JPH0317179Y2 - - Google Patents

Info

Publication number
JPH0317179Y2
JPH0317179Y2 JP3830085U JP3830085U JPH0317179Y2 JP H0317179 Y2 JPH0317179 Y2 JP H0317179Y2 JP 3830085 U JP3830085 U JP 3830085U JP 3830085 U JP3830085 U JP 3830085U JP H0317179 Y2 JPH0317179 Y2 JP H0317179Y2
Authority
JP
Japan
Prior art keywords
condenser
refrigerant
motor
cooler
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3830085U
Other languages
Japanese (ja)
Other versions
JPS61156854U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3830085U priority Critical patent/JPH0317179Y2/ja
Priority to US06/794,790 priority patent/US4669279A/en
Priority to FR8516854A priority patent/FR2579305B1/en
Publication of JPS61156854U publication Critical patent/JPS61156854U/ja
Application granted granted Critical
Publication of JPH0317179Y2 publication Critical patent/JPH0317179Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、蒸発器、凝縮器、圧縮機及び該圧縮
機を駆動するための主モータとから成る冷凍機の
モータ冷却装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a motor cooling device for a refrigerator, which comprises an evaporator, a condenser, a compressor, and a main motor for driving the compressor. .

〔従来技術〕[Prior art]

従来、蒸発器、凝縮器、圧縮機及び該圧縮機を
駆動するための主モータとから成る冷凍機のモー
タ冷却装置として、特開昭58−110963号公報に示
されるように、主モータの内部空間を前記凝縮器
に接続すると共に、該凝縮器で凝縮した冷媒液を
前記主モータの内部空間に冷媒ポンプを介して導
入する導入路を設けたものが知られている。
Conventionally, as a motor cooling device for a refrigerator consisting of an evaporator, a condenser, a compressor, and a main motor for driving the compressor, as shown in Japanese Patent Application Laid-open No. 58-110963, It is known to have an introduction path that connects a space to the condenser and introduces the refrigerant liquid condensed in the condenser into the internal space of the main motor via a refrigerant pump.

このモータ冷却装置は、モータの内部発生熱を
冷却する際に、冷凍機の圧縮動力を使用せずに、
直接凝縮器で冷却水に放出するため、冷凍機の省
エネルギ化に効果のあるものである。
This motor cooling device cools the internally generated heat of the motor without using the compression power of the refrigerator.
Since it is directly discharged into the cooling water through the condenser, it is effective in saving energy in the refrigerator.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記のモータ冷却装置では、モ
ータへ供給する冷媒として凝縮器における凝縮冷
媒液を使用するが、該冷媒液は凝縮器内の冷媒蒸
発気と平衡状態にある飽和液のために、フラツシ
ユしやすい性質があり、したがつて冷媒ポンプ吸
込口での押し込み圧力が十分でないと、冷媒ポン
プがキヤビテーシヨン現象をおこし、モータに供
給する冷媒量が不足してモータ冷却に支障をおこ
すおそれがある。このような冷媒ポンプのキヤビ
テーシヨン現象を防止するためには、設計上凝縮
器における冷媒液の取出口と冷媒ポンプの吸込口
との高低差すなわちNPSHを大きく取る必要が
あり、そのために冷凍機における凝縮器の取付高
さを高くせざるを得ず、冷凍機の外形寸法上不利
となる。
However, in the above motor cooling device, the refrigerant liquid condensed in the condenser is used as the refrigerant supplied to the motor, but the refrigerant liquid does not flash because it is a saturated liquid that is in equilibrium with the evaporated refrigerant in the condenser. Therefore, if the pushing pressure at the refrigerant pump suction port is not sufficient, the refrigerant pump may cause a cavitation phenomenon, resulting in an insufficient amount of refrigerant supplied to the motor, which may impede motor cooling. In order to prevent such cavitation phenomenon of the refrigerant pump, it is necessary to design a large height difference between the refrigerant liquid outlet in the condenser and the refrigerant pump suction port, that is, the NPSH. The installation height of the container must be increased, which is disadvantageous in terms of the external dimensions of the refrigerator.

本考案は、上記モータ冷却系統でモータに冷媒
液を供給するための冷媒ポンプの吸込部における
飽和蒸気圧を低下させることによつて、該ポンプ
のキヤビテーシヨン現象を防止し、前記問題点を
解決しようとするものである。
The present invention aims to solve the above problem by reducing the saturated vapor pressure at the suction part of the refrigerant pump for supplying refrigerant liquid to the motor in the motor cooling system, thereby preventing the cavitation phenomenon of the pump. That is.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、蒸発器、凝縮器、圧縮機及び該圧縮
機を駆動するための主モータから成り、該主モー
タの内部空間を前記凝縮器に接続すると共に、該
凝縮器で凝縮した冷媒液を前記主モータの内部空
間に冷媒ポンプを介して導入する導入路を設けた
冷凍機において、前記導入路の冷媒ポンプ吸込側
に冷媒液の冷却器を設けたことを特徴とする冷凍
機用モータ冷却装置である。
The present invention consists of an evaporator, a condenser, a compressor, and a main motor for driving the compressor, and the internal space of the main motor is connected to the condenser, and the refrigerant liquid condensed in the condenser is A motor cooling device for a refrigerator, characterized in that the refrigerator is provided with an introduction path for introducing the refrigerant into the internal space of the main motor via a refrigerant pump, characterized in that a refrigerant liquid cooler is provided on the refrigerant pump suction side of the introduction path. It is a device.

〔実施例〕〔Example〕

本考案の実施例を図面を参照しながら説明する
と、第1図において、1は蒸発器、2は凝縮機、
3は圧縮機、4は増速機5を介して圧縮機3を駆
動する主モータであつて、蒸発器1内には蒸発器
伝熱管6及びエリミネータ7が配備され、蒸発器
1はエリミネータ7を介して圧縮機吸込管8にて
圧縮機3に連通されている。
An embodiment of the present invention will be described with reference to the drawings. In Fig. 1, 1 is an evaporator, 2 is a condenser,
3 is a compressor; 4 is a main motor that drives the compressor 3 via a speed increaser 5; an evaporator heat transfer tube 6 and an eliminator 7 are provided in the evaporator 1; It is connected to the compressor 3 via a compressor suction pipe 8.

凝縮器2内には、冷却水入口通路9及び冷却水
出口通路10に連なる凝縮器伝熱管11が配備さ
れ、凝縮器2は接続口12にて圧縮機3の吐出部
と接続されると共に主モータ4の内部空間と連絡
通路13にて接続されている。
Inside the condenser 2, a condenser heat exchanger tube 11 connected to a cooling water inlet passage 9 and a cooling water outlet passage 10 is provided, and the condenser 2 is connected to the discharge part of the compressor 3 through a connection port 12, and the main It is connected to the internal space of the motor 4 through a communication passage 13.

また、凝縮器2は接続口14及びオリフイス、
手動バルブ等の絞り機構15を介して連絡通路1
6を経て蒸発器1の底部に連なり、冷媒分布板1
7を介して蒸発器1内部と連なつている。
The condenser 2 also includes a connection port 14 and an orifice,
The communication passage 1 is connected via a throttle mechanism 15 such as a manual valve.
6 to the bottom of the evaporator 1, and the refrigerant distribution plate 1
It is connected to the inside of the evaporator 1 via 7.

さらに、凝縮器2で凝縮した冷媒液をヘツダ1
8ら主モータ4の内部空間に冷媒ポンプ19を介
して導入する導入路20,20′を設けるが、こ
の冷媒ポンプ19の吸込側の導入路20中に冷却
器21を設け、例えば凝縮器2の冷却水入口通路
9と冷却水出口通路10に連通する冷却水通路2
2と23が凝縮器2内の冷却水の通路と並列に接
続されている。
Furthermore, the refrigerant liquid condensed in the condenser 2 is transferred to the header 1.
Introduction passages 20 and 20' are provided for introducing the refrigerant into the internal space of the main motor 4 via the refrigerant pump 19. A cooler 21 is provided in the introduction passage 20 on the suction side of the refrigerant pump 19, for example, the condenser 2 A cooling water passage 2 communicating with a cooling water inlet passage 9 and a cooling water outlet passage 10 of
2 and 23 are connected in parallel to the cooling water passage in the condenser 2.

図中、24は凝縮器2内で圧縮機3との接続口
12に設けられたバツフル板を示す。
In the figure, reference numeral 24 indicates a baffle plate provided in the condenser 2 at the connection port 12 with the compressor 3.

次にその作用を説明すれば、蒸発器1で蒸発し
た冷媒は、エリミネータ7を経て圧縮機吸込管8
から圧縮機3に吸引され、圧縮されて接続口12
を経由して凝縮器2に流入し、凝縮して接続口1
4、絞り機構15、連絡通路16を通り、再び蒸
発器1に流入して冷凍サイクルを形成する。
Next, to explain its operation, the refrigerant evaporated in the evaporator 1 passes through the eliminator 7 to the compressor suction pipe 8.
is sucked into the compressor 3, compressed, and connected to the connection port 12.
flows into the condenser 2 via the
4. It passes through the throttle mechanism 15 and the communication passage 16 and flows into the evaporator 1 again to form a refrigeration cycle.

一方、凝縮器2で凝縮された冷媒液は、冷媒ポ
ンプ19によつてヘツダ18から取り出され、導
入路20から冷却器21に流入し、凝縮器2内で
利用される冷却水の一部と熱交換して冷却された
のち、冷媒ポンプ19によつて昇圧され、導入路
20′を経由して主モータ4内に散布され、一部
は主モータ4内部の高温部分から熱を奪つて蒸発
したのち、連絡通路13から凝縮器2に戻る。
On the other hand, the refrigerant liquid condensed in the condenser 2 is taken out from the header 18 by the refrigerant pump 19, flows into the cooler 21 through the introduction passage 20, and becomes part of the cooling water used in the condenser 2. After being cooled by heat exchange, it is pressurized by the refrigerant pump 19 and distributed into the main motor 4 via the introduction path 20', and a portion of the refrigerant absorbs heat from the high temperature part inside the main motor 4 and evaporates. Thereafter, it returns to the condenser 2 through the communication passage 13.

このようにしてモータ冷却サイクルが形成され
るが、冷媒ポンプ19の吸込側に冷却器21が設
けられ、冷却器21の冷却水通路は凝縮器2の冷
却水通路と並列に接続されており、凝縮器2の入
口温度の水が低温流体として冷却水入口通路9か
ら冷却水通路22を経由して供給される。一方、
高温流体である冷媒液は、通常凝縮器2を出た状
態で冷却水の出口温度より2〜5℃高いため、冷
却器21において冷媒は冷却水に放熱して自らは
冷却されて過冷却液となる。また、放熱を受けた
冷却水は、冷却水通路23を経由して冷却水出口
通路10に戻される。
In this way, a motor cooling cycle is formed, and the cooler 21 is provided on the suction side of the refrigerant pump 19, and the cooling water passage of the cooler 21 is connected in parallel with the cooling water passage of the condenser 2. Water at the inlet temperature of the condenser 2 is supplied as a low-temperature fluid from the cooling water inlet passage 9 via the cooling water passage 22. on the other hand,
The refrigerant liquid, which is a high-temperature fluid, is usually 2 to 5 degrees Celsius higher than the outlet temperature of the cooling water when it exits the condenser 2. Therefore, in the cooler 21, the refrigerant radiates heat to the cooling water and is cooled to become a supercooled liquid. becomes. Further, the cooling water that has undergone heat radiation is returned to the cooling water outlet passage 10 via the cooling water passage 23.

このように冷媒ポンプ19の吸込口の冷媒液が
過冷却されることにより、飽和蒸気圧が低下し、
冷媒液はフラツシユしにくくなり、キヤビテーシ
ヨンをおこしにくくなる。それによつて、冷媒ポ
ンプ19の所要押込圧力、すなわち所要NPSH
は冷却器21を持たない装置に比べて減少し、凝
縮器2の取付高さを高くする必要がない。
As the refrigerant liquid at the suction port of the refrigerant pump 19 is supercooled in this way, the saturated vapor pressure decreases,
The refrigerant liquid is less likely to flash and cavitation is less likely to occur. Thereby, the required pushing pressure of the refrigerant pump 19, that is, the required NPSH
is reduced compared to a device without a cooler 21, and there is no need to increase the installation height of the condenser 2.

第2図示例は、本考案の他の実施例を示し、第
1図示例のように冷却器21を別個に設けること
なく、蒸発器内部空間25を利用したものであ
る。すなわち、冷媒ポンプ19の吸込側の導入路
20を一旦蒸発器内部空間25を通過させ、蒸発
器1内で蒸発する冷媒によつて冷媒液を冷却する
ものである。したがつて、被冷却流体たる冷媒液
は、冷媒ポンプ19によつてヘツダ18から取り
出され、導入路20から蒸発器内部空間25に流
入し、蒸発器1内で蒸発する冷媒によつて過冷却
されたのち冷媒ポンプ19に吸込まれる。かくて
冷媒ポンプ19の吸込部分の冷媒液の飽和蒸気圧
が低下するため、冷媒液はフラツシユしにくくな
り、キヤビテーシヨンをおこしにくくなる。それ
によつて、冷媒ポンプ19の所要押込圧力、すな
わち所要NPSHは冷却部を持たない装置に比べ
て減少し、凝縮器2の取付高さを高くする必要が
ない。
The second illustrated example shows another embodiment of the present invention, in which the internal space 25 of the evaporator is used instead of providing a separate cooler 21 as in the first illustrated example. That is, the introduction path 20 on the suction side of the refrigerant pump 19 is passed once through the evaporator internal space 25, and the refrigerant liquid is cooled by the refrigerant evaporated within the evaporator 1. Therefore, the refrigerant liquid, which is the fluid to be cooled, is taken out from the header 18 by the refrigerant pump 19, flows into the evaporator internal space 25 from the introduction path 20, and is subcooled by the refrigerant evaporated in the evaporator 1. After that, the refrigerant is sucked into the refrigerant pump 19. Since the saturated vapor pressure of the refrigerant liquid in the suction portion of the refrigerant pump 19 is thus reduced, the refrigerant liquid is less likely to flash and cavitation is less likely to occur. As a result, the required pushing pressure of the refrigerant pump 19, that is, the required NPSH, is reduced compared to a device without a cooling section, and there is no need to increase the mounting height of the condenser 2.

なお、第2図示例では、冷媒液を冷却する低温
流体として蒸発器1内で蒸発する冷媒を用いてい
るが、冷媒液の飽和蒸気圧力を低減させるには、
凝縮器2の圧力以下の圧力で蒸発する冷媒であれ
ば効果があり、例えば多段圧縮機を用いた冷凍機
の場合であれば、エコノマイザ室の圧力で蒸発す
る冷媒を用いても差し支えないし、また単段圧縮
機を用いた場合であれば、圧縮機のデイフユーザ
入口部分の様な圧縮機の中間部に連通させた容器
内で蒸発する冷媒を用いることもできる。
Note that in the second illustrated example, a refrigerant that evaporates in the evaporator 1 is used as the low-temperature fluid that cools the refrigerant liquid, but in order to reduce the saturated vapor pressure of the refrigerant liquid,
It is effective if the refrigerant evaporates at a pressure lower than the pressure of the condenser 2. For example, in the case of a refrigerator using a multi-stage compressor, it is possible to use a refrigerant that evaporates at the pressure in the economizer chamber. If a single-stage compressor is used, it is also possible to use refrigerant that evaporates in a container connected to an intermediate portion of the compressor, such as a diffuser inlet portion of the compressor.

〔考案の効果〕[Effect of idea]

以上述べたように本考案によれば、主モータの
内部空間を凝縮器に接続すると共に、凝縮冷媒液
を主モータの内部空間に冷媒ポンプによつて導入
するモータ冷却サイクルを採用した冷凍機におい
て、前記冷媒液を過冷却して冷媒ポンプの吸込部
における飽和蒸気圧を低下させることによつて、
該ポンプのキヤビテーシヨンを防止するととも
に、凝縮器における冷媒液の取出口と冷媒ポンプ
の吸込口の高低差を小さくすることが可能とな
り、信頼性の高いモータ冷却装置となり、さらに
外形寸法上コンパクトになるなどのきわめて有用
な効果を有するものである。
As described above, according to the present invention, a refrigerator employs a motor cooling cycle in which the internal space of the main motor is connected to the condenser and the condensed refrigerant liquid is introduced into the internal space of the main motor by a refrigerant pump. , by subcooling the refrigerant liquid to reduce the saturated vapor pressure at the suction part of the refrigerant pump,
In addition to preventing cavitation of the pump, it is possible to reduce the height difference between the refrigerant liquid outlet in the condenser and the refrigerant pump suction port, resulting in a highly reliable motor cooling device that is also compact in external dimensions. It has extremely useful effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本考案の実施例
を示す一部切断面図である。 1……蒸発器、2……凝縮器、3……圧縮機、
4……主モータ、5……増速機、6……蒸発器伝
熱管、7……エリミネータ、8……圧縮機吸込
管、9……冷却水入口通路、10……冷却水出口
通路、11……凝縮器伝熱管、12,14……接
続口、13,16……連絡通路、15……絞り機
構、17……冷媒分布板、18……ヘツダ、19
……冷媒ポンプ、20,20′……導入路、21
……冷却器、22,23……冷却水通路、24…
…バツフル板、25……蒸発器内部空間。
1 and 2 are partially cutaway views showing embodiments of the present invention, respectively. 1... Evaporator, 2... Condenser, 3... Compressor,
4... Main motor, 5... Speed increaser, 6... Evaporator heat transfer tube, 7... Eliminator, 8... Compressor suction pipe, 9... Cooling water inlet passage, 10... Cooling water outlet passage, 11... Condenser heat transfer tube, 12, 14... Connection port, 13, 16... Communication passage, 15... Throttle mechanism, 17... Refrigerant distribution plate, 18... Header, 19
...Refrigerant pump, 20, 20'...Introduction path, 21
...Cooler, 22, 23...Cooling water passage, 24...
...Batsuful plate, 25...Evaporator internal space.

Claims (1)

【実用新案登録請求の範囲】 1 蒸発器、凝縮器、圧縮機及び該圧縮機を駆
動するための主モータから成り、該主モータの
内部空間を前記凝縮器に接続すると共に、該凝
縮器で凝縮した冷媒液を前記主モータの内部空
間に冷媒ポンプを介して導入する導入路を設け
た冷凍機において、前記導入路の冷媒ポンプ吸
込側に冷媒液の冷却器を設けたことを特徴とす
る冷凍機用モータ冷却装置。 2 前記冷却器の冷却流体として、該冷凍機の冷
却水を用いるものである実用新案登録請求の範
囲第1項記載の冷凍機用モータ冷却装置。 3 前記冷却器の冷却水の通路と前記凝縮器の冷
却水の通路とを並列に接続したものである実用
新案登録請求の範囲第2項記載の冷凍機用モー
タ冷却装置。 4 前記冷却器の冷却流体として、前記凝縮器の
圧力以下で蒸発する冷媒を用いるものである実
用新案登録請求の範囲第1項記載の冷凍機用モ
ータ冷却装置。 5 前記冷却器として前記蒸発器内部空間を利用
したものである実用新案登録請求の範囲第4項
記載の冷凍機用モータ冷却装置。
[Claims for Utility Model Registration] 1 Consists of an evaporator, a condenser, a compressor, and a main motor for driving the compressor, and connects the internal space of the main motor to the condenser, and connects the internal space of the main motor to the condenser. A refrigerator provided with an introduction path for introducing condensed refrigerant liquid into the internal space of the main motor via a refrigerant pump, characterized in that a refrigerant liquid cooler is provided on the refrigerant pump suction side of the introduction path. Motor cooling device for refrigerators. 2. The motor cooling device for a refrigerator according to claim 1, which uses the cooling water of the refrigerator as the cooling fluid of the cooler. 3. The motor cooling device for a refrigerator according to claim 2, wherein the cooling water passage of the cooler and the cooling water passage of the condenser are connected in parallel. 4. The motor cooling device for a refrigerator according to claim 1, which uses a refrigerant that evaporates below the pressure of the condenser as the cooling fluid of the cooler. 5. The motor cooling device for a refrigerator according to claim 4, which utilizes the internal space of the evaporator as the cooler.
JP3830085U 1985-03-19 1985-03-19 Expired JPH0317179Y2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3830085U JPH0317179Y2 (en) 1985-03-19 1985-03-19
US06/794,790 US4669279A (en) 1985-03-19 1985-11-04 Motor cooling apparatus for refrigerator
FR8516854A FR2579305B1 (en) 1985-03-19 1985-11-14 APPARATUS FOR COOLING THE ENGINE OF A REFRIGERATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3830085U JPH0317179Y2 (en) 1985-03-19 1985-03-19

Publications (2)

Publication Number Publication Date
JPS61156854U JPS61156854U (en) 1986-09-29
JPH0317179Y2 true JPH0317179Y2 (en) 1991-04-11

Family

ID=30545175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3830085U Expired JPH0317179Y2 (en) 1985-03-19 1985-03-19

Country Status (1)

Country Link
JP (1) JPH0317179Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997340A (en) * 1989-09-25 1991-03-05 Carrier Corporation Balance piston and seal arrangement
JP2787882B2 (en) * 1992-11-25 1998-08-20 三菱電機株式会社 Heat storage type cooling device
JP5660836B2 (en) * 2010-10-04 2015-01-28 三菱重工業株式会社 Vapor compression heat pump
JP2013169029A (en) * 2012-02-14 2013-08-29 Kobe Steel Ltd Power generator
JP6327986B2 (en) * 2014-07-11 2018-05-23 株式会社大気社 Compressor / pump switching type cooling device
JP6643711B2 (en) * 2016-02-04 2020-02-12 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and cooling method

Also Published As

Publication number Publication date
JPS61156854U (en) 1986-09-29

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US5765391A (en) Refrigerant circulation apparatus utilizing two evaporators operating at different evaporating temperatures
CN100529598C (en) Refrigeration system
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
CN109506383A (en) The direct condensation by contact cooling cycle system of three-level overlapping
US5797277A (en) Condensate cooler for increasing refrigerant density
US3721108A (en) Refrigerant cooled compressor
JPH0317179Y2 (en)
CN212720353U (en) Refrigerator car and refrigerating system thereof
CN108759139B (en) Primary throttling intermediate incomplete cooling refrigeration system with intermediate temperature evaporator
CN109506382A (en) The direct condensation by contact cooling cycle system of three warm cooling supply
JPS6022250B2 (en) vapor compression refrigeration equipment
CN209541216U (en) The direct condensation by contact cooling cycle system of three-level overlapping
SU1079968A1 (en) Refrigerating machine
JPS6387557A (en) Heat pump
CN218884331U (en) Air conditioner
KR910002808Y1 (en) Throttle type super cooler
RU2047058C1 (en) Cooling plant
CN116659108A (en) Refrigerator refrigerating system and refrigerator using same
KR900001356B1 (en) Motor cooling apparatus for refrigerator
JPS61295473A (en) Absorption refrigerator
JPS6051024B2 (en) Condensing pressure holding device for condenser
JPS6235587B2 (en)
JPH0317181Y2 (en)