WO2022244192A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2022244192A1
WO2022244192A1 PCT/JP2021/019175 JP2021019175W WO2022244192A1 WO 2022244192 A1 WO2022244192 A1 WO 2022244192A1 JP 2021019175 W JP2021019175 W JP 2021019175W WO 2022244192 A1 WO2022244192 A1 WO 2022244192A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
control
temperature
capacity
oil
Prior art date
Application number
PCT/JP2021/019175
Other languages
French (fr)
Japanese (ja)
Inventor
光晃 松尾
寛也 石原
崇憲 八代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023522122A priority Critical patent/JP7573739B2/en
Priority to PCT/JP2021/019175 priority patent/WO2022244192A1/en
Publication of WO2022244192A1 publication Critical patent/WO2022244192A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • Conventional refrigeration cycle devices generally detect physical quantities such as the compressor discharge temperature, the compressor discharge pressure, the condensing pressure in the condenser, the operating current of the compressor, and the degree of suction superheat of the compressor.
  • the compressor discharge temperature is the temperature of the refrigerant gas discharged from the compressor.
  • the compressor discharge pressure is the pressure of the refrigerant gas discharged from the compressor.
  • a threshold value is set for the physical quantity to be detected so as to allow stable operation of the equipment constituting the refrigeration cycle apparatus. I judge.
  • the refrigeration cycle apparatus performs protective control to reduce the load by reducing the operating capacity of the compressor in order to protect the equipment when it is determined that the apparatus is in an overloaded state.
  • the operating capacity of the compressor is the operating capacity of the compressor based on the operating frequency of the compressor or a mechanical capacity control mechanism. The operating capacity of the compressor increases as the operating frequency of the compressor increases. The operating capacity of the compressor is reduced in response to lowering the operating frequency of the compressor.
  • Patent Document 1 discloses that the operating current of the compressor and the temperature of the casing of the compressor are detected, and when the detected temperature exceeds the set temperature, the setting of the operating current is lowered. It is described that an excessive rise in compressor temperature and operating current is thereby prevented.
  • Patent Document 2 as a conventional refrigeration cycle device, refrigerating machine oil discharged together with refrigerant from a compressor is separated by an oil separator, the separated refrigerating machine oil is cooled by an oil cooler that cools the refrigerant, and the compressor is In the configuration of injecting refrigerant into the intermediate pressure chamber of the compressor, there is described controlling an electronic expansion valve that adjusts the amount of refrigerant supplied to the oil cooler.
  • the discharge temperature of the compressor is detected, and the electronic expansion valve is controlled so that the detected discharge temperature becomes the target temperature.
  • the refrigeration cycle apparatus of the present disclosure is intended to solve the above problems, and aims to obtain a refrigeration cycle apparatus capable of stabilizing the operating state.
  • a refrigeration cycle device includes a compressor that compresses a refrigerant, an oil separator that separates the refrigerant discharged from the compressor and refrigerating machine oil, and an oil supply path that supplies the refrigerating machine oil separated by the oil separator to the compressor.
  • an oil cooler for cooling the refrigerating machine oil supplied to the compressor; a cooling medium path for supplying the cooling medium to the oil cooler; a temperature adjusting device for adjusting the temperature of the refrigerating machine oil supplied to the compressor;
  • a sensor and a controller are provided.
  • the control device controls the temperature adjustment device based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor detected by the sensor, and determines the load state of the compressor detected by the sensor. determines the load state of the compressor based on the detected value of the physical quantity used for At the same time, a second control is performed to suppress a decrease in the adjustment capacity of the temperature adjustment device.
  • the control device controls the temperature adjustment device based on the detected value of the physical quantity that changes with the temperature of the refrigeration oil supplied to the compressor, and determines the load state of the compressor.
  • first control is performed to suppress an increase in the operating capacity of the compressor
  • second control is performed to suppress a decrease in the adjustment capacity of the temperature adjustment device.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 100 of Embodiment 1.
  • FIG. 3 is a block diagram showing an example of control configuration of the refrigeration cycle apparatus 100;
  • FIG. It is a figure which shows the relationship between the load amount in protection control, and the content of protection control.
  • 4 is a flowchart showing an example of protection control;
  • 4 is a flow chart showing a first control example of valve opening reduction suppression control in Embodiment 1.
  • FIG. 7 is a flow chart showing a second control example of valve-opening-degree-decrease suppression control in Embodiment 1.
  • FIG. 10 is a flow chart showing an example of valve opening reduction suppression control in Embodiment 2.
  • FIG. 1 is an overall configuration diagram of a brine chiller device 101.
  • FIG. 3 is a block diagram showing an example of control configuration of the brine chiller device 101.
  • FIG. 11 is a flow chart showing valve opening reduction suppression control in Embodiment 3.
  • FIG. 1 is an overall configuration diagram of a brin
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1.
  • FIG. 1 functionally shows the connection relationship and arrangement configuration of each device in the refrigeration cycle apparatus 100, and does not necessarily show the arrangement in a physical space.
  • a refrigeration cycle device 100 shown in FIG. 1 is an air-cooled refrigerator equipped with a two-stage compressor 1 .
  • the refrigeration cycle device 100 includes a compressor 1, an oil separator 2, an air-cooled condenser 3, an intercooler 4, a main liquid expansion valve 5, an evaporator 6, an oil cooler 7, an intercooling electronic expansion valve 8, and an oil cooler.
  • electronic expansion valve 9 for motor cooling electronic expansion valve 10 for motor cooling, suction temperature sensor 11, suction pressure sensor 12, intermediate pressure sensor 13, discharge pressure sensor 14, discharge temperature sensor 15, outlet liquid temperature sensor 16, outlet gas temperature sensor 17 , oil supply temperature sensor 18, outlet gas temperature sensor 19, main refrigerant pipe 20, intermediate cooler refrigerant pipe 21, oil cooler refrigerant pipe 22, motor cooler refrigerant pipe 23, oil supply pipe 24, evaporation pressure sensor 27, and outlet A gas temperature sensor 28 is included.
  • the compressor 1, the air-cooled condenser 3, the main liquid expansion valve 5, and the evaporator 6 constitute a basic refrigeration cycle.
  • the refrigerant mainly flows through the compressor 1, the oil separator 2, the air-cooled condenser 3, the intercooler 4, the main liquid expansion valve 5, and the main refrigerant pipe 20, which is a route passing through the evaporator 6. be circulated.
  • the refrigerant is also circulated through the intermediate cooler refrigerant pipe 21 , the oil cooler refrigerant pipe 22 , and the motor cooler refrigerant pipe 23 branched from the main refrigerant pipe 20 .
  • the refrigeration cycle device 100 further includes a control device (the control device 70 shown in FIG. 2) that controls the equipment that configures the refrigeration cycle device 100 .
  • the compressor 1 is provided with an inverter (not shown) for driving the compressor 1 .
  • a blower 30 is provided in the air-cooled condenser 3 .
  • a blower 60 is provided in the evaporator 6 .
  • the evaporator 6 is installed in the freezer warehouse 25 as an indoor unit.
  • a heat source device that houses the compressor 1 and the air-cooled condenser 3 is installed outdoors as an outdoor unit.
  • the freezer warehouse 25 is provided with an internal temperature sensor 26 that detects the temperature inside the freezer warehouse.
  • the suction temperature sensor 11 detects the suction temperature of the compressor 1 .
  • a suction pressure sensor 12 detects the suction pressure of the compressor 1 .
  • Intermediate pressure sensor 13 detects the pressure in the intermediate chamber of compressor 1 .
  • a discharge pressure sensor 14 detects the discharge pressure of the compressor 1 .
  • a discharge temperature sensor 15 detects the discharge temperature of the compressor 1 .
  • the outlet liquid temperature sensor 16 detects the outlet temperature of the main refrigerant in the intercooler 4 .
  • the outlet gas temperature sensor 17 detects the outlet temperature of the gasified refrigerant supplied from the intercooling electronic expansion valve 8 in the intercooler 4 .
  • a supply oil temperature sensor 18 detects the supply temperature of the refrigerating machine oil coming out of the oil cooler 7 .
  • the outlet gas temperature sensor 19 detects the outlet temperature of the gasified refrigerant supplied from the oil cooling electronic expansion valve 9 in the oil cooler 7 .
  • Evaporation pressure sensor 27 detects the evaporation pressure in evaporator 6 .
  • An outlet gas temperature sensor 28 detects the outlet temperature of gasified refrigerant in the evaporator 6 .
  • the control device stores the set temperature set by the user using a remote control (not shown), compares the internal temperature detected by the internal temperature sensor 26 with the stored set temperature, and based on the comparison result , to determine whether to operate or stop the refrigerator.
  • the high-temperature and high-pressure refrigerant gas and refrigerating machine oil discharged from the compressor 1 are separated into refrigerant gas and refrigerating machine oil in the oil separator 2 .
  • Refrigerant gas separated in the oil separator 2 flows into the air-cooled condenser 3 .
  • the air-cooled condenser 3 due to the operation of the inverter-driven blower 30, heat is exchanged between the inflowing refrigerant gas and the outside air, and the refrigerant gas is condensed into a liquid refrigerant.
  • the liquid refrigerant exiting the air-cooled condenser 3 is cooled in the intercooler 4 .
  • the mainstream liquid refrigerant increases the degree of supercooling.
  • the liquid refrigerant that has exited the intercooler 4 is decompressed when passing through the main liquid expansion valve 5 to become a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the evaporator 6 .
  • heat is exchanged between the air inside the freezer warehouse 25 and the refrigerant by the inverter-driven blower 60, whereby the two-phase refrigerant evaporates into refrigerant gas.
  • Refrigerant gas leaving the evaporator 6 is sucked into the compressor 1 .
  • a refrigerant cycle is completed in the refrigerant pipe 20 .
  • a refrigerant that circulates in such a refrigerant cycle is called a mainstream refrigerant.
  • a main refrigerant pipe 20 between the intercooler 4 and the evaporator 6 branches into an intercooler refrigerant pipe 21 , an oil cooler refrigerant pipe 22 , and a motor cooler refrigerant pipe 23 .
  • the intercooler refrigerant pipe 21 is provided so as to reach the intermediate chamber of the compressor 1 from the branch position of the main refrigerant pipe 20 via the intercooling electronic expansion valve 8 and the intercooler 4 .
  • the oil cooler refrigerant pipe 22 is provided so as to reach an intermediate chamber of the compressor 1 from a branch position in the mainstream refrigerant pipe 20 via the oil cooling electronic expansion valve 9 and the oil cooler 7 .
  • the motor cooler refrigerant pipe 23 is provided so as to reach the motor chamber of the compressor 1 from a branch position in the mainstream refrigerant pipe 20 via the motor cooling electronic expansion valve 10 .
  • the liquid refrigerant is cooled by heat exchange between the two-phase refrigerant decompressed by the electronic expansion valve 8 for intercooling and the main liquid refrigerant.
  • the two-phase refrigerant is gasified.
  • the gasified refrigerant coming out of the intercooler 4 passes through the intercooler refrigerant pipe 21 and flows into the intermediate chamber of the compressor 1 .
  • the two-phase refrigerant pressure-reduced by the oil-cooling electronic expansion valve 9 exchanges heat with the refrigerating machine oil coming out of the oil separator 2, thereby cooling the refrigerating machine oil.
  • the two-phase refrigerant is gasified.
  • the gasified refrigerant coming out of the oil cooler 7 passes through the oil cooler refrigerant pipe 22 and flows into the intermediate chamber of the compressor 1 .
  • the refrigerating machine oil cooled by the oil cooler 7 is supplied from the oil cooler 7 to the compressor 1 through the oil supply pipe 24 .
  • the two-phase refrigerant decompressed by the motor cooling electronic expansion valve 10 flows through the motor cooler refrigerant pipe 23 into the motor chamber of the compressor 1 to cool the motor.
  • the oil-cooling electronic expansion valve 9 functions as a temperature adjustment device that adjusts the temperature of the refrigerating machine oil supplied to the compressor 1 by adjusting the valve opening.
  • FIG. 2 is a block diagram showing a control configuration example of the refrigeration cycle apparatus 100. As shown in FIG.
  • the control device 70 includes a CPU (Central Processing Unit) 71, a memory 72 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown) for inputting and outputting various signals, etc. Consists of The CPU 71 develops a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 70 are described.
  • the controller 70 controls each device in the refrigeration cycle apparatus 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • a suction temperature sensor 11 a suction pressure sensor 12, an intermediate pressure sensor 13, a discharge pressure sensor 14, a discharge temperature sensor 15, an outlet liquid temperature sensor 16, an outlet gas temperature sensor 17, an oil supply temperature sensor 18, an outlet gas Detection signals from the temperature sensor 19, the internal temperature sensor 26, the evaporating pressure sensor 27, and the outlet gas temperature sensor 28 are input.
  • the control device 70 executes the following control regarding the compressor 1.
  • the control device 70 compares the target evaporation temperature stored in advance in the memory 72 with the saturation temperature conversion value of the suction pressure detected by the suction pressure sensor 12, that is, the evaporation temperature, and determines the evaporation temperature based on the detected value of the suction pressure. is the target evaporation temperature, the operating frequency (rotational speed) of the compressor 1 is controlled at regular time intervals. For example, if the evaporating temperature based on the detected value is higher than the target evaporating temperature, the controller 70 increases the operating frequency of the compressor 1 to increase the cooling capacity. Controlling the operating frequency of the compressor 1 in this way is performed to adjust the cooling or heating capacity, and is therefore called capacity adjustment or capacity control.
  • the control device 70 performs the following control on the blower 30 of the air-cooled condenser 3.
  • the controller 70 determines the condensing temperature based on the detected value of the discharge pressure based on the difference between the target condensing temperature stored in advance in the memory 72 and the condensing temperature, which is the saturation temperature corresponding to the discharge pressure detected by the discharge pressure sensor 14. is the target condensing temperature, the frequency of the blower 30 of the air-cooled condenser 3 is controlled at regular time intervals.
  • the controller 70 increases the frequency of the fan 30, and if the condensing temperature based on the detected value is lower than the target condensing temperature, the control device 70 increases the frequency of the fan 30. Decrease.
  • the control device 70 performs the following control on the blower 60 of the evaporator 6.
  • the control device 70 compares the internal temperature detected by the internal temperature sensor 26 with the set temperature set by the user using the remote controller, and controls the start/stop of the blower of the evaporator 6 . For example, when the cooling operation is required, electric power is supplied to the motor of the blower 60 to operate the blower 60, and when the compressor 1 is stopped, the electric power supplied to the motor of the blower 60 is cut off to operate the blower 60. stop.
  • the control device 70 performs the following control on the intermediate cooling electronic expansion valve 8.
  • the control device 70 calculates the intercooler superheat degree, which is the difference between the intercooler outlet gas temperature detected by the outlet gas temperature sensor 17 and the saturation temperature corresponding to the intermediate pressure detected by the intermediate pressure sensor 13.
  • the degree of superheat of the intercooler Based on the difference between the degree of superheat of the intercooler and the target degree of superheat of the intercooler pre-stored in the memory 72 of the control device 70, the degree of superheat of the intercooler based on the detected value of the cooler outlet gas temperature reaches the target intercooling
  • the degree of valve opening of the electronic expansion valve 8 for intercooling is obtained by calculation so as to obtain the superheat degree of the unit, and the control to operate the electronic expansion valve 8 for intermediate cooling so as to achieve the degree of valve opening is executed at regular time intervals. do.
  • the control device 70 performs the following control on the oil cooling electronic expansion valve 9. Based on the difference between the discharge temperature detected by the discharge temperature sensor 15 and the target discharge temperature stored in advance in the memory 72 of the control device 70, the control device 70 adjusts the detected discharge temperature to the target discharge temperature.
  • the valve opening degree of the cooling electronic expansion valve 9 is obtained by calculation, and control is executed at regular time intervals to operate the oil cooling electronic expansion valve 9 so as to achieve the valve opening degree.
  • the control device 70 performs the following control on the motor cooling electronic expansion valve 10. Based on the difference between the motor room temperature detected by the motor room temperature sensor (not shown) and the target motor room temperature pre-stored in the memory 72 of the control device 70, the control device 70 sets the detected motor room temperature to the target motor temperature.
  • the valve opening degree of the motor cooling electronic expansion valve 10 is calculated to obtain the room temperature, and control is performed at regular time intervals to operate the motor cooling electronic expansion valve 10 so as to achieve the valve opening degree. .
  • the control device 70 performs the following control on the main liquid expansion valve 5.
  • the control device 70 controls the evaporator outlet gas temperature detected by the outlet gas temperature sensor 28, the saturation temperature corresponding to the evaporation pressure detected by the evaporation pressure sensor 27, that is, the evaporator superheat, which is the difference between the evaporation temperature, Based on the difference from the target evaporator superheat degree stored in advance in the memory 72 of the control device 70, the evaporator superheat degree based on the evaporating pressure detected by the evaporating pressure sensor 27 becomes the target evaporator superheat degree.
  • the valve opening degree of the liquid expansion valve 5 is obtained by calculation, and control is performed at regular time intervals to operate the main liquid expansion valve 5 so as to achieve the valve opening degree.
  • control method for each actuator shown above is a general one, and other control methods may be used as the control method for each actuator.
  • a state in which the amount of load applied to the compressor 1 is excessive is called an overload state.
  • the load amount can be obtained based on the discharge temperature detected by the discharge temperature sensor 15, for example. Specifically, it is determined that the load amount increases as the discharge temperature detected by the discharge temperature sensor 15 increases.
  • the discharge temperature of the compressor 1 may rise abnormally, causing an abnormal condition such as seizure of the compressor 1 .
  • the physical quantities related to the compressor 1, such as temperature, pressure, and operating current, are controlled to prevent an abnormal condition from occurring. Protection control is performed to suppress an increase in the operating capacity of the compressor 1 with the aim of keeping the operating capacity of the compressor 1 below an allowable value for the state.
  • the operating capacity of the compressor 1 is a value indicating the operating capacity such as the discharge capacity of the compressor 1 .
  • the control device changes the operating capacity of the compressor 1 by changing the rotation speed of the compressor 1 with the inverter. In protection control for suppressing an increase in the operating capacity of the compressor 1, at least one of maintaining the operating capacity of the compressor 1 and decreasing the operating capacity of the compressor 1 is executed.
  • FIG. 3 is a diagram showing the relationship between the amount of load and the content of protection control in protection control.
  • the load amount can be indicated based on the discharge temperature detected by the discharge temperature sensor 15, for example. Specifically, when the load increases, the operating frequency of the compressor 1 increases, and the discharge temperature detected by the discharge temperature sensor 15 tends to increase. Accordingly, it can be determined that the load amount of the compressor 1 increases as the discharge temperature detected by the discharge temperature sensor 15 increases.
  • the load amount is determined based on the discharge temperature detected by the discharge temperature sensor 15, for example. As the load increases, the discharge temperature detected by the discharge temperature sensor 15 increases.
  • the load amount threshold used for determining whether or not to perform the protection control is a first load amount upper limit value that is a first threshold value, and a load amount lower than the first load amount upper limit value.
  • a second load amount upper limit which is a second threshold, is set. Since the load amount is determined based on the discharge temperature detected by the discharge temperature sensor 15 , the first load amount upper limit value and the second load amount upper limit value are defined by the discharge temperature of the compressor 1 . For example, when the allowable upper limit value of the discharge temperature of the compressor 1 is 100°C, the first load amount upper limit value is set to 90°C, and the second load amount upper limit value is set to 85°C.
  • the protective control executed by the control device 70 when the discharge temperature detected by the discharge temperature sensor 15 is less than the second load amount upper limit value, the protective control is not executed (unexecuted state or canceled state).
  • the discharge temperature detected by the discharge temperature sensor 15 becomes equal to or higher than the second load upper limit value and less than the first load amount upper limit value due to reasons such as an increase in the discharge temperature during operation of the compressor 1, compression
  • a second protection control that prohibits increasing the operating capacity of the machine 1 is executed.
  • the discharge temperature detected by the discharge temperature sensor 15 becomes equal to or higher than the first load amount upper limit value due to a sudden rise in the discharge temperature or a change in the operating state during the operation of the compressor 1. reduces the working capacity of the compressor 1 .
  • a first protection control is executed.
  • first protection control and the second protection control are common in that they are protection controls that suppress an increase in the operating capacity of the compressor.
  • the oil cooling electronic expansion valve that functions as a temperature adjustment device for the refrigerating machine oil supplied to the compressor 1 as well as the protective control 9 is executed to suppress a decrease in the valve opening degree. Since the valve opening degree is the degree of operation for adjusting the capacity of the valve, it can be said that it is the degree of operation for adjusting the capacity of the temperature control device comprising the oil cooling electronic expansion valve 9 . Therefore, the valve-opening-degree reduction suppression control can also be said to be adjustment-capacity suppression control for suppressing a decrease in the adjustment capacity (valve-opening degree) of the temperature adjustment device.
  • FIG. 4 is a flowchart showing an example of protection control.
  • the CPU 71 executes the following processes.
  • step S1 it is determined whether or not the load amount based on the discharge temperature detected by the discharge temperature sensor 15 is equal to or higher than the second load amount upper limit value (85°C). Specifically, in step S1, it is determined whether or not the detected discharge temperature is equal to or higher than the second load amount upper limit temperature, thereby determining whether the load amount is equal to or higher than the second load amount upper limit value. to decide.
  • the second load amount upper limit value 85°C
  • step S2 If it is determined in step S1 that the load amount is equal to or greater than the second load amount upper limit value, in step S2, the second protection control that prohibits an increase in the operating capacity of the compressor 1 is executed. Specifically, in step S2, an increase in the operating frequency of the compressor 1 is prohibited.
  • step S3 it is determined whether or not the load amount based on the detected value of the discharge temperature is equal to or higher than the first load amount upper limit value (90°C). Specifically, in step S3, it is determined whether or not the detected discharge temperature is equal to or higher than the temperature of the first load amount upper limit value, thereby determining whether or not the load amount is equal to or higher than the first load amount upper limit value. to decide.
  • the first load amount upper limit value 90°C
  • step S4 If it is determined in step S3 that the load amount is equal to or greater than the first load amount upper limit value, in step S4, the first protection control for reducing the operating capacity of the compressor 1 is executed. Specifically, in step S4, the operating frequency of the compressor 1 is lowered.
  • step S1 If it is determined in step S1 described above that the load is not equal to or greater than the second load amount upper limit value, it means that the condition for executing the protection control is not satisfied. It is determined whether or not the operating capacity is suppressed due to the execution of protection control including protection control.
  • step S5 If it is determined in step S5 that the operating capacity is not suppressed, return. On the other hand, if it is determined in step S5 that the operating capacity is being suppressed, then in step S6, the operating capacity is released from the suppressed state, and the process returns. Specifically, in step S6, the protection control being executed is terminated.
  • step S2 prohibits an increase in the operating capacity of the compressor 1.
  • the first protection control for reducing the operating capacity of the compressor 1 is executed in step S4.
  • valve opening reduction suppression control Next, a control example of valve opening reduction suppression control will be described. A first control example and a second control example will be described as control examples of the valve opening reduction suppression control.
  • FIG. 5 is a flow chart showing a first control example of valve-opening reduction suppression control according to the first embodiment.
  • Valve-opening degree reduction suppression control is executed in conjunction with execution of protection control.
  • the CPU 71 executes the following processing.
  • step S11 it is determined whether or not an increase in the operating capacity of the compressor 1 is currently prohibited by protection control. Specifically, in step S11, it is determined whether or not the second protection control executed in step S2 is being performed, thereby determining whether or not the increase in the operating capacity of the compressor 1 is being prohibited. .
  • step S12 the reduction in opening of the oil cooling electronic expansion valve 9 is prohibited.
  • the valve opening degree calculated in the regular control of the oil cooling electronic expansion valve 9 is a value that reduces the valve opening degree
  • the control signal for operating the oil cooling electronic expansion valve 9 is not output.
  • the valve opening degree calculated in the regular control of the oil cooling electronic expansion valve 9 is a value for increasing the valve opening degree
  • a control signal for operating the oil cooling electronic expansion valve 9 is output. In this way, in step S12, the reduction in the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed.
  • step S12 control for decreasing the valve opening degree is prohibited in the regular control of the oil cooling electronic expansion valve 9 .
  • the control for reducing the valve opening degree of the oil cooling electronic expansion valve 9 is prohibited, the temperature of the refrigerating machine oil adjusted by the oil cooling electronic expansion valve 9 is maintained, thereby suppressing the temperature rise of the refrigerating machine oil. be done.
  • step S13 it is determined whether or not the operating capacity of the compressor 1 is currently decreasing due to protection control. Specifically, in step S13, it is determined whether or not the operating capacity of the compressor 1 is decreasing by determining whether or not the first protection control executed in step S4 is being performed. .
  • step S14 control is executed to increase the valve opening of the oil cooling electronic expansion valve 9, and the routine returns. Specifically, in step S14, control is executed to increase the valve opening by a constant opening stored in the memory 72 in advance. In addition, in step S14, control may be executed to increase the valve opening by the opening obtained by multiplying the current valve opening by a constant rate stored in advance in the memory 72 . Thus, in step S14, the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed.
  • step S14 control for increasing the valve opening degree of the oil cooling electronic expansion valve 9 is executed in accordance with the execution of the first protection control.
  • the control for increasing the opening degree of the oil cooling electronic expansion valve 9 is executed, the temperature of the refrigerating machine oil adjusted by the oil cooling electronic expansion valve 9 can be lowered, thereby suppressing the temperature rise of the refrigerating machine oil.
  • the valve opening degree of the oil cooling electronic expansion valve 9 is increased by a fixed amount stored in the memory 72.
  • step S15 If it is determined in step S11 that the increase in the operating capacity of the compressor 1 is not prohibited, in step S15, the valve opening of the oil cooling electronic expansion valve 9 is suppressed in step S12 or step S14. It is determined whether or not it is in the state of
  • step S15 If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is not being suppressed, the process returns. On the other hand, if it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, step After S12 or S14 starts execution of a state in which the degree of opening of the oil cooling electronic expansion valve 9 is suppressed, the protection control being executed ends in Step S6. If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, then in step S16, the valve opening degree of the oil cooling electronic expansion valve 9 is reduced by step S12 or step S14. End the suppressed state and return. As a result, the state in which the degree of opening of the oil-cooling electronic expansion valve 9 is suppressed, which has been executed along with the termination of the protection control, is terminated in response to the termination of the protection control.
  • FIG. 6 is a flow chart showing a second control example of valve opening reduction suppression control according to the first embodiment.
  • the CPU 71 executes the following processing.
  • Step S15a is executed when it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed.
  • step S15a it is determined whether or not the load amount based on the discharge temperature detected by the discharge temperature sensor 15 is less than the third load amount upper limit value.
  • the third load amount upper limit is set to a load amount lower than the second load amount upper limit.
  • the third load amount upper limit is set to 80° C., which is lower than the second load amount upper limit of 85° C., for example.
  • step S15a it is determined whether the load amount is less than the third load amount upper limit value by determining whether the detected discharge temperature is less than the temperature of the third load amount upper limit value. to decide.
  • step S15a If it is determined in step S15a that it is not less than the third load amount upper limit value, return. On the other hand, if it is determined in step S15a that the load amount is less than the third upper limit value, in step S16, the state in which the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed in step S12 or step S14 is ended. , to return. As a result, after the protection control ends, when the load amount of the compressor 1 reaches the third load amount upper limit value lower than the second load amount upper limit value, the protective control is executed along with the ended protection control. The state in which the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed ends.
  • the load amount of the compressor 1 reaches the third load amount upper limit value lower than the second load amount upper limit value. Accordingly, the state in which the degree of valve opening of the oil cooling electronic expansion valve 9 is suppressed, which has been executed along with the finished protection control, ends. Since the state in which the degree of opening of the valve 9 is suppressed ends, when the operating capacity of the compressor 1 increases thereafter, it is possible to make it difficult for the protection control to be executed again. Thereby, the operating state of the refrigeration cycle apparatus can be stabilized more.
  • the refrigerator is configured to include load-side devices such as the main liquid expansion valve 5 and the evaporator 6. It is also possible to apply the protection control and the valve-opening reduction suppression control described above. Furthermore, even in a compression unit that does not have the air-cooled condenser 3, it is possible to apply the above-described protection control and valve opening reduction suppression control. That is, even when the user purchases the condensing unit or compression unit, the load side device and the air-cooled condenser 3, and completes the refrigeration cycle device in the user's equipment, the protection control and valve opening degree described above Decrease suppression control can be applied.
  • Embodiment 1 it is assumed that the control device 70 has a single configuration. good.
  • the load-side controller is electrically connected to the main liquid expansion valve 5, the evaporator 6, the internal temperature sensor 26, and the condensing unit, which are the load-side devices, and detects the detected value of the internal temperature sensor 26 and the setting. Based on the temperature, the outdoor unit (condensing unit) and load side equipment are controlled. In this case, the main liquid expansion valve 5 is controlled by the load side controller. An electronic expansion valve provided in the condensing unit is controlled by the controller of the condensing unit.
  • protection control that suppresses an increase in the operating capacity of the compressor 1 and valve opening reduction suppression control that suppresses an increase in the temperature of the refrigerating machine oil are executed in association with each other.
  • the protection control for suppressing an increase in the operating capacity of the compressor 1 is prevented by controlling the temperature of the refrigerating machine oil using the oil-cooling electronic expansion valve 9. Therefore, it is possible to prevent the protection control from being repeatedly executed and the operating capacity of the compressor 1 from becoming insufficient due to the protection control, so that the operating state of the refrigeration cycle apparatus 100 can be stabilized. .
  • Embodiment 2 In the first embodiment, an example has been described in which protection control and valve opening reduction suppression control are performed simply depending on whether the vehicle is in an overload state.
  • the overload state is determined by the protection control as shown in FIG.
  • Other control examples to be executed will be described.
  • the capacity control increases the operating capacity of the compressor 1 when the evaporating temperature exceeds the aforementioned target evaporating temperature.
  • the state in which the operating capacity of the compressor 1 increases includes operation when the user lowers the set temperature using the aforementioned remote controller, and when the user changes the operating capacity mode such as the intensity of operation using the remote controller. including driving of
  • the second embodiment is premised on executing the protection control shown in the first embodiment in a configuration similar to the hardware configuration shown in the first embodiment.
  • FIG. 7 is a flow chart showing an example of valve opening reduction suppression control in the second embodiment.
  • the same step numbers are used for the steps that perform the same processing as the valve opening reduction suppression control shown in FIGS.
  • the CPU 71 executes the following processing.
  • step S10 it is determined whether or not the operating capacity of the compressor 1 is being increased by controlling the operating capacity.
  • step S17 the same processing as the control shown in FIG. 5 or the same control as the control shown in FIG. process and return.
  • the valve opening reduction suppression control described above with reference to FIG. 5 or 6 is executed.
  • step S10 determines whether the operating capacity of the compressor 1 is being increased by controlling the operating capacity. If it is determined in step S10 that the operating capacity of the compressor 1 is being increased by controlling the operating capacity, it is determined in step S11 whether or not the increase in the operating capacity of the compressor 1 is currently being prohibited by protection control. determine whether
  • step S11 If it is determined in step S11 that the operating capacity of the compressor 1 is prohibited from being increased, the timer T1 is reset in step S11a.
  • the timer T1 is a timer that measures the elapsed time from the end of protection control.
  • step S12 the reduction of the valve opening degree of the oil cooling electronic expansion valve 9 is prohibited.
  • step S13 it is determined whether or not the operating capacity of the compressor 1 is currently decreasing due to protection control.
  • step S13a the valve opening of the oil cooling electronic expansion valve 9 is increased based on the change rate of the operating capacity, and the process returns. Specifically, in step S13a, the valve opening degree is increased by the amount obtained by multiplying the current valve opening degree of the oil cooling electronic expansion valve 9 by the change rate of the operating capacity.
  • F1/F which is the ratio between the operating capacity F before the start of increasing the operating capacity and the target operating capacity F1 that is the target for increasing the operating capacity
  • F2/F which is the ratio between the operating capacity F before the operating capacity starts to increase and the current capacity F2 at the time when the operating capacity starts to decrease due to the execution of the protection control.
  • the rate of change of the operating capacity used in step S13a is not obtained by multiplying the current valve opening degree of the oil cooling electronic expansion valve 9 without changing the rate of change of the operating capacity as described above, but by increasing the operating capacity ( For example, when F1/F is used, the correction ratio obtained by multiplying F1/F-1) by a constant correction coefficient ⁇ stored in the memory 72 is used to determine the valve opening degree of the oil cooling electronic expansion valve 9. may be calculated. That is, the current valve opening of the oil-cooling electronic expansion valve 9 is multiplied by the correction ratio and added to the current valve opening, and the valve opening is increased to the corresponding opening.
  • the correction coefficient ⁇ is set to a numerical value less than 1, such as 0.5, it is possible to prevent the amount of increase in the valve opening degree of the oil-cooling electronic expansion valve 9 in step S13a from becoming too large.
  • the rate of change of the operating capacity used in step S13a may be an indefinite rate of change determined by the operating state as described above, or may be a constant rate of change set in advance.
  • step S13b If it is determined in step S11 that the operating capacity increase of the compressor 1 is not prohibited, it is determined in step S13b whether or not the timer T1 has reached 0 seconds. If it is determined in step S13b that the timer T1 has reached 0 second, in step S13c the timer T1 is started to count the elapsed time from the end of the protection control, and the process proceeds to step S15. On the other hand, if it is determined in step S13b that the timer T1 has not reached 0 seconds, the process proceeds to step S15.
  • step S15 it is determined whether or not the valve opening degree of the oil cooling electronic expansion valve 9 is currently being suppressed in step S12 or step S13a.
  • step S15 If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is not being suppressed, the process returns. On the other hand, if it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, then in step S15b the measured value of the timer T1 becomes equal to or longer than the reference time such as several seconds. determine whether or not there is
  • step S15b If it is determined in step S15b that the measured value of the timer T1 is equal to or greater than the reference time, in step S16, the state in which the degree of opening of the oil cooling electronic expansion valve 9 is suppressed is ended, and the process returns.
  • step S15c the degree of superheat of the oil cooler 7 is set to the degree of superheat of the liquid back-up judgment threshold stored in advance in the memory 72. Determine whether it is less than The degree of superheat of the oil cooler 7 is the ratio between the outlet gas temperature detected by the outlet gas temperature sensor 19 provided on the outlet side of the oil cooler 7 and the intermediate pressure equivalent saturation temperature detected by the intermediate pressure sensor 13. Calculated by difference.
  • step S15c If it is determined in step S15c that the degree of superheat of the oil cooler 7 is not less than the liquid back determination threshold value, the process returns. On the other hand, if it is determined in step S15c that the degree of superheat of the oil cooler 7 is less than the degree of superheat of the liquid backflow determination threshold, it means that the refrigerant that has left the oil cooler 7 tends to be liquid backflow, so step S16. , the state in which the degree of valve opening of the oil cooling electronic expansion valve 9 is suppressed is ended, and the process returns. As a result, when the refrigerant that has left the oil cooler 7 tends to liquid-back, the control for suppressing the liquid-back can be executed with priority over the control for suppressing the decrease in the degree of opening of the valve.
  • valve opening of the oil cooling electronic expansion valve 9 is increased based on the rate of change in the operating capacity of the compressor 1.
  • the amount of change in valve opening can be adjusted according to the amount of change in operating capacity. That is, when the amount of change in the operating capacity of the compressor 1 is large, the current degree of opening of the oil cooling electronic expansion valve 9 can be greatly increased, so that the protection control can be easily terminated, and the compression The operating capacity of the machine 1 can be increased as stably as possible.
  • step S15c the valve-opening degree of the oil-cooling electronic expansion valve 9 is suppressed when the refrigerant exiting the oil cooler 7 tends to flow back. Since the state is ended, the liquid backflow tendency can be improved without being restricted by the valve opening reduction suppression control in the situation where the liquid backflow tendency should be improved.
  • Embodiment 3 describes an example in which the above-described protection control and valve opening reduction suppression control are applied to a brine chiller device that constitutes a refrigeration cycle device.
  • FIG. 8 is an overall configuration diagram of the brine chiller device 101. As shown in FIG. In FIG. 8, devices similar to those in FIG. 1 are given the same reference numerals. In FIG. 8, illustration of a pump for pumping cooling water and brine and an inverter for driving the pump is omitted.
  • a brine chiller device 101 shown in FIG. 8 is a water-cooled cooling system equipped with a two-stage constant-speed compressor 31 .
  • the brine chiller device 101 includes a constant speed compressor 31, an oil separator 2, a water-cooled condenser 32, an intercooler 4, a main liquid expansion valve 5, an electronic expansion valve for intermediate cooling 8, an electronic expansion valve for motor cooling 10, a suction Temperature sensor 11, suction pressure sensor 12, intermediate pressure sensor 13, discharge pressure sensor 14, discharge temperature sensor 15, outlet liquid temperature sensor 16, outlet gas temperature sensor 17, supply oil temperature sensor 18, main refrigerant pipe 20, refrigerant for intercooler Pipe 21, motor cooler refrigerant pipe 23, oil supply pipe 24, evaporating pressure sensor 27, outlet gas temperature sensor 28, cooling water pipe 33, brine cooler 34, brine pipe 35, inlet temperature sensor 36, outlet temperature sensor 37, water cooling It includes a type oil cooler 38 and a cooling water flow control valve 39 for oil cooling.
  • the constant speed compressor 31, the water-cooled condenser 32, the main liquid expansion valve 5, and the brine cooler 34 constitute a basic refrigeration cycle.
  • Refrigerant is circulated mainly in the main refrigerant pipe 20, which is a route passing through the constant speed compressor 31, the oil separator 2, the water-cooled condenser 32, the intercooler 4, the main liquid expansion valve 5, and the brine cooler 34.
  • the refrigerant is also circulated through the intercooler refrigerant pipe 21 and the motor cooler refrigerant pipe 23 branched from the main refrigerant pipe 20 .
  • the brine cooler 34 is a heat exchanger that exchanges heat between the two-phase refrigerant, which has been decompressed by the main liquid expansion valve 5 and has a low pressure and low temperature, and the brine (antifreeze liquid) flowing through the brine pipe 35 .
  • the brine in the brine pipe 35 is pumped by a brine pump (not shown).
  • An inlet temperature sensor 36 detects the temperature of the inlet of the brine in the brine cooler 34 .
  • An outlet temperature sensor 37 detects the outlet temperature of the brine in the brine cooler 34 .
  • the constant speed compressor 31 is not driven by an inverter like the compressor 1 of Embodiments 1 and 2, but is driven by a commercial power source with frequencies of 50 Hz and 60 Hz, for example.
  • the constant speed compressor 31 has a mechanical displacement control mechanism (not shown) used for controlling the discharge amount.
  • the mechanical capacity control mechanism changes the operating capacity of the constant speed compressor 31 by partially bypassing the compressed gas of the constant speed compressor 31 to the suction side inside the constant speed compressor 31 to reduce the discharge amount. possible configuration.
  • the capacity control of the mechanical capacity control mechanism performs proportional control based on, for example, the difference between the brine outlet temperature detected by the outlet temperature sensor 37 and the target brine outlet temperature pre-stored in the memory 82 of the controller 80. It is done by In the displacement control of the mechanical displacement control mechanism, when the brine outlet temperature is higher than the target brine outlet temperature, the displacement of the mechanical displacement control mechanism is increased to increase the compressor discharge amount.
  • the controller changes the operating capacity of compressor 1 by changing the rotation speed of compressor 1 using an inverter.
  • the controller changes the operating capacity of the constant speed compressor 31 by changing the discharge amount of the constant speed compressor 31 using a mechanical capacity control valve.
  • the mechanical capacity control mechanism is also used for protection control. For example, as shown in FIG. 3, when the load exceeds the load upper limit value such as the first load upper limit value and the second load upper limit value, the mechanical capacity control mechanism is used to reduce the operating capacity. As a result, control for reducing the load on the constant speed compressor 31 is executed.
  • the water-cooled condenser 32 is a heat exchanger that condenses the refrigerant gas by exchanging heat between the cooling water flowing through the cooling water pipe 33 and the high-temperature and high-pressure refrigerant gas discharged from the constant speed compressor 31 .
  • the amount of cooling water supplied through the cooling water pipe 33 is controlled by the local system and is generally constant.
  • the cooling water that has been heat-exchanged in the water-cooled condenser 32 and raised in temperature exits the water-cooled condenser 32 and is returned to the water-cooled condenser 32 after radiating heat in a cooling tower in a field facility (not shown).
  • the cooling water in the cooling water pipe 33 is pressure-fed in the cooling water pipe 33 by a cooling water pump (not shown) in on-site equipment, and circulates between the water-cooled condenser 32 and the cooling tower.
  • the water-cooled oil cooler 38 is a heat exchanger that cools the refrigerating machine oil by exchanging heat between the refrigerating machine oil separated from the refrigerant by the oil separator 2 and flowing in and the cooling water flowing through the cooling water pipe 33 .
  • the water-cooled condenser 32, the brine cooler 34, and the water-cooled oil cooler 38 shell-and-tube heat exchangers or plate heat exchangers are used.
  • the water-cooled condenser 32 is controlled to adjust the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 by adjusting the amount of cooling water supplied through the oil cooling cooling water flow rate adjustment valve 39 .
  • the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 may be adjusted by adjusting the temperature of the cooling water supplied through the oil cooling cooling water flow rate adjustment valve 39 . .
  • the brine chiller device 101 further includes a control device (control device 80 shown in FIG. 9) that controls on-site facilities such as the equipment that constitutes the brine chiller device 101 and the cooling water pump.
  • the control device 80 in the brine chiller device 101 shown in FIG. 8 has a function of transmitting an operation command and a stop command to the cooling water pump and an operation command and a stop command to the brine pump.
  • a configuration for transmitting an operation command and a stop command to on-site equipment including a cooling water pump and a brine pump a configuration for outputting commands using a voltage contact or a non-voltage contact is common.
  • the control device 80 can adjust the flow rate of the cooling water by transmitting an analog signal (DC 4-20 mA) as a control signal to the cooling water flow rate adjustment valve 39 for oil cooling.
  • the control device 80 controls the oil cooling water flow rate adjustment valve By outputting a control signal to increase the opening of the valve 39 and increasing the amount of cooling water supplied to the water-cooled oil cooler 38, the refrigerating machine oil supplied from the water-cooled oil cooler 38 to the constant speed compressor 31 is supplied. Control to lower the temperature.
  • the controller 80 controls the oil cooling water flow rate adjustment valve By outputting a control signal to decrease the opening degree of the valve 39 and decreasing the amount of cooling water supplied to the water-cooled oil cooler 38, the refrigerating machine oil supplied from the water-cooled oil cooler 38 to the constant speed compressor 31 is supplied. Control to raise the temperature.
  • the control device 80 controls the supply temperature of the refrigerating machine oil supplied to the constant speed compressor 31 to a target value by executing regular control in which such control is performed at regular time intervals.
  • FIG. 9 is a block diagram showing a control configuration example of the brine chiller device 101. As shown in FIG.
  • the control device 80 includes a CPU 81, a memory 82 (ROM and RAM), an input/output buffer (not shown) for inputting/outputting various signals, and the like.
  • the CPU 81 expands a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 80 are described.
  • the control device 80 controls each device in the brine chiller device 101 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • a suction temperature sensor 11, a suction pressure sensor 12, an intermediate pressure sensor 13, a discharge pressure sensor 14, a discharge temperature sensor 15, an outlet liquid temperature sensor 16, an outlet gas temperature sensor 17, a feed oil temperature sensor 18, an evaporating pressure Detection signals from the sensor 27, the outlet gas temperature sensor 28, the inlet temperature sensor 36, and the outlet temperature sensor 37 are input.
  • the constant speed compressor 31, the oil separator 2, the main liquid expansion valve 5, the intermediate cooling electronic expansion valve 8, the oil cooling cooling water flow rate adjustment valve 39, and the motor cooling electronic expansion valve 10 output a control signal to each of
  • the control device 80 also outputs a control signal to the on-site equipment 90 including the aforementioned cooling water pump and brine pump.
  • the oil cooling cooling water flow rate adjustment valve 39 is configured by an electronic adjustment valve.
  • FIG. 10 is a flowchart showing valve opening reduction suppression control in the third embodiment.
  • Valve-opening degree reduction suppression control is executed in conjunction with execution of protection control.
  • the CPU 81 executes the following processes.
  • step S21 it is determined whether or not the operating capacity of the constant speed compressor 31 is currently being suppressed by protection control. Specifically, in step S21, there is a state in which an increase in the operating capacity of the constant speed compressor 31 is prohibited by the second protection control described above, and a state in which the operating capacity of the constant speed compressor 31 is decreased by the first protection control described above. It is determined whether or not the operating capacity of the constant speed compressor 31 is being suppressed by protection control by determining whether or not at least one of the above applies.
  • step S22 the control target value for the temperature of the oil-cooling cooling water flow rate adjustment valve 39 is set to the first target value. It is determined whether or not.
  • the control target value of the temperature in this case is the control target value of the refueling temperature detected by the refueling temperature sensor 18 .
  • the first target value determined in step S22 is the temperature control target value during normal control before protection control is executed.
  • step S22 If it is determined in step S22 that the temperature control target value is not the first target value, the process returns. On the other hand, if it is determined in step S22 that the temperature control target value is the first target value, then in step S23 the temperature control target value of the oil-cooling cooling water flow rate adjustment valve 39 is set lower than the first target value. Switch to temperature control target value and return. Specifically, in step S23, the control target value may be switched by decreasing the temperature of the first target value by a constant reduction temperature (for example, 5° C.) stored in the memory 82. It may be switched to the second control target value (for example, 45° C.) stored in memory 82 .
  • a constant reduction temperature for example, 5° C.
  • step S24 the control target value of the temperature of the oil-cooling cooling water flow rate adjustment valve 39 is changed to the first target value. , it is determined whether or not it is in the state of being switched. Specifically, in step S24, it is determined whether or not the temperature control target value is being switched in step S23.
  • step S24 If it is determined in step S24 that the control target value is not being switched from the first target value, the process returns. On the other hand, if it is determined in step S24 that the control target value is being switched from the first target value, in step S25 it is determined whether the operating capacity of the constant speed compressor 31 is being reduced by protection control. determine whether
  • step S25 If it is determined in step S25 that the operating capacity of the constant speed compressor 31 is not decreasing, the process returns. On the other hand, if it is determined in step S25 that the operating capacity of the constant speed compressor 31 is being reduced, in step S26 it is determined whether or not the reduction in the operating capacity of the constant speed compressor 31 by protection control has been completed. judge.
  • step S26 If it is determined in step S26 that the reduction in the operating capacity of the constant speed compressor 31 has not been completed, the process returns. On the other hand, if it is determined in step S26 that the reduction in the operating capacity of the constant speed compressor 31 has been completed, then in step S27 the switching of the control target value for the temperature of the cooling water flow rate adjustment valve 39 for oil cooling in step S23 ends. Then, the temperature control target value is returned to the original first target value, and the process returns.
  • the oil cooling water flow rate adjustment valve 39 is turned on in step S23.
  • the temperature control target value of the oil-cooling cooling water flow rate adjustment valve 39 is lowered.
  • Control to return to the original control target value is executed.
  • the control target value of the oil-cooling cooling water flow rate adjustment valve 39 is kept lowered even during the period when the operating capacity of the constant speed compressor 31 needs to be increased. Therefore, in the operation of the constant speed compressor 31, it is possible to avoid the occurrence of unstable operation such as repeating the activation and release of protection control, and the occurrence of insufficient operability of the constant speed compressor 31. can do.
  • Embodiments 1 to 3 the discharge temperature of the compressor 1 and the constant speed compressor 31 is taken as an example of the overload load amount that is the condition for executing the protection control and the valve opening reduction suppression control. , if the overload state can be determined by the load amount indicated by another physical quantity, the other physical quantity may be used to detect the overload state and perform protection control and valve opening reduction suppression control. good.
  • Other physical quantities include, for example, the discharge pressure of the compressor (compressor 1, constant speed compressor 31), the condensation pressure of the condenser (air-cooled condenser 3, water-cooled condenser 32), the condensation temperature of the condenser, the compressor Operating current of (compressor 1, constant speed compressor 31), power consumption of compressor (compressor 1, constant speed compressor 31), and suction superheat of compressor (compressor 1, constant speed compressor 31) degree.
  • the condensing pressure of the condenser air-cooled condenser 3, water-cooled condenser 32
  • the condensing pressure of the condenser becomes a value close to the discharge pressure.
  • These physical quantities are physical quantities whose value increases as the operating capacity of the compressor (compressor 1, constant speed compressor 31) increases.
  • the same logic as the logic may be used to execute the protection control and the valve opening reduction suppression control in the first to third embodiments.
  • the parameter that can determine the overload state from the load amount indicated by the physical quantity may be, for example, one parameter such as the discharge temperature of the compressor (compressor 1, constant speed compressor 31).
  • a plurality of parameters may be used in combination. That is, at least one parameter may be used as the parameter that can determine the overload state from the amount of load indicated by the physical quantity.
  • the physical quantity that changes depending on the temperature of the refrigerating machine oil supplied to the compressor and the load on the compressor Since the physical quantity detected for determining the state is different, the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor and the physical quantity that is detected for determining the load state of the compressor are detected by a plurality of different sensors. may be detected.
  • the physical quantity detected for controlling the temperature adjustment device oil cooling electronic expansion valve 9, oil cooling cooling water flow rate adjustment valve 39) and the compressor (compressor 1, constant speed compressor 31)
  • the physical quantity used to determine the load state may be detected by one sensor, may be detected by a plurality of sensors, or may be detected by at least one sensor. .
  • the discharge temperature Although an example using the discharge temperature detected by the sensor 15 has been shown, the physical quantity detected when controlling the oil cooling electronic expansion valve 9 is not limited to this, and may include the refueling temperature detected by the refueling temperature sensor 18, That is, the temperature of the refrigerating machine oil supplied to the compressor 1 may be used. In this manner, the control device 70 may control the oil cooling electronic expansion valve 9 based on the supply oil temperature detected by the supply oil temperature sensor 18 .
  • the physical quantity detected when controlling the oil cooling water flow rate adjustment valve 39 based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 is: Although an example using the temperature of the refrigerating machine oil supplied to the compressor 1, which is detected by the oil temperature sensor 18, is shown, the present invention is not limited to this, and the oil cooling water flow control valve 39 is controlled.
  • the physical quantity to be detected may be the ejection temperature detected by the ejection temperature sensor 15 . In this manner, the control device 80 may control the oil cooling coolant flow rate adjustment valve 39 based on the discharge temperature detected by the discharge temperature sensor 15 .
  • the physical quantity that can indicate the load quantity instead of using one physical quantity to control the load quantity, for example, the compressor (compressor 1, constant speed compressor 31) discharge temperature, the discharge pressure of the compressor (compressor 1, constant speed compressor 31), and the operating current of the compressor (compressor 1, constant speed compressor 31).
  • An overload amount upper limit value may be set for each physical quantity, and protection control may be executed based on the detection result of each detection means. For example, if protection control is executed due to an increase in operating current during operation, not only the operating current but also the discharge temperature and discharge pressure will simultaneously decrease in accordance with the decrease in operating capacity. In such a case, the capacity of at least one of the electronic expansion valve and the flow control valve may decrease. good.
  • the main liquid expansion valve 5 is regularly controlled based on the degree of superheat at the outlet of the evaporator 6 .
  • the degree of suction superheat becomes too large, the discharge temperature rises and the compressor 1 may be seized. Therefore, when the degree of suction superheat exceeds the upper limit value, protective control may be executed to reduce the operating capacity.
  • the degree of superheat at the outlet of the evaporator also decreases, so the degree of opening of the main liquid expansion valve 5 may decrease.
  • the present disclosure relates to a refrigeration cycle device 100.
  • the refrigerating cycle device 100 includes a compressor 1 that compresses refrigerant, an oil separator 2 that separates the refrigerant discharged from the compressor 1 from refrigerating machine oil, and a refrigerating machine oil separated by the oil separator 2.
  • An oil supply pipe 24 that supplies machine oil to the compressor 1, an oil cooler 7 that cools the refrigerating machine oil that is supplied to the compressor 1, and an oil cooling medium path that supplies refrigerant as a cooling medium to the oil cooler 7.
  • a device refrigerant pipe 22 an oil cooling electronic expansion valve 9 as a temperature adjusting device for adjusting the temperature of the refrigerating machine oil supplied to the compressor 1, at least one sensor such as a discharge temperature sensor 15, and a control device 70 , the control device 70 controls the oil cooling electronic expansion valve 9 based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor 1 detected by the discharge temperature sensor 15, and the discharge temperature
  • the load state of the compressor 1 is determined based on the detected value of the physical quantity used for determining the load state of the compressor 1 detected by the sensor 15, and the load state of the compressor 1 is determined to be the overload state.
  • protection control which is first control for suppressing an increase in the operating capacity of the compressor 1
  • second control which is a second control for suppressing a decrease in the adjustment capacity of the oil cooling electronic expansion valve 9, that is, the valve opening degree, is performed. Controls the degree of opening reduction.
  • the protection control that suppresses an increase in the operating capacity of the compressor 1 and the valve opening reduction suppression control that suppresses a decrease in the valve opening of the oil cooling electronic expansion valve 9 are related. is executed.
  • the protection control for suppressing the increase in the operating capacity of the compressor 1 is prevented from being hindered by the control of the valve opening degree of the oil cooling electronic expansion valve 9. Therefore, it is possible to prevent the protection control from being repeatedly executed and the operating capacity of the compressor 1 from becoming insufficient due to the protection control, so that the operating state of the refrigeration cycle apparatus 100 can be stabilized.
  • the oil cooler 7 is supplied with a refrigerant as a cooling medium, and the oil cooling electronic expansion valve 9 as a temperature control device adjusts the supply amount of the refrigerant supplied to the oil cooler 7 to control the compression.
  • the temperature of the refrigerating machine oil supplied to the machine 1 is adjusted.
  • a water-cooled oil cooler 38 as an oil cooler is supplied with cooling water as a cooling medium, and an oil cooling cooling water flow rate adjustment valve 39 as a temperature adjustment device is supplied to the water-cooled oil cooler 38.
  • the temperature of the refrigerating machine oil supplied to the constant speed compressor 31, which is a compressor, is adjusted by adjusting the supply amount or temperature of the cooling water.
  • control device 70 is in an overload state based on at least one of the discharge temperature, the discharge pressure, the condensing temperature, the operating current, the power consumption, and the degree of suction superheat in the compressor 1. Determine whether or not
  • the compressor 1 such as the feed oil temperature sensor 18 and the discharge temperature sensor 15, Alternatively, at least one of the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 and the temperature of the gas discharged from the compressor 1 may be detected.
  • the control device 70 when executing the protection control as the first control, reduces the valve opening degree of the oil cooling electronic expansion valve 9 as the temperature adjustment device in the valve opening degree decrease suppression control as the second control. to increase
  • control device 70 in the valve-opening-degree reduction suppression control, which is the second control, increases the valve-opening degree of the oil-cooling electronic expansion valve 9 as the temperature adjusting device by a constant increase rate to the current valve-opening degree.
  • the valve opening degree obtained by multiplying is increased (step S13a).
  • control device 70 sets the valve opening degree of the oil cooling electronic expansion valve 9 as the temperature adjustment device to the current valve opening degree in the valve opening degree decrease suppression control, which is the second control.
  • the adjustment capacity is increased by adding degrees (step S14).
  • control device 80 sets the target value of the temperature of the refrigerating machine oil to be adjusted by the oil-cooling cooling water flow rate adjustment valve 39 as the temperature adjustment device in the valve opening reduction suppression control, which is the second control, to the first target value. value to a second target value lower than the first target value (step S23).
  • the control device 70 controls the compressor 1 in the protection control, which is the first control, when the overload state is determined during the operation for increasing the operating capacity of the compressor 1 for adjusting the cooling or heating capacity.
  • the valve opening reduction suppression control which is the second control
  • the valve opening of the oil cooling electronic expansion valve 9 as a temperature adjustment device is set to the current valve opening, and the compressor 1
  • the valve opening degree is increased by multiplying the rate of increase of the operating capacity during the operation in which the operating capacity is to be increased by a fixed rate correction (step S13a).
  • the control device 70 reduces the temperature in the valve opening reduction suppression control, which is the second control.
  • the current valve opening of the oil cooling electronic expansion valve 9 is adjusted to the current valve opening, and the operating capacity of the compressor 1 is increased during operation, and a constant correction is made to the increase rate of the operating capacity.
  • the valve opening degree obtained by multiplying the added ratio is increased to the valve opening degree (step S13a).
  • control device 70 performs the protection control when the end condition of the valve opening reduction suppression control, which is the second control, is satisfied in association with the end condition of the protection control, which is the first control. or when the timer T1 in step S13c has elapsed), the valve opening reduction suppression control is terminated (step S16).
  • the control device 70 changes the load state of the compressor 1 when the load amount based on the discharge temperature detected by a sensor such as the discharge temperature sensor 15 reaches the second load amount upper limit value (85° C.). Detection of the discharge temperature detected by a sensor such as the discharge temperature sensor 15 in a state in which the overload state is determined and the protection control, which is the first control, and the valve opening reduction suppression control, which is the second control, are being executed.
  • the valve opening reduction suppression control which is the second control, is ended. (S15a, S16).
  • control device 80 responds to the completion of the reduction of the operating capacity of the constant speed compressor 31 during the operation of reducing the operating capacity of the constant speed compressor 31 for cooling or heating capacity adjustment. , the valve opening reduction suppression control is ended (step S27).
  • the oil cooler 7 is supplied with a refrigerant as a cooling medium
  • the controller 70 controls the outlet gas temperature detected by the outlet gas temperature sensor 19 provided on the outlet side of the oil cooler 7 and the intermediate pressure
  • the degree of superheat of the refrigerant on the outlet side of the oil cooler 7 obtained by the difference from the equivalent saturation temperature of the intermediate pressure detected by the sensor 13 becomes less than the liquid backflow determination threshold value for determining that liquid backflow occurs
  • the valve opening reduction suppression control which is the second control, ends (steps S15c and S16).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration cycle apparatus (100) is provided with: a compressor (1) for compressing a refrigerant; an oil separator (2) for separating a refrigerating machine oil from the refrigerant discharged from the compressor (1); an oil feeding path (24) for feeding the refrigerating machine oil separated by the oil separator (7) to the compressor (1); an oil cooler (7) for cooling the refrigerating machine oil to be fed to the compressor (1); a cooling medium path (22) for feeding a cooling medium to the oil cooler (7); a temperature regulator (9) for regulating the temperature of the refrigerating machine oil to be fed to the compressor (1); at least one sensor (15); and a control device (70). The control device (70) controls the temperature regulator on the basis of the detection value of a physical quantity which is detected by the sensor (15) and which changes depending on the temperature of the refrigerating machine oil to be fed to the compressor (1), determines the load state of the compressor (1) on the basis of the detection value of the physical quantity which is detected by the sensor (15) and which is for use in determining the load state of the compressor (1), and, when the load state of the compressor (1) is determined as being an overload state, performs first control for inhibiting increase of operation capacity of the compressor (1) and second control for inhibiting decrease of regulation capacity of the temperature regulator (3).

Description

冷凍サイクル装置refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device.
 従来の冷凍サイクル装置では、一般的に、圧縮機の吐出温度、圧縮機の吐出圧力凝縮器での凝縮圧力、圧縮機の運転電流、圧縮機の吸込過熱度などの物理量を検出する。圧縮機の吐出温度は、圧縮機から吐出される冷媒ガスの温度である。圧縮機の吐出圧力は、圧縮機から吐出される冷媒ガスの圧力である。 Conventional refrigeration cycle devices generally detect physical quantities such as the compressor discharge temperature, the compressor discharge pressure, the condensing pressure in the condenser, the operating current of the compressor, and the degree of suction superheat of the compressor. The compressor discharge temperature is the temperature of the refrigerant gas discharged from the compressor. The compressor discharge pressure is the pressure of the refrigerant gas discharged from the compressor.
 従来の冷凍サイクル装置では、このように検出する物理量に関し、冷凍サイクル装置を構成する機器の安定運転に許容し得る閾値を設定し、検出した物理量が閾値を超えた場合に、過負荷状態であると判定する。冷凍サイクル装置は、過負荷状態であると判定した場合に、機器を保護するために圧縮機の運転容量を減少させることにより負荷を減少させる保護制御を行う。圧縮機の運転容量は、圧縮機の運転周波数または機械式容量制御機構に基づく圧縮機の運転能力である。圧縮機の運転容量は、圧縮機の運転周波数を上昇させることに応じて増加する。圧縮機の運転容量は、圧縮機の運転周波数を低下させることに応じて減少する。 In a conventional refrigeration cycle apparatus, a threshold value is set for the physical quantity to be detected so as to allow stable operation of the equipment constituting the refrigeration cycle apparatus. I judge. The refrigeration cycle apparatus performs protective control to reduce the load by reducing the operating capacity of the compressor in order to protect the equipment when it is determined that the apparatus is in an overloaded state. The operating capacity of the compressor is the operating capacity of the compressor based on the operating frequency of the compressor or a mechanical capacity control mechanism. The operating capacity of the compressor increases as the operating frequency of the compressor increases. The operating capacity of the compressor is reduced in response to lowering the operating frequency of the compressor.
 特許文献1には、保護制御の例として、圧縮機の運転電流および圧縮機のケーシングの温度を検出し、検出された温度が設定温度以上に高くなった場合に、運転電流の設定を低下させることにより、圧縮機の温度および運転電流の過度な上昇を防ぐことが記載されている。 As an example of protection control, Patent Document 1 discloses that the operating current of the compressor and the temperature of the casing of the compressor are detected, and when the detected temperature exceeds the set temperature, the setting of the operating current is lowered. It is described that an excessive rise in compressor temperature and operating current is thereby prevented.
 特許文献2には、従来の冷凍サイクル装置として、圧縮機から冷媒とともに吐出される冷凍機油を油分離器で分離し、分離した冷凍機油を、冷媒で冷却する油冷却器によって冷却し、圧縮機の圧縮機中間圧室に注入する構成において、油冷却器に供給する冷媒量を調整する電子膨張弁を制御するものが記載されている。特許文献2では、圧縮機の吐出温度を検出し、検出した吐出温度が目標温度となるように電子膨張弁が制御される。 In Patent Document 2, as a conventional refrigeration cycle device, refrigerating machine oil discharged together with refrigerant from a compressor is separated by an oil separator, the separated refrigerating machine oil is cooled by an oil cooler that cools the refrigerant, and the compressor is In the configuration of injecting refrigerant into the intermediate pressure chamber of the compressor, there is described controlling an electronic expansion valve that adjusts the amount of refrigerant supplied to the oil cooler. In Patent Document 2, the discharge temperature of the compressor is detected, and the electronic expansion valve is controlled so that the detected discharge temperature becomes the target temperature.
特開昭61-272555号公報JP-A-61-272555 特開2011-149565号公報JP 2011-149565 A
 しかし、特許文献1および特許文献2に記載されたような従来の冷凍サイクル装置では、冷凍機油を冷却するために用いられる電子膨張弁の制御が、保護制御とは無関係に実行される。したがって、保護制御の実行中においては、圧縮機の運転容量を減少させることに応じて圧縮機の吐出温度が電子膨張弁の制御の目標温度よりも低下した場合に、保護制御とは関係なく、圧縮機の吐出温度を上昇させるように電子膨張弁が制御されるので保護制御が阻害される。このような制御が行われると、保護制御により減少されるべき負荷が、電子膨張弁の制御によって増加することにより、保護制御が繰り返し実行されるという問題が生じる。そして、保護制御が繰り返し実行されると、圧縮機の運転容量が不足した状態で冷凍サイクル装置が運転され続けられることにより、冷凍サイクル装置の運転能力が低下するという問題が生じる。 However, in conventional refrigeration cycle devices such as those described in Patent Documents 1 and 2, the control of the electronic expansion valve used to cool the refrigerating machine oil is executed independently of the protection control. Therefore, during the execution of the protection control, if the discharge temperature of the compressor drops below the target temperature for controlling the electronic expansion valve in response to the reduction of the operating capacity of the compressor, regardless of the protection control, Since the electronic expansion valve is controlled to raise the discharge temperature of the compressor, the protection control is disturbed. When such control is performed, the load that should be reduced by the protection control is increased by the control of the electronic expansion valve, which causes the problem that the protection control is repeatedly performed. Then, when the protection control is repeatedly executed, the refrigeration cycle apparatus continues to operate in a state where the operating capacity of the compressor is insufficient.
 本開示の冷凍サイクル装置は、上記課題を解決するものであり、運転状態を安定化させることができる冷凍サイクル装置を得ることを目的とする。 The refrigeration cycle apparatus of the present disclosure is intended to solve the above problems, and aims to obtain a refrigeration cycle apparatus capable of stabilizing the operating state.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、冷媒を圧縮する圧縮機と、圧縮機から吐出される冷媒と冷凍機油とを分離する油分離器と、油分離器で分離された冷凍機油を圧縮機に供給する給油経路と、圧縮機に供給する冷凍機油を冷却する油冷却器と、冷却媒体を油冷却器に供給する冷却媒体経路と、圧縮機に供給する冷凍機油の温度を調整する温度調整装置と、少なくとも1つのセンサと、制御装置とを備える。制御装置は、センサにより検出された、圧縮機に供給する冷凍機油の温度により変化する物理量の検出値に基づいて温度調整装置を制御し、センサにより検出された、圧縮機の負荷状態を判定するために用いる物理量の検出値に基づいて圧縮機の負荷状態を判定し、圧縮機の負荷状態が過負荷状態と判定された場合に、圧縮機の運転容量の増加を抑制する第1制御をするとともに、温度調整装置の調整容量の減少を抑制する第2制御をする。 The present disclosure relates to a refrigeration cycle device. A refrigeration cycle device includes a compressor that compresses a refrigerant, an oil separator that separates the refrigerant discharged from the compressor and refrigerating machine oil, and an oil supply path that supplies the refrigerating machine oil separated by the oil separator to the compressor. an oil cooler for cooling the refrigerating machine oil supplied to the compressor; a cooling medium path for supplying the cooling medium to the oil cooler; a temperature adjusting device for adjusting the temperature of the refrigerating machine oil supplied to the compressor; A sensor and a controller are provided. The control device controls the temperature adjustment device based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor detected by the sensor, and determines the load state of the compressor detected by the sensor. determines the load state of the compressor based on the detected value of the physical quantity used for At the same time, a second control is performed to suppress a decrease in the adjustment capacity of the temperature adjustment device.
 本開示の冷凍サイクル装置によれば、制御装置が、圧縮機に供給する冷凍機油の温度により変化する物理量の検出値に基づいて温度調整装置を制御し、圧縮機の負荷状態を判定するために用いる物理量の検出値に基づいて過負荷状態と判定された場合に、圧縮機の運転容量の増加を抑制する第1制御をするとともに、温度調整装置の調整容量の減少を抑制する第2制御をすることにより、圧縮機の運転容量の増加を抑制する第1制御と、温度調整装置の調整容量の減少を抑制する第2制御とが関連して実行される。これにより、圧縮機が過負荷状態となった場合において、圧縮機の運転容量の増加を抑制する第1制御が、温度調整装置の調整容量の制御により妨げられないようになるので、冷凍サイクル装置の運転状態を安定化させることができる。 According to the refrigeration cycle device of the present disclosure, the control device controls the temperature adjustment device based on the detected value of the physical quantity that changes with the temperature of the refrigeration oil supplied to the compressor, and determines the load state of the compressor. When an overload state is determined based on the detected value of the physical quantity used, first control is performed to suppress an increase in the operating capacity of the compressor, and second control is performed to suppress a decrease in the adjustment capacity of the temperature adjustment device. By doing so, the first control for suppressing an increase in the operating capacity of the compressor and the second control for suppressing a decrease in the adjustment capacity of the temperature adjustment device are executed in association with each other. As a result, when the compressor is overloaded, the first control that suppresses the increase in the operating capacity of the compressor is not hindered by the control of the adjustment capacity of the temperature adjustment device. can stabilize the operating state of the
実施の形態1の冷凍サイクル装置100の全体構成図である。1 is an overall configuration diagram of a refrigeration cycle apparatus 100 of Embodiment 1. FIG. 冷凍サイクル装置100の制御構成例を示すブロック図である。3 is a block diagram showing an example of control configuration of the refrigeration cycle apparatus 100; FIG. 保護制御における負荷量と保護制御内容との関係を示す図である。It is a figure which shows the relationship between the load amount in protection control, and the content of protection control. 保護制御の制御例を示すフローチャートである。4 is a flowchart showing an example of protection control; 実施の形態1における弁開度減少抑制制御の第1制御例を示すフローチャートである。4 is a flow chart showing a first control example of valve opening reduction suppression control in Embodiment 1. FIG. 実施の形態1における弁開度減少抑制制御の第2制御例を示すフローチャートである。7 is a flow chart showing a second control example of valve-opening-degree-decrease suppression control in Embodiment 1. FIG. 実施の形態2における弁開度減少抑制制御の制御例を示すフローチャートである。10 is a flow chart showing an example of valve opening reduction suppression control in Embodiment 2. FIG. ブラインチラー装置101の全体構成図である。1 is an overall configuration diagram of a brine chiller device 101. FIG. ブラインチラー装置101の制御構成例を示すブロック図である。3 is a block diagram showing an example of control configuration of the brine chiller device 101. FIG. 実施の形態3における弁開度減少抑制制御を示すフローチャートである。11 is a flow chart showing valve opening reduction suppression control in Embodiment 3. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 [冷凍サイクル装置100の全体構成]
 図1は、実施の形態1の冷凍サイクル装置100の全体構成図である。なお、図1では、冷凍サイクル装置100における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
Embodiment 1.
[Overall Configuration of Refrigeration Cycle Device 100]
FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1. FIG. Note that FIG. 1 functionally shows the connection relationship and arrangement configuration of each device in the refrigeration cycle apparatus 100, and does not necessarily show the arrangement in a physical space.
 図1に示す冷凍サイクル装置100は、二段式の圧縮機1を搭載する空冷式の冷凍機である。冷凍サイクル装置100は、圧縮機1、油分離器2、空冷凝縮器3、中間冷却器4、主液膨張弁5、蒸発器6、油冷却器7、中間冷却用電子膨張弁8、油冷却用電子膨張弁9、モータ冷却用電子膨張弁10、吸込温度センサ11、吸込圧力センサ12、中間圧力センサ13、吐出圧力センサ14、吐出温度センサ15、出口液温度センサ16、出口ガス温度センサ17、給油温度センサ18、出口ガス温度センサ19、主流冷媒配管20、中間冷却器用冷媒配管21、油冷却器用冷媒配管22、モータ冷却器用冷媒配管23、給油配管24、蒸発圧力センサ27、および、出口ガス温度センサ28を含む。 A refrigeration cycle device 100 shown in FIG. 1 is an air-cooled refrigerator equipped with a two-stage compressor 1 . The refrigeration cycle device 100 includes a compressor 1, an oil separator 2, an air-cooled condenser 3, an intercooler 4, a main liquid expansion valve 5, an evaporator 6, an oil cooler 7, an intercooling electronic expansion valve 8, and an oil cooler. electronic expansion valve 9 for motor cooling, electronic expansion valve 10 for motor cooling, suction temperature sensor 11, suction pressure sensor 12, intermediate pressure sensor 13, discharge pressure sensor 14, discharge temperature sensor 15, outlet liquid temperature sensor 16, outlet gas temperature sensor 17 , oil supply temperature sensor 18, outlet gas temperature sensor 19, main refrigerant pipe 20, intermediate cooler refrigerant pipe 21, oil cooler refrigerant pipe 22, motor cooler refrigerant pipe 23, oil supply pipe 24, evaporation pressure sensor 27, and outlet A gas temperature sensor 28 is included.
 冷凍サイクル装置100では、圧縮機1、空冷凝縮器3、主液膨張弁5、および、蒸発器6により、基本的な冷凍サイクルが構成される。冷凍サイクル装置100では、主として、圧縮機1、油分離器2、空冷凝縮器3、中間冷却器4、主液膨張弁5、および、蒸発器6を通る経路である主流冷媒配管20において冷媒が循環させられる。このような経路以外に、冷凍サイクル装置100では、主流冷媒配管20から分岐した中間冷却器用冷媒配管21、油冷却器用冷媒配管22、および、モータ冷却器用冷媒配管23でも冷媒が循環させられる。 In the refrigeration cycle device 100, the compressor 1, the air-cooled condenser 3, the main liquid expansion valve 5, and the evaporator 6 constitute a basic refrigeration cycle. In the refrigeration cycle device 100, the refrigerant mainly flows through the compressor 1, the oil separator 2, the air-cooled condenser 3, the intercooler 4, the main liquid expansion valve 5, and the main refrigerant pipe 20, which is a route passing through the evaporator 6. be circulated. In addition to these routes, in the refrigeration cycle apparatus 100 , the refrigerant is also circulated through the intermediate cooler refrigerant pipe 21 , the oil cooler refrigerant pipe 22 , and the motor cooler refrigerant pipe 23 branched from the main refrigerant pipe 20 .
 冷凍サイクル装置100では、冷凍サイクル装置100を構成する機器を制御する制御装置(図2に示す制御装置70)がさらに含まれる。圧縮機1には、圧縮機1を駆動するためのインバータ(図示省略)が設けられる。空冷凝縮器3には、送風機30が設けられる。蒸発器6には、送風機60が設けられる。 The refrigeration cycle device 100 further includes a control device (the control device 70 shown in FIG. 2) that controls the equipment that configures the refrigeration cycle device 100 . The compressor 1 is provided with an inverter (not shown) for driving the compressor 1 . A blower 30 is provided in the air-cooled condenser 3 . A blower 60 is provided in the evaporator 6 .
 蒸発器6は、室内機として、冷凍倉庫25に設けられる。圧縮機1および空冷凝縮器3を格納する熱源機は、室外機として、屋外に設置されている。冷凍倉庫25には、冷凍倉庫内の温度を検出する庫内温度センサ26が設けられる。 The evaporator 6 is installed in the freezer warehouse 25 as an indoor unit. A heat source device that houses the compressor 1 and the air-cooled condenser 3 is installed outdoors as an outdoor unit. The freezer warehouse 25 is provided with an internal temperature sensor 26 that detects the temperature inside the freezer warehouse.
 吸込温度センサ11は、圧縮機1の吸い込み温度を検出する。吸込圧力センサ12は、圧縮機1の吸い込み圧力を検出する。中間圧力センサ13は、圧縮機1の中間室の圧力を検出する。吐出圧力センサ14は、圧縮機1の吐出圧力を検出する。吐出温度センサ15は、圧縮機1の吐出温度を検出する。出口液温度センサ16は、中間冷却器4における主流の冷媒の出口温度を検出する。出口ガス温度センサ17は、中間冷却器4における中間冷却用電子膨張弁8から供給されてガス化された冷媒の出口温度を検出する。給油温度センサ18は、油冷却器7から出た冷凍機油の供給温度を検出する。出口ガス温度センサ19は、油冷却器7における油冷却用電子膨張弁9から供給されてガス化された冷媒の出口温度を検出する。蒸発圧力センサ27は、蒸発器6での蒸発圧力を検出する。出口ガス温度センサ28は、蒸発器6におけるガス化された冷媒の出口温度を検出する。 The suction temperature sensor 11 detects the suction temperature of the compressor 1 . A suction pressure sensor 12 detects the suction pressure of the compressor 1 . Intermediate pressure sensor 13 detects the pressure in the intermediate chamber of compressor 1 . A discharge pressure sensor 14 detects the discharge pressure of the compressor 1 . A discharge temperature sensor 15 detects the discharge temperature of the compressor 1 . The outlet liquid temperature sensor 16 detects the outlet temperature of the main refrigerant in the intercooler 4 . The outlet gas temperature sensor 17 detects the outlet temperature of the gasified refrigerant supplied from the intercooling electronic expansion valve 8 in the intercooler 4 . A supply oil temperature sensor 18 detects the supply temperature of the refrigerating machine oil coming out of the oil cooler 7 . The outlet gas temperature sensor 19 detects the outlet temperature of the gasified refrigerant supplied from the oil cooling electronic expansion valve 9 in the oil cooler 7 . Evaporation pressure sensor 27 detects the evaporation pressure in evaporator 6 . An outlet gas temperature sensor 28 detects the outlet temperature of gasified refrigerant in the evaporator 6 .
 制御装置は、リモコン(図示省略)により使用者が設定した設定温度を記憶し、庫内温度センサ26で検出された庫内温度と、記憶した設定温度とを比較し、その比較結果に基づいて、冷凍機の運転と停止とを判断する。 The control device stores the set temperature set by the user using a remote control (not shown), compares the internal temperature detected by the internal temperature sensor 26 with the stored set temperature, and based on the comparison result , to determine whether to operate or stop the refrigerator.
 [冷凍サイクル装置100の動作例]
 次に、冷却運転における冷凍サイクル装置100の動作を説明する。
[Example of operation of refrigeration cycle device 100]
Next, the operation of the refrigeration cycle apparatus 100 in cooling operation will be described.
 圧縮機1から吐出された高温および高圧の冷媒ガスおよび冷凍機油は、油分離器2において、冷媒ガスと冷凍機油とに分離される。油分離器2において分離された冷媒ガスは、空冷凝縮器3に流入する。空冷凝縮器3では、インバータ駆動式の送風機30の動作により、流入した冷媒ガスと外気とが熱交換し、冷媒ガスが凝縮して液冷媒となる。空冷凝縮器3を出た液冷媒は、中間冷却器4において冷却される。中間冷却器4においては、主流の液冷媒が過冷却度を増す。 The high-temperature and high-pressure refrigerant gas and refrigerating machine oil discharged from the compressor 1 are separated into refrigerant gas and refrigerating machine oil in the oil separator 2 . Refrigerant gas separated in the oil separator 2 flows into the air-cooled condenser 3 . In the air-cooled condenser 3, due to the operation of the inverter-driven blower 30, heat is exchanged between the inflowing refrigerant gas and the outside air, and the refrigerant gas is condensed into a liquid refrigerant. The liquid refrigerant exiting the air-cooled condenser 3 is cooled in the intercooler 4 . In the intercooler 4, the mainstream liquid refrigerant increases the degree of supercooling.
 中間冷却器4を出た液冷媒は、主液膨張弁5を通過する際に減圧されることにより低圧の二相冷媒となる。低圧の二相冷媒となった冷媒は、蒸発器6に流入する。蒸発器6では、インバータ駆動式の送風機60により冷凍倉庫25における庫内空気と冷媒とが熱交換することにより二相冷媒が蒸発して冷媒ガスとなる。蒸発器6を出た冷媒ガスは、圧縮機1に吸入される。このように、圧縮機1から吐出された冷媒が、油分離器2、空冷凝縮器3、中間冷却器4、主液膨張弁5、および、蒸発器6を圧縮機1に戻ることにより、主流冷媒配管20において冷媒サイクルが一巡する。このような冷媒サイクルで一巡する冷媒は、主流の冷媒と呼ばれる。 The liquid refrigerant that has exited the intercooler 4 is decompressed when passing through the main liquid expansion valve 5 to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows into the evaporator 6 . In the evaporator 6, heat is exchanged between the air inside the freezer warehouse 25 and the refrigerant by the inverter-driven blower 60, whereby the two-phase refrigerant evaporates into refrigerant gas. Refrigerant gas leaving the evaporator 6 is sucked into the compressor 1 . In this way, the refrigerant discharged from the compressor 1 returns to the compressor 1 through the oil separator 2, the air-cooled condenser 3, the intercooler 4, the main liquid expansion valve 5, and the evaporator 6. A refrigerant cycle is completed in the refrigerant pipe 20 . A refrigerant that circulates in such a refrigerant cycle is called a mainstream refrigerant.
 中間冷却器4と蒸発器6との間の主流冷媒配管20は、中間冷却器用冷媒配管21、油冷却器用冷媒配管22、および、モータ冷却器用冷媒配管23に分岐する。中間冷却器用冷媒配管21は、主流冷媒配管20での分岐位置から、中間冷却用電子膨張弁8および中間冷却器4を経て、圧縮機1の中間室まで到達するように設けられる。油冷却器用冷媒配管22は、主流冷媒配管20での分岐位置から、油冷却用電子膨張弁9および油冷却器7を経て、圧縮機1の中間室まで到達するように設けられる。モータ冷却器用冷媒配管23は、主流冷媒配管20での分岐位置から、モータ冷却用電子膨張弁10を経て、圧縮機1のモータ室まで到達するように設けられる。 A main refrigerant pipe 20 between the intercooler 4 and the evaporator 6 branches into an intercooler refrigerant pipe 21 , an oil cooler refrigerant pipe 22 , and a motor cooler refrigerant pipe 23 . The intercooler refrigerant pipe 21 is provided so as to reach the intermediate chamber of the compressor 1 from the branch position of the main refrigerant pipe 20 via the intercooling electronic expansion valve 8 and the intercooler 4 . The oil cooler refrigerant pipe 22 is provided so as to reach an intermediate chamber of the compressor 1 from a branch position in the mainstream refrigerant pipe 20 via the oil cooling electronic expansion valve 9 and the oil cooler 7 . The motor cooler refrigerant pipe 23 is provided so as to reach the motor chamber of the compressor 1 from a branch position in the mainstream refrigerant pipe 20 via the motor cooling electronic expansion valve 10 .
 中間冷却器4では、中間冷却用電子膨張弁8において減圧された二相冷媒と、主流の液冷媒とが熱交換することにより液冷媒が冷却される。中間冷却器4では、二相冷媒がガス化する。中間冷却器4から出たガス化した冷媒は、中間冷却器用冷媒配管21を通過して圧縮機1の中間室へ流入する。油冷却器7では、油冷却用電子膨張弁9において減圧された二相冷媒と、油分離器2を出た冷凍機油とが熱交換することにより冷凍機油が冷却される。油冷却器7では、二相冷媒がガス化する。油冷却器7から出たガス化した冷媒は、油冷却器用冷媒配管22を通過し、圧縮機1の中間室へ流入する。一方、油冷却器7で冷却された冷凍機油は、油冷却器7から出て給油配管24を通過して圧縮機1に供給される。モータ冷却用電子膨張弁10において減圧された二相冷媒は、モータ冷却器用冷媒配管23を通って圧縮機1のモータ室へ流入し、モータを冷却する。油冷却用電子膨張弁9は、弁開度を調整することに基づいて、圧縮機1に供給する冷凍機油の温度を調整する温度調整装置としての機能を有する。 In the intercooler 4, the liquid refrigerant is cooled by heat exchange between the two-phase refrigerant decompressed by the electronic expansion valve 8 for intercooling and the main liquid refrigerant. In the intercooler 4, the two-phase refrigerant is gasified. The gasified refrigerant coming out of the intercooler 4 passes through the intercooler refrigerant pipe 21 and flows into the intermediate chamber of the compressor 1 . In the oil cooler 7, the two-phase refrigerant pressure-reduced by the oil-cooling electronic expansion valve 9 exchanges heat with the refrigerating machine oil coming out of the oil separator 2, thereby cooling the refrigerating machine oil. In the oil cooler 7, the two-phase refrigerant is gasified. The gasified refrigerant coming out of the oil cooler 7 passes through the oil cooler refrigerant pipe 22 and flows into the intermediate chamber of the compressor 1 . On the other hand, the refrigerating machine oil cooled by the oil cooler 7 is supplied from the oil cooler 7 to the compressor 1 through the oil supply pipe 24 . The two-phase refrigerant decompressed by the motor cooling electronic expansion valve 10 flows through the motor cooler refrigerant pipe 23 into the motor chamber of the compressor 1 to cool the motor. The oil-cooling electronic expansion valve 9 functions as a temperature adjustment device that adjusts the temperature of the refrigerating machine oil supplied to the compressor 1 by adjusting the valve opening.
 [制御構成例]
 次に、冷凍サイクル装置100の制御構成例を説明する。図2は、冷凍サイクル装置100の制御構成例を示すブロック図である。
[Control configuration example]
Next, a control configuration example of the refrigeration cycle apparatus 100 will be described. FIG. 2 is a block diagram showing a control configuration example of the refrigeration cycle apparatus 100. As shown in FIG.
 制御装置70は、CPU(Central Processing Unit)71と、メモリ72(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU71は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置70の処理手順が記されたプログラムである。制御装置70は、これらのプログラムに従って、冷凍サイクル装置100における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 70 includes a CPU (Central Processing Unit) 71, a memory 72 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input/output buffer (not shown) for inputting and outputting various signals, etc. Consists of The CPU 71 develops a program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 70 are described. The controller 70 controls each device in the refrigeration cycle apparatus 100 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 制御装置70においては、吸込温度センサ11、吸込圧力センサ12、中間圧力センサ13、吐出圧力センサ14、吐出温度センサ15、出口液温度センサ16、出口ガス温度センサ17、給油温度センサ18、出口ガス温度センサ19、庫内温度センサ26、蒸発圧力センサ27、および、出口ガス温度センサ28のそれぞれの検出信号が入力される。 In the control device 70, a suction temperature sensor 11, a suction pressure sensor 12, an intermediate pressure sensor 13, a discharge pressure sensor 14, a discharge temperature sensor 15, an outlet liquid temperature sensor 16, an outlet gas temperature sensor 17, an oil supply temperature sensor 18, an outlet gas Detection signals from the temperature sensor 19, the internal temperature sensor 26, the evaporating pressure sensor 27, and the outlet gas temperature sensor 28 are input.
 制御装置70においては、圧縮機1、油分離器2、空冷凝縮器3、主液膨張弁5、中間冷却用電子膨張弁8、油冷却用電子膨張弁9、および、モータ冷却用電子膨張弁10のそれぞれに制御信号を出力する。 In the control device 70, the compressor 1, the oil separator 2, the air-cooled condenser 3, the main liquid expansion valve 5, the intermediate cooling electronic expansion valve 8, the oil cooling electronic expansion valve 9, and the motor cooling electronic expansion valve 10, and outputs a control signal to each of them.
 次に、制御装置70のCPU71による圧縮機1などのアクチュエータの制御例について説明する。以下においては、制御の一例として、一定時間間隔でアクチュエータを操作する比例制御を実行する場合の制御例を説明する。このように一定時間間隔で実行する制御は、定時制御と呼ばれる。 Next, an example of control of actuators such as the compressor 1 by the CPU 71 of the control device 70 will be described. In the following, as an example of control, an example of control in the case of executing proportional control in which actuators are operated at regular time intervals will be described. Such control that is executed at regular time intervals is called regular control.
 制御装置70は、圧縮機1に関して次のような制御を実行する。制御装置70は、メモリ72に予め記憶された目標蒸発温度と、吸込圧力センサ12が検出した吸込圧力の飽和温度換算値、すなわち、蒸発温度とを比較し、吸込圧力の検出値に基づく蒸発温度が目標蒸発温度となるように、一定の時間間隔で圧縮機1の運転周波数(回転数)を制御する。たとえば、制御装置70は、検出値に基づく蒸発温度が目標蒸発温度より高ければ圧縮機1の運転周波数を増加させ、冷却能力を増加させる。このように圧縮機1の運転周波数を制御することは、冷却または暖房の能力を調整するために実行されるので、能力調整または容量制御と呼ばれる。 The control device 70 executes the following control regarding the compressor 1. The control device 70 compares the target evaporation temperature stored in advance in the memory 72 with the saturation temperature conversion value of the suction pressure detected by the suction pressure sensor 12, that is, the evaporation temperature, and determines the evaporation temperature based on the detected value of the suction pressure. is the target evaporation temperature, the operating frequency (rotational speed) of the compressor 1 is controlled at regular time intervals. For example, if the evaporating temperature based on the detected value is higher than the target evaporating temperature, the controller 70 increases the operating frequency of the compressor 1 to increase the cooling capacity. Controlling the operating frequency of the compressor 1 in this way is performed to adjust the cooling or heating capacity, and is therefore called capacity adjustment or capacity control.
 制御装置70は、空冷凝縮器3の送風機30に関して次のような制御を実行する。制御装置70は、メモリ72に予め記憶された目標凝縮温度と、吐出圧力センサ14が検出した吐出圧力に対応する飽和温度である凝縮温度との差に基づき、吐出圧力の検出値に基づく凝縮温度が目標凝縮温度となるように、一定の時間間隔で空冷凝縮器3の送風機30の周波数を制御する。たとえば、制御装置70は、検出値に基づく凝縮温度が目標凝縮温度よりも高ければ、送風機30の周波数を増加させ、検出値に基づく凝縮温度が目標凝縮温度よりも低ければ、送風機30の周波数を減少させる。 The control device 70 performs the following control on the blower 30 of the air-cooled condenser 3. The controller 70 determines the condensing temperature based on the detected value of the discharge pressure based on the difference between the target condensing temperature stored in advance in the memory 72 and the condensing temperature, which is the saturation temperature corresponding to the discharge pressure detected by the discharge pressure sensor 14. is the target condensing temperature, the frequency of the blower 30 of the air-cooled condenser 3 is controlled at regular time intervals. For example, if the condensing temperature based on the detected value is higher than the target condensing temperature, the controller 70 increases the frequency of the fan 30, and if the condensing temperature based on the detected value is lower than the target condensing temperature, the control device 70 increases the frequency of the fan 30. Decrease.
 制御装置70は、蒸発器6の送風機60に関して次のような制御を実行する。制御装置70は、庫内温度センサ26が検出した庫内温度と、使用者がリモコンにより設定した設定温度とを比較し、蒸発器6の送風機の発停を制御する。たとえば、冷却運転が必要なときは当該送風機60のモータに電力を供給して送風機60を運転させ、圧縮機1の停止中には当該送風機60のモータに供給する電力を遮断して送風機60を停止させる。 The control device 70 performs the following control on the blower 60 of the evaporator 6. The control device 70 compares the internal temperature detected by the internal temperature sensor 26 with the set temperature set by the user using the remote controller, and controls the start/stop of the blower of the evaporator 6 . For example, when the cooling operation is required, electric power is supplied to the motor of the blower 60 to operate the blower 60, and when the compressor 1 is stopped, the electric power supplied to the motor of the blower 60 is cut off to operate the blower 60. stop.
 制御装置70は、中間冷却用電子膨張弁8に関して次のような制御を実行する。制御装置70は、出口ガス温度センサ17が検出した中間冷却器出口ガス温度と、中間圧力センサ13が検出した中間圧力に対応する飽和温度との差である中間冷却器過熱度を演算し、その中間冷却器過熱度と、制御装置70のメモリ72に予め記憶された目標中間冷却器過熱度との差に基づいて、冷却器出口ガス温度の検出値に基づく中間冷却器過熱度が目標中間冷却器過熱度となるようにする中間冷却用電子膨張弁8の弁開度を演算により求め、その弁開度となるように中間冷却用電子膨張弁8を動作させる制御を一定の時間間隔で実行する。 The control device 70 performs the following control on the intermediate cooling electronic expansion valve 8. The control device 70 calculates the intercooler superheat degree, which is the difference between the intercooler outlet gas temperature detected by the outlet gas temperature sensor 17 and the saturation temperature corresponding to the intermediate pressure detected by the intermediate pressure sensor 13. Based on the difference between the degree of superheat of the intercooler and the target degree of superheat of the intercooler pre-stored in the memory 72 of the control device 70, the degree of superheat of the intercooler based on the detected value of the cooler outlet gas temperature reaches the target intercooling The degree of valve opening of the electronic expansion valve 8 for intercooling is obtained by calculation so as to obtain the superheat degree of the unit, and the control to operate the electronic expansion valve 8 for intermediate cooling so as to achieve the degree of valve opening is executed at regular time intervals. do.
 制御装置70は、油冷却用電子膨張弁9に関して次のような制御を実行する。制御装置70は、吐出温度センサ15が検出した吐出温度と、制御装置70のメモリ72に予め記憶した目標吐出温度との差に基づいて、検出した吐出温度が目標吐出温度となるようにする油冷却用電子膨張弁9の弁開度を演算により求め、その弁開度となるように油冷却用電子膨張弁9を動作させる制御を一定の時間間隔で実行する。 The control device 70 performs the following control on the oil cooling electronic expansion valve 9. Based on the difference between the discharge temperature detected by the discharge temperature sensor 15 and the target discharge temperature stored in advance in the memory 72 of the control device 70, the control device 70 adjusts the detected discharge temperature to the target discharge temperature. The valve opening degree of the cooling electronic expansion valve 9 is obtained by calculation, and control is executed at regular time intervals to operate the oil cooling electronic expansion valve 9 so as to achieve the valve opening degree.
 制御装置70は、モータ冷却用電子膨張弁10に関して次のような制御を実行する。制御装置70は、図示を省略するモータ室温度センサが検出したモータ室温度と、制御装置70のメモリ72に予め記憶した目標モータ室温度との差に基づいて、検出したモータ室温度が目標モータ室温度となるようにするモータ冷却用電子膨張弁10の弁開度を演算により求め、その弁開度となるようにモータ冷却用電子膨張弁10を動作させる制御を一定の時間間隔で実行する。 The control device 70 performs the following control on the motor cooling electronic expansion valve 10. Based on the difference between the motor room temperature detected by the motor room temperature sensor (not shown) and the target motor room temperature pre-stored in the memory 72 of the control device 70, the control device 70 sets the detected motor room temperature to the target motor temperature. The valve opening degree of the motor cooling electronic expansion valve 10 is calculated to obtain the room temperature, and control is performed at regular time intervals to operate the motor cooling electronic expansion valve 10 so as to achieve the valve opening degree. .
 制御装置70は、主液膨張弁5に関して次のような制御を実行する。制御装置70は、出口ガス温度センサ28が検出した蒸発器出口ガス温度と、蒸発圧力センサ27が検出した蒸発圧力に対応する飽和温度、すなわち、蒸発温度との差である蒸発器過熱度と、制御装置70のメモリ72に予め記憶された目標蒸発器過熱度との差に基づいて、蒸発圧力センサ27が検出した蒸発圧力に基づく蒸発器過熱度が目標蒸発器過熱度となるようにする主液膨張弁5の弁開度を演算により求め、その弁開度となるように主液膨張弁5を動作させる制御を一定の時間間隔で実行する。 The control device 70 performs the following control on the main liquid expansion valve 5. The control device 70 controls the evaporator outlet gas temperature detected by the outlet gas temperature sensor 28, the saturation temperature corresponding to the evaporation pressure detected by the evaporation pressure sensor 27, that is, the evaporator superheat, which is the difference between the evaporation temperature, Based on the difference from the target evaporator superheat degree stored in advance in the memory 72 of the control device 70, the evaporator superheat degree based on the evaporating pressure detected by the evaporating pressure sensor 27 becomes the target evaporator superheat degree. The valve opening degree of the liquid expansion valve 5 is obtained by calculation, and control is performed at regular time intervals to operate the main liquid expansion valve 5 so as to achieve the valve opening degree.
 以上に示した各アクチュエータの制御方法は一般的なものであり、各アクチュエータの制御方法として、その他の制御方法を用いてもよい。 The control method for each actuator shown above is a general one, and other control methods may be used as the control method for each actuator.
 [保護制御例]
 次に、保護制御の制御例を説明する。
[Example of protection control]
Next, an example of protection control will be described.
 圧縮機1にかかる負荷量が過剰となった状態は、過負荷状態と呼ばれる。負荷量は、たとえば吐出温度センサ15が検出した吐出温度に基づいて得ることができる。具体的に、負荷量は、吐出温度センサ15が検出した吐出温度が高くなるにしたがって高くなると判断される。圧縮機1が過負荷状態になると、たとえば圧縮機1の吐出温度が異常に上昇して圧縮機1が焼き付くなどの異常状態が生じるおそれがある。 A state in which the amount of load applied to the compressor 1 is excessive is called an overload state. The load amount can be obtained based on the discharge temperature detected by the discharge temperature sensor 15, for example. Specifically, it is determined that the load amount increases as the discharge temperature detected by the discharge temperature sensor 15 increases. When the compressor 1 is overloaded, the discharge temperature of the compressor 1 may rise abnormally, causing an abnormal condition such as seizure of the compressor 1 .
 圧縮機1が過負荷状態となった場合には、異常状態が生じるおそれがある圧縮機1を保護するために、圧縮機1に関する温度、圧力、運転電流などの物理量を、異常状態とならない運転状態として許容し得る値以下に抑えることを目的として、圧縮機1の運転容量の上昇を抑制する保護制御が実行される。圧縮機1の運転容量は、圧縮機1の吐出量容量などの運転能力を示す値であり、インバータ駆動式の圧縮機1では、圧縮機1の運転周波数(回転数)により規定される。制御装置は、圧縮機1の回転数をインバータによって変化させることにより圧縮機1の運転容量を変化させる。圧縮機1の運転容量の上昇を抑制する保護制御においては、圧縮機1の運転容量の維持、または、圧縮機1の運転容量の低下のうち、少なくとも一方を実行する。 When the compressor 1 is overloaded, in order to protect the compressor 1, which may cause an abnormal condition, the physical quantities related to the compressor 1, such as temperature, pressure, and operating current, are controlled to prevent an abnormal condition from occurring. Protection control is performed to suppress an increase in the operating capacity of the compressor 1 with the aim of keeping the operating capacity of the compressor 1 below an allowable value for the state. The operating capacity of the compressor 1 is a value indicating the operating capacity such as the discharge capacity of the compressor 1 . The control device changes the operating capacity of the compressor 1 by changing the rotation speed of the compressor 1 with the inverter. In protection control for suppressing an increase in the operating capacity of the compressor 1, at least one of maintaining the operating capacity of the compressor 1 and decreasing the operating capacity of the compressor 1 is executed.
 図3は、保護制御における負荷量と保護制御内容との関係を示す図である。制御装置70が実行する保護制御においては、2段階の保護制御が実行される。負荷量は、たとえば吐出温度センサ15が検出した吐出温度に基づいて示すことができる。具体的に、負荷量が上昇すると圧縮機1の運転周波数が上昇することにより、吐出温度センサ15が検出した吐出温度が高くなる傾向がある。これにより、吐出温度センサ15が検出した吐出温度が高くなるにしたがって、圧縮機1の負荷量が高くなると判断できる。 FIG. 3 is a diagram showing the relationship between the amount of load and the content of protection control in protection control. In the protection control executed by the control device 70, two stages of protection control are executed. The load amount can be indicated based on the discharge temperature detected by the discharge temperature sensor 15, for example. Specifically, when the load increases, the operating frequency of the compressor 1 increases, and the discharge temperature detected by the discharge temperature sensor 15 tends to increase. Accordingly, it can be determined that the load amount of the compressor 1 increases as the discharge temperature detected by the discharge temperature sensor 15 increases.
 図3において、負荷量は、たとえば吐出温度センサ15が検出した吐出温度に基づいて判断されるものである。負荷量が上昇するにしたがって、吐出温度センサ15が検出した吐出温度が高くなる。保護制御においては、保護制御を実行するか否かを判定するために用いる負荷量の閾値として、第1の閾値である第1負荷量上限値と、第1負荷量上限値より負荷量が低い第2の閾値である第2負荷量上限値とが設定されている。負荷量は、吐出温度センサ15が検出した吐出温度に基づいて判断されるので、第1負荷量上限値と、第2負荷量上限値とは、圧縮機1の吐出温度で規定される。たとえば、圧縮機1の吐出温度の許容上限値が100℃の場合において、第1負荷量上限値は90℃に設定され、第2負荷量上限値は85℃に設定される。 In FIG. 3, the load amount is determined based on the discharge temperature detected by the discharge temperature sensor 15, for example. As the load increases, the discharge temperature detected by the discharge temperature sensor 15 increases. In the protection control, the load amount threshold used for determining whether or not to perform the protection control is a first load amount upper limit value that is a first threshold value, and a load amount lower than the first load amount upper limit value. A second load amount upper limit, which is a second threshold, is set. Since the load amount is determined based on the discharge temperature detected by the discharge temperature sensor 15 , the first load amount upper limit value and the second load amount upper limit value are defined by the discharge temperature of the compressor 1 . For example, when the allowable upper limit value of the discharge temperature of the compressor 1 is 100°C, the first load amount upper limit value is set to 90°C, and the second load amount upper limit value is set to 85°C.
 制御装置70が実行する保護制御において、吐出温度センサ15が検出した吐出温度が第2負荷量上限値未満の場合は、保護制御が実行されない状態(未実行状態、または、解除状態)である。圧縮機1の運転中に吐出温度が上昇したことなどの理由により、吐出温度センサ15が検出した吐出温度が第2負荷上限値以上であり第1負荷量上限値未満となった場合は、圧縮機1の運転容量を増加させることを禁止する第2保護制御が実行される。そして、圧縮機1の運転中に吐出温度の急上昇、または、運転状態の変化が生じたことなどの理由により、吐出温度センサ15が検出した吐出温度が第1負荷量上限値以上となった場合は、圧縮機1の運転容量を減少させる。第1保護制御が実行される。 In the protective control executed by the control device 70, when the discharge temperature detected by the discharge temperature sensor 15 is less than the second load amount upper limit value, the protective control is not executed (unexecuted state or canceled state). When the discharge temperature detected by the discharge temperature sensor 15 becomes equal to or higher than the second load upper limit value and less than the first load amount upper limit value due to reasons such as an increase in the discharge temperature during operation of the compressor 1, compression A second protection control that prohibits increasing the operating capacity of the machine 1 is executed. Then, when the discharge temperature detected by the discharge temperature sensor 15 becomes equal to or higher than the first load amount upper limit value due to a sudden rise in the discharge temperature or a change in the operating state during the operation of the compressor 1. reduces the working capacity of the compressor 1 . A first protection control is executed.
 このように、制御装置70が実行する保護制御においては、負荷量の高さに基づいて、第1保護制御および第2保護制御という、制御内容が異なる2段階の保護制御が実行される。このような第1保護制御および第2保護制御は、圧縮機の運転容量の上昇を抑制する保護制御であることで共通している。このような圧縮機の運転容量の上昇を抑制する保護制御が実行される場合には、保護制御とともに、圧縮機1に供給する冷凍機油の温度調整装置としての機能を有する油冷却用電子膨張弁9の弁開度の減少を抑制する弁開度減少抑制制御が実行される。弁開度は、弁の容量を調整する動作度合いあるので、油冷却用電子膨張弁9よりなる温度調整装置の容量を調整する動作度合いであると言える。したがって、弁開度減少抑制制御は、温度調整装置の調整容量(弁開度)の減少を抑制する調整容量抑制制御ということもできる。 Thus, in the protection control performed by the control device 70, two stages of protection control, the first protection control and the second protection control, with different control contents are performed based on the magnitude of the load amount. Such first protection control and second protection control are common in that they are protection controls that suppress an increase in the operating capacity of the compressor. When such protective control that suppresses an increase in the operating capacity of the compressor is executed, the oil cooling electronic expansion valve that functions as a temperature adjustment device for the refrigerating machine oil supplied to the compressor 1 as well as the protective control 9 is executed to suppress a decrease in the valve opening degree. Since the valve opening degree is the degree of operation for adjusting the capacity of the valve, it can be said that it is the degree of operation for adjusting the capacity of the temperature control device comprising the oil cooling electronic expansion valve 9 . Therefore, the valve-opening-degree reduction suppression control can also be said to be adjustment-capacity suppression control for suppressing a decrease in the adjustment capacity (valve-opening degree) of the temperature adjustment device.
 [保護制御および弁開度減少抑制制御の制御内容]
 次に、制御装置70のCPU71が実行する保護制御および弁開度減少抑制制御の制御内容を説明する。
[Control contents of protection control and valve opening reduction suppression control]
Next, the control contents of the protection control and the valve opening reduction suppression control executed by the CPU 71 of the control device 70 will be described.
 (保護制御例)
 図4は、保護制御の制御例を示すフローチャートである。保護制御において、CPU71は以下のような処理を実行する。
(Example of protection control)
FIG. 4 is a flowchart showing an example of protection control. In protection control, the CPU 71 executes the following processes.
 ステップS1においては、吐出温度センサ15による吐出温度の検出値に基づく負荷量が、第2負荷量上限値(85℃)以上であるか否かを判断する。具体的に、ステップS1では、検出された吐出温度が第2負荷量上限値の温度以上であるか否かを判断することにより、負荷量が第2負荷量上限値以上であるか否かを判断する。 In step S1, it is determined whether or not the load amount based on the discharge temperature detected by the discharge temperature sensor 15 is equal to or higher than the second load amount upper limit value (85°C). Specifically, in step S1, it is determined whether or not the detected discharge temperature is equal to or higher than the second load amount upper limit temperature, thereby determining whether the load amount is equal to or higher than the second load amount upper limit value. to decide.
 ステップS1で第2負荷量上限値以上であると判断された場合は、ステップS2において、圧縮機1の運転容量の増加を禁止する第2保護制御を実行させる。具体的に、ステップS2では、圧縮機1の運転周波数の上昇が禁止される。 If it is determined in step S1 that the load amount is equal to or greater than the second load amount upper limit value, in step S2, the second protection control that prohibits an increase in the operating capacity of the compressor 1 is executed. Specifically, in step S2, an increase in the operating frequency of the compressor 1 is prohibited.
 次に、ステップS3においては、吐出温度の検出値に基づく負荷量が、第1負荷量上限値(90℃)以上であるか否かを判断する。具体的に、ステップS3では、検出された吐出温度が第1負荷量上限値の温度以上であるか否かを判断することにより、負荷量が第1負荷量上限値以上であるか否かを判断する。 Next, in step S3, it is determined whether or not the load amount based on the detected value of the discharge temperature is equal to or higher than the first load amount upper limit value (90°C). Specifically, in step S3, it is determined whether or not the detected discharge temperature is equal to or higher than the temperature of the first load amount upper limit value, thereby determining whether or not the load amount is equal to or higher than the first load amount upper limit value. to decide.
 ステップS3で第1負荷量上限値以上であると判断された場合は、ステップS4において、圧縮機1の運転容量を減少させる第1保護制御を実行させる。具体的に、ステップS4では、圧縮機1の運転周波数を低下させる。 If it is determined in step S3 that the load amount is equal to or greater than the first load amount upper limit value, in step S4, the first protection control for reducing the operating capacity of the compressor 1 is executed. Specifically, in step S4, the operating frequency of the compressor 1 is lowered.
 前述のステップS1で第2負荷量上限値以上ではないと判断された場合は、保護制御を実行させる条件が成立していない状態であるので、ステップS5において、現在、第1保護制御および第2保護制御を含む保護制御が実行中であることにより運転容量が抑制されている状態であるか否かを判定する。 If it is determined in step S1 described above that the load is not equal to or greater than the second load amount upper limit value, it means that the condition for executing the protection control is not satisfied. It is determined whether or not the operating capacity is suppressed due to the execution of protection control including protection control.
 ステップS5で運転容量が抑制されていない状態であると判断した場合は、リターンする。一方、ステップS5で運転容量が抑制されている状態であると判断した場合は、ステップS6において、運転容量が抑制されている状態を解除して終了させ、リターンする。具体的に、ステップS6では、実行中の保護制御を終了させる。 If it is determined in step S5 that the operating capacity is not suppressed, return. On the other hand, if it is determined in step S5 that the operating capacity is being suppressed, then in step S6, the operating capacity is released from the suppressed state, and the process returns. Specifically, in step S6, the protection control being executed is terminated.
 図4に示す保護制御では、圧縮機1の負荷容量が第2負荷量上限値以上であり第1負荷量上限値未満である場合に、ステップS2によって圧縮機1の運転容量の増加を禁止する第2保護制御を実行し、圧縮機1の負荷容量が第1負荷量上限値以上である場合に、ステップS4によって圧縮機1の運転容量を減少させる第1保護制御が実行される。これにより、保護制御では、圧縮機1の負荷容量が過負荷状態と判定された場合に、圧縮機1の運転容量の上昇を抑制する第1制御が実行されることとなる。 In the protection control shown in FIG. 4, when the load capacity of the compressor 1 is greater than or equal to the second load amount upper limit value and less than the first load amount upper limit value, step S2 prohibits an increase in the operating capacity of the compressor 1. When the second protection control is executed and the load capacity of the compressor 1 is equal to or greater than the first load amount upper limit value, the first protection control for reducing the operating capacity of the compressor 1 is executed in step S4. As a result, in the protection control, when the load capacity of the compressor 1 is determined to be in an overload state, the first control that suppresses the increase in the operating capacity of the compressor 1 is executed.
 次に、弁開度減少抑制制御の制御例を説明する。弁開度減少抑制制御の制御例としては、第1制御例と第2制御例とを説明する。 Next, a control example of valve opening reduction suppression control will be described. A first control example and a second control example will be described as control examples of the valve opening reduction suppression control.
 (弁開度減少抑制制御の第1制御例)
 図5は、実施の形態1における弁開度減少抑制制御の第1制御例を示すフローチャートである。弁開度減少抑制制御は、保護制御が実行されることに伴って実行される。弁開度減少抑制制御の第1制御例において、CPU71は以下のような処理を実行する。
(First control example of valve opening reduction suppression control)
FIG. 5 is a flow chart showing a first control example of valve-opening reduction suppression control according to the first embodiment. Valve-opening degree reduction suppression control is executed in conjunction with execution of protection control. In the first control example of the valve opening reduction suppression control, the CPU 71 executes the following processing.
 ステップS11においては、現在、保護制御による圧縮機1の運転容量の増加禁止中であるか否かを判定する。具体的に、ステップS11では、ステップS2により実行される第2保護制御が実行中であるか否かを判断することにより、圧縮機1の運転容量の増加禁止中であるか否かを判断する。 In step S11, it is determined whether or not an increase in the operating capacity of the compressor 1 is currently prohibited by protection control. Specifically, in step S11, it is determined whether or not the second protection control executed in step S2 is being performed, thereby determining whether or not the increase in the operating capacity of the compressor 1 is being prohibited. .
 ステップS11で圧縮機1の運転容量の増加禁止状態中であると判断された場合は、ステップS12において、油冷却用電子膨張弁9の弁開度の減少を禁止する。たとえば、油冷却用電子膨張弁9の定時制御において演算された弁開度が、弁開度を減少させる値である場合は、油冷却用電子膨張弁9を動作させる制御信号が出力されない。一方、油冷却用電子膨張弁9の定時制御において演算された弁開度が、弁開度を増加させる値である場合は、油冷却用電子膨張弁9を動作させる制御信号が出力される。このように、ステップS12では、油冷却用電子膨張弁9の弁開度の減少が抑制された状態となる。 If it is determined in step S11 that the operating capacity of the compressor 1 is prohibited from being increased, then in step S12, the reduction in opening of the oil cooling electronic expansion valve 9 is prohibited. For example, if the valve opening degree calculated in the regular control of the oil cooling electronic expansion valve 9 is a value that reduces the valve opening degree, the control signal for operating the oil cooling electronic expansion valve 9 is not output. On the other hand, when the valve opening degree calculated in the regular control of the oil cooling electronic expansion valve 9 is a value for increasing the valve opening degree, a control signal for operating the oil cooling electronic expansion valve 9 is output. In this way, in step S12, the reduction in the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed.
 このように、ステップS12においては、油冷却用電子膨張弁9の定時制御において、弁開度を減少させる制御が禁止される。油冷却用電子膨張弁9の弁開度を減少させる制御が禁止されると、油冷却用電子膨張弁9が調整する冷凍機油の温度が維持されることにより、冷凍機油の温度の上昇が抑制される。 As described above, in step S12, control for decreasing the valve opening degree is prohibited in the regular control of the oil cooling electronic expansion valve 9 . When the control for reducing the valve opening degree of the oil cooling electronic expansion valve 9 is prohibited, the temperature of the refrigerating machine oil adjusted by the oil cooling electronic expansion valve 9 is maintained, thereby suppressing the temperature rise of the refrigerating machine oil. be done.
 ステップS13においては、現在、保護制御による圧縮機1の運転容量の減少状態中であるか否かを判定する。具体的に、ステップS13では、ステップS4により実行される第1保護制御が実行中であるか否かを判断することにより、圧縮機1の運転容量の減少状態中であるか否かを判断する。 In step S13, it is determined whether or not the operating capacity of the compressor 1 is currently decreasing due to protection control. Specifically, in step S13, it is determined whether or not the operating capacity of the compressor 1 is decreasing by determining whether or not the first protection control executed in step S4 is being performed. .
 ステップS13で運転容量の減少状態中ではないと判断した場合は、リターンする。一方。ステップS13で運転容量の減少状態中であると判断した場合は、ステップS14において、油冷却用電子膨張弁9の弁開度を増加させる制御を実行し、リターンする。具体的に、ステップS14においては、メモリ72に予め記憶された一定の開度だけ弁開度を増加させる制御を実行する。なお、ステップS14においては、現在の弁開度に、メモリ72に予め記憶された一定の割合を乗じて得られる開度だけ弁開度を増加させる制御を実行してもよい。このように、ステップS14では、油冷却用電子膨張弁9の弁開度が抑制された状態となる。 If it is determined in step S13 that the operating capacity is not in a decreasing state, return. on the other hand. If it is determined in step S13 that the operating capacity is decreasing, in step S14 control is executed to increase the valve opening of the oil cooling electronic expansion valve 9, and the routine returns. Specifically, in step S14, control is executed to increase the valve opening by a constant opening stored in the memory 72 in advance. In addition, in step S14, control may be executed to increase the valve opening by the opening obtained by multiplying the current valve opening by a constant rate stored in advance in the memory 72 . Thus, in step S14, the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed.
 このようにステップS14においては、第1保護制御が実行されていることに応じて、油冷却用電子膨張弁9の弁開度を増加させる制御が実行される。油冷却用電子膨張弁9の弁開度を増加させる制御が実行されると、油冷却用電子膨張弁9が調整する冷凍機油の温度が低下し得ることにより、冷凍機油の温度の上昇が抑制され得る。具体的に、ステップS14では、油冷却用電子膨張弁9の弁開度がメモリ72に記憶された一定量だけ増加させられる。 Thus, in step S14, control for increasing the valve opening degree of the oil cooling electronic expansion valve 9 is executed in accordance with the execution of the first protection control. When the control for increasing the opening degree of the oil cooling electronic expansion valve 9 is executed, the temperature of the refrigerating machine oil adjusted by the oil cooling electronic expansion valve 9 can be lowered, thereby suppressing the temperature rise of the refrigerating machine oil. can be Specifically, in step S14, the valve opening degree of the oil cooling electronic expansion valve 9 is increased by a fixed amount stored in the memory 72. FIG.
 ステップS11で圧縮機1の運転容量の増加禁止状態中ではないと判断された場合は、ステップS15において、現在が、ステップS12またはステップS14により油冷却用電子膨張弁9の弁開度が抑制された状態中であるか否かを判定する。 If it is determined in step S11 that the increase in the operating capacity of the compressor 1 is not prohibited, in step S15, the valve opening of the oil cooling electronic expansion valve 9 is suppressed in step S12 or step S14. It is determined whether or not it is in the state of
 ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中ではないと判断した場合は、リターンする。一方、ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中であると判断した場合は、第1保護制御または第2保護制御のような保護制御の実行に伴ってステップS12またはステップS14により油冷却用電子膨張弁9の弁開度が抑制された状態の実行が開始された後に、ステップS6により実行中の保護制御が終了した状態である。ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中であると判断した場合は、ステップS16において、ステップS12またはステップS14による油冷却用電子膨張弁9の弁開度が抑制された状態を終了させ、リターンする。これにより、保護制御が終了したことに応じて、終了した保護制御に伴って実行されていた油冷却用電子膨張弁9の弁開度が抑制された状態が終了される。 If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is not being suppressed, the process returns. On the other hand, if it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, step After S12 or S14 starts execution of a state in which the degree of opening of the oil cooling electronic expansion valve 9 is suppressed, the protection control being executed ends in Step S6. If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, then in step S16, the valve opening degree of the oil cooling electronic expansion valve 9 is reduced by step S12 or step S14. End the suppressed state and return. As a result, the state in which the degree of opening of the oil-cooling electronic expansion valve 9 is suppressed, which has been executed along with the termination of the protection control, is terminated in response to the termination of the protection control.
 (弁開度減少抑制制御の第2制御例)
 図6は、実施の形態1における弁開度減少抑制制御の第2制御例を示すフローチャートである。弁開度減少抑制制御の第2制御例において、CPU71は以下のような処理を実行する。
(Second control example of valve opening reduction suppression control)
FIG. 6 is a flow chart showing a second control example of valve opening reduction suppression control according to the first embodiment. In the second control example of the valve opening reduction suppression control, the CPU 71 executes the following processing.
 図6に示す第2制御例が、図5に示す第1制御例と異なるのは、ステップS15aである。ステップS15aは、ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中であると判断した場合に実行される。ステップS15aにおいては、吐出温度センサ15による吐出温度の検出値に基づく負荷量が、第3負荷量上限値未満であるか否かを判断する。第3負荷量上限値は、第2負荷量上限値よりも低い負荷量に設定されている。第3負荷量上限値は、たとえば、第2負荷量上限値の85℃よりも低い80℃に設定されている。具体的に、ステップS15aでは、検出された吐出温度が第3負荷量上限値の温度未満であるか否かを判断することにより、負荷量が第3負荷量上限値未満であるか否かを判断する。 The second control example shown in FIG. 6 differs from the first control example shown in FIG. 5 in step S15a. Step S15a is executed when it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed. In step S15a, it is determined whether or not the load amount based on the discharge temperature detected by the discharge temperature sensor 15 is less than the third load amount upper limit value. The third load amount upper limit is set to a load amount lower than the second load amount upper limit. The third load amount upper limit is set to 80° C., which is lower than the second load amount upper limit of 85° C., for example. Specifically, in step S15a, it is determined whether the load amount is less than the third load amount upper limit value by determining whether the detected discharge temperature is less than the temperature of the third load amount upper limit value. to decide.
 ステップS15aで第3負荷量上限値未満ではないと判断された場合は、リターンする。一方、ステップS15aで第3負荷量上限値未満であると判断された場合は、ステップS16において、ステップS12またはステップS14による油冷却用電子膨張弁9の弁開度が抑制された状態を終了させ、リターンする。これにより、保護制御が終了した後、圧縮機1の負荷量が第2負荷量上限値よりも低い第3負荷量上限値となったことに応じて、終了した保護制御に伴って実行されていた油冷却用電子膨張弁9の弁開度が抑制された状態が終了する。 If it is determined in step S15a that it is not less than the third load amount upper limit value, return. On the other hand, if it is determined in step S15a that the load amount is less than the third upper limit value, in step S16, the state in which the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed in step S12 or step S14 is ended. , to return. As a result, after the protection control ends, when the load amount of the compressor 1 reaches the third load amount upper limit value lower than the second load amount upper limit value, the protective control is executed along with the ended protection control. The state in which the valve opening degree of the oil cooling electronic expansion valve 9 is suppressed ends.
 このような弁開度減少抑制制御の第2制御例では、保護制御が終了した後、圧縮機1の負荷量が第2負荷量上限値よりも低い第3負荷量上限値となったことに応じて、終了した保護制御に伴って実行されていた油冷却用電子膨張弁9の弁開度が抑制された状態が終了するので、より低い吐出温度である状態において、油冷却用電子膨張弁9の弁開度が抑制された状態が終了するので、その後に圧縮機1の運転容量が増加した場合に、保護制御が再度実行されにくくなるようにすることができる。これにより、冷凍サイクル装置の運転状態をより安定化させることができる。 In the second control example of such valve opening reduction suppression control, after the protection control ends, the load amount of the compressor 1 reaches the third load amount upper limit value lower than the second load amount upper limit value. Accordingly, the state in which the degree of valve opening of the oil cooling electronic expansion valve 9 is suppressed, which has been executed along with the finished protection control, ends. Since the state in which the degree of opening of the valve 9 is suppressed ends, when the operating capacity of the compressor 1 increases thereafter, it is possible to make it difficult for the protection control to be executed again. Thereby, the operating state of the refrigeration cycle apparatus can be stabilized more.
 実施の形態1においては、冷凍機が主液膨張弁5および蒸発器6などの負荷側装置も備える構成を示しているが、主液膨張弁5と蒸発器6を有さないコンデンシングユニットにおいても、前述した保護制御および弁開度減少抑制制御を適用することが可能である。また、さらに空冷凝縮器3を有さない圧縮ユニットにおいても、前述した保護制御および弁開度減少抑制制御を適用することが可能である。すわなち、使用者がコンデンシングユニットまたは圧縮ユニットと、負荷側装置および空冷凝縮器3とを購入し、使用者設備において冷凍サイクル装置を完成させる場合においても、前述した保護制御および弁開度減少抑制制御を適用することが可能である。 In Embodiment 1, the refrigerator is configured to include load-side devices such as the main liquid expansion valve 5 and the evaporator 6. It is also possible to apply the protection control and the valve-opening reduction suppression control described above. Furthermore, even in a compression unit that does not have the air-cooled condenser 3, it is possible to apply the above-described protection control and valve opening reduction suppression control. That is, even when the user purchases the condensing unit or compression unit, the load side device and the air-cooled condenser 3, and completes the refrigeration cycle device in the user's equipment, the protection control and valve opening degree described above Decrease suppression control can be applied.
 本実施の形態1においては、制御装置70が1つの構成を想定しているが、制御装置は、コンデンシングユニットに備える制御装置と、負荷側コントローラとを組み合わせた構成の制御装置を用いてもよい。負荷側コントローラは、負荷側装置である主液膨張弁5、蒸発器6、および、庫内温度センサ26、および、コンデンシングユニットと電気的に接続され、庫内温度センサ26の検出値と設定温度とに基づき、室外機(コンデンシングユニット)および負荷側装置を制御する。この場合、主液膨張弁5は負荷側コントローラにて制御される。コンデンシングユニットに備える電子膨張弁はコンデンシングユニットの制御装置で制御する。 In Embodiment 1, it is assumed that the control device 70 has a single configuration. good. The load-side controller is electrically connected to the main liquid expansion valve 5, the evaporator 6, the internal temperature sensor 26, and the condensing unit, which are the load-side devices, and detects the detected value of the internal temperature sensor 26 and the setting. Based on the temperature, the outdoor unit (condensing unit) and load side equipment are controlled. In this case, the main liquid expansion valve 5 is controlled by the load side controller. An electronic expansion valve provided in the condensing unit is controlled by the controller of the condensing unit.
 以上に説明した実施の形態1では、圧縮機1の運転容量の上昇を抑制する保護制御と、冷凍機油の温度の上昇を抑制する弁開度減少抑制制御とが関連して実行される。これにより、圧縮機1が過負荷状態となった場合において、圧縮機1の運転容量の上昇を抑制する保護制御が、油冷却用電子膨張弁9を用いた冷凍機油の温度の制御により妨げられないようになるので、保護制御が繰り返し実行されたり、保護制御により圧縮機1の運転容量が不足したりすることを防ぐことができるため、冷凍サイクル装置100の運転状態を安定化させることができる。 In the first embodiment described above, protection control that suppresses an increase in the operating capacity of the compressor 1 and valve opening reduction suppression control that suppresses an increase in the temperature of the refrigerating machine oil are executed in association with each other. As a result, when the compressor 1 is overloaded, the protection control for suppressing an increase in the operating capacity of the compressor 1 is prevented by controlling the temperature of the refrigerating machine oil using the oil-cooling electronic expansion valve 9. Therefore, it is possible to prevent the protection control from being repeatedly executed and the operating capacity of the compressor 1 from becoming insufficient due to the protection control, so that the operating state of the refrigeration cycle apparatus 100 can be stabilized. .
 実施の形態2.
 実施の形態1では、単に過負荷状態であるか否かにより保護制御および弁開度減少抑制制御を行う例について説明した。実施の形態2においては、容量制御による圧縮機1の運転容量の増加の際に、図4に示すような保護制御により過負荷状態と判定され、前述の保護制御が実行されている状態において、実行するその他の制御例を説明する。容量制御によって圧縮機1の運転容量が増加するのは、蒸発温度が前述の目標蒸発温度を上回る状態である。圧縮機1の運転容量が増加する状態には、前述のリモコンにより使用者が設定温度を引き下げた場合の運転、および、前述のリモコンにより使用者が運転の強弱などの運転能力モードを変更した場合の運転なども含まれる。
Embodiment 2.
In the first embodiment, an example has been described in which protection control and valve opening reduction suppression control are performed simply depending on whether the vehicle is in an overload state. In the second embodiment, when the operating capacity of the compressor 1 is increased by capacity control, the overload state is determined by the protection control as shown in FIG. Other control examples to be executed will be described. The capacity control increases the operating capacity of the compressor 1 when the evaporating temperature exceeds the aforementioned target evaporating temperature. The state in which the operating capacity of the compressor 1 increases includes operation when the user lowers the set temperature using the aforementioned remote controller, and when the user changes the operating capacity mode such as the intensity of operation using the remote controller. including driving of
 実施の形態2は、実施の形態1に示したハードウェア構成と同様の構成において、実施の形態1に示した保護制御を実行することを前提とする。 The second embodiment is premised on executing the protection control shown in the first embodiment in a configuration similar to the hardware configuration shown in the first embodiment.
 図7は、実施の形態2における弁開度減少抑制制御の制御例を示すフローチャートである。図7においては、図5および図6に示す弁開度減少抑制制御と同様の処理を実行するステップについては、同じステップ番号を記載している。図7の弁開度減少抑制制御において、CPU71は、次のような処理を実行する。 FIG. 7 is a flow chart showing an example of valve opening reduction suppression control in the second embodiment. In FIG. 7, the same step numbers are used for the steps that perform the same processing as the valve opening reduction suppression control shown in FIGS. In the valve opening reduction suppression control of FIG. 7, the CPU 71 executes the following processing.
 ステップS10において、運転容量の制御による圧縮機1の運転容量の増加中であるか否かを判定する。ステップS10で運転容量の制御による圧縮機1の運転容量の増加中ではないと判断した場合は、ステップS17において、図5に示した制御と同様の処理、または、図6に示した制御と同様の処理を実行し、リターンする。これにより、運転容量の制御による圧縮機1の運転容量の増加中ではない場合は、前述の図5または図6で説明した弁開度減少抑制制御が実行されることとなる。 In step S10, it is determined whether or not the operating capacity of the compressor 1 is being increased by controlling the operating capacity. When it is determined in step S10 that the operating capacity of the compressor 1 is not being increased by controlling the operating capacity, in step S17, the same processing as the control shown in FIG. 5 or the same control as the control shown in FIG. process and return. As a result, when the operating capacity of the compressor 1 is not being increased by controlling the operating capacity, the valve opening reduction suppression control described above with reference to FIG. 5 or 6 is executed.
 一方、ステップS10で運転容量の制御による圧縮機1の運転容量の増加中であると判断した場合は、ステップS11において、現在、保護制御による圧縮機1の運転容量の増加禁止中であるか否かを判定する。 On the other hand, if it is determined in step S10 that the operating capacity of the compressor 1 is being increased by controlling the operating capacity, it is determined in step S11 whether or not the increase in the operating capacity of the compressor 1 is currently being prohibited by protection control. determine whether
 ステップS11で圧縮機1の運転容量の増加禁止状態中であると判断された場合は、ステップS11aにおいて、タイマT1をリセットする。タイマT1は、保護制御の終了時からの経過時間を計時するタイマである。ステップS12においては、油冷却用電子膨張弁9の弁開度の減少を禁止する。ステップS13においては、現在、保護制御による圧縮機1の運転容量の減少状態中であるか否かを判定する。 If it is determined in step S11 that the operating capacity of the compressor 1 is prohibited from being increased, the timer T1 is reset in step S11a. The timer T1 is a timer that measures the elapsed time from the end of protection control. At step S12, the reduction of the valve opening degree of the oil cooling electronic expansion valve 9 is prohibited. In step S13, it is determined whether or not the operating capacity of the compressor 1 is currently decreasing due to protection control.
 ステップS13で保護制御による運転容量の減少状態中であると判断した場合は、ステップS13aにおいて、運転容量の変化率に基づき、油冷却用電子膨張弁9の弁開度を増加させ、リターンする。具体的に、ステップS13aでは、油冷却用電子膨張弁9の現在の弁開度に、運転容量の変化率を乗じた分だけ弁開度を増加させる。 If it is determined in step S13 that the operating capacity is decreasing due to protection control, then in step S13a the valve opening of the oil cooling electronic expansion valve 9 is increased based on the change rate of the operating capacity, and the process returns. Specifically, in step S13a, the valve opening degree is increased by the amount obtained by multiplying the current valve opening degree of the oil cooling electronic expansion valve 9 by the change rate of the operating capacity.
 ステップS13aで用いる運転容量の変化率は、運転容量の増加開始前における運転容量Fと、運転容量の増加において目標とする目標運転容量F1との比率である「F1/F」を用いる。また、ステップS13aで用いる運転容量の変化率は、運転容量の増加開始前における運転容量Fと、保護制御の実行による運転容量の減少開始時点の現在容量F2との比率である「F2/F」を用いてもよい。 As the rate of change of the operating capacity used in step S13a, "F1/F", which is the ratio between the operating capacity F before the start of increasing the operating capacity and the target operating capacity F1 that is the target for increasing the operating capacity, is used. The rate of change of the operating capacity used in step S13a is "F2/F", which is the ratio between the operating capacity F before the operating capacity starts to increase and the current capacity F2 at the time when the operating capacity starts to decrease due to the execution of the protection control. may be used.
 ステップS13aで用いる運転容量の変化率は、前述のような運転容量の変化率をそのままの値で油冷却用電子膨張弁9の現在の弁開度に乗算するのではなく、運転容量の増分(例えばF1/Fを用いる場合は、F1/F-1)に、メモリ72に記憶した一定の補正係数αを乗算して得られる補正割合を用いて、油冷却用電子膨張弁9の弁開度の増加量を演算してもよい。すなわち、油冷却用電子膨張弁9の現在の弁開度に前記補正割合を乗じた分だけ、現在の弁開度に加算し、当該開度まで弁開度を増加させる。たとえば、補正係数αを0.5というような1未満の数値に設定すると、ステップS13aにおける油冷却用電子膨張弁9の弁開度の増加量の幅を大きくなり過ぎないようにすることができる。ステップS13aで用いる運転容量の変化率は、前述のように運転状態により定まる不定の変化率であってもよく、また予め設定された一定の変化率であってもよい。 The rate of change of the operating capacity used in step S13a is not obtained by multiplying the current valve opening degree of the oil cooling electronic expansion valve 9 without changing the rate of change of the operating capacity as described above, but by increasing the operating capacity ( For example, when F1/F is used, the correction ratio obtained by multiplying F1/F-1) by a constant correction coefficient α stored in the memory 72 is used to determine the valve opening degree of the oil cooling electronic expansion valve 9. may be calculated. That is, the current valve opening of the oil-cooling electronic expansion valve 9 is multiplied by the correction ratio and added to the current valve opening, and the valve opening is increased to the corresponding opening. For example, if the correction coefficient α is set to a numerical value less than 1, such as 0.5, it is possible to prevent the amount of increase in the valve opening degree of the oil-cooling electronic expansion valve 9 in step S13a from becoming too large. . The rate of change of the operating capacity used in step S13a may be an indefinite rate of change determined by the operating state as described above, or may be a constant rate of change set in advance.
 ステップS11で圧縮機1の運転容量の増加禁止状態中ではないと判断された場合は、ステップS13bにおいて、タイマT1が0秒となっているか否かを判定する。ステップS13bでタイマT1が0秒となっていると判断した場合は、保護制御の終了時からの経過時間を計時するために、ステップS13cにおいて、タイマT1による計時を開始させ、ステップS15に進む。一方、ステップS13bでタイマT1が0秒となっていないと判断した場合は、ステップS15に進む。 If it is determined in step S11 that the operating capacity increase of the compressor 1 is not prohibited, it is determined in step S13b whether or not the timer T1 has reached 0 seconds. If it is determined in step S13b that the timer T1 has reached 0 second, in step S13c the timer T1 is started to count the elapsed time from the end of the protection control, and the process proceeds to step S15. On the other hand, if it is determined in step S13b that the timer T1 has not reached 0 seconds, the process proceeds to step S15.
 ステップS15においては、現在が、ステップS12またはステップS13aにより油冷却用電子膨張弁9の弁開度が抑制された状態中であるか否かを判定する。 In step S15, it is determined whether or not the valve opening degree of the oil cooling electronic expansion valve 9 is currently being suppressed in step S12 or step S13a.
 ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中ではないと判断した場合は、リターンする。一方、ステップS15で油冷却用電子膨張弁9の弁開度が抑制された状態中であると判断した場合は、ステップS15bにおいて、タイマT1の計時値が数秒間などの基準時間以上となっているか否かを判定する。 If it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is not being suppressed, the process returns. On the other hand, if it is determined in step S15 that the valve opening degree of the oil cooling electronic expansion valve 9 is being suppressed, then in step S15b the measured value of the timer T1 becomes equal to or longer than the reference time such as several seconds. determine whether or not there is
 ステップS15bでタイマT1の計時値が基準時間以上となっていると判断した場合は、ステップS16において、油冷却用電子膨張弁9の弁開度が抑制された状態を終了させ、リターンする。一方、ステップS15bでタイマT1の計時値が基準時間以上となっていないと判断した場合は、ステップS15cにおいて、油冷却器7の過熱度がメモリ72に予め記憶された液バック判定閾値の過熱度未満であるか否かを判定する。油冷却器7の過熱度は、油冷却器7の出口側に設けられた出口ガス温度センサ19により検出された出口ガス温度、および中間圧力センサ13により検出された中間圧力の相当飽和温度との差により求められる。 If it is determined in step S15b that the measured value of the timer T1 is equal to or greater than the reference time, in step S16, the state in which the degree of opening of the oil cooling electronic expansion valve 9 is suppressed is ended, and the process returns. On the other hand, if it is determined in step S15b that the measured value of the timer T1 has not exceeded the reference time, then in step S15c the degree of superheat of the oil cooler 7 is set to the degree of superheat of the liquid back-up judgment threshold stored in advance in the memory 72. Determine whether it is less than The degree of superheat of the oil cooler 7 is the ratio between the outlet gas temperature detected by the outlet gas temperature sensor 19 provided on the outlet side of the oil cooler 7 and the intermediate pressure equivalent saturation temperature detected by the intermediate pressure sensor 13. Calculated by difference.
 ステップS15cで油冷却器7の過熱度が液バック判定閾値の過熱度未満ではないと判断した場合は、リターンする。一方、ステップS15cで油冷却器7の過熱度が液バック判定閾値の過熱度未満であると判断した場合は、油冷却器7を出た冷媒が液バック傾向にある場合であるので、ステップS16において、油冷却用電子膨張弁9の弁開度が抑制された状態を終了させ、リターンする。これにより、油冷却器7を出た冷媒が液バック傾向にある場合に、液バックを抑制する制御を、弁開度減少抑制制御よりも優先的に実行することができる。 If it is determined in step S15c that the degree of superheat of the oil cooler 7 is not less than the liquid back determination threshold value, the process returns. On the other hand, if it is determined in step S15c that the degree of superheat of the oil cooler 7 is less than the degree of superheat of the liquid backflow determination threshold, it means that the refrigerant that has left the oil cooler 7 tends to be liquid backflow, so step S16. , the state in which the degree of valve opening of the oil cooling electronic expansion valve 9 is suppressed is ended, and the process returns. As a result, when the refrigerant that has left the oil cooler 7 tends to liquid-back, the control for suppressing the liquid-back can be executed with priority over the control for suppressing the decrease in the degree of opening of the valve.
 以上のような実施の形態2における弁開度減少抑制制御においては、圧縮機1の運転容量の変化率に基づいて油冷却用電子膨張弁9の弁開度を増加させるので、圧縮機1の運転容量の変化量に応じて、弁開度の変化量を調整することができる。つまり、圧縮機1の運転容量の変化量が大きい場合には、油冷却用電子膨張弁9の現在開度を大きく増加させられるので、保護制御を終了しやくなるようにすることができ、圧縮機1の運転容量を可能な限り安定して増加させることができる。 In the valve opening reduction suppression control in the second embodiment as described above, the valve opening of the oil cooling electronic expansion valve 9 is increased based on the rate of change in the operating capacity of the compressor 1. The amount of change in valve opening can be adjusted according to the amount of change in operating capacity. That is, when the amount of change in the operating capacity of the compressor 1 is large, the current degree of opening of the oil cooling electronic expansion valve 9 can be greatly increased, so that the protection control can be easily terminated, and the compression The operating capacity of the machine 1 can be increased as stably as possible.
 実施の形態2における弁開度減少抑制制御においては、ステップS15cにより、油冷却器7を出た冷媒が液バック傾向にある場合に、油冷却用電子膨張弁9の弁開度が抑制された状態を終了させるようにしたので、液バック傾向を改善すべき状況において、弁開度減少抑制制御に制限されることなく、液バック傾向を改善することができる。 In the valve-opening-degree reduction suppression control in the second embodiment, in step S15c, the valve-opening degree of the oil-cooling electronic expansion valve 9 is suppressed when the refrigerant exiting the oil cooler 7 tends to flow back. Since the state is ended, the liquid backflow tendency can be improved without being restricted by the valve opening reduction suppression control in the situation where the liquid backflow tendency should be improved.
 実施の形態3.
 実施の形態3では、冷凍サイクル装置を構成するブラインチラー装置において、前述のような保護制御および弁開度減少抑制制御を適用する例を説明する。図8はブラインチラー装置101の全体構成図である。図8においては、図1と同様の機器には同一の符号を付している。図8において、冷却水およびブラインを圧送するためのポンプおよび当該ポンプを駆動するためのインバータは、図示が省略されている。
Embodiment 3.
Embodiment 3 describes an example in which the above-described protection control and valve opening reduction suppression control are applied to a brine chiller device that constitutes a refrigeration cycle device. FIG. 8 is an overall configuration diagram of the brine chiller device 101. As shown in FIG. In FIG. 8, devices similar to those in FIG. 1 are given the same reference numerals. In FIG. 8, illustration of a pump for pumping cooling water and brine and an inverter for driving the pump is omitted.
 図8に示すブラインチラー装置101は、二段式の定速圧縮機31を搭載する水冷式の冷却システムである。ブラインチラー装置101は、定速圧縮機31、油分離器2、水冷凝縮器32、中間冷却器4、主液膨張弁5、中間冷却用電子膨張弁8、モータ冷却用電子膨張弁10、吸込温度センサ11、吸込圧力センサ12、中間圧力センサ13、吐出圧力センサ14、吐出温度センサ15、出口液温度センサ16、出口ガス温度センサ17、給油温度センサ18、主流冷媒配管20、中間冷却器用冷媒配管21、モータ冷却器用冷媒配管23、給油配管24、蒸発圧力センサ27、出口ガス温度センサ28、冷却水配管33、ブライン冷却器34、ブライン配管35、入口温度センサ36、出口温度センサ37、水冷式油冷却器38、および、油冷却用冷却水流量調整弁39を含む。 A brine chiller device 101 shown in FIG. 8 is a water-cooled cooling system equipped with a two-stage constant-speed compressor 31 . The brine chiller device 101 includes a constant speed compressor 31, an oil separator 2, a water-cooled condenser 32, an intercooler 4, a main liquid expansion valve 5, an electronic expansion valve for intermediate cooling 8, an electronic expansion valve for motor cooling 10, a suction Temperature sensor 11, suction pressure sensor 12, intermediate pressure sensor 13, discharge pressure sensor 14, discharge temperature sensor 15, outlet liquid temperature sensor 16, outlet gas temperature sensor 17, supply oil temperature sensor 18, main refrigerant pipe 20, refrigerant for intercooler Pipe 21, motor cooler refrigerant pipe 23, oil supply pipe 24, evaporating pressure sensor 27, outlet gas temperature sensor 28, cooling water pipe 33, brine cooler 34, brine pipe 35, inlet temperature sensor 36, outlet temperature sensor 37, water cooling It includes a type oil cooler 38 and a cooling water flow control valve 39 for oil cooling.
 ブラインチラー装置101では、定速圧縮機31、水冷凝縮器32、主液膨張弁5、および、ブライン冷却器34により、基本的な冷凍サイクルが構成される。主として、定速圧縮機31、油分離器2、水冷凝縮器32、中間冷却器4、主液膨張弁5、および、ブライン冷却器34を通る経路である主流冷媒配管20において冷媒が循環させられる。このような経路以外に、ブラインチラー装置101では、主流冷媒配管20から分岐した中間冷却器用冷媒配管21、および、モータ冷却器用冷媒配管23でも冷媒が循環させられる。 In the brine chiller device 101, the constant speed compressor 31, the water-cooled condenser 32, the main liquid expansion valve 5, and the brine cooler 34 constitute a basic refrigeration cycle. Refrigerant is circulated mainly in the main refrigerant pipe 20, which is a route passing through the constant speed compressor 31, the oil separator 2, the water-cooled condenser 32, the intercooler 4, the main liquid expansion valve 5, and the brine cooler 34. . In addition to these paths, in the brine chiller device 101 , the refrigerant is also circulated through the intercooler refrigerant pipe 21 and the motor cooler refrigerant pipe 23 branched from the main refrigerant pipe 20 .
 ブライン冷却器34は、主液膨張弁5により減圧されて低圧・低温となった二相冷媒と、ブライン配管35を流れるブライン(不凍液)とが熱交換する熱交換器である。ブライン配管35内におけるブラインは、図示を省略したブラインポンプにより圧送される。入口温度センサ36はブライン冷却器34におけるブラインの入口の温度を検出する。出口温度センサ37はブライン冷却器34におけるブラインの出口の温度を検出する。 The brine cooler 34 is a heat exchanger that exchanges heat between the two-phase refrigerant, which has been decompressed by the main liquid expansion valve 5 and has a low pressure and low temperature, and the brine (antifreeze liquid) flowing through the brine pipe 35 . The brine in the brine pipe 35 is pumped by a brine pump (not shown). An inlet temperature sensor 36 detects the temperature of the inlet of the brine in the brine cooler 34 . An outlet temperature sensor 37 detects the outlet temperature of the brine in the brine cooler 34 .
 定速圧縮機31は、実施の形態1および実施の形態2の圧縮機1のようなインバータ駆動ではなく、たとえば50Hzおよび60Hzのような周波数の商用電源で運転される。定速圧縮機31は、吐出量の制御に用いる機械式容量制御機構(図示省略)を備える。機械式容量制御機構は、定速圧縮機31の内部において、定速圧縮機31の圧縮ガスを吸込側に一部バイパスさせることにより吐出量を減少させて定速圧縮機31の運転容量を変更可能な構成としたものである。 The constant speed compressor 31 is not driven by an inverter like the compressor 1 of Embodiments 1 and 2, but is driven by a commercial power source with frequencies of 50 Hz and 60 Hz, for example. The constant speed compressor 31 has a mechanical displacement control mechanism (not shown) used for controlling the discharge amount. The mechanical capacity control mechanism changes the operating capacity of the constant speed compressor 31 by partially bypassing the compressed gas of the constant speed compressor 31 to the suction side inside the constant speed compressor 31 to reduce the discharge amount. possible configuration.
 機械式容量制御機構の容量制御は、たとえば、出口温度センサ37が検出するブライン出口温度と、制御装置80のメモリ82に予め記憶された目標ブライン出口温度との差に基づいて比例制御を実行することにより行われる。機械式容量制御機構の容量制御においては、ブライン出口温度が目標ブライン出口温度よりも高い場合に、機械式容量制御機構の容量を大きくして圧縮機吐出量を増加させる。前述した実施の形態1および実施の形態2では、制御装置が圧縮機1の回転数をインバータによって変化させることにより圧縮機1の運転容量を変化させる例を示したが、実施の形態3では、制御装置が機械式容量制御弁を用いて定速圧縮機31の吐出量を変化させることにより定速圧縮機31の運転容量を変化させる。 The capacity control of the mechanical capacity control mechanism performs proportional control based on, for example, the difference between the brine outlet temperature detected by the outlet temperature sensor 37 and the target brine outlet temperature pre-stored in the memory 82 of the controller 80. It is done by In the displacement control of the mechanical displacement control mechanism, when the brine outlet temperature is higher than the target brine outlet temperature, the displacement of the mechanical displacement control mechanism is increased to increase the compressor discharge amount. In Embodiments 1 and 2 described above, an example was shown in which the controller changes the operating capacity of compressor 1 by changing the rotation speed of compressor 1 using an inverter. The controller changes the operating capacity of the constant speed compressor 31 by changing the discharge amount of the constant speed compressor 31 using a mechanical capacity control valve.
 機械式容量制御機構は、保護制御にも用いられる。たとえば、図3に示すように負荷量が第1負荷量上限値および第2負荷量上限値のような負荷上限値を超えた場合には、機械式容量制御機構を用いて運転容量を減少させることにより、定速圧縮機31の負荷量を低下させる制御が実行される。 The mechanical capacity control mechanism is also used for protection control. For example, as shown in FIG. 3, when the load exceeds the load upper limit value such as the first load upper limit value and the second load upper limit value, the mechanical capacity control mechanism is used to reduce the operating capacity. As a result, control for reducing the load on the constant speed compressor 31 is executed.
 水冷凝縮器32は、冷却水配管33を流れる冷却水と、定速圧縮機31より吐出された高温および高圧の冷媒ガスとが熱交換することにより冷媒ガスを凝縮させる熱交換器である。冷却水配管33を流れる冷却水の供給量は、現地システムにより制御され、一般的に一定である。水冷凝縮器32において熱交換されて温度が上昇した冷却水は、水冷凝縮器32から出て、図示を省略した現地設備におけるクーリングタワーにおいて放熱した後、水冷凝縮器32に戻される。冷却水配管33内における冷却水は、図示を省略した現地設備における冷却水ポンプにより冷却水配管33内を圧送され、水冷凝縮器32とクーリングタワーとの間を循環する。 The water-cooled condenser 32 is a heat exchanger that condenses the refrigerant gas by exchanging heat between the cooling water flowing through the cooling water pipe 33 and the high-temperature and high-pressure refrigerant gas discharged from the constant speed compressor 31 . The amount of cooling water supplied through the cooling water pipe 33 is controlled by the local system and is generally constant. The cooling water that has been heat-exchanged in the water-cooled condenser 32 and raised in temperature exits the water-cooled condenser 32 and is returned to the water-cooled condenser 32 after radiating heat in a cooling tower in a field facility (not shown). The cooling water in the cooling water pipe 33 is pressure-fed in the cooling water pipe 33 by a cooling water pump (not shown) in on-site equipment, and circulates between the water-cooled condenser 32 and the cooling tower.
 水冷式油冷却器38は、油分離器2で冷媒と分離されて流入する冷凍機油と、冷却水配管33内を流れる冷却水とを熱交換させ、冷凍機油を冷却する熱交換器である。水冷凝縮器32、ブライン冷却器34、および、水冷式油冷却器38については、シェルアンドチューブ式の熱交換器またはプレート式の熱交換器が用いられる。水冷凝縮器32は、油冷却用冷却水流量調整弁39を経て供給される冷却水の供給量を調整することにより、定速圧縮機31に供給する冷凍機油の温度を調整するように制御されてもよく、油冷却用冷却水流量調整弁39を経て供給される冷却水の温度を調整することにより、定速圧縮機31に供給する冷凍機油の温度を調整するように制御されてもよい。 The water-cooled oil cooler 38 is a heat exchanger that cools the refrigerating machine oil by exchanging heat between the refrigerating machine oil separated from the refrigerant by the oil separator 2 and flowing in and the cooling water flowing through the cooling water pipe 33 . For the water-cooled condenser 32, the brine cooler 34, and the water-cooled oil cooler 38, shell-and-tube heat exchangers or plate heat exchangers are used. The water-cooled condenser 32 is controlled to adjust the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 by adjusting the amount of cooling water supplied through the oil cooling cooling water flow rate adjustment valve 39 . Alternatively, the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 may be adjusted by adjusting the temperature of the cooling water supplied through the oil cooling cooling water flow rate adjustment valve 39 . .
 ブラインチラー装置101では、ブラインチラー装置101を構成する機器および冷却水ポンプのような現地設備を制御する制御装置(図9に示す制御装置80)がさらに含まれる。 The brine chiller device 101 further includes a control device (control device 80 shown in FIG. 9) that controls on-site facilities such as the equipment that constitutes the brine chiller device 101 and the cooling water pump.
 図8に示すブラインチラー装置101における制御装置80は、冷却水ポンプへの運転指令および停止指令と、ブラインポンプへの運転指令および停止指令とを伝送する機能を有する。冷却水ポンプおよびブラインポンプを含む現地設備に運転指令および停止指令を伝送する構成としては、有電圧接点又は無電圧接点を用いて指令を出力する構成が一般的である。制御装置80は、油冷却用冷却水流量調整弁39に対して、アナログ信号(DC4-20mA)を制御信号として送信することにより、冷却水の流量を調整可能である。 The control device 80 in the brine chiller device 101 shown in FIG. 8 has a function of transmitting an operation command and a stop command to the cooling water pump and an operation command and a stop command to the brine pump. As a configuration for transmitting an operation command and a stop command to on-site equipment including a cooling water pump and a brine pump, a configuration for outputting commands using a voltage contact or a non-voltage contact is common. The control device 80 can adjust the flow rate of the cooling water by transmitting an analog signal (DC 4-20 mA) as a control signal to the cooling water flow rate adjustment valve 39 for oil cooling.
 たとえば、水冷式油冷却器38から給油温度の目標値を例えば50℃とし、給油温度センサ18において検出する給油温度が50℃よりも高い場合、制御装置80は、油冷却用冷却水流量調整弁39の弁開度を増加させる制御信号を出力し、水冷式油冷却器38に供給する冷却水量を増加させることにより、水冷式油冷却器38から定速圧縮機31に供給する冷凍機油の給油温度を下げる制御を行う。 For example, if the target value of the oil supply temperature from the water-cooled oil cooler 38 is 50° C., for example, and the oil supply temperature detected by the oil supply temperature sensor 18 is higher than 50° C., the control device 80 controls the oil cooling water flow rate adjustment valve By outputting a control signal to increase the opening of the valve 39 and increasing the amount of cooling water supplied to the water-cooled oil cooler 38, the refrigerating machine oil supplied from the water-cooled oil cooler 38 to the constant speed compressor 31 is supplied. Control to lower the temperature.
 一方、水冷式油冷却器38から給油温度の目標値を例えば50℃とし、給油温度センサ18において検出する給油温度が50℃よりも低い場合、制御装置80は、油冷却用冷却水流量調整弁39の弁開度を減少させる制御信号を出力し、水冷式油冷却器38に供給する冷却水量を減少させることにより、水冷式油冷却器38から定速圧縮機31に供給する冷凍機油の給油温度を上げる制御を行う。制御装置80は、このような制御を一定時間毎に行う定時制御を実行することにより、定速圧縮機31に供給する冷凍機油の給油温度を目標値に制御する。 On the other hand, if the target value of the oil supply temperature from the water-cooled oil cooler 38 is, for example, 50° C. and the oil supply temperature detected by the oil supply temperature sensor 18 is lower than 50° C., the controller 80 controls the oil cooling water flow rate adjustment valve By outputting a control signal to decrease the opening degree of the valve 39 and decreasing the amount of cooling water supplied to the water-cooled oil cooler 38, the refrigerating machine oil supplied from the water-cooled oil cooler 38 to the constant speed compressor 31 is supplied. Control to raise the temperature. The control device 80 controls the supply temperature of the refrigerating machine oil supplied to the constant speed compressor 31 to a target value by executing regular control in which such control is performed at regular time intervals.
 [制御構成例]
 次に、ブラインチラー装置101の制御構成例を説明する。図9は、ブラインチラー装置101の制御構成例を示すブロック図である。
[Control configuration example]
Next, a control configuration example of the brine chiller device 101 will be described. FIG. 9 is a block diagram showing a control configuration example of the brine chiller device 101. As shown in FIG.
 制御装置80は、CPU81と、メモリ82(ROMおよびRAM)と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU81は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置80の処理手順が記されたプログラムである。制御装置80は、これらのプログラムに従って、ブラインチラー装置101における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 80 includes a CPU 81, a memory 82 (ROM and RAM), an input/output buffer (not shown) for inputting/outputting various signals, and the like. The CPU 81 expands a program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 80 are described. The control device 80 controls each device in the brine chiller device 101 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 制御装置80においては、吸込温度センサ11、吸込圧力センサ12、中間圧力センサ13、吐出圧力センサ14、吐出温度センサ15、出口液温度センサ16、出口ガス温度センサ17、給油温度センサ18、蒸発圧力センサ27、出口ガス温度センサ28、入口温度センサ36、および、出口温度センサ37のそれぞれの検出信号が入力される。 In the control device 80, a suction temperature sensor 11, a suction pressure sensor 12, an intermediate pressure sensor 13, a discharge pressure sensor 14, a discharge temperature sensor 15, an outlet liquid temperature sensor 16, an outlet gas temperature sensor 17, a feed oil temperature sensor 18, an evaporating pressure Detection signals from the sensor 27, the outlet gas temperature sensor 28, the inlet temperature sensor 36, and the outlet temperature sensor 37 are input.
 制御装置80においては、定速圧縮機31、油分離器2、主液膨張弁5、中間冷却用電子膨張弁8、油冷却用冷却水流量調整弁39、および、モータ冷却用電子膨張弁10のそれぞれに制御信号を出力する。制御装置80は、前述の冷却水ポンプおよびブラインポンプなどを含む現地設備90にも制御信号を出力する。油冷却用冷却水流量調整弁39は、電子調整弁により構成される。 In the control device 80, the constant speed compressor 31, the oil separator 2, the main liquid expansion valve 5, the intermediate cooling electronic expansion valve 8, the oil cooling cooling water flow rate adjustment valve 39, and the motor cooling electronic expansion valve 10 output a control signal to each of The control device 80 also outputs a control signal to the on-site equipment 90 including the aforementioned cooling water pump and brine pump. The oil cooling cooling water flow rate adjustment valve 39 is configured by an electronic adjustment valve.
 [保護制御および弁開度減少抑制制御の制御内容]
 実施の形態3においては、制御装置80のCPU81が実行する保護制御および弁開度減少抑制制御の制御内容を説明する。
[Control contents of protection control and valve opening reduction suppression control]
In Embodiment 3, the control contents of the protection control and the valve opening reduction suppression control executed by the CPU 81 of the control device 80 will be described.
 実施の形態3における保護制御については、実施の形態1および実施の形態2で実行される保護制御と同様の制御が実行される。 Regarding the protection control in Embodiment 3, the same control as the protection control performed in Embodiments 1 and 2 is performed.
 図10は、実施の形態3における弁開度減少抑制制御を示すフローチャートである。弁開度減少抑制制御は、保護制御が実行されることに伴って実行される。弁開度減少抑制制御において、CPU81は以下のような処理を実行する。 FIG. 10 is a flowchart showing valve opening reduction suppression control in the third embodiment. Valve-opening degree reduction suppression control is executed in conjunction with execution of protection control. In the valve opening reduction suppression control, the CPU 81 executes the following processes.
 ステップS21においては、現在、保護制御による定速圧縮機31の運転容量の抑制中であるか否かを判定する。具体的に、ステップS21では、前述した第2保護制御による定速圧縮機31の運転容量の増加を禁止する状態と、前述した第1保護制御による定速圧縮機31の運転容量を減少させる状態との少なくも一方に該当するか否かを判断することにより、保護制御による定速圧縮機31の運転容量の抑制中であるか否かを判定する。 In step S21, it is determined whether or not the operating capacity of the constant speed compressor 31 is currently being suppressed by protection control. Specifically, in step S21, there is a state in which an increase in the operating capacity of the constant speed compressor 31 is prohibited by the second protection control described above, and a state in which the operating capacity of the constant speed compressor 31 is decreased by the first protection control described above. It is determined whether or not the operating capacity of the constant speed compressor 31 is being suppressed by protection control by determining whether or not at least one of the above applies.
 ステップS21で保護制御による定速圧縮機31の運転容量の抑制中であると判断された場合は、ステップS22において、油冷却用冷却水流量調整弁39の温度の制御目標値が第1目標値であるか否かを判定する。この場合の温度の制御目標値は、給油温度センサ18において検出する給油温度の制御目標値である。ステップS22で判定される第1目標値は、保護制御が実行される前の通常制御時における温度の制御目標値である。 If it is determined in step S21 that the operating capacity of the constant-speed compressor 31 is being suppressed by protection control, then in step S22, the control target value for the temperature of the oil-cooling cooling water flow rate adjustment valve 39 is set to the first target value. It is determined whether or not. The control target value of the temperature in this case is the control target value of the refueling temperature detected by the refueling temperature sensor 18 . The first target value determined in step S22 is the temperature control target value during normal control before protection control is executed.
 ステップS22で温度の制御目標値が第1目標値ではないと判断した場合は、リターンする。一方、ステップS22で温度の制御目標値が第1目標値であると判断した場合は、ステップS23において、油冷却用冷却水流量調整弁39の温度の制御目標値を第1目標値よりも低い温度の制御目標値に切換え、リターンする。具体的に、ステップS23では、メモリ82に記憶された一定の引き下げ温度(たとえば、5℃)を第1目標値の温度から引け下げることにより、制御目標値を切換えてもよく、制御目標値をメモリ82に記憶された第2制御目標値(たとえば、45℃)に切換えてもよい。 If it is determined in step S22 that the temperature control target value is not the first target value, the process returns. On the other hand, if it is determined in step S22 that the temperature control target value is the first target value, then in step S23 the temperature control target value of the oil-cooling cooling water flow rate adjustment valve 39 is set lower than the first target value. Switch to temperature control target value and return. Specifically, in step S23, the control target value may be switched by decreasing the temperature of the first target value by a constant reduction temperature (for example, 5° C.) stored in the memory 82. It may be switched to the second control target value (for example, 45° C.) stored in memory 82 .
 ステップS21で保護制御による定速圧縮機31の運転容量の抑制中ではないと判断された場合は、ステップS24において、油冷却用冷却水流量調整弁39の温度の制御目標値を第1目標値から切換え中の状態であるか否かを判定する。具体的に、ステップS24では、ステップS23による温度の制御目標値の切換え中の状態であるか否かを判定する。 If it is determined in step S21 that the operating capacity of the constant-speed compressor 31 is not being suppressed by protection control, in step S24, the control target value of the temperature of the oil-cooling cooling water flow rate adjustment valve 39 is changed to the first target value. , it is determined whether or not it is in the state of being switched. Specifically, in step S24, it is determined whether or not the temperature control target value is being switched in step S23.
 ステップS24で制御目標値を第1目標値から切換え中の状態ではないと判断した場合は、リターンする。一方、ステップS24で制御目標値を第1目標値から切換え中の状態であると判断した場合は、ステップS25において、保護制御による定速圧縮機31の運転容量の減少中の状態であるか否かを判定する。 If it is determined in step S24 that the control target value is not being switched from the first target value, the process returns. On the other hand, if it is determined in step S24 that the control target value is being switched from the first target value, in step S25 it is determined whether the operating capacity of the constant speed compressor 31 is being reduced by protection control. determine whether
 ステップS25で定速圧縮機31の運転容量の減少中の状態ではないと判断した場合は、リターンする。一方、ステップS25で定速圧縮機31の運転容量の減少中の状態であると判断した場合は、ステップS26において、保護制御による定速圧縮機31の運転容量の減少が完了したか否かを判定する。 If it is determined in step S25 that the operating capacity of the constant speed compressor 31 is not decreasing, the process returns. On the other hand, if it is determined in step S25 that the operating capacity of the constant speed compressor 31 is being reduced, in step S26 it is determined whether or not the reduction in the operating capacity of the constant speed compressor 31 by protection control has been completed. judge.
 ステップS26で定速圧縮機31の運転容量の減少が完了していないと判断した場合は、リターンする。一方、ステップS26で定速圧縮機31の運転容量の減少が完了したと判断した場合は、ステップS27において、ステップS23による油冷却用冷却水流量調整弁39の温度の制御目標値の切換えを終了して温度の制御目標値を元の第1目標値に戻し、リターンする。 If it is determined in step S26 that the reduction in the operating capacity of the constant speed compressor 31 has not been completed, the process returns. On the other hand, if it is determined in step S26 that the reduction in the operating capacity of the constant speed compressor 31 has been completed, then in step S27 the switching of the control target value for the temperature of the cooling water flow rate adjustment valve 39 for oil cooling in step S23 ends. Then, the temperature control target value is returned to the original first target value, and the process returns.
 以上のような実施の形態3における弁開度減少抑制制御においては、保護制御による定速圧縮機31の運転容量の抑制中である場合に、ステップS23で油冷却用冷却水流量調整弁39の温度の制御目標値を引き下げた後、ステップS26,S27で、保護制御による定速圧縮機31の運転容量の減少が完了した後に、油冷却用冷却水流量調整弁39の温度の制御目標値を元の制御目標値に戻す制御が実行される。このような制御が実行されることにより、定速圧縮機31の運転容量の増加が必要とされる期間であっても、油冷却用冷却水流量調整弁39の制御目標値を引き下げたままにしておくことができるので、定速圧縮機31の運転について、保護制御の作動と解除とを繰り返すような不安定な動作が発生したり、定速圧縮機31の運転能力不足が生じることを回避することができる。 In the valve opening reduction suppression control in the third embodiment as described above, when the operating capacity of the constant speed compressor 31 is being suppressed by the protection control, the oil cooling water flow rate adjustment valve 39 is turned on in step S23. After lowering the temperature control target value, in steps S26 and S27, after the reduction of the operating capacity of the constant-speed compressor 31 by protection control is completed, the temperature control target value of the oil-cooling cooling water flow rate adjustment valve 39 is lowered. Control to return to the original control target value is executed. By executing such control, the control target value of the oil-cooling cooling water flow rate adjustment valve 39 is kept lowered even during the period when the operating capacity of the constant speed compressor 31 needs to be increased. Therefore, in the operation of the constant speed compressor 31, it is possible to avoid the occurrence of unstable operation such as repeating the activation and release of protection control, and the occurrence of insufficient operability of the constant speed compressor 31. can do.
 [実施の形態1~3の変形例]
 実施の形態1~3においては、保護制御および弁開度減少抑制制御を実行する条件となる過負荷となる負荷量として、圧縮機1および定速圧縮機31の吐出温度を例に挙げたが、その他の物理量により示される負荷量により過負荷状態を判定できる場合には、その他の物理量を用いて、過負荷状態を検出し、保護制御および弁開度減少抑制制御を実行するようにしてもよい。その他の物理量としては、たとえば、圧縮機(圧縮機1、定速圧縮機31)の吐出圧力、凝縮器(空冷凝縮器3、水冷凝縮器32)の凝縮圧力、凝縮器の凝縮温度、圧縮機(圧縮機1、定速圧縮機31)の運転電流、圧縮機(圧縮機1、定速圧縮機31)の消費電力、および、圧縮機(圧縮機1、定速圧縮機31)の吸込過熱度が挙げられる。圧縮機から凝縮器の距離が近い場合、凝縮器(空冷凝縮器3、水冷凝縮器32)の凝縮圧力は、吐出圧力に近い値となる。これらの物理量は、いずれも圧縮機(圧縮機1、定速圧縮機31)の運転容量が大きくなるほど値が大きくなる物理量であるため、これらの物理量により示される負荷量を用いて、前述した制御論理と同じ論理により、実施の形態1~3における、保護制御および弁開度減少抑制制御を実行してもよい。物理量により示される負荷量により過負荷状態を判定できるパラメータは、たとえば、圧縮機(圧縮機1、定速圧縮機31)の吐出温度というような1つのパラメータを用いてもよく、前述のような複数のパラメータを組合せて用いてもよい。つまり、物理量により示される負荷量により過負荷状態を判定できるパラメータは、少なくとも1つのパラメータを用いればよい。
[Modifications of Embodiments 1 to 3]
In Embodiments 1 to 3, the discharge temperature of the compressor 1 and the constant speed compressor 31 is taken as an example of the overload load amount that is the condition for executing the protection control and the valve opening reduction suppression control. , if the overload state can be determined by the load amount indicated by another physical quantity, the other physical quantity may be used to detect the overload state and perform protection control and valve opening reduction suppression control. good. Other physical quantities include, for example, the discharge pressure of the compressor (compressor 1, constant speed compressor 31), the condensation pressure of the condenser (air-cooled condenser 3, water-cooled condenser 32), the condensation temperature of the condenser, the compressor Operating current of (compressor 1, constant speed compressor 31), power consumption of compressor (compressor 1, constant speed compressor 31), and suction superheat of compressor (compressor 1, constant speed compressor 31) degree. When the distance from the compressor to the condenser is short, the condensing pressure of the condenser (air-cooled condenser 3, water-cooled condenser 32) becomes a value close to the discharge pressure. These physical quantities are physical quantities whose value increases as the operating capacity of the compressor (compressor 1, constant speed compressor 31) increases. The same logic as the logic may be used to execute the protection control and the valve opening reduction suppression control in the first to third embodiments. The parameter that can determine the overload state from the load amount indicated by the physical quantity may be, for example, one parameter such as the discharge temperature of the compressor (compressor 1, constant speed compressor 31). A plurality of parameters may be used in combination. That is, at least one parameter may be used as the parameter that can determine the overload state from the amount of load indicated by the physical quantity.
 このように、圧縮機(圧縮機1、定速圧縮機31)の過負荷状態を判定する物理量は、圧縮機(圧縮機1、定速圧縮機31)の吐出温度以外の物理量を用いてもよいので、吐出温度センサ15以外のセンサを用いて検出するものであってもよい。したがって、温度調整装置(油冷却用電子膨張弁9、油冷却用冷却水流量調整弁39)を制御するために検出する物理量として圧縮機(圧縮機1、定速圧縮機31)に供給する冷凍機油の温度により変化する物理量と、圧縮機(圧縮機1、定速圧縮機31)の負荷状態を判定するために検出する物理量は、1つのセンサ(吐出温度センサ15)で検出可能な同じ物理量であってもよい。また、前述のように吐出温度センサ15以外のセンサで圧縮機の過負荷状態を判定する物理量を検出する場合には、圧縮機に供給する冷凍機油の温度により変化する物理量と、圧縮機の負荷状態を判定するために検出する物理量とが異なるため、圧縮機に供給する冷凍機油の温度により変化する物理量と、圧縮機の負荷状態を判定するために検出する物理量とは、異なる複数のセンサで検出してもよい。このように、温度調整装置(油冷却用電子膨張弁9、油冷却用冷却水流量調整弁39)を制御するために検出する物理量と、圧縮機(圧縮機1、定速圧縮機31)の負荷状態を判定するために用いる物理量とは、1つのセンサで検出するものであってもよく、複数のセンサで検出するものであってもよく、少なくとも1つのセンサで検出するものであればよい。 In this way, physical quantities other than the discharge temperature of the compressors (compressor 1, constant speed compressor 31) can be used to determine the overload state of the compressors (compressor 1, constant speed compressor 31). Therefore, a sensor other than the discharge temperature sensor 15 may be used for detection. Therefore, the refrigeration supplied to the compressor (compressor 1, constant speed compressor 31) as a physical quantity detected for controlling the temperature adjustment device (oil cooling electronic expansion valve 9, oil cooling cooling water flow rate adjustment valve 39) The physical quantity that changes with the temperature of machine oil and the physical quantity that is detected to determine the load state of the compressors (compressor 1, constant speed compressor 31) are the same physical quantity that can be detected by one sensor (discharge temperature sensor 15). may be Further, as described above, when a sensor other than the discharge temperature sensor 15 detects a physical quantity for determining the overload state of the compressor, the physical quantity that changes depending on the temperature of the refrigerating machine oil supplied to the compressor and the load on the compressor Since the physical quantity detected for determining the state is different, the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor and the physical quantity that is detected for determining the load state of the compressor are detected by a plurality of different sensors. may be detected. In this way, the physical quantity detected for controlling the temperature adjustment device (oil cooling electronic expansion valve 9, oil cooling cooling water flow rate adjustment valve 39) and the compressor (compressor 1, constant speed compressor 31) The physical quantity used to determine the load state may be detected by one sensor, may be detected by a plurality of sensors, or may be detected by at least one sensor. .
 また、実施の形態1~2においては、圧縮機1に供給する冷凍機油の温度により変化する物理量の検出値に基づいて油冷却用電子膨張弁9を制御する場合に検出する物理量として、吐出温度センサ15により検出される吐出温度を用いる例を示したが、これに限らず、油冷却用電子膨張弁9を制御する場合に検出する物理量としては、給油温度センサ18により検出される給油温度、すなわち、圧縮機1に供給される冷凍機油の温度であってもよい。このように、制御装置70は、給油温度センサ18により検出される給油温度に基づいて、油冷却用電子膨張弁9を制御してもよい。 Further, in Embodiments 1 and 2, the discharge temperature Although an example using the discharge temperature detected by the sensor 15 has been shown, the physical quantity detected when controlling the oil cooling electronic expansion valve 9 is not limited to this, and may include the refueling temperature detected by the refueling temperature sensor 18, That is, the temperature of the refrigerating machine oil supplied to the compressor 1 may be used. In this manner, the control device 70 may control the oil cooling electronic expansion valve 9 based on the supply oil temperature detected by the supply oil temperature sensor 18 .
 また、実施の形態3においては、定速圧縮機31に供給する冷凍機油の温度により変化する物理量の検出値に基づいて油冷却用冷却水流量調整弁39を制御する場合に検出する物理量として、給油温度センサ18により検出される給油温度、すなわち、圧縮機1に供給される冷凍機油の温度を用いる例を示したが、これに限らず、油冷却用冷却水流量調整弁39を制御する場合に検出する物理量としては、吐出温度センサ15により検出される吐出温度であってもよい。このように、制御装置80は、吐出温度センサ15により検出される吐出温度に基づいて、油冷却用冷却水流量調整弁39を制御してもよい。 In the third embodiment, the physical quantity detected when controlling the oil cooling water flow rate adjustment valve 39 based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 is: Although an example using the temperature of the refrigerating machine oil supplied to the compressor 1, which is detected by the oil temperature sensor 18, is shown, the present invention is not limited to this, and the oil cooling water flow control valve 39 is controlled. The physical quantity to be detected may be the ejection temperature detected by the ejection temperature sensor 15 . In this manner, the control device 80 may control the oil cooling coolant flow rate adjustment valve 39 based on the discharge temperature detected by the discharge temperature sensor 15 .
 また、冷凍サイクル装置では、前述した負荷量を示すことが可能な物理量については、1つの物理量を用いて、負荷量に関する制御するのではなく、例えば、圧縮機(圧縮機1、定速圧縮機31)の吐出温度、圧縮機(圧縮機1、定速圧縮機31)の吐出圧力、圧縮機(圧縮機1、定速圧縮機31)の運転電流で負荷量を示す場合には、これらの物理量のそれぞれについて、過負荷量上限値を設定し、それぞれの検出手段の検出結果に基づき、保護制御を実行してもよい。たとえば、運転中において、運転電流が上昇したことにより保護制御を実行した場合、運転容量の減少に応じて、運転電流のみならず、吐出温度、および、吐出圧力も同時に低下する。このような場合は、電子膨張弁と流量調整弁との少なくもいずれかの容量が減少することがあり、それを防止するために、前述したような弁開度減少抑制制御を実行してもよい。 In addition, in the refrigeration cycle apparatus, as for the physical quantity that can indicate the load quantity, instead of using one physical quantity to control the load quantity, for example, the compressor (compressor 1, constant speed compressor 31) discharge temperature, the discharge pressure of the compressor (compressor 1, constant speed compressor 31), and the operating current of the compressor (compressor 1, constant speed compressor 31). An overload amount upper limit value may be set for each physical quantity, and protection control may be executed based on the detection result of each detection means. For example, if protection control is executed due to an increase in operating current during operation, not only the operating current but also the discharge temperature and discharge pressure will simultaneously decrease in accordance with the decrease in operating capacity. In such a case, the capacity of at least one of the electronic expansion valve and the flow control valve may decrease. good.
 また、たとえば主液膨張弁5にも、前述した保護制御および弁開度減少抑制制御を適用することが可能である。たとえば、主液膨張弁5は蒸発器6出口の過熱度に基づき定時制御される。圧縮機1において、吸込過熱度が大きくなりすぎると吐出温度が上昇し、圧縮機1が焼き付き状態に至ることがある。よって、吸込過熱度が上限値を超えた場合に、運転容量を減少する操作を行う保護制御を実行するようにしてもよい。この場合には、保護制御による運転容量の減少の結果として、蒸発器出口過熱度も低下するため、主液膨張弁5の弁開度が減少することがある。これは、圧縮機1の吐出温度に基づいて、保護制御および弁開度減少抑制制御を実行する発実施の形態1における、保護制御と油冷却用電子膨張弁9の定時制御との関連と同じであり、主液膨張弁5にも、前述した保護制御および弁開度減少抑制制御を適用することが可能である。 In addition, it is possible to apply the above-described protection control and valve opening reduction suppression control to the main liquid expansion valve 5, for example. For example, the main liquid expansion valve 5 is regularly controlled based on the degree of superheat at the outlet of the evaporator 6 . In the compressor 1, if the degree of suction superheat becomes too large, the discharge temperature rises and the compressor 1 may be seized. Therefore, when the degree of suction superheat exceeds the upper limit value, protective control may be executed to reduce the operating capacity. In this case, as a result of the decrease in the operating capacity due to the protection control, the degree of superheat at the outlet of the evaporator also decreases, so the degree of opening of the main liquid expansion valve 5 may decrease. This is the same as the relation between the protection control and the regular control of the oil cooling electronic expansion valve 9 in the first embodiment in which the protection control and the valve opening reduction suppression control are executed based on the discharge temperature of the compressor 1. , and it is possible to apply the above-described protection control and valve opening reduction suppression control to the main liquid expansion valve 5 as well.
 [実施の形態のまとめ]
 以上説明した実施の形態について、再び図面を参照して説明する。
[Summary of Embodiment]
The embodiments described above will be described with reference to the drawings again.
 本開示は、冷凍サイクル装置100に関する。冷凍サイクル装置100は、冷凍サイクル装置は、冷媒を圧縮する圧縮機1と、圧縮機1から吐出される冷媒と冷凍機油とを分離する油分離器2と、油分離器2で分離された冷凍機油を圧縮機1に供給する給油配管24と、圧縮機1に供給する冷凍機油を冷却する油冷却器7と、冷却媒体としての冷媒を油冷却器7に供給する冷却媒体経路である油冷却器用冷媒配管22と、圧縮機1に供給する冷凍機油の温度を調整する温度調整装置としての油冷却用電子膨張弁9と、吐出温度センサ15のような少なくとも1つのセンサと、制御装置70とを備え、制御装置70は、吐出温度センサ15により検出された、圧縮機1に供給する冷凍機油の温度により変化する物理量の検出値に基づいて油冷却用電子膨張弁9を制御し、吐出温度センサ15により検出された、圧縮機1の負荷状態を判定するために用いる物理量の検出値に基づいて圧縮機1の負荷状態を判定し、圧縮機1の負荷状態が過負荷状態と判定された場合に、圧縮機1の運転容量の増加を抑制する第1制御である保護制御をするとともに、油冷却用電子膨張弁9の調整容量すなわち弁開度の減少を抑制する第2制御である弁開度減少抑制制御をする。 The present disclosure relates to a refrigeration cycle device 100. The refrigerating cycle device 100 includes a compressor 1 that compresses refrigerant, an oil separator 2 that separates the refrigerant discharged from the compressor 1 from refrigerating machine oil, and a refrigerating machine oil separated by the oil separator 2. An oil supply pipe 24 that supplies machine oil to the compressor 1, an oil cooler 7 that cools the refrigerating machine oil that is supplied to the compressor 1, and an oil cooling medium path that supplies refrigerant as a cooling medium to the oil cooler 7. a device refrigerant pipe 22, an oil cooling electronic expansion valve 9 as a temperature adjusting device for adjusting the temperature of the refrigerating machine oil supplied to the compressor 1, at least one sensor such as a discharge temperature sensor 15, and a control device 70 , the control device 70 controls the oil cooling electronic expansion valve 9 based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor 1 detected by the discharge temperature sensor 15, and the discharge temperature The load state of the compressor 1 is determined based on the detected value of the physical quantity used for determining the load state of the compressor 1 detected by the sensor 15, and the load state of the compressor 1 is determined to be the overload state. In this case, protection control, which is first control for suppressing an increase in the operating capacity of the compressor 1, is performed, and second control, which is a second control for suppressing a decrease in the adjustment capacity of the oil cooling electronic expansion valve 9, that is, the valve opening degree, is performed. Controls the degree of opening reduction.
 このような構成とすることによって、圧縮機1の運転容量の増加を抑制する保護制御と、油冷却用電子膨張弁9の弁開度の減少を抑制する弁開度減少抑制制御とが関連して実行される。これにより、圧縮機1が過負荷状態となった場合において、圧縮機1の運転容量の増加を抑制する保護制御が、油冷却用電子膨張弁9の弁開度の制御により妨げられないようになるので、保護制御が繰り返し実行されたり、保護制御により圧縮機1の運転容量が不足したりすることを防ぐことができるため、冷凍サイクル装置100の運転状態を安定化させることができる。 With such a configuration, the protection control that suppresses an increase in the operating capacity of the compressor 1 and the valve opening reduction suppression control that suppresses a decrease in the valve opening of the oil cooling electronic expansion valve 9 are related. is executed. As a result, when the compressor 1 is overloaded, the protection control for suppressing the increase in the operating capacity of the compressor 1 is prevented from being hindered by the control of the valve opening degree of the oil cooling electronic expansion valve 9. Therefore, it is possible to prevent the protection control from being repeatedly executed and the operating capacity of the compressor 1 from becoming insufficient due to the protection control, so that the operating state of the refrigeration cycle apparatus 100 can be stabilized.
 好ましくは、油冷却器7には、冷却媒体として冷媒が供給され、温度調整装置としての油冷却用電子膨張弁9は、油冷却器7に供給する冷媒の供給量を調整することにより、圧縮機1に供給する冷凍機油の温度を調整する。 Preferably, the oil cooler 7 is supplied with a refrigerant as a cooling medium, and the oil cooling electronic expansion valve 9 as a temperature control device adjusts the supply amount of the refrigerant supplied to the oil cooler 7 to control the compression. The temperature of the refrigerating machine oil supplied to the machine 1 is adjusted.
 好ましくは、油冷却器としての水冷式油冷却器38には、冷却媒体として冷却水が供給され、温度調整装置としての油冷却用冷却水流量調整弁39は、水冷式油冷却器38に供給する冷却水の供給量または温度を調整することにより、圧縮機である定速圧縮機31に供給する冷凍機油の温度を調整する。 Preferably, a water-cooled oil cooler 38 as an oil cooler is supplied with cooling water as a cooling medium, and an oil cooling cooling water flow rate adjustment valve 39 as a temperature adjustment device is supplied to the water-cooled oil cooler 38. The temperature of the refrigerating machine oil supplied to the constant speed compressor 31, which is a compressor, is adjusted by adjusting the supply amount or temperature of the cooling water.
 好ましくは、制御装置70は、圧縮機1における、吐出温度と、吐出圧力と、凝縮温度と、運転電流と、消費電力と、吸込過熱度との少なくともいずれかに基づいて、過負荷状態であるか否かを判定する。 Preferably, the control device 70 is in an overload state based on at least one of the discharge temperature, the discharge pressure, the condensing temperature, the operating current, the power consumption, and the degree of suction superheat in the compressor 1. Determine whether or not
 好ましくは、油冷却用電子膨張弁9または油冷却用冷却水流量調整弁39を制御するために物理量を検出するセンサとしては、たとえば給油温度センサ18および吐出温度センサ15のように、圧縮機1または定速圧縮機31に供給する冷凍機油の温度と、圧縮機1における吐出ガスの温度との少なくともいずれかを検出するものであればよい。 Preferably, as a sensor that detects a physical quantity for controlling the oil cooling electronic expansion valve 9 or the oil cooling cooling water flow rate adjustment valve 39, the compressor 1, such as the feed oil temperature sensor 18 and the discharge temperature sensor 15, Alternatively, at least one of the temperature of the refrigerating machine oil supplied to the constant speed compressor 31 and the temperature of the gas discharged from the compressor 1 may be detected.
 好ましくは、制御装置70は、第1制御である保護制御を実行する場合に、第2制御である弁開度減少抑制制御において、温度調整装置としての油冷却用電子膨張弁9の弁開度を増加させる。 Preferably, when executing the protection control as the first control, the control device 70 reduces the valve opening degree of the oil cooling electronic expansion valve 9 as the temperature adjustment device in the valve opening degree decrease suppression control as the second control. to increase
 好ましくは、制御装置70は、第2制御である弁開度減少抑制制御において、温度調整装置としての油冷却用電子膨張弁9の弁開度を、現在の弁開度に一定の増加割合を乗じて得られる弁開度に増加させる(ステップS13a)。 Preferably, the control device 70, in the valve-opening-degree reduction suppression control, which is the second control, increases the valve-opening degree of the oil-cooling electronic expansion valve 9 as the temperature adjusting device by a constant increase rate to the current valve-opening degree. The valve opening degree obtained by multiplying is increased (step S13a).
 好ましくは、制御装置70は、第2制御である弁開度減少抑制制御において、温度調整装置としての油冷却用電子膨張弁9の弁開度を、現在の弁開度に、一定の弁開度を加えた調整容量に増加させる(ステップS14)。 Preferably, the control device 70 sets the valve opening degree of the oil cooling electronic expansion valve 9 as the temperature adjustment device to the current valve opening degree in the valve opening degree decrease suppression control, which is the second control. The adjustment capacity is increased by adding degrees (step S14).
 好ましくは、制御装置80は、第2制御である弁開度減少抑制制御において、温度調整装置としての油冷却用冷却水流量調整弁39により調整する冷凍機油の温度の目標値を、第1目標値から第1目標値よりも低い第2目標値まで低下させる(ステップS23)。 Preferably, the control device 80 sets the target value of the temperature of the refrigerating machine oil to be adjusted by the oil-cooling cooling water flow rate adjustment valve 39 as the temperature adjustment device in the valve opening reduction suppression control, which is the second control, to the first target value. value to a second target value lower than the first target value (step S23).
 好ましくは、制御装置70は、冷却または暖房の能力調整のために圧縮機1の運転容量を増加させる運転中に過負荷状態と判定された場合に、第1制御である保護制御において圧縮機1の運転容量を減少させるとともに、第2制御である弁開度減少抑制制御において、温度調整装置としての油冷却用電子膨張弁9の弁開度を、現在の弁開度に、圧縮機1の運転容量を増加させる運転中における運転容量の増加割合に一定割合の補正を加えた割合を乗じて得られる弁開度に増加させる(ステップS13a)。 Preferably, the control device 70 controls the compressor 1 in the protection control, which is the first control, when the overload state is determined during the operation for increasing the operating capacity of the compressor 1 for adjusting the cooling or heating capacity. In addition, in the valve opening reduction suppression control, which is the second control, the valve opening of the oil cooling electronic expansion valve 9 as a temperature adjustment device is set to the current valve opening, and the compressor 1 The valve opening degree is increased by multiplying the rate of increase of the operating capacity during the operation in which the operating capacity is to be increased by a fixed rate correction (step S13a).
 好ましくは、制御装置70は、冷却または暖房の能力調整のために第1制御である保護制御において圧縮機1の運転容量を減少させる場合に、第2制御である弁開度減少抑制制御において温度調整装置としての、油冷却用電子膨張弁9の現在の弁開度を、現在の弁開度に、圧縮機1の運転容量を増加させる運転中における運転容量の増加割合に一定割合の補正を加えた割合を乗じて得られる弁開度を加えた弁開度に増加させる(ステップS13a)。 Preferably, when the operating capacity of the compressor 1 is reduced in the protection control, which is the first control, in order to adjust the cooling or heating capacity, the control device 70 reduces the temperature in the valve opening reduction suppression control, which is the second control. As an adjustment device, the current valve opening of the oil cooling electronic expansion valve 9 is adjusted to the current valve opening, and the operating capacity of the compressor 1 is increased during operation, and a constant correction is made to the increase rate of the operating capacity. The valve opening degree obtained by multiplying the added ratio is increased to the valve opening degree (step S13a).
 好ましくは、制御装置70は、第1制御である保護制御の終了条件が成立したことに関連して成立する第2制御である弁開度減少抑制制御の終了条件が成立した場合に(保護制御の終了時またはステップS13cのタイマT1の経過時)、弁開度減少抑制制御を終了する(ステップS16)。 Preferably, the control device 70 performs the protection control when the end condition of the valve opening reduction suppression control, which is the second control, is satisfied in association with the end condition of the protection control, which is the first control. or when the timer T1 in step S13c has elapsed), the valve opening reduction suppression control is terminated (step S16).
 好ましくは、制御装置70は、吐出温度センサ15のようなセンサによる吐出温度の検出値に基づく負荷量が、第2負荷量上限値(85℃)となった場合に圧縮機1の負荷状態を過負荷状態と判定し、第1制御である保護制御および第2制御である弁開度減少抑制制御が実行されている状態において、吐出温度センサ15のようなセンサにより検出された吐出温度の検出値に基づく負荷量が、第2負荷量上限値(85℃)に満たない第3負荷量上限値(80℃)未満となった場合に、第2制御である弁開度減少抑制制御を終了する(S15a、S16)。 Preferably, the control device 70 changes the load state of the compressor 1 when the load amount based on the discharge temperature detected by a sensor such as the discharge temperature sensor 15 reaches the second load amount upper limit value (85° C.). Detection of the discharge temperature detected by a sensor such as the discharge temperature sensor 15 in a state in which the overload state is determined and the protection control, which is the first control, and the valve opening reduction suppression control, which is the second control, are being executed. When the load amount based on the value becomes less than the third load amount upper limit value (80° C.) which is less than the second load amount upper limit value (85° C.), the valve opening reduction suppression control, which is the second control, is ended. (S15a, S16).
 好ましくは、制御装置80は、冷却または暖房の能力調整のために定速圧縮機31の運転容量を減少させる運転中に、定速圧縮機31の運転容量の減少が完了したことに応答して、弁開度減少抑制制御を終了する(ステップS27)。 Preferably, the control device 80 responds to the completion of the reduction of the operating capacity of the constant speed compressor 31 during the operation of reducing the operating capacity of the constant speed compressor 31 for cooling or heating capacity adjustment. , the valve opening reduction suppression control is ended (step S27).
 好ましくは、油冷却器7には、冷却媒体として冷媒が供給され、制御装置70は、油冷却器7の出口側に設けられた出口ガス温度センサ19により検出された出口ガス温度、および中間圧力センサ13により検出された中間圧力の相当飽和温度との差により得られる油冷却器7の出口側における冷媒の過熱度が、液バックが生じると判定する液バック判定閾値未満となった場合に、第2制御である弁開度減少抑制制御を終了する(ステップS15c、S16)。 Preferably, the oil cooler 7 is supplied with a refrigerant as a cooling medium, and the controller 70 controls the outlet gas temperature detected by the outlet gas temperature sensor 19 provided on the outlet side of the oil cooler 7 and the intermediate pressure When the degree of superheat of the refrigerant on the outlet side of the oil cooler 7 obtained by the difference from the equivalent saturation temperature of the intermediate pressure detected by the sensor 13 becomes less than the liquid backflow determination threshold value for determining that liquid backflow occurs, The valve opening reduction suppression control, which is the second control, ends (steps S15c and S16).
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 100、101 冷凍サイクル装置、1 圧縮機、2 油分離器、24 給油経路、7 油冷却器、22 冷却媒体経路、9 油冷却用電子膨張弁、15 吐出温度センサ、70,80 制御装置、31 定速圧縮機、38 水冷式油冷却器、33 冷却水配管。 100, 101 refrigeration cycle device, 1 compressor, 2 oil separator, 24 oil supply path, 7 oil cooler, 22 cooling medium path, 9 oil cooling electronic expansion valve, 15 discharge temperature sensor, 70, 80 control device, 31 Constant speed compressor, 38 Water-cooled oil cooler, 33 Cooling water piping.

Claims (15)

  1.  冷媒を圧縮する圧縮機と、
     前記圧縮機から吐出される冷媒と冷凍機油とを分離する油分離器と、
     前記油分離器で分離された冷凍機油を前記圧縮機に供給する給油経路と、
     前記圧縮機に供給する冷凍機油を冷却する油冷却器と、
     冷却媒体を前記油冷却器に供給する冷却媒体経路と、
     前記圧縮機に供給する冷凍機油の温度を調整する温度調整装置と、
     少なくとも1つのセンサと、
     制御装置とを備え、
     前記制御装置は、
      前記センサにより検出された、前記圧縮機に供給する冷凍機油の温度により変化する物理量の検出値に基づいて前記温度調整装置を制御し、
      前記センサにより検出された、前記圧縮機の負荷状態を判定するために用いる物理量の検出値に基づいて前記圧縮機の負荷状態を判定し、
      前記圧縮機の負荷状態が過負荷状態と判定された場合に、前記圧縮機の運転容量の増加を抑制する第1制御をするとともに、前記温度調整装置の調整容量の減少を抑制する第2制御をする、冷凍サイクル装置。
    a compressor that compresses a refrigerant;
    an oil separator for separating refrigerant discharged from the compressor and refrigerating machine oil;
    an oil supply path for supplying the refrigerating machine oil separated by the oil separator to the compressor;
    an oil cooler that cools refrigerating machine oil supplied to the compressor;
    a cooling medium path that supplies a cooling medium to the oil cooler;
    a temperature adjusting device that adjusts the temperature of refrigerating machine oil supplied to the compressor;
    at least one sensor;
    a control device;
    The control device is
    controlling the temperature adjustment device based on the detected value of the physical quantity that changes with the temperature of the refrigerating machine oil supplied to the compressor detected by the sensor;
    Determining the load state of the compressor based on the detected value of the physical quantity used for determining the load state of the compressor, which is detected by the sensor;
    When the load state of the compressor is determined to be an overload state, first control is performed to suppress an increase in the operating capacity of the compressor, and second control is performed to suppress a decrease in the adjustment capacity of the temperature adjustment device. refrigeration cycle equipment.
  2.  前記油冷却器には、冷却媒体として冷媒が供給され、
     前記温度調整装置は、前記油冷却器に供給する冷媒の供給量を調整することにより、前記圧縮機に供給する冷凍機油の温度を調整する、請求項1に記載の冷凍サイクル装置。
    A refrigerant is supplied as a cooling medium to the oil cooler,
    The refrigeration cycle apparatus according to claim 1, wherein the temperature adjustment device adjusts the temperature of refrigerating machine oil supplied to the compressor by adjusting the amount of refrigerant supplied to the oil cooler.
  3.  前記油冷却器には、冷却媒体として冷却水が供給され、
     前記温度調整装置は、前記油冷却器に供給する冷却水の供給量または温度を調整することにより、前記圧縮機に供給する冷凍機油の温度を調整する、請求項1に記載の冷凍サイクル装置。
    Cooling water is supplied as a cooling medium to the oil cooler,
    2. The refrigeration cycle apparatus according to claim 1, wherein said temperature adjustment device adjusts the temperature of refrigerating machine oil supplied to said compressor by adjusting the supply amount or temperature of cooling water supplied to said oil cooler.
  4.  前記制御装置は、前記圧縮機における、吐出温度と、吐出圧力と、凝縮温度と、運転電流と、消費電力と、吸込過熱度との少なくともいずれかに基づいて、前記過負荷状態であるか否かを判定する、請求項1~3のいずれか1項に記載の冷凍サイクル装置。 The control device determines whether or not the compressor is in the overload state based on at least one of discharge temperature, discharge pressure, condensing temperature, operating current, power consumption, and suction superheat degree. The refrigeration cycle apparatus according to any one of claims 1 to 3, which determines whether the
  5.  前記センサは、前記温度調整装置を制御するために検出する物理量として、前記圧縮機における吐出ガスの温度と、前記圧縮機に供給する冷凍機油の温度との少なくともいずれかを検出する、請求項1~4のいずれか1項に記載の冷凍サイクル装置。 2. The sensor detects at least one of a temperature of gas discharged from the compressor and a temperature of refrigerating machine oil supplied to the compressor as a physical quantity detected for controlling the temperature adjustment device. 5. The refrigeration cycle device according to any one of 1 to 4.
  6.  前記制御装置は、前記第1制御を実行する場合に、前記第2制御において、前記温度調整装置の調整容量を増加させる、請求項1~5のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the control device increases the adjustment capacity of the temperature adjustment device in the second control when executing the first control.
  7.  前記制御装置は、前記第2制御において、前記温度調整装置の調整容量を、現在の調整容量に一定の割合を乗じて得られる調整容量に増加させる、請求項6に記載の冷凍サイクル装置。 7. The refrigeration cycle apparatus according to claim 6, wherein in the second control, the control device increases the adjustment capacity of the temperature adjustment device to an adjustment capacity obtained by multiplying the current adjustment capacity by a constant rate.
  8.  前記制御装置は、前記第2制御において、前記温度調整装置の調整容量を、現在の調整容量に、一定の調整容量を加えた調整容量に増加させる、請求項6に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 6, wherein in the second control, the control device increases the adjustment capacity of the temperature adjustment device to an adjustment capacity obtained by adding a certain adjustment capacity to the current adjustment capacity.
  9.  前記制御装置は、前記第2制御において、前記温度調整装置により調整する冷凍機油の温度の目標値を、第1目標値から前記第1目標値よりも低い第2目標値まで低下させる、請求項6に記載の冷凍サイクル装置。 The control device, in the second control, lowers the target value of the temperature of the refrigerating machine oil to be adjusted by the temperature adjustment device from a first target value to a second target value lower than the first target value. 7. The refrigeration cycle device according to 6.
  10.  前記制御装置は、冷却または暖房の能力調整のために前記圧縮機の運転容量を増加させる運転中に前記過負荷状態と判定された場合に、前記第1制御において前記圧縮機の運転容量を減少させるとともに、前記第2制御において、前記温度調整装置の調整容量を、現在の調整容量に、前記圧縮機の運転容量を増加させる運転中における運転容量の増加割合を乗じて得られる調整容量に増加させる、請求項6に記載の冷凍サイクル装置。 The control device reduces the operating capacity of the compressor in the first control when the overload state is determined during an operation in which the operating capacity of the compressor is increased for adjustment of cooling or heating capacity. In addition, in the second control, the adjustment capacity of the temperature adjustment device is increased to an adjustment capacity obtained by multiplying the current adjustment capacity by the rate of increase in the operating capacity during operation in which the operating capacity of the compressor is increased. The refrigeration cycle device according to claim 6, wherein
  11.  前記制御装置は、冷却または暖房の能力調整のために前記圧縮機の運転容量を増加させる運転中に前記過負荷状態と判定された場合に、前記第1制御において前記圧縮機の運転容量を減少させるとともに、前記第2制御において、前記温度調整装置の調整容量を、現在の調整容量に、前記圧縮機の運転容量を増加させる運転中における運転容量の増加割合に一定割合の補正を加えた割合を乗じて得られる調整容量を加えた調整容量に増加させる、請求項6に記載の冷凍サイクル装置。 The control device reduces the operating capacity of the compressor in the first control when the overload state is determined during an operation in which the operating capacity of the compressor is increased for adjustment of cooling or heating capacity. and, in the second control, the adjustment capacity of the temperature adjustment device is set to the current adjustment capacity plus a fixed rate correction to the increase rate of the operating capacity during the operation in which the operating capacity of the compressor is increased. 7. The refrigeration cycle apparatus according to claim 6, wherein the adjustment capacity obtained by multiplying is increased to the adjustment capacity.
  12.  前記制御装置は、前記第1制御の終了条件が成立したことに関連して成立する前記第2制御の終了条件が成立した場合に、前記第2制御を終了する、請求項1~請求項11のいずれか1項に記載の冷凍サイクル装置。 Claims 1 to 11, wherein the control device terminates the second control when a termination condition for the second control that is satisfied in relation to satisfaction of a termination condition for the first control is satisfied. Refrigeration cycle apparatus according to any one of the.
  13.  前記制御装置は、
      前記センサにより検出された、前記圧縮機の負荷状態を判定するために用いる物理量の検出値が第1判定値となった場合に前記圧縮機の負荷状態を前記過負荷状態と判定し、
      前記第1制御および前記第2制御が実行されている状態において、前記センサにより検出された、前記圧縮機の負荷状態を判定するために用いる物理量の検出値が前記第1判定値に満たない第2判定値未満となった場合に、前記第2制御を終了する、請求項1~11のいずれか1項に記載の冷凍サイクル装置。
    The control device is
    determining that the load state of the compressor is the overload state when the detected value of the physical quantity used for determining the load state of the compressor detected by the sensor becomes a first determination value;
    In a state in which the first control and the second control are being executed, the detected value of the physical quantity used for determining the load state of the compressor detected by the sensor is less than the first determination value. 12. The refrigeration cycle apparatus according to any one of claims 1 to 11, wherein the second control is terminated when the second judgment value is reached.
  14.  前記制御装置は、冷却または暖房の能力調整のために前記圧縮機の運転容量を減少させる運転中に、前記圧縮機の運転容量の減少が完了したことに応答して、前記第2制御を終了する、請求項1~13のいずれか1項に記載の冷凍サイクル装置。 The control device terminates the second control in response to completion of reduction of the operating capacity of the compressor during operation for reducing the operating capacity of the compressor for adjustment of cooling or heating capacity. 14. The refrigeration cycle apparatus according to any one of claims 1 to 13.
  15.  前記油冷却器には、冷却媒体として冷媒が供給され、
     前記制御装置は、前記センサの検出結果に基づいて得られる前記油冷却器の出口側における冷媒の過熱度が、液バックが生じると判定する閾値未満となった場合に、前記第2制御を終了する、請求項1、2、4~14のいずれか1項に記載の冷凍サイクル装置。
    A refrigerant is supplied as a cooling medium to the oil cooler,
    The control device terminates the second control when the degree of superheat of the refrigerant on the outlet side of the oil cooler obtained based on the detection result of the sensor is less than a threshold for determining that liquid backflow occurs. The refrigeration cycle apparatus according to any one of claims 1, 2, and 4 to 14.
PCT/JP2021/019175 2021-05-20 2021-05-20 Refrigeration cycle apparatus WO2022244192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522122A JP7573739B2 (en) 2021-05-20 2021-05-20 Refrigeration Cycle Equipment
PCT/JP2021/019175 WO2022244192A1 (en) 2021-05-20 2021-05-20 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019175 WO2022244192A1 (en) 2021-05-20 2021-05-20 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022244192A1 true WO2022244192A1 (en) 2022-11-24

Family

ID=84141549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019175 WO2022244192A1 (en) 2021-05-20 2021-05-20 Refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP7573739B2 (en)
WO (1) WO2022244192A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188848A (en) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp Air conditioner
JP2005337242A (en) * 2004-04-27 2005-12-08 Kobe Steel Ltd A two-stage screw refrigerating device
JP2011075258A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Refrigerating cycle device
WO2016117037A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
JP2017141970A (en) * 2016-02-08 2017-08-17 シャープ株式会社 Cooler and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188848A (en) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp Air conditioner
JP2005337242A (en) * 2004-04-27 2005-12-08 Kobe Steel Ltd A two-stage screw refrigerating device
JP2011075258A (en) * 2009-10-02 2011-04-14 Hitachi Appliances Inc Refrigerating cycle device
WO2016117037A1 (en) * 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
JP2017141970A (en) * 2016-02-08 2017-08-17 シャープ株式会社 Cooler and air conditioner

Also Published As

Publication number Publication date
JPWO2022244192A1 (en) 2022-11-24
JP7573739B2 (en) 2024-10-25

Similar Documents

Publication Publication Date Title
WO2009119023A1 (en) Freezing apparatus
CN111520894B (en) Output control method and device for air conditioner compressor, air conditioner and storage medium
JP2010249452A (en) Air conditioner
JP4767133B2 (en) Refrigeration cycle equipment
KR101336720B1 (en) Air conditioning system
KR101450543B1 (en) Air conditioning system
JP5192883B2 (en) Multi-type air conditioner
JP6191490B2 (en) Air conditioner
JP2011007482A (en) Air conditioner
JP2013164250A (en) Refrigerating apparatus
WO2022244192A1 (en) Refrigeration cycle apparatus
KR101392316B1 (en) Air conditioning system
JP4690910B2 (en) Heat source machine, control method therefor, and heat source system
JP7572045B2 (en) Refrigeration device, refrigeration device control method, and temperature control system
JP3170532B2 (en) Air conditioner
CN114364929B (en) Outdoor unit and refrigeration cycle device
JP6327986B2 (en) Compressor / pump switching type cooling device
JP5604228B2 (en) Chiller
KR101397660B1 (en) Air conditioning system
JP2009222320A (en) Heat pump device
JP2020153600A (en) Refrigeration cycle device
KR101460717B1 (en) Air conditioning system
KR20180065314A (en) Turbo chiller system and Method for controlling it
JP2018179370A (en) Freezer unit
JP5201175B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940806

Country of ref document: EP

Kind code of ref document: A1