WO2022244440A1 - Optical module and optical module system - Google Patents

Optical module and optical module system Download PDF

Info

Publication number
WO2022244440A1
WO2022244440A1 PCT/JP2022/012493 JP2022012493W WO2022244440A1 WO 2022244440 A1 WO2022244440 A1 WO 2022244440A1 JP 2022012493 W JP2022012493 W JP 2022012493W WO 2022244440 A1 WO2022244440 A1 WO 2022244440A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
optical module
thermistor
temperature
plate
Prior art date
Application number
PCT/JP2022/012493
Other languages
French (fr)
Japanese (ja)
Inventor
勇貴 中村
将人 古川
麻子 山田
孝史 京野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023522275A priority Critical patent/JPWO2022244440A1/ja
Publication of WO2022244440A1 publication Critical patent/WO2022244440A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the present disclosure relates to optical modules and optical module systems.
  • This application claims priority based on Japanese application No. 2021-083621 filed on May 18, 2021, and incorporates all the descriptions described in the Japanese application.
  • Optical modules are sometimes used in environments with a wide temperature range from low to high.
  • An electronic cooling module is sometimes used to adjust the temperature of the members that constitute the optical module (see, for example, Patent Document 1).
  • the optical module of the present disclosure includes a support plate and an electronic cooling module.
  • the electronic cooling module has a heat sink disposed on the first main surface of the support plate, a heat absorbing plate, and a plurality of semiconductor columns connecting the heat sink and the heat absorbing plate.
  • the optical module includes at least one laser diode attached to the heat absorbing plate, a first thermistor detecting the temperature of the heat absorbing plate, and a second thermistor detecting the temperature of the heat absorbing plate.
  • FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1.
  • FIG. FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed.
  • 3 is a schematic plan view of the optical module shown in FIG. 2.
  • FIG. FIG. 4 is a schematic perspective view of an optical module system according to Embodiment 2.
  • FIG. 5 is a block diagram schematically showing the system configuration of the optical module system according to the second embodiment.
  • FIG. 6 is an external perspective view showing the structure of an optical module according to Embodiment 3.
  • FIG. 7 is an external perspective view showing a state in which the cap of the optical module shown in FIG. 6 is removed.
  • FIG. 8 is a schematic plan view of the optical module shown in FIG. 7.
  • FIG. 9 is a schematic plan view of an optical module according to Embodiment 4.
  • FIG. 10 is a schematic perspective view of an optical module system according to Embodiment 5.
  • FIG. 11 is a block diagram schematically showing the system configuration of the optical module system according to the fifth embodiment.
  • An optical module is required to stabilize the output of light emitted from a laser diode. Accordingly, one object of the present disclosure is to provide an optical module capable of stabilizing the output of emitted light.
  • An optical module includes a support plate and an electronic cooling module.
  • the electronic cooling module has a heat sink disposed on the first main surface of the support plate, a heat absorbing plate, and a plurality of semiconductor columns connecting the heat sink and the heat absorbing plate.
  • the optical module includes at least one laser diode attached to the heat absorbing plate, a first thermistor detecting the temperature of the heat absorbing plate, and a second thermistor detecting the temperature of the heat absorbing plate.
  • the stability of the output of light emitted from laser diodes is required.
  • the output of emitted light changes with changes in temperature.
  • the laser diode itself generates heat by emitting light. Therefore, in order to stabilize the output of emitted light, it is preferable to keep the temperature constant in the laser diode. It is conceivable to keep the temperature of the laser diode constant by placing the laser diode on an electronic cooling module whose temperature can be adjusted by controlling the current based on the sensed temperature of the laser diode.
  • an image may be drawn by projecting an image with light emitted from a laser diode.
  • an electronic cooling module that detects the temperature of the laser diode and adjusts the temperature of the laser diode based on the detected temperature of the laser diode strictly adjusts the temperature of the laser diode.
  • the temperature change of the thermistor arranged near the laser diode is read by the change in electrical resistance. Then, this temperature change is fed back, and the amount of current supplied to the electronic cooling module is adjusted so that the laser diode reaches the target temperature, heat is absorbed, and the temperature is adjusted.
  • the thermal resistance between the laser diode and the thermistor will delay the reading of the temperature change.
  • the thermal resistance between the laser diode and the electronic cooling module it is difficult to strictly adjust the temperature in accordance with temperature changes.
  • the current supplied to the laser diode is switched on and off in a short period of time.
  • the amount of heat generated by the laser diode changes rapidly in a short period of time.
  • the amount of current supplied to the thermoelectric cooling module is adjusted so that the laser diode reaches the target temperature, the amount of current directly depends on the temperature read, so overshoot and ringing will occur in the laser diode temperature. more likely to occur.
  • the present inventors have focused on the fact that it is difficult to adjust the temperature of the laser diode by the electronic cooling module, and that appropriate drawing is difficult.
  • the present inventors have made intensive studies and have come up with the idea of adjusting the temperature of the laser diode by appropriately following the temperature change of the laser diode. Then, if the exact temperature of the heat absorbing plate and the heat sink in the electronic cooling module can be grasped, the current supplied to the electronic cooling module can be appropriately adjusted, and the temperature of the laser diode can be kept constant. has come to constitute
  • the optical module includes the first thermistor that detects the temperature of the heat sink and the second thermistor that detects the temperature of the heat sink. Then, in the electronic cooling module, the temperature of the radiator plate and the temperature of the heat absorbing plate can be accurately grasped.
  • information on the timing and amount of light emitted from the laser diode (information on light emission from the laser diode) is obtained in advance, so the amount of heat generated by the laser diode is calculated. Then, based on the calculated amount of heat generated, the temperature of the radiator plate, and the temperature of the heat absorption plate, the current supply to the electronic cooling module is controlled. Then, it becomes easy to keep the temperature of the laser diode constant by suppressing overshoot and ringing, and the output of emitted light can be stabilized.
  • the first thermistor may be arranged on the first main surface of the support plate. Since the heat sink is bonded to the support plate, the temperature of the heat sink can be detected more accurately by the first thermistor. Therefore, the output of emitted light can be stabilized.
  • the above optical module may further include a base plate, and the laser diode and the second thermistor may be attached to the heat absorbing plate via the base plate. By doing so, the temperature of the laser diode and the temperature of the radiator plate can be simultaneously detected, and the number of thermistors to be installed can be reduced.
  • the optical module may further include a third thermistor that detects the temperature of the laser diode.
  • the functions can be divided into the second thermistor for detecting the temperature of the heat sink, and the temperature of the heat absorbing plate 32 can be detected more accurately, and furthermore the temperature of the laser diode can be detected and its stability can be improved. can be evaluated. Therefore, it is possible to further stabilize the output of emitted light.
  • the above optical module may further include a filter that reflects at least part of the light emitted from the laser diode, and the laser diode and the second thermistor may be arranged with the filter interposed therebetween.
  • the second thermistor can more accurately detect the temperature of the heat absorbing plate 32 without being affected by the laser diode that is the heat source. Therefore, it is possible to further stabilize the output of emitted light.
  • the electronic cooling module may control the supply of current so as to depend on the amount of heat generated by the laser diode calculated from the information for causing the laser diode to emit light. As will be shown later, information on the amount of heat generated can be used to predict the amount of heat absorbed necessary to adjust the laser diode to a constant temperature. Therefore, the electronic cooling module can appropriately adjust the current and stabilize the output of emitted light.
  • a plurality of laser diodes may be provided. By doing so, the output of each light emitted from the plurality of laser diodes can be stabilized. In addition, when light emitted from a plurality of laser diodes is combined to emit light of a desired color, since the output of each light is stabilized, color shift can be suppressed.
  • the above optical module may further include a mirror driving mechanism arranged on the electronic cooling module for scanning the light emitted from the laser diode.
  • the mirror driving mechanism scans the light emitted from the laser diode by periodically swinging a mirror that reflects the light emitted from the laser diode.
  • the mirror driving mechanism By including the mirror driving mechanism in the optical module, the light emitted from the laser diode can be scanned and emitted out of the optical module. Then, the optical module can draw using the light emitted from the laser diode.
  • the oscillating motion of the mirror is dependent on temperature, and if the temperature of the mirror drive mechanism is not constant, the swing angle of the mirror will change greatly. Then, the light emitted from the laser diode cannot be properly scanned.
  • the mirror driving mechanism is arranged on the electronic cooling module, it becomes easy to keep the temperature of the mirror driving mechanism constant. By doing so, it is possible to suppress the change in the deflection angle of the mirror depending on the temperature. Therefore, it is possible to emit light that has been scanned with higher accuracy. As a result, drawing by the optical module can be performed appropriately.
  • the optical module system of the present disclosure includes the optical module described above and a control unit that calculates the amount of heat generated by the laser diode based on information for causing the laser diode to emit light. By doing so, the amount of heat generated by the laser diode, the timing of heat generation, etc. can be grasped in advance, and the amount of heat absorbed corresponding to the amount of heat generated by the laser diode can be predicted to adjust the current supply. be able to. Therefore, it is possible to further stabilize the light output.
  • the control unit controls current supplied to the electronic cooling module based on the calculated amount of heat generated, the temperature detected by the first thermistor, and the temperature detected by the second thermistor. may By doing so, it is possible to use control by the control unit to supply current to the electronic cooling module at appropriate timing and keep the temperature of the laser diode on the electronic cooling module constant. Therefore, it is possible to further stabilize the output of emitted light.
  • FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1.
  • FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed.
  • 3 is a schematic plan view of the optical module shown in FIG. 2.
  • an optical module 10a includes a light forming portion 11 that forms light, and a protective member 12 that surrounds the light forming portion 11 and seals the light forming portion 11.
  • the protective member 12 includes a flat support plate 13 as a base body and a cap 14 as a lid welded to the support plate 13 .
  • the support plate 13 has a rectangular shape when viewed in the thickness direction, and has rounded corners. Specifically, the support plate 13 is configured such that the length in the X-axis direction is longer than the length in the Y-axis direction.
  • the thickness direction of the support plate 13 and the base plate 20, which will be described later, is the direction indicated by the arrow Z. As shown in FIG.
  • the support plate 13 includes a first main surface 13a perpendicular to the Z-axis direction and a second main surface 13b facing the first main surface 13a.
  • the light forming portion 11 is arranged on the first main surface 13a.
  • the cap 14 is arranged in contact with the first main surface 13 a so as to cover the light forming portion 11 .
  • the cap 14 is provided with an emission window 15 made of glass through which the light formed by the light forming section 11 is transmitted.
  • the light forming portion 11 is hermetically sealed with a protective member 12 .
  • a plurality of lead pins 16 penetrate through the support plate 13 from the second main surface 13b side to the first main surface 13a side and protrude to both the first main surface 13a side and the second main surface 13b side. are installed on the support plate 13 .
  • the light forming portion 11 includes a base plate 20 having a flat plate shape as a base portion, a first laser diode 41 (red laser diode) emitting red light in the direction indicated by the arrow L1, and an arrow L2.
  • a second laser diode green laser diode
  • a third laser diode blue laser diode
  • It includes a second lens 52 , a third lens 53 , a first filter 61 , a second filter 62 and a third filter 63 .
  • the optical module 10a includes a plurality of laser diodes. Specifically, the optical module 10a includes three laser diodes.
  • the base plate 20 includes a first principal surface 20a perpendicular to the Z-axis direction and a second principal surface 20b facing the first principal surface 20a.
  • a thick portion 24 on which the first laser diode 41, the second laser diode 42 and the third laser diode 43 are mounted is formed at the end portion of the base plate 20 in the Y-axis direction.
  • a first flat plate submount 26, a second flat plate submount 27, and a third flat plate submount 28 are arranged on the thick portion 24 at intervals in the X direction. .
  • a first laser diode 41 is arranged on the first submount 26 . Thus, the first laser diode 41 is attached to the heat absorbing plate 32 with the base plate 20 and the first submount 26 interposed therebetween.
  • a second laser diode 42 is arranged on the second submount 27 .
  • the second laser diode 42 is attached to the heat absorbing plate 32 with the base plate 20 and the second submount 27 interposed therebetween.
  • a third laser diode 43 is arranged on the third submount 28 .
  • the third laser diode 43 is attached to the heat absorbing plate 32 with the base plate 20 and the third submount 28 interposed therebetween.
  • the first laser diode 41, the second laser diode 42, and the third laser diode 43 are arranged to emit light in the Y-axis direction.
  • a first lens 51, a second lens 52 and a third lens 53 for converting the spot size of light are arranged side by side in the X direction on the first main surface 20a of the base plate 20, respectively.
  • the first lens 51, the second lens 52 and the third lens 53 convert the spot size of the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 respectively.
  • the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 are converted into collimated light by the first lens 51, the second lens 52 and the third lens 53, respectively.
  • a first filter 61, a second filter 62, and a third filter 63 are arranged side by side on the first main surface 20a of the base plate 20 with a gap therebetween in the X direction.
  • the first filter 61, the second filter 62, and the third filter 63 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X direction and the Y direction when viewed in the thickness direction of the support plate 13. .
  • the first filter 61 reflects red light emitted from the first laser diode 41 .
  • the second filter 62 transmits the red light reflected by the first filter 61 and reflects the green light emitted from the second laser diode 42 .
  • the third filter 63 transmits red light reflected by the first filter 61 and transmitted through the second filter 62 , transmits green light reflected by the second filter 62 , and is emitted from the third laser diode 43 . reflect blue light.
  • the first filter 61, the second filter 62 and the third filter 63 selectively transmit and reflect light of specific wavelengths.
  • the first filter 61 , the second filter 62 and the third filter 63 combine the lights emitted from the first laser diode 41 , the second laser diode 42 and the third laser diode 43 .
  • the multiplexed light travels along the direction indicated by arrow L4 and is emitted from the exit window 15 to the outside of the optical module 10a.
  • the optical module 10 a includes an electronic cooling module 30 .
  • the electronic cooling module 30 adjusts the temperatures of the first laser diode 41 , the second laser diode 42 and the third laser diode 43 .
  • the electronic cooling module 30 is also called a TEC (Thermo-Electric Cooler) and includes a radiator plate 31 , a heat absorption plate 32 and a plurality of semiconductor columns 33 .
  • the electronic cooling module 30 is arranged between the support plate 13 and the base plate 20 .
  • the heat sink 31 is arranged on the first main surface 13 a of the support plate 13 .
  • the heat absorbing plate 32 is arranged on the second main surface 20 b of the base plate 20 . That is, the base plate 20 is arranged on the heat absorbing plate 32 .
  • the support plate 13 and the heat radiation plate 31, and the base plate 20 and the heat absorption plate 32 are respectively bonded with a bonding material (not shown).
  • the plurality of semiconductor pillars 33 are composed of Peltier elements, and are arranged side by side at intervals in the X direction and the Y direction, respectively, between the radiator plate 31 and the heat absorption plate 32 .
  • a plurality of semiconductor columns 33 are connected to the radiator plate 31 and the heat absorbing plate 32 .
  • the optical module 10 a includes a first thermistor 34 that detects the temperature of the radiator plate 31 .
  • the first thermistor 34 is arranged on the first main surface 13 a of the support plate 13 .
  • the first thermistor 34 may have a pedestal 25 between it and the support plate 13 .
  • the pedestal 25 is preferably made of a material having a high thermal conductivity, such as aluminum nitride (AlN).
  • AlN aluminum nitride
  • the first thermistor 34 is arranged adjacent to the radiator plate 31 within a distance of 3 mm when viewed in the Z-axis direction. By arranging in this way, the first thermistor 34 can detect substantially the same temperature as the temperature of the radiator plate 31 . Note that the first thermistor 34 may be arranged on the heat sink 31 .
  • the optical module 10 a also includes a second thermistor 35 that detects the temperature of the heat absorbing plate 32 .
  • the second thermistor 35 is attached to the heat absorbing plate 32 with the base plate 20 interposed therebetween.
  • the base plate 20 is preferably made of a material with high thermal conductivity, such as aluminum nitride (AlN).
  • AlN aluminum nitride
  • the second thermistor 35 is arranged on the thick portion 24 . By arranging in this way, the second thermistor 35 can detect substantially the same temperature as the temperature of the heat absorbing plate 32 .
  • the first thermistor 34 for detecting the temperature of the heat sink 31 and the second thermistor 35 for detecting the temperature of the heat absorbing plate 32 are provided. Then, in the electronic cooling module 30, the temperatures of the radiator plate 31 and the heat absorbing plate 32 can be accurately grasped.
  • information on the timing and amount of light emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43 (information on which the laser diodes emit light) is obtained in advance. Therefore, the heat quantity Qh generated by the first laser diode 41, the second laser diode 42 and the third laser diode 43 is calculated. From information on the calculated amount of heat generated Qh, it is possible to predict the amount of heat absorbed Qc required to adjust the temperatures of the first laser diode 41, the second laser diode 42 and the third laser diode 43 to a constant temperature.
  • the heat absorption amount Qc absorbed by the electronic cooling module 30 is calculated from the current value of the electronic cooling module 30, the temperature of the radiator plate 31, and the temperature of the heat absorption plate 32.
  • Qc is the amount of heat absorbed
  • is the Seebeck coefficient
  • Tc is the temperature of the heat absorbing plate 32
  • I is the current
  • R is the internal electrical resistance of the semiconductor pillar 33
  • Kpp is the thermal conductance inside the semiconductor pillar 33
  • Th is the heat dissipation. is the temperature of the plate 31;
  • the current value can be obtained by taking the value obtained by adding the inflow heat quantity Qair from the outside to the heat quantity Qh calculated above as the heat absorption quantity Qc.
  • the inflow heat amount Qair is the amount of heat that flows into the heat absorbing plate 32 from the atmosphere in the protective member 12 based on the temperature difference between the heat absorbing plates 32, and is obtained from the temperature Th of the heat absorbing plate 32 and the ambient temperature Ta. If the inflow heat amount Qair is sufficiently smaller than the heat generation amount Qh (for example, 1/10 or less), it may be ignored in the calculation of the current value. As described above, the electronic cooling module 30 controls the current supply so as to depend on the amount of heat generated by the laser diode Qh calculated from the information for causing the laser diode to emit light.
  • the current supplied to the electronic cooling module 30 can be adjusted based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 , and the temperature of the heat absorption plate 32 .
  • This adjustment facilitates keeping the temperatures of the first laser diode 41, the second laser diode 42, and the third laser diode 43 constant, and stabilizes the output of emitted light.
  • the amount of current may be adjusted in consideration of the heat transfer time lag (greater than 0 ms and within 100 ms) obtained based on transient thermal analysis performed in advance and actual measurement results of heat conduction.
  • the optical module 10a includes a first laser diode 41 that emits red light, a second laser diode 42 that emits green light, and a third laser diode 43 that emits blue light. Also, the positions of the laser diodes of each color can be exchanged with each other. That is, the optical module 10a includes multiple laser diodes. Therefore, the output of each light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 can be stabilized. In addition, when light emitted from a plurality of laser diodes is combined to emit light of a desired color, since the output of each light is stabilized, color shift can be suppressed.
  • the first thermistor 34 is arranged on the first principal surface 13a of the support plate 13 . Since the heat sink 31 is joined to the support plate 13 , the temperature of the heat sink 31 can be detected more accurately by the first thermistor 34 . Therefore, the output of emitted light can be stabilized.
  • FIG. 4 is a schematic perspective view of an optical module system 10b according to Embodiment 2.
  • FIG. 5 is a block diagram schematically showing the system configuration of the optical module system 10b according to the second embodiment. The arrows shown in FIG. 5 indicate the flow of control signals, control and data.
  • Embodiment 2 is an optical module system 10b including the optical module 10a of Embodiment 1 and a controller 17.
  • FIG. 5 is an optical module system 10b including the optical module 10a of Embodiment 1 and a controller 17.
  • an optical module system 10b includes an optical module 10a and a controller 17.
  • the controller 17 is electrically connected to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 , the first thermistor 34 and the second thermistor 35 .
  • the control unit 17 controls currents supplied to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 and the electronic cooling module 30 .
  • control unit 17 controls the amount of current supplied to the first laser diode 41, the second laser diode 42, the third laser diode 43, and the electronic cooling module 30, the timing of supplying the current, and the like.
  • the control unit 17 is also configured to be able to communicate with external electronic devices and the like via the network 29 .
  • the control unit 17 calculates the amount of heat generation Qh generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43 from the information on the timing of light emission and the light emission amount (information on the light emission of the laser diode), Predict the required endothermic quantity Qc. Further, the control unit 17 controls the electronic cooling module 30 based on the predicted heat absorption amount Qc, the temperature of the heat sink 31 detected by the first thermistor 34, and the temperature of the heat sink 32 detected by the second thermistor 35. Find the current value to be supplied to The heat absorption amount Qc and the method for calculating the current value are as described in the first embodiment.
  • control unit 17 controls the current supplied to the electronic cooling module 30 based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 and the temperature of the heat absorbing plate 32 . Further, the control unit 17 controls the current supplied to the first laser diode 41, the second laser diode 42 and the third laser diode 43 based on the information for causing the laser diodes to emit light.
  • control by the control unit 17 is used to supply the electric current to the electronic cooling module 30 at appropriate timing, and the first laser diode 41, the second laser diode 42 and the third laser diode 42 attached to the heat absorption plate 32
  • the temperature of the laser diode 43 can be kept constant. Therefore, it is possible to further stabilize the output of emitted light.
  • control unit 17 controls the current to be supplied to the electronic cooling module 30 based on the information input to the first laser diode 41, the second laser diode 42, and the third laser diode 43 obtained from the outside. Control. Then, it is possible to grasp in advance the amount of heat generated by the first laser diode 41, the second laser diode 42 and the third laser diode 43, the heat generation timing, and the like, so that the first laser diode 41, the second laser diode 42 and the Current supply can be adjusted by predicting the amount of heat absorbed corresponding to the amount of heat generated by the third laser diode 43 . Therefore, it is possible to further stabilize the light output.
  • FIG. 6 is an external perspective view showing the structure of the optical module 10c according to the third embodiment.
  • FIG. 7 is an external perspective view showing a state in which the cap 14 of the optical module 10c shown in FIG. 6 is removed.
  • FIG. 8 is a schematic plan view of the optical module 10c shown in FIG.
  • the optical module 10c of the third embodiment differs from that of the first embodiment in that a mirror driving mechanism 70 is further provided.
  • an optical module 10c of Embodiment 3 includes a first block portion 21, a second block portion 22 and a third block portion 23 each having a rectangular parallelepiped shape.
  • the base plate 20 has a flat plate shape, and a first block portion 21, a second block portion 22, and a third block portion 23 are arranged on a first main surface 20a of the base plate 20 at intervals in the X direction. arranged side by side.
  • a flat first submount 26 is arranged on the first block portion 21 .
  • a planar second submount 27 is arranged on the second block portion 22 .
  • a flat third submount 28 is arranged on the third block portion 23 .
  • the second thermistor 35 is attached to the heat absorbing plate 32 with the base plate 20 and the first block portion 21 interposed therebetween.
  • the first laser diode 41 is attached to the heat absorbing plate 32 with the base plate 20, the first block portion 21 and the first submount 26 interposed therebetween.
  • the second laser diode 42 is attached to the heat absorbing plate 32 with the base plate 20, the second block portion 22 and the second submount 27 interposed therebetween.
  • the third laser diode 43 is attached to the heat absorbing plate 32 with the base plate 20, the third block portion 23 and the third submount 28 interposed therebetween.
  • the optical module 10 c also includes a mirror driving mechanism 70 that scans the light emitted from the first laser diode 41 , the second laser diode 42 and the third laser diode 43 .
  • the mirror driving mechanism 70 is configured by MEMS (Micro Electro Mechanical System) and includes a mirror 72 capable of rocking motion.
  • the mirror driving mechanism 70 is supported by the electronic cooling module 30 , more specifically, by a triangular prism-shaped stage 71 arranged on the heat absorbing plate 32 .
  • the mirror driving mechanism 70 oscillates the mirror 72 periodically at high speed to reflect the light emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43 and combined.
  • the beams emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 and combined are scanned.
  • the exit window 18 is provided above the cap 14 , that is, at a position facing the first main surface 13 a when the cap 14 is attached to the support plate 13 .
  • the mirror driving mechanism 70 periodically oscillates a mirror 72 that reflects the combined light beams emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43, so that the first laser diode 41, the The combined light emitted from the second laser diode 42 and the third laser diode 43 is scanned. Since the optical module 10c includes the mirror driving mechanism 70, the combined light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 can be scanned and emitted to the outside of the optical module 10c. can.
  • drawing can be performed using the combined light beams emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43.
  • the oscillating motion of the mirror 72 is dependent on temperature, and if the temperature of the mirror drive mechanism 70 is not constant, the deflection angle of the mirror 72 will change greatly. Then, the combined light beams emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 cannot be scanned appropriately.
  • the optical module 10c since the mirror driving mechanism 70 is attached to the heat absorbing plate 32, it becomes easy to keep the temperature of the mirror driving mechanism 70 constant. By doing so, it is possible to suppress the change in the deflection angle of the mirror 72 depending on the temperature. Therefore, it is possible to emit light that has been scanned with higher accuracy. As a result, drawing by the optical module 10c can be performed appropriately.
  • FIG. 9 is a schematic plan view of an optical module 10d according to the fourth embodiment.
  • the optical module 10d of the fourth embodiment further includes a third thermistor 37 that detects the temperature of the laser diode, and differs from the third embodiment in that the second thermistor 35 is arranged on the heat absorbing plate 32. .
  • an optical module 10d includes a third thermistor 37 that detects temperatures of a first laser diode 41, a second laser diode 42 and a third laser diode 43.
  • FIG. The third thermistor 37 is arranged on the first block portion 21 .
  • a second thermistor 35 for detecting the temperature of the heat absorbing plate 32 is arranged on the heat absorbing plate 32 .
  • the second thermistor 35 may have a pedestal 36 between itself and the heat absorbing plate 32 .
  • the pedestal 36 is preferably made of a material with high thermal conductivity, such as aluminum nitride (AlN).
  • the second thermistor 35 is arranged at a corner of the base plate 20 near the first filter 61 when viewed in the Z-axis direction. That is, the second thermistor 35 is arranged far from each of the first laser diode 41 , the second laser diode 42 and the third laser diode 43 . Specifically, the second thermistor 35 and the first laser diode 41 are arranged with the first lens 51 and the first filter 61 interposed therebetween. By arranging the second thermistor 35 in this way, it becomes less susceptible to the heat generated by the laser, and the temperature of the heat absorbing plate can be read more accurately.
  • the third thermistor 37 may be arranged on the second block portion 22 or the third block portion 23 .
  • the temperature of the heat absorbing plate can be read more accurately. That is, the electric current supplied to the electronic cooling module 30 is adjusted based on the predicted amount of heat absorbed, the temperature of the heat sink 31 detected by the first thermistor 34, and the temperature of the heat sink 32 detected by the second thermistor 35. can do. Therefore, it is possible to further stabilize the output of emitted light.
  • a third thermistor 37 is used for monitoring the temperature of the laser diode. It can also be used to adjust the color tone of the laser diode according to temperature changes, making it possible to draw an image with a more adjusted color balance.
  • FIG. 10 is a schematic perspective view of an optical module system 10e according to Embodiment 5.
  • FIG. FIG. 11 is a block diagram schematically showing the system configuration of the optical module system 10e according to the fifth embodiment. The arrows shown in FIG. 11 indicate the flow of control signals, control and data.
  • the fifth embodiment is an optical module system 10e including the optical module 10c of the third embodiment and a controller 19.
  • FIG. 10 is a schematic perspective view of an optical module system 10e according to Embodiment 5.
  • FIG. 11 is a block diagram schematically showing the system configuration of the optical module system 10e according to the fifth embodiment. The arrows shown in FIG. 11 indicate the flow of control signals, control and data.
  • the fifth embodiment is an optical module system 10e including the optical module 10c of the third embodiment and a controller 19.
  • an optical module system 10e includes a controller 19.
  • FIG. 10 the controller 19 is schematically illustrated by a dashed line.
  • the controller 19 is electrically connected to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 , the first thermistor 34 , the second thermistor 35 and the mirror drive mechanism 70 .
  • the control unit 19 controls currents supplied to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 and the mirror driving mechanism 70 .
  • the control unit 19 controls the amount of current supplied to the first laser diode 41, the second laser diode 42, the third laser diode 43, the electronic cooling module 30, and the mirror driving mechanism 70, the timing of supplying the current, and the like.
  • the control unit 19 is configured to be able to communicate with external electronic devices and the like via the network 29 .
  • the control unit 19 calculates the amount of heat generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43 from the information on the timing of light emission and the amount of light emission (information on the light emission of the laser diodes).
  • the current supplied to the cooling module 30 is adjusted. Specifically, the amount of heat generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43, the heat generation timing, and the like can be grasped in advance from the information for causing the laser diodes to emit light.
  • Current supply can be adjusted by predicting the amount of heat absorbed corresponding to the amount of heat generated by the laser diode 41, the second laser diode 42, and the third laser diode 43.
  • control unit 19 controls the electric current supplied to the electronic cooling module 30 based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 and the temperature of the heat absorbing plate 32 .
  • the control unit 19 also controls the current supplied to the first laser diode 41, the second laser diode 42, and the third laser diode 43 and the current supplied to the mirror driving mechanism 70 based on the information for causing the laser diodes to emit light.
  • the mirror driving mechanism 70 is arranged on the electronic cooling module 30, drawing by the optical module system 10e can be performed appropriately.
  • the laser diodes include one red laser diode, one green laser diode and one blue laser diode, but are not limited to this.
  • the laser diodes may include one or more laser diodes of only one color.
  • the laser diodes may include laser diodes of any two colors, or multiple laser diodes of those colors.
  • the laser diode includes at least one of a red laser diode, a green laser diode, and a blue laser diode, and may include a plurality of laser diodes of these colors.
  • the heat absorption plate side releases heat and the heat dissipation plate side absorbs heat.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This optical module comprises a support plate and an electron cooling module. The electron cooling module has a heat dissipation plate placed on a first main surface of the support plate, a heat absorption plate, and a plurality of semiconductor pillars connecting the heat dissipation plate and the heat absorption plate. The optical module comprises at least one laser diode attached to the heat absorption plate, a first thermistor that detects the temperature of the heat dissipation plate, and a second thermistor that detects the temperature of the heat absorption plate.

Description

光モジュールおよび光モジュールシステムOptical modules and optical module systems
 本開示は、光モジュールおよび光モジュールシステムに関するものである。本出願は、2021年5月18日出願の日本出願第2021-083621号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to optical modules and optical module systems. This application claims priority based on Japanese application No. 2021-083621 filed on May 18, 2021, and incorporates all the descriptions described in the Japanese application.
 光モジュールについては、低温から高温といった広い温度範囲の環境下で用いられる場合がある。光モジュールを構成する部材の温度を調節するために、電子冷却モジュールが用いられる場合がある(例えば、特許文献1参照)。  Optical modules are sometimes used in environments with a wide temperature range from low to high. An electronic cooling module is sometimes used to adjust the temperature of the members that constitute the optical module (see, for example, Patent Document 1).
特開2016-134416号公報JP 2016-134416 A
 本開示の光モジュールは、支持板と、電子冷却モジュールと、を備える。電子冷却モジュールは、支持板の第1の主面に配置される放熱板と、吸熱板と、放熱板および吸熱板を接続する複数の半導体柱と、を有する。光モジュールは、吸熱板に取り付けられる少なくとも1つのレーザダイオードと、放熱板の温度を検出する第1サーミスタと、吸熱板の温度を検出する第2サーミスタと、を備える。 The optical module of the present disclosure includes a support plate and an electronic cooling module. The electronic cooling module has a heat sink disposed on the first main surface of the support plate, a heat absorbing plate, and a plurality of semiconductor columns connecting the heat sink and the heat absorbing plate. The optical module includes at least one laser diode attached to the heat absorbing plate, a first thermistor detecting the temperature of the heat absorbing plate, and a second thermistor detecting the temperature of the heat absorbing plate.
図1は、実施の形態1に係る光モジュールの構造を示す外観斜視図である。FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1. FIG. 図2は、図1に示す光モジュールの後述するキャップを取り外した状態を示す外観斜視図である。FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed. 図3は、図2に示す光モジュールの概略平面図である。3 is a schematic plan view of the optical module shown in FIG. 2. FIG. 図4は、実施の形態2に係る光モジュールシステムの概略斜視図である。FIG. 4 is a schematic perspective view of an optical module system according to Embodiment 2. FIG. 図5は、実施の形態2に係る光モジュールシステムにおけるシステム構成を概略的に示すブロック図である。FIG. 5 is a block diagram schematically showing the system configuration of the optical module system according to the second embodiment. 図6は、実施の形態3に係る光モジュールの構造を示す外観斜視図である。FIG. 6 is an external perspective view showing the structure of an optical module according to Embodiment 3. FIG. 図7は、図6に示す光モジュールのキャップを取り外した状態を示す外観斜視図である。7 is an external perspective view showing a state in which the cap of the optical module shown in FIG. 6 is removed. FIG. 図8は、図7に示す光モジュールの概略平面図である。8 is a schematic plan view of the optical module shown in FIG. 7. FIG. 図9は、実施の形態4に係る光モジュールの概略平面図である。FIG. 9 is a schematic plan view of an optical module according to Embodiment 4. FIG. 図10は、実施の形態5に係る光モジュールシステムの概略斜視図である。FIG. 10 is a schematic perspective view of an optical module system according to Embodiment 5. FIG. 図11は、実施の形態5に係る光モジュールシステムにおけるシステム構成を概略的に示すブロック図である。FIG. 11 is a block diagram schematically showing the system configuration of the optical module system according to the fifth embodiment.
  [本開示が解決しようとする課題]
 光モジュールにおいては、レーザダイオードから出射する光の出力の安定が求められる。
そこで、出射する光の出力の安定を図ることができる光モジュールを提供することを本開示の目的の1つとする。
[Problems to be Solved by the Present Disclosure]
An optical module is required to stabilize the output of light emitted from a laser diode.
Accordingly, one object of the present disclosure is to provide an optical module capable of stabilizing the output of emitted light.
  [本開示の効果]
 上記光モジュールによれば、出射する光の出力の安定を図ることができる。
[Effect of the present disclosure]
According to the above optical module, it is possible to stabilize the output of emitted light.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示に係る光モジュールは、支持板と、電子冷却モジュールと、を備える。電子冷却モジュールは、支持板の第1の主面に配置される放熱板と、吸熱板と、放熱板および吸熱板を接続する複数の半導体柱と、を有する。光モジュールは、吸熱板に取り付けられる少なくとも1つのレーザダイオードと、放熱板の温度を検出する第1サーミスタと、吸熱板の温度を検出する第2サーミスタと、を備える。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described. An optical module according to the present disclosure includes a support plate and an electronic cooling module. The electronic cooling module has a heat sink disposed on the first main surface of the support plate, a heat absorbing plate, and a plurality of semiconductor columns connecting the heat sink and the heat absorbing plate. The optical module includes at least one laser diode attached to the heat absorbing plate, a first thermistor detecting the temperature of the heat absorbing plate, and a second thermistor detecting the temperature of the heat absorbing plate.
 光モジュールにおいては、レーザダイオードから出射される光の出力の安定が求められる。レーザダイオードにおいては、温度変化により出射する光の出力が変化する。また、レーザダイオードは、発光により自ら発熱する。よって、出射する光の出力の安定を図るために、レーザダイオードにおいて温度を一定に保つことが好ましい。検出されたレーザダイオードの温度に基づいた電流の制御により温度の調節が可能な電子冷却モジュール上にレーザダイオードを配置して、レーザダイオードの温度を一定に保つことが考えられる。 In optical modules, the stability of the output of light emitted from laser diodes is required. In laser diodes, the output of emitted light changes with changes in temperature. Also, the laser diode itself generates heat by emitting light. Therefore, in order to stabilize the output of emitted light, it is preferable to keep the temperature constant in the laser diode. It is conceivable to keep the temperature of the laser diode constant by placing the laser diode on an electronic cooling module whose temperature can be adjusted by controlling the current based on the sensed temperature of the laser diode.
 ここで、レーザダイオードから出射される光により画像を投影して映像を描画する場合がある。本発明者らは、このような場合において、レーザダイオードの温度を検出し、検出したレーザダイオードの温度に基づいて、レーザダイオードの温度を調節する電子冷却モジュールでは、厳密にレーザダイオードの温度を調節することは困難であることに着目した。電子冷却モジュールによる温度の調節においては、レーザダイオードの近傍に配置されたサーミスタの温度変化を電気抵抗の変化で読み取る。そして、この温度変化をフィードバックして、レーザダイオードが狙いの温度となるよう電子冷却モジュールに供給する電流量を調整して吸熱を行い、温度を調節している。しかし、このような構成では、レーザダイオードとサーミスタとの間の熱抵抗により、温度変化の読み取りが遅れることになる。また、レーザダイオードと電子冷却モジュールとの間の熱抵抗も相まって、温度変化に追随した温度の調節を厳密に行うことは困難となる。特に、画像を投影して映像を描画する場合、レーザダイオードに供給される電流のオンとオフとが短時間で切り替えられる。そうすると、レーザダイオードの発熱量が短時間で急激に変化することとなる。ここで、レーザダイオードが狙いの温度となるよう電子冷却モジュールに供給する電流量を調整すると、電流量は読み取られた温度に直接的に依存することから、レーザダイオードの温度にオーバーシュートやリンギングが発生しやくなる。このように、電子冷却モジュールによるレーザダイオードの温度の調節が困難で、適切な描画が困難であることに、本発明者らは着目した。 Here, an image may be drawn by projecting an image with light emitted from a laser diode. In such a case, the inventors have found that an electronic cooling module that detects the temperature of the laser diode and adjusts the temperature of the laser diode based on the detected temperature of the laser diode strictly adjusts the temperature of the laser diode. We focused on the fact that it is difficult to In adjusting the temperature by the electronic cooling module, the temperature change of the thermistor arranged near the laser diode is read by the change in electrical resistance. Then, this temperature change is fed back, and the amount of current supplied to the electronic cooling module is adjusted so that the laser diode reaches the target temperature, heat is absorbed, and the temperature is adjusted. However, in such a configuration, the thermal resistance between the laser diode and the thermistor will delay the reading of the temperature change. In addition, due to the thermal resistance between the laser diode and the electronic cooling module, it is difficult to strictly adjust the temperature in accordance with temperature changes. In particular, when an image is projected to draw an image, the current supplied to the laser diode is switched on and off in a short period of time. As a result, the amount of heat generated by the laser diode changes rapidly in a short period of time. Here, if the amount of current supplied to the thermoelectric cooling module is adjusted so that the laser diode reaches the target temperature, the amount of current directly depends on the temperature read, so overshoot and ringing will occur in the laser diode temperature. more likely to occur. The present inventors have focused on the fact that it is difficult to adjust the temperature of the laser diode by the electronic cooling module, and that appropriate drawing is difficult.
 そこで、本発明者らは鋭意検討し、レーザダイオードの温度変化に適切に追随して、レーザダイオードの温度を調節することを考えた。そして、電子冷却モジュールにおける吸熱板と放熱板との厳密な温度を把握できれば、電子冷却モジュールに供給する電流を適切に調整して、レーザダイオードの温度を一定に保つことができると考え、本発明を構成するに至った。 Therefore, the present inventors have made intensive studies and have come up with the idea of adjusting the temperature of the laser diode by appropriately following the temperature change of the laser diode. Then, if the exact temperature of the heat absorbing plate and the heat sink in the electronic cooling module can be grasped, the current supplied to the electronic cooling module can be appropriately adjusted, and the temperature of the laser diode can be kept constant. has come to constitute
 本開示に係る光モジュールによると、放熱板の温度を検出する第1サーミスタと、吸熱板の温度を検出する第2サーミスタと、を備える。そうすると、電子冷却モジュールにおいて、放熱板の温度と吸熱板の温度とを正確に把握することができる。光モジュールにおける光による描画の際には、予めレーザダイオードを発光させるタイミングや発光量の情報(レーザダイオードを発光させる情報)が入手されるため、レーザダイオードにより発生する発熱量が算出される。そして、算出された発熱量と、放熱板の温度と、吸熱板の温度に基づき、電子冷却モジュールへの電流の供給の制御を行う。そうすると、レーザダイオードの温度を、オーバーシュートやリンギングを抑えて一定に保つことが容易となり、出射する光の出力の安定を図ることができる。 The optical module according to the present disclosure includes the first thermistor that detects the temperature of the heat sink and the second thermistor that detects the temperature of the heat sink. Then, in the electronic cooling module, the temperature of the radiator plate and the temperature of the heat absorbing plate can be accurately grasped. When drawing with light in the optical module, information on the timing and amount of light emitted from the laser diode (information on light emission from the laser diode) is obtained in advance, so the amount of heat generated by the laser diode is calculated. Then, based on the calculated amount of heat generated, the temperature of the radiator plate, and the temperature of the heat absorption plate, the current supply to the electronic cooling module is controlled. Then, it becomes easy to keep the temperature of the laser diode constant by suppressing overshoot and ringing, and the output of emitted light can be stabilized.
 上記光モジュールにおいて、第1サーミスタは、支持板の第1の主面に配置されてもよい。放熱板は、支持板に接合されているため、このようにすることにより、第1サーミスタによって、放熱板の温度をより正確に検出することができる。したがって、より出射する光の出力の安定を図ることができる。 In the above optical module, the first thermistor may be arranged on the first main surface of the support plate. Since the heat sink is bonded to the support plate, the temperature of the heat sink can be detected more accurately by the first thermistor. Therefore, the output of emitted light can be stabilized.
 上記光モジュールにおいて、ベース板をさらに備え、レーザダイオードと第2サーミスタは、ベース板を介して吸熱板に取り付けられてもよい。このようにすることにより、レーザダイオードの温度と放熱板の温度の検出を兼ねることができ、サーミスタの設置数を少なくすることができる。 The above optical module may further include a base plate, and the laser diode and the second thermistor may be attached to the heat absorbing plate via the base plate. By doing so, the temperature of the laser diode and the temperature of the radiator plate can be simultaneously detected, and the number of thermistors to be installed can be reduced.
 上記光モジュールにおいて、レーザダイオードの温度を検出する第3サーミスタをさらに備えてもよい。このようにすることにより、放熱板の温度を検出する第2サーミスタとで機能を分けることができ、より正確に、吸熱板32の温度を検知し、さらにレーザダイオードの温度を検知しその安定性を評価できる。したがって、さらに出射する光の出力の安定を図ることができる。 The optical module may further include a third thermistor that detects the temperature of the laser diode. By doing so, the functions can be divided into the second thermistor for detecting the temperature of the heat sink, and the temperature of the heat absorbing plate 32 can be detected more accurately, and furthermore the temperature of the laser diode can be detected and its stability can be improved. can be evaluated. Therefore, it is possible to further stabilize the output of emitted light.
 上記光モジュールにおいて、レーザダイオードから出射される光の少なくとも一部を反射フィルタをさらに備え、レーザダイオードと第2サーミスタは、フィルタを間に挟んで配置されてもよい。このようにすることにより、第2サーミスタは熱源であるレーザダイオードの影響を受けずに、より正確に、吸熱板32の温度を検知できる。したがって、さらに出射する光の出力の安定を図ることができる。 The above optical module may further include a filter that reflects at least part of the light emitted from the laser diode, and the laser diode and the second thermistor may be arranged with the filter interposed therebetween. By doing so, the second thermistor can more accurately detect the temperature of the heat absorbing plate 32 without being affected by the laser diode that is the heat source. Therefore, it is possible to further stabilize the output of emitted light.
 上記光モジュールにおいて、電子冷却モジュールは、レーザダイオードを発光させる情報により算出されるレーザダイオードの発熱量に依存するように、電流の供給が制御されてもよい。後で示す通り、算出された発熱量の情報から、レーザダイオードを一定の温度に調節するために必要な吸熱量を予測することができる。したがって、電子冷却モジュールは適切に電流が調整され、出射する光の出力の安定を図ることができる。 In the above optical module, the electronic cooling module may control the supply of current so as to depend on the amount of heat generated by the laser diode calculated from the information for causing the laser diode to emit light. As will be shown later, information on the amount of heat generated can be used to predict the amount of heat absorbed necessary to adjust the laser diode to a constant temperature. Therefore, the electronic cooling module can appropriately adjust the current and stabilize the output of emitted light.
 上記光モジュールにおいて、レーザダイオードは、複数備えられていてもよい。このようにすることにより、複数のレーザダイオードから出射されるそれぞれの光の出力を安定させることができる。また、複数のレーザダイオードから出射される光を合波して所望の色の光を出射する場合に、それぞれの光の出力を安定させているため、色ずれの抑制を図ることができる。 In the above optical module, a plurality of laser diodes may be provided. By doing so, the output of each light emitted from the plurality of laser diodes can be stabilized. In addition, when light emitted from a plurality of laser diodes is combined to emit light of a desired color, since the output of each light is stabilized, color shift can be suppressed.
 上記光モジュールにおいて、電子冷却モジュール上に配置され、レーザダイオードから出射された光を走査するミラー駆動機構をさらに備えてもよい。ミラー駆動機構は、レーザダイオードから出射された光を反射するミラーを周期的に揺動させることにより、レーザダイオードから出射された光を走査する。光モジュールがミラー駆動機構を含むことにより、レーザダイオードから出射された光を走査して、光モジュール外へ出射することができる。そうすると、光モジュールにより、レーザダイオードから出射された光を用いて描画することができる。ここで、ミラーの揺動運動については、温度依存性が有り、ミラー駆動機構の温度が一定でなければ、ミラーの振れ角が大きく変化してしまう。そうすると、レーザダイオードから出射された光を適切に走査することができない。上記光モジュールによると、電子冷却モジュール上にミラー駆動機構が配置されているため、ミラー駆動機構の温度を一定に保つことが容易となる。そうすると、温度に依存してミラーの振れ角が変化することを抑制することができる。したがって、より精度よく走査された光を出射することができる。その結果、光モジュールによる描画を適切に行うことができる。 The above optical module may further include a mirror driving mechanism arranged on the electronic cooling module for scanning the light emitted from the laser diode. The mirror driving mechanism scans the light emitted from the laser diode by periodically swinging a mirror that reflects the light emitted from the laser diode. By including the mirror driving mechanism in the optical module, the light emitted from the laser diode can be scanned and emitted out of the optical module. Then, the optical module can draw using the light emitted from the laser diode. Here, the oscillating motion of the mirror is dependent on temperature, and if the temperature of the mirror drive mechanism is not constant, the swing angle of the mirror will change greatly. Then, the light emitted from the laser diode cannot be properly scanned. According to the above optical module, since the mirror driving mechanism is arranged on the electronic cooling module, it becomes easy to keep the temperature of the mirror driving mechanism constant. By doing so, it is possible to suppress the change in the deflection angle of the mirror depending on the temperature. Therefore, it is possible to emit light that has been scanned with higher accuracy. As a result, drawing by the optical module can be performed appropriately.
 本開示の光モジュールシステムは、上記光モジュールと、レーザダイオードを発光させる情報に基づいて、レーザダイオードの発熱量を算出する制御部と、を備える。このようにすることにより、予めレーザダイオードが発熱する発熱量や発熱するタイミング等を把握することができ、レーザダイオードによる発生する発熱量に対応する吸熱量を予測して電流の供給の調整を行うことができる。したがって、より光の出力の安定を図ることができる。 The optical module system of the present disclosure includes the optical module described above and a control unit that calculates the amount of heat generated by the laser diode based on information for causing the laser diode to emit light. By doing so, the amount of heat generated by the laser diode, the timing of heat generation, etc. can be grasped in advance, and the amount of heat absorbed corresponding to the amount of heat generated by the laser diode can be predicted to adjust the current supply. be able to. Therefore, it is possible to further stabilize the light output.
 上記光モジュールシステムにおいて、制御部は、算出された発熱量と、第1サーミスタにより検出された温度と、第2サーミスタにより検出された温度に基づいて、前記電子冷却モジュールに供給する電流を制御してもよい。このようにすることにより、制御部による制御を利用し、適切なタイミングで電子冷却モジュールに電流を供給し、電子冷却モジュール上のレーザダイオードの温度を一定に保つことができる。したがって、出射される光の出力の安定をより図ることができる。 In the above optical module system, the control unit controls current supplied to the electronic cooling module based on the calculated amount of heat generated, the temperature detected by the first thermistor, and the temperature detected by the second thermistor. may By doing so, it is possible to use control by the control unit to supply current to the electronic cooling module at appropriate timing and keep the temperature of the laser diode on the electronic cooling module constant. Therefore, it is possible to further stabilize the output of emitted light.
 [本開示の実施形態の詳細]
 次に、本開示の光モジュールの一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of the embodiment of the present disclosure]
Next, one embodiment of the optical module of the present disclosure will be described with reference to the drawings. In the following drawings, the same reference numerals are given to the same or corresponding parts, and the description thereof will not be repeated.
 (実施の形態1)
 本開示の実施の形態1に係る光モジュールについて説明する。図1は、実施の形態1に係る光モジュールの構造を示す外観斜視図である。図2は、図1に示す光モジュールの後述するキャップを取り外した状態を示す外観斜視図である。図3は、図2に示す光モジュールの概略平面図である。
(Embodiment 1)
An optical module according to Embodiment 1 of the present disclosure will be described. FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1. FIG. FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed. 3 is a schematic plan view of the optical module shown in FIG. 2. FIG.
 図1、図2および図3を参照して、光モジュール10aは、光を形成する光形成部11と、光形成部11を取り囲み、光形成部11を封止する保護部材12と、を備える。保護部材12は、ベース体としての平板状の支持板13と、支持板13に対して溶接された蓋部であるキャップ14と、を含む。支持板13は、厚さ方向に見て矩形状であり、四隅が丸められた形状である。具体的には、支持板13は、X軸方向の長さの方がY軸方向の長さよりも長く構成されている。支持板13および後述するベース板20の厚さ方向は、矢印Zで示す方向である。支持板13は、Z軸方向に垂直な第1の主面13aと、第1の主面13aに対向する第2の主面13bと、を含む。光形成部11は、第1の主面13aに配置される。キャップ14は、光形成部11を覆うように第1の主面13aに接触して配置される。キャップ14には、光形成部11により形成された光を透過するガラス製の出射窓15が設けられている。光形成部11は、保護部材12により、ハーメチックシールされている。支持板13の第2の主面13b側から第1の主面13a側まで貫通し、第1の主面13a側および第2の主面13b側の両側に突出するように、複数のリードピン16が支持板13に設置されている。 1, 2 and 3, an optical module 10a includes a light forming portion 11 that forms light, and a protective member 12 that surrounds the light forming portion 11 and seals the light forming portion 11. . The protective member 12 includes a flat support plate 13 as a base body and a cap 14 as a lid welded to the support plate 13 . The support plate 13 has a rectangular shape when viewed in the thickness direction, and has rounded corners. Specifically, the support plate 13 is configured such that the length in the X-axis direction is longer than the length in the Y-axis direction. The thickness direction of the support plate 13 and the base plate 20, which will be described later, is the direction indicated by the arrow Z. As shown in FIG. The support plate 13 includes a first main surface 13a perpendicular to the Z-axis direction and a second main surface 13b facing the first main surface 13a. The light forming portion 11 is arranged on the first main surface 13a. The cap 14 is arranged in contact with the first main surface 13 a so as to cover the light forming portion 11 . The cap 14 is provided with an emission window 15 made of glass through which the light formed by the light forming section 11 is transmitted. The light forming portion 11 is hermetically sealed with a protective member 12 . A plurality of lead pins 16 penetrate through the support plate 13 from the second main surface 13b side to the first main surface 13a side and protrude to both the first main surface 13a side and the second main surface 13b side. are installed on the support plate 13 .
 光形成部11は、ベース部として平板状の形状を有するベース板20と、矢印Lで示す方向に赤色の光を出射する第1レーザダイオード41(赤色レーザダイオード)と、矢印Lで示す方向に緑色の光を出射する第2レーザダイオード(緑色レーザダイオード)と、矢印Lで示す方向に青色の光を出射する第3レーザダイオード(青色レーザダイオード)と、第1レンズ51と、第2レンズ52と、第3レンズ53と、第1フィルタ61と、第2フィルタ62と、第3フィルタ63と、を含む。すなわち、本実施形態においては、光モジュール10aは、複数のレーザダイオードを含む。具体的には、光モジュール10aは、3つのレーザダイオードを含む。 The light forming portion 11 includes a base plate 20 having a flat plate shape as a base portion, a first laser diode 41 (red laser diode) emitting red light in the direction indicated by the arrow L1, and an arrow L2. a second laser diode (green laser diode) that emits green light in the direction indicated by arrow L3; a third laser diode (blue laser diode) that emits blue light in the direction indicated by arrow L3; It includes a second lens 52 , a third lens 53 , a first filter 61 , a second filter 62 and a third filter 63 . That is, in this embodiment, the optical module 10a includes a plurality of laser diodes. Specifically, the optical module 10a includes three laser diodes.
 ベース板20は、Z軸方向に垂直な第1の主面20aと、第1の主面20aに対向する第2の主面20bと、を含む。ベース板20のY軸方向の端部には、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43を搭載する厚肉部24が形成されている。厚肉部24の上には、平板状の第1サブマウント26、平板状の第2サブマウント27および平板状の第3サブマウント28が、それぞれX方向に間隔をあけて並べて配置されている。第1サブマウント26の上には、第1レーザダイオード41が配置されている。このように、第1レーザダイオード41は、間にベース板20と第1サブマウント26とを挟んで吸熱板32に取り付けられている。第2サブマウント27の上には、第2レーザダイオード42が配置されている。このように、第2レーザダイオード42は、間にベース板20と第2サブマウント27とを挟んで吸熱板32に取り付けられている。第3サブマウント28の上には、第3レーザダイオード43が配置されている。このように、第3レーザダイオード43は、間にベース板20と第3サブマウント28とを挟んで吸熱板32に取り付けられている。第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43は、それぞれY軸方向に光を出射するように配置されている。 The base plate 20 includes a first principal surface 20a perpendicular to the Z-axis direction and a second principal surface 20b facing the first principal surface 20a. A thick portion 24 on which the first laser diode 41, the second laser diode 42 and the third laser diode 43 are mounted is formed at the end portion of the base plate 20 in the Y-axis direction. A first flat plate submount 26, a second flat plate submount 27, and a third flat plate submount 28 are arranged on the thick portion 24 at intervals in the X direction. . A first laser diode 41 is arranged on the first submount 26 . Thus, the first laser diode 41 is attached to the heat absorbing plate 32 with the base plate 20 and the first submount 26 interposed therebetween. A second laser diode 42 is arranged on the second submount 27 . Thus, the second laser diode 42 is attached to the heat absorbing plate 32 with the base plate 20 and the second submount 27 interposed therebetween. A third laser diode 43 is arranged on the third submount 28 . Thus, the third laser diode 43 is attached to the heat absorbing plate 32 with the base plate 20 and the third submount 28 interposed therebetween. The first laser diode 41, the second laser diode 42, and the third laser diode 43 are arranged to emit light in the Y-axis direction.
 ベース板20の第1の主面20aには、光のスポットサイズを変換する第1レンズ51、第2レンズ52および第3レンズ53が、それぞれX方向に間隔をあけて並べて配置されている。第1レンズ51、第2レンズ52および第3レンズ53は、それぞれ第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射される光のスポットサイズを変換する。第1レンズ51、第2レンズ52および第3レンズ53により、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射される光がコリメート光に変換される。 A first lens 51, a second lens 52 and a third lens 53 for converting the spot size of light are arranged side by side in the X direction on the first main surface 20a of the base plate 20, respectively. The first lens 51, the second lens 52 and the third lens 53 convert the spot size of the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 respectively. The light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 are converted into collimated light by the first lens 51, the second lens 52 and the third lens 53, respectively.
 ベース板20の第1の主面20aには、第1フィルタ61、第2フィルタ62および第3フィルタ63が、それぞれX方向に間隔をあけて並べて配置される。第1フィルタ61、第2フィルタ62および第3フィルタ63については、支持板13の厚さ方向に見て、それぞれの反射面がX方向およびY方向に対して45度傾斜するよう配置されている。
第1フィルタ61は、第1レーザダイオード41から出射される赤色の光を反射する。第2フィルタ62は、第1フィルタ61によって反射された赤色の光を透過し、第2レーザダイオード42から出射された緑色の光を反射する。第3フィルタ63は、第1フィルタ61によって反射され第2フィルタ62を透過した赤色の光を透過し、第2フィルタ62によって反射された緑色の光を透過し、第3レーザダイオード43から出射された青色の光を反射する。このように、第1フィルタ61、第2フィルタ62および第3フィルタ63は、特定の波長の光を選択的に透過および反射する。その結果、第1フィルタ61、第2フィルタ62および第3フィルタ63は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された光を合波する。合波された光は、矢印Lで示す方向に沿って進行し、出射窓15から光モジュール10aの外部へ出射される。
A first filter 61, a second filter 62, and a third filter 63 are arranged side by side on the first main surface 20a of the base plate 20 with a gap therebetween in the X direction. The first filter 61, the second filter 62, and the third filter 63 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X direction and the Y direction when viewed in the thickness direction of the support plate 13. .
The first filter 61 reflects red light emitted from the first laser diode 41 . The second filter 62 transmits the red light reflected by the first filter 61 and reflects the green light emitted from the second laser diode 42 . The third filter 63 transmits red light reflected by the first filter 61 and transmitted through the second filter 62 , transmits green light reflected by the second filter 62 , and is emitted from the third laser diode 43 . reflect blue light. Thus, the first filter 61, the second filter 62 and the third filter 63 selectively transmit and reflect light of specific wavelengths. As a result, the first filter 61 , the second filter 62 and the third filter 63 combine the lights emitted from the first laser diode 41 , the second laser diode 42 and the third laser diode 43 . The multiplexed light travels along the direction indicated by arrow L4 and is emitted from the exit window 15 to the outside of the optical module 10a.
 光モジュール10aは、電子冷却モジュール30を含む。電子冷却モジュール30は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を調節する。電子冷却モジュール30は、TEC(Thermo-Electric Cooler)とも呼ばれ、放熱板31と、吸熱板32と、複数の半導体柱33と、を含む。電子冷却モジュール30は、支持板13と、ベース板20との間に配置される。放熱板31は、支持板13の第1の主面13aに配置される。吸熱板32は、ベース板20の第2の主面20bに配置される。すなわち、ベース板20は、吸熱板32の上に配置される。支持板13と放熱板31、ベース板20と吸熱板32はそれぞれ、図示しない接合材で接合されている。複数の半導体柱33は、ペルチェ素子から構成されており、放熱板31と吸熱板32との間において、それぞれX方向およびY方向に間隔をあけて並べて配置される。複数の半導体柱33は、放熱板31および吸熱板32に接続されている。電子冷却モジュール30に通電することにより、電子冷却モジュール30の吸熱板32に取り付けられる部材、本実施形態においては、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を調節することができる。電子冷却モジュール30に供給する電流を調整することにより、吸熱板32に取り付けられる部材の温度を長期的に一定、具体的には、例えば35℃に保つことが容易となる。 The optical module 10 a includes an electronic cooling module 30 . The electronic cooling module 30 adjusts the temperatures of the first laser diode 41 , the second laser diode 42 and the third laser diode 43 . The electronic cooling module 30 is also called a TEC (Thermo-Electric Cooler) and includes a radiator plate 31 , a heat absorption plate 32 and a plurality of semiconductor columns 33 . The electronic cooling module 30 is arranged between the support plate 13 and the base plate 20 . The heat sink 31 is arranged on the first main surface 13 a of the support plate 13 . The heat absorbing plate 32 is arranged on the second main surface 20 b of the base plate 20 . That is, the base plate 20 is arranged on the heat absorbing plate 32 . The support plate 13 and the heat radiation plate 31, and the base plate 20 and the heat absorption plate 32 are respectively bonded with a bonding material (not shown). The plurality of semiconductor pillars 33 are composed of Peltier elements, and are arranged side by side at intervals in the X direction and the Y direction, respectively, between the radiator plate 31 and the heat absorption plate 32 . A plurality of semiconductor columns 33 are connected to the radiator plate 31 and the heat absorbing plate 32 . By energizing the electronic cooling module 30, the temperature of the members attached to the heat absorption plate 32 of the electronic cooling module 30, which is the first laser diode 41, the second laser diode 42 and the third laser diode 43 in this embodiment, is adjusted. can do. By adjusting the current supplied to the electronic cooling module 30, it becomes easy to keep the temperature of the member attached to the heat absorbing plate 32 constant over a long period of time, specifically at 35° C., for example.
 光モジュール10aは、放熱板31の温度を検出する第1サーミスタ34を含む。第1サーミスタ34は、支持板13の第1の主面13aに配置されている。第1サーミスタ34は、支持板13との間に台座25を有してもよい。台座25は熱伝導率の高い材質が良く、例えば、窒化アルミニウム(AlN)である。第1サーミスタ34は、Z軸方向に見て、放熱板31と距離3mm以内で隣り合うように配置されている。このように配置することで、第1サーミスタ34は放熱板31の温度と実質的に同じ温度を検出することが出来る。なお、第1サーミスタ34は、放熱板31の上に配置されていてもよい。 The optical module 10 a includes a first thermistor 34 that detects the temperature of the radiator plate 31 . The first thermistor 34 is arranged on the first main surface 13 a of the support plate 13 . The first thermistor 34 may have a pedestal 25 between it and the support plate 13 . The pedestal 25 is preferably made of a material having a high thermal conductivity, such as aluminum nitride (AlN). The first thermistor 34 is arranged adjacent to the radiator plate 31 within a distance of 3 mm when viewed in the Z-axis direction. By arranging in this way, the first thermistor 34 can detect substantially the same temperature as the temperature of the radiator plate 31 . Note that the first thermistor 34 may be arranged on the heat sink 31 .
 また、光モジュール10aは、吸熱板32の温度を検出する第2サーミスタ35を含む。第2サーミスタ35は、間にベース板20を挟んで吸熱板32に取り付けられている。ベース板20は熱伝導率の高い材質が良く、例えば、窒化アルミニウム(AlN)である。具体的には、第2サーミスタ35は、厚肉部24の上に配置されている。このように配置することで、第2サーミスタ35は吸熱板32の温度と実質的に同じ温度を検出することが出来る。 The optical module 10 a also includes a second thermistor 35 that detects the temperature of the heat absorbing plate 32 . The second thermistor 35 is attached to the heat absorbing plate 32 with the base plate 20 interposed therebetween. The base plate 20 is preferably made of a material with high thermal conductivity, such as aluminum nitride (AlN). Specifically, the second thermistor 35 is arranged on the thick portion 24 . By arranging in this way, the second thermistor 35 can detect substantially the same temperature as the temperature of the heat absorbing plate 32 .
 上記光モジュール10aによると、放熱板31の温度を検出する第1サーミスタ34と、吸熱板32の温度を検出する第2サーミスタ35と、を備える。そうすると、電子冷却モジュール30において、放熱板31の温度と吸熱板32の温度とを正確に把握することができる。光モジュール10aにおける光による描画の際には、予め第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43を発光させるタイミングや発光量の情報(レーザダイオードを発光させる情報)が入手されるため、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43により発生する発熱量Qhが算出される。この算出された発熱量Qhの情報から、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43を一定の温度に調節するために必要な吸熱量Qcを予測することができる。 According to the optical module 10a, the first thermistor 34 for detecting the temperature of the heat sink 31 and the second thermistor 35 for detecting the temperature of the heat absorbing plate 32 are provided. Then, in the electronic cooling module 30, the temperatures of the radiator plate 31 and the heat absorbing plate 32 can be accurately grasped. When drawing with light in the optical module 10a, information on the timing and amount of light emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43 (information on which the laser diodes emit light) is obtained in advance. Therefore, the heat quantity Qh generated by the first laser diode 41, the second laser diode 42 and the third laser diode 43 is calculated. From information on the calculated amount of heat generated Qh, it is possible to predict the amount of heat absorbed Qc required to adjust the temperatures of the first laser diode 41, the second laser diode 42 and the third laser diode 43 to a constant temperature.
 電子冷却モジュール30によって吸熱を行う吸熱量Qcは、電子冷却モジュール30の電流値と、放熱板31の温度と、吸熱板32の温度により算出される。例えば以下の式1である。式1において、Qcは吸熱量、αはゼーベック係数、Tcは吸熱板32の温度、Iは電流、Rは半導体柱33の内部電気抵抗、Kppは半導体柱33の内部の熱コンダクタンス、Thは放熱板31の温度である。この式から、上記で算出された発熱量Qhに、外部からの流入熱量Qairを加算した値を吸熱量Qcとして、電流値を求めることができる。流入熱量Qairは、保護部材12内の雰囲気から吸熱板32の温度差に基づき流入する熱量であり、吸熱板32の温度Thと雰囲気温度Taにより求められる。なお、流入熱量Qairが発熱量Qhに比べ十分小さい場合(例えば10分の1以下)、電流値の算出において無視してもよい。以上のように、電子冷却モジュール30は、レーザダイオードを発光させる情報により算出されるレーザダイオードの発熱量Qhに依存するように、電流の供給が制御される。詳しくは、レーザダイオードを発光させる情報と、放熱板31の温度と、吸熱板32の温度に基づき、電子冷却モジュール30に供給する電流の調整を行うことができる。このように調整することで、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を一定に保つことが容易となり、出射する光の出力の安定を図ることができる。なお、予め実施した過渡熱解析や熱伝導の実測結果を基に求められる伝熱のタイムラグ(0msより大きく100ms以内)を考慮して電流量の調整を行ってもよい。 The heat absorption amount Qc absorbed by the electronic cooling module 30 is calculated from the current value of the electronic cooling module 30, the temperature of the radiator plate 31, and the temperature of the heat absorption plate 32. For example, Formula 1 below. In Equation 1, Qc is the amount of heat absorbed, α is the Seebeck coefficient, Tc is the temperature of the heat absorbing plate 32, I is the current, R is the internal electrical resistance of the semiconductor pillar 33, Kpp is the thermal conductance inside the semiconductor pillar 33, and Th is the heat dissipation. is the temperature of the plate 31; From this equation, the current value can be obtained by taking the value obtained by adding the inflow heat quantity Qair from the outside to the heat quantity Qh calculated above as the heat absorption quantity Qc. The inflow heat amount Qair is the amount of heat that flows into the heat absorbing plate 32 from the atmosphere in the protective member 12 based on the temperature difference between the heat absorbing plates 32, and is obtained from the temperature Th of the heat absorbing plate 32 and the ambient temperature Ta. If the inflow heat amount Qair is sufficiently smaller than the heat generation amount Qh (for example, 1/10 or less), it may be ignored in the calculation of the current value. As described above, the electronic cooling module 30 controls the current supply so as to depend on the amount of heat generated by the laser diode Qh calculated from the information for causing the laser diode to emit light. Specifically, the current supplied to the electronic cooling module 30 can be adjusted based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 , and the temperature of the heat absorption plate 32 . This adjustment facilitates keeping the temperatures of the first laser diode 41, the second laser diode 42, and the third laser diode 43 constant, and stabilizes the output of emitted light. Note that the amount of current may be adjusted in consideration of the heat transfer time lag (greater than 0 ms and within 100 ms) obtained based on transient thermal analysis performed in advance and actual measurement results of heat conduction.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本実施形態において、光モジュール10aは、赤色の光を出射する第1レーザダイオード41、緑色の光を出射する第2レーザダイオード42および青色の光を出射する第3レーザダイオード43を含む。また、各色のレーザダイオードの位置は相互に入れ替え可能である。すなわち、光モジュール10aは、複数のレーザダイオードを含む。よって、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射されるそれぞれの光の出力を安定させることができる。また、複数のレーザダイオードから出射される光を合波して所望の色の光を出射する場合に、それぞれの光の出力を安定させているため、色ずれの抑制を図ることができる。 In this embodiment, the optical module 10a includes a first laser diode 41 that emits red light, a second laser diode 42 that emits green light, and a third laser diode 43 that emits blue light. Also, the positions of the laser diodes of each color can be exchanged with each other. That is, the optical module 10a includes multiple laser diodes. Therefore, the output of each light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 can be stabilized. In addition, when light emitted from a plurality of laser diodes is combined to emit light of a desired color, since the output of each light is stabilized, color shift can be suppressed.
 本実施形態において、第1サーミスタ34は、支持板13の第1の主面13aに配置されている。放熱板31は、支持板13に接合されているため、第1サーミスタ34によって、放熱板31の温度をより正確に検出することができる。したがって、より出射する光の出力の安定を図ることができる。 In the present embodiment, the first thermistor 34 is arranged on the first principal surface 13a of the support plate 13 . Since the heat sink 31 is joined to the support plate 13 , the temperature of the heat sink 31 can be detected more accurately by the first thermistor 34 . Therefore, the output of emitted light can be stabilized.
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図4は、実施の形態2に係る光モジュールシステム10bの概略斜視図である。図5は、実施の形態2に係る光モジュールシステム10bにおけるシステム構成を概略的に示すブロック図である。図5中に図示する矢印において、制御信号や制御およびデータの流れを示している。実施の形態2は、実施の形態1の光モジュール10aと、制御部17と、を備えた光モジュールシステム10bである。
(Embodiment 2)
Next, Embodiment 2, which is another embodiment, will be described. FIG. 4 is a schematic perspective view of an optical module system 10b according to Embodiment 2. FIG. FIG. 5 is a block diagram schematically showing the system configuration of the optical module system 10b according to the second embodiment. The arrows shown in FIG. 5 indicate the flow of control signals, control and data. Embodiment 2 is an optical module system 10b including the optical module 10a of Embodiment 1 and a controller 17. FIG.
 図4および図5を参照して、実施の形態2の光モジュールシステム10bは、光モジュール10aと、制御部17を含む。図4において、制御部17は、一点鎖線で模式的に図示している。制御部17は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、電子冷却モジュール30、第1サーミスタ34および第2サーミスタ35と電気的に接続されている。制御部17は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43および電子冷却モジュール30へ供給する電流を制御する。具体的には、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43および電子冷却モジュール30へ供給する電流量や電流を供給するタイミング等を制御する。制御部17は、ネットワーク29を介して外部の電子機器等との通信も可能に構成されている。 4 and 5, an optical module system 10b according to the second embodiment includes an optical module 10a and a controller 17. FIG. In FIG. 4, the control unit 17 is schematically illustrated by a dashed line. The controller 17 is electrically connected to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 , the first thermistor 34 and the second thermistor 35 . The control unit 17 controls currents supplied to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 and the electronic cooling module 30 . Specifically, it controls the amount of current supplied to the first laser diode 41, the second laser diode 42, the third laser diode 43, and the electronic cooling module 30, the timing of supplying the current, and the like. The control unit 17 is also configured to be able to communicate with external electronic devices and the like via the network 29 .
 制御部17は、発光させるタイミングや発光量の情報(レーザダイオードを発光させる情報)から、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43により発生する発熱量Qhを算出し、必要な吸熱量Qcを予測する。さらに、制御部17は、予測した吸熱量Qcと、第1サーミスタ34により検出された放熱板31の温度と、第2サーミスタ35により検出された吸熱板32の温度に基づいて、電子冷却モジュール30に供給する電流値を求める。吸熱量Qc、および電流値の算出方法は実施の形態1で述べた通りである。このように、制御部17は、レーザダイオードを発光させる情報と、放熱板31の温度と、吸熱板32の温度に基づき、電子冷却モジュール30に供給する電流を制御する。また、制御部17は、レーザダイオードを発光させる情報に基づき、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43へ供給する電流を制御する。 The control unit 17 calculates the amount of heat generation Qh generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43 from the information on the timing of light emission and the light emission amount (information on the light emission of the laser diode), Predict the required endothermic quantity Qc. Further, the control unit 17 controls the electronic cooling module 30 based on the predicted heat absorption amount Qc, the temperature of the heat sink 31 detected by the first thermistor 34, and the temperature of the heat sink 32 detected by the second thermistor 35. Find the current value to be supplied to The heat absorption amount Qc and the method for calculating the current value are as described in the first embodiment. In this way, the control unit 17 controls the current supplied to the electronic cooling module 30 based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 and the temperature of the heat absorbing plate 32 . Further, the control unit 17 controls the current supplied to the first laser diode 41, the second laser diode 42 and the third laser diode 43 based on the information for causing the laser diodes to emit light.
 このようにすることにより、制御部17による制御を利用し、適切なタイミングで電子冷却モジュール30に電流を供給し、吸熱板32に取り付けられる第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を一定に保つことができる。したがって、出射される光の出力の安定をより図ることができる。 By doing so, the control by the control unit 17 is used to supply the electric current to the electronic cooling module 30 at appropriate timing, and the first laser diode 41, the second laser diode 42 and the third laser diode 42 attached to the heat absorption plate 32 The temperature of the laser diode 43 can be kept constant. Therefore, it is possible to further stabilize the output of emitted light.
 本実施形態においては、制御部17は、外部から入手する第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43に入力される情報に基づいて、電子冷却モジュール30に供給する電流を制御する。そうすると、予め第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43がそれぞれ発熱する発熱量や発熱するタイミング等を把握することができ、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43による発生する発熱量に対応する吸熱量を予測して電流の供給の調整を行うことができる。したがって、より光の出力の安定を図ることができる。 In this embodiment, the control unit 17 controls the current to be supplied to the electronic cooling module 30 based on the information input to the first laser diode 41, the second laser diode 42, and the third laser diode 43 obtained from the outside. Control. Then, it is possible to grasp in advance the amount of heat generated by the first laser diode 41, the second laser diode 42 and the third laser diode 43, the heat generation timing, and the like, so that the first laser diode 41, the second laser diode 42 and the Current supply can be adjusted by predicting the amount of heat absorbed corresponding to the amount of heat generated by the third laser diode 43 . Therefore, it is possible to further stabilize the light output.
 (実施の形態3)
 次に、他の実施の形態である実施の形態3について説明する。図6は、実施の形態3に係る光モジュール10cの構造を示す外観斜視図である。図7は、図6に示す光モジュール10cのキャップ14を取り外した状態を示す外観斜視図である。図8は、図7に示す光モジュール10cの概略平面図である。実施の形態3の光モジュール10cは、ミラー駆動機構70をさらに備える点において、実施の形態1と異なっている。
(Embodiment 3)
Next, Embodiment 3, which is another embodiment, will be described. FIG. 6 is an external perspective view showing the structure of the optical module 10c according to the third embodiment. FIG. 7 is an external perspective view showing a state in which the cap 14 of the optical module 10c shown in FIG. 6 is removed. FIG. 8 is a schematic plan view of the optical module 10c shown in FIG. The optical module 10c of the third embodiment differs from that of the first embodiment in that a mirror driving mechanism 70 is further provided.
 図6、図7および図8を参照して、実施の形態3の光モジュール10cは、それぞれ直方体形状の第1ブロック部21、第2ブロック部22および第3ブロック部23を含む。ベース板20は、平板状であり、ベース板20の第1の主面20aには、第1ブロック部21、第2ブロック部22および第3ブロック部23が、それぞれX方向に間隔をあけて並べて配置されている。第1ブロック部21の上には、平板状の第1サブマウント26が配置されている。第2ブロック部22の上には、平板状の第2サブマウント27が配置されている。第3ブロック部23の上には、平板状の第3サブマウント28が配置されている。第2サーミスタ35は、間にベース板20と第1ブロック部21とを挟んで吸熱板32に取り付けられている。第1レーザダイオード41は、間にベース板20と、第1ブロック部21および第1サブマウント26とを挟んで吸熱板32に取り付けられる。第2レーザダイオード42は、間にベース板20と、第2ブロック部22とおよび第2サブマウント27とを挟んで吸熱板32に取り付けられる。第3レーザダイオード43は、間にベース板20と、第3ブロック部23および第3サブマウント28とを挟んで吸熱板32に取り付けられる。 6, 7 and 8, an optical module 10c of Embodiment 3 includes a first block portion 21, a second block portion 22 and a third block portion 23 each having a rectangular parallelepiped shape. The base plate 20 has a flat plate shape, and a first block portion 21, a second block portion 22, and a third block portion 23 are arranged on a first main surface 20a of the base plate 20 at intervals in the X direction. arranged side by side. A flat first submount 26 is arranged on the first block portion 21 . A planar second submount 27 is arranged on the second block portion 22 . A flat third submount 28 is arranged on the third block portion 23 . The second thermistor 35 is attached to the heat absorbing plate 32 with the base plate 20 and the first block portion 21 interposed therebetween. The first laser diode 41 is attached to the heat absorbing plate 32 with the base plate 20, the first block portion 21 and the first submount 26 interposed therebetween. The second laser diode 42 is attached to the heat absorbing plate 32 with the base plate 20, the second block portion 22 and the second submount 27 interposed therebetween. The third laser diode 43 is attached to the heat absorbing plate 32 with the base plate 20, the third block portion 23 and the third submount 28 interposed therebetween.
 また、光モジュール10cは、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された光を走査するミラー駆動機構70を含む。ミラー駆動機構70は、MEMS(Micro Electro Mechanical System)により構成されており、揺動運動が可能なミラー72を含む。ミラー駆動機構70は、電子冷却モジュール30、具体的には、吸熱板32の上に配置された三角柱状のステージ71によって支持されている。ミラー駆動機構70は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射され、合波された光を反射するミラー72を高速で周期的に揺動させることにより、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射され、合波された光を走査する。走査された光を出射窓18から光モジュール10c外に出射することにより、映像を投影して描画することができる。なお、出射窓18は、キャップ14の上側、すなわち、キャップ14が支持板13に取り付けられた際に、第1の主面13aと対向する位置に設けられている。 The optical module 10 c also includes a mirror driving mechanism 70 that scans the light emitted from the first laser diode 41 , the second laser diode 42 and the third laser diode 43 . The mirror driving mechanism 70 is configured by MEMS (Micro Electro Mechanical System) and includes a mirror 72 capable of rocking motion. The mirror driving mechanism 70 is supported by the electronic cooling module 30 , more specifically, by a triangular prism-shaped stage 71 arranged on the heat absorbing plate 32 . The mirror driving mechanism 70 oscillates the mirror 72 periodically at high speed to reflect the light emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43 and combined. The beams emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 and combined are scanned. By emitting the scanned light from the emission window 18 to the outside of the optical module 10c, an image can be projected and drawn. The exit window 18 is provided above the cap 14 , that is, at a position facing the first main surface 13 a when the cap 14 is attached to the support plate 13 .
 ミラー駆動機構70は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された合波光を反射するミラー72を周期的に揺動させることにより、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された合波光を走査する。光モジュール10cがミラー駆動機構70を含むことにより、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された合波光を走査して、光モジュール10c外へ出射することができる。そうすると、光モジュール10cにより、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された合波光を用いて描画することができる。ここで、ミラー72の揺動運動については、温度依存性が有り、ミラー駆動機構70の温度が一定でなければ、ミラー72の振れ角が大きく変化してしまう。そうすると、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された合波光を適切に走査することができない。上記光モジュール10cによると、ミラー駆動機構70が吸熱板32に取り付けられているため、ミラー駆動機構70の温度を一定に保つことが容易となる。そうすると、温度に依存してミラー72の振れ角が変化することを抑制することができる。したがって、より精度よく走査された光を出射することができる。その結果、光モジュール10cによる描画を適切に行うことができる。 The mirror driving mechanism 70 periodically oscillates a mirror 72 that reflects the combined light beams emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43, so that the first laser diode 41, the The combined light emitted from the second laser diode 42 and the third laser diode 43 is scanned. Since the optical module 10c includes the mirror driving mechanism 70, the combined light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 can be scanned and emitted to the outside of the optical module 10c. can. Then, by the optical module 10c, drawing can be performed using the combined light beams emitted from the first laser diode 41, the second laser diode 42, and the third laser diode 43. FIG. Here, the oscillating motion of the mirror 72 is dependent on temperature, and if the temperature of the mirror drive mechanism 70 is not constant, the deflection angle of the mirror 72 will change greatly. Then, the combined light beams emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 cannot be scanned appropriately. According to the optical module 10c, since the mirror driving mechanism 70 is attached to the heat absorbing plate 32, it becomes easy to keep the temperature of the mirror driving mechanism 70 constant. By doing so, it is possible to suppress the change in the deflection angle of the mirror 72 depending on the temperature. Therefore, it is possible to emit light that has been scanned with higher accuracy. As a result, drawing by the optical module 10c can be performed appropriately.
 (実施の形態4)
 他の実施の形態である実施の形態4について説明する。図9は、実施の形態4に係る光モジュール10dの概略平面図である。実施の形態4の光モジュール10dは、レーザダイオードの温度を検出する第3サーミスタ37をさらに備え、吸熱板32の上に第2サーミスタ35が配置される点において、実施の形態3と異なっている。
(Embodiment 4)
Embodiment 4, which is another embodiment, will be described. FIG. 9 is a schematic plan view of an optical module 10d according to the fourth embodiment. The optical module 10d of the fourth embodiment further includes a third thermistor 37 that detects the temperature of the laser diode, and differs from the third embodiment in that the second thermistor 35 is arranged on the heat absorbing plate 32. .
 図9を参照して、実施の形態4の光モジュール10dは、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を検出する第3サーミスタ37を含む。第3サーミスタ37は、第1ブロック部21の上に配置されている。また、吸熱板32の温度を検出する第2サーミスタ35は、吸熱板32の上に配置されている。第2サーミスタ35は、吸熱板32との間に台座36を有してもよい。台座36は熱伝導率の高い材質が良く、例えば、窒化アルミニウム(AlN)である。第2サーミスタ35は、Z軸方向に見て、第1フィルタ61が配置される近傍であって、ベース板20の角部に配置されている。すなわち、第2サーミスタ35は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43のそれぞれから遠い位置に配置されている。具体的には、第2サーミスタ35と第1レーザダイオード41は、間に第1レンズ51と第1フィルタ61とを挟んで配置されている。このように第2サーミスタ35を配置することで、レーザの発熱の影響を受けにくくなり、より正確に吸熱板の温度を読み取れる。第3サーミスタ37は、第2ブロック部22又は第3ブロック部23の上に配置してもよい。 Referring to FIG. 9, an optical module 10d according to the fourth embodiment includes a third thermistor 37 that detects temperatures of a first laser diode 41, a second laser diode 42 and a third laser diode 43. FIG. The third thermistor 37 is arranged on the first block portion 21 . A second thermistor 35 for detecting the temperature of the heat absorbing plate 32 is arranged on the heat absorbing plate 32 . The second thermistor 35 may have a pedestal 36 between itself and the heat absorbing plate 32 . The pedestal 36 is preferably made of a material with high thermal conductivity, such as aluminum nitride (AlN). The second thermistor 35 is arranged at a corner of the base plate 20 near the first filter 61 when viewed in the Z-axis direction. That is, the second thermistor 35 is arranged far from each of the first laser diode 41 , the second laser diode 42 and the third laser diode 43 . Specifically, the second thermistor 35 and the first laser diode 41 are arranged with the first lens 51 and the first filter 61 interposed therebetween. By arranging the second thermistor 35 in this way, it becomes less susceptible to the heat generated by the laser, and the temperature of the heat absorbing plate can be read more accurately. The third thermistor 37 may be arranged on the second block portion 22 or the third block portion 23 .
 このような光モジュール10dによると、より正確に吸熱板の温度を読み取ることができる。つまり、予測した吸熱量と、第1サーミスタ34により検出された放熱板31の温度と、第2サーミスタ35により検出された吸熱板32の温度に基づいて、電子冷却モジュール30に供給する電流を調整することができる。したがって、さらに出射する光の出力の安定を図ることができる。 According to such an optical module 10d, the temperature of the heat absorbing plate can be read more accurately. That is, the electric current supplied to the electronic cooling module 30 is adjusted based on the predicted amount of heat absorbed, the temperature of the heat sink 31 detected by the first thermistor 34, and the temperature of the heat sink 32 detected by the second thermistor 35. can do. Therefore, it is possible to further stabilize the output of emitted light.
 第2サーミスタ35は、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43のそれぞれから遠い位置に配置されているため、熱源である第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の影響を受けずに、吸熱板32の温度を正確に検知できる。よって、より出射する光の出力の安定を図ることができる。第3サーミスタ37は、レーザーダイオードの温度のモニター用に用いられる。また、温度変化によるレーザーダイオードの色味の調整にも用いることができ、より、カラーバランスが調整された画像を描画可能である。 Since the second thermistor 35 is located far away from the first laser diode 41, the second laser diode 42 and the third laser diode 43, the heat sources of the first laser diode 41, the second laser diode 42 and the second thermistor 35 The temperature of the heat absorbing plate 32 can be accurately detected without being affected by the third laser diode 43 . Therefore, the output of emitted light can be stabilized. A third thermistor 37 is used for monitoring the temperature of the laser diode. It can also be used to adjust the color tone of the laser diode according to temperature changes, making it possible to draw an image with a more adjusted color balance.
 (実施の形態5)
 他の実施の形態である実施の形態5について説明する。図10は、実施の形態5に係る光モジュールシステム10eの概略斜視図である。図11は、実施の形態5に係る光モジュールシステム10eにおけるシステム構成を概略的に示すブロック図である。図11中に図示する矢印において、制御信号や制御およびデータの流れを示している。実施の形態5は、実施の形態3の光モジュール10cと、制御部19と、を備えた光モジュールシステム10eである。
(Embodiment 5)
Embodiment 5, which is another embodiment, will be described. FIG. 10 is a schematic perspective view of an optical module system 10e according to Embodiment 5. FIG. FIG. 11 is a block diagram schematically showing the system configuration of the optical module system 10e according to the fifth embodiment. The arrows shown in FIG. 11 indicate the flow of control signals, control and data. The fifth embodiment is an optical module system 10e including the optical module 10c of the third embodiment and a controller 19. FIG.
 図10および図11を参照して、実施の形態5の光モジュールシステム10eは、制御部19を含む。図10において、制御部19は、一点鎖線で模式的に図示している。制御部19は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、電子冷却モジュール30、第1サーミスタ34、第2サーミスタ35およびミラー駆動機構70と電気的に接続されている。制御部19は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、電子冷却モジュール30およびミラー駆動機構70へ供給する電流を制御する。具体的には、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、電子冷却モジュール30およびミラー駆動機構70へ供給する電流量や電流を供給するタイミング等を制御する。制御部19は、ネットワーク29を介して外部の電子機器等との通信も可能に構成されている。 10 and 11, an optical module system 10e according to the fifth embodiment includes a controller 19. FIG. In FIG. 10, the controller 19 is schematically illustrated by a dashed line. The controller 19 is electrically connected to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 , the first thermistor 34 , the second thermistor 35 and the mirror drive mechanism 70 . . The control unit 19 controls currents supplied to the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the electronic cooling module 30 and the mirror driving mechanism 70 . Specifically, it controls the amount of current supplied to the first laser diode 41, the second laser diode 42, the third laser diode 43, the electronic cooling module 30, and the mirror driving mechanism 70, the timing of supplying the current, and the like. The control unit 19 is configured to be able to communicate with external electronic devices and the like via the network 29 .
 制御部19は、発光させるタイミングや発光量の情報(レーザダイオードを発光させる情報)から、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43により発生する発熱量を算出し、電子冷却モジュール30に供給する電流を調整する。具体的には、レーザダイオードを発光させる情報から、予め第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43が発熱する発熱量や発熱するタイミング等を把握することができ、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43による発生する発熱量に対応する吸熱量を予測して電流の供給の調整を行うことができる。したがって、より光の出力の安定を図ることができる。このように、制御部19は、レーザダイオードを発光させる情報と、放熱板31の温度と、吸熱板32の温度に基づき、電子冷却モジュール30に供給する電流を制御する。また、制御部19は、レーザダイオードを発光させる情報に基づき、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43へ供給する電流およびミラー駆動機構70へ供給する電流を制御する。 The control unit 19 calculates the amount of heat generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43 from the information on the timing of light emission and the amount of light emission (information on the light emission of the laser diodes). The current supplied to the cooling module 30 is adjusted. Specifically, the amount of heat generated by the first laser diode 41, the second laser diode 42, and the third laser diode 43, the heat generation timing, and the like can be grasped in advance from the information for causing the laser diodes to emit light. Current supply can be adjusted by predicting the amount of heat absorbed corresponding to the amount of heat generated by the laser diode 41, the second laser diode 42, and the third laser diode 43. FIG. Therefore, it is possible to further stabilize the light output. Thus, the control unit 19 controls the electric current supplied to the electronic cooling module 30 based on the information for causing the laser diode to emit light, the temperature of the radiator plate 31 and the temperature of the heat absorbing plate 32 . The control unit 19 also controls the current supplied to the first laser diode 41, the second laser diode 42, and the third laser diode 43 and the current supplied to the mirror driving mechanism 70 based on the information for causing the laser diodes to emit light.
 このようにすることにより、制御部19による制御を利用し、適切なタイミングで電子冷却モジュール30に電流を供給して吸熱を行い、電子冷却モジュール30上の第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43の温度を一定に保つことができる。したがって、出射される光の出力の安定をより図ることができる。 By doing so, by using the control by the control unit 19, current is supplied to the electronic cooling module 30 at appropriate timing to absorb heat, and the first laser diode 41 and the second laser diode on the electronic cooling module 30 are cooled. 42 and the temperature of the third laser diode 43 can be kept constant. Therefore, it is possible to further stabilize the output of emitted light.
 本実施形態においては、電子冷却モジュール30上にミラー駆動機構70が配置されているため、光モジュールシステム10eによる描画を適切に行うことができる。 In this embodiment, since the mirror driving mechanism 70 is arranged on the electronic cooling module 30, drawing by the optical module system 10e can be performed appropriately.
 (他の実施の形態)
 なお、上記の実施の形態においては、レーザダイオードは、一つの赤色レーザダイオード、一つの緑色レーザダイオードおよび一つの青色レーザダイオードを含むが、これに限らない。レーザダイオードは、いずれか1色のみのレーザダイオードを一つ、又は複数含んでもよい。レーザダイオードは、いずれか2色のレーザダイオードを含んでもよく、それらの色のレーザダイオードを複数含んでもよい。また、レーザダイオードは、赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードのうちの少なくともいずれか1つを含み、それらの色のレーザダイオードを複数含んでもよい。
(Other embodiments)
In addition, in the above embodiment, the laser diodes include one red laser diode, one green laser diode and one blue laser diode, but are not limited to this. The laser diodes may include one or more laser diodes of only one color. The laser diodes may include laser diodes of any two colors, or multiple laser diodes of those colors. Also, the laser diode includes at least one of a red laser diode, a green laser diode, and a blue laser diode, and may include a plurality of laser diodes of these colors.
 また、上記の実施の形態において、電子冷却モジュールについては、光モジュールが配置された周囲環境がたとえば極めて低温であった場合、吸熱板側で熱を放出し、放熱板側で熱を吸収する場合もある。 Further, in the above embodiment, regarding the electronic cooling module, when the ambient environment where the optical module is arranged is, for example, extremely low temperature, the heat absorption plate side releases heat and the heat dissipation plate side absorbs heat. There is also
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are illustrative in all respects and not restrictive in any aspect. The scope of the present invention is defined by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of the claims.
10a,10c,10d 光モジュール
10b,10e 光モジュールシステム
11 光形成部
12 保護部材
13 支持板
13a,13b,20a,20b 主面
14 キャップ
15,18 出射窓
16 リードピン
17,19 制御部
20 ベース板
21 第1ブロック部
22 第2ブロック部
23 第3ブロック部
24 厚肉部
25,36 台座
26 第1サブマウント
27 第2サブマウント
28 第3サブマウント
29 ネットワーク
30 電子冷却モジュール
31 放熱板
32 吸熱板
33 半導体柱
34 第1サーミスタ
35 第2サーミスタ
37 第3サーミスタ
41 第1レーザダイオード
42 第2レーザダイオード
43 第3レーザダイオード
51 第1レンズ
52 第2レンズ
53 第3レンズ
61 第1フィルタ
62 第2フィルタ
63 第3フィルタ
70 ミラー駆動機構
71 ステージ
72 ミラー
,L,L,L,X,Y,Z 矢印
10a, 10c, 10d Optical modules 10b, 10e Optical module system 11 Light forming unit 12 Protective member 13 Supporting plates 13a, 13b, 20a, 20b Main surface 14 Caps 15, 18 Output window 16 Lead pins 17, 19 Control unit 20 Base plate 21 First block part 22 Second block part 23 Third block part 24 Thick parts 25, 36 Pedestal 26 First submount 27 Second submount 28 Third submount 29 Network 30 Electronic cooling module 31 Radiator plate 32 Heat absorption plate 33 Semiconductor column 34 First thermistor 35 Second thermistor 37 Third thermistor 41 First laser diode 42 Second laser diode 43 Third laser diode 51 First lens 52 Second lens 53 Third lens 61 First filter 62 Second filter 63 Third filter 70 Mirror driving mechanism 71 Stage 72 Mirrors L 1 , L 2 , L 3 , L 4 , X, Y, Z Arrows

Claims (10)

  1.  支持板と、
     前記支持板の第1の主面に配置される放熱板と、吸熱板と、前記放熱板および前記吸熱板を接続する複数の半導体柱と、を有する電子冷却モジュールと、
     前記吸熱板に取り付けられる少なくとも1つのレーザダイオードと、
     前記放熱板の温度を検出する第1サーミスタと、
     前記吸熱板の温度を検出する第2サーミスタと、を備える、光モジュール。
    a support plate;
    an electronic cooling module having a radiator plate disposed on a first main surface of the support plate, a heat absorption plate, and a plurality of semiconductor columns connecting the heat radiation plate and the heat absorption plate;
    at least one laser diode attached to the heat sink;
    a first thermistor that detects the temperature of the radiator plate;
    and a second thermistor that detects the temperature of the heat absorbing plate.
  2.  前記第1サーミスタは、前記第1の主面に配置される、請求項1に記載の光モジュール。 The optical module according to claim 1, wherein said first thermistor is arranged on said first main surface.
  3.  ベース板をさらに備え、
     前記レーザダイオードと前記第2サーミスタは、前記ベース板を介して前記吸熱板に取り付けられる、請求項1または請求項2に記載の光モジュール。
    Equipped with a base plate,
    3. The optical module according to claim 1, wherein said laser diode and said second thermistor are attached to said heat absorbing plate through said base plate.
  4.  前記レーザダイオードの温度を検出する第3サーミスタをさらに備える、請求項1から請求項2のいずれか1項に記載の光モジュール。 The optical module according to any one of claims 1 and 2, further comprising a third thermistor that detects the temperature of said laser diode.
  5.  前記レーザダイオードから出射される光を反射するフィルタをさらに備え、
     前記レーザダイオードと前記第2サーミスタは、前記フィルタを間に挟んで配置される、請求項4に記載の光モジュール。
    further comprising a filter that reflects light emitted from the laser diode,
    5. The optical module according to claim 4, wherein said laser diode and said second thermistor are arranged with said filter interposed therebetween.
  6.  前記電子冷却モジュールは、前記レーザダイオードを発光させる情報により算出される前記レーザダイオードの発熱量に依存するように、電流の供給が制御される、請求項1から請求項5のいずれか1項に記載の光モジュール。 6. The electronic cooling module according to any one of claims 1 to 5, wherein the current supply is controlled so as to depend on the amount of heat generated by the laser diode calculated from information for causing the laser diode to emit light. Optical module as described.
  7.  前記レーザダイオードは、複数備えられている、請求項1から請求項6のいずれか1項に記載の光モジュール。 The optical module according to any one of claims 1 to 6, wherein a plurality of said laser diodes are provided.
  8.  前記吸熱板に取り付けられ、前記レーザダイオードから出射された光を走査するミラー駆動機構をさらに備える、請求項1から請求項7のいずれか1項に記載の光モジュール。 The optical module according to any one of claims 1 to 7, further comprising a mirror driving mechanism attached to said heat absorbing plate and scanning the light emitted from said laser diode.
  9.  請求項1から請求項8のいずれか1項に記載の光モジュールと、
     前記レーザダイオードを発光させる情報に基づいて、前記レーザダイオードの発熱量を算出する制御部と、を備える、光モジュールシステム。
    an optical module according to any one of claims 1 to 8;
    an optical module system, comprising: a control unit that calculates an amount of heat generated by the laser diode based on information for causing the laser diode to emit light.
  10.  前記制御部は、算出された前記発熱量と、前記第1サーミスタにより検出された温度と、前記第2サーミスタにより検出された温度に基づいて、前記電子冷却モジュールに供給する電流を制御する請求項9に記載の光モジュールシステム。 The controller controls current supplied to the electronic cooling module based on the calculated amount of heat generated, the temperature detected by the first thermistor, and the temperature detected by the second thermistor. 10. The optical module system according to 9.
PCT/JP2022/012493 2021-05-18 2022-03-18 Optical module and optical module system WO2022244440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522275A JPWO2022244440A1 (en) 2021-05-18 2022-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021083621 2021-05-18
JP2021-083621 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022244440A1 true WO2022244440A1 (en) 2022-11-24

Family

ID=84141537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012493 WO2022244440A1 (en) 2021-05-18 2022-03-18 Optical module and optical module system

Country Status (2)

Country Link
JP (1) JPWO2022244440A1 (en)
WO (1) WO2022244440A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203242908U (en) * 2013-03-19 2013-10-16 深圳英诺激光科技有限公司 Laser device temperature tuning locking device
WO2018116634A1 (en) * 2016-12-22 2018-06-28 住友電気工業株式会社 Optical module
WO2019230144A1 (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Mirror driving mechanism and optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203242908U (en) * 2013-03-19 2013-10-16 深圳英诺激光科技有限公司 Laser device temperature tuning locking device
WO2018116634A1 (en) * 2016-12-22 2018-06-28 住友電気工業株式会社 Optical module
WO2019230144A1 (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Mirror driving mechanism and optical module

Also Published As

Publication number Publication date
JPWO2022244440A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP7201052B2 (en) optical module
JP7136097B2 (en) optical module
US20140293239A1 (en) Projector and head-up display device
US10824060B2 (en) Light source module, method of manufacturing light source module, and projection-type display unit
US10209610B2 (en) Laser light source module and scanning image display apparatus
JP2015138114A (en) Scanning display device, and projection device
JP7173017B2 (en) optical module
JP4838397B1 (en) Image display device
JP2006324524A (en) Light emitting module
JP2014095796A (en) Optical deflection apparatus and image projection apparatus
US20080317078A1 (en) Green laser module package
WO2022244440A1 (en) Optical module and optical module system
JP2008153529A (en) Optical transmitter
JP2022177403A (en) optical module
JP4891453B1 (en) Image display device
JP2814987B2 (en) Semiconductor laser module
JP2022067705A (en) Electronic cooling module and optical module
JP2022068667A (en) Optical module
JP2023097508A (en) Semiconductor laser and optical module
JP7505532B2 (en) Optical Modules
JP2014115443A (en) Light source device
JP6417885B2 (en) Optical module
JP6350005B2 (en) Projector and head-up display device
WO2022254857A1 (en) Optical module
US11920752B2 (en) Light source device, headlight, display apparatus, and illumination apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804358

Country of ref document: EP

Kind code of ref document: A1