JPH1082566A - Air cooled packager-conditioner - Google Patents

Air cooled packager-conditioner

Info

Publication number
JPH1082566A
JPH1082566A JP8236464A JP23646496A JPH1082566A JP H1082566 A JPH1082566 A JP H1082566A JP 8236464 A JP8236464 A JP 8236464A JP 23646496 A JP23646496 A JP 23646496A JP H1082566 A JPH1082566 A JP H1082566A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
pipe
compressor
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8236464A
Other languages
Japanese (ja)
Inventor
Tsuneo Uekusa
常雄 植草
Shisei Waratani
至誠 藁谷
Kazuo Chiba
和夫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Nippon Telegraph and Telephone Corp
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Nippon Telegraph and Telephone Corp, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP8236464A priority Critical patent/JPH1082566A/en
Publication of JPH1082566A publication Critical patent/JPH1082566A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve annual operating efficiency by performance of energy conservation with a simple constitution by adding a refrigerant pump and bypass forming tube and a switching valve to a vapor compression type cooling circuit, and selectively executing any of operations of a compression cycle and heat transporting cycle. SOLUTION: A refrigerant pump 23 is provided at a tube between a condenser 22 and a thermal expansion valve 13 of a vapor compression type cooling circuit. When a sensed temperature of an atmospheric temperature sensor 31 becomes a predetermined value or higher, a compressor 21 is operated, a switching valve 24 is closed, a switching valve 25 is opened, and cooling operation of a compression cycle is conducted. The pump 23 is not operated. Meanwhile, when the sensed temperature of the sensor 31 becomes the predetermined value or lower, the pump 23 is operated, the valve 24 is opened, the valve 25 is closed, and the cooling operation of the transporting cycle; is executed. The compressor 21 is not operated. Thus, any of the cooling operations of the compression cycle and the transporting cycle is selectively executed according to the atmospheric temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、年間冷房型の空
冷パッケージ空調機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooling package air conditioner of an annual cooling type.

【0002】[0002]

【従来の技術】通信機室や電算機室では、室内発熱量が
大きく、年間冷房する必要がある。年間冷房型パッケー
ジ空調機の年間運転効率いわゆるCOPを上げる方法と
して、特願昭63-204450 号に示されるものがある。この
例では、外気温度が低いときに、圧縮機の吸入吐出圧力
比をできるだけ小さくすることで、外気温度が高いとき
に比べて圧縮動力を削減した運転が可能となっている。
この空調機の外気温度とCOPとの関係を図5に、p−
h線図上に冷凍サイクルを描いたものを図6に示す。
2. Description of the Related Art In a communication room or a computer room, the amount of heat generated in the room is large, and it is necessary to perform annual cooling. A method disclosed in Japanese Patent Application No. 63-204450 is a method for increasing the so-called COP, which is the annual operating efficiency of an annual cooling type air conditioner. In this example, when the outside air temperature is low, the suction power of the compressor is made as small as possible, so that the operation in which the compression power is reduced as compared with when the outside air temperature is high is possible.
The relationship between the outside air temperature of this air conditioner and COP is shown in FIG.
FIG. 6 shows a refrigeration cycle drawn on the h diagram.

【0003】また、外気温度が低いときの運転動力を削
減するために、圧縮サイクルとは別に冷媒自然循環サイ
クルを用意し、両サイクルを同一パッケージに収納し、
かつ両サイクルに兼用の送風機を設けた空冷パッケージ
空調機がある。この例を図7に示す。
Further, in order to reduce the driving power when the outside air temperature is low, a refrigerant natural circulation cycle is prepared separately from the compression cycle, and both cycles are stored in the same package.
In addition, there is an air-cooled package air conditioner provided with a blower for both cycles. This example is shown in FIG.

【0004】すなわち、基礎床面41の上に二重床42
が設けられ、その二重床42に室内機(蒸発器)50が
設置される。また、室外において、室内機(蒸発器)5
0の設置位置より高い位置に、室外機(凝縮器)60が
設置される。
That is, a double floor 42 is placed on a foundation floor 41.
And an indoor unit (evaporator) 50 is installed on the double floor 42. Also, indoors, an indoor unit (evaporator) 5
The outdoor unit (condenser) 60 is installed at a position higher than the zero installation position.

【0005】室内機50は、圧縮機51、熱交換コイル
52,53、送風機54、および膨張弁55を備え、室
外機60との間の冷媒循環によって冷却用空気を作成
し、それを図示破線矢印のように二重床42内の空間を
通して各種機器(図示しない)に供給する。
The indoor unit 50 includes a compressor 51, heat exchange coils 52 and 53, a blower 54, and an expansion valve 55, and creates cooling air by circulating a refrigerant between the outdoor unit 60 and the cooling air. As shown by arrows, the air is supplied to various devices (not shown) through the space in the double floor 42.

【0006】室外機60は、熱交換コイル61,62お
よび送風機63を備える。熱交換コイル61は、圧縮サ
イクル用の冷媒配管43,43を介して、室内機50の
圧縮機51、熱交換コイル52、膨張弁55と接続され
る。熱交換コイル62は、冷媒自然循環サイクル用の冷
媒配管44,44および二方弁45を介して、室内機5
0の熱交換コイル53と接続される。
[0006] The outdoor unit 60 includes heat exchange coils 61 and 62 and a blower 63. The heat exchange coil 61 is connected to the compressor 51 of the indoor unit 50, the heat exchange coil 52, and the expansion valve 55 via the refrigerant pipes 43 for the compression cycle. The heat exchange coil 62 is connected to the indoor unit 5 via the refrigerant pipes 44 and 44 and the two-way valve 45 for the refrigerant natural circulation cycle.
0 is connected to the heat exchange coil 53.

【0007】冷媒自然循環サイクルとは、凝縮器を蒸発
器より高い位置に備えて冷媒の比重差を利用して、動力
なしに熱の輸送ができるシステムであり、外気温度が低
いときにこの機能を使って熱輸送動力なしに冷房運転が
可能になる。
[0007] The refrigerant natural circulation cycle is a system in which a condenser is provided at a higher position than an evaporator and heat can be transferred without power by utilizing a difference in specific gravity of the refrigerant. The cooling operation can be performed without heat transfer power by using the heat pump.

【0008】また、水冷パッケージ空調機として、外気
温が低いときに冷却塔で冷却した水で直接室内の冷却を
行う、いわゆるフリークーリング機能を備えたものがあ
る。この例を図8に示している。
[0008] Some water-cooled package air conditioners have a so-called free cooling function of directly cooling the room with water cooled by a cooling tower when the outside air temperature is low. This example is shown in FIG.

【0009】すなわち、二重床に空調ユニット70が設
置される。空調ユニット70は、圧縮機71、凝縮器7
2、蒸発器73、フリークーリング用熱交換器74、お
よび送風機75を備える。圧縮機71、凝縮器72、お
よび蒸発器73は、圧縮サイクル用の冷媒配管(図示し
ない)によって順次に接続される。凝縮器72およびフ
リークーリング用熱交換器74は、冷却水循環用の水管
76,76によって屋上の冷却塔(図示しない)に接続
される。この空調ユニット70によって冷却用空気が作
成され、それが二重床内の空間を通して各種機器(図示
しない)に供給される。
That is, the air conditioning unit 70 is installed on a double floor. The air conditioning unit 70 includes a compressor 71, a condenser 7
2, an evaporator 73, a free-cooling heat exchanger 74, and a blower 75 are provided. The compressor 71, the condenser 72, and the evaporator 73 are sequentially connected by a refrigerant pipe (not shown) for a compression cycle. The condenser 72 and the free-cooling heat exchanger 74 are connected to a rooftop cooling tower (not shown) by cooling water circulation water pipes 76, 76. Cooling air is created by the air conditioning unit 70 and is supplied to various devices (not shown) through the space in the double floor.

【0010】[0010]

【発明が解決しようとする課題】圧縮機の吸入吐出圧力
比をできるだけ小さくするようにしたパッケージ空調機
の場合、圧縮機を低圧縮機比で運転しても、冷房COP
は最大でも10以下であり、室内温度より外気温度が低い
点を十分有効に利用できていない。
In the case of a packaged air conditioner in which the suction / discharge pressure ratio of the compressor is made as small as possible, even if the compressor is operated at a low compressor ratio, the cooling COP is reduced.
Is at most 10 or less, and the point that the outside air temperature is lower than the room temperature cannot be used sufficiently effectively.

【0011】冷媒自然循環サイクルを組み込んだ装置で
は、(a)装置構成が複雑、(b)室内と室外との間に
冷媒配管が4本必要となり施工費用がかかる、(c)室
内機および室外機の設置条件(高さ位置)の制約があ
る、(d)室内側および室外側の熱交換コイルがそれぞ
れ二重になっていることから送風機動力が増大する、等
の問題点がある。
In a device incorporating a natural refrigerant circulation cycle, (a) the configuration of the device is complicated, (b) four refrigerant pipes are required between the room and the outdoor, and construction costs are high. (C) Indoor and outdoor units There are problems such as restrictions on the installation conditions (height position) of the machine, and (d) an increase in fan power due to double heat exchange coils on the indoor side and the outdoor side.

【0012】水冷パッケージ空調機で採用されているフ
リークーリング方式も、冷媒自然循環サイクルを組み込
んだ場合と同様に交換器が二重になることで送風機動力
が増大する点や、冷却水の水質管理が必要になる等の問
題点がある。
[0012] The free cooling system employed in the water-cooled package air conditioner also has the advantage that the power of the blower is increased by doubling the exchanger as in the case of incorporating the refrigerant natural circulation cycle, and that the water quality of the cooling water is controlled. Is required.

【0013】この発明は上記の事情を考慮したもので、
第1の発明の空冷パッケージ空調機は、簡単な構成で、
少ない冷媒配管で、室内外機の設置条件(高さ位置)に
制約を受けることなく、しかも送風機動力の増大や水質
管理等の問題を生じることなく、省エネルギ運転を可能
として年間運転効率の向上が図れることを目的とする。
The present invention has been made in view of the above circumstances.
The air-cooled package air conditioner of the first invention has a simple configuration,
With less refrigerant piping, energy-saving operation is possible without any restrictions on the installation conditions (height position) of indoor / outdoor units and without problems such as an increase in fan power and water quality management, thereby improving annual operation efficiency. The purpose is to achieve.

【0014】第2の発明の空冷パッケージ空調機は、簡
単な構成で、少ない冷媒配管で、室内外機の設置条件
(高さ位置)に制約を受けることなく、しかも送風機動
力の増大や水質管理等の問題を生じることなく、外気温
度を考慮しながら年間を通じて必要かつ十分な冷房能力
を確保しつつ省エネルギ運転を可能として年間運転効率
の向上が図れることを目的とする。
The air-cooled packaged air conditioner of the second invention has a simple structure, requires few refrigerant pipes, is not restricted by the installation conditions (height position) of the indoor and outdoor units, and increases the power of the blower and manages water quality. It is an object of the present invention to improve the annual operation efficiency by enabling energy-saving operation while ensuring a necessary and sufficient cooling capacity throughout the year while taking into consideration the outside air temperature without causing problems such as the above.

【0015】第3の発明の空冷パッケージ空調機は、第
2の発明の目的に加え、圧縮サイクルの冷房運転と熱輸
送サイクルの冷房運転との頻繁な繰り返しを防いで安定
した運転が可能なことを目的とする。
The air-cooled packaged air conditioner according to the third invention, in addition to the object of the second invention, is capable of performing a stable operation by preventing frequent repetition of a cooling operation in a compression cycle and a cooling operation in a heat transport cycle. With the goal.

【0016】[0016]

【課題を解決するための手段】第1の発明の空冷パッケ
ージ空調機は、圧縮機、凝縮器、膨張弁、蒸発器を配管
接続して冷媒を循環させる蒸気圧縮式冷却回路と、上記
凝縮器に風を送る凝縮器側送風機と、上記蒸発器に風を
送る蒸発器側送風機と、上記凝縮器と膨張弁との間の配
管に設けられた冷媒ポンプと、上記圧縮機と並列に接続
された冷媒バイパス用の第1配管と、この第1配管に設
けられた第1開閉弁と、上記冷媒ポンプと並列に接続さ
れた冷媒バイパス用の第2配管と、この第2配管に設け
られた第2開閉弁と、上記圧縮機を運転して上記冷媒ポ
ンプを停止し且つ上記第1開閉弁を閉じて上記第2開閉
弁を開き、圧縮サイクルの運転を実行する制御手段と、
上記圧縮機を停止して上記冷媒ポンプを運転し且つ上記
第1開閉弁を開いて上記第2開閉弁を閉じ、熱輸送サイ
クルの運転を実行する制御手段と、を備える。
According to a first aspect of the present invention, there is provided an air-cooled package air conditioner comprising: a vapor compression type cooling circuit for circulating a refrigerant by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping; A condenser-side blower that sends air to the evaporator, an evaporator-side blower that sends air to the evaporator, a refrigerant pump provided in a pipe between the condenser and the expansion valve, and connected in parallel with the compressor. A first pipe for refrigerant bypass, a first on-off valve provided on the first pipe, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, and a second pipe for refrigerant bypass. A second opening / closing valve, control means for operating the compressor, stopping the refrigerant pump, closing the first opening / closing valve, opening the second opening / closing valve, and executing a compression cycle operation;
Control means for stopping the compressor, operating the refrigerant pump, opening the first on-off valve, closing the second on-off valve, and executing a heat transport cycle operation.

【0017】第2の発明の空冷パッケージ空調機は、圧
縮機、凝縮器、膨張弁、蒸発器を配管接続して冷媒を循
環させる蒸気圧縮式冷却回路と、上記凝縮器に風を送る
凝縮器側送風機と、上記蒸発器に風を送る蒸発器側送風
機と、上記凝縮器と膨張弁との間の配管に設けられた冷
媒ポンプと、上記圧縮機と並列に接続された冷媒バイパ
ス用の第1配管と、この第1配管に設けられた第1開閉
弁と、上記冷媒ポンプと並列に接続された冷媒バイパス
用の第2配管と、この第2配管に設けられた第2開閉弁
と、外気温度を検知する温度検知手段と、この温度検知
手段の検知温度が所定値以上のとき、上記圧縮機を運転
して上記冷媒ポンプを停止し且つ上記第1開閉弁を閉じ
て上記第2開閉弁を開き、圧縮サイクルの冷房運転を実
行する制御手段と、上記温度検知手段の検知温度が所定
値以下のとき、上記圧縮機を停止して上記冷媒ポンプを
運転し且つ上記第1開閉弁を開いて上記第2開閉弁を閉
じ、熱輸送サイクルの冷房運転を実行する制御手段と、
を備える。
An air-cooled package air conditioner according to a second aspect of the present invention is a vapor compression type cooling circuit for circulating a refrigerant by connecting a compressor, a condenser, an expansion valve, and an evaporator with a pipe, and a condenser for sending air to the condenser. A side blower, an evaporator-side blower that sends air to the evaporator, a refrigerant pump provided in a pipe between the condenser and an expansion valve, and a second refrigerant bypass connected in parallel with the compressor. 1 pipe, a first on-off valve provided on the first pipe, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, a second on-off valve provided on the second pipe, A temperature detecting means for detecting an outside air temperature, and when the detected temperature of the temperature detecting means is equal to or higher than a predetermined value, the compressor is operated to stop the refrigerant pump and close the first on-off valve to close the second on-off valve. Control means for opening the valve and performing the cooling operation of the compression cycle; When the temperature detected by the temperature detecting means is equal to or lower than a predetermined value, the compressor is stopped, the refrigerant pump is operated, the first open / close valve is opened, and the second open / close valve is closed, and the cooling operation of the heat transport cycle is performed. Control means for executing
Is provided.

【0018】第3の発明の空冷パッケージ空調機は、圧
縮機、凝縮器、膨張弁、蒸発器を配管接続して冷媒を循
環させる蒸気圧縮式冷却回路と、上記凝縮器に風を送る
凝縮器側送風機と、上記蒸発器に風を送る蒸発器側送風
機と、上記凝縮器と膨張弁との間の配管に設けられた冷
媒ポンプと、上記圧縮機と並列に接続された冷媒バイパ
ス用の第1配管と、この第1配管に設けられた第1開閉
弁と、上記冷媒ポンプと並列に接続された冷媒バイパス
用の第2配管と、この第2配管に設けられた第2開閉弁
と、外気温度を検知する温度検知手段と、この温度検知
手段の検知温度が第1所定値以上になると、上記圧縮機
を運転して上記冷媒ポンプを停止し且つ上記第1開閉弁
を閉じて上記第2開閉弁を開き、圧縮サイクルの冷房運
転を実行する制御手段と、上記温度検知手段の検知温度
が第2所定値(<第1所定値)以下になると、上記圧縮
機を停止して上記冷媒ポンプを運転し且つ上記第1開閉
弁を開いて上記第2開閉弁を閉じ、熱輸送サイクルの冷
房運転を実行する制御手段と、を備える。
An air-cooled package air conditioner according to a third aspect of the present invention is a vapor compression type cooling circuit for connecting a compressor, a condenser, an expansion valve, and an evaporator with piping to circulate a refrigerant, and a condenser for sending air to the condenser. A side blower, an evaporator-side blower that sends air to the evaporator, a refrigerant pump provided in a pipe between the condenser and an expansion valve, and a second refrigerant bypass connected in parallel with the compressor. 1 pipe, a first on-off valve provided on the first pipe, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, a second on-off valve provided on the second pipe, A temperature detecting means for detecting an outside air temperature, and when the temperature detected by the temperature detecting means becomes equal to or higher than a first predetermined value, the compressor is operated to stop the refrigerant pump and close the first on-off valve to close the first on-off valve. 2 Control to open the on-off valve and execute the cooling operation of the compression cycle And when the temperature detected by the temperature detecting means is equal to or lower than a second predetermined value (<first predetermined value), the compressor is stopped, the refrigerant pump is operated, and the first on-off valve is opened to open the first opening / closing valve. Control means for closing the two on-off valves and executing the cooling operation of the heat transport cycle.

【0019】[0019]

【発明の実施の形態】以下、この発明の一実施例につい
て図面を参照して説明する。図1に示すように、基礎床
面1の上に二重床2が設けられ、その二重床2に室内機
10が設置される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a double floor 2 is provided on a base floor 1, and an indoor unit 10 is installed on the double floor 2.

【0020】二重床2は、基礎床面1の上に多数本の支
持脚を介して上部床面を設けた構造であり、上部床面は
多数枚のパネルの配列により形成される。これらパネル
は保守点検時など必要に応じて着脱が自在であり、この
ことから上部床面のことを一般にフリーアクセスフロア
と称している。
The double floor 2 has a structure in which an upper floor is provided on the base floor 1 via a large number of support legs, and the upper floor is formed by an array of a large number of panels. These panels can be freely attached and detached as necessary at the time of maintenance and inspection. For this reason, the upper floor is generally called a free access floor.

【0021】また、二重床2は、フロア上の通信機や電
算機など各種機器(図示しない)が運転中に発熱するこ
とに対処し、室内機10から送出される冷却用空気をフ
リーアクセスフロアの下の床内空間を通して各種機器に
供給する、空調設備としても利用される。空調設備とし
ての利用のため、フリーアクセスフロアを形成する各パ
ネルのうち、必要箇所のパネルに通気用の開口が形成さ
れる。
The double floor 2 copes with generation of heat during operation of various devices (not shown) such as a communication device and a computer on the floor, and provides free access to cooling air sent from the indoor unit 10. It is also used as an air conditioner that supplies various devices through the space under the floor. For use as an air conditioner, a ventilation opening is formed in a necessary portion of the panels forming the free access floor.

【0022】室内機10は、室外機20と共に年間冷房
型の空冷パッケージ空調機を構成するもので、2本の冷
媒配管3,3を介して室外機20と接続されるととも
に、蒸発器11、蒸発器側送風機12、および膨張弁1
3を備える。
The indoor unit 10 constitutes an annual cooling type air-cooled package air conditioner together with the outdoor unit 20. The indoor unit 10 is connected to the outdoor unit 20 via two refrigerant pipes 3 and 3, and has an evaporator 11, Evaporator side blower 12 and expansion valve 1
3 is provided.

【0023】室外機20は、圧縮機21、凝縮器22、
冷媒ポンプ23、冷媒バイパス用の第1配管4、冷媒バ
イパス用の第2配管5、第1開閉弁24、第2開閉弁2
5、および凝縮器側送風機26を備え、室外に設置され
る。
The outdoor unit 20 includes a compressor 21, a condenser 22,
Refrigerant pump 23, first pipe 4 for refrigerant bypass, second pipe 5 for refrigerant bypass, first on-off valve 24, second on-off valve 2
5, and a condenser-side blower 26, which is installed outdoors.

【0024】そして、圧縮機21の吐出口に凝縮器22
の一端が配管接続され、凝縮器22の他端が冷媒ポンプ
23の吸入口に配管接続される。冷媒ポンプ23の吐出
口に冷媒配管3を介して膨張弁13の一端が接続され、
膨張弁13の他端が蒸発器11の一端に接続される。蒸
発器11の他端はもう1本の冷媒配管3を介して圧縮機
21の吸入口に接続される。
The discharge port of the compressor 21 is provided with a condenser 22.
Is connected to a pipe, and the other end of the condenser 22 is connected to a suction port of the refrigerant pump 23 by a pipe. One end of the expansion valve 13 is connected to a discharge port of the refrigerant pump 23 via the refrigerant pipe 3,
The other end of the expansion valve 13 is connected to one end of the evaporator 11. The other end of the evaporator 11 is connected to the suction port of the compressor 21 via another refrigerant pipe 3.

【0025】この配管接続のうち、冷媒ポンプ23を除
く、圧縮機21、凝縮器22、膨張弁13、蒸発器11
の配管接続により、蒸気圧縮式冷却回路が構成されてい
る。この蒸気圧縮式冷却回路の凝縮器22と膨張弁13
との間の配管に対し、冷媒ポンプ23を設けた形となっ
ている。
Of these pipe connections, except for the refrigerant pump 23, the compressor 21, the condenser 22, the expansion valve 13, and the evaporator 11
The piping connection forms a vapor compression type cooling circuit. The condenser 22 and the expansion valve 13 of this vapor compression type cooling circuit
And a refrigerant pump 23 is provided for the pipe between them.

【0026】また、圧縮機21と並列に冷媒バイパス用
の第1配管4が並列に接続され、その配管4に第1開閉
弁24が設けられる。冷媒ポンプ23と並列に冷媒バイ
パス用の第2配管5が並列に接続され、その配管5に第
2開閉弁25が設けられる。
A first pipe 4 for refrigerant bypass is connected in parallel with the compressor 21, and the pipe 4 is provided with a first on-off valve 24. A second pipe 5 for refrigerant bypass is connected in parallel with the refrigerant pump 23, and the pipe 5 is provided with a second on-off valve 25.

【0027】蒸発器側送風機12は、二重床2の上の室
内空間の空気を吸込み、その吸込み空気を蒸発器11に
通して二重床2の下の床内空間に供給する。室内空間の
空気は、蒸発器11を通るときにその蒸発器11内の冷
媒に熱を奪われて冷却され、各種機器に対する冷却用空
気として床内空間に供給される。
The evaporator-side blower 12 sucks air in the indoor space above the double floor 2 and supplies the sucked air to the floor space below the double floor 2 through the evaporator 11. When the air in the indoor space passes through the evaporator 11, the refrigerant in the evaporator 11 loses heat and is cooled, and is supplied to the floor space as cooling air for various devices.

【0028】凝縮器側送風機26は、室外空気を吸込
み、その吸込み空気を凝縮器22に供給する。室外空気
が凝縮器22を通るとき、凝縮器22内の冷媒が室外空
気に熱を奪われて凝縮する。
The condenser-side blower 26 sucks outdoor air and supplies the sucked air to the condenser 22. When the outdoor air passes through the condenser 22, the refrigerant in the condenser 22 loses heat to the outdoor air and condenses.

【0029】一方、室外機20に制御装置30が設けら
れる。制御装置30は、空冷パッケージ空調機の全体を
制御するもので、外気温度を検知する温度検知手段とし
て外気温度センサ31を付属して備え、さらに次の制御
手段を備える。
On the other hand, a control device 30 is provided in the outdoor unit 20. The control device 30 controls the entire air-cooled package air conditioner. The control device 30 includes an outside air temperature sensor 31 as temperature detecting means for detecting the outside air temperature, and further includes the following control means.

【0030】(1)外気温度センサ31の検知温度が第
1所定値たとえば12℃程度以上になると、圧縮機21を
運転して冷媒ポンプ23を停止し且つ第1開閉弁24を
閉じて第2開閉弁25を開き、圧縮サイクルの冷房運転
を実行する制御手段。
(1) When the temperature detected by the outside air temperature sensor 31 becomes equal to or higher than a first predetermined value, for example, about 12 ° C., the compressor 21 is operated to stop the refrigerant pump 23 and close the first opening / closing valve 24 to close the second opening / closing valve 24. Control means for opening the on-off valve 25 and executing the cooling operation of the compression cycle.

【0031】(2)外気温度センサ31の検知温度が第
2所定値(<第1所定値)たとえば7℃程度以下になる
と、圧縮機21を停止して冷媒ポンプ23を運転し且つ
第1開閉弁24を開いて第2開閉弁25を閉じ、熱輸送
サイクルの冷房運転を実行する制御手段。
(2) When the detected temperature of the outside air temperature sensor 31 falls below a second predetermined value (<first predetermined value), for example, about 7 ° C. or less, the compressor 21 is stopped, the refrigerant pump 23 is operated, and the first opening / closing is performed. Control means for opening the valve 24, closing the second on-off valve 25, and executing the cooling operation of the heat transport cycle;

【0032】つぎに、上記の構成の作用を説明する。外
気温度センサ31の検知温度が所定値たとえば12℃程度
以上になると、圧縮機21が運転されるとともに、開閉
弁24が閉じられて開閉弁25が開かれ、圧縮サイクル
の冷房運転が行われる。冷媒ポンプ23は運転されな
い。
Next, the operation of the above configuration will be described. When the temperature detected by the outside air temperature sensor 31 becomes a predetermined value, for example, about 12 ° C. or more, the compressor 21 is operated, the on-off valve 24 is closed and the on-off valve 25 is opened, and the cooling operation of the compression cycle is performed. The refrigerant pump 23 is not operated.

【0033】この場合、低圧のガス冷媒(蒸気)が圧縮
機21で高温高圧に圧縮され、その高温高圧のガス冷媒
が凝縮器22に送られる。凝縮器22に送られたガス冷
媒は外気と熱交換することで冷やされて高圧の液冷媒と
なる。この液冷媒は、配管5と開閉弁25を通ることに
より冷媒ポンプ23をバイパスして膨張弁13へと流
れ、そこで低圧の二相冷媒となる。この二相冷媒は、蒸
発器11に流れ、そこで室内空気から熱を奪ってガス化
し、再び圧縮機21に導かれる。
In this case, the low-pressure gas refrigerant (steam) is compressed to a high temperature and high pressure by the compressor 21, and the high-temperature and high pressure gas refrigerant is sent to the condenser 22. The gas refrigerant sent to the condenser 22 is cooled by exchanging heat with the outside air to become a high-pressure liquid refrigerant. This liquid refrigerant passes through the pipe 5 and the on-off valve 25 and bypasses the refrigerant pump 23 to flow to the expansion valve 13, where it becomes a low-pressure two-phase refrigerant. The two-phase refrigerant flows to the evaporator 11, where it takes heat from indoor air to gasify it, and is led to the compressor 21 again.

【0034】こうして圧縮サイクルが形成されることに
より、冷却用空気が作成され、それが二重床2の床内空
間に供給される。一方、外気温度センサ31の検知温度
が 7℃程度以下になると、冷媒ポンプ23が運転される
とともに、開閉弁24が開かれて開閉弁25が閉じら
れ、熱輸送サイクルの冷房運転が行われる。圧縮機21
は運転されない。
By forming a compression cycle in this manner, cooling air is created and supplied to the space in the double bed 2. On the other hand, when the detected temperature of the outside air temperature sensor 31 becomes about 7 ° C. or less, the refrigerant pump 23 is operated, the on-off valve 24 is opened and the on-off valve 25 is closed, and the cooling operation of the heat transport cycle is performed. Compressor 21
Is not driven.

【0035】この場合、冷媒ポンプ23から液冷媒が送
出され、それが膨張弁13を通って蒸発器11に流れ
る。蒸発器11に流れた液冷媒は、室内空気から熱を奪
ってガス冷媒となる。このガス冷媒は、配管4と開閉弁
24を通ることにより圧縮機21をバイパスして凝縮器
22へと流れ、そこで外気で冷却されて凝縮し、液冷媒
となって再び冷媒ポンプ23に導かれる。
In this case, liquid refrigerant is sent from the refrigerant pump 23 and flows through the expansion valve 13 to the evaporator 11. The liquid refrigerant flowing into the evaporator 11 takes heat from the indoor air to become a gas refrigerant. The gas refrigerant passes through the pipe 4 and the on-off valve 24 to bypass the compressor 21 and flows to the condenser 22, where it is cooled and condensed by outside air, becomes a liquid refrigerant, and is again guided to the refrigerant pump 23. .

【0036】こうして熱輸送サイクルが形成されること
により、冷却用空気が作成され、それが二重床2の床内
空間に供給される。圧縮機21の運転により冷房を行う
圧縮サイクルをp−h線図上に示したのが図2、冷媒ポ
ンプ23の運転により冷房を行う熱輸送サイクルをp−
h線図上に示したのが図3である。
By forming the heat transport cycle in this manner, cooling air is created and supplied to the space in the double bed 2. FIG. 2 shows a compression cycle for performing cooling by operation of the compressor 21 on the ph diagram. FIG. 2 shows a heat transport cycle for performing cooling by operation of the refrigerant pump 23.
FIG. 3 is shown on the h diagram.

【0037】圧縮サイクルでは、蒸発圧力に比べて凝縮
圧力が高くなっているが、熱輸送サイクルでは、蒸発圧
力に比べ凝縮圧力が低くなる。圧縮サイクルでは、外気
温度が高くなれば、この外気温度に応じて凝縮圧力を高
くして冷房運転を行えばよいが、熱輸送サイクルでは、
凝縮圧力が蒸発圧力より低くなければサイクルが成立し
ないので、この凝縮圧力で冷媒が凝縮できる外気温度の
時に熱輸送サイクルでの冷房運転が可能になる。
In the compression cycle, the condensing pressure is higher than the evaporating pressure, but in the heat transport cycle, the condensing pressure is lower than the evaporating pressure. In the compression cycle, if the outside air temperature increases, the condensing pressure may be increased according to the outside air temperature to perform the cooling operation, but in the heat transport cycle,
If the condensing pressure is not lower than the evaporating pressure, the cycle is not established, so that the cooling operation in the heat transport cycle becomes possible at the outside air temperature at which the refrigerant can condense at this condensing pressure.

【0038】すなわち、外気温度が高い場合には圧縮サ
イクルでの冷房を行い、外気温度が低下してきて、蒸発
圧力より低い凝縮圧力で冷凍サイクルが構成できたポイ
ントから熱輸送サイクルでの冷房運転に切り替えること
ができる。
That is, when the outside air temperature is high, cooling in the compression cycle is performed, and the outside air temperature is reduced, and from the point where the refrigeration cycle can be formed with a condensing pressure lower than the evaporation pressure, the cooling operation in the heat transport cycle is started. Can switch.

【0039】このように、圧縮サイクルの冷房運転およ
び熱輸送サイクルの冷房運転のいずれかを選択的に実行
できることにより、省エネルギ運転が可能となって年間
運転効率の向上が図れる。
As described above, since either the cooling operation in the compression cycle or the cooling operation in the heat transfer cycle can be selectively executed, energy-saving operation can be performed, and the annual operation efficiency can be improved.

【0040】実際に年間冷房した場合の外気温度と運転
効率(COP)との関係を図4に示す。図に示すよう
に、外気温度が10℃程度以下の範囲で運転効率が増大す
る。しかも、圧縮サイクルの冷房運転および熱輸送サイ
クルの冷房運転のいずれかを外気温度に基づき自動的に
選択し実行する構成であるから、外気温度を考慮しなが
ら年間を通じて必要かつ十分な冷房能力を確保すること
ができる。
FIG. 4 shows the relationship between the outside air temperature and the operating efficiency (COP) in the case of actual annual cooling. As shown in the figure, the operating efficiency increases in the range where the outside air temperature is about 10 ° C. or less. In addition, since either the cooling operation in the compression cycle or the cooling operation in the heat transfer cycle is automatically selected and executed based on the outside air temperature, necessary and sufficient cooling capacity is secured throughout the year while taking the outside air temperature into consideration. can do.

【0041】とくに、蒸気圧縮式冷却回路に冷媒ポンプ
23およびバイパス形成用の配管4,5や開閉弁24,
25を加えるだけの構成であり、冷媒自然循環サイクル
を組み込んだ従来の図7の装置に比べ、構成が簡単であ
り、冷媒配管の数も少なく、室内外機の設置条件(高さ
位置)に制約を受けることもない。
In particular, the refrigerant pump 23 and the pipes 4 and 5 for forming the bypass, the on-off valve 24,
25, the configuration is simpler than that of the conventional apparatus shown in FIG. 7 incorporating a refrigerant natural circulation cycle, the number of refrigerant pipes is small, and the installation conditions (height position) of indoor and outdoor units are different. There are no restrictions.

【0042】蒸発器側送風機12には一つの蒸発器11
のみ対応し、凝縮器側送風機26には一つの凝縮器22
のみ対応しているので、従来の図7の装置や図8の水冷
パッケージ空調機のように熱交換コイルを二重配置にし
たことによる送風機動力の増大という問題は生じない。
図8の水冷パッケージ空調機のように冷却水を用いない
ので、冷却水の水質管理等の問題もない。
The evaporator-side blower 12 has one evaporator 11
Only one condenser 22 is provided for the condenser-side blower 26.
Since only the heat exchange coils are supported, there is no problem that the power of the blower is increased due to the double arrangement of the heat exchange coils as in the conventional apparatus of FIG. 7 and the water-cooled package air conditioner of FIG.
Since the cooling water is not used unlike the water-cooled package air conditioner of FIG. 8, there is no problem of water quality management of the cooling water.

【0043】圧縮サイクルの運転開始用として第1所定
値を用意し、熱輸送サイクルの運転開始用として第2所
定値を用意し、両所定値に差を持たせたので、圧縮サイ
クルの冷房運転と熱輸送サイクルの冷房運転とが頻繁に
繰り返される事態を防ぐことができ、よって安定した運
転が可能となる。運転の安定化は、運転効率の増大につ
ながる。なお、この発明は上記実施例に限定されるもの
ではなく、要旨を変えない範囲で種々変形実施可能であ
る。
A first predetermined value is prepared for starting the compression cycle, and a second predetermined value is prepared for starting the heat transport cycle. The difference between the two predetermined values is provided. And the cooling operation of the heat transport cycle can be prevented from being frequently repeated, thereby enabling a stable operation. Operation stabilization leads to an increase in operation efficiency. The present invention is not limited to the above embodiment, and various modifications can be made without changing the gist.

【0044】[0044]

【発明の効果】以上述べたように、第1の発明の空冷パ
ッケージ空調機は、蒸気圧縮式冷却回路に冷媒ポンプお
よびバイパス形成用の配管や開閉弁を加え、圧縮サイク
ルの運転および熱輸送サイクルの運転のいずれかを選択
的に実行する構成としたので、簡単な構成で、少ない冷
媒配管で、室内外機の設置条件(高さ位置)に制約を受
けることなく、しかも送風機動力の増大や水質管理等の
問題を生じることなく、省エネルギ運転を可能として年
間運転効率の向上が図れる。
As described above, the air-cooled packaged air conditioner according to the first aspect of the present invention adds a refrigerant pump and a pipe for forming a bypass and an on-off valve to a vapor compression type cooling circuit, and operates the compression cycle and heat transport cycle. The operation is selectively performed in any of the above cases. Therefore, with a simple structure, with few refrigerant pipes, there is no restriction on the installation conditions (height position) of the indoor and outdoor units, and it is possible to increase the power of the blower. Energy-saving operation can be performed without problems such as water quality management, and annual operation efficiency can be improved.

【0045】第2の発明の空冷パッケージ空調機は、蒸
気圧縮式冷却回路に冷媒ポンプおよびバイパス形成用の
配管や開閉弁を加え、圧縮サイクルの冷房運転および熱
輸送サイクルの冷房運転のいずれかを外気温度に基づき
自動的に選択し実行する構成としたので、簡単な構成
で、少ない冷媒配管で、室内外機の設置条件(高さ位
置)に制約を受けることなく、しかも送風機動力の増大
や水質管理等の問題を生じることなく、外気温度を考慮
しながら年間を通じて必要かつ十分な冷房能力を確保し
つつ省エネルギ運転を可能として年間運転効率の向上が
図れる。
The air-cooled package air conditioner according to the second aspect of the present invention adds a refrigerant pump and a pipe for forming a bypass and an on-off valve to a vapor compression type cooling circuit, and performs either cooling operation in a compression cycle or cooling operation in a heat transport cycle. Since the configuration is automatically selected and executed based on the outside air temperature, the configuration is simple, the number of refrigerant pipes is small, and the installation conditions (height position) of the indoor and outdoor units are not restricted. Without the problem of water quality management and the like, energy saving operation can be performed while ensuring necessary and sufficient cooling capacity throughout the year while considering the outside air temperature, and the annual operation efficiency can be improved.

【0046】第3の発明の空冷パッケージ空調機は、第
2の発明において、圧縮サイクルの冷房運転を開始する
ための第1所定値を用意し、熱輸送サイクルの冷房運転
を開始するための第2所定値(<第1所定値)を用意し
たので、圧縮サイクルの冷房運転と熱輸送サイクルの冷
房運転との頻繁な繰り返しを防いで安定した運転が可能
である。
An air-cooled package air conditioner according to a third invention is the air-cooled package air conditioner according to the second invention, wherein a first predetermined value for starting a cooling operation in a compression cycle is prepared and a second predetermined value for starting a cooling operation in a heat transport cycle is provided. Since two predetermined values (<first predetermined value) are prepared, stable operation is possible by preventing frequent repetition of cooling operation in the compression cycle and cooling operation in the heat transport cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of one embodiment.

【図2】同実施例における圧縮サイクルをp−h線図上
に示した図。
FIG. 2 is a diagram showing a compression cycle in the embodiment on a ph diagram.

【図3】同実施例における熱輸送サイクルをp−h線図
上に示した図。
FIG. 3 is a diagram showing a heat transport cycle in the same example on a ph diagram.

【図4】同実施例を実際に年間冷房した場合の外気温度
と運転効率(COP)との関係を示す図。
FIG. 4 is a diagram showing the relationship between the outside air temperature and the operating efficiency (COP) when the embodiment is actually cooled annually.

【図5】圧縮機の吸入吐出圧力比をできるだけ小さくす
るようにした従来の空調機の外気温度とCOPとの関係
を図。
FIG. 5 is a diagram showing the relationship between the outside air temperature and the COP of a conventional air conditioner in which the suction-discharge pressure ratio of the compressor is made as small as possible.

【図6】圧縮機の吸入吐出圧力比をできるだけ小さくす
るようにした従来の空調機の冷凍サイクルをp−h線図
上に示した図。
FIG. 6 is a diagram showing, on a ph diagram, a refrigeration cycle of a conventional air conditioner in which the suction-discharge pressure ratio of the compressor is made as small as possible.

【図7】冷媒自然循環サイクルを用いた従来の空冷パッ
ケージ空調機の構成を示す図。
FIG. 7 is a diagram showing a configuration of a conventional air-cooled package air conditioner using a refrigerant natural circulation cycle.

【図8】従来の水冷パッケージ空調機の構成を示す図。FIG. 8 is a diagram showing a configuration of a conventional water-cooled package air conditioner.

【符号の説明】[Explanation of symbols]

2…二重床 3,3…冷媒配管 4…第1配管 5…第2配管 10…室内機 11…蒸発器 12…蒸発器側送風機 21…圧縮機 22…凝縮器 23…冷媒ポンプ 24…第1開閉弁 25…第2開閉弁 30…制御装置 31…外気温度センサ 2 ... Double bed 3, 3 ... Refrigerant pipe 4 ... First pipe 5 ... Second pipe 10 ... Indoor unit 11 ... Evaporator 12 ... Evaporator side blower 21 ... Compressor 22 ... Condenser 23 ... Refrigerant pump 24 ... No. 1 on-off valve 25 ... second on-off valve 30 ... control device 31 ... outside air temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藁谷 至誠 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 千葉 和夫 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigenori Waratani 1-4-3, Roppongi, Minato-ku, Tokyo Inside NTT Facilities Co., Ltd. (72) Inventor Kazuo Chiba 1-4-4 Roppongi, Minato-ku, Tokyo No. 33 Inside NTT Facilities

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、膨張弁、蒸発器を配管
接続して冷媒を循環させる蒸気圧縮式冷却回路と、 前記凝縮器に風を送る凝縮器側送風機と、 前記蒸発器に風を送る蒸発器側送風機と、 前記凝縮器と膨張弁との間の配管に設けられた冷媒ポン
プと、 前記圧縮機と並列に接続された冷媒バイパス用の第1配
管と、 この第1配管に設けられた第1開閉弁と、 前記冷媒ポンプと並列に接続された冷媒バイパス用の第
2配管と、 この第2配管に設けられた第2開閉弁と、 前記圧縮機を運転して前記冷媒ポンプを停止し且つ前記
第1開閉弁を閉じて前記第2開閉弁を開き、圧縮サイク
ルの運転を実行する制御手段と、 前記圧縮機を停止して前記冷媒ポンプを運転し且つ前記
第1開閉弁を開いて前記第2開閉弁を閉じ、熱輸送サイ
クルの運転を実行する制御手段と、 を具備することを特徴とする空冷パッケージ空調機。
1. A vapor compression cooling circuit for connecting a compressor, a condenser, an expansion valve, and an evaporator with piping to circulate a refrigerant, a condenser-side blower for sending air to the condenser, and a wind for the evaporator. An evaporator-side blower, a refrigerant pump provided in a pipe between the condenser and an expansion valve, a first pipe for a refrigerant bypass connected in parallel with the compressor, and a first pipe. A first on-off valve provided, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, a second on-off valve provided on the second pipe, and the refrigerant operated by operating the compressor. Control means for stopping a pump and closing the first on-off valve and opening the second on-off valve to execute a compression cycle operation; stopping the compressor to operate the refrigerant pump and performing the first on-off operation Open the valve and close the second on-off valve to operate the heat transport cycle. An air-cooled package air conditioner, comprising: a control unit that executes.
【請求項2】 圧縮機、凝縮器、膨張弁、蒸発器を配管
接続して冷媒を循環させる蒸気圧縮式冷却回路と、 前記凝縮器に風を送る凝縮器側送風機と、 前記蒸発器に風を送る蒸発器側送風機と、 前記凝縮器と膨張弁との間の配管に設けられた冷媒ポン
プと、 前記圧縮機と並列に接続された冷媒バイパス用の第1配
管と、 この第1配管に設けられた第1開閉弁と、 前記冷媒ポンプと並列に接続された冷媒バイパス用の第
2配管と、 この第2配管に設けられた第2開閉弁と、 外気温度を検知する温度検知手段と、 この温度検知手段の検知温度が所定値以上のとき、前記
圧縮機を運転して前記冷媒ポンプを停止し且つ前記第1
開閉弁を閉じて前記第2開閉弁を開き、圧縮サイクルの
冷房運転を実行する制御手段と、 前記温度検知手段の検知温度が所定値以下のとき、前記
圧縮機を停止して前記冷媒ポンプを運転し且つ前記第1
開閉弁を開いて前記第2開閉弁を閉じ、熱輸送サイクル
の冷房運転を実行する制御手段と、 を具備することを特徴とする空冷パッケージ空調機。
2. A vapor compression cooling circuit for connecting a compressor, a condenser, an expansion valve, and an evaporator with piping to circulate refrigerant, a condenser-side blower for sending air to the condenser, and a wind for the evaporator. An evaporator-side blower, a refrigerant pump provided in a pipe between the condenser and an expansion valve, a first pipe for a refrigerant bypass connected in parallel with the compressor, and a first pipe. A first on-off valve provided, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, a second on-off valve provided on the second pipe, and a temperature detecting means for detecting an outside air temperature. When the temperature detected by the temperature detecting means is equal to or higher than a predetermined value, the compressor is operated to stop the refrigerant pump, and
Control means for closing the on-off valve and opening the second on-off valve to perform a cooling operation in a compression cycle; and when the temperature detected by the temperature detecting means is equal to or lower than a predetermined value, the compressor is stopped to stop the refrigerant pump. Driving and said first
Control means for opening the on-off valve, closing the second on-off valve, and executing the cooling operation of the heat transport cycle.
【請求項3】 圧縮機、凝縮器、膨張弁、蒸発器を配管
接続して冷媒を循環させる蒸気圧縮式冷却回路と、 前記凝縮器に風を送る凝縮器側送風機と、 前記蒸発器に風を送る蒸発器側送風機と、 前記凝縮器と膨張弁との間の配管に設けられた冷媒ポン
プと、 前記圧縮機と並列に接続された冷媒バイパス用の第1配
管と、 この第1配管に設けられた第1開閉弁と、 前記冷媒ポンプと並列に接続された冷媒バイパス用の第
2配管と、 この第2配管に設けられた第2開閉弁と、 外気温度を検知する温度検知手段と、 この温度検知手段の検知温度が第1所定値以上になる
と、前記圧縮機を運転して前記冷媒ポンプを停止し且つ
前記第1開閉弁を閉じて前記第2開閉弁を開き、圧縮サ
イクルの冷房運転を実行する制御手段と、 前記温度検知手段の検知温度が第2所定値(<第1所定
値)以下になると、前記圧縮機を停止して前記冷媒ポン
プを運転し且つ前記第1開閉弁を開いて前記第2開閉弁
を閉じ、熱輸送サイクルの冷房運転を実行する制御手段
と、 を具備することを特徴とする空冷パッケージ空調機。
3. A vapor compression cooling circuit for circulating a refrigerant by connecting a compressor, a condenser, an expansion valve, and an evaporator with piping, a condenser-side blower for sending air to the condenser, and a wind for the evaporator. An evaporator-side blower, a refrigerant pump provided in a pipe between the condenser and an expansion valve, a first pipe for a refrigerant bypass connected in parallel with the compressor, and a first pipe. A first on-off valve provided, a second pipe for refrigerant bypass connected in parallel with the refrigerant pump, a second on-off valve provided on the second pipe, and a temperature detecting means for detecting an outside air temperature. When the temperature detected by the temperature detecting means is equal to or higher than a first predetermined value, the compressor is operated to stop the refrigerant pump, close the first opening / closing valve, open the second opening / closing valve, and start the compression cycle. Control means for executing a cooling operation; When the temperature becomes equal to or lower than a second predetermined value (<first predetermined value), the compressor is stopped, the refrigerant pump is operated, the first on-off valve is opened, and the second on-off valve is closed, and the heat transport cycle is stopped. An air-cooled package air conditioner, comprising: a control unit that executes the cooling operation of the air conditioner.
JP8236464A 1996-09-06 1996-09-06 Air cooled packager-conditioner Pending JPH1082566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8236464A JPH1082566A (en) 1996-09-06 1996-09-06 Air cooled packager-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8236464A JPH1082566A (en) 1996-09-06 1996-09-06 Air cooled packager-conditioner

Publications (1)

Publication Number Publication Date
JPH1082566A true JPH1082566A (en) 1998-03-31

Family

ID=17001139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8236464A Pending JPH1082566A (en) 1996-09-06 1996-09-06 Air cooled packager-conditioner

Country Status (1)

Country Link
JP (1) JPH1082566A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274779A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2000274786A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2000274774A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2002235959A (en) * 2001-02-08 2002-08-23 Mitsubishi Electric Corp Air conditioning apparatus for computer room
JP2003148878A (en) * 2001-11-08 2003-05-21 Ebara Shinwa Ltd Closed type cooling tower for free cooling
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
CN100383388C (en) * 2003-07-30 2008-04-23 株式会社神户制钢所 Compressor
JP2009525456A (en) * 2006-02-07 2009-07-09 チャンジョ 21 シーオー.,エルティディ. Cooling device for communication equipment and control method thereof
WO2010094227A1 (en) * 2009-02-19 2010-08-26 艾默生网络能源有限公司 Air conditioner
JP2013076491A (en) * 2011-09-30 2013-04-25 Hitachi Appliances Inc Air conditioner
JP2016017726A (en) * 2014-07-11 2016-02-01 株式会社大気社 Compressor/pump changeover type cooling apparatus
JP2016041987A (en) * 2014-08-15 2016-03-31 株式会社大気社 Compressor/pump switchable cooling device
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
WO2017051472A1 (en) * 2015-09-25 2017-03-30 三菱電機株式会社 Cooling device
JPWO2016194145A1 (en) * 2015-06-02 2018-01-25 三菱電機株式会社 Air conditioner
CN107763889A (en) * 2017-11-21 2018-03-06 宁波奥克斯电气股份有限公司 A kind of multi-online air-conditioning system and its control method
JP2018521288A (en) * 2015-06-10 2018-08-02 リーバート・コーポレイシヨン Cooling system with direct expansion and pumping refrigerant saving cooling
US11528829B2 (en) * 2019-07-01 2022-12-13 Beihang University Overall efficient heat dissipation system for high power density cabinet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100552A (en) * 1978-01-25 1979-08-08 Toshiba Corp Air conditioner
JPS62129655A (en) * 1985-12-02 1987-06-11 三機工業株式会社 Package for air-conditioning
JPH01285745A (en) * 1988-05-11 1989-11-16 Mitsubishi Electric Corp Heat pump type heat controller
JPH08114347A (en) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd Free cooling control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100552A (en) * 1978-01-25 1979-08-08 Toshiba Corp Air conditioner
JPS62129655A (en) * 1985-12-02 1987-06-11 三機工業株式会社 Package for air-conditioning
JPH01285745A (en) * 1988-05-11 1989-11-16 Mitsubishi Electric Corp Heat pump type heat controller
JPH08114347A (en) * 1994-10-18 1996-05-07 Yamatake Honeywell Co Ltd Free cooling control device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274786A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2000274774A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2000274779A (en) * 1999-03-19 2000-10-06 Ntt Power & Building Facilities Inc Air conditioner
JP2002235959A (en) * 2001-02-08 2002-08-23 Mitsubishi Electric Corp Air conditioning apparatus for computer room
JP2003148878A (en) * 2001-11-08 2003-05-21 Ebara Shinwa Ltd Closed type cooling tower for free cooling
CN100383388C (en) * 2003-07-30 2008-04-23 株式会社神户制钢所 Compressor
JP2005199772A (en) * 2004-01-13 2005-07-28 Denso Corp Air conditioner for vehicle
JP2009525456A (en) * 2006-02-07 2009-07-09 チャンジョ 21 シーオー.,エルティディ. Cooling device for communication equipment and control method thereof
JP4740344B2 (en) * 2006-02-07 2011-08-03 チャンジョ 21 シーオー.,エルティディ. Cooling device for communication equipment and control method thereof
US8650898B2 (en) 2009-02-19 2014-02-18 Emerson Network Power Co., Ltd. Air conditioner
WO2010094227A1 (en) * 2009-02-19 2010-08-26 艾默生网络能源有限公司 Air conditioner
JP2013076491A (en) * 2011-09-30 2013-04-25 Hitachi Appliances Inc Air conditioner
JP2016017726A (en) * 2014-07-11 2016-02-01 株式会社大気社 Compressor/pump changeover type cooling apparatus
JP2016041987A (en) * 2014-08-15 2016-03-31 株式会社大気社 Compressor/pump switchable cooling device
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
JPWO2016194145A1 (en) * 2015-06-02 2018-01-25 三菱電機株式会社 Air conditioner
JP2018521288A (en) * 2015-06-10 2018-08-02 リーバート・コーポレイシヨン Cooling system with direct expansion and pumping refrigerant saving cooling
US10465963B2 (en) 2015-06-10 2019-11-05 Vertiv Corporation Cooling system with direct expansion and pumped refrigerant economization cooling
WO2017051472A1 (en) * 2015-09-25 2017-03-30 三菱電機株式会社 Cooling device
CN107763889A (en) * 2017-11-21 2018-03-06 宁波奥克斯电气股份有限公司 A kind of multi-online air-conditioning system and its control method
US11528829B2 (en) * 2019-07-01 2022-12-13 Beihang University Overall efficient heat dissipation system for high power density cabinet

Similar Documents

Publication Publication Date Title
JPH1082566A (en) Air cooled packager-conditioner
JP4553964B2 (en) Cooling device for communication equipment and control method thereof
EP0747643A1 (en) Two-dimensional refrigerating plant
JP2005512011A (en) Energy-saving heat pump system for hot water supply and air conditioning
JP2006292313A (en) Geothermal unit
KR20230053495A (en) Floor Placement Type Packaged Heat Pump Device with Heat Recovery Ventilation Unit
JP2000266368A (en) Air-conditioner system
CN1156662C (en) Heat pump system
KR20100046365A (en) Heat pump system
CN111649424A (en) Heat pipe energy-saving type base station air conditioning unit
KR102536079B1 (en) Heat recovery type complex chiller system and operation method thereof
JP4074422B2 (en) Air conditioner and its control method
KR20100005736U (en) Heat pump system
JP2001235237A (en) Refrigerating system
JP2538210B2 (en) Engine driven heat pump device
JP2003004334A (en) Waste heat recovery air conditioner
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
KR100383852B1 (en) Heat pump system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
KR100383853B1 (en) Heat pump system
JP2004116930A (en) Gas heat pump type air conditioner
CN108036545B (en) Cold and hot combined heat pump drying space refrigerating system
KR20240072725A (en) Air conditioning device
JP2877278B2 (en) Air conditioner
JPS5911341Y2 (en) heat pump equipment