WO2022244114A1 - エアロゾル発生体および香味吸引器 - Google Patents

エアロゾル発生体および香味吸引器 Download PDF

Info

Publication number
WO2022244114A1
WO2022244114A1 PCT/JP2021/018848 JP2021018848W WO2022244114A1 WO 2022244114 A1 WO2022244114 A1 WO 2022244114A1 JP 2021018848 W JP2021018848 W JP 2021018848W WO 2022244114 A1 WO2022244114 A1 WO 2022244114A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
aerosol generator
absorbent body
absorber
heater
Prior art date
Application number
PCT/JP2021/018848
Other languages
English (en)
French (fr)
Inventor
敦也 白井
学 竹内
康介 太田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN202180098125.0A priority Critical patent/CN117279530A/zh
Priority to KR1020237035075A priority patent/KR20230157438A/ko
Priority to JP2023522055A priority patent/JPWO2022244114A1/ja
Priority to PCT/JP2021/018848 priority patent/WO2022244114A1/ja
Priority to EP21940731.9A priority patent/EP4342315A1/en
Publication of WO2022244114A1 publication Critical patent/WO2022244114A1/ja
Priority to US18/484,004 priority patent/US20240041106A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/34Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a carbocyclic ring other than a six-membered aromatic ring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention relates to an aerosol generator and a flavor inhaler.
  • Non-combustion heated flavor inhalers are known that provide tobacco flavor to a user by heating tobacco flavor sources, including tobacco materials and aerosol sources, without burning them.
  • tobacco flavor sources including tobacco materials and aerosol sources
  • US Pat. No. 6,200,000 discloses a non-combustion heated flavor inhaler, wherein the tobacco flavor source consists of multiple sections and heaters selectively and individually heat particular sections. This allows the flavor inhaler of US Pat. No. 4,500,003 to heat new sections that have not yet been heated after multiple inhalations.
  • An object of the present invention is to provide an aerosol generator capable of continuously releasing a sufficient amount of aerosol, and a flavor inhaler containing such an aerosol generator.
  • a liquid first aerosol source and a first absorbent body absorbing said first aerosol source comprising an aerosol source reservoir containing tobacco material;
  • a liquid second aerosol source and a second absorbent body absorbing said second aerosol source said second absorbent body comprising tobacco material and comprising an aerosol generating part in contact with said first absorbent body.
  • An aerosol generator is provided wherein the speed at which the second absorbent body wicks the first aerosol source is higher compared to the speed at which the first absorbent body wicks the first aerosol source.
  • At least one of the first absorbent body and the second absorbent body is one or more of sheet tobacco, tobacco granules, and a porous mixture containing polysaccharide and tobacco powder.
  • the aerosol generator according to any one of the aspects above, wherein the first absorbent body and the second absorbent body are integrally formed.
  • the aerosol generator according to any of the aspects above, wherein the interface between the first absorbent body and the second absorbent body includes a concave portion or a convex portion.
  • an aerosol generator according to any one of the aspects above, further comprising a heater for heating the aerosol generating part.
  • the first absorbent body has a shape extending in one direction, and the first absorbent body and the second absorbent body are arranged in the longitudinal direction of the first absorbent body.
  • an aerosol generator according to any of the above aspects.
  • the interface between the first absorbent body and the second absorbent body has a central portion protruding toward the second absorbent body. provided.
  • the tubular body containing the aerosol source storage part and the aerosol generation part is further provided, and the aerosol source storage part and the aerosol generation part are separated from each other by the length of the tubular body.
  • an aerosol generator according to any of the above aspects arranged vertically.
  • the aerosol generator according to the above aspect wherein the tubular body has an opening closer to the aerosol generating part and has a smaller diameter than an inner diameter at the position of the aerosol source storage part. is provided.
  • the aerosol generator according to any of the above aspects, further comprising a heater having a heating surface facing the first absorbent with the second absorbent interposed therebetween. be done.
  • the heater has one or more grooves provided on the heating surface, one or more through holes communicating with the one or more grooves, or both of them.
  • An aerosol generator according to the above aspect is provided.
  • the second absorbent body tapers towards the heating surface, and the heating surface has the length of the first absorbent body compared to the first absorbent body.
  • An aerosol generator according to any of the above aspects is provided having a smaller dimension in a direction perpendicular to the longitudinal direction.
  • the aerosol generating apparatus according to any of the above aspects further comprises a heater having a linear heating portion facing the first absorbent body with the second absorbent body interposed therebetween. body is provided.
  • the surface of the second absorbent body facing the heating section is flat in a cross section parallel to the longitudinal direction of the first absorbent body and the longitudinal direction of the heating section.
  • an aerosol generator according to the side surface, wherein a central portion protrudes in a cross section parallel to the length direction of the first absorbent body and perpendicular to the length direction of the heating part.
  • a cylindrical body containing the aerosol source storage part is further provided, and the cylindrical body has an opening closer to the aerosol generating part than an inner diameter at a position away from the opening.
  • an aerosol generator according to any of the above sides, wherein the aerosol generator is smaller than the aerosol generator and the aerosol generator protrudes outside the tubular body at the location of the opening.
  • the aerosol generator according to the aspect described above, further comprising a coil-shaped heater wound around the aerosol generating part.
  • the aerosol generator according to any of the above aspects, wherein the first absorbent body is columnar, and the second absorbent body surrounds the first absorbent body.
  • the aerosol generator according to the aspect described above, further comprising a linear heater surrounding the first absorbent with the second absorbent therebetween.
  • the aerosol generator according to the aspect described above, further comprising a cylindrical heater surrounding the first absorbent with the second absorbent therebetween.
  • the inner surface of the heater includes one or more grooves each extending from one opening of the heater to the other opening of the heater. body is provided.
  • an aerosol generator according to any of the aspects above; a power source that supplies power to the heater;
  • a flavor inhaler is provided having a mouthpiece at one end and comprising a case containing the aerosol generator and the power source.
  • the flavor inhaler according to the above aspect, wherein the aerosol generator is positioned between the power source and the mouthpiece.
  • the case has an air supply port at a position between the power source and the aerosol generator, and the aerosol generator and the case are arranged between the A flavor inhaler according to the above aspect is provided defining a flow path from the inlet to the mouthpiece.
  • an aerosol generator capable of continuously releasing a sufficient amount of aerosol, and a flavor inhaler containing such an aerosol generator.
  • FIG. 2 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 1; 3 is a top view of a heater included in the aerosol generator shown in FIG. 2; FIG. Sectional drawing which shows roughly the aerosol generator which concerns on a 1st modification. Sectional drawing which shows roughly the flavor inhaler which concerns on 2nd Embodiment of this invention.
  • FIG. 6 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 5; Sectional drawing which shows roughly the flavor inhaler which concerns on 3rd Embodiment of this invention.
  • FIG. 8 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of Fig. 7; Another cross-sectional view of the aerosol generator shown in FIG. Sectional drawing which shows roughly the flavor inhaler which concerns on 4th Embodiment of this invention.
  • FIG. 11 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 10; Sectional drawing which shows roughly the aerosol generator which concerns on a 2nd modification. Sectional drawing which shows roughly the aerosol generator which concerns on a 3rd modification. Sectional drawing which shows roughly the flavor inhaler which concerns on 5th Embodiment of this invention.
  • Fig. 15 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of Fig.
  • FIG. 14; FIG. 15 is a top view of the aerosol generator shown in FIG. 15; Sectional drawing which shows roughly the flavor inhaler which concerns on 6th Embodiment of this invention.
  • FIG. 18 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 17; FIG. 18 is a top view of the aerosol generator shown in FIG. 18; Sectional drawing which shows roughly the aerosol generator which concerns on a 4th modification.
  • FIG. 21 is a top view of the aerosol generator shown in FIG. 20; Sectional drawing which shows roughly the flavor inhaler which concerns on 7th Embodiment of this invention.
  • 23 is another cross-sectional view of the flavor inhaler shown in FIG. 22; FIG. Sectional drawing which shows roughly the flavor inhaler which concerns on another modification. Sectional drawing which shows roughly the flavor inhaler which concerns on further another modification.
  • FIG. 1 is a sectional view schematically showing a flavor inhaler according to a first embodiment of the present invention.
  • 2 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 1;
  • FIG. 3 is a top view of a heater included in the aerosol generator shown in FIG. 2;
  • FIG. 1 is a sectional view schematically showing a flavor inhaler according to a first embodiment of the present invention.
  • 2 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 1
  • FIG. 3 is a top view of a heater included in the aerosol generator shown in FIG. 2;
  • FIG. 1 is a sectional view schematically showing a flavor inhaler according to a first embodiment of the present invention.
  • 2 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 1
  • FIG. 3 is a top view of a heater included in the aerosol generator shown in FIG. 2;
  • the flavor inhaler 1 shown in FIG. 1 is an instrument for inhaling flavor without burning.
  • the flavor inhaler 1 has a shape extending in one direction.
  • the Z direction is the length direction of the flavor inhaler 1
  • the X direction is the direction perpendicular to the Z direction
  • the Y direction is the direction perpendicular to the X and Z directions.
  • the flavor inhaler 1 includes a case 2, an aerosol generator 3, a power supply section 4, an operation section (not shown), and a notification section (not shown).
  • Case 2 includes a first case portion 21 and a second case portion 22 .
  • the first case portion 21 has a cylindrical shape with a bottom.
  • the first case portion 21 is provided with one or more air supply ports H1.
  • a side wall of the first case portion 21 is provided with a plurality of air supply ports H1 in the vicinity of its opening.
  • the second case part 22 has a cylindrical shape with a bottom.
  • the diameter of the opening side of the second case portion 22 is substantially equal to that of the first case portion 21 .
  • the second case portion 22 tapers from the opening side toward the bottom side.
  • the portion near the bottom of the second case portion 22 has a smaller diameter than the other portions of the second case portion 22 .
  • a portion near the bottom of the second case portion 22 forms a mouthpiece 22M.
  • the mouthpiece 22M is provided with one or more aerosol outlets H2.
  • one aerosol outlet H2 is provided at the bottom of the second case portion 22 .
  • the mouthpiece 22 ⁇ /b>M may be provided integrally with the other portion of the second case portion 22 or may be detachable from the other portion of the second case portion 22 .
  • the second case part 22 is attachable to and detachable from the power supply unit including the first case part 21 .
  • the power supply unit will be explained later.
  • the openings of the first case part 21 and the second case part 22 are butted against each other. Thereby, the first case portion 21 and the second case portion 22 form an internal space in the case 2 that communicates with the external space via the air supply port H1 and the aerosol discharge port H2.
  • the operating portion is installed in the first case portion 21 .
  • the operation part may be installed in the second case part 22 .
  • the operation unit issues, for example, a command related to start or stop to the control unit described later according to the user's operation.
  • the operating unit includes, for example, a button-type switch or a touch panel.
  • the notification section is installed in the first case section 21 .
  • the notification section may be installed in the second case section 22 .
  • the notification unit notifies the user of the state of the flavor inhaler 1. For example, when the voltage of the secondary battery, which will be described later, drops and charging becomes necessary, when the secondary battery is fully charged, and when the number of puff operations or the accumulated power supply time to the discharge terminal, which will be described later, is specified. is reached, the fact is notified to the user.
  • the notification unit includes, for example, a light-emitting element such as a light-emitting diode.
  • the notification unit may include a vibrating element or a sound output element.
  • the notification unit may include a display device such as a liquid crystal display device and an organic electroluminescence display device.
  • the notification unit may include two or more of a light emitting element, a vibration element, a sound output element, and a display device.
  • the power supply section 4 is installed inside the first case section 21 .
  • the power supply section 4, the operation section, and the first case section 21 constitute a power supply unit.
  • the power supply unit 4 includes a power supply, a discharge terminal, a charger, various sensors, and a control unit.
  • the power supply includes secondary batteries such as lithium-ion secondary batteries.
  • the power supply further includes a power supply circuit that supplies power from the secondary battery to the discharge terminal and the like.
  • the discharge terminal is installed between the secondary battery and the opening of the first case portion 21 .
  • the charger charges the secondary battery with power supplied from an external power supply.
  • the sensors are, for example, an intake sensor that detects the user's puff (inhale) action, a voltage sensor that measures the voltage of the secondary battery, and a temperature sensor that detects the temperature.
  • An intake sensor is, for example, a condenser microphone or a pressure sensor.
  • the control unit includes a processing unit and a storage unit.
  • the processing unit includes an integrated circuit (IC).
  • Storage includes memory, such as volatile memory, non-volatile memory, or both.
  • An operation unit, a notification unit, a power supply circuit, and various sensors are connected to the control unit.
  • the control unit controls the operation of the notification unit so that the notification unit notifies the user that it is in the activated state.
  • control unit when the control unit receives an activation command from the operation unit, it controls the operation of the power supply circuit according to the output from the intake sensor and the temperature sensor. For example, the control unit causes the power supply to start supplying power to the discharge terminal when the intake sensor detects the start of the user's puffing action, and the power supply when the intake sensor detects the interruption or end of the user's puffing action. controls the operation of the power supply circuit so as to stop supplying power to the discharge terminal. Also, for example, the control unit controls the amount of power supplied from the power supply to the discharge terminal during the puff operation, according to the temperature detected by the temperature sensor.
  • control unit counts the number of puffing operations performed by the user using the output of the intake sensor, or obtains the cumulative time during which the power supply circuit supplies power to the discharge terminal. Then, when the number of puffing operations or the cumulative power supply time reaches a specified value, the control unit controls the operation of the notification unit so that the notification unit notifies the user of this fact.
  • control unit determines that the secondary battery needs to be charged.
  • control unit controls the operation of the notification unit so that the notification unit notifies the user of this fact.
  • the control unit controls the operation of the notification unit so that the notification unit notifies the user that charging is in progress. For example, when the voltage detected by the voltage sensor exceeds the second voltage, the control unit determines that the secondary battery is fully charged. When determining that the secondary battery is fully charged, the control unit controls the operation of the notification unit so that the notification unit notifies the user of this fact.
  • the aerosol generator 3 is installed inside the second case portion 22 .
  • the aerosol generator 3 is attachable/detachable to/from the second case portion 22, for example.
  • the aerosol generator 3 is a replaceable cartridge, and a support member for detachably supporting the aerosol generator 3 is installed inside the case 2 .
  • a combination of the aerosol generator 3 and the second case portion 22 may constitute a replaceable cartridge.
  • the aerosol generator 3 is positioned between the power supply and the mouthpiece 22M. Between the aerosol generator 3 and the case 2, there is formed a channel extending from the air supply port H1 to the mouthpiece 22M.
  • the dashed line F represents the flow of air or aerosol in the flow path.
  • the aerosol generator 3 includes an aerosol source reservoir 31, an aerosol generator 32, a tubular body 33, and a heater 34, as shown in FIGS.
  • the aerosol generating section 32 is heated by a heater 34 and serves to atomize the liquid aerosol source contained in the aerosol generating section 32 to generate aerosol.
  • the aerosol source storage unit 31 plays a role of supplying the liquid aerosol source contained in the aerosol source storage unit 31 to the aerosol generation unit 32 .
  • Aerosol source reservoir 31 is preferably not heated by heater 34 . That is, it is preferable that the liquid aerosol source contained in the aerosol source storage unit 31 is not atomized by heating.
  • the supply of the aerosol source from the aerosol source storage unit 31 to the aerosol generation unit 32 is, for example, the supply of ink of a batting type pen (that is, the supply of ink from the batting containing ink to the pen tip in contact with the batting). It can occur on the basis of the same principle, namely capillary action.
  • the aerosol source storage unit 31 includes a liquid first aerosol source and a first absorbent that has absorbed the first aerosol source.
  • liquid means liquid in the operating temperature range of the flavor inhaler 1 .
  • the operating temperature range of the flavor inhaler 1 is, for example, -5 to 40°C.
  • the first aerosol source is absorbed and held by the first absorber.
  • the first aerosol source can be an aerosol source commonly used in non-combustion heated flavor inhalers.
  • Polyhydric alcohols for example, can be used as the first aerosol source. Examples of polyhydric alcohols include glycerin, propylene glycol, 1,3-propanediol, 1,3-butanediol, or any combination thereof.
  • the first absorbent body is a molded body.
  • the first absorbent body has a shape extending in one direction.
  • the first absorbent body has a columnar shape whose height direction is equal to the Z direction.
  • the first absorbent body has a substantially columnar shape with a height direction equal to the Z direction and one bottom surface protruding conically.
  • the first absorber contains tobacco material.
  • the tobacco material is preferably a molded article (hereinafter also referred to as tobacco molding) obtained by molding raw materials including leaf tobacco into a specific shape.
  • tobacco molding a molded article obtained by molding raw materials including leaf tobacco into a specific shape.
  • “Leaf tobacco” is produced by drying the harvested tobacco leaves at a farm, then maturing them at a raw material factory for one to several years, and then subjecting them to various processing such as blending and chopping at a manufacturing factory, before being processed into heated flavor inhalers. Refers to dried tobacco leaves ready to be incorporated into flavor inhalers such as vessels.
  • the first absorbent body preferably contains tobacco moldings.
  • the first absorbent more preferably contains one or more of sheet tobacco, tobacco granules, and a porous mixture containing polysaccharide and tobacco powder.
  • Sheet tobacco refers to a molded product obtained by molding raw materials including leaf tobacco into a sheet shape.
  • Sheet tobacco can be formed by known methods such as a papermaking method, a casting method, and a rolling method.
  • the tobacco molding is called “paper sheet tobacco”
  • the tobacco molding is called “slurry sheet tobacco”
  • Tobacco moldings are called “rolled sheet tobacco”.
  • the first absorbent body may be a laminate of sheet tobacco.
  • the first absorbent body may be a spirally wound sheet tobacco, or a bellows-folded sheet tobacco.
  • the first absorbent body may be one obtained by cutting sheet tobacco into fibers and bundling the obtained fibrous molded bodies (that is, a bundle of fibrous molded bodies).
  • Tobacco granules refers to molded products obtained by molding raw materials containing leaf tobacco into granules. Tobacco granules can be formed by known methods such as extrusion granulation, fluid bed granulation, and spray drying.
  • Porous mixture containing polysaccharide and tobacco powder refers to a porous material mainly composed of polysaccharide and tobacco powder incorporated therein. Therefore, such a porous body can also be called a "polysaccharide-based porous body containing tobacco powder".
  • Such porous bodies can be produced using known techniques for producing porous bodies mainly composed of polysaccharides (see, for example, WO2011/117752).
  • the polysaccharide-based porous material containing tobacco powder is prepared by supplying an inert gas to a polysaccharide aqueous solution containing tobacco powder to prepare an inert gas-supplied liquid, and It can be made by depressurizing the liquid to form a foam and drying the foam by vacuum drying.
  • polysaccharides for example, agar, gellan gum, pectin and the like can be used.
  • inert gas for example CO 2 gas can be used.
  • such a porous body can be produced as follows.
  • tobacco powder was prepared. Specifically, cut tobacco portions of cigarettes (Mobius Superlight (Japan Tobacco Inc.)) were taken out and crushed with a mill to select those with a sieve mesh size of 500 ⁇ m or less.
  • (2) 4.4 g of powdered agar (Wako Pure Chemical Industries, special grade reagent) was dissolved in 375 mL of water and heated to 90°C.
  • 33.1 g of tobacco powder was added to an aqueous agar solution (90° C.) and dispersed.
  • An aqueous agar solution containing tobacco powder has a viscosity of 0.02 [Pa ⁇ s] when placed under conditions of a temperature of 45° C. and atmospheric pressure.
  • An aqueous agar solution (90°C) containing tobacco powder was cooled to 60°C.
  • An aqueous agar solution (60° C.) containing tobacco powder was placed in a sealed container, and CO 2 gas was supplied to the aqueous agar solution. CO 2 gas was supplied by bubbling CO 2 gas into the agar aqueous solution using Espuma Sparkling (Nippon Tanzan Gas Co., Ltd.). The amount of CO 2 gas supplied was 16 g and the partial pressure of CO 2 gas was 1124 kPa.
  • the liquid gassed with CO 2 was shaken for 7 minutes.
  • the sealed container was opened, and the resulting mousse-like foam was poured into a pad.
  • the pressure difference before and after opening the sealed container was 1124 kPa.
  • the mousse-like foam had a temperature of 45° C. immediately after the closed container was opened.
  • the foam was allowed to stand for 30 minutes or more to gel, and then the gel-like foam was left to stand until it returned to room temperature (25°C).
  • the gel-like foam was placed in a freezer and frozen, and then dried until the water content reached about 0 (about 3 days). Drying was performed under reduced pressure of 0.61 kPa or less. As a result, a "polysaccharide-based porous material containing tobacco powder" was produced.
  • the tobacco material may contain additional ingredients in addition to leaf tobacco and tobacco powder.
  • the additional component is not particularly limited, and may be a base material (framework material) for forming the tobacco molded article, or a material that enhances the ability of the first absorbent to absorb the first aerosol source. It may also be an additive such as a fragrance or a preservative.
  • polysaccharides such as agar, gellan gum, and pectin can be used as the base material (skeletal material) for molding tobacco molded articles.
  • Materials that enhance the ability of the primary absorbent to absorb the primary aerosol source include, for example, absorbent materials such as cotton, pulp, and fiberglass. Additives used in existing flavor inhalers can be used.
  • the first absorbent body may contain additional components in addition to the tobacco material (preferably tobacco molded body).
  • the additional component is not particularly limited and may be the absorbent material described above or the additive described above.
  • the first absorbent body and the first aerosol source may be mixed after the first absorbent body is prepared, or the first aerosol source may be mixed during the preparation of the first absorbent body. It may be done by incorporating.
  • the first absorbent is sheet tobacco or tobacco granules
  • it is obtained by extracting leaf tobacco with hot water, separating the tobacco extract and tobacco residue, and forming the tobacco residue into a sheet or granule.
  • It can be prepared by adding a tobacco extract to the molded article.
  • the first absorbent body and the first aerosol source may be mixed by adding the first aerosol source after adding the tobacco extract to the molded article, or by adding the tobacco extract to the molded article. may be added to the compact by adding a mixture of the tobacco extract and the first aerosol source instead of adding the above. The latter is preferable because the tobacco flavor component is easily eluted into the first aerosol source.
  • the first absorbent body is a polysaccharide-based porous body containing tobacco powder
  • mixing the first absorbent body with the first aerosol source incorporates the tobacco powder into the raw material of the polysaccharide-based porous body.
  • the mixing of the first absorbent body and the first aerosol source involves extracting tobacco powder with hot water, dividing it into tobacco extract and tobacco residue, and incorporating the tobacco residue into the raw material to form a polysaccharide-based porous material. It may be carried out by preparing a body and adding a mixture of the tobacco extract and the first aerosol source to the polysaccharide-based porous body. The latter is preferable because the tobacco flavor component is easily eluted into the first aerosol source.
  • the ratio M AS 1/M Ab 1 between the mass M AS 1 of the first aerosol source and the mass M Ab 1 of the first absorber is, for example, 2-20, preferably 5-15.
  • the aerosol generator 32 is arranged in the Z direction with respect to the aerosol source storage 31 .
  • the aerosol generator 32 is in contact with the aerosol source reservoir 31 .
  • the aerosol generation unit 32 includes a liquid second aerosol source and a second absorbent that absorbs the second aerosol source.
  • liquid means liquid in the operating temperature range of the flavor inhaler 1 .
  • the operating temperature range of the flavor inhaler 1 is as described above.
  • the second aerosol source is absorbed and held by the second absorber.
  • the second aerosol source can be an aerosol source commonly used in non-combustion heated flavor inhalers.
  • Polyhydric alcohols for example, can be used as the second aerosol source. Examples of polyhydric alcohols include glycerin, propylene glycol, 1,3-propanediol, 1,3-butanediol, or any combination thereof.
  • the second aerosol source may be the same as or different from the first aerosol source. That is, the second aerosol source can generally be of the same type as the first aerosol source, but may be of a different type than the first aerosol source. Even when a different type of second aerosol source is used as the second aerosol source, the first aerosol source and the second aerosol source can behave similarly to when the same type is used. That is, first, the second aerosol source held by the second absorber is heated, and then as the second aerosol source decreases, the first aerosol source is absorbed by the second absorber and heated. , and thereafter, the movement of the first aerosol source to the second absorber and the emission of aerosol continue to occur.
  • the ratio of the mass M AS 2 of the second aerosol source to the total M AS 1 + M AS 2 of the mass M AS 1 of the first aerosol source and the mass M AS 2 of the second aerosol source M AS 2 /(M AS 1 + M AS 2 ) is, for example, 0.005 to 0.1, preferably 0.01 to 0.05.
  • the second absorber is in contact with the first absorber.
  • the second absorbent body and the first absorbent body are arranged in the longitudinal direction of the first absorbent body, here in the Z direction.
  • the second absorbent body is a molded product.
  • the second absorbent body may be molded separately from the first absorbent body and, if necessary, adhered to the first absorbent body with an adhesive or the like, or may be integrally molded with the first absorbent body.
  • the first absorbent body and the second absorbent body are integrally formed.
  • the contact area between the second absorbent body and the first absorbent body increases, and the first aerosol retained in the first absorbent body increases. The source is easily sucked up by the second absorbent body.
  • the interface between the first absorbent body and the second absorbent body includes concave portions or convex portions.
  • the central portion of the interface between the first absorbent body and the second absorbent body protrudes toward the second absorbent body.
  • the interface between the first absorbent body and the second absorbent body protrudes conically toward the second absorbent body.
  • the surface of the second absorbent body opposite to the interface is a plane substantially perpendicular to the Z direction.
  • the second absorber contains tobacco material.
  • this tobacco material the tobacco material described as the tobacco material of the first absorbent body can be used.
  • the mixing of the second absorber and the second aerosol source can be performed in the same manner as the mixing of the first absorber and the first aerosol source.
  • the ratio M AS 2/M Ab 2 between the mass M AS 2 of the second aerosol source and the mass M Ab 2 of the second absorber is, for example, 1 to 10, preferably 2.5 to 7.5.
  • the speed V2 at which the second absorbent absorbs the first aerosol source is higher compared to the speed V1 at which the first absorbent absorbs the first aerosol source.
  • the velocities V1 and V2 are values obtained by the following method.
  • the first absorbent body or the second absorbent body is adjusted to a predetermined size (that is, a cylindrical body with a diameter of 0.8 cm and a height of 3.0 cm), and the weight is measured before sucking up the aerosol source. After that, the first absorbent body or the second absorbent body is set so that the height direction (that is, the Z direction) of the first absorbent body or the second absorbent body is perpendicular to the liquid surface of the container storing the aerosol source. do. At this time, the first absorbent body or the second absorbent body is not in contact with the aerosol source. Next, the first absorbent body or the second absorbent body (specifically, one end surface) is brought into contact with the liquid surface of the aerosol source to start the sucking action.
  • a predetermined size that is, a cylindrical body with a diameter of 0.8 cm and a height of 3.0 cm
  • the weight is measured before sucking up the aerosol source.
  • the first absorbent body or the second absorbent body is set so that the height direction (that is
  • the first absorbent body or the second absorbent body is separated from the liquid surface, and the weight after absorbing the aerosol source is measured. Velocities V1 and V2 are obtained from weight gain and elapsed time.
  • the speed V1 is, for example, 0.5-2.5 mg/sec, preferably 0.75-2 mg/sec.
  • Velocity V2 is, for example, 1-5 mg/sec, preferably 1.5-4 mg/sec.
  • the difference between velocity V2 and velocity V1 is, for example, 0.5 to 2.5 mg/sec, preferably 0.75 to 2 mg/sec.
  • a ratio V2/V1 between the speed V2 and the speed V1 is, for example, 1.5-3.5, preferably 2-3.
  • the relationship described above with respect to the wicking velocity of the first aerosol source i.e., the relationship that the velocity V2 at which the second absorbent body wicks the first aerosol source is higher than the velocity V1 at which the first absorbent body wicks the first aerosol source ) can be realized, for example, by changing the following configuration.
  • the suction speed of the first aerosol source can be changed by changing the degree of beating (beating degree).
  • degree of beating beating degree
  • leaf tobacco is extracted with hot water, separated into tobacco extract and tobacco residue, and the tobacco residue is beaten. It can be produced by adding tobacco extract.
  • the degree of beating is increased, the tobacco fibers are cut and entangled, and the density of the sheet tobacco is increased.
  • the degree of beating is increased, the diameter of the capillaries formed between the fibers or between the fibers (that is, the diameter of the cavities that cause capillary action) can be substantially reduced, making it easier for the sheet tobacco to suck up the aerosol source due to capillary action.
  • the rate at which the cigarette picks up the aerosol source increases.
  • the sucking speed of the first aerosol source can be changed by changing the particle size of the tobacco granules.
  • Tobacco granules are produced by extracting leaf tobacco with hot water, separating the tobacco extract and tobacco residue, molding the tobacco residue into granules, and adding the tobacco extract to the resulting granules. can be done. Reducing the particle size of tobacco granules increases the specific surface area of the tobacco granules and increases the number of tobacco granules contained in a given volume.
  • the diameter of the capillary formed in the voids between the granules (that is, the diameter of the cavities that cause capillary action) can be substantially reduced, and the aggregation of tobacco granules becomes the aerosol source by capillary action. It becomes easier to suck up, and the speed at which the tobacco granules suck up the aerosol source increases.
  • first absorbent body and the second absorbent body are sheet tobacco, or when the first absorbent body and the second absorbent body are tobacco granules, an absorbent material such as cotton, pulp, or glass fiber is added to the raw material.
  • the wicking ability of the aerosol source can be enhanced by manufacturing the tobacco sheets or tobacco granules, or by adding and mixing absorbent materials such as cotton, pulp, or glass fiber after manufacturing the tobacco sheets or tobacco granules. can.
  • Increasing the content of absorbent material in the secondary absorbent increases the ability of the secondary absorbent to absorb the aerosol source and increases the rate at which the secondary absorbent absorbs the aerosol source.
  • the porosity of the porous body that is, the ratio of the cavity to the total volume
  • the size of the pores By varying , the wicking velocity of the first aerosol source can be varied.
  • the porosity of the porous body is increased and the pore size is decreased, the number of capillaries inside the porous body (that is, the cavities that cause capillary action) increases substantially and the capillary diameter can be substantially reduced.
  • the porous body becomes easier to absorb the aerosol source due to capillary action, and the speed at which the porous body absorbs the aerosol source increases.
  • the first absorbent body and the second absorbent body are polysaccharide-based porous bodies containing tobacco powder
  • the wicking velocity of the first aerosol source can be varied.
  • a porous body having pores with a large oblateness is arranged so that the major diameter of the pores is in the same direction as the movement direction of the aerosol source
  • the diameter of the capillary inside the porous body can be substantially small and uniformly oriented, increasing the rate at which the porous body wicks the aerosol source.
  • first absorbent body and the second absorbent body are tobacco moldings having the same shape.
  • the first absorbent body and the second absorbent body need not have the same shape as long as the first absorbent body and the second absorbent body satisfy the relationship described above with respect to the suction speed of the first aerosol source.
  • the first absorbent body and the second absorbent body may be a combination of sheet tobacco and a polysaccharide-based porous body, or may be a combination of tobacco granules and a polysaccharide-based porous body. good.
  • the length direction of the cylindrical body 33 is parallel to the length direction of the first absorbent body.
  • the length direction of the tubular body 33 is parallel to the Y direction, which is the length direction of the flavor inhaler 1 .
  • the cylindrical body 33 is installed inside the case 2 and between the air supply port H1 and the aerosol discharge port H2.
  • the tubular body 33 accommodates the aerosol source storage section 31 and the aerosol generation section 32 .
  • the aerosol source storage part 31 and the aerosol generation part 32 are arranged in the longitudinal direction of the tubular body 33 .
  • the aerosol source storage part 31 and the aerosol generation part 32 are arranged so that the aerosol generation part 32 is positioned between the air supply port H1 and the aerosol source storage part 31 .
  • the material of the tubular body 33 is not limited.
  • a material for the tubular body 33 for example, metal, polymer, or ceramic can be used.
  • the tubular body 33 is a bottomless tubular body that is open at both ends.
  • the cylindrical body 33 may have a bottomed cylindrical shape that is open only at one end.
  • the aerosol source storage part 31 and the aerosol generation part 32 are arranged so that the aerosol generation part 32 is positioned between the opening of the cylindrical body 33 and the aerosol source storage part 31 .
  • the heater 34 heats the aerosol generator 32 .
  • the heater 34 is here a planar heater having a heating surface HS shown in FIG.
  • the planar heater includes a support having a heating surface HS and a resistance heating element supported by this.
  • the support is made of insulator or conductor.
  • an insulating layer is interposed between the resistance heating element and the support.
  • connection terminals are provided at both ends of the resistance heating element. These connection terminals are in contact with the discharge terminals.
  • a resistance heating element generates heat by being supplied with power from a power supply circuit.
  • the heater 34 is installed so that the heating surface HS faces the first absorber with the second absorber interposed therebetween. Preferably, the heater 34 is installed so that the heating surface HS is in contact with the second absorber.
  • the heater 34 may be separated from the second absorber as long as it can heat the aerosol generating section 32 to a sufficiently high temperature.
  • the heater 34 has one or more grooves G1 provided on the heating surface HS and one or more through holes H3 communicating with the grooves G1.
  • the heater 34 is provided with two intersecting grooves G1 on the heating surface HS, and one through hole H3 is provided at the intersection of the grooves G1.
  • the groove G1 may be omitted, the through hole H3 may be omitted, or the groove G1 and the through hole H3 may be omitted.
  • the flavor inhaler 1 may further include a filter through which the aerosol passes, which will be described later.
  • a filter may be placed, for example, in or near mouthpiece 22M.
  • the aerosol source storage unit 31 contains the first aerosol source and the tobacco material
  • the aerosol generation unit 32 contains the second aerosol source and the tobacco material.
  • a first aerosol source extracts flavor components from the tobacco material.
  • the second aerosol source extracts flavor components from the tobacco material. That is, the first and second aerosol sources contain flavoring ingredients.
  • the control unit controls the operation of the power supply circuit so that the power supply starts supplying power to the discharge terminal when the intake sensor detects the start of the puff operation.
  • the resistance heating element of the heater 34 generates heat, and the heater 34 heats at least the portion of the aerosol generating portion 32 on the heating surface HS side.
  • the air that has flowed into the case along with the user's puffing action reaches the vicinity of the aerosol generator 32, for example, along the route indicated by the dashed line F in FIG.
  • the air that has flowed into the case reaches the aerosol generating part 32 through the through hole H3 provided in the heater 34, then passes through the groove G1, and flows through the heater and the aerosol outlet H2. It is discharged to the outside of the sandwiched space.
  • the air stream entrains the aerosol source containing flavoring ingredients and heated by the heater 34 . That is, an aerosol containing flavor components is generated.
  • the aerosol thus generated reaches the mouthpiece 22M through the gap between the tubular body 33 and the second case portion 22, and then exits the flavor inhaler 1 through the aerosol outlet H2. Ejected.
  • the inflow of air from the outer space of the case 2 into the case 2 through the air supply port H1 also stops.
  • the intake sensor detects interruption or cessation of the user's puff action based on, for example, a change in pressure associated with the cessation of the inflow of air.
  • the controller controls the operation of the power supply circuit so that the power supply stops supplying power to the discharge terminal when the intake sensor detects interruption or stop of the puff operation.
  • the resistance heating element of the heater 34 stops generating heat, and the temperature of at least the portion on the heating surface HS side of the aerosol generating portion 32 drops. This reduces consumption of the aerosol source.
  • the speed at which the second absorbent absorbs the first aerosol source is higher than the speed at which the first absorbent absorbs the first aerosol source. Therefore, the first aerosol source is continuously supplied from the aerosol source storage unit 31 to the aerosol generation unit 32, and a sufficient amount of aerosol can be continuously emitted. That is, according to the flavor inhaler 1, as long as the supply of the first aerosol source from the aerosol source storage unit 31 to the aerosol generation unit 32 continues, the user continues to inhale a sufficient amount of aerosol, You can enjoy enough flavor. This will be explained below.
  • the aerosol source storage unit 31 supplies the first aerosol source to the aerosol generation unit 32.
  • the speed V2 at which the second absorbent absorbs the first aerosol source is higher than the speed V1 at which the first absorbent absorbs the first aerosol source. Therefore, the first aerosol source supplied from the aerosol source storage section 31 to the aerosol generation section 32 rapidly diffuses within the aerosol generation section 32 . Therefore, in the flavor inhaler 1, a sufficient amount of the aerosol source can be present in the portion of the aerosol generating section 32 near the heater 34 until almost the entire amount of the aerosol source is consumed.
  • the interface between the first absorbent body and the second absorbent body includes concave portions or convex portions. Therefore, in the flavor inhaler 1, the contact area between the first absorber and the second absorber is large. Such a structure facilitates the supply of the first aerosol source from the aerosol source reservoir 31 to the aerosol generator 32 .
  • the central portion of the interface between the first absorbent body and the second absorbent body protrudes toward the second absorbent body.
  • this structure is different from the structure in which the interface is a plane perpendicular to the Z direction.
  • the shortest distance to the side face is short. Therefore, in this structure, the amount of the aerosol source is unlikely to be insufficient in the portion of the aerosol generating section 32 near the heater 34 .
  • the amount of the aerosol source in the portion of the aerosol generation unit 32 near the heater 34 is unlikely to become insufficient, and a sufficient amount of aerosol can be continuously released. That is, as long as the supply of the first aerosol source from the aerosol source storage unit 31 to the aerosol generation unit 32 continues, the user can continuously inhale a sufficient amount of aerosol and enjoy a sufficient flavor. can.
  • FIG. 4 is a cross-sectional view schematically showing an aerosol generator according to a first modified example.
  • the flavor inhaler according to the first modified example is the same as the flavor inhaler 1 described with reference to FIGS. That is, in the first modified example, the interface between the first absorbent body and the second absorbent body has a shape corresponding to a portion of a spherical surface instead of having a conical shape.
  • a flavor inhaler employing this structure can also achieve the same effects as the flavor inhaler 1 described with reference to FIGS. 1 to 3.
  • FIG. 5 is a cross-sectional view schematically showing a flavor inhaler according to a second embodiment of the present invention.
  • 6 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 5;
  • FIG. 5 is a cross-sectional view schematically showing a flavor inhaler according to a second embodiment of the present invention.
  • the flavor inhaler 1 according to the second embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the interface between the first absorber and the second absorber is spherical instead of conical. It has a shape that corresponds to a part.
  • the cylindrical body 33 has a diameter of the opening closer to the aerosol generator 32 smaller than the inner diameter at the position of the aerosol source reservoir 31 .
  • the second absorbent body tapers toward the heating surface of the heater 34, and the heating surface is wider in the longitudinal direction of the first absorbent body than the first absorbent body. Smaller dimension in the vertical direction.
  • the surface of the second absorber on the heater 34 side has a shape corresponding to a portion of a spherical surface.
  • the heating surface of the heater 34 is separated from the edge forming the opening of the cylindrical body 33 closer to the aerosol generating part 32 . At the position of the gap between them, the aerosol generating part 32 is partially exposed.
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3.
  • the area of the aerosol generating part 32 that is in contact with the heating surface of the heater 34 is small. Therefore, it is possible to prevent the consumption of the aerosol source accompanying the aerosol generation from exceeding the supply of the aerosol source from the aerosol source storage unit 31 to the aerosol generation unit 32 . Therefore, in the flavor inhaler 1 employing this structure, a sufficient amount of the aerosol source is more reliably present in the portion of the aerosol generating section 32 near the heater 34 until almost the entire amount of the aerosol source is consumed. be able to. This construction also allows for less aerosol source to be consumed in a single puff action.
  • FIG. 7 is a cross-sectional view schematically showing a flavor inhaler according to a third embodiment of the present invention.
  • 8 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 7;
  • FIG. 9 is another cross-sectional view of the aerosol generator shown in FIG. 8.
  • FIG. 7 is a cross-sectional view schematically showing a flavor inhaler according to a third embodiment of the present invention.
  • 8 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 7
  • FIG. 9 is another cross-sectional view of the aerosol generator shown in FIG. 8.
  • the flavor inhaler 1 according to the third embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the heater 34 has a linear heating part HP facing the first absorbent with the second absorbent in between. . That is, here, the heater 34 is a linear heater having a linear heating portion HP.
  • a linear heater includes, for example, a support made of an insulator and a resistance heating element supported by the support.
  • a resistive heating element includes a linear portion.
  • the heater 34 includes a linear portion of a resistance heating element as a heating portion HP.
  • the length direction of the heating part HP is parallel to the Y direction.
  • the cylindrical body 33 when the cylindrical body 33 is observed in a cross section perpendicular to the Y direction, as shown in FIG. smaller compared to the inner diameter at the location of the reservoir 31; Specifically, when a cross section perpendicular to the Y direction is observed, the diameter of the cylindrical body 33 decreases toward the heater 34 near the heater 34 . Further, as shown in FIG. 9, the cylindrical body 33 has a constant diameter along its length direction when a cross section perpendicular to the X direction is observed.
  • the surface of the second absorber on the side of the heating part HP protrudes at the center when a cross section perpendicular to the Y direction is observed.
  • the surface of the second absorbent body on the side of the heating part HP is flat when a cross section perpendicular to the X direction is observed.
  • the portion of the second absorber on the side of the heating unit HP has a gable roof shape. That is, here, the surface of the second absorber on the side of the heating part HP consists of two planes inclined in opposite directions. The ridges formed by these planes are in contact with the heating part HP.
  • the region including the ridge protrudes outward from the opening of the tubular body 33 .
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3. Further, in the flavor inhaler 1 adopting this structure, as in the flavor inhaler 1 according to the second embodiment, the portion of the aerosol generating section 32 near the heater 34 is heated until almost the entire amount of the aerosol source is consumed. At the same time, a sufficient amount of the aerosol source can be more reliably present. Furthermore, this construction also allows for a smaller amount of the aerosol source to be consumed in a single puff action.
  • FIG. 10 is a cross-sectional view schematically showing a flavor inhaler according to a fourth embodiment of the present invention.
  • 11 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 10; FIG.
  • the flavor inhaler 1 according to the fourth embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the cylindrical body 33 accommodates the aerosol source storage section 31, but does not accommodate the aerosol generation section 32.
  • the second absorbent body has a shape extending in the arrangement direction of the first absorbent body and the second absorbent body, and has a diameter substantially equal to the diameter of the opening.
  • the second absorbent body is in contact with the first absorbent body at the position of this opening and protrudes to the outside of the tubular body 33 .
  • the interface between the first absorbent body and the second absorbent body is a plane perpendicular to the arrangement direction.
  • the heater 34 is a coil-shaped heater wound around the aerosol generator 32 .
  • the coiled heater includes, for example, a coiled resistance heating element.
  • the coiled heater may further include an insulating layer covering the resistance heating element.
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3. Further, in the flavor inhaler 1 adopting this structure, as in the flavor inhaler 1 according to the second embodiment, the portion of the aerosol generating section 32 near the heater 34 is heated until almost the entire amount of the aerosol source is consumed. At the same time, a sufficient amount of the aerosol source can be more reliably present. Furthermore, this construction also allows for a smaller amount of the aerosol source to be consumed in a single puff action.
  • the heater 34 is coil-shaped and wound around the aerosol generating section 32 .
  • the aerosol generating section 32 can be uniformly heated, and air can be efficiently supplied to the aerosol generating section 32 . Therefore, according to this structure, aerosol can be efficiently generated.
  • FIG. 12 is a cross-sectional view schematically showing an aerosol generator according to a second modified example.
  • FIG. 13 is a cross-sectional view schematically showing an aerosol generator according to a third modified example.
  • the flavor inhaler according to the second modification is the same as the flavor inhaler 1 described with reference to FIGS. 10 and 11, except that the aerosol generator 12 has the structure shown in FIG. That is, in the second modification, the interface between the first absorbent body and the second absorbent body is conical instead of planar.
  • the flavor inhaler according to the third modification is the same as the flavor inhaler 1 described with reference to FIGS. 10 and 11, except that the aerosol generator 12 has the structure shown in FIG. That is, in the third modification, the interface between the first absorbent body and the second absorbent body has a shape corresponding to a portion of a spherical surface, instead of having a planar shape.
  • a flavor inhaler employing these structures can also achieve the same effects as the flavor inhaler 1 described with reference to FIGS. 11 and 12 .
  • the contact area between the first absorbent body and the second absorbent body is larger than that of the structure of FIG.
  • FIG. 14 is a cross-sectional view schematically showing a flavor inhaler according to a fifth embodiment of the present invention.
  • 15 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 14;
  • FIG. 16 is a top view of the aerosol generator shown in FIG. 15.
  • FIG. 15 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of FIG. 14;
  • FIG. 16 is a top view of the aerosol generator shown in FIG. 15.
  • the flavor inhaler 1 according to the fifth embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the first absorbent body is columnar, and the second absorbent body surrounds the first absorbent body.
  • the first absorber has a columnar shape whose height direction is parallel to the Z direction.
  • the second absorbent body surrounds the first absorbent body so as to cover the side surface of the cylinder.
  • this aerosol generator 3 does not include the tubular body 33 . Instead, the aerosol generator 3 includes a cover body 35 .
  • the cover body 35 covers both bottom surfaces of the column made of the first absorbent body.
  • As a material for the cover body 35 for example, metal, polymer, or ceramic can be used.
  • the cover body 35 can be omitted.
  • the heater 34 is a linear heater surrounding the first absorber with the second absorber interposed therebetween.
  • the linear heater includes, for example, a linear resistance heating element surrounding a first absorbent with a second absorbent therebetween.
  • the linear heater may further include an insulating layer covering the resistance heating element.
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3.
  • the contact area between the first absorber and the second absorber is large. Therefore, the aerosol source can be efficiently supplied from the aerosol source storage section 31 to the aerosol generation section 32 . Therefore, it is possible to ensure that a sufficient amount of the aerosol source is present in the aerosol generating section 32 until substantially the entire amount of the aerosol source is consumed.
  • the heater 34 is linear and wound around the aerosol generating section 32 .
  • air can be efficiently supplied to the aerosol generator 32 . Therefore, according to this structure, aerosol can be efficiently generated.
  • FIG. 17 is a sectional view schematically showing a flavor inhaler according to a sixth embodiment of the present invention.
  • Figure 18 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of Figure 17; 19 is a top view of the aerosol generator shown in FIG. 18.
  • FIG. 18 is a schematic cross-sectional view of an aerosol generator included in the flavor inhaler of Figure 17; 19 is a top view of the aerosol generator shown in FIG. 18.
  • the flavor inhaler 1 according to the sixth embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the first absorber is columnar and the second absorber is columnar, as in the aerosol generator 3 of the flavor inhaler 1 according to the fifth embodiment.
  • a body surrounds the first absorbent body.
  • the first absorber has a columnar shape whose height direction is parallel to the Z direction.
  • the second absorbent body surrounds the first absorbent body so as to cover the side surface of the cylinder.
  • this aerosol generator 3 does not include the tubular body 33 .
  • the aerosol generator 3 includes a cover body 35, like the aerosol generator 3 of the flavor inhaler 1 according to the fifth embodiment.
  • the cover body 35 covers both bottom surfaces of the column made of the first absorbent body.
  • the cover body 35 can be omitted.
  • the heater 34 is a cylindrical heater surrounding the first absorber with the second absorber interposed therebetween.
  • the tubular heater includes, for example, a tubular support made of an insulator and having an inner surface as a heating surface, and a resistance heating element supported by the tubular support.
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3.
  • the contact area between the first absorber and the second absorber is large. Therefore, the aerosol source can be efficiently supplied from the aerosol source storage section 31 to the aerosol generation section 32 . Therefore, it is possible to ensure that a sufficient amount of the aerosol source is present in the aerosol generating section 32 until substantially the entire amount of the aerosol source is consumed.
  • the heater 34 is cylindrical and installed around the aerosol generating section 32 . According to such a configuration, the aerosol generating section 32 can be efficiently heated. Therefore, according to this structure, aerosol can be efficiently generated.
  • FIG. 20 is a cross-sectional view schematically showing an aerosol generator according to a fourth modification.
  • 21 is a top view of the aerosol generator shown in FIG. 20.
  • the flavor inhaler according to the fourth modification is the same as the flavor inhaler 1 described with reference to FIGS. 17 to 19, except that the structure of FIGS. That is, in the fourth modification, the inner surface of the heater 34, that is, the heating surface, has one or more grooves G2 each extending from one opening of the cylinder formed by the heater 34 to the other opening.
  • the heating surface of the heater 34 is provided with a plurality of grooves G2 each extending in the Z direction.
  • a flavor inhaler employing this structure can also achieve the same effects as the flavor inhaler 1 described with reference to FIGS. 20 and 21.
  • air can contact the aerosol generating part 32 at the position of the groove G2. Therefore, even a flavor inhaler employing this structure can efficiently generate an aerosol.
  • FIG. 22 is a sectional view schematically showing a flavor inhaler according to a seventh embodiment of the present invention.
  • 23 is another cross-sectional view of the flavor inhaler shown in FIG. 22; FIG.
  • the flavor inhaler 1 according to the seventh embodiment is the same as the flavor inhaler 1 described with reference to FIGS. 1 to 3, except that the aerosol generator 3 has the following structure.
  • the first absorber is columnar and the second absorber is columnar, as in the aerosol generator 3 of the flavor inhaler 1 according to the sixth embodiment.
  • a body surrounds the first absorbent body.
  • the first absorbent body is cylindrical
  • the second absorbent body surrounds the first absorbent body so as to cover the side surface of the cylinder.
  • the height direction of the cylinder made of the first absorbent body is parallel to the Y direction.
  • this aerosol generator 3 does not include the tubular body 33 .
  • the aerosol generator 3 includes a cover body 35, like the aerosol generator 3 of the flavor inhaler 1 according to the sixth embodiment.
  • the cover body 35 covers both bottom surfaces of the column made of the first absorbent body.
  • the cover body 35 can be omitted.
  • the heater 34 is a cylindrical shape surrounding the first absorbent with the second absorbent in between, as in the aerosol generator 3 of the flavor inhaler 1 according to the sixth embodiment. heater.
  • Reference numeral 5 denotes a support member that detachably supports the aerosol generator 3.
  • the support member 5 is provided with terminals that come into contact with the connection terminals of the resistance heating element included in the heater 34 and connect these connection terminals to the discharge terminals.
  • the flavor inhaler 1 adopting this structure can also achieve the same effect as the flavor inhaler 1 described with reference to FIGS. 1 to 3.
  • the contact area between the first absorber and the second absorber is large. Therefore, the aerosol source can be efficiently supplied from the aerosol source storage section 31 to the aerosol generation section 32 . Therefore, it is possible to ensure that a sufficient amount of the aerosol source is present in the aerosol generating section 32 until substantially the entire amount of the aerosol source is consumed.
  • the heater 34 is cylindrical and installed around the aerosol generating section 32 . According to such a configuration, the aerosol generating section 32 can be efficiently heated. Therefore, according to this structure, aerosol can be efficiently generated.
  • the heater 34 is part of the cartridge.
  • the cartridge need not include heater 34 . That is, the heater 34 may be part of the power supply unit. In this case, the heater 34 is preferably replaceable.
  • the heater 34 instead of using a resistance heating element, one using induction heating may be used.
  • the heaters 34 shown in FIGS. 2, 4, 6 and 8 and the heaters 34 shown in FIGS. 15, 18 and 20 may be replaced with a susceptor and a surrounding susceptor instead of using a resistance heating element.
  • aerosol may be generated by induction heating. In that case, a material that is not induction-heated is selected for the cylindrical body 33 .
  • FIGS. 24 and 25 A modification using a heater utilizing induction heating is shown in FIGS. 24 and 25. FIG.
  • FIG. 24 is a cross-sectional view schematically showing a flavor inhaler according to another modification.
  • the flavor inhaler 1 shown in FIG. 24 is similar to the flavor inhaler 1 described with reference to FIGS. 1-3, except for the following points. That is, in the flavor inhaler 1 shown in FIG. 24, the cylindrical body 33 is made of a material that is not induction-heated, such as an insulator.
  • the heater 34 includes an electromagnetic induction coil 34a, a dielectric layer 34b, and a susceptor 34c.
  • the susceptor 34c is made of a conductor such as metal.
  • the susceptor 34c has the same outer shape as the heater 34 described with reference to FIGS. 1-3. That is, the susceptor 34c has a substantially disk shape.
  • One main surface of the susceptor 34c is a heating surface, and the susceptor 34c is installed so that the heating surface faces the first absorber with the second absorber interposed therebetween.
  • the susceptor 34c is installed so that the heating surface is in contact with the second absorber.
  • the susceptor 34c also has one or more grooves G1 and one or more through holes H3 communicating with the grooves G1, which have been described with reference to FIG.
  • the susceptor 34c is provided with two intersecting grooves on the heating surface, and one through hole is provided at the intersection of the grooves.
  • the groove may be omitted, the through hole may be omitted, and the groove and the through hole may be omitted.
  • the electromagnetic induction coil 34a is installed inside the case 2.
  • the electromagnetic induction coil 34a surrounds the susceptor 34c and is spaced apart from the susceptor 34c.
  • the dielectric layer 34b covers the electromagnetic induction coil 34a.
  • the combination of the electromagnetic induction coil 34a and the dielectric layer 34b has a tubular shape, surrounds the susceptor 34c and the portion of the tubular body 33 on the susceptor 34c side, and is spaced apart from them.
  • FIG. 25 is a cross-sectional view schematically showing a flavor inhaler according to still another modification.
  • the flavor inhaler 1 shown in FIG. 25 is similar to the flavor inhaler 1 described with reference to FIGS. 17-19, except for the following points.
  • the heater 34 similarly to the flavor inhaler 1 shown in FIG. 24, the heater 34 includes an electromagnetic induction coil 34a, a dielectric layer 34b, and a susceptor 34c.
  • the susceptor 34c in FIG. 25 has a cylindrical shape, unlike the susceptor 34c in FIG. In this susceptor 34c, the inner surface of the cylinder is the heating surface.
  • the susceptor 34c is installed so that the heating surface faces the first absorber with the second absorber interposed therebetween.
  • the susceptor 34c is installed so that the heating surface is in contact with the outer surface of the second absorber.
  • the susceptor 34 c when the electromagnetic induction coil 34 a is energized, the susceptor 34 c generates heat by induction heating, and the susceptor 34 c heats the aerosol generating section 32 . That is, the flavor inhaler 1 described with reference to FIG. 24 and the flavor inhaler 1 described with reference to FIG. It has the same structure as the flavor inhaler 1 described and the flavor inhaler 1 described with reference to FIGS. 17-19. Therefore, these flavor inhalers 1 also have the same effects as the flavor inhalers 1 described with reference to FIGS. 1 to 3 and the flavor inhalers 1 described with reference to FIGS.
  • the heater 34 may be part of the cartridge or part of the power supply unit.
  • the susceptor 34c may be part of the cartridge and the electromagnetic induction coil 34a and dielectric layer 34b may be part of the power supply unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本発明のエアロゾル発生体(3)は、液状の第1エアロゾル源と、前記第1エアロゾル源を吸収した第1吸収体とを含み、前記第1吸収体は、たばこ材料を含んだエアロゾル源貯蔵部(31)と、液状の第2エアロゾル源と、前記第2エアロゾル源を吸収した第2吸収体とを含み、前記第2吸収体は、たばこ材料を含み、前記第1吸収体と接触したエアロゾル発生部(32)とを備え、前記第2吸収体が前記第1エアロゾル源を吸い上げる速度は、前記第1吸収体が前記第1エアロゾル源を吸い上げる速度と比較してより高い。

Description

エアロゾル発生体および香味吸引器
 本発明は、エアロゾル発生体および香味吸引器に関する。
 たばこ材料とエアロゾル源とを含むたばこ香味源を燃焼させることなく加熱することによりたばこ香味をユーザに提供する非燃焼加熱型の香味吸引器が知られている。例えば、特許文献1は、非燃焼加熱型の香味吸引器を開示し、たばこ香味源が複数のセクションからなり、ヒータが特定のセクションを選択的および個別に加熱することを開示する。これにより、特許文献1の香味吸引器は、複数回吸引した後に、まだ加熱されていない新たなセクションを加熱することができる。
国際公開第2013/034454号
 本発明は、十分な量のエアロゾルを継続して放出することができるエアロゾル発生体と、かかるエアロゾル発生体を含む香味吸引器とを提供することを目的とする。
 本発明の一側面によると、
 液状の第1エアロゾル源と、前記第1エアロゾル源を吸収した第1吸収体とを含み、前記第1吸収体は、たばこ材料を含んだエアロゾル源貯蔵部と、
 液状の第2エアロゾル源と、前記第2エアロゾル源を吸収した第2吸収体とを含み、前記第2吸収体は、たばこ材料を含み、前記第1吸収体と接触したエアロゾル発生部と
を備え、
 前記第2吸収体が前記第1エアロゾル源を吸い上げる速度は、前記第1吸収体が前記第1エアロゾル源を吸い上げる速度と比較してより高い、エアロゾル発生体が提供される。
 本発明の他の側面によると、前記第1吸収体および前記第2吸収体の少なくとも一方は、シートたばこ、たばこ顆粒、および、多糖類とたばこ粉末とを含有した混合物の多孔質体の1以上を含んだ、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第1吸収体と前記第2吸収体とは一体に成形されている、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第1吸収体と前記第2吸収体との間の界面は凹部または凸部を含んだ、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記エアロゾル発生部を加熱するヒータを更に備えた、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第1吸収体は一方向に伸びた形状を有し、前記第1吸収体と前記第2吸収体とは前記第1吸収体の長さ方向に配列した、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第1吸収体と前記第2吸収体との間の界面は、前記第2吸収体へ向けて中央部が突き出た、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記エアロゾル源貯蔵部と前記エアロゾル発生部とを収容した筒状体を更に備え、前記エアロゾル源貯蔵部と前記エアロゾル発生部とは、前記筒状体の長さ方向に配列した、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記筒状体は、前記エアロゾル発生部により近い開口の径が、前記エアロゾル源貯蔵部の位置における内径と比較してより小さい、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第2吸収体を間に挟んで前記第1吸収体と向き合った加熱面を有するヒータを更に備えた、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記ヒータは、前記加熱面に設けられた1以上の溝、前記1以上の溝と連通した1以上の貫通孔、またはそれらの双方を有している、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第2吸収体は前記加熱面へ向けて先細りしており、前記加熱面は、前記第1吸収体と比較して、前記第1吸収体の前記長さ方向に垂直な方向における寸法がより小さい、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第2吸収体を間に挟んで前記第1吸収体と向き合った線状の加熱部を有するヒータを更に備えた、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第2吸収体は、前記加熱部側の面が、前記第1吸収体の前記長さ方向および前記加熱部の長さ方向に平行な断面では平らであり、前記第1吸収体の前記長さ方向に平行であり且つ前記加熱部の前記長さ方向に垂直な断面では中央部が突き出ている、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記エアロゾル源貯蔵部を収容した筒状体を更に備え、前記筒状体は、前記エアロゾル発生部により近い開口の径が、前記開口から離れた位置における内径と比較してより小さく、前記エアロゾル発生部は、前記開口の位置で前記筒状体の外側へ突き出ている、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記エアロゾル発生部の周りに巻かれたコイル状のヒータを更に備えた、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第1吸収体は柱状であり、前記第2吸収体は、前記第1吸収体を取り囲んだ、上記側面の何れかに係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記第2吸収体を間に挟んで前記第1吸収体を取り囲んだ線状のヒータを更に備えた、上記側面に係るエアロゾル発生体が提供される。
 或いは、本発明の更に他の側面によると、前記第2吸収体を間に挟んで前記第1吸収体を取り囲んだ筒状のヒータを更に備えた、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、前記ヒータの内面は、前記ヒータの一方の開口から前記ヒータの他方の開口まで各々が伸びた1以上の溝を有している、上記側面に係るエアロゾル発生体が提供される。
 本発明の更に他の側面によると、
 上記側面の何れかに係るエアロゾル発生体と、
 前記ヒータへ電力を供給する電源と、
 一端に吸い口を有し、前記エアロゾル発生体および前記電源を収容したケースと
を備えた香味吸引器が提供される。
 本発明の更に他の側面によると、前記エアロゾル発生体は、前記電源と前記吸い口との間に位置した、上記側面に係る香味吸引器が提供される。
 本発明の更に他の側面によると、前記ケースは、前記電源と前記エアロゾル発生体との間の位置に給気口を有し、前記エアロゾル発生体と前記ケースとは、それらの間に、前記給気口から前記吸い口まで至る流路を形成している、上記側面に係る香味吸引器が提供される。
 本発明によれば、十分な量のエアロゾルを継続して放出することができるエアロゾル発生体と、かかるエアロゾル発生体を含む香味吸引器とを提供することができる。
本発明の第1実施形態に係る香味吸引器を概略的に示す断面図。 図1の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 図2に示すエアロゾル発生体が含んでいるヒータの上面図。 第1変形例に係るエアロゾル発生体を概略的に示す断面図。 本発明の第2実施形態に係る香味吸引器を概略的に示す断面図。 図5の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 本発明の第3実施形態に係る香味吸引器を概略的に示す断面図。 図7の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 図8に示すエアロゾル発生体の他の断面図。 本発明の第4実施形態に係る香味吸引器を概略的に示す断面図。 図10の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 第2変形例に係るエアロゾル発生体を概略的に示す断面図。 第3変形例に係るエアロゾル発生体を概略的に示す断面図。 本発明の第5実施形態に係る香味吸引器を概略的に示す断面図。 図14の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 図15に示すエアロゾル発生体の上面図。 本発明の第6実施形態に係る香味吸引器を概略的に示す断面図。 図17の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図。 図18に示すエアロゾル発生体の上面図。 第4変形例に係るエアロゾル発生体を概略的に示す断面図。 図20に示すエアロゾル発生体の上面図。 本発明の第7実施形態に係る香味吸引器を概略的に示す断面図。 図22に示す香味吸引器の他の断面図。 他の変形例に係る香味吸引器を概略的に示す断面図。 更に他の変形例に係る香味吸引器を概略的に示す断面図。
 以下に、本発明の実施形態について、図面を参照しながら説明する。なお、同様または類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。
 <1>第1実施形態
 <1-1>構造
 図1は、本発明の第1実施形態に係る香味吸引器を概略的に示す断面図である。図2は、図1の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。図3は、図2に示すエアロゾル発生体が含んでいるヒータの上面図である。
 図1に示す香味吸引器1は、燃焼を伴わずに香味を吸引するための器具である。香味吸引器1は、一方向に伸びた形状を有している。
 図1~図3において、Z方向は香味吸引器1の長さ方向であり、X方向はZ方向に対して垂直な方向であり、Y方向はX方向およびZ方向に対して垂直な方向である。なお、断り書きがない限り、X方向、Y方向およびZ方向は、他の図においても上記と同様である。
 香味吸引器1は、ケース2と、エアロゾル発生体3と、電源部4と、図示しない操作部と、図示しない報知部とを含んでいる。
 <ケース>
 ケース2は、第1ケース部21と第2ケース部22とを含んでいる。 
 第1ケース部21は、有底筒状である。第1ケース部21には、1以上の給気口H1が設けられている。ここでは、第1ケース部21の側壁であって、その開口の近傍に、複数の給気口H1が設けられている。
 第2ケース部22は、有底筒状である。第2ケース部22は、第1ケース部21と開口側の径がほぼ等しい。第2ケース部22は、その開口側から底側へ向けて先細りしている。ここでは、第2ケース部22の底近傍の部分は、第2ケース部22の他の部分と比較して径がより小さい。
 第2ケース部22の底近傍の部分は、吸い口22Mを形成している。吸い口22Mには、1以上のエアロゾル排出口H2が設けられている。ここでは、第2ケース部22の底に、1つのエアロゾル排出口H2が設けられている。吸い口22Mは、第2ケース部22の他の部分と一体に設けられていてもよく、第2ケース部22の他の部分に対して着脱可能であってもよい。
 第2ケース部22は、第1ケース部21を含んだ電源ユニットに対して着脱可能である。電源ユニットについては、後で説明する。
 第1ケース部21と第2ケース部22とは、それらの開口部同士が突き合わされている。これにより、第1ケース部21と第2ケース部22は、ケース2内に、給気口H1およびエアロゾル排出口H2を介して外部空間と連通した内部空間を形成している。
 <操作部>
 操作部は、第1ケース部21に設置されている。操作部は、第2ケース部22に設置してもよい。
 操作部は、ユーザの操作により、後述する制御部へ、例えば、起動または停止に関する指令を発出する。操作部は、例えば、ボタン式のスイッチまたはタッチパネルを含む。
 <報知部>
 報知部は、第1ケース部21に設置されている。報知部は、第2ケース部22に設置してもよい。
 報知部は、香味吸引器1の状態をユーザへ報知する。例えば、後述する二次電池の電圧が低下して充電が必要となった場合、二次電池が満充電となった場合、およびパフ動作回数または後述する放電端子への電力供給累積時間が規定値に達した場合に、そのことをユーザへ報知する。
 報知部は、例えば、発光ダイオードなどの発光素子を含む。報知部は、振動素子または音出力素子を含んでいてもよい。或いは、報知部は、液晶表示装置および有機エレクトロルミネッセンス表示装置などの表示装置を含んでいてもよい。或いは、報知部は、発光素子、振動素子、音出力素子および表示装置の2以上を含んでいてもよい。
 <電源部>
 電源部4は、第1ケース部21内に設置されている。電源部4と操作部と第1ケース部21とは、電源ユニットを構成している。
 電源部4は、電源と、放電端子と、充電器と、各種センサと、制御部とを含んでいる。
 電源は、リチウムイオン二次電池などの二次電池を含んでいる。電源は、二次電池から放電端子等へ電力を供給する電源回路を更に含んでいる。放電端子は、二次電池と第1ケース部21の開口との間に設置されている。充電器は、外部電源から供給される電力で二次電池を充電する。
 センサは、例えば、ユーザのパフ(吸気)動作を検出する吸気センサ、二次電池の電圧を測定する電圧センサ、および、温度を検出する温度センサである。吸気センサは、例えば、コンデンサマイクロフォンまたは圧力センサである。
 制御部は、処理部と記憶部とを含んでいる。処理部は、集積回路(IC)を含んでいる。記憶部は、メモリ、例えば、揮発性メモリ、不揮発性メモリ、またはそれらの双方を含んでいる。制御部には、操作部、報知部、電源回路および各種センサが接続されている。
 制御部は、操作部から起動の指令を受けた場合、起動状態にあることを報知部がユーザへ報知するように、報知部の動作を制御する。
 また、制御部は、操作部から起動の指令を受けた場合、吸気センサや温度センサからの出力に応じて、電源回路の動作を制御する。例えば、制御部は、吸気センサがユーザのパフ動作の開始を検知した場合に電源が放電端子への電力の供給を開始し、吸気センサがユーザのパフ動作の中断または終了を検知した場合に電源が放電端子への電力の供給を停止するように、電源回路の動作を制御する。また、例えば、制御部は、温度センサが検知した温度に応じて、パフ動作時に電源が放電端子へ供給する電力の大きさを制御する。
 更に、制御部は、吸気センサの出力を利用してユーザのパフ動作回数を数えるか、または、電源回路が放電端子へ電力を供給した累積時間を求める。そして、制御部は、パフ動作回数または電力供給累積時間が規定値に達した場合、そのことを報知部がユーザへ報知するように、報知部の動作を制御する。
 また、制御部は、起動状態において、電圧センサが検知した電圧が第1電圧を下回っていた場合、二次電池の充電が必要であると判断する。制御部は、二次電池の充電が必要であると判断した場合、そのことを報知部がユーザへ報知するように、報知部の動作を制御する。
 そして、制御部は、充電時には、充電中であることを報知部がユーザへ報知するように、報知部の動作を制御する。制御部は、例えば、電圧センサが検知した電圧が第2電圧を上回った場合に、二次電池が満充電になったと判断する。制御部は、二次電池が満充電になったと判断した場合、そのことを報知部がユーザへ報知するように、報知部の動作を制御する。
 <エアロゾル発生体>
 エアロゾル発生体3は、第2ケース部22内に設置されている。エアロゾル発生体3は、例えば、第2ケース部22に対して着脱可能である。この場合、エアロゾル発生体3は、交換可能なカートリッジであり、ケース2内には、エアロゾル発生体3を着脱可能に支持する支持部材が設置される。エアロゾル発生体3と第2ケース部22との組み合わせが、交換可能なカートリッジを構成していてもよい。
 エアロゾル発生体3は、電源と吸い口22Mとの間に位置している。エアロゾル発生体3とケース2とは、それらの間に、給気口H1から吸い口22Mまで至る流路を形成している。なお、図1において、破線Fは、上記流路における空気またはエアロゾルの流れを表している。
 エアロゾル発生体3は、図1および図2に示すように、エアロゾル源貯蔵部31と、エアロゾル発生部32と、筒状体33と、ヒータ34とを含んでいる。エアロゾル発生部32は、ヒータ34により加熱され、エアロゾル発生部32に含まれる液状のエアロゾル源を霧化してエアロゾルを発生する役割を果たす。一方、エアロゾル源貯蔵部31は、エアロゾル源貯蔵部31に含まれる液状のエアロゾル源をエアロゾル発生部32へ供給する役割を果たす。エアロゾル源貯蔵部31は、ヒータ34により加熱されないことが好ましい。すなわち、エアロゾル源貯蔵部31に含まれる液状のエアロゾル源は、加熱により霧化されないことが好ましい。
 エアロゾル源貯蔵部31からエアロゾル発生部32へのエアロゾル源の供給は、例えば、中綿式ペンのインクの供給(すなわち、インクを含んだ中綿から、中綿と接触するペン先へのインクの供給)と同じ原理、すなわち毛細管現象に基づいて起こり得る。
 (エアロゾル源貯蔵部)
 エアロゾル源貯蔵部31は、液状の第1エアロゾル源と、第1エアロゾル源を吸収した第1吸収体とを含んでいる。ここで、「液状」は、香味吸引器1の使用温度域において液体であることを意味している。香味吸引器1の使用温度域は、例えば、-5~40℃である。
 第1エアロゾル源は、第1吸収体に吸収され、保持されている。第1エアロゾル源は、非燃焼加熱型香味吸引器で一般に使用されているエアロゾル源を使用することができる。第1エアロゾル源としては、例えば多価アルコールを使用することができる。多価アルコールの例として、グリセリン、プロピレングリコール、1,3-プロパンジオ-ル、1,3-ブタンジオール、またはこれらの任意の組み合わせが挙げられる。
 第1吸収体は、一例によれば成形体である。第1吸収体は、一方向に伸びた形状を有している。ここでは、第1吸収体は、高さ方向がZ方向と等しい柱状である。具体的には、第1吸収体は、高さ方向がZ方向と等しく、一方の底面が円錐状に突き出た略円柱形状を有している。
 第1吸収体は、たばこ材料を含んでいる。たばこ材料は、好ましくは、葉たばこを含む原料を特定の形状に成形することにより得られた成形品(以下、たばこ成形体ともいう)である。「葉たばこ」は、収穫されたたばこ葉を農家で乾燥させ、その後、原料工場で1年ないし数年熟成させ、その後、製造工場でブレンドおよび裁刻など種々の加工処理を経て、加熱型香味吸引器などの香味吸引器に配合される準備が整った乾燥済みのたばこ葉を指す。
 上述のとおり、第1吸収体は、好ましくは、たばこ成形体を含んでいる。第1吸収体は、より好ましくは、シートたばこ、たばこ顆粒、および、多糖類とたばこ粉末とを含有した混合物の多孔質体の1以上を含んでいる。
 「シートたばこ」は、葉たばこを含む原料をシート形状に成形することにより得られた成形品を指す。シートたばこは、抄造法、キャスト法、圧延法等の公知の方法で成形することができる。抄造法で成形された場合、たばこ成形体は「抄造シートたばこ」と呼ばれ、キャスト法で成形された場合、たばこ成形体は「スラリーシートたばこ」と呼ばれ、圧延法で成形された場合、たばこ成形体は「圧延シートたばこ」と呼ばれる。
 第1吸収体が、シートたばこを含む場合、第1吸収体はシートたばこの積層体であってもよい。あるいは、第1吸収体は、渦巻き状に巻かれたシートたばこであってもよいし、蛇腹状に折り畳まれたシートたばこであってもよい。あるいは、第1吸収体は、シートたばこを繊維状に裁断し、得られた繊維状の成形体を束ねることにより得られたもの(即ち、繊維状の成形体の束)であってもよい。
 「たばこ顆粒」は、葉たばこを含む原料を顆粒形状に成形することにより得られた成形品を指す。たばこ顆粒は、押出造粒、流動層造粒、噴霧乾燥等の公知の方法で成形することができる。
 「多糖類とたばこ粉末とを含有した混合物の多孔質体」は、多糖類で主に構成される多孔質体にたばこ粉末が組み込まれたものを指す。したがって、かかる多孔質体は、「たばこ粉末を含有した多糖類ベースの多孔質体」ということもできる。かかる多孔質体は、多糖類で主に構成される多孔質体を作製するための公知技術を利用して作製することができる(例えば、WO2011/117752を参照)。
 好ましくは、たばこ粉末を含有した多糖類ベースの多孔質体は、たばこ粉末を含む多糖類水溶液に不活性ガスを供給して、不活性ガスが供給された液体を調製し、不活性ガスが供給された液体を減圧して、発泡体を形成し、発泡体を減圧乾燥により乾燥させることにより作製することができる。多糖類として、例えば、寒天、ゲランガム、ペクチンなどを使用することができる。不活性ガスとして、例えば、CO2ガスを使用することができる。
 一例によれば、かかる多孔質体は、以下のとおり作製することができる。
(1)まず、たばこ粉末を準備した。具体的には、シガレット(メビウス・スーパーライト(日本たばこ産業株式会社))のたばこ刻部分を取り出して、ミルで破砕し、篩目500μm以下のものを選別した。
(2)粉寒天(和光純薬、試薬特級)4.4gを375mLの水の中で溶解させ、90℃になるまで温めた。
(3)たばこ粉末13.1gを寒天水溶液(90℃)に加えて分散させた。たばこ粉末を含む寒天水溶液は、45℃の温度および大気圧の条件下に置いた場合、0.02[Pa・s]の粘度を有する。
(4)たばこ粉末を含む寒天水溶液(90℃)を60℃まで冷却した。
(5)たばこ粉末を含む寒天水溶液(60℃)を密閉容器に入れ、寒天水溶液にCO2ガスを供給した。CO2ガスの供給は、エスプーマスパークリング(日本炭酸瓦斯株式会社)を用いて、寒天水溶液にCO2ガスをバブリングすることにより行った。CO2ガスの供給量は、16gで、CO2ガスの分圧は、1124kPaであった。
(6)CO2ガスが供給された液体を7分間振盪した。
(7)密閉容器を開放し、得られたムース状の発泡体をバッドに空けた。密閉容器の開放前と開放後の圧力差は、1124kPaであった。また、密閉容器を開放した直後、ムース状の発泡体は、45℃の温度を有していた。
(8)発泡体を30分以上放置してゲル化させ、その後、ゲル状の発泡体を室温(25℃)に戻るまで放置した。
(9)ゲル状の発泡体を冷凍庫にいれて凍結し、その後、含水量が約0になるまで(3日程度)乾燥させた。乾燥は、0.61kPa以下の減圧下で行った。これにより、「たばこ粉末を含有した多糖類ベースの多孔質体」を作製した。
 たばこ材料(好ましくはたばこ成形体)は、葉たばこやたばこ粉末に加えて、追加の成分を含んでいてもよい。追加の成分は、特に限定されず、たばこ成形体を成形するためのベース材料(骨格材料)であってもよいし、第1吸収体が第1エアロゾル源を吸収する能力を高める材料であってもよいし、香料や保存料などの添加剤であってもよい。
 たばこ成形体を成形するためのベース材料(骨格材料)は、上述のとおり、寒天、ゲランガム、ペクチンなどの多糖類を使用することができる。第1吸収体が第1エアロゾル源を吸収する能力を高める材料は、例えば、綿、パルプ、ガラス繊維などの吸収性材料が挙げられる。添加剤は、既存の香味吸引器において使用されている添加剤を使用することができる。
 第1吸収体は、たばこ材料(好ましくはたばこ成形体)に加えて、追加の成分を含んでいてもよい。追加の成分は、特に限定されず、上述の吸収性材料であってもよいし、上述の添加剤であってもよい。
 第1吸収体と第1エアロゾル源との混合は、第1吸収体を調製した後に両者を混合することにより行ってもよいし、第1吸収体を調製している途中で第1エアロゾル源を組み込むことにより行ってもよい。
 第1吸収体が、シートたばこまたはたばこ顆粒である場合、これは、葉たばこを熱水で抽出し、たばこ抽出液とたばこ残渣に分け、たばこ残渣をシート状または顆粒状に成形し、得られた成形体にたばこ抽出液を添加することにより調製することができる。この場合、第1吸収体と第1エアロゾル源との混合は、成形体にたばこ抽出液を添加した後に、第1エアロゾル源を更に添加することにより行ってもよいし、成形体にたばこ抽出液を添加する代わりに、たばこ抽出液と第1エアロゾル源との混合液を成形体に添加することにより行ってもよい。後者の方が、たばこ香味成分が第1エアロゾル源に溶出し易いため、好ましい。
 第1吸収体が、たばこ粉末を含有した多糖類ベースの多孔質体である場合、第1吸収体と第1エアロゾル源との混合は、たばこ粉末を原料に組み込んで多糖類ベースの多孔質体を作製した後に、多糖類ベースの多孔質体に第1エアロゾル源を添加することにより行ってもよい。あるいは、この場合、第1吸収体と第1エアロゾル源との混合は、たばこ粉末を熱水で抽出し、たばこ抽出液とたばこ残渣に分け、たばこ残渣を原料に組み込んで多糖類ベースの多孔質体を作製し、多糖類ベースの多孔質体に、たばこ抽出液と第1エアロゾル源との混合液を添加することにより行ってもよい。後者の方が、たばこ香味成分が第1エアロゾル源に溶出し易いため、好ましい。
 第1エアロゾル源の質量MAS1と第1吸収体の質量MAb1との比MAS1/MAb1は、例えば2~20、好ましくは5~15である。
 (エアロゾル発生部)
 エアロゾル発生部32は、エアロゾル源貯蔵部31に対して、Z方向に配列している。エアロゾル発生部32は、エアロゾル源貯蔵部31と接触している。
 エアロゾル発生部32は、液状の第2エアロゾル源と、第2エアロゾル源を吸収した第2吸収体とを含んでいる。ここで、「液状」は、香味吸引器1の使用温度域において液体であることを意味している。香味吸引器1の使用温度域は、上述のとおりである。
 第2エアロゾル源は、第2吸収体に吸収され、保持されている。第2エアロゾル源は、非燃焼加熱型香味吸引器で一般に使用されているエアロゾル源を使用することができる。第2エアロゾル源としては、例えば多価アルコールを使用することができる。多価アルコールの例として、グリセリン、プロピレングリコール、1,3-プロパンジオ-ル、1,3-ブタンジオール、またはこれらの任意の組み合わせが挙げられる。
 第2エアロゾル源は、第1エアロゾル源と同一であってもよく、異なっていてもよい。すなわち、第2エアロゾル源は、一般的には、第1エアロゾル源と同じ種類のものを使用することができるが、第1エアロゾル源と異なる種類のものを使用してもよい。第2エアロゾル源として第1エアロゾル源と異なる種類のものを使用した場合も、第1エアロゾル源および第2エアロゾル源は、同じ種類のものを使用した場合と同様の挙動を示すことができる。すなわち、まず、第2吸収体に保持された第2エアロゾル源が加熱に供され、その後、第2エアロゾル源の減少に伴って第1エアロゾル源が第2吸収体に吸収されて加熱に供され、その後も、第1エアロゾル源の第2吸収体への移動とエアロゾルの放出が継続的に起こる。
 第1エアロゾル源の質量MAS1と第2エアロゾル源の質量MAS2との合計MAS1+MAS2に占める第2エアロゾル源の質量MAS2の割合MAS2/(MAS1+MAS2)は、例えば0.005~0.1、好ましくは0.01~0.05である。
 第2吸収体は、第1吸収体と接触している。第2吸収体と第1吸収体とは、第1吸収体の長さ方向、ここではZ方向に配列している。
 第2吸収体は、一例によれば成形品である。第2吸収体は、第1吸収体とは別に成形し、必要であれば第1吸収体と接着剤などで接着してもよいし、あるいは第1吸収体と一体に成形してもよい。好ましくは、第1吸収体と第2吸収体とは、一体に成形されている。第1吸収体と第2吸収体とが一体に成形されている場合、第2吸収体が第1吸収体と接触している面積が大きくなり、第1吸収体に保持されている第1エアロゾル源を第2吸収体が吸い上げ易くなる。
 第1吸収体と第2吸収体との間の界面は、凹部または凸部を含んでいる。ここでは、第1吸収体と第2吸収体との間の界面は、第2吸収体へ向けて中央部が突き出ている。具体的には、第1吸収体と第2吸収体との間の界面は、第2吸収体へ向けて円錐状に突き出ている。なお、第2吸収体の上記界面とは反対側の面は、Z方向に対して略垂直な平面である。
 第2吸収体は、たばこ材料を含んでいる。このたばこ材料としては、第1吸収体のたばこ材料として説明したものを使用することができる。
 第2吸収体と第2エアロゾル源との混合は、第1吸収体と第1エアロゾル源との混合と同様に行うことができる。
 第2エアロゾル源の質量MAS2と第2吸収体の質量MAb2との比MAS2/MAb2は、例えば1~10、好ましくは2.5~7.5である。
 (エアロゾル源の吸い上げ速度)
 第2吸収体が第1エアロゾル源を吸い上げる速度V2は、第1吸収体が第1エアロゾル源を吸い上げる速度V1と比較してより高い。ここで、速度V1およびV2は、以下の方法によって得られる値である。
 第1吸収体または第2吸収体を所定の大きさ(すなわち、直径0.8cm×高さ3.0cmの円柱体)に整えてエアロゾル源を吸い上げる前の重量を測定する。その後、第1吸収体または第2吸収体を、エアロゾル源を溜めた容器の液面に対して第1吸収体または第2吸収体の高さ方向(すなわちZ方向)が垂直になるようにセットする。このとき、第1吸収体または第2吸収体は、エアロゾル源と接触していない。次いで、第1吸収体または第2吸収体(具体的には、一方の端面)をエアロゾル源の液面に接触させて、吸い上げ動作を開始する。一定時間(すなわち、120秒間)経過したのちに第1吸収体または第2吸収体を液面から離し、エアロゾル源を吸い上げた後の重量を測定する。重量増加と経過時間から速度V1およびV2を得る。
 速度V1は、例えば0.5~2.5mg/秒、好ましくは0.75~2mg/秒である。速度V2は、例えば1~5mg/秒、好ましくは1.5~4mg/秒である。速度V2と速度V1との差は、例えば0.5~2.5mg/秒、好ましくは0.75~2mg/秒である。速度V2と速度V1との比V2/V1は、例えば1.5~3.5、好ましくは2~3である。
 第1エアロゾル源の吸い上げ速度に関して上述した関係(すなわち、第2吸収体が第1エアロゾル源を吸い上げる速度V2は、第1吸収体が第1エアロゾル源を吸い上げる速度V1と比較してより高いという関係)は、例えば、以下の構成を変化させることにより実現することができる。
 第1吸収体および第2吸収体が抄造シートたばこである場合、叩解処理の程度(叩解度)を変化させることにより、第1エアロゾル源の吸い上げ速度を変化させることができる。抄造シートたばこは、葉たばこを熱水で抽出し、たばこ抽出液とたばこ残渣に分け、たばこ残渣に叩解処理を行い、その後、抄造工程によりシート状に成形し、得られたシート状の成形物にたばこ抽出液を添加することにより製造することができる。叩解度を高めると、たばこ繊維が切断されて絡まるとともに、シートたばこの密度が高まる。叩解度を高めた場合、繊維あるいは繊維間に形成される毛細管径(すなわち、毛細管現象を起こす空洞部の径)を実質的に小さくでき、シートたばこが毛細管現象によりエアロゾル源を吸い上げ易くなり、シートたばこがエアロゾル源を吸い上げる速度は増大する。
 第1吸収体および第2吸収体がたばこ顆粒である場合、たばこ顆粒の粒度を変化させることにより、第1エアロゾル源の吸い上げ速度を変化させることができる。たばこ顆粒は、葉たばこを熱水で抽出し、たばこ抽出液とたばこ残渣に分け、たばこ残渣を顆粒状に成形し、得られた顆粒状の成形物にたばこ抽出液を添加することにより製造することができる。たばこ顆粒の粒度を小さくすると、たばこ顆粒の比表面積が増大するとともに、一定容積に収容されるたばこ顆粒の数が増大する。たばこ顆粒の粒度を小さくした場合、顆粒間の空隙で形成される毛細管径(すなわち、毛細管現象を起こす空洞部の径)を実質的に小さくでき、たばこ顆粒の集合体が毛細管現象によりエアロゾル源を吸い上げ易くなり、たばこ顆粒がエアロゾル源を吸い上げる速度は増大する。
 第1吸収体および第2吸収体がシートたばこである場合や、第1吸収体および第2吸収体がたばこ顆粒である場合、原料に、綿、パルプ、ガラス繊維などの吸収性材料を加えて、シートたばこやたばこ顆粒を製造するか、あるいはシートたばこやたばこ顆粒を製造した後に、綿、パルプ、ガラス繊維などの吸収性材料を加えて混合することにより、エアロゾル源の吸い上げ能力を高めることができる。第2吸収体における吸収性材料の含有割合を増やすと、第2吸収体がエアロゾル源を吸収する能力が高まり、第2吸収体がエアロゾル源を吸い上げる速度は増大する。
 第1吸収体および第2吸収体が、たばこ粉末を含有した多糖類ベースの多孔質体である場合、多孔質体の多孔度(即ち、空洞部が総体積に占める割合)や孔の大きさを変化させることにより、第1エアロゾル源の吸い上げ速度を変化させることができる。多孔質体の多孔度を大きくし、孔の大きさを小さくした場合、多孔質体内部の毛細管(すなわち、毛細管現象を起こす空洞部)が実質的に増加するとともに毛細管径を実質的に小さくでき、多孔質体が毛細管現象によりエアロゾル源を吸い上げ易くなり、多孔質体がエアロゾル源を吸い上げる速度は増大する。
 第1吸収体および第2吸収体が、たばこ粉末を含有した多糖類ベースの多孔質体である場合、多孔質体の孔の等方性(即ち、孔の扁平率)を変化させることにより、第1エアロゾル源の吸い上げ速度を変化させることができる。扁平率が大きい孔を有する多孔質体を、孔の長径をエアロゾル源の移動方向と同じ向きになるように配置した場合、多孔質体内部の毛細管径(すなわち、毛細管現象を起こす空洞部の径)を実質的に小さく、かつ一様に配向でき、多孔質体がエアロゾル源を吸い上げる速度は増大する。
 第1エアロゾル源の吸い上げ速度を変化させるための上記構成は、適宜、組み合わせて採用してもよい。
 以上の説明では、第1吸収体および第2吸収体が、同一の形状を有するたばこ成形体である場合を例として説明した。第1吸収体および第2吸収体が、第1エアロゾル源の吸い上げ速度に関して上述した関係を満たしていれば、第1吸収体および第2吸収体が、同一の形状を有している必要はない。例えば、第1吸収体および第2吸収体が、シートたばこと多糖類ベースの多孔質体との組み合わせであってもよいし、たばこ顆粒と多糖類ベースの多孔質体との組み合わせであってもよい。
 (筒状体)
 筒状体33は、その長さ方向が、第1吸収体の長さ方向に対して平行である。筒状体33の長さ方向は、香味吸引器1の長さ方向であるY方向に平行である。筒状体33は、ケース2内であって、給気口H1とエアロゾル排出口H2との間に設置されている。
 筒状体33は、エアロゾル源貯蔵部31とエアロゾル発生部32とを収容している。エアロゾル源貯蔵部31とエアロゾル発生部32とは、筒状体33の長さ方向に配列している。ここでは、エアロゾル源貯蔵部31とエアロゾル発生部32とは、エアロゾル発生部32が給気口H1とエアロゾル源貯蔵部31との間に位置するように配列している。
 筒状体33の材料に、制限はない。筒状体33の材料としては、例えば、金属、ポリマー、またはセラミックを使用することができる。
 筒状体33は、双方の端で開口した無底筒状である。筒状体33は、一端でのみ開口した有底筒状であってもよい。この場合、エアロゾル源貯蔵部31とエアロゾル発生部32とは、筒状体33の開口とエアロゾル源貯蔵部31との間にエアロゾル発生部32が位置するように配置する。
 (ヒータ)
 ヒータ34は、エアロゾル発生部32を加熱する。ヒータ34は、ここでは、図3に示す加熱面HSを有している面状ヒータである。面状ヒータは、加熱面HSを有している支持体と、これに支持された抵抗発熱体とを含んでいる。
 支持体は、絶縁体または導体からなる。支持体が導体からなる場合、抵抗発熱体と支持体との間には絶縁層を介在させる。
 抵抗発熱体の両端には、接続端子が設けられている。これら接続端子は、上記の放電端子と接触している。抵抗発熱体は、電源回路から電力を供給されることにより発熱する。
 ヒータ34は、加熱面HSが第2吸収体を間に挟んで第1吸収体と向き合うように設置されている。好ましくは、ヒータ34は、加熱面HSが第2吸収体と接触するように設置される。ヒータ34は、エアロゾル発生部32を十分に高い温度まで加熱可能であれば、第2吸収体から離間していてもよい。
 ヒータ34は、加熱面HSに設けられた1以上の溝G1と、溝G1と連通した1以上の貫通孔H3とを有している。ここでは、ヒータ34には、互いに交差した2つの溝G1が加熱面HSに設けられるとともに、それらの交差部に1つの貫通孔H3が設けられている。溝G1を省略してもよく、貫通孔H3を省略してもよく、溝G1および貫通孔H3を省略してもよい。
 香味吸引器1は、後述するエアロゾルが通過するフィルタを更に含んでいてもよい。そのようなフィルタは、例えば、吸い口22M内またはその近傍に設置することができる。
 <1-2>動作
 上記の通り、香味吸引器1では、エアロゾル源貯蔵部31は第1エアロゾル源とたばこ材料とを含み、エアロゾル発生部32は第2エアロゾル源とたばこ材料とを含んでいる。エアロゾル源貯蔵部31において、第1エアロゾル源はたばこ材料から香味成分を抽出する。また、エアロゾル発生部32において、第2エアロゾル源はたばこ材料から香味成分を抽出する。即ち、第1および第2エアロゾル源は、香味成分を含んでいる。
 香味吸引器1の起動後にユーザがパフ動作を行うと、ケース2の外部空間から給気口H1を介してケース2内へ空気が流入する。吸気センサは、例えば、この空気の流入に伴う圧力変化に基づいてユーザのパフ動作の開始を検知する。制御部は、吸気センサがパフ動作の開始を検知した場合に、電源が放電端子への電力の供給を開始するように、電源回路の動作を制御する。これにより、ヒータ34の抵抗発熱体は発熱し、エアロゾル発生部32のうち少なくとも加熱面HS側の部分は、ヒータ34によって加熱される。
 また、ユーザのパフ動作に伴ってケース内へ流入した空気は、例えば、図1において破線Fで示す経路で、エアロゾル発生部32の近傍へ到達する。例えば、ケース内へ流入した空気の少なくとも一部は、ヒータ34に設けられた貫通孔H3を通ってエアロゾル発生部32へ到達し、次いで、溝G1を通って、ヒータとエアロゾル排出口H2とによって挟まれた空間の外側へ排出される。この過程で、空気の流れは、香味成分を含み、ヒータ34によって加熱されたエアロゾル源を同伴する。即ち、香味成分を含んだエアロゾルが発生する。
 このようにして生じたエアロゾルは、筒状体33と第2ケース部22との間の隙間を通って吸い口22Mへと到達し、エアロゾル排出口H2を介して香味吸引器1の外部へと排出される。
 ユーザがパフ動作を中断または停止すると、ケース2の外部空間からケース2内への給気口H1を介した空気の流入も停止する。吸気センサは、例えば、この空気の流入の停止に伴う圧力変化に基づいてユーザのパフ動作の中断または停止を検知する。制御部は、吸気センサがパフ動作の中断または停止を検知した場合に、電源が放電端子への電力の供給を停止するように、電源回路の動作を制御する。これにより、ヒータ34の抵抗発熱体は発熱を停止し、エアロゾル発生部32のうち少なくとも加熱面HS側の部分は降温する。これにより、エアロゾル源の消費を抑制する。
 このようにして、ユーザは、パフ動作毎に香味を楽しむことができる。
 <1-3>効果
 この香味吸引器1によると、第2吸収体が第1エアロゾル源を吸い上げる速度は、第1吸収体が第1エアロゾル源を吸い上げる速度と比較してより高い。このため、エアロゾル源貯蔵部31からエアロゾル発生部32へ第1エアロゾル源が継続的に供給され、十分な量のエアロゾルを継続して放出することができる。即ち、香味吸引器1によると、ユーザは、エアロゾル源貯蔵部31からエアロゾル発生部32への第1エアロゾル源の供給が継続している限り、十分な量のエアロゾルを継続して吸引して、十分な香味を楽しむことができる。これについて、以下に説明する。
 エアロゾル発生部32においてエアロゾル源が消費されると、エアロゾル源貯蔵部31はエアロゾル発生部32へ第1エアロゾル源を供給する。上記の通り、香味吸引器1では、第2吸収体が第1エアロゾル源を吸い上げる速度V2は、第1吸収体が第1エアロゾル源を吸い上げる速度V1と比較してより高い。それ故、エアロゾル源貯蔵部31からエアロゾル発生部32へ供給された第1エアロゾル源は、エアロゾル発生部32内で速やかに拡散する。従って、香味吸引器1では、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32のうちヒータ34の近傍の部分に、十分な量のエアロゾル源を存在させることができる。
 また、香味吸引器1では、第1吸収体と第2吸収体との間の界面は凹部または凸部を含んでいる。それ故、香味吸引器1では、第1吸収体と第2吸収体との接触面積が大きい。このような構造は、エアロゾル源貯蔵部31からエアロゾル発生部32への第1エアロゾル源の供給を促進する。
 更に、香味吸引器1では、第1吸収体と第2吸収体との間の界面は、第2吸収体へ向けて中央部が突き出ている。エアロゾル発生部32の径および体積を一定とした場合、この構造は、上記界面がZ方向に対して垂直な平面である構造と比較して、エアロゾル源貯蔵部31からエアロゾル発生部32のヒータ34側の面までの最短距離が短い。それ故、この構造は、エアロゾル発生部32のうちヒータ34の近傍の部分においてエアロゾル源の量が不十分となり難い。
 従って、香味吸引器1では、エアロゾル源貯蔵部31からエアロゾル発生部32への第1エアロゾル源の供給が継続している限り、エアロゾル発生部32のうちヒータ34の近傍の部分においてエアロゾル源の量が不十分となり難く、十分な量のエアロゾルを継続して放出することができる。即ち、ユーザは、エアロゾル源貯蔵部31からエアロゾル発生部32への第1エアロゾル源の供給が継続している限り、十分な量のエアロゾルを継続して吸引して、十分な香味を楽しむことができる。
 <1-4>変形例
 上記の香味吸引器1には、様々な変形が可能である。 
 図4は、第1変形例に係るエアロゾル発生体を概略的に示す断面図である。
 第1変形例に係る香味吸引器は、エアロゾル発生体3に図4の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。即ち、第1変形例では、第1吸収体と第2吸収体との界面を、円錐状とする代わりに、球面の一部に対応した形状としている。この構造を採用した香味吸引器も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。
 <2>第2実施形態
 図5は、本発明の第2実施形態に係る香味吸引器を概略的に示す断面図である。図6は、図5の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。
 第2実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第2実施形態に係る香味吸引器1のエアロゾル発生体3では、第1変形例と同様に、第1吸収体と第2吸収体との界面を、円錐状とする代わりに、球面の一部に対応した形状としている。
 また、このエアロゾル発生体3では、筒状体33は、エアロゾル発生部32により近い開口の径が、エアロゾル源貯蔵部31の位置における内径と比較してより小さい。
 そして、このエアロゾル発生体3では、第2吸収体はヒータ34の加熱面へ向けて先細りしており、この加熱面は、第1吸収体と比較して、第1吸収体の長さ方向に垂直な方向における寸法がより小さい。ここでは、第2吸収体のヒータ34側の面は、球面の一部に対応した形状を有している。
 なお、ヒータ34の加熱面は、筒状体33のうちエアロゾル発生部32により近い開口を形成している縁から離間している。それらの間の隙間の位置で、エアロゾル発生部32は部分的に露出している。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。
 また、この構造を採用した香味吸引器1では、エアロゾル発生部32のうちヒータ34の加熱面と接触している領域の面積が小さい。それ故、エアロゾル発生に伴うエアロゾル源の消費が、エアロゾル源貯蔵部31からエアロゾル発生部32へのエアロゾル源の供給を上回るのを防止できる。従って、この構造を採用した香味吸引器1では、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32のうちヒータ34の近傍の部分に、十分な量のエアロゾル源をより確実に存在させることができる。また、この構造によると、1回のパフ動作で消費されるエアロゾル源の量を少なくすることも可能である。
 <3>第3実施形態
 図7は、本発明の第3実施形態に係る香味吸引器を概略的に示す断面図である。図8は、図7の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。図9は、図8に示すエアロゾル発生体の他の断面図である。
 第3実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第3実施形態に係る香味吸引器1のエアロゾル発生体3では、ヒータ34は、第2吸収体を間に挟んで第1吸収体と向き合った線状の加熱部HPを有している。即ち、ここでは、ヒータ34は、線状の加熱部HPを有している線状ヒータである。線状ヒータは、例えば、絶縁体からなる支持体と、これに支持された抵抗発熱体とを含んでいる。抵抗発熱体は、直線状の部分を含んでいる。ヒータ34は、抵抗発熱体の直線状の部分を加熱部HPとして含んでいる。ここでは、加熱部HPの長さ方向は、Y方向に対して平行である。
 また、このエアロゾル発生体3では、筒状体33は、図8に示すように、Y方向に対して垂直な断面を観察した場合には、エアロゾル発生部32により近い開口の径が、エアロゾル源貯蔵部31の位置における内径と比較してより小さい。具体的には、Y方向に対して垂直な断面を観察した場合、筒状体33は、ヒータ34の近傍において、ヒータ34側へ向かって縮径している。また、この筒状体33は、図9に示すように、X方向に対して垂直な断面を観察した場合には、その長さ方向に沿って径が一定である。
 更に、このエアロゾル発生体3では、第2吸収体は、図8に示すように、加熱部HP側の面が、Y方向に垂直な断面を観察した場合には中央部が突き出ている。また、第2吸収体は、図9に示すように、加熱部HP側の面が、X方向に垂直な断面を観察した場合には平らである。ここでは、第2吸収体のうち加熱部HP側の部分は、切妻屋根形状を有している。即ち、ここでは、第2吸収体のうち加熱部HP側の表面は、逆向きに傾斜した2つの平面からなる。これら平面が形成している稜は、加熱部HPと接触している。また、第2吸収体のうち加熱部HP側の表面のうち、上記の稜を含んだ領域は、筒状体33の開口から外側へ突き出ている。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。また、この構造を採用した香味吸引器1では、第2実施形態に係る香味吸引器1と同様に、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32のうちヒータ34の近傍の部分に、十分な量のエアロゾル源をより確実に存在させることができる。更に、この構造によると、1回のパフ動作で消費されるエアロゾル源の量を少なくすることも可能である。
 <4>第4実施形態
 図10は、本発明の第4実施形態に係る香味吸引器を概略的に示す断面図である。図11は、図10の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。
 第4実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第4実施形態に係る香味吸引器1のエアロゾル発生体3では、筒状体33は、図11に示すように、エアロゾル発生部32により近い開口の径が、この開口から離れた位置における内径と比較してより小さい。具体的には、筒状体33は、ヒータ34の近傍において、ヒータ34側へ向かって縮径している。
 また、このエアロゾル発生体3では、筒状体33は、エアロゾル源貯蔵部31を収容しているが、エアロゾル発生部32を収容していない。第2吸収体は、第1吸収体と第2吸収体との配列方向に伸びた形状を有しており、その径は、上記開口の径とほぼ等しい。第2吸収体は、この開口の位置で、第1吸収体と接触するとともに、筒状体33の外側へ突き出ている。そして、第1吸収体と第2吸収体との界面は、上記配列方向に対して垂直な平面である。
 更に、このエアロゾル発生体3では、ヒータ34は、エアロゾル発生部32の周りに巻かれたコイル状のヒータである。コイル状ヒータは、例えば、コイル状の抵抗発熱体を含んでいる。コイル状ヒータは、抵抗発熱体を被覆した絶縁層を更に含むことができる。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。また、この構造を採用した香味吸引器1では、第2実施形態に係る香味吸引器1と同様に、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32のうちヒータ34の近傍の部分に、十分な量のエアロゾル源をより確実に存在させることができる。更に、この構造によると、1回のパフ動作で消費されるエアロゾル源の量を少なくすることも可能である。
 また、この構造を採用した香味吸引器1では、ヒータ34は、コイル状であり、エアロゾル発生部32の周りに巻かれている。このような構成によると、エアロゾル発生部32を均一に加熱することができるのに加え、エアロゾル発生部32に対して空気を効率的に供給することができる。従って、この構造によると、エアロゾルを効率的に発生させることができる。
 上記の香味吸引器1には、様々な変形が可能である。 
 図12は、第2変形例に係るエアロゾル発生体を概略的に示す断面図である。図13は、第3変形例に係るエアロゾル発生体を概略的に示す断面図である。
 第2変形例に係る香味吸引器は、エアロゾル発生体12に図12の構造を採用したこと以外は、図10および図11を参照しながら説明した香味吸引器1と同様である。即ち、第2変形例では、第1吸収体と第2吸収体との界面を、平面状とする代わりに、円錐状としている。
 第3変形例に係る香味吸引器は、エアロゾル発生体12に図13の構造を採用したこと以外は、図10および図11を参照しながら説明した香味吸引器1と同様である。即ち、第3変形例では、第1吸収体と第2吸収体との界面を、平面状とする代わりに、球面の一部に対応した形状としている。
 これら構造を採用した香味吸引器も、図11および図12を参照しながら説明した香味吸引器1と同様の効果を奏し得る。また、図11および図12の構造では、図10の構造と比較して、第1吸収体と第2吸収体との接触面積が大きい。これら構造は、エアロゾル源貯蔵部31からエアロゾル発生部32への第1エアロゾル源の供給を促進するうえで有利である。
 <5>第5実施形態
 図14は、本発明の第5実施形態に係る香味吸引器を概略的に示す断面図である。図15は、図14の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。図16は、図15に示すエアロゾル発生体の上面図である。
 第5実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第5実施形態に係る香味吸引器1のエアロゾル発生体3では、第1吸収体は柱状であり、第2吸収体は第1吸収体を取り囲んでいる。ここでは、第1吸収体は、高さ方向がZ方向に平行な円柱状である。第2吸収体は、円柱の側面を覆うように第1吸収体を取り囲んでいる。
 また、このエアロゾル発生体3は、筒状体33を含んでいない。その代わりに、エアロゾル発生体3は、カバー体35を含んでいる。カバー体35は、第1吸収体からなる柱体の両底面を被覆している。カバー体35の材料としては、例えば、金属、ポリマー、またはセラミックを使用することができる。カバー体35は省略することができる。
 更に、このエアロゾル発生体3では、ヒータ34は、第2吸収体を間に挟んで第1吸収体を取り囲んだ線状のヒータである。線状ヒータは、例えば、第2吸収体を間に挟んで第1吸収体を取り囲んだ線状の抵抗発熱体を含んでいる。線状ヒータは、抵抗発熱体を被覆した絶縁層を更に含むことができる。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。
 また、この構造を採用した香味吸引器1では、第1吸収体と第2吸収体との接触面積が大きい。それ故、エアロゾル源貯蔵部31からエアロゾル発生部32へエアロゾル源を効率的に供給することができる。従って、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32に、十分な量のエアロゾル源をより確実に存在させることができる。
 更に、この構造を採用した香味吸引器1では、ヒータ34は、線状であり、エアロゾル発生部32の周りに巻かれている。このような構成によると、エアロゾル発生部32に対して空気を効率的に供給することができる。従って、この構造によると、エアロゾルを効率的に発生させることができる。
 <6>第6実施形態
 図17は、本発明の第6実施形態に係る香味吸引器を概略的に示す断面図である。図18は、図17の香味吸引器が含んでいるエアロゾル発生体を概略的に示す断面図である。図19は、図18に示すエアロゾル発生体の上面図である。
 第6実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第6実施形態に係る香味吸引器1のエアロゾル発生体3では、第5実施形態に係る香味吸引器1のエアロゾル発生体3と同様に、第1吸収体は柱状であり、第2吸収体は第1吸収体を取り囲んでいる。ここでは、第1吸収体は、高さ方向がZ方向に平行な円柱状である。第2吸収体は、円柱の側面を覆うように第1吸収体を取り囲んでいる。
 また、このエアロゾル発生体3は、筒状体33を含んでいない。その代わりに、エアロゾル発生体3は、第5実施形態に係る香味吸引器1のエアロゾル発生体3と同様に、カバー体35を含んでいる。カバー体35は、第1吸収体からなる柱体の両底面を被覆している。カバー体35は省略することができる。
 更に、このエアロゾル発生体3では、ヒータ34は、第2吸収体を間に挟んで第1吸収体を取り囲んだ筒状のヒータである。筒状ヒータは、例えば、絶縁体からなり、内面を加熱面として有する筒状の支持体と、これに支持された抵抗発熱体とを含んでいる。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。
 また、この構造を採用した香味吸引器1では、第1吸収体と第2吸収体との接触面積が大きい。それ故、エアロゾル源貯蔵部31からエアロゾル発生部32へエアロゾル源を効率的に供給することができる。従って、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32に、十分な量のエアロゾル源をより確実に存在させることができる。
 更に、この構造を採用した香味吸引器1では、ヒータ34は、筒状であり、エアロゾル発生部32の周りに設置されている。このような構成によると、エアロゾル発生部32を効率的に加熱することができる。従って、この構造によると、エアロゾルを効率的に発生させることができる。
 上記の香味吸引器1には、様々な変形が可能である。 
 図20は、第4変形例に係るエアロゾル発生体を概略的に示す断面図である。図21は、図20に示すエアロゾル発生体の上面図である。
 第4変形例に係る香味吸引器は、エアロゾル発生体12に図20および図21の構造を採用したこと以外は、図17~図19を参照しながら説明した香味吸引器1と同様である。即ち、第4変形例では、ヒータ34の内面、即ち加熱面は、ヒータ34が形成している筒の一方の開口から他方の開口まで各々が伸びた1以上の溝G2を有している。ここでは、ヒータ34の加熱面には、Z方向へ各々が伸びた複数の溝G2が設けられている。
 この構造を採用した香味吸引器も、図20および図21を参照しながら説明した香味吸引器1と同様の効果を奏し得る。また、構造を採用した香味吸引器では、空気は、溝G2の位置でエアロゾル発生部32と接触可能である。従って、この構造を採用した香味吸引器でも、エアロゾルを効率的に発生させることができる。
 <7>第7実施形態
 図22は、本発明の第7実施形態に係る香味吸引器を概略的に示す断面図である。図23は、図22に示す香味吸引器の他の断面図である。
 第7実施形態に係る香味吸引器1は、エアロゾル発生体3に以下の構造を採用したこと以外は、図1~図3を参照しながら説明した香味吸引器1と同様である。
 即ち、第7実施形態に係る香味吸引器1のエアロゾル発生体3では、第6実施形態に係る香味吸引器1のエアロゾル発生体3と同様に、第1吸収体は柱状であり、第2吸収体は第1吸収体を取り囲んでいる。ここでは、第1吸収体は円柱状であり、第2吸収体は、円柱の側面を覆うように第1吸収体を取り囲んでいる。但し、ここでは、第1吸収体からなる円柱の高さ方向は、Y方向に平行である。
 また、このエアロゾル発生体3は、筒状体33を含んでいない。その代わりに、エアロゾル発生体3は、第6実施形態に係る香味吸引器1のエアロゾル発生体3と同様に、カバー体35を含んでいる。カバー体35は、第1吸収体からなる柱体の両底面を被覆している。カバー体35は省略することができる。
 更に、このエアロゾル発生体3では、第6実施形態に係る香味吸引器1のエアロゾル発生体3と同様に、ヒータ34は、第2吸収体を間に挟んで第1吸収体を取り囲んだ筒状のヒータである。
 なお、参照符号5は、エアロゾル発生体3を着脱可能に支持する支持部材である。支持部材5には、ヒータ34が含んでいる抵抗発熱体の接続端子と接触して、これら接続端子を上記の放電端子へ接続する端子が設けられている。
 この構造を採用した香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1と同様の効果を奏し得る。
 また、この構造を採用した香味吸引器1では、第1吸収体と第2吸収体との接触面積が大きい。それ故、エアロゾル源貯蔵部31からエアロゾル発生部32へエアロゾル源を効率的に供給することができる。従って、エアロゾル源のほぼ全量が消費されるまで、エアロゾル発生部32に、十分な量のエアロゾル源をより確実に存在させることができる。
 更に、この構造を採用した香味吸引器1では、ヒータ34は、筒状であり、エアロゾル発生部32の周りに設置されている。このような構成によると、エアロゾル発生部32を効率的に加熱することができる。従って、この構造によると、エアロゾルを効率的に発生させることができる。
 <8>他の変形例
 上述した実施形態および変形例に記載した特徴の1以上は、他の実施形態または変形例に記載した特徴と組み合わせることができる。また、発明の概要に記載した各発明には、上述した実施形態および変形例に記載した特徴の1以上を組み合わせることができる。例えば、図20および図21を参照しながら説明した溝G2は、図22および図23の香味吸引器1が含んでいるヒータ34に設けてもよい。
 また、上述した実施形態および変形例に係る香味吸引器の各々では、ヒータ34はカートリッジの一部である。カートリッジは、ヒータ34を含んでいなくてもよい。即ち、ヒータ34は、電源ユニットの一部であってもよい。なお、この場合、ヒータ34は交換可能であることが好ましい。
 また、ヒータ34として、抵抗発熱体を使用するものに代えて、誘導加熱を利用するものを使用してもよい。例えば、図2、図4、図6および図8に示すヒータ34並びに図15、図18および図20に示すヒータ34として、抵抗発熱体を使用するものに代えて、サセプタと、これを囲むように設置された電磁誘導コイルとを含んだものを使用して、誘導加熱によってエアロゾルを発生させるようにしてもよい。その場合、筒状体33には誘導加熱されない材質が選ばれる。誘導加熱を利用するヒータを使用した変形例を、図24および図25に示す。
 図24は、他の変形例に係る香味吸引器を概略的に示す断面図である。 
 図24に示す香味吸引器1は、以下の点を除き、図1~図3を参照しながら説明した香味吸引器1と同様である。即ち、図24に示す香味吸引器1では、筒状体33は、絶縁体などの誘導加熱されない材料からなる。そして、図24に示す香味吸引器1では、ヒータ34は、電磁誘導コイル34aと、誘電体層34bと、サセプタ34cとを含んでいる。
 サセプタ34cは、導体、例えば金属からなる。サセプタ34cは、図1~図3を参照しながら説明したヒータ34と同様の外形を有している。即ち、サセプタ34cは、略円盤形状を有している。サセプタ34cの一方の主面は加熱面であり、サセプタ34cは、加熱面が第2吸収体を間に挟んで第1吸収体と向き合うように設置されている。好ましくは、サセプタ34cは、加熱面が第2吸収体と接触するように設置される。
 また、サセプタ34cは、図3を参照しながら説明した、1以上の溝G1と、溝G1と連通した1以上の貫通孔H3とを有している。ここでは、サセプタ34cには、互いに交差した2つの溝が加熱面に設けられるとともに、それらの交差部に1つの貫通孔が設けられている。溝を省略してもよく、貫通孔を省略してもよく、溝および貫通孔を省略してもよい。
 電磁誘導コイル34aは、ケース2内に設置されている。電磁誘導コイル34aは、サセプタ34cを取り囲むとともに、サセプタ34cから離間している。
 誘電体層34bは、電磁誘導コイル34aを被覆している。電磁誘導コイル34aと誘電体層34bとの組み合わせは、筒形状を有しており、サセプタ34cと、筒状体33のサセプタ34c側の部分とを取り囲むとともに、それらから離間している。
 図25は、更に他の変形例に係る香味吸引器を概略的に示す断面図である。 
 図25に示す香味吸引器1は、以下の点を除き、図17~図19を参照しながら説明した香味吸引器1と同様である。即ち、図25に示す香味吸引器1では、図24に示す香味吸引器1と同様に、ヒータ34は、電磁誘導コイル34aと、誘電体層34bと、サセプタ34cとを含んでいる。
 なお、図25のサセプタ34cは、図24のサセプタ34cとは異なり、円筒形状を有している。このサセプタ34cでは、円筒の内面が加熱面である。サセプタ34cは、加熱面が第2吸収体を間に挟んで第1吸収体と向き合うように設置されている。好ましくは、サセプタ34cは、加熱面が第2吸収体の外面と接触するように設置される。
 図24および図25に示す香味吸引器1では、電磁誘導コイル34aへ通電すると、サセプタ34cは誘導加熱によって発熱し、サセプタ34cはエアロゾル発生部32を加熱する。即ち、図24を参照しながら説明した香味吸引器1および図25を参照しながら説明した香味吸引器1は、ヒータ34の構成が異なること以外は、それぞれ、図1~図3を参照しながら説明した香味吸引器1および図17~図19を参照しながら説明した香味吸引器1と同様の構造を有している。従って、これら香味吸引器1も、図1~図3を参照しながら説明した香味吸引器1および図17~図19を参照しながら説明した香味吸引器1と同様の効果を奏する。
 なお、図24および図25に示す香味吸引器1では、ヒータ34は、カートリッジの一部であってもよく、電源ユニットの一部であってもよい。或いは、サセプタ34cはカートリッジの一部であり、電磁誘導コイル34aおよび誘電体層34bは電源ユニットの一部であってもよい。
 1…香味吸引器、2…ケース、3…エアロゾル発生体、4…電源部、5…支持部材、21…第1ケース部、22…第2ケース部、22M…吸い口、31…エアロゾル源貯蔵部、32…エアロゾル発生部、33…筒状体、34…ヒータ、34a…電磁誘導コイル、34b…誘電体層、34c…サセプタ、35…カバー体、F…流れ、G1…溝、G2…溝、H1…給気口、H2…エアロゾル排出口、H3…貫通孔、HP…加熱部、HS…加熱面。
 

Claims (23)

  1.  液状の第1エアロゾル源と、前記第1エアロゾル源を吸収した第1吸収体とを含み、前記第1吸収体は、たばこ材料を含んだエアロゾル源貯蔵部と、
     液状の第2エアロゾル源と、前記第2エアロゾル源を吸収した第2吸収体とを含み、前記第2吸収体は、たばこ材料を含み、前記第1吸収体と接触したエアロゾル発生部と
    を備え、
     前記第2吸収体が前記第1エアロゾル源を吸い上げる速度は、前記第1吸収体が前記第1エアロゾル源を吸い上げる速度と比較してより高いエアロゾル発生体。
  2.  前記第1吸収体および前記第2吸収体の少なくとも一方は、シートたばこ、たばこ顆粒、および、多糖類とたばこ粉末とを含有した混合物の多孔質体の1以上を含んだ請求項1に記載のエアロゾル発生体。
  3.  前記第1吸収体と前記第2吸収体とは一体に成形されている請求項1または2に記載のエアロゾル発生体。
  4.  前記第1吸収体と前記第2吸収体との間の界面は凹部または凸部を含んだ請求項1~3の何れか1項に記載のエアロゾル発生体。
  5.  前記エアロゾル発生部を加熱するヒータを更に備えた請求項1~4の何れか1項に記載のエアロゾル発生体。
  6.  前記第1吸収体は一方向に伸びた形状を有し、前記第1吸収体と前記第2吸収体とは前記第1吸収体の長さ方向に配列した請求項1~3の何れか1項に記載のエアロゾル発生体。
  7.  前記第1吸収体と前記第2吸収体との間の界面は、前記第2吸収体へ向けて中央部が突き出た請求項6に記載のエアロゾル発生体。
  8.  前記エアロゾル源貯蔵部と前記エアロゾル発生部とを収容した筒状体を更に備え、前記エアロゾル源貯蔵部と前記エアロゾル発生部とは、前記筒状体の長さ方向に配列した請求項6または7に記載のエアロゾル発生体。
  9.  前記筒状体は、前記エアロゾル発生部により近い開口の径が、前記エアロゾル源貯蔵部の位置における内径と比較してより小さい請求項8に記載のエアロゾル発生体。
  10.  前記第2吸収体を間に挟んで前記第1吸収体と向き合った加熱面を有するヒータを更に備えた請求項6~9の何れか1項に記載のエアロゾル発生体。
  11.  前記ヒータは、前記加熱面に設けられた1以上の溝、前記1以上の溝と連通した1以上の貫通孔、またはそれらの双方を有している請求項10に記載のエアロゾル発生体。
  12.  前記第2吸収体は前記加熱面へ向けて先細りしており、前記加熱面は、前記第1吸収体と比較して、前記第1吸収体の前記長さ方向に垂直な方向における寸法がより小さい請求項10または11に記載のエアロゾル発生体。
  13.  前記第2吸収体を間に挟んで前記第1吸収体と向き合った線状の加熱部を有するヒータを更に備えた請求項6~9の何れか1項に記載のエアロゾル発生体。
  14.  前記第2吸収体は、前記加熱部側の面が、前記第1吸収体の前記長さ方向および前記加熱部の長さ方向に平行な断面では平らであり、前記第1吸収体の前記長さ方向に平行であり且つ前記加熱部の前記長さ方向に垂直な断面では中央部が突き出ている請求項13に記載のエアロゾル発生体。
  15.  前記エアロゾル源貯蔵部を収容した筒状体を更に備え、前記筒状体は、前記エアロゾル発生部により近い開口の径が、前記開口から離れた位置における内径と比較してより小さく、前記エアロゾル発生部は、前記開口の位置で前記筒状体の外側へ突き出ている請求項6または7に記載のエアロゾル発生体。
  16.  前記エアロゾル発生部の周りに巻かれたコイル状のヒータを更に備えた請求項15に記載のエアロゾル発生体。
  17.  前記第1吸収体は柱状であり、前記第2吸収体は、前記第1吸収体を取り囲んだ請求項1~4の何れか1項に記載のエアロゾル発生体。
  18.  前記第2吸収体を間に挟んで前記第1吸収体を取り囲んだ線状のヒータを更に備えた請求項17に記載のエアロゾル発生体。
  19.  前記第2吸収体を間に挟んで前記第1吸収体を取り囲んだ筒状のヒータを更に備えた請求項17に記載のエアロゾル発生体。
  20.  前記ヒータの内面は、前記ヒータの一方の開口から前記ヒータの他方の開口まで各々が伸びた1以上の溝を有している請求項19に記載のエアロゾル発生体。
  21.  請求項5、10~14、16および18~20の何れか1項に記載のエアロゾル発生体と、
     前記ヒータへ電力を供給する電源と、
     一端に吸い口を有し、前記エアロゾル発生体および前記電源を収容したケースと
    を備えた香味吸引器。
  22.  前記エアロゾル発生体は、前記電源と前記吸い口との間に位置した請求項21に記載の香味吸引器。
  23.  前記ケースは、前記電源と前記エアロゾル発生体との間の位置に給気口を有し、前記エアロゾル発生体と前記ケースとは、それらの間に、前記給気口から前記吸い口まで至る流路を形成している請求項22に記載の香味吸引器。
PCT/JP2021/018848 2021-05-18 2021-05-18 エアロゾル発生体および香味吸引器 WO2022244114A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180098125.0A CN117279530A (zh) 2021-05-18 2021-05-18 气溶胶发生体及香味吸取器
KR1020237035075A KR20230157438A (ko) 2021-05-18 2021-05-18 에어로졸 발생체 및 향미 흡인기
JP2023522055A JPWO2022244114A1 (ja) 2021-05-18 2021-05-18
PCT/JP2021/018848 WO2022244114A1 (ja) 2021-05-18 2021-05-18 エアロゾル発生体および香味吸引器
EP21940731.9A EP4342315A1 (en) 2021-05-18 2021-05-18 Aerosol generator and flavor aspirator
US18/484,004 US20240041106A1 (en) 2021-05-18 2023-10-10 Aerosol generator and flavor aspirator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018848 WO2022244114A1 (ja) 2021-05-18 2021-05-18 エアロゾル発生体および香味吸引器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/484,004 Continuation US20240041106A1 (en) 2021-05-18 2023-10-10 Aerosol generator and flavor aspirator

Publications (1)

Publication Number Publication Date
WO2022244114A1 true WO2022244114A1 (ja) 2022-11-24

Family

ID=84141453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018848 WO2022244114A1 (ja) 2021-05-18 2021-05-18 エアロゾル発生体および香味吸引器

Country Status (6)

Country Link
US (1) US20240041106A1 (ja)
EP (1) EP4342315A1 (ja)
JP (1) JPWO2022244114A1 (ja)
KR (1) KR20230157438A (ja)
CN (1) CN117279530A (ja)
WO (1) WO2022244114A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117752A2 (en) 2010-03-26 2011-09-29 Philip Morris Products S.A. Biopolymer foams as filters for smoking articles
WO2013034454A1 (en) 2011-09-06 2013-03-14 British American Tobacco (Investments) Limited Heating smokeable material
WO2018122978A1 (ja) * 2016-12-27 2018-07-05 日本たばこ産業株式会社 加熱型香味吸引器
WO2019145676A1 (en) * 2018-01-24 2019-08-01 Nicoventures Trading Limited Vapour provision system
US20200154783A1 (en) * 2018-11-20 2020-05-21 Altria Client Services Llc Vaporizer assembly and/or components thereof
JP2020124229A (ja) * 2014-02-10 2020-08-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システムのためのカートリッジ
JP2020536565A (ja) * 2017-10-13 2020-12-17 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 吸入器用の気化器ユニット、特に電子たばこ製品用の気化器ユニット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034454A (ja) 2011-08-10 2013-02-21 Kosumo:Kk 果物及び野菜の熟成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011117752A2 (en) 2010-03-26 2011-09-29 Philip Morris Products S.A. Biopolymer foams as filters for smoking articles
WO2013034454A1 (en) 2011-09-06 2013-03-14 British American Tobacco (Investments) Limited Heating smokeable material
JP2020124229A (ja) * 2014-02-10 2020-08-20 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システムのためのカートリッジ
WO2018122978A1 (ja) * 2016-12-27 2018-07-05 日本たばこ産業株式会社 加熱型香味吸引器
JP2020536565A (ja) * 2017-10-13 2020-12-17 ハウニ・マシイネンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 吸入器用の気化器ユニット、特に電子たばこ製品用の気化器ユニット
WO2019145676A1 (en) * 2018-01-24 2019-08-01 Nicoventures Trading Limited Vapour provision system
US20200154783A1 (en) * 2018-11-20 2020-05-21 Altria Client Services Llc Vaporizer assembly and/or components thereof

Also Published As

Publication number Publication date
CN117279530A (zh) 2023-12-22
KR20230157438A (ko) 2023-11-16
EP4342315A1 (en) 2024-03-27
US20240041106A1 (en) 2024-02-08
JPWO2022244114A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
EP3220760B1 (en) Apparatus for functionalization of aerosols from non-combustible smoking articles
JP6705001B2 (ja) 非燃焼型香味吸引器
CN110113959B (zh) 加热型香味吸取器
EP3220761B1 (en) Method, composition and apparatus for functionalization of aerosols from non combustible smoking articles
CN105636467B (zh) 用于电子烟制品的碳传导衬底
AU2019478907B2 (en) Ultrasonic mist inhaler
JPWO2003056949A1 (ja) 喫煙物品
US20240114960A1 (en) Ultrasonic mist inhaler
KR20220141281A (ko) 초음파 미스트 흡입장치
WO2022244114A1 (ja) エアロゾル発生体および香味吸引器
RU2805104C1 (ru) Устройство доставки аэрозоля с множеством путей для доставки аэрозоля
WO2023248461A1 (ja) 霧化ユニット、吸引具、及び霧化ユニットの製造方法
KR20230151440A (ko) 다공성 비드를 포함하는 에어로졸 매질 집합체 및 이를 포함하는 가열식 흡연 물품
KR20240025899A (ko) 다공성 세라믹 시트 필터를 포함하는 세라믹 무화기
KR20240080203A (ko) 가열식 흡연 물품 및 이를 위한 에어로졸 발생장치
TW202315532A (zh) 尼古丁吸入器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522055

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237035075

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035075

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180098125.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021940731

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021940731

Country of ref document: EP

Effective date: 20231218