JP6327986B2 - Compressor / pump switching type cooling device - Google Patents

Compressor / pump switching type cooling device Download PDF

Info

Publication number
JP6327986B2
JP6327986B2 JP2014143050A JP2014143050A JP6327986B2 JP 6327986 B2 JP6327986 B2 JP 6327986B2 JP 2014143050 A JP2014143050 A JP 2014143050A JP 2014143050 A JP2014143050 A JP 2014143050A JP 6327986 B2 JP6327986 B2 JP 6327986B2
Authority
JP
Japan
Prior art keywords
refrigerant
cycle operation
compressor
pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014143050A
Other languages
Japanese (ja)
Other versions
JP2016017726A (en
Inventor
裕紀 村上
裕紀 村上
日野原 昌信
昌信 日野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2014143050A priority Critical patent/JP6327986B2/en
Publication of JP2016017726A publication Critical patent/JP2016017726A/en
Application granted granted Critical
Publication of JP6327986B2 publication Critical patent/JP6327986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧縮機/ポンプ切換式の冷却装置に関し、
詳しくは、運転停止した冷媒ポンプを迂回させる状態で圧縮機と外気熱交換器と膨張弁と負荷側熱交換器との順に冷媒を前記圧縮機により循環させる圧縮機サイクル運転と、
運転停止した前記圧縮機を迂回させる状態で前記冷媒ポンプと前記負荷側熱交換器と前記外気熱交換器との順に冷媒を前記冷媒ポンプにより循環させるポンプサイクル運転との切り換え実施が可能な冷媒循環路を設け、
前記圧縮機サイクル運転では、前記外気熱交換器において冷媒を凝縮させることで外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を蒸発させることで負荷媒体を冷却し、
前記ポンプサイクル運転では、前記外気熱交換器において冷媒を低温外気と熱交換させることで、冷媒を冷却して凝縮させるとともに外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を負荷媒体と熱交換させることで、冷媒を加熱して蒸発させるとともに負荷媒体を冷却する圧縮機/ポンプ切換式の冷却装置に関する。
The present invention relates to a compressor / pump switching type cooling device,
Specifically, a compressor cycle operation in which the refrigerant is circulated by the compressor in the order of the compressor, the outside air heat exchanger, the expansion valve, and the load side heat exchanger in a state of bypassing the stopped refrigerant pump,
Refrigerant circulation capable of switching between pump cycle operation in which refrigerant is circulated by the refrigerant pump in the order of the refrigerant pump, the load-side heat exchanger, and the outside air heat exchanger in a state in which the stopped compressor is bypassed. Set up a road,
In the compressor cycle operation, heat is radiated to the outside air by condensing the refrigerant in the outside air heat exchanger, and in parallel with this, the load medium is cooled by evaporating the refrigerant in the load side heat exchanger,
In the pump cycle operation, the refrigerant exchanges heat with the low-temperature outside air in the outside heat exchanger to cool and condense the refrigerant and dissipate heat to the outside air. In parallel with this, the refrigerant in the load-side heat exchanger The present invention relates to a compressor / pump switching type cooling device that heats and evaporates refrigerant and cools the load medium by exchanging heat with the load medium.

従来、この種の冷却装置では、特許文献1に見られるように、ポンプサイクル運転において外気熱交換器から送出される冷媒をそのまま冷媒ポンプに吸入させていた。   Conventionally, in this type of cooling device, as seen in Patent Document 1, the refrigerant pumped out from the outside heat exchanger in the pump cycle operation is directly sucked into the refrigerant pump.

なお、一般的には、外気熱交換器から送出される冷媒を受液器を通じてそのまま冷媒ポンプに吸入させる。   In general, the refrigerant delivered from the outside air heat exchanger is directly sucked into the refrigerant pump through the liquid receiver.

また、同特許文献1に見られる装置では、圧縮機サイクル運転とポンプサイクル運転との切り換えを行う際に、圧縮機及び冷媒ポンプをともに停止するとともに、圧縮機に対するバイパス弁及び冷媒ポンプに対するバイパス弁をともに開弁して冷媒を自然流動させる状態を所定時間にわたって継続し、その上で切り換え先の圧縮機サイクル運転又はポンプサイクル運転を開始するようにしている。   Further, in the apparatus shown in Patent Document 1, when switching between the compressor cycle operation and the pump cycle operation, both the compressor and the refrigerant pump are stopped, and the bypass valve for the compressor and the bypass valve for the refrigerant pump are stopped. The state in which both are opened to allow the refrigerant to flow naturally is continued for a predetermined time, and then the compressor cycle operation or pump cycle operation of the switching destination is started.

即ち、このように冷媒を自然流動させる状態を所定時間にわたって継続することで、圧縮機サイクル運転とポンプサイクル運転との切り換えにおいて冷媒循環路の各部(特に冷媒凝縮器として機能する外気熱交換器)において大きな圧力変化が生じることを抑止するようにしている。   That is, by continuing the state in which the refrigerant naturally flows for a predetermined time in this manner, each part of the refrigerant circulation path (especially an outside air heat exchanger that functions as a refrigerant condenser) in switching between the compressor cycle operation and the pump cycle operation. In order to prevent a large pressure change from occurring.

特開2000−274774号公報JP 2000-274774 A

しかし、ポンプサイクル運転において外気熱交換器から送出される冷媒をそのまま冷媒ポンプに吸入させる従来装置では、外気熱交換器での外気との熱交換による冷媒凝縮が外気条件の変化などで不十分になり、そのことで気相混じりの冷媒が冷媒ポンプに吸入されて冷媒ポンプでキャビテーションが発生することを防止する必要がある。   However, in the conventional device in which the refrigerant sent from the outside air heat exchanger in the pump cycle operation is sucked into the refrigerant pump as it is, the refrigerant condensation due to heat exchange with the outside air in the outside air heat exchanger is insufficient due to changes in outside air conditions, etc. Therefore, it is necessary to prevent the refrigerant mixed with the gas phase from being sucked into the refrigerant pump and causing cavitation in the refrigerant pump.

この為、従来装置では、ポンプサイクル運転において外気熱交換器の冷媒出口における冷媒の過冷却度を計測し、その計測結果に基づいて外気熱交換器における冷媒流量を調整するなどして外気熱交換器の冷媒出口における冷媒の過冷却度を調整する過冷却度制御がポンプサイクル運転において常時必要になり、そのことで装置の制御構成が複雑化する問題があった。   For this reason, the conventional apparatus measures the degree of supercooling of the refrigerant at the refrigerant outlet of the outside air heat exchanger in the pump cycle operation, and adjusts the refrigerant flow rate in the outside air heat exchanger based on the measurement result. Therefore, the supercooling degree control for adjusting the supercooling degree of the refrigerant at the refrigerant outlet of the cooler is always required in the pump cycle operation, which causes a problem that the control configuration of the apparatus becomes complicated.

また、圧縮機サイクル運転とポンプサイクル運転との切り換えの際に所定時間にわたって冷媒を自然流動させる場合、その所定時間の期間中は負荷媒体の冷却が中断されてしまう問題が生じる。   Further, when the refrigerant is allowed to naturally flow over a predetermined time when switching between the compressor cycle operation and the pump cycle operation, there arises a problem that the cooling of the load medium is interrupted during the predetermined time period.

この実情に鑑み、本発明の主たる課題は、合理的な改良により上記問題を解消する点にある。   In view of this situation, the main problem of the present invention is to eliminate the above-mentioned problem by rational improvement.

本発明の第1特徴構成は圧縮機/ポンプ切換式の冷却装置に係り、その特徴は、
運転停止した冷媒ポンプを迂回させる状態で圧縮機と外気熱交換器と膨張弁と負荷側熱交換器との順に冷媒を前記圧縮機により循環させる圧縮機サイクル運転と、
運転停止した前記圧縮機を迂回させる状態で前記冷媒ポンプと前記負荷側熱交換器と前記外気熱交換器との順に冷媒を前記冷媒ポンプにより循環させるポンプサイクル運転との切り換え実施が可能な冷媒循環路を設け、
前記圧縮機サイクル運転では、前記外気熱交換器において冷媒を凝縮させることで外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を蒸発させることで負荷媒体を冷却し、
前記ポンプサイクル運転では、前記外気熱交換器において冷媒を低温外気と熱交換させることで、冷媒を冷却して凝縮させるとともに外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を負荷媒体と熱交換させることで、冷媒を加熱して蒸発させるとともに負荷媒体を冷却する圧縮機/ポンプ切換式の冷却装置であって、
前記ポンプサイクル運転において前記冷媒ポンプが吸入する冷媒を冷却用熱媒と熱交換させて冷却する冷媒冷却器を、冷媒の流れ方向において前記冷媒循環路における前記外気熱交換器から前記冷媒ポンプまでの部分の途中箇所に介装し、
前記圧縮機サイクル運転と前記ポンプサイクル運転との切り換えを実行する制御器を設け、
この制御器は、前記ポンプサイクル運転から前記圧縮機サイクル運転に切り換えるとき、前記冷媒ポンプの出力を低下させることで前記負荷側熱交換器の冷媒出口における冷媒の過熱度を高める過熱度確保モードで前記ポンプサイクル運転を実施し、
この過熱度確保モードでの前記ポンプサイクル運転において、前記負荷側熱交換器の冷媒出口における冷媒の過熱度が設定許容値に上昇したときに、又は、設定時間が経過したときに、前記ポンプサイクル運転から前記圧縮機サイクル運転への切り換えを行う構成にしてある点にある。
A first characteristic configuration of the present invention relates to a compressor / pump switching type cooling apparatus,
Compressor cycle operation in which the refrigerant is circulated by the compressor in the order of the compressor, the outside air heat exchanger, the expansion valve, and the load side heat exchanger in a state of bypassing the stopped refrigerant pump,
Refrigerant circulation capable of switching between pump cycle operation in which refrigerant is circulated by the refrigerant pump in the order of the refrigerant pump, the load-side heat exchanger, and the outside air heat exchanger in a state in which the stopped compressor is bypassed. Set up a road,
In the compressor cycle operation, heat is radiated to the outside air by condensing the refrigerant in the outside air heat exchanger, and in parallel with this, the load medium is cooled by evaporating the refrigerant in the load side heat exchanger,
In the pump cycle operation, the refrigerant exchanges heat with the low-temperature outside air in the outside heat exchanger to cool and condense the refrigerant and dissipate heat to the outside air. In parallel with this, the refrigerant in the load-side heat exchanger The compressor / pump switching type cooling device that heats and evaporates the refrigerant and cools the load medium by exchanging heat with the load medium,
In the pump cycle operation, a refrigerant cooler that cools the refrigerant sucked by the refrigerant pump by exchanging heat with a cooling heat medium from the outside air heat exchanger in the refrigerant circulation path to the refrigerant pump in the refrigerant flow direction. Intervening in the middle of the part ,
A controller for performing switching between the compressor cycle operation and the pump cycle operation;
When the controller switches from the pump cycle operation to the compressor cycle operation, the controller reduces the output of the refrigerant pump, thereby increasing the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger. Performing the pump cycle operation,
In the pump cycle operation in this superheat degree securing mode, when the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger rises to a set allowable value or when a set time has elapsed, the pump cycle The configuration is such that the operation is switched from the operation to the compressor cycle operation .

この構成によれば、ポンプサイクル運転において気相混じりの冷媒が冷媒ポンプに吸入される状況になったとしても、その気相混じりの冷媒を冷媒ポンプへの吸入に先立ち冷媒冷却器での冷却用熱媒との熱交換で冷却して確実に凝縮させるとともに十分な過冷却度を取得させることができ、これにより、気相混じりの冷媒が冷媒ポンプに吸入されること確実に防止して、冷媒ポンプでのキャビテーションの発生を防止することができる。   According to this configuration, even when the refrigerant mixed with the gas phase is sucked into the refrigerant pump in the pump cycle operation, the refrigerant mixed with the gas phase is used for cooling in the refrigerant cooler prior to being sucked into the refrigerant pump. Cooling by heat exchange with the heat medium can be surely condensed and a sufficient degree of supercooling can be obtained, thereby reliably preventing the refrigerant mixed with the gas phase from being sucked into the refrigerant pump. Occurrence of cavitation in the pump can be prevented.

したがって、外気熱交換器の冷媒出口における冷媒の過冷却度を計測して、その計測結果に基づいて外気熱交換器の冷媒出口における冷媒の過冷却度を調整する過冷却度制御をポンプサイクル運転において常時実施することを不要にすることができ、これにより、装置の制御構成を簡略化することができ、また、そのことで装置コストも安価にすることができる。 Therefore, the supercooling degree control that measures the supercooling degree of the refrigerant at the refrigerant outlet of the outdoor air heat exchanger and adjusts the supercooling degree of the refrigerant at the refrigerant outlet of the outdoor air heat exchanger based on the measurement result is operated in the pump cycle. Therefore, it is possible to simplify the control configuration of the apparatus and to reduce the apparatus cost.

なお、冷媒冷却器において冷媒と熱交換させる冷却用熱媒は、空気などの気体熱媒あるいは水などの液体熱媒のいずれであってもよい。 The cooling heat medium that exchanges heat with the refrigerant in the refrigerant cooler may be either a gas heat medium such as air or a liquid heat medium such as water.

そしてまた、上記第1特徴構成では、In the first feature configuration,
前記圧縮機サイクル運転と前記ポンプサイクル運転との切り換えを実行する制御器を設け、A controller for performing switching between the compressor cycle operation and the pump cycle operation;
この制御器は、前記ポンプサイクル運転から前記圧縮機サイクル運転に切り換えるとき、前記冷媒ポンプの出力を低下させることで前記負荷側熱交換器の冷媒出口における冷媒の過熱度を高める過熱度確保モードで前記ポンプサイクル運転を実施し、When the controller switches from the pump cycle operation to the compressor cycle operation, the controller reduces the output of the refrigerant pump, thereby increasing the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger. Performing the pump cycle operation,
この過熱度確保モードでの前記ポンプサイクル運転において、前記負荷側熱交換器の冷媒出口における冷媒の過熱度が設定許容値に上昇したときに、又は、設定時間が経過したときに、前記ポンプサイクル運転から前記圧縮機サイクル運転への切り換えを行う構成にしてあるから、次の作用効果も奏する。In the pump cycle operation in this superheat degree securing mode, when the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger rises to a set allowable value or when a set time has elapsed, the pump cycle Since the operation is switched from the operation to the compressor cycle operation, the following effects can be obtained.

つまり、過熱度確保モードでのポンプサイクル運転において負荷側熱交換器の冷媒出口における冷媒の過熱度を十分に上昇させた状態で圧縮機サイクル運転への切り換えを行うから、その過熱度確保モードでのポンプサイクル運転を実施するまでのポンプサイクル運転において負荷側熱交換器から液相混じりの冷媒が送出されていたとしても、切り換え後の圧縮機サイクル運転において液相混じりの冷媒が圧縮機に吸入される所謂液バックを確実に防止することができる。In other words, in the pump cycle operation in the superheat degree securing mode, switching to the compressor cycle operation is performed in a state where the refrigerant superheat degree at the refrigerant outlet of the load side heat exchanger is sufficiently increased. Even if the refrigerant mixed with the liquid phase is sent from the load-side heat exchanger in the pump cycle operation until the pump cycle operation is performed, the refrigerant mixed with the liquid phase is sucked into the compressor in the compressor cycle operation after switching. This so-called liquid back can be reliably prevented.

また、ポンプサイクル運転から圧縮機サイクル運転への切り換え時にのみ過熱度確保モードでのポンプサイクル運転を実施して負荷側熱交換器の冷媒出口での冷媒の過熱度を上昇させるから、負荷側熱交換器の冷媒出口での冷媒の過熱度を計測し、その計測結果に基づいて負荷側熱交換器の冷媒出口での冷媒の過熱度を調整する過熱度制御をポンプサイクル運転において常時実施するのに比べ、装置の制御構成を簡略化することができ、また、ポンプサイクル運転での負荷媒体に対する冷却機能が常時の過熱度制御により制限されることも回避することができる。In addition, since the pump cycle operation in the superheat degree securing mode is performed only when switching from the pump cycle operation to the compressor cycle operation to increase the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger, Superheat degree control is performed in the pump cycle operation to measure the superheat degree of the refrigerant at the refrigerant outlet of the exchanger and adjust the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger based on the measurement result. As compared with the above, it is possible to simplify the control configuration of the apparatus, and it is also possible to avoid that the cooling function for the load medium in the pump cycle operation is limited by the normal superheat degree control.

なお、過熱度確保モードでのポンプサイクル運転において設定時間が経過したときにポンプサイクル運転から圧縮機サイクル運転への切り換えを行う場合は、圧縮機の冷媒吸入側にアキュムレータ(気液分離器)を装備して、液バックの防止を一層確実にするのが望ましい。When switching from the pump cycle operation to the compressor cycle operation when the set time has elapsed in the pump cycle operation in the superheat securing mode, an accumulator (gas-liquid separator) is installed on the refrigerant suction side of the compressor. It is desirable to equip it to further prevent liquid back.

本発明の第2特徴構成は、第1特徴構成の実施に好適な構成であり、その特徴は、The second feature configuration of the present invention is a configuration suitable for the implementation of the first feature configuration.
前記制御器は、前記圧縮機サイクル運転と前記ポンプサイクル運転との切り換えにおいて、前記圧縮機の起動・停止と前記冷媒ポンプの起動・停止と前記冷媒循環路における冷媒経路の切り換えとを同一のタイミング又はほぼ同一のタイミングで行う構成にしてある点にある。In the switching between the compressor cycle operation and the pump cycle operation, the controller starts and stops the compressor, starts and stops the refrigerant pump, and switches the refrigerant path in the refrigerant circuit. Alternatively, it is configured to perform at almost the same timing.

この構成によれば、前述の如く圧縮機サイクル運転とポンプサイクル運転との切り換えを行う際に、圧縮機及び冷媒ポンプをともに停止するとともに、圧縮機に対するバイパス弁及び冷媒ポンプに対するバイパス弁をともに開弁して冷媒を自然流動させる状態を所定時間にわたって継続し、その上で切り換え先の圧縮機サイクル運転又はポンプサイクル運転を開始するのに比べ、圧縮機サイクル運転とポンプサイクル運転との切り換え時においても負荷媒体を継続的に冷却することができ、この点で、負荷媒体に対する冷却機能性が一層高い装置にすることができる。According to this configuration, when switching between the compressor cycle operation and the pump cycle operation as described above, both the compressor and the refrigerant pump are stopped, and both the bypass valve for the compressor and the bypass valve for the refrigerant pump are opened. Compared to starting the compressor cycle operation or the pump cycle operation of the switching destination after continuing the state of allowing the refrigerant to flow naturally through the valve for a predetermined time, and at the time of switching between the compressor cycle operation and the pump cycle operation. In this respect, the load medium can be continuously cooled, and in this respect, the apparatus can have a higher cooling function for the load medium.

また、このように圧縮機の起動・停止と、冷媒ポンプの起動・停止と、冷媒循環路における冷媒経路の切り換えとを同一のタイミングで行うことで、圧縮機サイクル運転からポンプサイクル運転への切り換えにおいて、それまで圧縮機の吐出作用を受けていた外気熱交換器が急に冷媒ポンプの吸入作用を受ける状態になって外気熱交換器の圧力が急降下し、そのことで、それまで外気熱交換器から送出されていた凝縮冷媒や外気熱交換器から送出されて受液器に溜まっていた凝縮冷媒が一部気化して気相混じりの冷媒が冷媒ポンプに吸入される状態になったとしても、その気相混じりの冷媒は前述の如く冷媒冷却器での冷却により完全に凝縮させるとともに十分な過冷却度を取得させた状態で冷媒ポンプに吸入させることができ、切り換え後のポンプサイクル運転に支障を来すことはない。In addition, switching from the compressor cycle operation to the pump cycle operation is performed by performing the start / stop of the compressor, the start / stop of the refrigerant pump, and the switching of the refrigerant path in the refrigerant circulation path at the same timing. In this case, the outside air heat exchanger that had been receiving the discharge action of the compressor suddenly receives the suction action of the refrigerant pump, and the pressure of the outside air heat exchanger suddenly drops. Even if the condensed refrigerant that has been sent from the vessel or the condensed refrigerant that has been sent from the outdoor air heat exchanger and accumulated in the liquid receiver partially evaporates, the refrigerant mixed with the gas phase is sucked into the refrigerant pump. As described above, the refrigerant mixed with the gas phase can be completely condensed by cooling with the refrigerant cooler and can be sucked into the refrigerant pump in a state where a sufficient degree of supercooling is obtained. Never interfere with the pump cycle operation.

なお、ここで言う圧縮機の停止とは、圧縮機停止指令の付与に続いて圧縮機の残留運転が実施される場合は、その残留運転が完了した時点を言う。In addition, the stop of a compressor said here means the time of the completion of the residual operation, when the residual operation of a compressor is implemented following provision of a compressor stop command.

本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な構成であり、その特徴は、
前記制御器は、前記ポンプサイクル運転から前記圧縮機サイクル運転に切り換えた後、設定過渡時間が経過するまでは、前記圧縮機の出力を制限するとともに前記膨張弁の開度を設定制限開度に保持する安定化モードで前記圧縮機サイクル運転を実施し、
前記設定過渡時間が経過したとき前記圧縮機サイクル運転における前記安定化モードを解除する構成にしてある点にある。
The third characteristic configuration of the present invention is a configuration suitable for implementing the first or second characteristic configuration ,
The controller, after switching from the pump cycle operation to the compressor cycle operation, limits the output of the compressor and sets the opening of the expansion valve to a set limit opening until a set transient time elapses. The compressor cycle operation is performed in the holding stabilization mode,
The stabilization mode in the compressor cycle operation is canceled when the set transient time has elapsed.

この構成によれば、前述した過熱度確保モードでのポンプサイクル運転から圧縮機サイクル運転に切り換えた直後における圧縮機サイクル運転の過渡的な不安定化を、上記安定化モードでの圧縮機サイクル運転により防止することができ、これにより、負荷媒体に対する冷却機能をポンプサイクル運転から圧縮機サイクル運転への切り換え直後においても良好に保つことができる。   According to this configuration, the transient instability of the compressor cycle operation immediately after switching from the pump cycle operation in the above-described superheat degree securing mode to the compressor cycle operation is performed in the compressor cycle operation in the stabilization mode. Therefore, the cooling function for the load medium can be maintained well even immediately after switching from the pump cycle operation to the compressor cycle operation.

圧縮機サイクル運転状態の冷媒回路図Refrigerant circuit diagram in compressor cycle operation ポンプサイクル運転状態の冷媒回路図Refrigerant circuit diagram in pump cycle operation state 圧縮機サイクル運転及びポンプサイクル運転を示すモリエル線図Mollier diagram showing compressor cycle operation and pump cycle operation ポンプサイクル運転への切り換え形態を示すタイミングチャートTiming chart showing switching to pump cycle operation 圧縮機サイクル運転への切り換え形態を示すタイミングチャートTiming chart showing the mode of switching to compressor cycle operation 冷媒冷却器の運転がない場合の障害を説明するモリエル線図Mollier diagram explaining obstacles when there is no refrigerant cooler operation 冷媒冷却器を運転する場合の運転切り換えを説明するモリエル線図Mollier diagram explaining operation switching when operating a refrigerant cooler ポンプサイクル運転への切り換え時における各値の変化を示すグラフGraph showing changes in each value when switching to pump cycle operation 過熱度確保モードの実行がない場合の障害を説明するモリエル線図Mollier diagram explaining failure when there is no execution of superheat degree securing mode 過熱度確保モードを実行する場合の運転切り換えを説明するモリエル線図Mollier diagram explaining operation switching when executing the superheat degree securing mode 圧縮機サイクル運転への切り換え時における各値の変化を示すグラフGraph showing changes in each value when switching to compressor cycle operation 圧縮機サイクル運転への切り換え判定のフローチャートFlow chart for switching to compressor cycle operation ポンプサイクル運転領域を示す相関図Correlation diagram showing pump cycle operating range ポンプサイクル運転への切り換え判定のフローチャートFlow chart for switching to pump cycle operation 外気温度と冷媒凝縮圧力と伝熱面状態との相関を示すグラフGraph showing correlation between outside air temperature, refrigerant condensing pressure and heat transfer surface state 圧縮機サイクル運転への切り換え時における凝縮圧力の変化を示すグラフGraph showing change in condensing pressure when switching to compressor cycle operation 外気通風量と冷却能力と伝熱面状態との相関を示すグラフA graph showing the correlation between outside air flow rate, cooling capacity and heat transfer surface condition ポンプサイクル運転への切り換え時における外気通風量の変化を示すグラフGraph showing change in outside air flow rate when switching to pump cycle operation 蒸発圧力及び凝縮圧力と冷却能力との相関を示すグラフGraph showing the correlation between evaporating pressure and condensing pressure and cooling capacity 圧縮機サイクル運転への切り換え判定のフローチャートFlow chart for switching to compressor cycle operation

図1は外気を放熱源とする圧縮機/ポンプ切換式の冷却装置Cを示し、この冷却装置Cにおける冷媒Rの循環路1には、冷媒蒸発器として機能させる負荷側熱交換器2と、蒸発圧力調整弁3と、圧縮機4と、冷媒凝縮器として機能させる外気熱交換器5と、受液器6と、冷媒冷却器7と、冷媒ポンプ8と、減圧弁9と、膨張弁10とを、その順に並べて介装してある。   FIG. 1 shows a compressor / pump switching type cooling device C that uses outside air as a heat radiation source, and a load side heat exchanger 2 that functions as a refrigerant evaporator is provided in a circulation path 1 of the refrigerant R in the cooling device C. The evaporation pressure regulating valve 3, the compressor 4, the outside air heat exchanger 5 that functions as a refrigerant condenser, the liquid receiver 6, the refrigerant cooler 7, the refrigerant pump 8, the pressure reducing valve 9, and the expansion valve 10 Are arranged in that order.

また、冷媒循環路1には、圧縮機4を迂回する圧縮機バイパス路11、及び、この圧縮機バイパス路11を開閉する圧縮機バイパス弁11aを設けるとともに、冷媒冷却器7と冷媒ポンプ8と減圧弁9との直列配置を迂回するポンプバイパス路12、及び、このポンプバイパス路12を開閉するポンプバイパス弁12aを設けてある。   The refrigerant circulation path 1 is provided with a compressor bypass path 11 that bypasses the compressor 4 and a compressor bypass valve 11 a that opens and closes the compressor bypass path 11, and a refrigerant cooler 7 and a refrigerant pump 8 A pump bypass passage 12 that bypasses the series arrangement with the pressure reducing valve 9 and a pump bypass valve 12a that opens and closes the pump bypass passage 12 are provided.

また、圧縮機バイパス路11の接続箇所よりも圧縮機4の側で、圧縮機4の冷媒吸込側及び冷媒吐出側には開閉弁11b,11cを設け、さらに、ポンプバイパス路12の接続箇所よりも冷媒ポンプ8の側で、冷媒ポンプ8の冷媒吐出側には開閉弁12bを設けてある。   Further, on the side of the compressor 4 from the connection location of the compressor bypass passage 11, on-off valves 11 b and 11 c are provided on the refrigerant suction side and the refrigerant discharge side of the compressor 4, and further from the connection location of the pump bypass passage 12. On the refrigerant pump 8 side, an open / close valve 12b is provided on the refrigerant discharge side of the refrigerant pump 8.

外気熱交換器5には放熱源である外気OAを外気ファン13により通風し、この外気OAと冷媒Rとを外気熱交換器5において熱交換させる。   The outside air OA, which is a heat radiation source, is passed through the outside air heat exchanger 5 by the outside air fan 13, and heat is exchanged between the outside air OA and the refrigerant R in the outside air heat exchanger 5.

負荷側熱交換器2には負荷媒体である負荷側空気IAを負荷側送風機14により通風し、この負荷側空気IAと冷媒Rとを負荷側熱交換器2において熱交換させる。   The load-side heat exchanger 2 is passed through the load-side air IA as a load medium by the load-side blower 14, and heat is exchanged between the load-side air IA and the refrigerant R in the load-side heat exchanger 2.

この冷却装置Cにおける冷媒循環路1では、図1に示す圧縮機サイクル運転と図2に示すポンプサイクル運転とを択一的に実施し、圧縮機サイクル運転では、図1に示す如く、圧縮機バイパス弁11a及び開閉弁12bを閉じるとともにポンプバイパス弁12a及び開閉弁11b,11cを開いて圧縮機4を運転することで、冷媒循環路1において冷媒冷却器7と停止状態の冷媒ポンプ8と減圧弁9とを迂回させる状態でポンプバイパス路12を通じて冷媒Rを循環させる。   In the refrigerant circuit 1 in the cooling device C, the compressor cycle operation shown in FIG. 1 and the pump cycle operation shown in FIG. 2 are alternatively performed. In the compressor cycle operation, as shown in FIG. By closing the bypass valve 11a and the on-off valve 12b and opening the pump bypass valve 12a and the on-off valves 11b and 11c to operate the compressor 4, the refrigerant cooler 7, the stopped refrigerant pump 8 and the decompression pressure in the refrigerant circuit 1 are reduced. The refrigerant R is circulated through the pump bypass 12 in a state of bypassing the valve 9.

即ち、圧縮機サイクル運転では基本的に、一般の圧縮式冷凍回路と同様、圧縮機4により圧縮した気相の高圧冷媒Rを冷媒凝縮器としての外気熱交換器5において凝縮させ、その際の冷媒凝縮熱を、外気ファン13により通風する外気OAに放熱する。   That is, in the compressor cycle operation, basically, as in a general compression refrigeration circuit, the vapor-phase high-pressure refrigerant R compressed by the compressor 4 is condensed in the outside heat exchanger 5 as a refrigerant condenser, The refrigerant condensation heat is radiated to the outside air OA ventilated by the outside air fan 13.

外気熱交換器5において凝縮した液相の高圧冷媒Rは、受液器6及びポンプバイパス路12を通じ膨張弁10に通過させて低圧領域に開放することで、その液相冷媒Rを冷媒蒸発器としての負荷側熱交換器2において蒸発させ、その際の冷媒蒸発熱を、負荷側送風機14により通風する負荷側空気IAから奪取させることで負荷側空気IAを冷却する。   The liquid-phase high-pressure refrigerant R condensed in the outside air heat exchanger 5 is passed through the receiver 6 and the pump bypass passage 12 through the expansion valve 10 and opened to the low-pressure region. The load side heat exchanger 2 is evaporated, and the refrigerant evaporating heat at that time is taken away from the load side air IA ventilated by the load side blower 14, thereby cooling the load side air IA.

負荷側熱交換器5において蒸発した気相の低圧冷媒Rは、蒸発圧力調整弁3を通じ圧縮機4に吸入させて再び圧縮する。   The vapor-phase low-pressure refrigerant R evaporated in the load-side heat exchanger 5 is sucked into the compressor 4 through the evaporation pressure regulating valve 3 and compressed again.

一方、ポンプサイクル運転では、図2に示す如く、ポンプバイパス弁12a及び開閉弁11b,11cを閉じるとともに圧縮機バイパス弁11a及び開閉弁12bを開いて冷媒ポンプ8を運転することで、冷媒循環路1において停止状態の圧縮機4を迂回させる状態で圧縮機バイパス路11を通じて冷媒Rを循環させる。   On the other hand, in the pump cycle operation, as shown in FIG. 2, the refrigerant bypass path 12a and the on-off valves 11b and 11c are closed and the compressor bypass valve 11a and the on-off valve 12b are opened to operate the refrigerant pump 8. 1, the refrigerant R is circulated through the compressor bypass 11 in a state where the stopped compressor 4 is bypassed.

即ち、ポンプサイクル運転では基本的に、冷媒ポンプ8より液相冷媒Rを減圧弁9及び膨張弁10を通じて冷媒蒸発器としての負荷側熱交換器2に送ることで、その液相冷媒Rを負荷側熱交換器2において負荷側送風機14により通風する負荷側空気IAと熱交換させ、これにより、液相冷媒Rを加熱して蒸発させるとともに負荷側空気IAを冷却する。   That is, in the pump cycle operation, basically, the liquid phase refrigerant R is sent from the refrigerant pump 8 to the load side heat exchanger 2 as a refrigerant evaporator through the pressure reducing valve 9 and the expansion valve 10 to load the liquid phase refrigerant R. In the side heat exchanger 2, heat is exchanged with the load side air IA ventilated by the load side blower 14, thereby heating and evaporating the liquid refrigerant R and cooling the load side air IA.

負荷側熱交換器2において蒸発した気相冷媒R(場合によっては液相混じりの気相冷媒)は蒸発圧力調整弁3及び圧縮機バイパス路11を通じて冷媒凝縮器として外気熱交換器5に送ることで、その気相冷媒Rを外気熱交換器5において外気ファン13により通風する外気OAと熱交換させ、これにより、気相冷媒Cを冷却して凝縮させるとともに、冷媒Rが先の負荷側熱交換器2において負荷側空気IAから取得した熱を通風外気OAに放熱する。   The vapor-phase refrigerant R evaporated in the load-side heat exchanger 2 (in some cases, the gas-phase refrigerant mixed with a liquid phase) is sent to the outside air heat exchanger 5 as a refrigerant condenser through the evaporation pressure adjusting valve 3 and the compressor bypass passage 11. Thus, the gas-phase refrigerant R is heat-exchanged with the outside air OA ventilated by the outside-air fan 13 in the outside-air heat exchanger 5, thereby cooling and condensing the gas-phase refrigerant C, and the refrigerant R is subjected to the previous load side heat. In the exchanger 2, the heat acquired from the load side air IA is radiated to the wind outside air OA.

外気熱交換器5において凝縮した液相冷媒Rは、受液器6及び冷媒冷却器7を通じ冷媒ポンプ8に吸入させ、再び負荷側熱交換器2に送る。   The liquid-phase refrigerant R condensed in the outside air heat exchanger 5 is sucked into the refrigerant pump 8 through the liquid receiver 6 and the refrigerant cooler 7 and sent again to the load-side heat exchanger 2.

図3において実線は圧縮機サイクル運転におけるモリエル線図を示し、破線はポンプサイクル運転におけるモリエル線図を示し、図中の各符号は次の通りである。   In FIG. 3, the solid line shows the Mollier diagram in the compressor cycle operation, the broken line shows the Mollier diagram in the pump cycle operation, and the respective symbols in the diagram are as follows.

圧縮機サイクル運転(実線)
pe:負荷側熱交換器2(冷媒蒸発器)における冷媒Rの蒸発圧力
pc:外気熱交換器5(冷媒凝縮器)における冷媒Rの凝縮圧力
SH:負荷側熱交換器2(冷媒蒸発器)の冷媒出口における冷媒Rの過熱度
SC:外気熱交換器5(冷媒凝縮器)の冷媒出口における冷媒Rの過冷却度
Compressor cycle operation (solid line)
pe: Evaporating pressure of refrigerant R in load side heat exchanger 2 (refrigerant evaporator) pc: Condensing pressure of refrigerant R in outside air heat exchanger 5 (refrigerant condenser) SH: Load side heat exchanger 2 (refrigerant evaporator) SC: The degree of supercooling of the refrigerant R at the refrigerant outlet of the outside air heat exchanger 5 (refrigerant condenser)

ポンプサイクル運転(破線)
pe′:負荷側熱交換器2(冷媒蒸発器)における冷媒Rの蒸発圧力
pc′:外気熱交換器5(冷媒凝縮器)における冷媒Rの凝縮圧力
SC′:冷媒冷却器7の冷媒出口における冷媒Rの過冷却度
Pump cycle operation (broken line)
pe ′: Evaporation pressure of the refrigerant R in the load-side heat exchanger 2 (refrigerant evaporator) pc ′: Condensation pressure of the refrigerant R in the outside air heat exchanger 5 (refrigerant condenser) SC ′: At the refrigerant outlet of the refrigerant cooler 7 Supercooling degree of refrigerant R

この冷却装置Cにおける制御器15は圧縮機サイクル運転において次のa〜dの各制御を実行する。   The controller 15 in the cooling device C executes the following controls a to d in the compressor cycle operation.

a.過熱度制御:負荷側熱交換器2の冷媒出口における冷媒Rの過熱度SHを計測し、その計測結果に基づいて膨張弁10の開度を調整することで、過熱度SHを設定過熱度SHsに調整する。   a. Superheat degree control: The superheat degree SH is set by measuring the superheat degree SH of the refrigerant R at the refrigerant outlet of the load-side heat exchanger 2 and adjusting the opening degree of the expansion valve 10 based on the measurement result. Adjust to.

b.圧縮機吸込圧力制御:圧縮機4の入口における冷媒Rの圧力である吸込圧力psを計測し、その計測結果に基づいて圧縮機4の駆動周波数を調整(インバータ制御)することで、圧縮機4の吸込圧力psを設定吸込圧力pssに調整する。   b. Compressor suction pressure control: Measure the suction pressure ps, which is the pressure of the refrigerant R at the inlet of the compressor 4, and adjust the drive frequency of the compressor 4 based on the measurement result (inverter control). The suction pressure ps is adjusted to the set suction pressure pss.

c.冷却能力制御:負荷側空気IAの負荷熱量qと冷却装置Cの冷却能力Qとのバランス状態を計測し、その計測結果に基づいて蒸発圧力調整弁3の開度を調整することで、却装置Cの冷却能力Q(具体的には負荷側熱交換器2での負荷側空気IAの冷却量)を負荷側空気IAの負荷熱量q(即ち、必要冷却量)に見合う値(Q=q)に調整する。   c. Cooling capacity control: measuring the balance state between the load calorie q of the load side air IA and the cooling capacity Q of the cooling device C, and adjusting the opening of the evaporating pressure adjusting valve 3 based on the measurement result, thereby rejecting device The cooling capacity Q of C (specifically, the cooling amount of the load-side air IA in the load-side heat exchanger 2) is a value (Q = q) corresponding to the load heat amount q (that is, the necessary cooling amount) of the load-side air IA. Adjust to.

d.外気風量制御:外気熱交換器5における冷媒Rの凝縮圧力pcを計測し、その計測凝縮圧力pcが設定下限値pcminより大きい状況では外気ファン13を100%出力で運転し、これに対し、計測凝縮圧力pcが設定下限値pcmin未満となる状況では、外気ファン13の出力(換言すれば、外気熱交換器5に対する外気OAの通風量fo)を調整することで、外気熱交換器5における冷媒Rの凝縮圧力pcを設定下限値pcminに調整する。   d. Outside air volume control: The condensation pressure pc of the refrigerant R in the outside air heat exchanger 5 is measured, and when the measured condensation pressure pc is larger than the set lower limit value pcmin, the outside air fan 13 is operated at 100% output. In a situation where the condensation pressure pc is less than the set lower limit value pcmin, the refrigerant in the outside air heat exchanger 5 is adjusted by adjusting the output of the outside air fan 13 (in other words, the ventilation amount fo of the outside air OA with respect to the outside air heat exchanger 5). The condensation pressure pc of R is adjusted to the set lower limit value pcmin.

一方、制御器15はポンプサイクル運転において次のe,fの制御を実行する。   On the other hand, the controller 15 executes the following controls e and f in the pump cycle operation.

e.冷却能力制御:負荷側空気IAの負荷熱量qと冷却装置Cの冷却能力Qとのバランス状態を計測し、その計測結果に基づいて冷媒ポンプ8の駆動周波数を調整(インバータ制御)することで、冷却装置Cの冷却能力Q(具体的には負荷側熱交換器2での負荷側空気IAの冷却量)を負荷側空気IAの負荷熱量q(即ち、必要冷却量)に見合う値(Q=q)に調整する。   e. Cooling capacity control: By measuring the balance state between the load heat quantity q of the load side air IA and the cooling capacity Q of the cooling device C, and adjusting the drive frequency of the refrigerant pump 8 based on the measurement result (inverter control), The cooling capacity Q of the cooling device C (specifically, the amount of cooling of the load-side air IA in the load-side heat exchanger 2) is a value commensurate with the load heat amount q (that is, the necessary cooling amount) of the load-side air IA (Q = q).

f.冷却器運転:冷却用空気や冷却用水などの冷却用熱媒CWを冷媒冷却器7に送給して、冷媒冷却器7における通過冷媒Rを冷却用熱媒CWと熱交換させることで冷却する。   f. Cooler operation: Cooling medium CW such as cooling air or cooling water is supplied to the refrigerant cooler 7 to cool the passing refrigerant R in the refrigerant cooler 7 by exchanging heat with the cooling medium CW. .

なお、ポンプサイクル運転において、膨張弁10の開度及び蒸発圧力調整弁3の開度は設定開度(一般的には全開)に固定され、また、外気ファン13は100%出力で運転される。   In the pump cycle operation, the opening degree of the expansion valve 10 and the opening degree of the evaporation pressure adjusting valve 3 are fixed at a set opening degree (generally fully open), and the outside air fan 13 is operated at 100% output. .

ポンプサイクル運転は低温外気OAを利用するものであり圧縮機4の運転に代え冷媒ポンプ8の運転で済ませることから圧縮機サイクル運転に比べ省エネルギ面で有利であるが、外気OAの温度が上昇する温暖期には、負荷側空気IAの負荷熱量q(必要冷却量)に見合う冷却能力Qを得るのに圧縮機サイクル運転が必要になる。   The pump cycle operation uses the low-temperature outside air OA, and the operation of the refrigerant pump 8 instead of the operation of the compressor 4 is advantageous in terms of energy saving as compared with the compressor cycle operation. However, the temperature of the outside air OA increases. During the warm season, the compressor cycle operation is required to obtain the cooling capacity Q corresponding to the load heat quantity q (necessary cooling quantity) of the load side air IA.

このことから、制御器15は、圧縮機サイクル運転からポンプサイクル運転への切り換えが適切か否か、及び、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切か否かを自動的に判定し、その判定結果に従って圧縮機サイクル運転とポンプサイクル運転との切り換えを自動的に実行する。   From this, the controller 15 automatically determines whether or not switching from the compressor cycle operation to the pump cycle operation is appropriate, and whether or not the switching from the pump cycle operation to the compressor cycle operation is appropriate. The switching between the compressor cycle operation and the pump cycle operation is automatically executed according to the determination result.

具体的には、制御器15は、圧縮機サイクル運転からポンプサイクル運転への切り換えが適切であると判定すると、図4に示すように、圧縮機4の停止と、圧縮機バイパス弁11a及び開閉弁12bの開弁並びにポンプバイパス弁12a及び開閉弁11b,11cの閉弁による冷媒経路の切り換えと、冷媒ポンプ8及び冷媒冷却器7の起動とを同一のタイミング(ないしは、ほぼ同一のタイミング)で実行して、圧縮機サイクル運転からポンプサイクル運転への切り換えを行う。   Specifically, when the controller 15 determines that the switching from the compressor cycle operation to the pump cycle operation is appropriate, as shown in FIG. 4, the controller 15 stops the compressor 4, the compressor bypass valve 11a, and the open / close state. Switching of the refrigerant path by opening the valve 12b and closing the pump bypass valve 12a and the on-off valves 11b and 11c and the activation of the refrigerant pump 8 and the refrigerant cooler 7 are performed at the same timing (or almost the same timing). Execute to switch from compressor cycle operation to pump cycle operation.

また制御器15は、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切であると判定すると、図5に示すように、先ず現行のポンプサイクル運転を通常モードから過熱度確保モードにする。   If the controller 15 determines that the switching from the pump cycle operation to the compressor cycle operation is appropriate, the controller 15 first switches the current pump cycle operation from the normal mode to the superheat degree securing mode as shown in FIG.

この過熱度確保モードでのポンプサイクル運転では、制御器15は冷媒ポンプ8の駆動周波数を設定された制限周波数に低下させて冷媒Rの流量を低下させることで、負荷側熱交換器2の冷媒出口における冷媒Rの過熱度SH′を上昇させる。   In the pump cycle operation in the superheat degree securing mode, the controller 15 reduces the flow rate of the refrigerant R by lowering the driving frequency of the refrigerant pump 8 to the set limiting frequency, so that the refrigerant of the load-side heat exchanger 2 is reduced. The superheat degree SH ′ of the refrigerant R at the outlet is increased.

そして、この過熱度確保モードでのポンプサイクル運転において計測過熱度SH′が設定許容値SHmまで上昇する(又は設定時間が経過する)と、同図5に示すように、冷媒ポンプ8及び冷媒冷却器7の停止と、ポンプバイパス弁12a及び開閉弁11b,11cの開弁並びに圧縮機バイパス弁11a及び開閉弁12bの閉弁による冷媒経路の切り換えと、圧縮機4の起動とをやはり同一のタイミング(ないしはほぼ同一のタイミング)で実行して、ポンプサイクル運転から圧縮機サイクル運転への切り換えを行う。   Then, when the measured superheat degree SH ′ increases to the set allowable value SHm (or the set time elapses) in the pump cycle operation in the superheat degree securing mode, as shown in FIG. The same timing is used for stopping the compressor 7, switching the refrigerant path by opening the pump bypass valve 12a and the on-off valves 11b and 11c, closing the compressor bypass valve 11a and the on-off valve 12b, and starting the compressor 4. (Or almost the same timing) to switch from pump cycle operation to compressor cycle operation.

このように圧縮機サイクル運転とポンプサイクル運転との切り換えにおいて、圧縮機4の起動・停止と、冷媒ポンプ8の起動・停止と、各弁11a,11b,11c,12a,12bの開閉による冷媒経路の切り換えとの三者を同一のタイミング(ないしは、ほぼ同一のタイミング)で行うことにより、圧縮機サイクル運転とポンプサイクル運転との切り換え時においても負荷側熱交換器2において負荷側空気IAを継続的に冷却することができる。   Thus, in the switching between the compressor cycle operation and the pump cycle operation, the refrigerant path by starting / stopping the compressor 4, starting / stopping the refrigerant pump 8, and opening / closing of the valves 11a, 11b, 11c, 12a, 12b. The load-side air IA is continued in the load-side heat exchanger 2 even when switching between the compressor cycle operation and the pump cycle operation by performing the above three operations at the same timing (or almost the same timing). Can be cooled.

ここで、圧縮機サイクル運転からポンプサイクル運転への切り換えにおいて、冷媒冷却器7の運転がない状態で単に圧縮機4の停止と冷媒ポンプ8の起動と冷媒経路の切り換えとを同一のタイミングで行うと、図6において矢印x-x′で模式的に示すように、圧縮機サイクル運転において外気熱交換器5から送出された高温の冷媒Rや受液器6に溜まった高温の冷媒Rが、ポンプサイクル運転への切り換えに伴う圧力低下のために冷媒ポンプ8への吸入過程で液相領域から気相・液相混合領域に入って一部が気相化し、これが原因で冷媒ポンプ8が気相混じりの冷媒を吸入してしまう状態になって冷媒ポンプ8においてキャビテーションが発生する。   Here, in switching from the compressor cycle operation to the pump cycle operation, the compressor 4 is simply stopped, the refrigerant pump 8 is started, and the refrigerant path is switched at the same timing in a state where the refrigerant cooler 7 is not operated. 6, as schematically indicated by an arrow xx ′ in FIG. 6, the high-temperature refrigerant R sent from the outside air heat exchanger 5 in the compressor cycle operation and the high-temperature refrigerant R accumulated in the liquid receiver 6 are Due to the pressure drop accompanying the switching to the pump cycle operation, the refrigerant pump 8 enters the gas phase / liquid phase mixing region from the liquid phase region during the suction process to the refrigerant pump 8, and a part of the gas phase is vaporized. Cavitation occurs in the refrigerant pump 8 in a state where the mixed refrigerant is sucked.

これに対し、ポンプサイクル運転への切り換えの際に上記の如く冷媒冷却器7に対する冷却用熱媒CWの送給を開始して冷媒冷却器7の運転を開始すると、図7において矢印x−x′で模式的に示すように、圧縮機サイクル運転において外気熱交換器5から送出された高温の冷媒Rや受液器6に溜まった高温の冷媒Rでも冷媒冷却器7での冷却により適切な過冷却度SC′を確保して液相領域に保った状態で冷媒ポンプ8に吸入させることができ、これにより、冷媒ポンプ8でのキャビテーションの発生を防止することができる。   On the other hand, when the supply of the cooling heat medium CW to the refrigerant cooler 7 is started and the operation of the refrigerant cooler 7 is started at the time of switching to the pump cycle operation, the arrow xx in FIG. ′, The high-temperature refrigerant R sent from the outside air heat exchanger 5 or the high-temperature refrigerant R accumulated in the liquid receiver 6 in the compressor cycle operation is more suitable for cooling by the refrigerant cooler 7. The refrigerant pump 8 can be sucked in a state in which the degree of supercooling SC ′ is secured and kept in the liquid phase region, thereby preventing cavitation in the refrigerant pump 8.

また、ポンプサイクル運転では冷媒冷却器7を継続運転して適切な過冷却度SC′を保つから、その過冷却度SC′の計測やその計測結果に基づく過冷却度制御も不要にすることができ、冷凍回路Cの制御構成を単純化することもできる。   Further, in the pump cycle operation, the refrigerant cooler 7 is continuously operated to maintain an appropriate degree of supercooling SC ′, so that it is not necessary to measure the degree of supercooling SC ′ and to control the degree of supercooling based on the measurement result. In addition, the control configuration of the refrigeration circuit C can be simplified.

なお、冷却用熱媒CWが冷媒冷却器7に十分に流れ込み始めるのに要する時間を考慮して、冷媒冷却器7の運転開始は図4において破線で示すようにポンプサイクル運転への切り換えに先立って行うようにしてもよい。   In consideration of the time required for the cooling heat medium CW to start to sufficiently flow into the refrigerant cooler 7, the operation start of the refrigerant cooler 7 precedes the switching to the pump cycle operation as shown by the broken line in FIG. May be performed.

図8は、圧縮機4の停止と冷媒ポンプ8及び冷媒冷却器7の起動と冷媒経路の切り換えとを同一のタイミングで行うようにして圧縮機サイクル運転からポンプサイクル運転へ切り換えた場合の実験結果を示す。   FIG. 8 shows experimental results when the compressor cycle operation is switched to the pump cycle operation by stopping the compressor 4, starting the refrigerant pump 8 and the refrigerant cooler 7, and switching the refrigerant path at the same timing. Indicates.

この図8から判るように、この冷却装置Cでは、圧縮機サイクル運転からポンプサイクル運転に切り換えたとき、負荷側熱交換器2の出口空気温度(即ち、負荷側熱交換器2から送出される冷却後の負荷側空気IAの温度)が多少上昇するものの数分程度で速やかに元の温度に復帰しており、負荷側熱交換器2での負荷側空気IAの冷却について概ね良好な継続性が確保されている。   As can be seen from FIG. 8, in the cooling device C, when the compressor cycle operation is switched to the pump cycle operation, the outlet air temperature of the load side heat exchanger 2 (that is, the load side heat exchanger 2 is sent out). Although the temperature of the load-side air IA after cooling slightly rises, the temperature returns to the original temperature quickly within a few minutes, and the cooling of the load-side air IA in the load-side heat exchanger 2 is generally good continuity. Is secured.

また、圧縮機サイクル運転からポンプサイクル運転へ切り換えたとき、それに伴い外気熱交換器5における冷媒Rの凝縮圧力pcが急激に低下(pc→pc′)することに対しても、冷媒冷却器7での通過冷媒Rの冷却により、冷媒ポンプ8における有効吸込ヘッド(NPSH)は必要値(必要NPSH)以上に保たれており、これにより、冷媒ポンプ8でのキャビテーションの発生が防止される。   Further, when the compressor cycle operation is switched to the pump cycle operation, the refrigerant cooler 7 also prevents the condensing pressure pc of the refrigerant R in the outside air heat exchanger 5 from rapidly decreasing (pc → pc ′). The effective suction head (NPSH) in the refrigerant pump 8 is maintained at a required value (necessary NPSH) or more due to the cooling of the passing refrigerant R at, thereby preventing the occurrence of cavitation in the refrigerant pump 8.

一方、ポンプサイクル運転から圧縮機サイクル運転への切り換えにおいて、上記過熱度確保モードの実施がない状態で単に冷媒ポンプ8の停止と圧縮機4の起動と冷媒経路の切り換えとを同一のタイミングで行うと、図9において矢印y-y′で模式的に示すように、ポンプサイクル運転において冷媒蒸発器としての負荷側熱交換器2から液相混じりの冷媒Rが送出される状況であった場合、その液相混じりの冷媒Rが圧縮機サイクル運転への切り換えに伴い圧縮機4に吸入される状態になって所謂液バックが生じ、これが原因で圧縮機4の損傷を招く。   On the other hand, in switching from the pump cycle operation to the compressor cycle operation, the refrigerant pump 8 is simply stopped, the compressor 4 is started, and the refrigerant path is switched at the same timing in a state where the superheat degree securing mode is not performed. As shown schematically by arrows yy ′ in FIG. 9, when the refrigerant R mixed with the liquid phase is sent from the load-side heat exchanger 2 as the refrigerant evaporator in the pump cycle operation, The refrigerant R mixed with the liquid phase is sucked into the compressor 4 in accordance with the switching to the compressor cycle operation, so that a so-called liquid back is generated, which causes damage to the compressor 4.

特にポンプサイクル運転において過熱度制御を行わず負荷側熱交換器2を湿式の冷媒蒸発器として機能させる場合、この問題は避けられない。   This problem is unavoidable particularly when the load-side heat exchanger 2 is caused to function as a wet refrigerant evaporator without performing superheat control in the pump cycle operation.

これに対し、圧縮機サイクル運転への切り換えに先立ち上記の如くポンプサイクル運転を通常モードから過熱度確保モードにすると、図10において矢印y−y′で模式的に示すように、冷媒蒸発器としての負荷側熱交換器2から送出される冷媒Rの過熱度SH′を圧縮機サイクル運転への切り換えに先立ち確保する(即ち、気相冷媒Rのみが送出される状態にする)ことができ、これにより、所謂液バックを防止して圧縮機4の損傷を防止することができる。   On the other hand, when the pump cycle operation is changed from the normal mode to the superheat degree securing mode as described above prior to switching to the compressor cycle operation, as shown schematically by the arrow yy ′ in FIG. The superheat degree SH ′ of the refrigerant R delivered from the load-side heat exchanger 2 can be ensured prior to switching to the compressor cycle operation (that is, only the gas-phase refrigerant R is delivered). Thereby, what is called a liquid back can be prevented and damage to the compressor 4 can be prevented.

図11は、冷媒ポンプ8の停止と圧縮機4の起動と冷媒経路の切り換えとを同一のタイミングで行うようにしてポンプサイクル運転から圧縮機サイクル運転へ切り換えた場合の実験結果を示す。   FIG. 11 shows an experimental result when the pump cycle operation is switched to the compressor cycle operation by stopping the refrigerant pump 8, starting the compressor 4, and switching the refrigerant path at the same timing.

この図11からも判るように、この冷却装置Cでは、圧縮機サイクル運転からポンプサイクル運転に切り換えたとき(図8参照)と同様、ポンプサイクル運転から圧縮機サイクル運転に切り換えたときも、負荷側熱交換器2の出口空気温度(即ち、負荷側熱交換器2から送出される冷却後の負荷側空気IAの温度)が多少上昇するものの数分程度で速やかに元の温度に復帰しており、負荷側熱交換器2での負荷側空気IAの冷却について概ね良好な継続性が確保されている。   As can be seen from FIG. 11, in this cooling device C, the load is also changed when the pump cycle operation is switched to the compressor cycle operation as in the case of switching from the compressor cycle operation to the pump cycle operation (see FIG. 8). Although the outlet air temperature of the side heat exchanger 2 (that is, the temperature of the load side air IA after cooling sent from the load side heat exchanger 2) slightly rises, it quickly returns to the original temperature within a few minutes. Therefore, generally good continuity is ensured for the cooling of the load-side air IA in the load-side heat exchanger 2.

また、冷媒蒸発器としての負荷側熱交換器2の冷媒出口における冷媒Rの過熱度SHも確保(SH≧SHm)されており、これにより圧縮機4への液バックが防止される。   Further, the degree of superheat SH of the refrigerant R at the refrigerant outlet of the load-side heat exchanger 2 as the refrigerant evaporator is also secured (SH ≧ SHm), thereby preventing liquid back to the compressor 4.

なお、図5に示すように、制御器15は、過熱度確保モードの実行下でポンプサイクル運転から圧縮機サイクル運転に切り換えると、その後、数分程度の設定過渡時間Tcが経過するまでは、圧縮機4の駆動周波数を設定制限周波数に保持するともに、膨張弁10の開度及び蒸発圧力調整弁3の開度を設定制限開度に保持する安定化モードを実行する。   As shown in FIG. 5, when the controller 15 switches from the pump cycle operation to the compressor cycle operation under the execution of the superheat degree securing mode, thereafter, until the set transient time Tc of about several minutes elapses, A stabilization mode is executed in which the drive frequency of the compressor 4 is held at the set limit frequency, and the opening of the expansion valve 10 and the opening of the evaporation pressure adjusting valve 3 are held at the set limit opening.

つまり、過熱度確保モードの実施で冷媒Rの流量を低下させて負荷側熱交換器2の冷媒出口における過熱度SH′を上昇させた状態から圧縮機サイクル運転へ切り換えたときに、圧縮機サイクル運転における前述のa.過熱度制御、b.圧縮機吸込圧力制御、c.冷却能力制御を直ちに開始すると、過熱度SHが設定過熱度SHsに向って急変するとともに、圧縮機4の吸込圧力psも設定吸込圧力pssに向って急変し、これらの急変が原因で過熱度SH及び吸込圧力psが変動するとともに冷却能力Qが変動して、圧縮機サイクル運転が一時的にせよ不安定になる。   That is, when the superheat degree securing mode is performed and the flow rate of the refrigerant R is reduced to increase the superheat degree SH ′ at the refrigerant outlet of the load-side heat exchanger 2 and the compressor cycle operation is switched to the compressor cycle operation. A. Superheat control, b. Compressor suction pressure control, c. When the cooling capacity control is started immediately, the superheat degree SH suddenly changes toward the set superheat degree SHs, and the suction pressure ps of the compressor 4 also changes suddenly toward the set suction pressure pss. Due to these sudden changes, the superheat degree SH As the suction pressure ps fluctuates and the cooling capacity Q fluctuates, the compressor cycle operation becomes unstable even temporarily.

これに対し、圧縮機サイクル運転への切り換え直後は上記安定化モードを実施することで、上記の如き圧縮機サイクル運転の不安定化を防止することができ、切り換え直後における圧縮機サイクル運転を安定化することができる。   On the other hand, by implementing the stabilization mode immediately after switching to compressor cycle operation, it is possible to prevent instability of the compressor cycle operation as described above, and to stabilize compressor cycle operation immediately after switching. Can be

前述の如く制御器15は、圧縮機サイクル運転からポンプサイクル運転への切り換えが適切か否か、及び、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切か否かを判定して、圧縮機サイクル運転とポンプサイクル運転との切り換えを実行するが、この制御器15は、ポンプサイクル運転では、基本的に外気熱交換器5における冷媒Rの凝縮圧力pc′の計測値に基づいて圧縮機サイクル運転への切り換え(即ち、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換え)を決定する。   As described above, the controller 15 determines whether or not the switching from the compressor cycle operation to the pump cycle operation is appropriate, and whether or not the switching from the pump cycle operation to the compressor cycle operation is appropriate. Switching between the cycle operation and the pump cycle operation is performed. In the pump cycle operation, the controller 15 basically performs the compressor cycle based on the measured value of the condensation pressure pc ′ of the refrigerant R in the outside air heat exchanger 5. Switching to operation (that is, switching to compressor cycle operation after pump cycle operation in the superheat degree securing mode) is determined.

また、制御器15は、圧縮機サイクル運転では外気OAの温度が低下して前述のd.外気風量制御により凝縮圧力pcが設定下限値pcminに保持されている状況において、基本的に外気ファン13の出力(換言すれば、外気熱交換器5に対する外気OAの通風量fo)に基づいてポンプサイクル運転への切り換えを決定する。   Further, the controller 15 reduces the temperature of the outside air OA during the compressor cycle operation, and the d. In a situation where the condensation pressure pc is maintained at the set lower limit pcmin by the outside air flow control, the pump is basically based on the output of the outside air fan 13 (in other words, the amount of ventilation fo of the outside air OA to the outside air heat exchanger 5). Decide to switch to cycle operation.

具体的には、ポンプサイクル運転では、図12に示すように、外気熱交換器5における冷媒Rの計測凝縮圧力pc′が設定上限値pcmax′より高くなった(pc′>pcmax′)とき、あるいは、負荷側空気IAの負荷熱量q(必要冷却量)が予め設定されたポンプサイクル運転での最大冷却能力Qmaxより大きくなった(q>Qmax)ときに、制御器15は、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切と判定して、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えを実行する。   Specifically, in the pump cycle operation, as shown in FIG. 12, when the measured condensation pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 becomes higher than the set upper limit value pcmax ′ (pc ′> pcmax ′), Alternatively, when the load heat quantity q (required cooling amount) of the load side air IA becomes larger than the preset maximum cooling capacity Qmax in the pump cycle operation (q> Qmax), the controller 15 starts from the pump cycle operation. It is determined that the switching to the compressor cycle operation is appropriate, and the switching to the compressor cycle operation through the pump cycle operation in the superheat degree securing mode is executed.

一方、圧縮機サイクル運転からポンプサイクル運転への切り換えについては、図13に示すように、外気熱交換器5における冷媒Rの凝縮圧力pcが外気風量制御により設定下限値pcminに保たれている状況での外気ファン13の出力(ここでは外気通風量fo)と冷却能力Qと外気温度toとの三者の相関において、境界線L1により画定されるポンプサイクル運転領域D1(境界線L1より下側の領域)を実験や試運転に基づいて予め設定しておく。   On the other hand, regarding the switching from the compressor cycle operation to the pump cycle operation, as shown in FIG. 13, the condensing pressure pc of the refrigerant R in the outside air heat exchanger 5 is maintained at the set lower limit pcmin by the outside air volume control. In the three-way correlation of the output of the outside air fan 13 (in this case, the outside air flow rate fo), the cooling capacity Q, and the outside air temperature to, the pump cycle operation region D1 defined by the boundary line L1 (below the boundary line L1) Are set in advance based on experiments and trial runs.

そして、圧縮機サイクル運転では、図14に示すように、各時点における計測負荷熱量qと計測外気通風量foとを座標値とする状態点(q,fo)が上記ポンプサイクル運転領域D1に入った(q,fo∈D1)ときに、制御器15は、圧縮機サイクル運転からポンプサイクル運転への切り換えが適切と判定して、ポンプサイクル運転への切り換えを実行する。   In the compressor cycle operation, as shown in FIG. 14, the state points (q, fo) having the measured load heat quantity q and the measured outside air flow rate fo at the respective time points as coordinate values enter the pump cycle operation region D1. When (q, fo ∈ D1), the controller 15 determines that switching from the compressor cycle operation to the pump cycle operation is appropriate, and executes the switch to the pump cycle operation.

なお、図13において、□ライン、△ライン、○ラインは外気温度toが各々15℃,10℃,5℃であるときの外気通風量foと冷却能力Qとの相関線である。   In FIG. 13, the □ line, the Δ line, and the ◯ line are correlation lines between the outside air flow rate fo and the cooling capacity Q when the outside air temperature to is 15 ° C., 10 ° C., and 5 ° C., respectively.

また、図13において境界線L2により画定される領域D2(境界線L2より下側の領域)は、ポンプサイクル運転が可能な領域であり、境界線L1と境界線L2との間の領域はポンプサイクル運転と圧縮機サイクル運転とのハンチング的な切り換えを防止する不感帯領域にしてある。   In FIG. 13, a region D2 (region below the boundary line L2) defined by the boundary line L2 is a region where pump cycle operation is possible, and a region between the boundary line L1 and the boundary line L2 is a pump. The dead zone region prevents hunting switching between cycle operation and compressor cycle operation.

つまり、外気熱交換器5における冷媒Rの凝縮圧力pc′を成り行きとするポンプサイクル運転では、図15に示すように、ある時点の外気温度toに対して、外気熱交換器5における冷媒Rの凝縮圧力pc′は、外気熱交換器5における伝熱面が通常であるか、塵埃等で汚れているか、あるいは、降雨等で濡れているかによって異なるものになる。   That is, in the pump cycle operation in which the condensing pressure pc ′ of the refrigerant R in the outdoor air heat exchanger 5 is the result, as shown in FIG. 15, the refrigerant R in the outdoor air heat exchanger 5 is at a certain time outside air temperature to. The condensation pressure pc ′ varies depending on whether the heat transfer surface in the outside air heat exchanger 5 is normal, dirty with dust or the like, or wet with rain or the like.

この為、従前のように外気温度toのみを基準として圧縮サイクル運転とポンプサイクル運転との切り換え判定を行うのでは、外気熱交換器5における伝熱面が汚れている場合、通常よりも凝縮圧力pc′が上昇していて冷却能力Qが既に不足となっている状況で、ポンプサイクル運転から圧縮機サイクル運転への切り換えが行われてしまう虞がある。   For this reason, when the switching determination between the compression cycle operation and the pump cycle operation is performed based on only the outside air temperature to as in the conventional case, when the heat transfer surface in the outside air heat exchanger 5 is dirty, the condensation pressure is higher than usual. There is a possibility that switching from the pump cycle operation to the compressor cycle operation may be performed in a situation where pc ′ is increased and the cooling capacity Q is already insufficient.

また、外気熱交換器5における伝熱面が濡れている場合では逆に、通常よりも凝縮圧力pc′が上昇しておらず冷却能力Qに未だ余裕がある状況で、ポンプサイクル運転から圧縮機サイクル運転への切り換えが行われてしまう虞がある。   On the other hand, when the heat transfer surface in the outside air heat exchanger 5 is wet, condensing pressure pc 'is not increased more than usual, and the cooling capacity Q still has a margin in the cooling cycle Q. There is a risk of switching to cycle operation.

これに対し、上記の如く外気熱交換器5における冷媒Rの計測凝縮圧力pc′が設定上限値pcmax′より大きくなった(pc′>pcmax′)とき、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切と判定するようにすることで、外気温度toのみを切り換え基準とする従前の方式に比べ、外気熱交換器5における伝熱面の汚れや濡れにかかわらず、常に適切なタイミングでポンプサイクル運転から圧縮機サイクル運転へ切り換えることができる。   On the other hand, when the measured condensing pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 becomes larger than the set upper limit value pcmax ′ (pc ′> pcmax ′) as described above, the pump cycle operation is changed to the compressor cycle operation. By determining that the switching is appropriate, the pump is always at an appropriate timing, regardless of the contamination or wetting of the heat transfer surface in the outside air heat exchanger 5, as compared with the conventional method using only the outside air temperature to as the switching reference. It is possible to switch from cycle operation to compressor cycle operation.

図16は、上記のように外気熱交換器5における冷媒Rの計測凝縮圧力pc′に基づいてポンプサイクル運転から圧縮機サイクル運転への切り換えを行うようにした場合の実験結果を示すが、同図16からも判るように、ポンプサイクル運転では外気熱交換器5における冷媒Rの計測凝縮圧力pc′は外気温度toの上昇に伴って上昇している。そして、その上昇で計測凝縮圧力pc′が設定上限値pcmax′を超えたときに、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えが行われている。   FIG. 16 shows the experimental results when switching from the pump cycle operation to the compressor cycle operation based on the measured condensation pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 as described above. As can be seen from FIG. 16, in the pump cycle operation, the measured condensation pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 increases as the outside air temperature to rises. When the measured condensing pressure pc ′ exceeds the set upper limit value pcmax ′ due to the increase, switching to the compressor cycle operation through the pump cycle operation in the superheat degree securing mode is performed.

なお、この冷却装置Cでは、前述の図12に示すように、外気熱交換器5における冷媒Rの計測凝縮圧力pc′が設定上限値pcmax′以下(pc′≦pcmax′)の状況でも、負荷熱量q(必要冷却量)が予め設定されたポンプサイクル運転での最大冷却能力Qmaxより大きくなった(q>Qmax)ときには、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えを行うようにしたが、ポンプサイクル運転時において負荷側空気IAの負荷熱量qが比較的安定していて大きく増大することがない場合など、冷却装置Cの使用条件によっては、外気熱交換器5における冷媒Rの計測凝縮圧力pc′のみに基づいて過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えを行うようにしてもよい。   In the cooling device C, as shown in FIG. 12 described above, even when the measured condensation pressure pc ′ of the refrigerant R in the outdoor air heat exchanger 5 is equal to or lower than the set upper limit value pcmax ′ (pc ′ ≦ pcmax ′) When the heat quantity q (necessary cooling amount) exceeds the preset maximum cooling capacity Qmax in the pump cycle operation (q> Qmax), switching to the compressor cycle operation through the pump cycle operation in the superheat degree securing mode However, depending on the use conditions of the cooling device C, such as when the load heat quantity q of the load side air IA is relatively stable and does not increase greatly during the pump cycle operation, the outside air heat exchanger 5 Based on only the measured condensing pressure pc ′ of the refrigerant R in the engine, the operation is switched to the compressor cycle operation after the pump cycle operation in the superheat degree securing mode. It may be.

一方、図17は、外気温度toが10℃で、圧縮機サイクル運転において前述のd.外気風量制御により外気熱交換器5における冷媒Rの凝縮圧力pcが設定下限値pcminに保持されている状況での外気ファン13による外気通風量foと冷却能力Qと外気熱交換器5における伝熱面状態との相関を示す。   On the other hand, FIG. 17 shows that the above-mentioned d. The outside air flow rate fo and the cooling capacity Q by the outside air fan 13 and the heat transfer in the outside air heat exchanger 5 when the condensation pressure pc of the refrigerant R in the outside air heat exchanger 5 is maintained at the set lower limit value pcmin by the outside air volume control. The correlation with the surface state is shown.

同図17から判るように、圧縮機サイクル運転において外気通風量foの調整により外気熱交換器5における冷媒Rの凝縮圧力pcが設定下限値pcminに保持されている状況では、外気温度toが一定でも、ある時点の外気通風量foに対する冷却能力Qは、外気熱交換器5における伝熱面が通常であるか、塵埃等で汚れているか、あるいは、降雨等で濡れているかによって異なるものになる。   As can be seen from FIG. 17, in the situation where the condensation pressure pc of the refrigerant R in the outside air heat exchanger 5 is maintained at the set lower limit pcmin by adjusting the outside air flow rate fo in the compressor cycle operation, the outside temperature to is constant. However, the cooling capacity Q with respect to the outside air flow rate fo at a certain point of time varies depending on whether the heat transfer surface in the outside air heat exchanger 5 is normal, dirty with dust, or wet with rain or the like. .

この為、従前のように外気温度toのみを基準として圧縮機サイクル運転とポンプサイクル運転との切り換えを行うのでは、外気熱交換器5における伝熱面が汚れている場合、未だポンプサイクル運転では負荷側空気IAの負荷熱量qを未だ処理できない状況で、圧縮機サイクル運転からポンプサイクル運転への切り換えが行われてしまう虞がある。   For this reason, if the switching between the compressor cycle operation and the pump cycle operation is performed based only on the outside air temperature to as in the past, if the heat transfer surface in the outside air heat exchanger 5 is dirty, the pump cycle operation is still not performed. There is a possibility that switching from the compressor cycle operation to the pump cycle operation may be performed in a situation where the load heat quantity q of the load side air IA cannot be processed yet.

また、外気熱交換器5における伝熱面が濡れている場合では逆に、既にポンプサイクル運転でも負荷側空気IAの負荷熱量qを十分に処理できる状況にあるのに、圧縮機サイクル運転からポンプサイクル運転への切り換えが行われない虞がある。   On the other hand, when the heat transfer surface in the outside air heat exchanger 5 is wet, the load heat quantity q of the load side air IA can be sufficiently processed even in the pump cycle operation. There is a risk that switching to cycle operation will not be performed.

これに対し、上記の如く計測負荷熱量qと計測外気通風量foとを座標値とする状態点(q,fo)が予め設定したポンプサイクル運転領域D1に入った(q,fo∈D1)とき、圧縮機サイクル運転からポンプサイクル運転へ切り換えるようにすることで、外気温度toのみを切り換え基準とする従前の方式に比べ、外気熱交換器5における伝熱面の汚れや濡れにかかわらず、常に適切なタイミングで圧縮機サイクル運転からポンプサイクル運転へ切り換えることができる。   On the other hand, when the state point (q, fo) having the measured load heat quantity q and the measured outside air flow rate fo as coordinate values enters the preset pump cycle operation region D1 (q, fo ∈ D1) as described above. By switching from the compressor cycle operation to the pump cycle operation, compared to the conventional method using only the outside air temperature to as a reference for switching, the heat transfer surface in the outside air heat exchanger 5 is always maintained regardless of contamination or wetting. The compressor cycle operation can be switched to the pump cycle operation at an appropriate timing.

図18は、上記のように計測負荷熱量qと計測外気通風量foとを座標値とする状態点(q,fo)の位置に基づいて圧縮機サイクル運転からポンプサイクル運転への切り換えを行うようにした場合の実験結果を示すが、同図18からも判るように、圧縮機サイクル運転において外気熱交換器5における冷媒Rの凝縮圧力pcを設定下限値pcminに保つように外気ファン13による外気通風量foを調整している状況では、その外気通風foは外気温度toの低下にともなって低下している。そして、その外気通風量foの低下で計測負荷熱量qと計測外気通風量foとを座標値とする状態点(q,fo)が予め設定したポンプサイクル運転領域D1に入った(q,fo∈D1)ときに、圧縮機サイクル運転からポンプサイクル運転への切り換えが行われている。   In FIG. 18, as described above, switching from the compressor cycle operation to the pump cycle operation is performed based on the position of the state point (q, fo) having the measured load heat quantity q and the measured outside air flow rate fo as coordinate values. FIG. 18 shows the experimental results in the case where the external air fan 13 is used to keep the condensation pressure pc of the refrigerant R in the outdoor air heat exchanger 5 at the set lower limit value pcmin in the compressor cycle operation. In the situation where the ventilation rate fo is adjusted, the outside air ventilation fo decreases as the outside air temperature to decreases. The state point (q, fo) having the measured load heat quantity q and the measured outside air ventilation quantity fo as coordinate values enters the preset pump cycle operation region D1 due to the decrease in the outside air ventilation quantity fo (q, fo∈). D1) At the time, switching from the compressor cycle operation to the pump cycle operation is performed.

上述の例では、制御器15は外気熱交換器5における冷媒Rの計測凝縮圧力pc′が設定上限値pcmax′より大きくなった(pc′>pcmax′)ときに、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えが適切と判定して、ポンプサイクル運転から圧縮機サイクル運転への切り換えを実行するように構成したが、これに代えて、制御器15はポンプサイクル運転から圧縮機サイクル運転への切り換え判定を次のように行うものにしてもよい。   In the above example, the controller 15 performs the pump operation in the superheat degree securing mode when the measured condensing pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 becomes larger than the set upper limit value pcmax ′ (pc ′> pcmax ′). It is determined that switching to the compressor cycle operation through the cycle operation is appropriate, and the switch from the pump cycle operation to the compressor cycle operation is performed. Instead, the controller 15 performs the pump cycle operation. The switching determination from the compressor operation to the compressor operation may be performed as follows.

図19に示すように、ポンプサイクル運転では外気熱交換器5における冷媒Rの凝縮圧力pc′、及び、負荷側熱交換器2における冷媒Rの蒸発圧力pe′の夫々と、冷却装置Cの冷却能力Q(即ち、負荷側熱交換器2での負荷側空気IAの冷却量)との間に、特定の関係式(例えば、図中の式1や式2など)により表すことができる相関がある。   As shown in FIG. 19, in the pump cycle operation, each of the condensation pressure pc ′ of the refrigerant R in the outdoor air heat exchanger 5 and the evaporation pressure pe ′ of the refrigerant R in the load-side heat exchanger 2 and the cooling of the cooling device C are performed. There is a correlation that can be expressed by a specific relational expression (for example, Expression 1 or Expression 2 in the figure) between the capacity Q (that is, the cooling amount of the load side air IA in the load side heat exchanger 2). is there.

このことから、外気熱交換器5における冷媒Rの凝縮圧力pc′又は負荷側熱交換器2における冷媒Rの蒸発圧力pe′を計測して、その計測値に対応する冷却能力Q(即ち、その時点におけるポンプサイクル運転での冷却能力)を制御器15に演算させるようにする。   From this, the condensing pressure pc ′ of the refrigerant R in the outside air heat exchanger 5 or the evaporating pressure pe ′ of the refrigerant R in the load side heat exchanger 2 is measured, and the cooling capacity Q corresponding to the measured value (that is, its The controller 15 is made to calculate the cooling capacity in the pump cycle operation at the time point).

そして、図20に示すように、その演算した冷却能力Qを判定用冷却能力Qsとして逐次設定させ、これに対して、負荷熱量q(即ち、必要冷却量)がその時の判定用冷却能力Qsより大きくなったときに、ポンプサイクル運転から圧縮機サイクル運転への切り換えが適切と判定して、過熱度確保モードでのポンプサイクル運転を経た圧縮機サイクル運転への切り換えを実行するように、また、その切り換え後、設定過渡時間Tcの間は安定化モードで圧縮機サイクル運転を実施するように、制御器15を構成してもよい。   Then, as shown in FIG. 20, the calculated cooling capacity Q is sequentially set as the determination cooling capacity Qs, while the load heat quantity q (that is, the required cooling amount) is determined from the determination cooling capacity Qs at that time. When it becomes large, it is determined that switching from the pump cycle operation to the compressor cycle operation is appropriate, and the switching to the compressor cycle operation through the pump cycle operation in the superheat degree securing mode is performed, After the switching, the controller 15 may be configured to perform the compressor cycle operation in the stabilization mode during the set transient time Tc.

即ち、このように制御器15を構成しても、外気温度toのみを切り換え基準とする従前の方式に比べ、外気熱交換器5における伝熱面の汚れや濡れにかかわらず、常に適切なタイミングでポンプサイクル運転から圧縮機サイクル運転への切り換えを行うことができる。   That is, even when the controller 15 is configured as described above, the timing is always appropriate regardless of the contamination or wetting of the heat transfer surface in the outdoor air heat exchanger 5 as compared with the conventional method in which only the outside air temperature to is used as a reference. Can switch from pump cycle operation to compressor cycle operation.

なお、上記の例では、負荷媒体として負荷側空気IAを負荷側熱交換器2で冷却する冷却装置Cを示したが、本発明は、各種気体を負荷側熱交換器2で冷却する負荷媒体とする場合に限らず、水などの各種液体を負荷側熱交換器2で冷却する負荷媒体とする場合や、物品や原材料などの各種固体を負荷側熱交換器2で冷却する負荷媒体とする場合などにも適用することができる。   In the above example, the cooling device C that cools the load side air IA as the load medium by the load side heat exchanger 2 is shown. However, the present invention is a load medium that cools various gases by the load side heat exchanger 2. The load medium for cooling various liquids such as water by the load-side heat exchanger 2 or the load medium for cooling various solids such as articles and raw materials by the load-side heat exchanger 2 is not limited thereto. It can also be applied to cases.

本発明による圧縮機/ポンプ切換式の冷却装置は、各種分野において種々の負荷媒体を冷却するのに利用することができる。   The compressor / pump switching type cooling device according to the present invention can be used to cool various load media in various fields.

8 冷媒ポンプ
4 圧縮機
5 外気熱交換器
10 膨張弁
2 負荷側熱交換器
R 冷媒
1 冷媒循環路
CW 冷却用熱媒
7 冷媒冷却器
15 制御器
SH 過熱度
SHm 設定許容値
Tc 設定過渡時間
8 Refrigerant pump 4 Compressor 5 Outside air heat exchanger 10 Expansion valve 2 Load side heat exchanger R Refrigerant 1 Refrigerant circuit CW Cooling heat medium 7 Refrigerant cooler 15 Controller SH Superheat SHm Setting allowable value Tc Setting transient time

Claims (3)

運転停止した冷媒ポンプを迂回させる状態で圧縮機と外気熱交換器と膨張弁と負荷側熱交換器との順に冷媒を前記圧縮機により循環させる圧縮機サイクル運転と、
運転停止した前記圧縮機を迂回させる状態で前記冷媒ポンプと前記負荷側熱交換器と前記外気熱交換器との順に冷媒を前記冷媒ポンプにより循環させるポンプサイクル運転との切り換え実施が可能な冷媒循環路を設け、
前記圧縮機サイクル運転では、前記外気熱交換器において冷媒を凝縮させることで外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を蒸発させることで負荷媒体を冷却し、
前記ポンプサイクル運転では、前記外気熱交換器において冷媒を低温外気と熱交換させることで、冷媒を冷却して凝縮させるとともに外気に放熱し、これに併行して、前記負荷側熱交換器において冷媒を負荷媒体と熱交換させることで、冷媒を加熱して蒸発させるとともに負荷媒体を冷却する圧縮機/ポンプ切換式の冷却装置であって、
前記ポンプサイクル運転において前記冷媒ポンプが吸入する冷媒を冷却用熱媒と熱交換させて冷却する冷媒冷却器を、冷媒の流れ方向において前記冷媒循環路における前記外気熱交換器から前記冷媒ポンプまでの部分の途中箇所に介装し、
前記圧縮機サイクル運転と前記ポンプサイクル運転との切り換えを実行する制御器を設け、
この制御器は、前記ポンプサイクル運転から前記圧縮機サイクル運転に切り換えるとき、前記冷媒ポンプの出力を低下させることで前記負荷側熱交換器の冷媒出口における冷媒の過熱度を高める過熱度確保モードで前記ポンプサイクル運転を実施し、
この過熱度確保モードでの前記ポンプサイクル運転において、前記負荷側熱交換器の冷媒出口における冷媒の過熱度が設定許容値に上昇したときに、又は、設定時間が経過したときに、前記ポンプサイクル運転から前記圧縮機サイクル運転への切り換えを行う構成にしてある圧縮機/ポンプ切換式の冷却装置。
Compressor cycle operation in which the refrigerant is circulated by the compressor in the order of the compressor, the outside air heat exchanger, the expansion valve, and the load side heat exchanger in a state of bypassing the stopped refrigerant pump,
Refrigerant circulation capable of switching between pump cycle operation in which refrigerant is circulated by the refrigerant pump in the order of the refrigerant pump, the load-side heat exchanger, and the outside air heat exchanger in a state in which the stopped compressor is bypassed. Set up a road,
In the compressor cycle operation, heat is radiated to the outside air by condensing the refrigerant in the outside air heat exchanger, and in parallel with this, the load medium is cooled by evaporating the refrigerant in the load side heat exchanger,
In the pump cycle operation, the refrigerant exchanges heat with the low-temperature outside air in the outside heat exchanger to cool and condense the refrigerant and dissipate heat to the outside air. In parallel with this, the refrigerant in the load-side heat exchanger The compressor / pump switching type cooling device that heats and evaporates the refrigerant and cools the load medium by exchanging heat with the load medium,
In the pump cycle operation, a refrigerant cooler that cools the refrigerant sucked by the refrigerant pump by exchanging heat with a cooling heat medium from the outside air heat exchanger in the refrigerant circulation path to the refrigerant pump in the refrigerant flow direction. Intervening in the middle of the part ,
A controller for performing switching between the compressor cycle operation and the pump cycle operation;
When the controller switches from the pump cycle operation to the compressor cycle operation, the controller reduces the output of the refrigerant pump, thereby increasing the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger. Performing the pump cycle operation,
In the pump cycle operation in this superheat degree securing mode, when the superheat degree of the refrigerant at the refrigerant outlet of the load side heat exchanger rises to a set allowable value or when a set time has elapsed, the pump cycle A compressor / pump switching type cooling device configured to perform switching from operation to the compressor cycle operation .
前記制御器は、前記圧縮機サイクル運転と前記ポンプサイクル運転との切り換えにおいて、前記圧縮機の起動・停止と前記冷媒ポンプの起動・停止と前記冷媒循環路における冷媒経路の切り換えとを同一のタイミング又はほぼ同一のタイミングで行う構成にしてある請求項1記載の圧縮機/ポンプ切換式の冷却装置。 In the switching between the compressor cycle operation and the pump cycle operation, the controller starts and stops the compressor, starts and stops the refrigerant pump, and switches the refrigerant path in the refrigerant circuit. The compressor / pump switching type cooling device according to claim 1, wherein the cooling device is configured to perform at substantially the same timing. 前記制御器は、前記ポンプサイクル運転から前記圧縮機サイクル運転に切り換えた後、設定過渡時間が経過するまでは、前記圧縮機の出力を制限するとともに前記膨張弁の開度を設定制限開度に保持する安定化モードで前記圧縮機サイクル運転を実施し、
前記設定過渡時間が経過したとき前記圧縮機サイクル運転における前記安定化モードを解除する構成にしてある請求項1又は2記載の圧縮機/ポンプ切換式の冷却装置。
The controller, after switching from the pump cycle operation to the compressor cycle operation, limits the output of the compressor and sets the opening of the expansion valve to a set limit opening until a set transient time elapses. The compressor cycle operation is performed in the holding stabilization mode,
The compressor / pump switching type cooling device according to claim 1 or 2, wherein the stabilization mode in the compressor cycle operation is canceled when the set transient time has elapsed .
JP2014143050A 2014-07-11 2014-07-11 Compressor / pump switching type cooling device Active JP6327986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143050A JP6327986B2 (en) 2014-07-11 2014-07-11 Compressor / pump switching type cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143050A JP6327986B2 (en) 2014-07-11 2014-07-11 Compressor / pump switching type cooling device

Publications (2)

Publication Number Publication Date
JP2016017726A JP2016017726A (en) 2016-02-01
JP6327986B2 true JP6327986B2 (en) 2018-05-23

Family

ID=55233063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143050A Active JP6327986B2 (en) 2014-07-11 2014-07-11 Compressor / pump switching type cooling device

Country Status (1)

Country Link
JP (1) JP6327986B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418310B (en) * 2021-06-22 2022-10-28 广东海悟科技有限公司 Overall process anti-cavitation refrigeration system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317179Y2 (en) * 1985-03-19 1991-04-11
JPH1082566A (en) * 1996-09-06 1998-03-31 N T T Facilities:Kk Air cooled packager-conditioner
JP3995824B2 (en) * 1999-03-19 2007-10-24 株式会社Nttファシリティーズ air conditioner
JP2004169942A (en) * 2002-11-18 2004-06-17 Ntt Power & Building Facilities Inc Air conditioning system
JP5667956B2 (en) * 2011-09-30 2015-02-12 日立アプライアンス株式会社 Air conditioner
JP5639984B2 (en) * 2011-10-27 2014-12-10 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2016017726A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6328004B2 (en) Compressor / pump switching type cooling device
JP6580149B2 (en) Refrigeration cycle equipment
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
US20100042265A1 (en) Free -cooling capacity control for air conditioning systems
JP2008096033A (en) Refrigerating device
JP2012067958A (en) Air conditioning device
US10775086B2 (en) Method for controlling a vapour compression system in ejector mode for a prolonged time
US20120167604A1 (en) Refrigeration cycle apparatus
EP3575712B1 (en) Cooling system
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
WO2016059837A1 (en) Heat pump heating apparatus
JP2013076541A (en) Heat pump
WO2016139783A1 (en) Refrigeration cycle device
JP6328014B2 (en) Compressor / pump switching type cooling device
JP6191490B2 (en) Air conditioner
WO2013084510A1 (en) Refrigeration device for container
JP6327986B2 (en) Compressor / pump switching type cooling device
JP2011007482A (en) Air conditioner
JP5601885B2 (en) Heat pump type hot water supply / air conditioner
US20220252317A1 (en) A heat pump
KR100680617B1 (en) A air conditioner and method to control crankcase heater thereof
JP5790675B2 (en) heat pump
AU2018411936B2 (en) Hot water supply apparatus
JP2013092369A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6327986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250