WO2022254857A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2022254857A1
WO2022254857A1 PCT/JP2022/010159 JP2022010159W WO2022254857A1 WO 2022254857 A1 WO2022254857 A1 WO 2022254857A1 JP 2022010159 W JP2022010159 W JP 2022010159W WO 2022254857 A1 WO2022254857 A1 WO 2022254857A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser diode
region
combined
optical module
Prior art date
Application number
PCT/JP2022/010159
Other languages
French (fr)
Japanese (ja)
Inventor
勇貴 中村
孝史 京野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023525411A priority Critical patent/JPWO2022254857A1/ja
Publication of WO2022254857A1 publication Critical patent/WO2022254857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to optical modules.
  • This application claims priority based on Japanese application No. 2021-094293 filed on June 4, 2021, and incorporates all the descriptions described in the Japanese application.
  • An optical module may include a plurality of, for example, five semiconductor light emitting elements, and may combine and emit light emitted from each semiconductor light emitting element (see Patent Document 1, for example).
  • An optical module includes a base portion including a first main surface, a first laser diode that emits a first light, a second laser diode that emits a second light, and a third light. , a fourth laser diode that emits fourth light, a fifth laser diode that emits fifth light, and a filter.
  • the first main surface includes a first region where the first laser diode, the second laser diode and the third laser diode are provided, and a position different from the first region, where the fourth laser diode and the fifth laser diode are provided. and a second region.
  • the first light, the second light, and the third light are combined into the first combined light in the first area.
  • the first light and the second light are of the same color.
  • the directions of the linearly polarized light of the first light and the second light included in the first combined light are orthogonal to each other.
  • the fourth light and the fifth light are combined into the second combined light in the second area.
  • the third light and the fourth light are of the same color.
  • the filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light into a third combination.
  • the directions of the linearly polarized light of the third light and the fourth light included in the third combined light are orthogonal to each other.
  • FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1.
  • FIG. FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed.
  • 3 is a schematic plan view of the optical module shown in FIG. 2.
  • FIG. 4 is an external perspective view of the optical module according to Embodiment 2, showing a state in which a later-described cap is removed.
  • FIG. 5 is a schematic plan view of an optical module according to Embodiment 2.
  • FIG. FIG. 6 is a schematic cross-sectional view of an optical module according to Embodiment 3.
  • a plurality of semiconductor light emitting elements may be arranged in the optical module in order to increase brightness, that is, to improve light output.
  • one object of the present disclosure is to provide an optical module that can increase the amount of light while making the size compact and that can be constructed at a low cost.
  • optical module of the present disclosure it is possible to increase the amount of light while making the size compact, and to construct the module at a low cost.
  • An optical module includes a base portion including a first main surface, a first laser diode that emits first light, a second laser diode that emits second light, and a third light.
  • the first main surface includes a first region where the first laser diode, the second laser diode and the third laser diode are provided, and a position different from the first region, where the fourth laser diode and the fifth laser diode are provided. and a second region.
  • the first light, the second light, and the third light are combined into the first combined light in the first area.
  • the first light and the second light are of the same color.
  • the directions of the linearly polarized light of the first light and the second light included in the first combined light are orthogonal to each other.
  • the fourth light and the fifth light are combined into the second combined light in the second area.
  • the third light and the fourth light are of the same color.
  • the filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light into a third combination.
  • Combine with wave light The directions of the linearly polarized light of the third light and the fourth light included in the third combined light are orthogonal to each other.
  • the same color means that the difference between the central wavelength bands is within 10 nm.
  • the optical module according to the present disclosure includes a first laser diode, a second laser diode, a third laser diode, a fourth laser diode and a fifth laser diode.
  • the first light and the second light are of the same color.
  • the third light and the fourth light are of the same color.
  • the filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby converting the first combined light and the second combined light into the third combined light.
  • the first light and the second light whose linear polarization directions are orthogonal to each other are included in the first combined light, and the linear polarization directions are mutually orthogonal.
  • the orthogonal third light and fourth light are included separately in the first combined light and the second combined light.
  • a first laser diode, a second laser diode and a third laser diode are mounted in the first region, and a fourth laser diode and a fifth laser diode are mounted in the second region.
  • each of the first light, the second light, the third light, the fourth light, and the fifth light may be red, green, or blue visible light. good. By doing so, it is possible to easily output the color desired by the user.
  • the first light and the second light may be red
  • the third light and the fourth light may be green
  • the fifth light may be blue.
  • the optical module may include a third area arranged adjacent to the first area.
  • the optical module may further include a mirror driving mechanism provided in the third area and scanning the third combined light.
  • the mirror drive mechanism scans the third combined light by periodically swinging the mirror that reflects the third combined light.
  • the third combined light can be scanned and emitted out of the optical module. Therefore, it is possible to appropriately perform drawing by the optical module desired by the user.
  • the base portion may include an electronic cooling module for adjusting temperatures of the first laser diode, the second laser diode, the third laser diode, the fourth laser diode and the fifth laser diode.
  • the power of light emitted from a laser diode is temperature dependent. Therefore, it is desirable to stabilize the temperature as much as possible during the operation of the optical module in order to suppress color shift and insufficient light intensity during drawing by light.
  • the inclusion of such an electronic cooling module facilitates keeping the temperature of each laser diode constant. Therefore, a more stable output can be obtained.
  • the electronic cooling module may include a radiator plate, a heat absorption plate, and a plurality of semiconductor columns.
  • the plurality of semiconductor pillars may be arranged only in the first region and the second region when viewed in a direction perpendicular to the first main surface.
  • the plurality of semiconductor columns are arranged only in the first region and the second region, and thus are not arranged in the third region where the mirror driving mechanism is provided. Therefore, it is possible to reduce the influence of the electronic cooling module that is driven when adjusting the temperature of each laser diode. Also, each laser diode and the mirror drive mechanism can be separated to increase the distance from each laser diode to the mirror drive mechanism. By doing so, the influence of each laser diode that generates heat during operation can be reduced, the temperature of the mirror driving mechanism can be easily kept constant, and the change in the deflection angle of the mirror depending on the temperature can be suppressed. Therefore, it is possible to emit light that has been scanned with higher accuracy.
  • the base portion may further include a support plate and a base plate including the first region and the second region.
  • the electronic cooling module may be arranged between the support plate and the base plate.
  • a first thermistor may be provided on the support plate and a second thermistor may be provided on the base plate.
  • the above optical module may further include a cap that hermetically seals the first region and the second region and has an exit window that transmits the third combined light.
  • the cap can improve the airtightness of the space in which each laser diode is arranged, making it easier to keep the temperature of each laser diode constant.
  • the cap since the cap has an exit window through which the third combined light is transmitted, the light can be output to the outside of the optical module through this exit window.
  • the filter may be provided in the first area or the second area. By doing so, the size of the optical module can be reduced.
  • FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1.
  • FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed.
  • 3 is a schematic plan view of the optical module shown in FIG. 2.
  • an optical module 10a includes a light forming portion 11 that forms light, a base portion 12 that includes a first principal surface 20a, and a protective member that protects the light forming portion 11. and cap 14 as.
  • the base portion 12 includes a flat support plate 13 , a flat base plate 20 , and an electronic cooling module 30 .
  • the cap 14 is a lid welded to the support plate 13 .
  • the light forming portion 11 is surrounded and sealed by a support plate 13 and a cap 14 .
  • the support plate 13 has a rectangular shape when viewed from the Z-axis direction (the direction perpendicular to the first main surface), and has rounded corners.
  • the support plate 13 is configured such that the length in the X-axis direction is longer than the length in the Y-axis direction.
  • the support plate 13 includes a first surface 13a perpendicular to the Z-axis direction and a second surface 13b perpendicular to the Z-axis direction.
  • the light forming section 11 is arranged on the first surface 13a.
  • the cap 14 is placed in contact with the first surface 13 a so as to cover the light forming section 11 .
  • the cap 14 is provided with an emission window 15 made of glass through which the light formed by the light forming section 11 is transmitted.
  • the light forming portion 11 is hermetically sealed with a cap 14 .
  • the cap 14 is welded to the support plate 13, hermetically sealed so as to surround a first region 81, a second region 82 and a third region 83, which will be described later, and an exit window through which the third combined light L8 , which will be described later, is transmitted.
  • the exit window 15 is provided above the cap 14 , that is, at a position facing the first surface 13 a when the cap 14 is attached to the support plate 13 .
  • a plurality of lead pins 16 penetrate the support plate 13 from the second surface 13b side to the first surface 13a side, and protrude to both the first surface 13a side and the second surface 13b side. is installed in
  • the light forming portion 11 includes a first block portion 21, a second block portion 22, a third block portion 23, a fourth block portion 24, and a fifth block portion 25 each having a rectangular parallelepiped shape.
  • the light forming section 11 further includes a first laser diode 41 as a first semiconductor light emitting element, a second laser diode 42 as a second semiconductor light emitting element, and a third laser diode 43 as a third semiconductor light emitting element. , a fourth laser diode 44 as a fourth semiconductor light emitting device, and a fifth laser diode 45 as a fifth semiconductor light emitting device.
  • the light forming section 11 further includes a first lens 51, a second lens 52, a third lens 53, a fourth lens 54, a fifth lens 55, a first filter 61, a second filter 62, and a third lens. 3 filters 63, a fourth filter 64, a fifth filter 65, a sixth filter 66, a wave plate 56 that is a half-wave plate, a wave plate 57 that is a half-wave plate, and a mirror driving mechanism 70 and . That is, in this embodiment, the optical module 10a includes a plurality of semiconductor light emitting devices. Specifically, the optical module 10a includes five laser diodes as five semiconductor light emitting elements.
  • the first laser diode 41 emits a linearly polarized first light L1 in the Y-axis direction.
  • the second laser diode 42 emits the linearly polarized second light L2 in the Y-axis direction.
  • the first light L1 and the second light L2 have the same color and are red visible light.
  • the wavelength range for red is, for example, 610 nm to 670 nm.
  • the third laser diode 43 emits linearly polarized third light L3 in the Y-axis direction.
  • the fourth laser diode 44 emits linearly polarized fourth light L4 in the X-axis direction.
  • the third light L3 and the fourth light L4 have the same color and are green visible light.
  • the wavelength range of the green laser light L2 is, for example, 500 nm to 550 nm.
  • the fifth laser diode 45 emits linearly polarized fifth light L5 in the X-axis direction.
  • the fifth light L5 is blue visible light.
  • the blue wavelength range is, for example, 410 nm to 460 nm.
  • Each of the first filter 61, the second filter 62, the third filter 63, the fourth filter 64, the fifth filter 65 and the sixth filter 66 is, for example, a dielectric multilayer filter.
  • the base plate 20 includes a first main surface 20a perpendicular to the Z-axis direction and a second main surface 20b facing the first main surface 20a and perpendicular to the Z-axis direction.
  • the first principal surface 20 a includes a first region 81 and a second region 82 .
  • the optical module 10a also includes a third region 83 arranged adjacent to the first region 81 and the second region 82 when viewed from the Z-axis direction.
  • the third area 83 is included in the first surface 32a of the heat absorbing plate 32 of the electronic cooling module 30, which will be described later.
  • the first region 81 is indicated by a one-dot chain line
  • the second region 82 is indicated by a two-dot chain line
  • the third region 83 is indicated by a broken line.
  • the first area 81, the second area 82, and the third area 83 are provided at different positions without overlapping each other.
  • the first area 81 and the second area 82 are arranged side by side in the Y-axis direction.
  • the first area 81 and the third area 83, and the second area 82 and the third area 83 are arranged side by side in the X-axis direction.
  • a first filter 61 , a second filter 62 , a third filter 63 , and a sixth filter 66 are provided along the side facing the second region 82 among the sides surrounding the first region 81 .
  • the electronic cooling module 30 adjusts the temperatures of the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the fourth laser diode 44 and the fifth laser diode 45 .
  • the electronic cooling module 30 is also called a TEC (Thermo-Electric Cooler) and includes a radiator plate 31 , a heat absorption plate 32 and a plurality of semiconductor columns 33 .
  • the electronic cooling module 30 is arranged between the support plate 13 and the base plate 20 .
  • the heat sink 31 is arranged on the first surface 13 a of the support plate 13 .
  • the heat absorbing plate 32 is arranged so as to be in contact with the second major surface 20b of the base plate 20 .
  • the base plate 20 is arranged on the first surface 32 a of the heat absorbing plate 32 .
  • the support plate 13 and the heat radiation plate 31, and the base plate 20 and the heat absorption plate 32 are respectively bonded with a bonding material (not shown).
  • the plurality of semiconductor pillars 33 are composed of Peltier elements, and are arranged side by side at intervals in the X-axis direction and the Y-axis direction, respectively, between the radiator plate 31 and the heat absorption plate 32 .
  • a plurality of semiconductor columns 33 are connected to the radiator plate 31 and the heat absorbing plate 32 .
  • the members arranged in the area above the electronic cooling module 30, in this embodiment, the first laser diode 41, the second laser diode 42, the third laser diode 43, and the fourth laser The temperature of diode 44 and fifth laser diode 45 can be adjusted.
  • the current supplied to the electronic cooling module 30 it becomes easy to keep the temperature of the area on the electronic cooling module 30 constant over the long term, specifically at 35° C., for example.
  • the optical module 10a includes a first thermistor 36 and a pedestal 37.
  • the first thermistor 36 is arranged on the support plate 13 .
  • the first thermistor 36 is arranged on a pedestal 37 arranged on the support plate 13 .
  • the pedestal 37 is arranged so as to be adjacent to the radiator plate 31 when viewed from the Z-axis direction.
  • the pedestal 37 is arranged at a position close to the fourth laser diode 44 when viewed in the Z-axis direction.
  • a first thermistor 36 is provided on the base 37 .
  • the temperature detected by the first thermistor 36 is used for temperature control by the electronic cooling module 30 .
  • the optical module 10a also includes a second thermistor 38 and a pedestal 39.
  • a second thermistor 38 is arranged on the base plate 20 .
  • the second thermistor 38 is arranged on the first main surface 20a of the base plate 20 at a position close to the third block portion 23, that is, the third laser diode 43 when viewed in the Z-axis direction. ing.
  • the temperature detected by the second thermistor 38 is used for temperature control by the electronic cooling module 30 .
  • the first block portion 21, the second block portion 22, and the third block portion 23 are arranged side by side on the first region 81 with a space therebetween in the X-axis direction.
  • a first laser diode 41 is arranged on the first block portion 21 .
  • a second laser diode 42 is arranged on the second block portion 22 .
  • a third laser diode 43 is arranged on the third block portion 23 .
  • the first laser diode 41, the second laser diode 42, and the third laser diode 43 are arranged to emit light in the Y-axis direction.
  • the fourth block portion 24 and the fifth block portion 25 are arranged side by side with a gap in the Y-axis direction.
  • a fourth laser diode 44 is arranged on the fourth block portion 24 .
  • a fifth laser diode 45 is arranged on the fifth block portion 25 .
  • the fourth laser diode 44 and the fifth laser diode 45 are arranged to emit light in the X-axis direction.
  • a first lens 51, a second lens 52, and a third lens 53 for converting the spot size of light are arranged side by side in the X-axis direction on the first region 81 of the base plate 20, respectively.
  • the first lens 51, the second lens 52 and the third lens 53 convert the spot size of the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 respectively.
  • the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 are converted into collimated light by the first lens 51, the second lens 52 and the third lens 53, respectively.
  • a wave plate 56 is arranged between the second laser diode 42 and the second lens 52 .
  • the wave plate 56 can rotate the polarization direction of the second light L2 emitted from the second laser diode 42 by 90 degrees.
  • a fourth lens 54 and a fifth lens 55 for converting the spot size of light are arranged side by side with a gap in the Y-axis direction.
  • a fourth lens 54 and a fifth lens 55 convert the spot size of the light emitted from the fourth laser diode 44 and the fifth laser diode 45, respectively.
  • the light emitted from the fourth laser diode 44 and the fifth laser diode 45 is converted into collimated light by the fourth lens 54 and the fifth lens 55 .
  • a wave plate 57 is arranged between the fourth laser diode 44 and the fourth lens 54 . The wave plate 57 can rotate the polarization direction of the fourth light L4 emitted from the fourth laser diode 44 by 90 degrees.
  • a first filter 61, a second filter 62 and a third filter 63 are arranged side by side at intervals in the X-axis direction.
  • the first filter 61, the second filter 62, and the third filter 63 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction.
  • the first filter 61 reflects the first light L1 emitted from the first laser diode 41 .
  • the second filter 62 transmits the first light L 1 reflected by the first filter 61 and reflects the second light L 2 emitted from the second laser diode 42 .
  • the polarization direction of the second light L 2 incident on the second filter 62 is rotated by 90 degrees compared to the second light L 2 immediately after being emitted from the second laser diode 42 .
  • the third filter 63 transmits the first light L1 reflected by the first filter 61 and transmitted through the second filter 62 , transmits the second light L2 reflected by the second filter 62, and transmits the third light L2. It reflects the third light emitted from the laser diode 43 .
  • the first filter 61, the second filter 62 and the third filter 63 selectively transmit and reflect light of specific wavelengths or polarization directions.
  • the first filter 61, the second filter 62 and the third filter 63 combine the lights emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 in the first region 81. do.
  • the combined first combined light L 6 travels in the X-axis direction and reaches the sixth filter 66 .
  • the directions of linear polarization of the first light L1 and the second light L2 included in the first combined light L6 are orthogonal to each other.
  • a fourth filter 64 and a fifth filter 65 are arranged side by side on the second region 82 of the base plate 20 with a space therebetween in the Y-axis direction.
  • the fourth filter 64 and the fifth filter 65 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction.
  • the fourth filter 64 reflects the fourth light L4 that is emitted from the fourth laser diode 44 and whose polarization direction is rotated by 90 degrees.
  • the fifth filter 65 transmits the fourth light L 4 reflected by the fourth filter 64 and reflects the fifth light L 5 emitted from the fifth laser diode 45 .
  • the polarization direction of the fourth light L4 incident on the fifth filter 65 is rotated by 90 degrees compared to the fourth light L4 immediately after being emitted from the fourth laser diode 44 .
  • the fourth filter 64 and the fifth filter 65 selectively transmit and reflect light of specific wavelengths or polarization directions.
  • the fourth filter 64 and the fifth filter 65 combine the lights emitted from the fourth laser diode 44 and the fifth laser diode 45 in the second region 82 .
  • the combined second combined light L 7 travels in the Y-axis direction and reaches the sixth filter 66 .
  • a sixth filter 66 is arranged on the first region 81 of the base plate 20 .
  • the sixth filter 66 is arranged adjacent to the third filter 63 in the X-axis direction and adjacent to the fifth filter 65 in the Y-axis direction.
  • the sixth filter 66 is arranged such that the reflecting surface is inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction.
  • the direction in which the sixth filter 66 inclines is the same as that of the fourth filter 64 and the fifth filter 65, and the first filter 61, the second filter 62 and the third filter 63 are arranged with the imaginary axis extending in the Y-axis direction as the axis of symmetry. and in the opposite direction.
  • the sixth filter 66 transmits the first combined light L6 traveling in the X-axis direction and reflects the second combined light L7 traveling in the Y-axis direction.
  • the sixth filter 66 selectively transmits and reflects light of specific wavelengths or polarization directions.
  • the sixth filter 66 filters the light emitted from the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44, and the fifth laser diode 45 in the first region 81. combine waves.
  • the combined third combined light travels in the X-axis direction and reaches the mirror drive mechanism 70 .
  • the directions of linear polarization of the third light L3 and the fourth light L4 included in the third combined light L8 are orthogonal to each other.
  • the mirror driving mechanism 70 is configured by MEMS (Micro Electro Mechanical System) and includes a mirror 72 capable of rocking motion.
  • the mirror driving mechanism 70 is supported by a triangular prism-shaped stage 71 arranged on the heat absorbing plate 32 .
  • the third combined light L 8 reaches the mirror 72 .
  • the mirror drive mechanism 70 emits and combines the third combined light L8 emitted from the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44 and the fifth laser diode 45.
  • the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44 and the fifth laser diode 45 emit light and combine them.
  • the waved third combined light L8 is scanned. By emitting the scanned light from the emission window 15 to the outside of the optical module 10a, an image can be projected and drawn.
  • the optical module 10 a includes a first laser diode 41 , a second laser diode 42 , a third laser diode 43 , a fourth laser diode 44 and a fifth laser diode 45 .
  • the first light L 1 and the second light L 2 , the third light L 3 and the fourth light L 4 are of the same color. That is, the difference between the central wavelength bands of the first light L1 and the second light L2 is within 10 nm. Also, the difference in the central wavelength band between the third light L3 and the fourth light L4 is within 10 nm.
  • the filter transmits the first combined light L6 and reflects the second combined light L7 , thereby separating the first combined light L6 and the second combined light L7 into a third filter.
  • the combined light L8 is combined.
  • the output of the first light L1 is added to the output of the second light L2
  • the output of the third light L3 is added to the fourth light L2.
  • the first light L1 and the second light L2 whose linear polarization directions are orthogonal to each other are the first combined light L6 and the second combined light L2 .
  • the third light L3 and the fourth light L4 which are included in the wave light L6 and whose directions of linear polarization are orthogonal to each other, are divided and included in the first combined light L6 and the second combined light L7 .
  • a first laser diode 41, a second laser diode 42 and a third laser diode 43 are provided in the first region 81, and a fourth laser diode 44 and a fifth laser diode 45 are provided in the second region 82. be done. This reduces the necessity of arranging the laser diodes side by side in one direction. Therefore, it becomes easy to reduce the footprint of the optical module 10a and make it compact. As described above, according to such an optical module 10a, it is possible to increase the amount of light while making the size compact, and to construct the module at a low cost.
  • the first light L1 and the second light L2 , the third light L3 and the fourth light L4 , and the fifth light L5 are respectively red, green, Although blue visible light, the above color selection is exemplary. The selection of colors should be the same for the first light L1 and the second light L2 , and the third light L3 and the fourth light L4 .
  • light L2 , third light L3 and fourth light L4 , and fifth light L5 may be selected from different colors, i.e. red, green, or blue visible light. . Therefore, it is possible to easily output colors desired by the user.
  • the optical module 10a includes a third region 83 arranged adjacent to the first region 81 and the second region 82 .
  • the optical module 10 a includes a mirror driving mechanism 70 that is provided in the third area 83 and scans the third combined light L 8 combined by the sixth filter 66 . Therefore, the mirror drive mechanism 70 scans the third combined light L8 by periodically swinging the mirror that reflects the third combined light L8 . Since the optical module 10a includes the mirror drive mechanism 70, the third combined light L8 can be scanned and emitted to the outside of the optical module 10a. Therefore, it is possible to appropriately perform drawing by the optical module 10a desired by the user.
  • the base portion 12 includes a first laser diode 41, a second laser diode 42 and a third laser diode 43 provided in the first region 81, and a fourth laser diode 44 and a fifth laser diode 44 provided in the second region 82.
  • the power of light emitted from a laser diode is temperature dependent. Therefore, it is desirable to stabilize the temperature as much as possible during the operation of the optical module 10a in order to suppress color shift and insufficient light intensity during drawing by light.
  • FIG. 4 is an external perspective view showing a state in which the cap of the optical module according to Embodiment 2 is removed.
  • FIG. 5 is a schematic plan view of an optical module according to Embodiment 2.
  • the optical module of the second embodiment differs from that of the first embodiment in that the wave plates 56 and 57 are not included.
  • second laser diode 42 and fourth laser diode 44 included in optical module 10b of the second embodiment are rotated by 90 degrees.
  • the second laser diode 42 is provided in the second block portion 22 .
  • the second block part 22 is mounted on the first area 81 by rotating it by 90 degrees in the Y-axis direction.
  • a fourth laser diode 44 is provided on the fourth block portion 24 .
  • the fourth block portion 24 is mounted on the second region 82 by rotating it 90 degrees in the X-axis direction.
  • the direction of linear polarization of the first light L1 emitted from the first laser diode 41 and the direction of linear polarization of the second light L2 emitted from the second laser diode 42 are changed. are orthogonal. Therefore, the wavelength plate 56 can be eliminated, and further cost reduction can be achieved.
  • the direction of linear polarization of the third light L3 emitted from the third laser diode 43 and the direction of linear polarization of the fourth light L4 emitted from the fourth laser diode 44 are orthogonal. Therefore, the wavelength plate 57 can be eliminated, and further cost reduction can be achieved. In this case, a space for arranging the wave plates 56 and 57 is left, so that the device can be made more compact.
  • FIG. 6 is a schematic cross-sectional view of an optical module according to Embodiment 3.
  • the optical module of the third embodiment differs from that of the first embodiment in that the configuration of the electronic cooling module is different.
  • semiconductor columns 33 are arranged only in first region 81 and second region 82 when viewed in the Z-axis direction. That is, the semiconductor column 33 is not arranged in the third region 83 where the mirror drive mechanism 70 is provided.
  • the semiconductor column 33 is not arranged in the third region 83 where the mirror drive mechanism 70 is provided.
  • the plurality of semiconductor columns 33 are arranged only in the first region 81 and the second region 82, and therefore are not arranged in the third region 83 where the mirror drive mechanism 70 is provided. Therefore, it is possible to reduce the influence of the electronic cooling module 30 that is driven when adjusting the temperature of each laser diode. Further, each laser diode and the mirror drive mechanism 70 can be separated to increase the distance from each laser diode to the mirror drive mechanism 70 . By doing so, the influence of each laser diode that generates heat during operation can be reduced, making it easier to keep the temperature of the mirror drive mechanism 70 constant, and suppressing the change in the deflection angle of the mirror 72 depending on the temperature. can. Therefore, it is possible to emit light that has been scanned with higher accuracy.
  • the optical module includes two red laser diodes, two green laser diodes and one blue laser diode, but the configuration is not limited to this.
  • a configuration including one laser diode of any one of the red laser diode, the green laser diode, and the blue laser diode and two laser diodes of the other colors may be used.
  • the number of laser diodes is not limited to five in total, and may be configured to include two red laser diodes, two green laser diodes and two blue laser diodes.
  • laser diodes associated with a plurality of color combinations may be used.
  • the sixth filter transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light with the third combined light.
  • the sixth filter combines the first combined light and the second combined light into the third combined light by reflecting the first combined light and transmitting the second combined light. You can do it.
  • the heat absorption plate may release heat and the heat dissipation plate may absorb the heat.
  • the base plate included in the base portion may be omitted, and the first surface of the heat absorbing plate of the electronic cooling module may be applied as the first main surface. Furthermore, the base plate and electronic cooling module included in the base portion may be omitted, and the first surface of the support plate may be used as the first main surface.
  • the fourth filter and the fifth filter may be provided along the side facing the first area among the sides surrounding the second area.
  • three laser diodes are arranged in the first region and two laser diodes are arranged in the second region.
  • the sixth filter is located in the second area.

Abstract

This optical module comprises a base part and a filter. A first main surface includes a first region and a second region. A first light, a second light, and a third light are multiplexed into a first multiplexed light in the first region. The directions of linearly polarized light of the first light and the second light included in the first multiplexed light are orthogonal. A fourth light and a fifth light are multiplexed into a second multiplexed light in the second region. The filter multiplexes the first multiplexed light and the second multiplexed light into a third multiplexed light by reflecting the first multiplexed light and transmitting the second multiplexed light, or by transmitting the first multiplexed light and reflecting the second multiplexed light. The directions of the linearly polarized light of the third light and the fourth light included in the third multiplexed light are orthogonal.

Description

光モジュールoptical module
 本開示は、光モジュールに関するものである。本出願は、2021年6月4日出願の日本出願第2021-094293号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to optical modules. This application claims priority based on Japanese application No. 2021-094293 filed on June 4, 2021, and incorporates all the descriptions described in the Japanese application.
 光モジュールについては、複数、例えば5つの半導体発光素子を含み、それぞれの半導体発光素子から出射されるそれぞれの光を合波して出射する場合がある(例えば、特許文献1参照)。 An optical module may include a plurality of, for example, five semiconductor light emitting elements, and may combine and emit light emitted from each semiconductor light emitting element (see Patent Document 1, for example).
特開2018-22840号公報Japanese Patent Application Laid-Open No. 2018-22840
 本開示に従った光モジュールは、第1の主面を含むベース部と、第1の光を出射する第1レーザダイオードと、第2の光を出射する第2レーザダイオードと、第3の光を出射する第3レーザダイオードと、第4の光を出射する第4レーザダイオードと、第5の光を出射する第5レーザダイオードと、フィルタと、を備える。第1の主面は、第1レーザダイオード、第2レーザダイオードおよび第3レーザダイオードが設けられる第1領域と、第1領域と異なる位置であって、第4レーザダイオードと第5レーザダイオードが設けられる第2領域と、を含む。第1の光、第2の光、および第3の光は、第1領域において第1合波光に合波される。第1の光と第2の光は同色である。第1合波光に含まれる、第1の光および第2の光の直線偏光の方向は直交する。第4の光と第5の光は、第2領域において第2合波光に合波される。第3の光と第4の光は同色である。フィルタは、第1合波光を反射し第2合波光を透過する、または第1合波光を透過し第2合波光を反射することにより、第1合波光と第2合波光とを第3合波光に合波する。第3合波光に含まれる、第3の光と第4の光の直線偏光の方向は直交する。 An optical module according to the present disclosure includes a base portion including a first main surface, a first laser diode that emits a first light, a second laser diode that emits a second light, and a third light. , a fourth laser diode that emits fourth light, a fifth laser diode that emits fifth light, and a filter. The first main surface includes a first region where the first laser diode, the second laser diode and the third laser diode are provided, and a position different from the first region, where the fourth laser diode and the fifth laser diode are provided. and a second region. The first light, the second light, and the third light are combined into the first combined light in the first area. The first light and the second light are of the same color. The directions of the linearly polarized light of the first light and the second light included in the first combined light are orthogonal to each other. The fourth light and the fifth light are combined into the second combined light in the second area. The third light and the fourth light are of the same color. The filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light into a third combination. Combine with wave light. The directions of the linearly polarized light of the third light and the fourth light included in the third combined light are orthogonal to each other.
図1は、実施の形態1に係る光モジュールの構造を示す外観斜視図である。FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1. FIG. 図2は、図1に示す光モジュールの後述するキャップを取り外した状態を示す外観斜視図である。FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed. 図3は、図2に示す光モジュールの概略平面図である。3 is a schematic plan view of the optical module shown in FIG. 2. FIG. 図4は、実施の形態2に係る光モジュールの後述するキャップを取り外した状態を示す外観斜視図である。FIG. 4 is an external perspective view of the optical module according to Embodiment 2, showing a state in which a later-described cap is removed. 図5は、実施の形態2に係る光モジュールの概略平面図である。FIG. 5 is a schematic plan view of an optical module according to Embodiment 2. FIG. 図6は、実施の形態3に係る光モジュールの概略断面図である。FIG. 6 is a schematic cross-sectional view of an optical module according to Embodiment 3. FIG.
 [本開示が解決しようとする課題]
 光モジュールにおいては、明るさの増大、すなわち、光出力の向上を図るため、複数の半導体発光素子を光モジュール内に配置する場合がある。ここで、複数の半導体発光素子を光モジュール内に配置する際に、光モジュールのサイズをコンパクトにできることが望ましい。もちろん、コストダウンを図ることも求められる。
[Problems to be Solved by the Present Disclosure]
In an optical module, a plurality of semiconductor light emitting elements may be arranged in the optical module in order to increase brightness, that is, to improve light output. Here, when arranging a plurality of semiconductor light emitting devices in an optical module, it is desirable that the size of the optical module can be made compact. Of course, it is also required to reduce costs.
 そこで、サイズをコンパクトにしながら、光量の増大を図ることができ、安価に構成することができる光モジュールを提供することを本開示の目的の1つとする。 Therefore, one object of the present disclosure is to provide an optical module that can increase the amount of light while making the size compact and that can be constructed at a low cost.
 [本開示の効果]
 本開示の光モジュールによれば、サイズをコンパクトにしながら、光量の増大を図ることができ、安価に構成することができる。
[Effect of the present disclosure]
According to the optical module of the present disclosure, it is possible to increase the amount of light while making the size compact, and to construct the module at a low cost.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。本開示に係る光モジュールは、第1の主面を含むベース部と、第1の光を出射する第1レーザダイオードと、第2の光を出射する第2レーザダイオードと、第3の光を出射する第3レーザダイオードと、第4の光を出射する第4レーザダイオードと、第5の光を出射する第5レーザダイオードと、フィルタと、を備える。第1の主面は、第1レーザダイオード、第2レーザダイオードおよび第3レーザダイオードが設けられる第1領域と、第1領域と異なる位置であって、第4レーザダイオードと第5レーザダイオードが設けられる第2領域と、を含む。第1の光、第2の光、および第3の光は、第1領域において第1合波光に合波される。第1の光と第2の光は同色である。第1合波光に含まれる、第1の光と第2の光の直線偏光の方向は直交する。第4の光と第5の光は、第2領域において第2合波光に合波される。第3の光と第4の光は同色である。フィルタは、第1合波光を反射し第2合波光を透過する、または第1合波光を透過し第2合波光を反射することにより、第1合波光と第2合波光とを第3合波光に合波する。第3合波光に含まれる、第3の光と第4の光の直線偏光の方向は直交する。なお、同色とは中心波長帯域の差が10nm以内であることを意味する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described. An optical module according to the present disclosure includes a base portion including a first main surface, a first laser diode that emits first light, a second laser diode that emits second light, and a third light. A third laser diode that emits light, a fourth laser diode that emits fourth light, a fifth laser diode that emits fifth light, and a filter. The first main surface includes a first region where the first laser diode, the second laser diode and the third laser diode are provided, and a position different from the first region, where the fourth laser diode and the fifth laser diode are provided. and a second region. The first light, the second light, and the third light are combined into the first combined light in the first area. The first light and the second light are of the same color. The directions of the linearly polarized light of the first light and the second light included in the first combined light are orthogonal to each other. The fourth light and the fifth light are combined into the second combined light in the second area. The third light and the fourth light are of the same color. The filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light into a third combination. Combine with wave light. The directions of the linearly polarized light of the third light and the fourth light included in the third combined light are orthogonal to each other. The same color means that the difference between the central wavelength bands is within 10 nm.
 本開示に係る光モジュールは、第1レーザダイオード、第2レーザダイオード、第3レーザダイオード、第4レーザダイオードおよび第5レーザダイオードを含む。第1の光と第2の光は同色である。第3の光と第4の光は同色である。フィルタは、第1合波光を反射し第2合波光を透過、あるいは第1合波光を透過し第2合波光を反射することにより、第1合波光と第2合波光とを第3合波光に合波する。第1合波光において、第1の光の出力に第2の光の出力が足し合わされ、また第3合波光において、第3の光の出力に第4の光の出力が足し合わされることで、光モジュールの光出力の向上を図ることができる。フィルタによって合波される第1合波光と第2合波光において、直線偏光の方向が互いに直交する第1の光と第2の光とは第1合波光に含まれ、直線偏光の方向が互いに直交する第3の光と第4の光とは第1合波光と第2合波光に分けて含まれる。このように偏光と波長の両方を利用して合波する方式を採用すると、比較的容易に合波できるため、例えば偏光ビームスプリッタキューブのように三角柱状の光学部材同士を接合し、偏光の違いだけを利用して合波する高価な光学部材ではなく、上記したフィルタのように板状の光学部材のみでよく、比較的安価に製造することができる。したがって、このような構成を採用することにより、光モジュールのコストダウンを図ることができる。また、第1領域には、第1レーザダイオード、第2レーザダイオードおよび第3レーザダイオードが搭載され、第2領域には、第4レーザダイオードおよび第5レーザダイオードが設けられる。そうすると、各レーザダイオードを一方向に並べて配置する必要性が乏しくなる。したがって、光モジュールのフットプリントサイズを小さくして、コンパクトにすることが容易になる。以上より、このような光モジュールによれば、サイズをコンパクトにしながら、光量の増大を図ることができ、安価に構成することができる。 The optical module according to the present disclosure includes a first laser diode, a second laser diode, a third laser diode, a fourth laser diode and a fifth laser diode. The first light and the second light are of the same color. The third light and the fourth light are of the same color. The filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light, thereby converting the first combined light and the second combined light into the third combined light. combined with By adding the output of the second light to the output of the first light in the first combined light, and adding the output of the fourth light to the output of the third light in the third combined light, It is possible to improve the optical output of the optical module. In the first combined light and the second combined light combined by the filter, the first light and the second light whose linear polarization directions are orthogonal to each other are included in the first combined light, and the linear polarization directions are mutually orthogonal. The orthogonal third light and fourth light are included separately in the first combined light and the second combined light. By adopting a method that uses both polarization and wavelength to combine waves in this way, it is possible to combine waves relatively easily. Only a plate-like optical member such as the filter described above can be used instead of an expensive optical member that uses only a single filter, and can be manufactured at a relatively low cost. Therefore, by adopting such a configuration, the cost of the optical module can be reduced. A first laser diode, a second laser diode and a third laser diode are mounted in the first region, and a fourth laser diode and a fifth laser diode are mounted in the second region. This reduces the necessity of arranging the laser diodes side by side in one direction. Therefore, it becomes easy to reduce the footprint size of the optical module and make it compact. As described above, according to such an optical module, it is possible to increase the amount of light while making the size compact, and to construct the module at a low cost.
 上記光モジュールにおいて、第1の光および第2の光と、第3の光および第4の光と、第5の光とはそれぞれ、赤色、緑色、青色のいずれかの可視光であってもよい。このようにすることにより、ユーザーの望む色の出力を容易に行うことができる。 In the above optical module, each of the first light, the second light, the third light, the fourth light, and the fifth light may be red, green, or blue visible light. good. By doing so, it is possible to easily output the color desired by the user.
 上記光モジュールにおいて、第1の光および前記第2の光は赤色であり、第3の光および第4の光は緑色であり、第5の光は青色であってもよい。このようにすることにより、赤色と緑色の光量の増大を容易に行うことができる。 In the above optical module, the first light and the second light may be red, the third light and the fourth light may be green, and the fifth light may be blue. By doing so, it is possible to easily increase the amounts of red and green light.
 上記光モジュールは、第1領域と隣り合って配置される第3領域を含んでもよい。上記光モジュールは、第3領域に設けられ、第3合波光を走査するミラー駆動機構をさらに含んでもよい。このようにすることにより、ミラー駆動機構は、第3合波光を反射するミラーを周期的に揺動させることにより、第3合波光を走査する。光モジュールがミラー駆動機構を含むことにより、第3合波光を走査して、光モジュール外へ出射することができる。したがって、ユーザーの望む光モジュールによる描画を適切に行うことができる。 The optical module may include a third area arranged adjacent to the first area. The optical module may further include a mirror driving mechanism provided in the third area and scanning the third combined light. By doing so, the mirror drive mechanism scans the third combined light by periodically swinging the mirror that reflects the third combined light. By including the mirror driving mechanism in the optical module, the third combined light can be scanned and emitted out of the optical module. Therefore, it is possible to appropriately perform drawing by the optical module desired by the user.
 上記光モジュールにおいて、ベース部は、第1レーザダイオード、第2レーザダイオード、第3レーザダイオード、第4レーザダイオードおよび第5レーザダイオードの温度を調節する電子冷却モジュールを含んでもよい。レーザダイオードから出射される光の出力については、温度依存性がある。よって、光による描画時の色ずれや光量不足を抑制するため、光モジュールの動作時においては、できるだけ温度を安定させることが望ましい。このような電子冷却モジュールが含まれることにより、各レーザダイオードの温度を一定に保つことが容易となる。したがって、より安定した出力を得ることができる。 In the above optical module, the base portion may include an electronic cooling module for adjusting temperatures of the first laser diode, the second laser diode, the third laser diode, the fourth laser diode and the fifth laser diode. The power of light emitted from a laser diode is temperature dependent. Therefore, it is desirable to stabilize the temperature as much as possible during the operation of the optical module in order to suppress color shift and insufficient light intensity during drawing by light. The inclusion of such an electronic cooling module facilitates keeping the temperature of each laser diode constant. Therefore, a more stable output can be obtained.
 上記光モジュールにおいて、電子冷却モジュールは、放熱板と、吸熱板と、複数の半導体柱と、を含んでもよい。第1の主面に垂直な方向に見て、複数の半導体柱は、第1領域および第2領域にのみ配置されてもよい。このようにすることにより、各レーザダイオードの温度を調節しやすくすることができる。また、ミラー駆動機構に対して、各レーザダイオードの調節の際の温度変化の影響を少なくすることができる。ミラーの揺動運動については、温度依存性が有り、ミラー駆動機構の温度が一定でなければ、ミラーの振れ角が大きく変化してしまう。そうすると、第3合波光を適切に走査することができない。上記光モジュールによると、複数の半導体柱は、第1領域および第2領域にのみ配置されているため、ミラー駆動機構が設けられる第3領域には配置されていない。よって、各レーザダイオードの温度調節の際に駆動する電子冷却モジュールの影響を低減することができる。また、各レーザダイオードとミラー駆動機構とを離して、各レーザダイオードからのミラー駆動機構までの距離を長くすることができる。そうすると、動作時に発熱する各レーザダイオードの影響を低減して、ミラー駆動機構の温度を一定に保つことが容易となり、温度に依存してミラーの振れ角が変化することを抑制することができる。したがって、より精度よく走査された光を出射することができる。 In the above optical module, the electronic cooling module may include a radiator plate, a heat absorption plate, and a plurality of semiconductor columns. The plurality of semiconductor pillars may be arranged only in the first region and the second region when viewed in a direction perpendicular to the first main surface. By doing so, the temperature of each laser diode can be easily adjusted. Also, the effect of temperature change upon adjustment of each laser diode can be reduced for the mirror driving mechanism. The oscillating motion of the mirror is dependent on temperature, and if the temperature of the mirror driving mechanism is not constant, the deflection angle of the mirror will change greatly. Then, the third combined light cannot be scanned properly. According to the above optical module, the plurality of semiconductor columns are arranged only in the first region and the second region, and thus are not arranged in the third region where the mirror driving mechanism is provided. Therefore, it is possible to reduce the influence of the electronic cooling module that is driven when adjusting the temperature of each laser diode. Also, each laser diode and the mirror drive mechanism can be separated to increase the distance from each laser diode to the mirror drive mechanism. By doing so, the influence of each laser diode that generates heat during operation can be reduced, the temperature of the mirror driving mechanism can be easily kept constant, and the change in the deflection angle of the mirror depending on the temperature can be suppressed. Therefore, it is possible to emit light that has been scanned with higher accuracy.
 上記光モジュールにおいて、ベース部は、支持板と、第1領域および第2領域を含むベース板をさらに含んでいてもよい。電子冷却モジュールは、支持板とベース板の間に配置されていてもよい。支持板上に第1サーミスタ、ベース板上に第2サーミスタが設けられていてもよい。このようにすることにより、周囲温度に対応する支持板の温度と、レーザダイオードの発熱によって変化するベース板の温度とを検出し、その差を求めることで電子冷却モジュールによる温度調節を精度よく効率的に行うことができる。 In the above optical module, the base portion may further include a support plate and a base plate including the first region and the second region. The electronic cooling module may be arranged between the support plate and the base plate. A first thermistor may be provided on the support plate and a second thermistor may be provided on the base plate. By doing so, the temperature of the support plate corresponding to the ambient temperature and the temperature of the base plate, which changes due to the heat generated by the laser diode, are detected, and the difference between them is obtained, so that temperature control by the electronic cooling module can be performed accurately and efficiently. can be done systematically.
 上記光モジュールにおいて、第1領域および第2領域を囲むようにハーメチックシールするとともに、第3合波光を透過する出射窓を有するキャップをさらに含んでもよい。このようにすることにより、キャップにより各レーザダイオードが配置される空間の気密性を高めて、各レーザダイオードの温度を一定に保ちやすくすることができる。この場合、キャップは、第3合波光を透過する出射窓を有するため、この出射窓を通じて、光を光モジュール外に出力することができる。 The above optical module may further include a cap that hermetically seals the first region and the second region and has an exit window that transmits the third combined light. By doing so, the cap can improve the airtightness of the space in which each laser diode is arranged, making it easier to keep the temperature of each laser diode constant. In this case, since the cap has an exit window through which the third combined light is transmitted, the light can be output to the outside of the optical module through this exit window.
 上記光モジュールにおいて、フィルタは、第1領域または第2領域に設けられていてもよい。このようにすることにより、光モジュールを小型化することができる。 In the above optical module, the filter may be provided in the first area or the second area. By doing so, the size of the optical module can be reduced.
 [本開示の実施形態の詳細]
 次に、本開示の光モジュールの一実施形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of the embodiment of the present disclosure]
Next, one embodiment of the optical module of the present disclosure will be described with reference to the drawings. In the following drawings, the same reference numerals are given to the same or corresponding parts, and the description thereof will not be repeated.
 (実施の形態1)
 本開示の実施の形態1に係る光モジュールについて説明する。図1は、実施の形態1に係る光モジュールの構造を示す外観斜視図である。図2は、図1に示す光モジュールの後述するキャップを取り外した状態を示す外観斜視図である。図3は、図2に示す光モジュールの概略平面図である。
(Embodiment 1)
An optical module according to Embodiment 1 of the present disclosure will be described. FIG. 1 is an external perspective view showing the structure of an optical module according to Embodiment 1. FIG. FIG. 2 is an external perspective view of the optical module shown in FIG. 1 with a cap described later removed. 3 is a schematic plan view of the optical module shown in FIG. 2. FIG.
 図1、図2および図3を参照して、光モジュール10aは、光を形成する光形成部11と、第1の主面20aを含むベース部12と、光形成部11を保護する保護部材としてのキャップ14と、を含む。本実施形態においては、ベース部12は、平板状の支持板13と、平板状のベース板20と、電子冷却モジュール30と、を含む。キャップ14は、支持板13に対して溶接された蓋部である。光形成部11は、支持板13およびキャップ14によって取り囲まれ、封止される。支持板13は、Z軸方向(第1の主面に垂直な方向)から見て矩形状であり、四隅が丸められた形状である。具体的には、支持板13は、X軸方向の長さの方がY軸方向の長さよりも長く構成されている。支持板13は、Z軸方向に垂直な第1の面13aと、Z軸方向に垂直な第2の面13bと、を含む。光形成部11は、第1の面13a上に配置される。キャップ14は、光形成部11を覆うように第1の面13a上に接触して配置される。キャップ14には、光形成部11により形成された光を透過するガラス製の出射窓15が設けられている。光形成部11は、キャップ14により、ハーメチックシールされている。すなわち、キャップ14は、支持板13と溶接され、後述する第1領域81、第2領域82および第3領域83を囲むようにハーメチックシールし、後述する第3合波光Lを透過する出射窓15を有する。出射窓15は、キャップ14の上側、すなわち、キャップ14が支持板13に取り付けられた際に、第1の面13aと対向する位置に設けられている。支持板13の第2の面13b側から第1の面13a側まで貫通し、第1の面13a側および第2の面13b側の両側に突出するように、複数のリードピン16が支持板13に設置されている。 1, 2 and 3, an optical module 10a includes a light forming portion 11 that forms light, a base portion 12 that includes a first principal surface 20a, and a protective member that protects the light forming portion 11. and cap 14 as. In this embodiment, the base portion 12 includes a flat support plate 13 , a flat base plate 20 , and an electronic cooling module 30 . The cap 14 is a lid welded to the support plate 13 . The light forming portion 11 is surrounded and sealed by a support plate 13 and a cap 14 . The support plate 13 has a rectangular shape when viewed from the Z-axis direction (the direction perpendicular to the first main surface), and has rounded corners. Specifically, the support plate 13 is configured such that the length in the X-axis direction is longer than the length in the Y-axis direction. The support plate 13 includes a first surface 13a perpendicular to the Z-axis direction and a second surface 13b perpendicular to the Z-axis direction. The light forming section 11 is arranged on the first surface 13a. The cap 14 is placed in contact with the first surface 13 a so as to cover the light forming section 11 . The cap 14 is provided with an emission window 15 made of glass through which the light formed by the light forming section 11 is transmitted. The light forming portion 11 is hermetically sealed with a cap 14 . That is, the cap 14 is welded to the support plate 13, hermetically sealed so as to surround a first region 81, a second region 82 and a third region 83, which will be described later, and an exit window through which the third combined light L8 , which will be described later, is transmitted. 15. The exit window 15 is provided above the cap 14 , that is, at a position facing the first surface 13 a when the cap 14 is attached to the support plate 13 . A plurality of lead pins 16 penetrate the support plate 13 from the second surface 13b side to the first surface 13a side, and protrude to both the first surface 13a side and the second surface 13b side. is installed in
 光形成部11は、それぞれ直方体形状の第1ブロック部21、第2ブロック部22、第3ブロック部23、第4ブロック部24および第5ブロック部25と、を含む。光形成部11はさらに、第1の半導体発光素子としての第1レーザダイオード41と、第2の半導体発光素子としての第2レーザダイオード42と、第3の半導体発光素子としての第3レーザダイオード43と、第4の半導体発光素子としての第4レーザダイオード44と、第5の半導体発光素子としての第5レーザダイオード45と、を含む。光形成部11はさらに、第1レンズ51と、第2レンズ52と、第3レンズ53と、第4レンズ54と、第5レンズ55と、第1フィルタ61と、第2フィルタ62と、第3フィルタ63と、第4フィルタ64と、第5フィルタ65と、第6フィルタ66と、1/2波長板である波長板56と、1/2波長板である波長板57と、ミラー駆動機構70と、を含む。すなわち、本実施形態においては、光モジュール10aは、複数の半導体発光素子を含む。具体的には、光モジュール10aは、5つの半導体発光素子としての5つのレーザダイオードを含む。第1レーザダイオード41は、直線偏光である第1の光LをY軸方向に出射する。第2レーザダイオード42は、直線偏光である第2の光LをY軸方向に出射する。第1の光Lと第2の光Lは同色であり、赤色の可視光である。赤色の波長範囲は、例えば610nm~670nmである。第3レーザダイオード43は、直線偏光である第3の光LをY軸方向に出射する。第4レーザダイオード44は、直線偏光である第4の光LをX軸方向に出射する。第3の光Lと第4の光Lは同色であり、緑色の可視光である。緑色レーザ光L2の波長範囲は、例えば500nm~550nmである。第5レーザダイオード45は、直線偏光である第5の光LをX軸方向に出射する。第5の光Lは、青色の可視光である。青色の波長範囲は、例えば410nm~460nmである。第1フィルタ61、第2フィルタ62、第3フィルタ63、第4フィルタ64、第5フィルタ65および第6フィルタ66はそれぞれ、例えば誘電体多層膜フィルタである。 The light forming portion 11 includes a first block portion 21, a second block portion 22, a third block portion 23, a fourth block portion 24, and a fifth block portion 25 each having a rectangular parallelepiped shape. The light forming section 11 further includes a first laser diode 41 as a first semiconductor light emitting element, a second laser diode 42 as a second semiconductor light emitting element, and a third laser diode 43 as a third semiconductor light emitting element. , a fourth laser diode 44 as a fourth semiconductor light emitting device, and a fifth laser diode 45 as a fifth semiconductor light emitting device. The light forming section 11 further includes a first lens 51, a second lens 52, a third lens 53, a fourth lens 54, a fifth lens 55, a first filter 61, a second filter 62, and a third lens. 3 filters 63, a fourth filter 64, a fifth filter 65, a sixth filter 66, a wave plate 56 that is a half-wave plate, a wave plate 57 that is a half-wave plate, and a mirror driving mechanism 70 and . That is, in this embodiment, the optical module 10a includes a plurality of semiconductor light emitting devices. Specifically, the optical module 10a includes five laser diodes as five semiconductor light emitting elements. The first laser diode 41 emits a linearly polarized first light L1 in the Y-axis direction. The second laser diode 42 emits the linearly polarized second light L2 in the Y-axis direction. The first light L1 and the second light L2 have the same color and are red visible light. The wavelength range for red is, for example, 610 nm to 670 nm. The third laser diode 43 emits linearly polarized third light L3 in the Y-axis direction. The fourth laser diode 44 emits linearly polarized fourth light L4 in the X-axis direction. The third light L3 and the fourth light L4 have the same color and are green visible light. The wavelength range of the green laser light L2 is, for example, 500 nm to 550 nm. The fifth laser diode 45 emits linearly polarized fifth light L5 in the X-axis direction. The fifth light L5 is blue visible light. The blue wavelength range is, for example, 410 nm to 460 nm. Each of the first filter 61, the second filter 62, the third filter 63, the fourth filter 64, the fifth filter 65 and the sixth filter 66 is, for example, a dielectric multilayer filter.
 ベース板20は、Z軸方向に垂直な第1の主面20aと、第1の主面20aと対向するとともにZ軸方向に垂直な第2の主面20bと、を含む。第1の主面20aは、第1領域81と、第2領域82と、を含む。また、光モジュール10aは、Z軸方向軸から見て、第1領域81および第2領域82と隣り合って配置される第3領域83を含む。第3領域83は、後述する電子冷却モジュール30の吸熱板32の第1の面32aに含まれる。図3において、第1領域81は、一点鎖線で示され、第2領域82は、二点鎖線で示され、第3領域83は、破線で示される。第1領域81と、第2領域82と、第3領域83とは、それぞれ重ならず、異なる位置に設けられている。第1領域81と第2領域82とは、Y軸方向に並んで配置される。第1領域81と第3領域83および第2領域82と第3領域83とはそれぞれ、X軸方向に並んで配置される。第1領域81を囲む辺のうち、第2領域82と対向する辺に沿うように、第1フィルタ61、第2フィルタ62、第3フィルタ63、および第6フィルタ66が設けられる。 The base plate 20 includes a first main surface 20a perpendicular to the Z-axis direction and a second main surface 20b facing the first main surface 20a and perpendicular to the Z-axis direction. The first principal surface 20 a includes a first region 81 and a second region 82 . The optical module 10a also includes a third region 83 arranged adjacent to the first region 81 and the second region 82 when viewed from the Z-axis direction. The third area 83 is included in the first surface 32a of the heat absorbing plate 32 of the electronic cooling module 30, which will be described later. In FIG. 3, the first region 81 is indicated by a one-dot chain line, the second region 82 is indicated by a two-dot chain line, and the third region 83 is indicated by a broken line. The first area 81, the second area 82, and the third area 83 are provided at different positions without overlapping each other. The first area 81 and the second area 82 are arranged side by side in the Y-axis direction. The first area 81 and the third area 83, and the second area 82 and the third area 83 are arranged side by side in the X-axis direction. A first filter 61 , a second filter 62 , a third filter 63 , and a sixth filter 66 are provided along the side facing the second region 82 among the sides surrounding the first region 81 .
 電子冷却モジュール30は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45の温度を調節する。電子冷却モジュール30は、TEC(Thermo-Electric Cooler)とも呼ばれ、放熱板31と、吸熱板32と、複数の半導体柱33と、を含む。電子冷却モジュール30は、支持板13と、ベース板20との間に配置される。
放熱板31は、支持板13の第1の面13a上に配置される。吸熱板32は、ベース板20の第2の主面20bと接触するように配置される。すなわち、ベース板20は、吸熱板32の第1の面32a上に配置される。支持板13と放熱板31、ベース板20と吸熱板32はそれぞれ、図示しない接合材で接合されている。複数の半導体柱33は、ペルチェ素子から構成されており、放熱板31と吸熱板32との間において、それぞれX軸方向およびY軸方向に間隔をあけて並べて配置される。複数の半導体柱33は、放熱板31および吸熱板32に接続されている。電子冷却モジュール30に通電することにより、電子冷却モジュール30上の領域に配置される部材、本実施形態においては、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45の温度を調節することができる。電子冷却モジュール30に供給する電流を調整することにより、電子冷却モジュール30上の領域の温度を長期的に一定、具体的には、例えば35℃に保つことが容易となる。
The electronic cooling module 30 adjusts the temperatures of the first laser diode 41 , the second laser diode 42 , the third laser diode 43 , the fourth laser diode 44 and the fifth laser diode 45 . The electronic cooling module 30 is also called a TEC (Thermo-Electric Cooler) and includes a radiator plate 31 , a heat absorption plate 32 and a plurality of semiconductor columns 33 . The electronic cooling module 30 is arranged between the support plate 13 and the base plate 20 .
The heat sink 31 is arranged on the first surface 13 a of the support plate 13 . The heat absorbing plate 32 is arranged so as to be in contact with the second major surface 20b of the base plate 20 . That is, the base plate 20 is arranged on the first surface 32 a of the heat absorbing plate 32 . The support plate 13 and the heat radiation plate 31, and the base plate 20 and the heat absorption plate 32 are respectively bonded with a bonding material (not shown). The plurality of semiconductor pillars 33 are composed of Peltier elements, and are arranged side by side at intervals in the X-axis direction and the Y-axis direction, respectively, between the radiator plate 31 and the heat absorption plate 32 . A plurality of semiconductor columns 33 are connected to the radiator plate 31 and the heat absorbing plate 32 . By energizing the electronic cooling module 30, the members arranged in the area above the electronic cooling module 30, in this embodiment, the first laser diode 41, the second laser diode 42, the third laser diode 43, and the fourth laser The temperature of diode 44 and fifth laser diode 45 can be adjusted. By adjusting the current supplied to the electronic cooling module 30, it becomes easy to keep the temperature of the area on the electronic cooling module 30 constant over the long term, specifically at 35° C., for example.
 光モジュール10aは、第1サーミスタ36と、台座37と、を含む。第1サーミスタ36は、支持板13上に配置されている。具体的には、第1サーミスタ36は、支持板13上に配置された台座37上に配置されている。台座37は、Z軸方向から見て、放熱板31に隣り合うように配置されている。具体的には、台座37は、Z軸方向に見て、第4レーザダイオード44に近い位置に配置される。台座37の上に第1サーミスタ36が設けられる。第1サーミスタ36により検出された温度は、電子冷却モジュール30による温度調節に利用される。 The optical module 10a includes a first thermistor 36 and a pedestal 37. The first thermistor 36 is arranged on the support plate 13 . Specifically, the first thermistor 36 is arranged on a pedestal 37 arranged on the support plate 13 . The pedestal 37 is arranged so as to be adjacent to the radiator plate 31 when viewed from the Z-axis direction. Specifically, the pedestal 37 is arranged at a position close to the fourth laser diode 44 when viewed in the Z-axis direction. A first thermistor 36 is provided on the base 37 . The temperature detected by the first thermistor 36 is used for temperature control by the electronic cooling module 30 .
 また、光モジュール10aは、第2サーミスタ38と、台座39と、を含む。第2サーミスタ38は、ベース板20上に配置されている。具体的には、第2サーミスタ38は、Z軸方向に見て、ベース板20の第1の主面20a上において、第3ブロック部23、すなわち、第3レーザダイオード43に近い位置に配置されている。第2サーミスタ38により検出された温度は、電子冷却モジュール30による温度調節に利用される。 The optical module 10a also includes a second thermistor 38 and a pedestal 39. A second thermistor 38 is arranged on the base plate 20 . Specifically, the second thermistor 38 is arranged on the first main surface 20a of the base plate 20 at a position close to the third block portion 23, that is, the third laser diode 43 when viewed in the Z-axis direction. ing. The temperature detected by the second thermistor 38 is used for temperature control by the electronic cooling module 30 .
 第1領域81上には、第1ブロック部21、第2ブロック部22および第3ブロック部23が、それぞれX軸方向に間隔をあけて並べて配置されている。第1ブロック部21上には、第1レーザダイオード41が配置されている。第2ブロック部22上には、第2レーザダイオード42が配置されている。第3ブロック部23上には、第3レーザダイオード43が配置されている。第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43は、それぞれY軸方向に光を出射するように配置されている。 The first block portion 21, the second block portion 22, and the third block portion 23 are arranged side by side on the first region 81 with a space therebetween in the X-axis direction. A first laser diode 41 is arranged on the first block portion 21 . A second laser diode 42 is arranged on the second block portion 22 . A third laser diode 43 is arranged on the third block portion 23 . The first laser diode 41, the second laser diode 42, and the third laser diode 43 are arranged to emit light in the Y-axis direction.
 第2領域82上には、第4ブロック部24および第5ブロック部25が、Y軸方向に間隔をあけて並べて配置されている。第4ブロック部24上には、第4レーザダイオード44が配置されている。第5ブロック部25上には、第5レーザダイオード45が配置されている。第4レーザダイオード44および第5レーザダイオード45は、それぞれX軸方向に光を出射するように配置されている。 On the second region 82, the fourth block portion 24 and the fifth block portion 25 are arranged side by side with a gap in the Y-axis direction. A fourth laser diode 44 is arranged on the fourth block portion 24 . A fifth laser diode 45 is arranged on the fifth block portion 25 . The fourth laser diode 44 and the fifth laser diode 45 are arranged to emit light in the X-axis direction.
 ベース板20の第1領域81上には、光のスポットサイズを変換する第1レンズ51、第2レンズ52および第3レンズ53が、それぞれX軸方向に間隔をあけて並べて配置されている。第1レンズ51、第2レンズ52および第3レンズ53は、それぞれ第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射される光のスポットサイズを変換する。第1レンズ51、第2レンズ52および第3レンズ53により、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射される光がコリメート光に変換される。なお、第2レーザダイオード42と第2レンズ52との間には、波長板56が配置されている。この波長板56により、第2レーザダイオード42から出射される第2の光Lの偏光方向を90度回転して出射させることができる。 A first lens 51, a second lens 52, and a third lens 53 for converting the spot size of light are arranged side by side in the X-axis direction on the first region 81 of the base plate 20, respectively. The first lens 51, the second lens 52 and the third lens 53 convert the spot size of the light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 respectively. The light emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 are converted into collimated light by the first lens 51, the second lens 52 and the third lens 53, respectively. A wave plate 56 is arranged between the second laser diode 42 and the second lens 52 . The wave plate 56 can rotate the polarization direction of the second light L2 emitted from the second laser diode 42 by 90 degrees.
 ベース板20の第2領域82上には、光のスポットサイズを変換する第4レンズ54および第5レンズ55が、それぞれY軸方向に間隔をあけて並べて配置されている。第4レンズ54および第5レンズ55は、それぞれ第4レーザダイオード44および第5レーザダイオード45から出射される光のスポットサイズを変換する。第4レンズ54および第5レンズ55により、第4レーザダイオード44および第5レーザダイオード45から出射される光がコリメート光に変換される。なお、第4レーザダイオード44と第4レンズ54との間には、波長板57が配置されている。この波長板57により、第4レーザダイオード44から出射される第4の光Lの偏光方向を90度回転して出射させることができる。 On the second area 82 of the base plate 20, a fourth lens 54 and a fifth lens 55 for converting the spot size of light are arranged side by side with a gap in the Y-axis direction. A fourth lens 54 and a fifth lens 55 convert the spot size of the light emitted from the fourth laser diode 44 and the fifth laser diode 45, respectively. The light emitted from the fourth laser diode 44 and the fifth laser diode 45 is converted into collimated light by the fourth lens 54 and the fifth lens 55 . A wave plate 57 is arranged between the fourth laser diode 44 and the fourth lens 54 . The wave plate 57 can rotate the polarization direction of the fourth light L4 emitted from the fourth laser diode 44 by 90 degrees.
 ベース板20の第1領域81上には、第1フィルタ61、第2フィルタ62および第3フィルタ63が、それぞれX軸方向に間隔をあけて並べて配置される。第1フィルタ61、第2フィルタ62および第3フィルタ63については、Z軸方向に見て、それぞれの反射面がX軸方向およびY軸方向に対して45度傾斜するよう配置されている。第1フィルタ61は、第1レーザダイオード41から出射される第1の光Lを反射する。第2フィルタ62は、第1フィルタ61によって反射された第1の光Lを透過し、第2レーザダイオード42から出射された第2の光Lを反射する。なお、第2フィルタ62に入射する第2の光Lは、第2レーザダイオード42から出射された直後の第2の光Lと比較して偏光方向が90度回転する。第3フィルタ63は、第1フィルタ61によって反射され第2フィルタ62を透過した第1の光Lを透過し、第2フィルタ62によって反射された第2の光Lを透過し、第3レーザダイオード43から出射された第3の光を反射する。このように、第1フィルタ61、第2フィルタ62および第3フィルタ63は、特定の波長または偏光方向の光を選択的に透過および反射する。その結果、第1フィルタ61、第2フィルタ62および第3フィルタ63は、第1領域81において、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43から出射された光を合波する。合波された第1合波光Lは、X軸方向に進行し、第6フィルタ66に至る。第1合波光Lに含まれる第1の光Lと第2の光Lの直線偏光の方向は直交する。 On the first region 81 of the base plate 20, a first filter 61, a second filter 62 and a third filter 63 are arranged side by side at intervals in the X-axis direction. The first filter 61, the second filter 62, and the third filter 63 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction. The first filter 61 reflects the first light L1 emitted from the first laser diode 41 . The second filter 62 transmits the first light L 1 reflected by the first filter 61 and reflects the second light L 2 emitted from the second laser diode 42 . The polarization direction of the second light L 2 incident on the second filter 62 is rotated by 90 degrees compared to the second light L 2 immediately after being emitted from the second laser diode 42 . The third filter 63 transmits the first light L1 reflected by the first filter 61 and transmitted through the second filter 62 , transmits the second light L2 reflected by the second filter 62, and transmits the third light L2. It reflects the third light emitted from the laser diode 43 . Thus, the first filter 61, the second filter 62 and the third filter 63 selectively transmit and reflect light of specific wavelengths or polarization directions. As a result, the first filter 61, the second filter 62 and the third filter 63 combine the lights emitted from the first laser diode 41, the second laser diode 42 and the third laser diode 43 in the first region 81. do. The combined first combined light L 6 travels in the X-axis direction and reaches the sixth filter 66 . The directions of linear polarization of the first light L1 and the second light L2 included in the first combined light L6 are orthogonal to each other.
 ベース板20の第2領域82上には、第4フィルタ64および第5フィルタ65が、それぞれY軸方向に間隔をあけて並べて配置される。第4フィルタ64および第5フィルタ65については、Z軸方向に見て、それぞれの反射面がX軸方向およびY軸方向に対して45度傾斜するよう配置されている。第4フィルタ64は、第4レーザダイオード44から出射され、偏光方向が90度回転した第4の光Lを反射する。第5フィルタ65は、第4フィルタ64によって反射された第4の光Lを透過し、第5レーザダイオード45から出射された第5の光Lを反射する。なお、第5フィルタ65に入射する第4の光Lは、第4レーザダイオード44から出射された直後の第4の光Lと比較して偏光方向が90度回転する。このように、第4フィルタ64および第5フィルタ65は、特定の波長または偏光方向の光を選択的に透過および反射する。その結果、第4フィルタ64および第5フィルタ65は、第2領域82において、第4レーザダイオード44および第5レーザダイオード45から出射された光を合波する。合波された第2合波光Lは、Y軸方向に進行し、第6フィルタ66に至る。 A fourth filter 64 and a fifth filter 65 are arranged side by side on the second region 82 of the base plate 20 with a space therebetween in the Y-axis direction. The fourth filter 64 and the fifth filter 65 are arranged so that their reflecting surfaces are inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction. The fourth filter 64 reflects the fourth light L4 that is emitted from the fourth laser diode 44 and whose polarization direction is rotated by 90 degrees. The fifth filter 65 transmits the fourth light L 4 reflected by the fourth filter 64 and reflects the fifth light L 5 emitted from the fifth laser diode 45 . The polarization direction of the fourth light L4 incident on the fifth filter 65 is rotated by 90 degrees compared to the fourth light L4 immediately after being emitted from the fourth laser diode 44 . Thus, the fourth filter 64 and the fifth filter 65 selectively transmit and reflect light of specific wavelengths or polarization directions. As a result, the fourth filter 64 and the fifth filter 65 combine the lights emitted from the fourth laser diode 44 and the fifth laser diode 45 in the second region 82 . The combined second combined light L 7 travels in the Y-axis direction and reaches the sixth filter 66 .
 ベース板20の第1領域81上には、第6フィルタ66が配置される。第6フィルタ66は、X軸方向において第3フィルタ63と隣り合い、Y軸方向において第5フィルタ65と隣り合うように配置される。第6フィルタ66については、Z軸方向に見て、反射面がX軸方向およびY軸方向に対して45度傾斜するよう配置されている。第6フィルタ66が傾斜する方向は、第4フィルタ64および第5フィルタ65と同じであり、Y軸方向に延びる仮想軸を対称軸として、第1フィルタ61、第2フィルタ62および第3フィルタ63と逆方向になる。第6フィルタ66は、X軸方向に進行する第1合波光Lを透過し、Y軸方向に進行する第2合波光Lを反射する。このように、第6フィルタ66は特定の波長または偏光方向の光を選択的に透過および反射する。その結果、第6フィルタ66は、第1領域81において、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45から出射された光を合波する。合波された第3合波光は、X軸方向に進行し、ミラー駆動機構70に至る。第3合波光Lに含まれる第3の光Lと第4の光Lの直線偏光の方向は直交する。 A sixth filter 66 is arranged on the first region 81 of the base plate 20 . The sixth filter 66 is arranged adjacent to the third filter 63 in the X-axis direction and adjacent to the fifth filter 65 in the Y-axis direction. The sixth filter 66 is arranged such that the reflecting surface is inclined 45 degrees with respect to the X-axis direction and the Y-axis direction when viewed in the Z-axis direction. The direction in which the sixth filter 66 inclines is the same as that of the fourth filter 64 and the fifth filter 65, and the first filter 61, the second filter 62 and the third filter 63 are arranged with the imaginary axis extending in the Y-axis direction as the axis of symmetry. and in the opposite direction. The sixth filter 66 transmits the first combined light L6 traveling in the X-axis direction and reflects the second combined light L7 traveling in the Y-axis direction. Thus, the sixth filter 66 selectively transmits and reflects light of specific wavelengths or polarization directions. As a result, the sixth filter 66 filters the light emitted from the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44, and the fifth laser diode 45 in the first region 81. combine waves. The combined third combined light travels in the X-axis direction and reaches the mirror drive mechanism 70 . The directions of linear polarization of the third light L3 and the fourth light L4 included in the third combined light L8 are orthogonal to each other.
 ミラー駆動機構70は、MEMS(Micro Electro Mechanical System)により構成されており、揺動運動が可能なミラー72を含む。ミラー駆動機構70は、吸熱板32上に配置された三角柱状のステージ71によって支持されている。第3合波光Lは、ミラー72に至る。ミラー駆動機構70は、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45から出射され、合波された第3合波光Lを反射するミラー72を高速で周期的に揺動させることにより、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45から出射され、合波された第3合波光Lを走査する。走査された光を出射窓15から光モジュール10a外に出射することにより、映像を投影して描画することができる。 The mirror driving mechanism 70 is configured by MEMS (Micro Electro Mechanical System) and includes a mirror 72 capable of rocking motion. The mirror driving mechanism 70 is supported by a triangular prism-shaped stage 71 arranged on the heat absorbing plate 32 . The third combined light L 8 reaches the mirror 72 . The mirror drive mechanism 70 emits and combines the third combined light L8 emitted from the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44 and the fifth laser diode 45. By periodically oscillating the reflecting mirror 72 at a high speed, the first laser diode 41, the second laser diode 42, the third laser diode 43, the fourth laser diode 44 and the fifth laser diode 45 emit light and combine them. The waved third combined light L8 is scanned. By emitting the scanned light from the emission window 15 to the outside of the optical module 10a, an image can be projected and drawn.
 光モジュール10aは、第1レーザダイオード41、第2レーザダイオード42、第3レーザダイオード43、第4レーザダイオード44および第5レーザダイオード45を含む。第1の光Lと第2の光L、第3の光Lと第4の光Lはそれぞれ同色である。つまり、第1の光Lと第2の光Lとの中心波長帯域の差は、10nm以内である。また、第3の光Lと第4の光Lとの中心波長帯域の差は、10nm以内である。フィルタ、具体的には第6フィルタ66は、第1合波光Lを透過し第2合波光Lを反射することにより、第1合波光Lと第2合波光Lとを第3合波光Lに合波する。第1合波光Lにおいて、第1の光Lの出力に第2の光Lの出力が足し合わされ、また第3合波光Lにおいて、第3の光Lの出力に第4の光Lの出力が足し合わされることで、光モジュール10aの光出力の向上を図ることができる。第6フィルタ66によって合波される第1合波光Lと第2合波光Lにおいて、直線偏光の方向が互いに直交する第1の光Lと第2の光Lとは第1合波光Lに含まれ、直線偏光の方向が互いに直交する第3の光Lと第4の光Lとは第1合波光Lと第2合波光Lに分けて含まれる。このように偏光と波長の両方を利用して合波する方式を採用すると、比較的容易に合波できる。このため、例えば偏光ビームスプリッタキューブのように三角柱状の光学部材同士を接合し、偏光の違いだけを利用して合波する高価な光学部材を用いなくともよい。上記フィルタのように板状の光学部材のみでよく、比較的安価に製造することができる。したがって、このような構成を採用することにより、光モジュール10aのコストダウンを図ることができる。また、第1領域81には、第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43が設けられ、第2領域82には、第4レーザダイオード44および第5レーザダイオード45が設けられる。そうすると、各レーザダイオードを一方向に並べて配置する必要性が乏しくなる。したがって、光モジュール10aのフットプリントを小さくして、コンパクトにすることが容易になる。以上より、このような光モジュール10aによれば、サイズをコンパクトにしながら、光量の増大を図ることができ、安価に構成することができる。 The optical module 10 a includes a first laser diode 41 , a second laser diode 42 , a third laser diode 43 , a fourth laser diode 44 and a fifth laser diode 45 . The first light L 1 and the second light L 2 , the third light L 3 and the fourth light L 4 are of the same color. That is, the difference between the central wavelength bands of the first light L1 and the second light L2 is within 10 nm. Also, the difference in the central wavelength band between the third light L3 and the fourth light L4 is within 10 nm. The filter, specifically the sixth filter 66, transmits the first combined light L6 and reflects the second combined light L7 , thereby separating the first combined light L6 and the second combined light L7 into a third filter. The combined light L8 is combined. In the first combined light L6 , the output of the first light L1 is added to the output of the second light L2 , and in the third combined light L8 , the output of the third light L3 is added to the fourth light L2. By adding the outputs of the light L4 , it is possible to improve the optical output of the optical module 10a. In the first combined light L6 and the second combined light L7 combined by the sixth filter 66, the first light L1 and the second light L2 whose linear polarization directions are orthogonal to each other are the first combined light L6 and the second combined light L2 . The third light L3 and the fourth light L4 , which are included in the wave light L6 and whose directions of linear polarization are orthogonal to each other, are divided and included in the first combined light L6 and the second combined light L7 . By adopting such a method of multiplexing using both polarization and wavelength, multiplexing can be performed relatively easily. For this reason, it is not necessary to use an expensive optical member such as a polarizing beam splitter cube, in which triangular prismatic optical members are joined together and beams are combined using only the difference in polarization. Only a plate-shaped optical member such as the above filter is required, and can be manufactured at a relatively low cost. Therefore, by adopting such a configuration, the cost of the optical module 10a can be reduced. A first laser diode 41, a second laser diode 42 and a third laser diode 43 are provided in the first region 81, and a fourth laser diode 44 and a fifth laser diode 45 are provided in the second region 82. be done. This reduces the necessity of arranging the laser diodes side by side in one direction. Therefore, it becomes easy to reduce the footprint of the optical module 10a and make it compact. As described above, according to such an optical module 10a, it is possible to increase the amount of light while making the size compact, and to construct the module at a low cost.
 本実施形態においては、第1の光Lおよび第2の光Lと、第3の光Lおよび第4の光Lと、第5の光Lとはそれぞれ、赤色、緑色、青色の可視光であるが、上記の色の選択は例示である。色の選択は、第1の光Lおよび第2の光Lと、第3の光Lおよび第4の光Lがそれぞれ同色であればよく、第1の光Lおよび第2の光Lと、第3の光Lおよび第4の光Lと、第5の光Lがそれぞれ異なる色、つまり赤色、緑色、青色のいずれかの可視光から選択されればよい。したがって、ユーザーの望む色の出力を容易に行うことができる。 In this embodiment, the first light L1 and the second light L2 , the third light L3 and the fourth light L4 , and the fifth light L5 are respectively red, green, Although blue visible light, the above color selection is exemplary. The selection of colors should be the same for the first light L1 and the second light L2 , and the third light L3 and the fourth light L4 . light L2 , third light L3 and fourth light L4 , and fifth light L5 may be selected from different colors, i.e. red, green, or blue visible light. . Therefore, it is possible to easily output colors desired by the user.
 本実施形態においては、光モジュール10aは、第1領域81および第2領域82と隣り合って配置される第3領域83を含む。光モジュール10aは、第3領域83に設けられ、第6フィルタ66によって合波された第3合波光Lを走査するミラー駆動機構70を含む。よって、ミラー駆動機構70は、第3合波光Lを反射するミラーを周期的に揺動させることにより、第3合波光Lを走査する。光モジュール10aがミラー駆動機構70を含むことにより、第3合波光Lを走査して、光モジュール10a外へ出射することができる。したがって、ユーザーの望む光モジュール10aによる描画を適切に行うことができる。 In this embodiment, the optical module 10a includes a third region 83 arranged adjacent to the first region 81 and the second region 82 . The optical module 10 a includes a mirror driving mechanism 70 that is provided in the third area 83 and scans the third combined light L 8 combined by the sixth filter 66 . Therefore, the mirror drive mechanism 70 scans the third combined light L8 by periodically swinging the mirror that reflects the third combined light L8 . Since the optical module 10a includes the mirror drive mechanism 70, the third combined light L8 can be scanned and emitted to the outside of the optical module 10a. Therefore, it is possible to appropriately perform drawing by the optical module 10a desired by the user.
 本実施形態において、ベース部12は、第1領域81に設けられる第1レーザダイオード41、第2レーザダイオード42および第3レーザダイオード43、第2領域82に設けられる第4レーザダイオード44および第5レーザダイオード45の温度を調節する電子冷却モジュール30を含む。レーザダイオードから出射される光の出力については、温度依存性がある。よって、光による描画時の色ずれや光量不足を抑制するため、光モジュール10aの動作時においては、できるだけ温度を安定させることが望ましい。このような電子冷却モジュール30が含まれることにより、各レーザダイオードの温度を一定に保つことが容易となる。したがって、より安定した出力を得ることができる。 In this embodiment, the base portion 12 includes a first laser diode 41, a second laser diode 42 and a third laser diode 43 provided in the first region 81, and a fourth laser diode 44 and a fifth laser diode 44 provided in the second region 82. It includes an electronic cooling module 30 that regulates the temperature of the laser diode 45 . The power of light emitted from a laser diode is temperature dependent. Therefore, it is desirable to stabilize the temperature as much as possible during the operation of the optical module 10a in order to suppress color shift and insufficient light intensity during drawing by light. By including such an electronic cooling module 30, it becomes easy to keep the temperature of each laser diode constant. Therefore, a more stable output can be obtained.
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図4は、実施の形態2に係る光モジュールのキャップを取り外した状態を示す外観斜視図である。図5は、実施の形態2に係る光モジュールの概略平面図である。実施の形態2の光モジュールは、波長板56,57を含まない点において、実施の形態1の場合と異なっている。
(Embodiment 2)
Next, Embodiment 2, which is another embodiment, will be described. FIG. 4 is an external perspective view showing a state in which the cap of the optical module according to Embodiment 2 is removed. FIG. 5 is a schematic plan view of an optical module according to Embodiment 2. FIG. The optical module of the second embodiment differs from that of the first embodiment in that the wave plates 56 and 57 are not included.
 図4および図5を参照して、実施の形態2の光モジュール10bに含まれる第2レーザダイオード42および第4レーザダイオード44は、90度回転させて設けられる。
具体的には、第2レーザダイオード42は、第2ブロック部22に設けられる。ここで、第2ブロック部22は、Y軸方向に90度回転させて第1領域81上に取り付けられる。同様に、第4レーザダイオード44は、第4ブロック部24に設けられる。ここで、第4ブロック部24は、X軸方向に90度回転させて第2領域82上に取り付けられる。
Referring to FIGS. 4 and 5, second laser diode 42 and fourth laser diode 44 included in optical module 10b of the second embodiment are rotated by 90 degrees.
Specifically, the second laser diode 42 is provided in the second block portion 22 . Here, the second block part 22 is mounted on the first area 81 by rotating it by 90 degrees in the Y-axis direction. Similarly, a fourth laser diode 44 is provided on the fourth block portion 24 . Here, the fourth block portion 24 is mounted on the second region 82 by rotating it 90 degrees in the X-axis direction.
 このようにすることにより、第1レーザダイオード41から出射される第1の光Lの直線偏光の方向と、第2レーザダイオード42から出射される第2の光Lの直線偏光の方向とが直交する。このため、波長板56を不要とすることができ、さらなるコストダウンを図ることができる。同様に、第3レーザダイオード43から出射される第3の光Lの直線偏光の方向と、第4レーザダイオード44から出射される第4の光Lの直線偏光の方向とが直交する。このため、波長板57を不要とすることができ、さらなるコストダウンを図ることができる。この場合、波長板56,57を配置するスペースがあくため、さらにコンパクト化を図ることができる。 By doing so, the direction of linear polarization of the first light L1 emitted from the first laser diode 41 and the direction of linear polarization of the second light L2 emitted from the second laser diode 42 are changed. are orthogonal. Therefore, the wavelength plate 56 can be eliminated, and further cost reduction can be achieved. Similarly, the direction of linear polarization of the third light L3 emitted from the third laser diode 43 and the direction of linear polarization of the fourth light L4 emitted from the fourth laser diode 44 are orthogonal. Therefore, the wavelength plate 57 can be eliminated, and further cost reduction can be achieved. In this case, a space for arranging the wave plates 56 and 57 is left, so that the device can be made more compact.
 (実施の形態3)
 次に、さらに他の実施の形態である実施の形態3について説明する。図6は、実施の形態3に係る光モジュールの概略断面図である。実施の形態3の光モジュールは、電子冷却モジュールの構成が異なる点において、実施の形態1の場合と異なっている。
(Embodiment 3)
Next, Embodiment 3, which is still another embodiment, will be described. FIG. 6 is a schematic cross-sectional view of an optical module according to Embodiment 3. FIG. The optical module of the third embodiment differs from that of the first embodiment in that the configuration of the electronic cooling module is different.
 図6を参照して、実施の形態3の光モジュール10cにおいて、Z軸方向に見て、複数の半導体柱33は、第1領域81および第2領域82にのみ配置されている。すなわち、ミラー駆動機構70が設けられる第3領域83には、半導体柱33は配置されていない。このような構成によれば、各レーザダイオードの温度を調節しやすくすることができる。また、ミラー駆動機構70に対して、各レーザダイオードの調節の際の温度変化の影響を少なくすることができる。ミラー72の揺動運動については、温度依存性が有り、ミラー駆動機構70の温度が一定でなければ、ミラー72の振れ角が大きく変化してしまう。そうすると、第3合波光Lを適切に走査することができない。上記光モジュール10cによると、複数の半導体柱33は、第1領域81および第2領域82にのみ配置されているため、ミラー駆動機構70が設けられる第3領域83には配置されていない。よって、各レーザダイオードの温度調節の際に駆動する電子冷却モジュール30の影響を低減することができる。また、各レーザダイオードとミラー駆動機構70とを離して、各レーザダイオードからのミラー駆動機構70までの距離を長くすることができる。そうすると、動作時に発熱する各レーザダイオードの影響を低減して、ミラー駆動機構70の温度を一定に保つことが容易となり、温度に依存してミラー72の振れ角が変化することを抑制することができる。したがって、より精度よく走査された光を出射することができる。 Referring to FIG. 6, in optical module 10c of the third embodiment, semiconductor columns 33 are arranged only in first region 81 and second region 82 when viewed in the Z-axis direction. That is, the semiconductor column 33 is not arranged in the third region 83 where the mirror drive mechanism 70 is provided. With such a configuration, it is possible to easily adjust the temperature of each laser diode. In addition, it is possible to reduce the effect of temperature changes on the mirror driving mechanism 70 when adjusting each laser diode. The oscillating motion of the mirror 72 is dependent on temperature, and if the temperature of the mirror drive mechanism 70 is not constant, the deflection angle of the mirror 72 will change greatly. If so, the third combined light L8 cannot be scanned properly. According to the optical module 10c, the plurality of semiconductor columns 33 are arranged only in the first region 81 and the second region 82, and therefore are not arranged in the third region 83 where the mirror drive mechanism 70 is provided. Therefore, it is possible to reduce the influence of the electronic cooling module 30 that is driven when adjusting the temperature of each laser diode. Further, each laser diode and the mirror drive mechanism 70 can be separated to increase the distance from each laser diode to the mirror drive mechanism 70 . By doing so, the influence of each laser diode that generates heat during operation can be reduced, making it easier to keep the temperature of the mirror drive mechanism 70 constant, and suppressing the change in the deflection angle of the mirror 72 depending on the temperature. can. Therefore, it is possible to emit light that has been scanned with higher accuracy.
 (他の実施の形態)
 上記の実施の形態においては、光モジュールは、2つの赤色レーザダイオード、2つの緑色レーザダイオードおよび1つの青色レーザダイオードを含む構成としたが、これに限らない。赤色レーザダイオード、緑色レーザダイオードおよび青色レーザダイオードのうち、いずれかの色のレーザダイオードを1つ含み、その他の色のレーザダイオードをそれぞれ2つ含む構成でもよい。また、レーザダイオードは合計5つに限定されず、2つの赤色レーザダイオード、2つの緑色レーザダイオードおよび2つの青色レーザダイオードを含む構成としてもよい。さらに複数の色の組み合わせに係るレーザダイオードを用いてもよい。
(Other embodiments)
In the above embodiment, the optical module includes two red laser diodes, two green laser diodes and one blue laser diode, but the configuration is not limited to this. A configuration including one laser diode of any one of the red laser diode, the green laser diode, and the blue laser diode and two laser diodes of the other colors may be used. Also, the number of laser diodes is not limited to five in total, and may be configured to include two red laser diodes, two green laser diodes and two blue laser diodes. Furthermore, laser diodes associated with a plurality of color combinations may be used.
 上記の実施の形態においては、第6フィルタは、第1合波光を透過し第2合波光を反射することにより、第1合波光と第2合波光とを第3合波光に合波することとしたが、これに限らず、第6フィルタは、第1合波光を反射し第2合波光を透過することにより、第1合波光と第2合波光とを第3合波光に合波することとしてもよい。 In the above embodiment, the sixth filter transmits the first combined light and reflects the second combined light, thereby combining the first combined light and the second combined light with the third combined light. However, not limited to this, the sixth filter combines the first combined light and the second combined light into the third combined light by reflecting the first combined light and transmitting the second combined light. You can do it.
 上記の実施の形態において、電子冷却モジュールについては、光モジュールが配置された周囲環境がたとえば極めて低温であった場合、吸熱板側で熱を放出し、放熱板側で熱を吸収する場合もある。 In the above embodiment, in the case of the electronic cooling module, if the ambient environment where the optical module is arranged is extremely low temperature, the heat absorption plate may release heat and the heat dissipation plate may absorb the heat. .
 上記の実施の形態において、ベース部に含まれるベース板を省略すると共に、電子冷却モジュールの吸熱板の第1の面を第1の主面として適用してもよい。さらに、ベース部に含まれるベース板および電子冷却モジュールを省略すると共に、支持板の第1の面を第1の主面として適用してもよい。 In the above embodiment, the base plate included in the base portion may be omitted, and the first surface of the heat absorbing plate of the electronic cooling module may be applied as the first main surface. Furthermore, the base plate and electronic cooling module included in the base portion may be omitted, and the first surface of the support plate may be used as the first main surface.
 上記の実施の形態において、第2領域を囲む辺のうち、第1領域と対向する辺に沿うように、第4フィルタ、第5フィルタが設けられていてもよい。つまり、上記の実施の形態の第1領域と第2領域が入れ替わった構成でありつつ、第1領域に3つのレーザダイオードが配置され、第2領域に2つのレーザダイオードが配置された構成である。このとき、第6フィルタは第2領域に位置する。 In the above embodiment, the fourth filter and the fifth filter may be provided along the side facing the first area among the sides surrounding the second area. In other words, while the first region and the second region of the above embodiment are interchanged, three laser diodes are arranged in the first region and two laser diodes are arranged in the second region. . At this time, the sixth filter is located in the second area.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are illustrative in all respects and not restrictive in any aspect. The scope of the present invention is defined by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope of equivalence to the scope of the claims.
10a,10b,10c 光モジュール
11 光形成部
12 ベース部
13 支持板
13a,13b,32a 面
14 キャップ
15 出射窓
16 リードピン
20 ベース板
20a 第1の主面、20b 第2の主面
21 第1ブロック部
22 第2ブロック部
23 第3ブロック部
24 第4ブロック部
25 第5ブロック部
30 電子冷却モジュール
31 放熱板
32 吸熱板
33 半導体柱
36 第1サーミスタ
37,39 台座
38 第2サーミスタ
41 第1レーザダイオード
42 第2レーザダイオード
43 第3レーザダイオード
44 第4レーザダイオード
45 第5レーザダイオード
51 第1レンズ
52 第2レンズ
53 第3レンズ
54 第4レンズ
55 第5レンズ
56,57 波長板
61 第1フィルタ
62 第2フィルタ
63 第3フィルタ
64 第4フィルタ
65 第5フィルタ
66 第6フィルタ
70 ミラー駆動機構
71 ステージ
72 ミラー
81 第1領域、82 第2領域、83 第3領域
 第1の光
 第2の光
 第3の光
 第4の光
 第5の光
 第1合波光
 第2合波光
 第3合波光
X,Y,Z 矢印
10a, 10b, 10c Optical module 11 Light forming part 12 Base part 13 Support plate 13a, 13b, 32a Surface 14 Cap 15 Output window 16 Lead pin 20 Base plate 20a First main surface, 20b Second main surface 21 First block Part 22 Second block part 23 Third block part 24 Fourth block part 25 Fifth block part 30 Electronic cooling module 31 Radiator plate 32 Heat absorption plate 33 Semiconductor column 36 First thermistors 37, 39 Pedestal 38 Second thermistor 41 First laser Diode 42 Second laser diode 43 Third laser diode 44 Fourth laser diode 45 Fifth laser diode 51 First lens 52 Second lens 53 Third lens 54 Fourth lens 55 Fifth lenses 56 and 57 Wave plate 61 First filter 62 second filter 63 third filter 64 fourth filter 65 fifth filter 66 sixth filter 70 mirror driving mechanism 71 stage 72 mirror 81 first region, 82 second region, 83 third region L 1 first light L 2 Second light L 3 Third light L 4 Fourth light L 5 Fifth light L 6 First combined light L 7 Second combined light L 8 Third combined light X, Y, Z Arrows

Claims (9)

  1.  第1の主面を含むベース部と、
     第1の光を出射する第1レーザダイオードと、
     第2の光を出射する第2レーザダイオードと、
     第3の光を出射する第3レーザダイオードと、
     第4の光を出射する第4レーザダイオードと、
     第5の光を出射する第5レーザダイオードと、
     フィルタと、を備え、
     前記第1の主面は、
     前記第1レーザダイオード、前記第2レーザダイオードおよび前記第3レーザダイオードが設けられる第1領域と、
     前記第1領域と異なる位置であって、前記第4レーザダイオードと前記第5レーザダイオードが設けられる第2領域と、を含み、
     前記第1の光、前記第2の光、および前記第3の光は、前記第1領域において第1合波光に合波され、
     前記第1の光と前記第2の光は同色であり、
     前記第1合波光に含まれる、前記第1の光と前記第2の光の直線偏光の方向は直交し、
     前記第4の光と前記第5の光は、前記第2領域において第2合波光に合波され、
     前記第3の光と前記第4の光は同色であり、
     前記フィルタは、前記第1合波光を反射し前記第2合波光を透過する、または前記第1合波光を透過し前記第2合波光を反射することにより、前記第1合波光と前記第2合波光とを第3合波光に合波し、
     前記第3合波光に含まれる、前記第3の光と前記第4の光の直線偏光の方向は直交する、光モジュール。
    a base portion including a first major surface;
    a first laser diode that emits a first light;
    a second laser diode that emits a second light;
    a third laser diode that emits a third light;
    a fourth laser diode that emits a fourth light;
    a fifth laser diode that emits a fifth light;
    a filter and
    The first main surface is
    a first region in which the first laser diode, the second laser diode and the third laser diode are provided;
    a second region different from the first region and provided with the fourth laser diode and the fifth laser diode;
    the first light, the second light, and the third light are combined in the first region with a first combined light;
    the first light and the second light are of the same color;
    directions of linearly polarized light of the first light and the second light included in the first combined light are orthogonal;
    the fourth light and the fifth light are combined in the second region with second combined light;
    the third light and the fourth light are of the same color;
    The filter reflects the first combined light and transmits the second combined light, or transmits the first combined light and reflects the second combined light so that the first combined light and the second combined light are filtered. combining the combined light with the third combined light,
    The optical module, wherein directions of linearly polarized light of the third light and the fourth light included in the third combined light are orthogonal to each other.
  2.  前記第1の光および前記第2の光と、
     前記第3の光および前記第4の光と、
     前記第5の光とはそれぞれ、
     赤色、緑色、青色のいずれかの可視光である、請求項1に記載の光モジュール。
    the first light and the second light;
    the third light and the fourth light;
    Each of the fifth light is
    2. The optical module according to claim 1, wherein the visible light is one of red, green, and blue.
  3.  前記第1の光および前記第2の光は赤色であり、
     前記第3の光および前記第4の光は緑色であり、
     前記第5の光は青色である、請求項2に記載の光モジュール。
    the first light and the second light are red;
    the third light and the fourth light are green;
    3. The optical module according to claim 2, wherein said fifth light is blue.
  4.  前記光モジュールは、前記第1領域と隣り合って配置される第3領域を含み、
     前記光モジュールは、前記第3領域に設けられ、前記第3合波光を走査するミラー駆動機構をさらに含む、請求項1から請求項3のいずれか1項に記載の光モジュール。
    The optical module includes a third region arranged adjacent to the first region,
    4. The optical module according to any one of claims 1 to 3, further comprising a mirror drive mechanism provided in said third area and scanning said third combined light.
  5.  前記ベース部は、前記第1レーザダイオード、前記第2レーザダイオード、前記第3レーザダイオード、前記第4レーザダイオードおよび前記第5レーザダイオードの温度を調節する電子冷却モジュールを含む、請求項1から請求項4のいずれか1項に記載の光モジュール。 13. The base portion includes an electronic cooling module for adjusting the temperature of the first laser diode, the second laser diode, the third laser diode, the fourth laser diode and the fifth laser diode. Item 5. The optical module according to any one of Item 4.
  6.  前記電子冷却モジュールは、
     放熱板と、
     吸熱板と、
     複数の半導体柱と、を含み、
     前記第1の主面に垂直な方向に見て、前記複数の半導体柱は、前記第1領域および前記第2領域にのみ配置される、請求項5に記載の光モジュール。
    The electronic cooling module is
    a heat sink;
    a heat absorbing plate;
    a plurality of semiconductor pillars;
    6. The optical module according to claim 5, wherein said plurality of semiconductor pillars are arranged only in said first region and said second region when viewed in a direction perpendicular to said first main surface.
  7.  前記ベース部は、支持板と、前記第1領域および前記第2領域を含むベース板と、さらに含み、
     前記電子冷却モジュールは、前記支持板と前記ベース板の間に配置され、
     前記支持板上に第1サーミスタ、前記ベース板上に第2サーミスタが設けられる、請求項5または請求項6に記載の光モジュール。
    The base portion further includes a support plate and a base plate including the first region and the second region,
    the electronic cooling module is disposed between the support plate and the base plate;
    7. The optical module according to claim 5, wherein a first thermistor is provided on said support plate and a second thermistor is provided on said base plate.
  8.  前記第1領域および前記第2領域を囲むようにハーメチックシールするとともに、前記第3合波光を透過する出射窓を有するキャップをさらに含む、請求項1から請求項7のいずれか1項に記載の光モジュール。 8. The cap according to any one of claims 1 to 7, further comprising a cap that hermetically seals the first region and the second region and has an exit window that transmits the third combined light. optical module.
  9.  前記フィルタは、前記第1領域または前記第2領域に設けられる、請求項1から請求項8のいずれか1項に記載の光モジュール。 The optical module according to any one of claims 1 to 8, wherein the filter is provided in the first area or the second area.
PCT/JP2022/010159 2021-06-04 2022-03-09 Optical module WO2022254857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525411A JPWO2022254857A1 (en) 2021-06-04 2022-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021094293 2021-06-04
JP2021-094293 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022254857A1 true WO2022254857A1 (en) 2022-12-08

Family

ID=84324234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010159 WO2022254857A1 (en) 2021-06-04 2022-03-09 Optical module

Country Status (2)

Country Link
JP (1) JPWO2022254857A1 (en)
WO (1) WO2022254857A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115635A (en) * 2012-04-12 2013-10-22 홍성인 Mattress for a combined use cold and heat
JP2015015433A (en) * 2013-07-08 2015-01-22 住友電気工業株式会社 Method for manufacturing optical assembly
WO2019159827A1 (en) * 2018-02-16 2019-08-22 住友電気工業株式会社 Optical module
JP2020201453A (en) * 2019-06-13 2020-12-17 住友電気工業株式会社 Optical module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130115635A (en) * 2012-04-12 2013-10-22 홍성인 Mattress for a combined use cold and heat
JP2015015433A (en) * 2013-07-08 2015-01-22 住友電気工業株式会社 Method for manufacturing optical assembly
WO2019159827A1 (en) * 2018-02-16 2019-08-22 住友電気工業株式会社 Optical module
JP2020201453A (en) * 2019-06-13 2020-12-17 住友電気工業株式会社 Optical module

Also Published As

Publication number Publication date
JPWO2022254857A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US8628199B2 (en) Light source device with a plurality of light sources and a collimating lens
JP5655902B1 (en) Manufacturing method of optical assembly
CN102681310B (en) Light source device and projector
JP7136097B2 (en) optical module
US9971235B2 (en) Light source device, projector, and method of manufacturing light source device
JP7180598B2 (en) Mirror drive mechanism and optical module
JP2023002753A (en) optical module
CN108459454B (en) Illumination device and projector
JP2013080578A (en) Light source device and projector
US9874805B2 (en) Light source apparatus and projection display apparatus
US20140340652A1 (en) Light source device and projector
CN113534588B (en) Laser and projection apparatus
WO2022254857A1 (en) Optical module
WO2020208871A1 (en) Optical module
US20210257814A1 (en) Optical module
JP6460082B2 (en) Manufacturing method of optical assembly and optical assembly
JP7124465B2 (en) Mirror drive mechanism and optical module
JP6112091B2 (en) Manufacturing method of optical assembly and optical assembly
JP2014115443A (en) Light source device
JP6988706B2 (en) Optical module
JP6812812B2 (en) Optical module
JP2023097508A (en) Semiconductor laser and optical module
JP2024025960A (en) optical module
JP2009117574A (en) Light source apparatus, projector, and monitoring device
JP2021089390A (en) Drawing device and drawing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE