Tは、電流Iと相関があり、電流Iが大きいほど、組電池60は温度上昇し易い。
 実施形態6では、組電池60の電流Iと内圧Pとの関係に基づいて、バッテリ50を3つの領域A1~A3に区分する。
 図13は、横軸を二次電池セル62の電流I、縦軸を二次電池セル62の内圧Pとした、二次電池セル62のI-P特性を示すグラフである。電流Iは充電電流でもいいし、放電電流でもよい。
 第1領域A1は、組電池60の電流IがI1[A]以下の領域、第2領域A2は、組電池60の電流がI1[A]~I2[A]の領域、第3領域A3は、組電池60の電流IがI2[A]以上の領域である。
 管理装置130は、電流検出抵抗54の出力に基づいて、組電池60の電流Iを監視する。電流Iが正常使用領域である第1領域A1に含まれている場合、管理装置130は、電流遮断装置53をクローズに維持する。
 管理装置130は、組電池60の電流Iが、内圧の高い第2領域A2に移行した場合、車両ECU140に対して領域Aの移行を通知する信号を出力する。管理装置130は、信号出力後、所定時間Twは、電流遮断装置53をクローズに維持する。
 電流遮断装置53を所定時間Twはクローズに維持することにより、車両10が緊急停車するまでの間、電源を維持することが出来る。所定時間Twは、組電池60の電流Iが第1領域A1から第2領域A2に移行した段階(移行した時点)の組電池60の総電圧Vab、温度Tにより変更してもよい。
 管理装置130は、車両10への信号出力後、組電池60の電流Iを監視する。管理装置130は、組電池60の電流Iが、不安全領域である第3領域A3に移行した場合、電流遮断装置53に指令を送り、電流遮断装置53をクローズからオープンに切り換える。
 電流遮断装置53をオープンして、電流Iを遮断することで、第3領域A3に移行したバッテリ50が不安全事象に至ることを抑制できる。電流遮断は、所定時間Twの経過の有無に関係なく、組電池60が第3領域A3に移行した場合は、直に実行される。
 この構成では、実施形態1~5と同様に、緊急停車時における電源確保により車両10の安全性を維持しつつ、バッテリ50が不安全事象に至ることを抑制することが出来る。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)二次電池セル62は、リチウムイオン二次電池に限らず、他の非水電解質二次電池でもよい。二次電池セル62は、複数を直並列に接続する場合に限らず、直列の接続や、単セルでもよい。二次電池セル62に代えて、キャパシタを用いることも出来る。内圧Pが異なる複数の領域(第1領域及び第1領域よりも内圧の高い第2領域)を有する特性の蓄電セルであれば、種類は問わない。二次電池セル、キャパシタは、蓄電セルの一例である。
 (2)上記実施形態では、第1領域A1から第2領域A2への移行、第2領域A2から第3領域A3への移行を二次電池セル62の「SOC」により判断した。領域の移行は、電池性能の低下と相関性のある物理量であれば、他の物理量に基づいて、判断してもよい。例えば、二次電池セル62の「電圧」により判断してもよい。「電圧」以外に、二次電池セルの「温度」や「電流」により判断してもよい。
 (3)上記実施形態において、二次電池セル62は、電池性能に関し、第1領域A1、第2領域A2、第3領域A3の3つの領域A1~A3を有していた。二次電池セル62は、少なくとも、第1領域A1と、第1領域A1よりも電池性能が低下する第2領域A2を有していればよく、第3領域A3は有ってもよいし、無くてもよい。
 第2領域A2は、第1領域A1よりも電池性能が低下する領域であればよく、電池性能の低下が加速するか否かは、どちらでもよい。つまり、図6に示すSOC-P特性の場合、第2領域A2は、第1領域A1と比較して、内圧Pが高い領域(電池性能が低下する領域)であればよく、グラフの傾きは、変化していてもよいし、変化していなくてもよい。第3領域A3についても、同様である。
 (4)実施形態1では、所定時間Twを、第2領域移行時点の組電池60の総電圧、電流、温度に基づいて変更した。所定時間Twは、固定値でもよい。変更する場合、総電圧、電流、温度のいずれか1つに基づいて、所定時間Twを変更してもよい。或いは、2つに基づいて、所定時間Twを変更してもよい。
 (5)実施形態4では、組電池60の領域Aが第1領域A1から第2領域A2に移行した場合、バッテリ50を搭載した車両10が、走行中か非走行かにより、電流遮断装置50の接続状態を切り換えた。つまり、車両10が走行中である場合、第1領域A1から第2領域A2への移行後、所定時間Twは電流遮断装置53をクローズして電源を維持し、非走行の場合、第1領域A1から第2領域A2への移行後、ただちに、電流遮断装置53をオープンして電流を遮断した。車両が走行中である場合に限らず、非走行(停車中や駐車中など)の場合でも、第1領域A1から第2領域A2への移行後、所定時間Twは電流遮断装置53をクローズして電源を維持してもよい。電源維持により、窓の開閉制御やドアの施錠制御など、ドライバーが車両10から離れる際に必要な車両制御を行うための電力を確保することが出来る。従って、車両の安全性が向上する。
 (6)上記実施形態では、管理装置130を、バッテリ50の内部に設けた。バッテリ50は、電流検出抵抗54や電圧検出回路110などの計器類を少なくとも備えていればよく、管理装置130や電流遮断装置53は、バッテリ50の装置外に有ってもよい。
 (7)上記実施形態では、二次電池セル62の外装体を「直方体形状のケース(金属缶又はプラスチックケース)82」としたが、外装体はラミネートフィルム(パウチセル)でもよい。
 (8)上記実施形態2では、図14Aに示すように、バッテリ50が第1領域A1から第2領域A2に移行した場合、バッテリ50から車両ECU140に対して領域Aの移行を通知する信号を出力した。そして、車両10が緊急するまでの間、電流遮断装置53をクローズに維持して電源を維持し、車両10が緊急停車した以降は、バッテリ50の充電を禁止することにより、バッテリ50が領域A2から領域A3に移行することを防止した。図14Bに示すように、エンジン停止するまで間、電流遮断装置53をクローズに維持して電源を維持し、エンジン停止した以降、充電を禁止することにより、バッテリ50が領域A2から領域A3に移行することを防止してもよい。
 10 車両10
 50 バッテリ(蓄電装置)
 53 電流遮断装置
 54 電流検出抵抗
 58 温度センサ
 60 組電池
 130 管理装置(制御装置)
 140 車両ECU(車両制御部)
 150 オルタネータ

Claims (9)

  1.  車載用の蓄電セルの制御装置であって、
     前記蓄電セルは、電池性能に関し、第1領域と前記第1領域よりも電池性能が低下する第2領域とを有し、
     前記蓄電セルが前記第1領域から前記第2領域に移行した場合、車両を制御する車両制御部に対して領域の移行を通知する信号を出力し、
     信号出力後、少なくとも所定時間は、前記蓄電セルの電流を遮断する電流遮断装置をクローズに維持して、車両への電力供給を可能にする、制御装置。
  2.  請求項1に記載の制御装置であって、
     前記蓄電セルは、前記第1領域と前記第2領域に加えて、前記第2領域よりも電池性能が更に低下する第3領域を有し、
     前記信号出力後、前記蓄電セルが前記第2領域から前記第3領域に移行した場合、前記電流遮断装置をオープンして電流を遮断する、制御装置。
  3.  請求項1又は請求項2に記載の制御装置であって、
     前記第1領域から前記第2領域に移行した段階における前記蓄電セルの電圧、電流、及び温度の少なくともいずれか1つに基づいて、前記所定時間を変更する、制御装置。
  4.  請求項1~請求項3のいずれか一項に記載の制御装置であって、
     車両停車後又はエンジン停止後における前記蓄電セルの充電は禁止する、制御装置。
  5.  請求項1~請求項4のいずれか一項に記載の制御装置であって、
     車両停車後における前記蓄電セルの放電は、前記所定時間の経過によらず許可する、制御装置。
  6.  請求項1~請求項5のいずれか一項に記載の制御装置であって、
     前記蓄電セルを搭載した車両が走行中である場合、前記蓄電セルが前記第1領域から前記第2領域に移行した以降、少なくとも、前記所定時間は、前記電流遮断装置のクローズを維持し、
     前記蓄電セルを搭載した車両が非走行である場合、前記蓄電セルが前記第1領域から前記第2領域に移行した段階で、前記電流遮断装置をクローズからオープンに切り換える、制御装置。
  7.  請求項1~請求項6のいずれか一項に記載の制御装置であって、
     前記蓄電セルが非車載の状態において前記第1領域から前記第2領域に移行した場合、領域が移行した段階で、前記電流遮断装置をクローズからオープンに切り換える、制御装置。
  8.  車両用の蓄電装置であって、
     蓄電セルと、
     前記蓄電セルの電流を遮断する電流遮断装置と、
     請求項1~請求項7のいずれか一項に記載の制御装置と、を含む、蓄電装置。
  9.  車載用の蓄電セルの制御方法であって、
     前記蓄電セルは、第1領域と、前記第1領域より前記蓄電セルの内圧が高い第2領域とを含み、
     前記蓄電セルが前記第1領域から前記第2領域に移行した場合、車両を制御する車両制御部に対して領域の移行を通知する信号を出力し、
     信号出力後、少なくとも所定時間は、前記蓄電セルの電流を遮断する電流遮断装置をクローズに維持して、車両への電力供給を可能にする、制御方法。
PCT/JP2022/017669 2021-05-17 2022-04-13 蓄電セルの制御装置、蓄電装置、制御方法 WO2022244560A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280045814.XA CN117581443A (zh) 2021-05-17 2022-04-13 蓄电单元的控制装置、蓄电装置、控制方法
DE112022002621.9T DE112022002621T5 (de) 2021-05-17 2022-04-13 Steuervorrichtung für Energiespeicherzelle, Energiespeichergerät und Verfahren zur Steuerung eines Energiespeichergeräts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-083126 2021-05-17
JP2021083126A JP2022176612A (ja) 2021-05-17 2021-05-17 蓄電セルの制御装置、蓄電装置、制御方法

Publications (1)

Publication Number Publication Date
WO2022244560A1 true WO2022244560A1 (ja) 2022-11-24

Family

ID=84141349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017669 WO2022244560A1 (ja) 2021-05-17 2022-04-13 蓄電セルの制御装置、蓄電装置、制御方法

Country Status (4)

Country Link
JP (1) JP2022176612A (ja)
CN (1) CN117581443A (ja)
DE (1) DE112022002621T5 (ja)
WO (1) WO2022244560A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059732A1 (ja) * 2018-09-18 2020-03-26 株式会社Gsユアサ 移動体の電源システムの制御方法、移動体の電源システム
JP2020167767A (ja) * 2019-03-28 2020-10-08 株式会社Gsユアサ 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790474B2 (ja) 2015-06-15 2020-11-25 株式会社Gsユアサ 二次電池の監視装置、電池システム、二次電池の保護システム、車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059732A1 (ja) * 2018-09-18 2020-03-26 株式会社Gsユアサ 移動体の電源システムの制御方法、移動体の電源システム
JP2020167767A (ja) * 2019-03-28 2020-10-08 株式会社Gsユアサ 蓄電素子の管理装置、蓄電装置、及び、蓄電素子の管理方法

Also Published As

Publication number Publication date
DE112022002621T5 (de) 2024-03-14
JP2022176612A (ja) 2022-11-30
CN117581443A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
US10305299B2 (en) Battery apparatus, vehicle, battery management program, and management method of battery apparatus
JP7259745B2 (ja) 蓄電装置、車両、自動二輪車
JP2008234903A (ja) 電池及び電池システム
JP2020048396A (ja) 車両の電源システムの制御方法、車両の電源システム
WO2022244560A1 (ja) 蓄電セルの制御装置、蓄電装置、制御方法
US20220048391A1 (en) Control method for mobile power supply system, and power supply system for moving body
JP2005322471A (ja) 電池安全弁の状態を検知する検知装置、その検知装置を有する電池および集合電池
WO2022249783A1 (ja) 蓄電装置、接続状態の判定方法
WO2022224649A1 (ja) 蓄電装置、電流遮断装置の制御方法
JP7174333B2 (ja) 蓄電装置、蓄電素子の容量推定方法
WO2021039482A1 (ja) 保護装置、蓄電装置及びリレーの接点抵抗の低減方法
WO2022239476A1 (ja) 蓄電装置、電流遮断装置の制御方法
JP7359154B2 (ja) 検出装置、検出認識方法及び蓄電装置
WO2022196398A1 (ja) 蓄電装置、通電部品の温度管理方法
WO2024058066A1 (ja) 蓄電装置、電流遮断装置の制御方法
JP5758222B2 (ja) 蓄電体の過放電警報回路
WO2024009839A1 (ja) 蓄電装置
WO2023238697A1 (ja) 管理装置、蓄電装置及び電圧シミュレーション方法
JP7360599B2 (ja) 移動体の電源システムの制御方法、移動体の電源システム
WO2021205871A1 (ja) 電流遮断装置の故障診断方法、及び、蓄電装置
WO2022254978A1 (ja) 蓄電装置、故障診断方法
JP5678879B2 (ja) 蓄電システムおよび異常判定方法
WO2021205872A1 (ja) 移動体の電源システムの制御方法、移動体の電源システム、及び、蓄電装置
JP2023008149A (ja) 蓄電装置、組電池の異常検出方法
JP2023115679A (ja) 車両用の電源システム及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18561650

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002621

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280045814.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22804474

Country of ref document: EP

Kind code of ref document: A1