WO2022244091A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2022244091A1
WO2022244091A1 PCT/JP2021/018753 JP2021018753W WO2022244091A1 WO 2022244091 A1 WO2022244091 A1 WO 2022244091A1 JP 2021018753 W JP2021018753 W JP 2021018753W WO 2022244091 A1 WO2022244091 A1 WO 2022244091A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
refrigerant
spatial
heat exchange
confluence
Prior art date
Application number
PCT/JP2021/018753
Other languages
French (fr)
Japanese (ja)
Inventor
祥太 飯塚
崇史 畠田
亮輔 是澤
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2021/018753 priority Critical patent/WO2022244091A1/en
Priority to JP2023522035A priority patent/JPWO2022244091A1/ja
Priority to CN202180097989.0A priority patent/CN117321373A/en
Publication of WO2022244091A1 publication Critical patent/WO2022244091A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates

Definitions

  • Embodiments of the present invention relate to heat exchangers and refrigeration cycle devices.
  • a header-type heat exchanger has a plurality of heat exchange tubes and a header.
  • the heat exchange tubes have coolant channels. Headers are provided at the ends of the heat exchange tubes.
  • the header has channels through which the coolant flows. For example, when heat exchange tubes are arranged in a plurality of rows, heat load differences may occur among the plurality of heat exchange tubes. In this case, there is a possibility that the heat exchange efficiency of the heat exchanger may be lowered due to an excessive heat load on some of the heat exchange tubes.
  • the problem to be solved by the present invention is to provide a heat exchanger and a refrigeration cycle device that can improve heat exchange efficiency.
  • the heat exchanger of the embodiment has a plurality of heat exchange tubes and headers.
  • the heat exchange tube is formed with a refrigerant channel through which a refrigerant flows.
  • the headers are provided at the ends of the heat exchange tubes. At least one of the headers is formed with a confluence/distribution channel.
  • the confluence/distribution channel merges the refrigerant from two or more of the plurality of heat exchange tubes and distributes it to the other two or more of the heat exchange tubes.
  • FIG. 4 is a plan view of an intermediate plate of the first header of the heat exchanger of the first embodiment; The top view of the intermediate plate of the 1st header of the heat exchanger of 2nd Embodiment. The top view of the intermediate plate of the 1st header of the heat exchanger of 3rd Embodiment. The top view of the intermediate plate of the 1st header of the heat exchanger of 4th Embodiment.
  • FIG. 11 is an enlarged plan view of the intermediate plate of the first header of the heat exchanger of the fourth embodiment;
  • FIG. 4 is an enlarged plan view of the intermediate plate of the first header of the heat exchanger of the comparative form;
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to an embodiment.
  • the refrigeration cycle device 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger (heat exchanger) 4, an expansion device 5, and an indoor heat exchanger (heat exchanger) 6. And prepare. Components of the refrigeration cycle apparatus 1 are connected by piping 7 .
  • the flow direction of the refrigerant (heat medium) during the cooling operation is indicated by solid arrows.
  • the flow direction of the refrigerant during heating operation is indicated by a dashed arrow.
  • the compressor 2 includes a compressor body 2A and an accumulator 2B.
  • the compressor main body 2A compresses the low-pressure gaseous refrigerant taken thereinto into a high-temperature, high-pressure gaseous refrigerant.
  • the accumulator 2B separates the gas-liquid two-phase refrigerant and supplies the gas refrigerant to the compressor body 2A.
  • the four-way valve 3 reverses the flow direction of the refrigerant to switch between cooling operation and heating operation.
  • the refrigerant flows through the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion device 5, and the indoor heat exchanger 6 in this order.
  • the outdoor heat exchanger 4 functions as a condenser.
  • the indoor heat exchanger 6 functions as an evaporator.
  • the refrigerant flows through the compressor 2, the four-way valve 3, the indoor heat exchanger 6, the expansion device 5, and the outdoor heat exchanger 4 in this order.
  • the indoor heat exchanger 6 functions as a condenser.
  • the outdoor heat exchanger 4 functions as an evaporator.
  • the condenser converts the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 2 into a high-pressure liquid refrigerant by radiating heat to the outside air and condensing it.
  • the expansion device 5 reduces the pressure of the high-pressure liquid refrigerant sent from the condenser to convert it into a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the evaporator absorbs heat from the outside air and evaporates the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5, thereby converting it into a low-pressure gaseous refrigerant.
  • the refrigerant which is the working fluid, circulates while changing its phase between gas refrigerant and liquid refrigerant.
  • the refrigerant releases heat during the phase change from gas refrigerant to liquid refrigerant.
  • the refrigerant absorbs heat during the phase change from the liquid refrigerant to the gas refrigerant.
  • the refrigerating cycle device 1 performs heating, cooling, defrosting, etc. by utilizing the heat radiation or heat absorption of the refrigerant.
  • FIG. 2 is a perspective view of the heat exchanger of the first embodiment. As shown in FIG. 2, this heat exchanger is used as one or both of the outdoor heat exchanger 4 and the indoor heat exchanger 6 (see FIG. 1) of the refrigeration cycle apparatus 1.
  • this heat exchanger is used as one or both of the outdoor heat exchanger 4 and the indoor heat exchanger 6 (see FIG. 1) of the refrigeration cycle apparatus 1.
  • the heat exchanger of the embodiment is used as the outdoor heat exchanger 4 (see FIG. 1) of the refrigeration cycle device 1 will be described as an example.
  • the positional relationship of the heat exchanger 4 is provisionally defined in line with FIGS.
  • the X, Y and Z directions are defined as follows.
  • the Z direction is the longitudinal direction (extending direction) of the first header and the second header.
  • the +Z direction is the upward direction (height direction).
  • the X direction is the central axis direction (extending direction) of the heat exchange tubes.
  • the X direction is horizontal.
  • the +X direction is the direction from the second header to the first header.
  • the Y direction is the direction perpendicular to the X and Z directions.
  • the Y direction is horizontal.
  • a YZ plane is a plane formed by the Y direction and the Z direction.
  • the heat exchanger 4 has a first header 10 , a second header 20 and a plurality of heat exchange tubes (heat transfer tubes) 30 .
  • the first header 10 is connected to the +X direction end of the heat exchange tube 30 .
  • the second header 20 is connected to the end of the heat exchange tube 30 in the -X direction.
  • the first header 10 and the second header 20 are formed in a flat plate shape parallel to the YZ plane.
  • the first header 10 and the second header 20 are rectangular when viewed from the X direction.
  • the shape of the first header 10 and the second header 20 is a rectangular shape whose longitudinal direction is along the Z direction.
  • the first header 10 and the second header 20 are made of a material with high thermal conductivity and low specific gravity. Metals such as aluminum and aluminum alloys are examples of "materials with high thermal conductivity and low specific gravity".
  • FIG. 3 is an exploded perspective view of the heat exchanger of the first embodiment.
  • the first header 10 includes an inner end plate (second end plate) 11 , an intermediate plate 14 and an outer end plate (first end plate) 17 .
  • the inner end plate 11 is superimposed on the surface of the intermediate plate 14 on the ⁇ X direction side.
  • the outer end plate 17 overlaps the surface of the intermediate plate 14 on the +X direction side.
  • FIG. 4 is a plan view of the intermediate plate 14.
  • the intermediate plate 14 has a plurality of spatial channels 16 (16A, 16B, 16G, 16H) and a spatial channel .
  • the spatial channels 16 and 116 serve as coolant channels.
  • the spatial flow paths 16 and 116 are formed by through-holes passing through the intermediate plate 14 in the thickness direction.
  • the openings of the spatial channels 16, 116 are closed by the inner end plate 11 and the outer end plate 17 (see FIG. 3).
  • Spatial channel 116 is an example of a confluence/distribution channel.
  • the plurality of spatial channels 16 include a first spatial channel 16A, a second spatial channel 16B, a third spatial channel 16G and a fourth spatial channel 16H.
  • the spatial flow path 16 has an oval shape when viewed from the X direction.
  • "Oval shape” is a shape composed of two straight lines parallel to each other and two curved lines.
  • a curve is a curved convex shape (eg, semicircular, elliptical arc, etc.) that connects the ends of two straight lines, respectively.
  • the longitudinal direction of the spatial flow channel 16 is parallel to the Y direction.
  • the plurality of spatial channels 16 are formed apart from each other.
  • the plurality of spatial channels 16 have the same shape.
  • the first spatial flow channel 16A and the second spatial flow channel 16B are formed side by side in the Y direction with an interval in the Y direction.
  • the second spatial flow channel 16B is located on the +Y direction side with respect to the first spatial flow channel 16A.
  • the spatial channel 116 is positioned lower than the first spatial channel 16A and the second spatial channel 16B.
  • the spatial flow channel 116 is located away from the first spatial flow channel 16A and the second spatial flow channel 16B in the -Z direction.
  • the spatial flow channel 116 has an oval shape when viewed from the X direction.
  • the longitudinal direction of the spatial flow channel 116 is parallel to the Y direction.
  • the long diameter of the spatial flow channel 116 is larger than the long diameter of the spatial flow channel 16 .
  • the third spatial flow channel 16G and the fourth spatial flow channel 16H are positioned lower than the spatial flow channel 116.
  • the third spatial flow channel 16G and the fourth spatial flow channel 16H are positioned away from the spatial flow channel 116 in the -Z direction.
  • the third spatial flow channel 16G and the fourth spatial flow channel 16H are formed side by side in the Y direction with an interval in the Y direction.
  • the fourth spatial flow channel 16H is located on the +Y direction side with respect to the third spatial flow channel 16G.
  • each through hole 41 is formed at each position corresponding to the spatial flow path 16 (16A, 16B, 16G, 16H).
  • the through hole 41 is slit-shaped along the Y direction.
  • the +X direction end of the heat exchange tube 30 is inserted into the through hole 41 .
  • the +X direction end of the heat exchange tube 30 opens into the spatial flow path 16 . Therefore, each spatial channel 16 communicates with the refrigerant channel 34 of one heat exchange tube 30 .
  • the through holes 41 formed in the inner end plate 11 at positions corresponding to the spatial flow paths 16A, 16B, 16G and 16H are called through holes 41A, 41B, 41G and 41H, respectively.
  • the +X direction end of the heat exchange tube 30 is inserted into the through hole 41 .
  • the +X direction end of the heat exchange tube 30 opens into the spatial flow path 116 . Therefore, the spatial channel 116 communicates with the refrigerant channels 34 of the four heat exchange tubes 30 .
  • the four through-holes 41 formed in the spatial flow path 116 are through-holes 41C, 41D, 41E, and 41F, respectively.
  • the through holes 41C and 41D are formed side by side in the Y direction with a space therebetween.
  • the through hole 41D is located on the +Y direction side with respect to the through hole 41C.
  • the through holes 41E and 41F are located away from the through holes 41C and 41D in the -Z direction.
  • the through-holes 41E and 41F are formed side by side in the Y-direction with an interval in the Y-direction.
  • the through hole 41F is positioned on the +Y direction side with respect to the through hole 41E.
  • the through holes 41A, 41C, 41E, and 41G are arranged in this order at intervals in the Z direction.
  • the through holes 41B, 41D, 41F, and 41H are arranged in this order at intervals in the Z direction.
  • the heat exchange tubes 30 inserted into the through holes 41A-41H are referred to as heat exchange tubes 30A-30H, respectively.
  • first refrigerant ports 51 are inserted into the through-holes 42 (see FIG. 2).
  • One end of the first coolant port 51 opens to the third spatial flow channel 16G.
  • the other end of the first coolant port 51 opens into the fourth spatial flow channel 16H.
  • Two through holes 43 are formed in the outer end plate 17 .
  • Tubular second refrigerant ports 52 are inserted into the through-holes 43 (see FIG. 2).
  • One end of the second coolant port 52 opens into the first spatial flow channel 16A.
  • the other end of the second coolant port 52 opens into the second spatial flow channel 16B.
  • the second header 20 has a pair of small headers 20A and 20B.
  • the small headers 20A and 20B are arranged side by side in the Y direction.
  • Each of the small headers 20A, 20B has an inner end plate 21, an intermediate plate 24, and an outer end plate 27.
  • the inner end plate 21 overlaps the surface of the intermediate plate 24 on the +X direction side.
  • the outer end plate 27 is superimposed on the surface of the intermediate plate 24 on the -X direction side.
  • the intermediate plate 24 has a plurality of spatial channels (not shown). These spatial channels serve as coolant channels. These spatial flow paths are formed by through holes penetrating through the intermediate plate 24 in the thickness direction. The openings of these spatial channels are closed by the inner end plate 21 and the outer end plate 27 .
  • the heat exchange tube 30 is formed in a flat tubular shape. That is, the heat exchange tube 30 has a larger dimension in the Y direction than the dimension in the Z direction.
  • the shape of the cross section (YZ cross section) perpendicular to the length direction of the heat exchange tube 30 is an elliptical shape.
  • the heat exchange tubes 30 extend in the X direction.
  • a refrigerant channel 34 is formed inside the heat exchange tube 30 .
  • the heat exchange tube 30 is made of a material with high thermal conductivity and low specific gravity. Metals such as aluminum and aluminum alloys are examples of "materials with high thermal conductivity and low specific gravity".
  • At least some of the plurality of heat exchange tubes 30 are arranged in parallel at intervals in the Z direction.
  • the four heat exchange tubes 30 (30A, 30C, 30E, 30G) connected to the through holes 41A, 41C, 41E, 41G of the first header 10 are arranged side by side at intervals in the Z direction.
  • the four heat exchange tubes 30 (30A, 30C, 30E, 30G) are arranged in multiple stages (four stages).
  • the four heat exchange tubes 30 (30B, 30D, 30F, 30H) connected to the through holes 41B, 41D, 41F, 41H of the first header 10 are arranged side by side at intervals in the Z direction. That is, the four heat exchange tubes 30 (30B, 30D, 30F, 30H) are arranged in multiple stages (four stages).
  • the eight heat exchange tubes 30 are arranged in two rows.
  • the eight heat exchange tubes 30 are arranged in a 2 ⁇ 4 matrix when viewed from the X direction.
  • the heat exchange tubes 30A, 30C, 30E, and 30G are referred to as the heat exchange tubes 30 of the first row.
  • the heat exchange tubes 30B, 30D, 30F, and 30H are called the heat exchange tubes 30 of the second row.
  • the number of rows formed by the plurality of heat exchange tubes 30 is not limited to two.
  • the number of rows formed by the plurality of heat exchange tubes 30 may be plural (any number equal to or greater than 2).
  • the -X direction end of the heat exchange tube 30 is inserted into the through hole 45 formed in the second header 20 .
  • the ⁇ X direction end of the refrigerant channel 34 of the heat exchange tube 30 opens into the spatial channel of the second header 20 . Therefore, the spatial flow paths of the second header 20 communicate with the refrigerant flow paths 34 of the heat exchange tubes 30 .
  • the gap between the first header 10 and the heat exchange tube 30 and the gap between the second header 20 and the heat exchange tube 30 are sealed by brazing or the like.
  • outside air flow paths are formed along the Y direction.
  • the heat exchanger 4 circulates outside air through an outside air flow path using a fan (not shown) or the like.
  • the heat exchanger 4 exchanges heat between the outside air flowing through the outside air passage and the refrigerant flowing through the refrigerant passage 34 . Heat exchange is performed indirectly through the heat exchange tubes 30 .
  • the heat exchanger 4 When the refrigeration cycle device 1 shown in FIG. 1 performs heating operation, the heat exchanger 4 functions as an evaporator. In this case, the heat exchanger 4 converts the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5 into a low-pressure gaseous refrigerant by absorbing heat from the outside air and vaporizing it.
  • the coolant flows from the two first coolant ports 51 (see FIG. 2) into the third spatial flow channel 16G and the fourth spatial flow channel 16H of the first header 10, respectively.
  • the refrigerant flows through the heat exchange tubes 30G and 30H in the ⁇ X direction and into different spatial flow paths of the second header 20, respectively.
  • the refrigerant flows through the heat exchange tubes 30 ⁇ /b>E and 30 ⁇ /b>F in the +X direction, and flows into the spatial flow paths 116 of the first header 10 .
  • the refrigerant that has flowed in from the heat exchange tubes 30E and the refrigerant that has flowed in from the heat exchange tubes 30F join in the spatial flow path 116.
  • Refrigerant in the spatial flow channel 116 is distributed to the heat exchange tubes 30C and the heat exchange tubes 30D.
  • the refrigerant distributed to the heat exchange tubes 30C and 30D flows through the heat exchange tubes 30C and 30D in the -X direction and flows into different spatial channels of the second header 20, respectively.
  • the refrigerant flows in the +X direction through the plurality of heat exchange tubes 30A and 30B, and flows into the first spatial flow channel 16A and the second spatial flow channel 16B of the first header 10, respectively.
  • the refrigerant flows out of the system from the second refrigerant port 52 (see FIG. 2).
  • refrigerant is introduced from the first refrigerant port 51 (see FIG. 2), passes through the heat exchange tubes 30, travels between the first header 10 and the second header 20, and flows through the second refrigerant port 52 (see FIG. 2). 2).
  • the first header 10 has a spatial channel (joint/distribution channel) 116 .
  • the spatial flow path 116 joins the refrigerant from the two heat exchange tubes 30 (30E, 30F) and distributes it to the other two heat exchange tubes 30 (30C, 30D).
  • the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 can be mixed and redistributed within the spatial flow channels 116 .
  • the difference in heat load can be reduced. Therefore, it is possible to prevent the heat exchange efficiency from being lowered due to the difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger 4 can be improved.
  • the refrigerants from two heat exchange tubes are merged and distributed to the other two heat exchange tubes, but the number of refrigerants to be merged is not limited to two, and may be plural (any number equal to or greater than two). It's okay.
  • the number of heat exchange tubes for distributing the refrigerant is not limited to two, and may be plural (any number equal to or greater than two). That is, the confluence distribution channel merges the refrigerant supplied from two or more of the plurality of heat exchange tubes and distributes it to the other two or more heat exchange tubes.
  • the number of confluence/distribution channels formed in the first header is not limited to one, and may be plural (any number equal to or greater than two).
  • the confluence/distribution channel may be formed in the intermediate plate of the second header.
  • the number of confluence/distribution channels formed in the second header may be one or more (any number equal to or greater than two).
  • the confluence/distribution channel is formed in at least one of the first header and the second header.
  • the confluence/distribution channel may be formed in one of the first header and the second header, or may be formed in both.
  • FIG. 5 is a plan view of the intermediate plate 214 of the first header 210 of the heat exchanger of the second embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the intermediate plate 214 has spatial channels 16 and spatial channels 216 .
  • the heat exchanger of the second embodiment has the same configuration as the heat exchanger of the first embodiment shown in FIG.
  • Spatial channel 216 is an example of a confluence/distribution channel.
  • the spatial flow path 216 has an oval shape when viewed from the X direction.
  • the longitudinal direction of the spatial flow channel 216 is parallel to the Y direction.
  • Protrusions 217 are formed at both ends of the spatial flow channel 216 .
  • the pair of protruding portions 217 protrude toward each other along the Y direction.
  • the projecting portion 217 is formed substantially in the center of the spatial flow channel 216 in the height direction.
  • the projecting portion 217 has a U-shape formed by combining a pair of straight portions and a curved portion.
  • the pair of linear portions are parallel and face each other.
  • the curved portion has a curved convex shape (for example, a semicircular shape).
  • a narrow portion 218 is provided between the tip of one protrusion 217 and the tip of the other protrusion 217 . In the narrowed portion 218, the passage of the coolant is narrowed.
  • the narrowed portion 218 preferably satisfies the following equation. D1>2300 ⁇ A1/W1 (D1 is the hydraulic equivalent diameter [m] of the narrow portion 218. ⁇ is the viscosity of the refrigerant [Pa s]. A1 is the cross-sectional area [m 2 ] of the narrowest portion of the narrow portion 218. W1 is the mass flow rate [kg/s] of the refrigerant flowing through the narrow portion 218.) The cross-sectional area of the narrow portion 218 is the area of the flow path in the cross section perpendicular to the flow direction of the coolant in the narrow portion 218 . The flow direction of the coolant in the narrow portion 218 is the +Z direction. A cross section perpendicular to the flow direction of the coolant in the narrow portion 218 is along the horizontal plane.
  • the narrowed portion 218 When the narrowed portion 218 satisfies this formula, the refrigerant flowing through the narrowed portion 218 tends to become turbulent, so that the non-uniform flow of the gas-liquid two-phase refrigerant in the space flow path 216 can be suppressed.
  • the refrigerant rises in the narrow portion 218 in the +Z direction (opposite to the direction of gravity), collides with the upper surface of the spatial flow path 216, and splits into left and right, and heat-exchanges with the heat exchange tube 30C. and tube 30D.
  • the first header 210 since the first header 210 has the spatial flow paths 216 , the refrigerant flowing through the heat exchange tubes 30 in the first row and the refrigerant flowing through the heat exchange tubes 30 in the second row flow through the spatial flow paths 216 . can be mixed and redistributed within Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
  • a narrowed portion 218 is formed in the space channel 216 .
  • Refrigerants tend to become turbulent because they are diffused when they are released after being collected once by passing through a narrow portion. Therefore, the drift of the gas-liquid two-phase refrigerant in the space channel 216 can be suppressed.
  • FIG. 6 is a plan view of the intermediate plate 314 of the first header 310 of the heat exchanger of the third embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 6, intermediate plate 314 has spatial channels 16 and spatial channels 316 . Spatial flow channel 316 is an example of a confluence/distribution flow channel.
  • the spatial flow path 316 has an oval shape.
  • the spatial flow channel 316 has a pair of straight portions 316a and a pair of curved portions 316b.
  • the pair of linear portions 316a are parallel and face each other.
  • One curved portion 316b connects one ends of the two straight portions 316a.
  • the other curved portion 316b connects the other ends of the two straight portions 316a.
  • the curved portion 316b has a curved convex shape (for example, a semicircular shape).
  • the longitudinal direction of the spatial channel 316 is inclined with respect to the Y direction.
  • the curved portion 316b on the upstream side of the outside air flow in the above-described outside air flow channel is larger than the curved portion 316b on the downstream side. incline so that it is positioned higher than the
  • a protruding portion 317 is formed on each of the pair of linear portions 316a.
  • the pair of protruding portions 317 protrude toward each other along the minor axis direction of the spatial flow channel 316 .
  • the projecting portion 317 is formed substantially in the center in the length direction of the straight portion 316a.
  • the projecting portion 317 has a U-shape combining a pair of straight portions and a curved portion.
  • the pair of linear portions are parallel and face each other.
  • the curved portion has a curved convex shape (for example, a semicircular shape).
  • a narrow portion 318 is provided between the tip of one protrusion 317 and the tip of the other protrusion 317 .
  • the narrowed portion 318 preferably satisfies the following equation. D2>2300 ⁇ A2/W2 (D2 is the hydraulic equivalent diameter [m] of the narrow portion 318. ⁇ is the viscosity of the refrigerant [Pa s]. A2 is the cross-sectional area [m 2 ] of the narrowest portion of the narrow portion 318. W2 is the mass flow rate [kg/s] of the refrigerant flowing through the narrow portion 218.) The cross-sectional area of the narrow portion 318 is the area of the flow path in the cross section perpendicular to the flow direction of the coolant in the narrow portion 318 .
  • the narrowed portion 318 When the narrowed portion 318 satisfies this formula, the refrigerant flowing through the narrowed portion 318 tends to be turbulent, so that the flow deviation of the gas-liquid two-phase refrigerant in the space flow path 316 can be suppressed.
  • the coolant flows from the first coolant port into the second spatial flow channel 16B and the fourth spatial flow channel 16H of the first header 10, respectively.
  • the refrigerants flow through the heat exchange tubes 30B and 30H in the ⁇ X direction, respectively, and flow into different spatial flow paths of the second header 20, respectively.
  • the refrigerant flows through the heat exchange tubes 30D and 30F in the +X direction, and flows into the spatial flow paths 316 of the first header 10. As shown in FIG.
  • the refrigerant flows obliquely downward, passes through the narrowed portion 318, collides with the inner surface of the curved portion 316b, and is divided into upper and lower portions, and is distributed to the heat exchange tubes 30C and 30E. . Since the refrigerant passing through the narrow portion 318 flows obliquely downward, the flow velocity tends to be higher due to the influence of gravity than when the refrigerant flows upward (see FIG. 5).
  • the refrigerant distributed to the heat exchange tubes 30C, 30E flows through the heat exchange tubes 30C, 30E in the -X direction, and flows into different spatial channels of the second header 20, respectively.
  • the refrigerant flows through the plurality of heat exchange tubes 30A and 30G in the +X direction, and flows into the first spatial flow channel 16A and the third spatial flow channel 16G of the first header 10, respectively. Coolant flows out of the second coolant port.
  • the first header 310 since the first header 310 has the spatial flow paths 316 , the refrigerant flowing through the heat exchange tubes 30 in the first row and the refrigerant flowing through the heat exchange tubes 30 in the second row flow through the spatial flow paths 316 . can be mixed and redistributed within Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
  • a narrowed portion 318 is formed in the spatial flow channel 316, and the spatial flow channel 316 is inclined. Therefore, the refrigerant passes through the narrow portion 318 with momentum due to the influence of gravity.
  • the refrigerant since the refrigerant is passed through a narrow portion with force, the refrigerant is once concentrated and then released to diffuse. Therefore, the refrigerant tends to become turbulent. Therefore, it is possible to suppress drift in the gas-liquid two-phase refrigerant in the space channel 316 .
  • the spatial flow channel 316 is formed to be inclined in this embodiment, the spatial flow channel 316 may have its major axis direction parallel to the Y direction.
  • FIG. 7 is a plan view of the intermediate plate 414 of the first header 410 of the heat exchanger of the fourth embodiment.
  • FIG. 8 is an enlarged plan view of intermediate plate 414 . Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the intermediate plate 414 has a plurality of spatial channels 16 (16A to 16H) and the confluence/distribution channels 12.
  • the spatial flow path 16 is formed by a through hole penetrating through the intermediate plate 414 in the thickness direction.
  • the plurality of spatial channels 16 include first spatial channels 16A to eighth spatial channels 16H.
  • the spatial flow channels 16 (16A to 16H) have an oval shape when viewed from the X direction.
  • the longitudinal direction of the spatial flow channel 16 is parallel to the Y direction.
  • the plurality of spatial channels 16 are formed apart from each other.
  • the plurality of spatial channels 16 have the same shape.
  • the first spatial flow channel 16A and the second spatial flow channel 16B are formed side by side in the Y direction with an interval in the Y direction.
  • the second spatial flow channel 16B is located on the +Y direction side with respect to the first spatial flow channel 16A.
  • the third spatial flow channel 16C and the fourth spatial flow channel 16D are positioned lower than the first spatial flow channel 16A and the second spatial flow channel 16B, respectively.
  • the third spatial flow channel 16C and the fourth spatial flow channel 16D are located away from the first spatial flow channel 16A and the second spatial flow channel 16B in the -Z direction.
  • the third spatial flow channel 16C and the fourth spatial flow channel 16D are formed side by side in the Y direction with an interval in the Y direction.
  • the fourth spatial flow channel 16D is located on the +Y direction side with respect to the third spatial flow channel 16C.
  • the fifth spatial flow channel 16E and the sixth spatial flow channel 16F are positioned lower than the third spatial flow channel 16C and the fourth spatial flow channel 16D, respectively.
  • the fifth spatial flow channel 16E and the sixth spatial flow channel 16F are located away from the third spatial flow channel 16C and the fourth spatial flow channel 16D in the -Z direction.
  • the fifth spatial flow channel 16E and the sixth spatial flow channel 16F are formed side by side in the Y direction with an interval in the Y direction.
  • the sixth spatial flow channel 16F is located on the +Y direction side with respect to the fifth spatial flow channel 16E.
  • the seventh spatial flow channel 16G and the eighth spatial flow channel 16H are positioned lower than the fifth spatial flow channel 16E and the sixth spatial flow channel 16F, respectively.
  • the seventh spatial flow channel 16G and the eighth spatial flow channel 16H are located away from the fifth spatial flow channel 16E and the sixth spatial flow channel 16F in the -Z direction.
  • the seventh spatial flow channel 16G and the eighth spatial flow channel 16H are formed side by side in the Y direction with an interval in the Y direction.
  • the eighth spatial flow channel 16H is positioned on the +Y direction side with respect to the seventh spatial flow channel 16G.
  • the spatial flow channels 16A, 16C, 16E, and 16G are arranged side by side in the Z direction.
  • the spatial flow channels 16B, 16D, 16F, and 16H are arranged side by side in the Z direction.
  • the eight spatial channels 16 are arranged in two rows.
  • the eight spatial channels 16 are arranged in a 2 ⁇ 4 matrix.
  • the spatial channels 16A, 16C, 16E, and 16G are referred to as the spatial channels 16 of the first row.
  • the spatial channels 16B, 16D, 16F, and 16H are referred to as the spatial channels 16 of the second row.
  • the pitch P1 is the height difference between the central axes of the vertically adjacent heat exchange tubes 30 . Note that the number of rows formed by the plurality of spatial flow channels 16 is not limited to two. The number of rows formed by the plurality of spatial flow channels 16 may be plural (any number equal to or greater than 2).
  • the confluence/distribution channel 12 is formed by a through-hole that penetrates the intermediate plate 414 in the thickness direction.
  • the confluence distribution channel 12 distributes the coolant from the seventh spatial channel 16G and the eighth spatial channel 16H to the fifth spatial channel 16E and the sixth spatial channel 16F.
  • the confluence/distribution channel 12 has a plurality of lead-out channels 61 , one confluence channel 62 , and a plurality of branch channels 63 .
  • the number of lead-out channels 61 is two.
  • the number of branch flow paths 63 is two. Note that the number of lead-out channels and branch channels is not limited to two, and may be any number equal to or greater than two.
  • a portion including the base ends of the branch flow paths 63A and 63B is the direction changing portion 615.
  • the direction changing portion 615 is a curved channel including the base ends of the branch channels 63A and 63B.
  • the direction changing part 615 changes the flow direction of the coolant from the confluence channel 62 .
  • the two outlet channels 61 are called a first outlet channel 61A and a second outlet channel 61B, respectively.
  • the first lead-out channel 61A extends in the +Y direction with the +Y direction end of the seventh spatial channel 16G as its base end.
  • the first outlet channel 61A guides the coolant from the seventh spatial channel 16G.
  • the second lead-out channel 61B extends in the -Y direction with the -Y direction end of the eighth spatial channel 16H as its base end.
  • the second outlet channel 61B guides the coolant from the eighth spatial channel 16H.
  • the first outlet channel 61A and the second outlet channel 61B are formed at the same height position.
  • the first outlet channel 61A and the second outlet channel 61B are connected at the tip.
  • the confluence channel 62 extends straight in the +Z direction, which is the direction opposite to the direction of gravity, with the connecting point between the tips of the first outlet channel 61A and the second outlet channel 61B as the base end.
  • the confluence channel 62 is a channel along the vertical direction.
  • the confluence channel 62 is located closer to the +Y direction than the spatial channels 16 (16A, 16C, 16E, 16G) in the first row.
  • the confluence channel 62 is located closer to the -Y direction than the second row of spatial channels 16 (16B, 16D, 16F, 16H).
  • the confluence channel 62 joins the refrigerant from two or more spatial channels 16 out of the plurality of spatial channels 16 .
  • the confluence channel 62 is formed from both the first row of spatial channels 16 (16A, 16C, 16E, 16G) and the second row of spatial channels 16 (16B, 16D, 16F, 16H). It is formed at an intermediate position separated by the same distance.
  • the length L1 of the confluence channel 62 is greater than the vertical pitch P1 of the heat exchange tubes 30 . Since the length L1 is greater than the pitch P1, the confluence channel 62 has a sufficient length. Therefore, the gas-liquid two-phase refrigerant can be sufficiently mixed in the confluence passage 62, and the drift of the refrigerant can be suppressed. Therefore, the unevenness in the amount of refrigerant flowing into the plurality of branched flow paths 63 can be reduced.
  • the +Z direction end (tip) of the confluence channel 62 is higher than the heat exchange tubes 30 connected to the spatial flow channels 16E and 16F. in position.
  • the +Z-direction end (tip) of the confluence channel 62 is desirably positioned higher than the spatial channels 16E and 16F.
  • the branch channel 63 distributes the refrigerant from the confluence channel 62 to the other two or more spatial channels 16 (two or more of the spatial channels 16 other than the spatial channels 16G and 16H).
  • the two branched flow paths 63 are referred to as a first branched flow path 63A and a second branched flow path 63B, respectively.
  • the first branched flow path 63A and the second branched flow path 63B are flow paths formed by branching the confluence flow path 62 into two.
  • the first branch flow path 63A is a linear flow path that extends obliquely downward with the end (tip) of the confluence flow path 62 in the +Z direction as the base end.
  • the first branch flow path 63A is inclined downward toward the -Y direction.
  • the first branch channel 63A reaches the fifth spatial channel 16E.
  • the first branch channel 63A can guide the coolant to the fifth spatial channel 16E.
  • the fifth spatial channel 16E is the spatial channel 16 of the distribution destination.
  • the second branch flow path 63B is a linear flow path extending obliquely downward from the +Z direction end (tip) of the confluence flow path 62 as a base end.
  • the second branch channel 63B is inclined so as to descend in the +Y direction.
  • the second branch channel 63B reaches the sixth spatial channel 16F.
  • the second branch channel 63B can guide the coolant to the sixth spatial channel 16F.
  • the sixth spatial channel 16F is the spatial channel 16 of the distribution destination.
  • the inclination angle of the first branched flow path 63A with respect to the merged flow path 62 and the inclination angle of the second branched flow path 63B with respect to the merged flow path 62 are equal.
  • one through-hole 41 (41A-41H) is formed at each position corresponding to the spatial flow path 16 (16A-16H) (see FIG. 4).
  • the +X direction end of the heat exchange tube 30 is inserted into the through hole 41 .
  • the +X direction end of the heat exchange tube 30 opens into the spatial flow path 16 . Therefore, the spatial channel 16 communicates with the refrigerant channel 34 of the heat exchange tube 30 .
  • the heat exchanger 4 When the refrigeration cycle device 1 shown in FIG. 1 performs heating operation, the heat exchanger 4 functions as an evaporator. In this case, the heat exchanger 4 converts the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5 into a low-pressure gaseous refrigerant by absorbing heat from the outside air and vaporizing it.
  • At least part of the refrigerant that has flowed from the heat exchange tube 30 (30G) into the seventh spatial flow channel 16G flows into the confluence flow channel 62 through the first outlet flow channel 61A. At least part of the refrigerant that has flowed from the heat exchange tube 30 (30H) into the eighth spatial flow channel 16H flows into the confluence flow channel 62 through the second outlet flow channel 61B.
  • the coolant that has flowed in from the seventh spatial flow channel 16G and the coolant that has flowed in from the eighth spatial flow channel 16H join together in the confluence flow channel 62 .
  • the coolant in the confluence channel 62 moves in the direction opposite to the direction of gravity (in the direction of the arrow shown in FIG. 8), collides with the upper surface of the direction changing portion 615, and flows through the two branch channels 63 into the fifth spatial channel 16E and the It is distributed to the sixth spatial flow channel 16F. Since the refrigerant is evenly distributed by the direction changing portion 615, it is possible to suppress uneven flow in the gas-liquid two-phase refrigerant. Therefore, the unevenness in the amount of refrigerant flowing into the plurality of branch flow paths 63 can be reduced.
  • the length of the branch flow path 63 be L [m].
  • D [m] be the hydraulic equivalent diameter of the branch flow path 63 .
  • ⁇ [kg/m 3 ] be the density of the refrigerant.
  • ⁇ [Pa ⁇ s] be the viscosity of the refrigerant.
  • W [kg/s] be the mass flow rate of the refrigerant in the confluence channel 62 .
  • A is the cross-sectional area [m 2 ] of the confluence channel 62 .
  • the cross-sectional area of the channel is the area of the cross section orthogonal to the length direction of the channel.
  • the length L of the first branch channel 63A is also called LA .
  • the length L of the second branch channel 63B is also called LB.
  • the hydraulic equivalent diameter D of the first branch flow path 63A is also called DA .
  • the hydraulic equivalent diameter D of the second branch flow path 63B is also referred to as DB.
  • the lengths of the two branch flow paths 63 may be the same as each other, or may be different from each other.
  • the hydraulic equivalent diameters of the two branch flow paths 63 may be the same or different.
  • the pressure loss ⁇ P of the branch flow path 63 is expressed by the following formula (1) (Darcy-Weisbach's formula).
  • the deviation (absolute value) of Fp of the two branched flow paths 63 is preferably 20% or less.
  • the Fp of the first branched channel 63 of the two branched channels 63 is Fp1.
  • Fp2 be the Fp of the second branch flow path 63 .
  • Fpav be the average of Fp1 and Fp2.
  • /Fpav ⁇ 100 are both preferably 20 (%) or less.
  • the first header 410 has the confluence distribution flow path 12, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 12 .
  • this heat exchanger can mix and redistribute the refrigerant. The difference in heat load can be reduced. Therefore, it is possible to suppress a decrease in heat exchange efficiency due to a difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
  • FIG. 9 is a plan view of the intermediate plate 514 of the first header 510 of the heat exchanger of the fifth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 9, the intermediate plate 514 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 512. As shown in FIG. 9,
  • the confluence/distribution channel 512 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 563 .
  • the two outlet channels 561 are referred to as a first outlet channel 561A and a second outlet channel 561B, respectively.
  • the first lead-out channel 561A extends in the +Y direction with the +Y direction end of the seventh spatial channel 16G as its base end.
  • the second lead-out channel 561B extends in the -Y direction with the -Y direction end of the eighth spatial channel 16H as its base end.
  • the first outlet flow path 561A and the second outlet flow path 561B are connected at their distal ends.
  • the confluence channel 62 extends straight in the +Z direction, which is the direction opposite to the direction of gravity, with the connection point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end.
  • the confluence channel 62 has a smaller cross-sectional area than the outlet channel 561 .
  • the two branched flow paths 563 are called a first branched flow path 563A and a second branched flow path 563B, respectively.
  • the first branched flow path 563A and the second branched flow path 563B are flow paths formed by branching the confluence flow path 62 into two.
  • the first branch channel 563A is L-shaped.
  • the first branch channel 563A extends in the +Z direction with the end (tip) of the confluence channel 62 in the +Z direction as its base end, and changes direction in the -Y direction at the tip.
  • the first branch channel 563A reaches the first spatial channel 16A.
  • the first branch channel 563A can guide the coolant to the first spatial channel 16A (distribution destination spatial channel).
  • the second branch channel 563B is L-shaped.
  • the second branch channel 563B extends in the +Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, and changes direction to the -Z direction at the tip.
  • the second branch channel 563B reaches the sixth spatial channel 16F.
  • the second branch channel 563B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
  • the first header 510 has the confluence distribution flow path 512, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 512 . Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
  • FIG. 10 is a plan view of the intermediate plate 614 of the first header 610 of the heat exchanger of the sixth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 10, the intermediate plate 614 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 612. As shown in FIG. 10,
  • the confluence/distribution channel 612 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 663 .
  • the number of branch channels 663 is two.
  • the confluence channel 62 has a smaller cross-sectional area than the plurality of outlet channels 561 .
  • the two branched channels 663 are referred to as a first branched channel 663A and a second branched channel 663B, respectively.
  • the first branched flow path 663A and the second branched flow path 663B are flow paths formed by branching the confluence flow path 62 into two.
  • the first branch channel 663A extends obliquely upward with the end (tip) of the confluence channel 62 in the +Z direction as its base end, and reaches the first spatial channel 16A.
  • the first branch channel 663A inclines upward in the -Y direction.
  • the first branch channel 663A can guide the coolant to the first spatial channel 16A (distribution destination spatial channel).
  • the second branch channel 663B extends obliquely downward from the +Z direction end (tip) of the confluence channel 62 and reaches the sixth spatial channel 16F.
  • the second branch flow path 663B is inclined downward toward the +Y direction.
  • the second branch channel 663B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
  • the first branched flow path 663A and the second branched flow path 663B have a cross-sectional area larger than that of the confluence flow path 62. Therefore, the refrigerant in the confluence flow path 62 is diffused by being released into flow paths having a large cross-sectional area when being distributed to the first branch flow path 663A and the second branch flow path 663B. Therefore, the refrigerant tends to become turbulent. Therefore, it is possible to suppress drift in the gas-liquid two-phase refrigerant.
  • the first header 610 has the confluence distribution flow path 612, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 612 . Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
  • FIG. 11 is a plan view of the intermediate plate 714 of the first header 710 of the heat exchanger of the seventh embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 11, the intermediate plate 714 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 712. As shown in FIG. 11,
  • the confluence/distribution channel 712 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 763 .
  • the confluence channel 62 extends straight in the +Z direction, which is the opposite direction to the direction of gravity, from the connecting point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end.
  • the two branched channels 763 are referred to as a first branched channel 763A and a second branched channel 763B, respectively.
  • the first branch channel 763A is L-shaped.
  • the first branch channel 763A extends in the -Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, changes direction at the tip to the +Z direction, and changes direction to the -Y direction at the tip. .
  • the first branch channel 763A reaches the first spatial channel 16A.
  • the first branch channel 763A can guide the refrigerant to the first spatial channel 16A (distribution destination spatial channel).
  • the second branch channel 763B is L-shaped.
  • the second branch channel 763B extends in the +Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, and changes direction to the -Z direction at the tip.
  • the second branch channel 763B reaches the sixth spatial channel 16F.
  • the second branch channel 763B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
  • a portion including the base ends of the branch flow paths 763A and 763B is the direction changing portion 715 .
  • the direction changing portion 715 changes the flow direction of the coolant from the confluence flow path 62 .
  • the direction changing portion 715 is formed along the Y direction.
  • the direction changing portion 715 is longer than the Y-direction inner diameter D 62 at the +Z-direction end (tip) of the confluence channel 62 .
  • the formation direction of the direction changing portion 715 is orthogonal to the extension direction (Z direction) of the +Z direction end (tip) of the confluence channel 62 .
  • the configuration of the branch flow paths 763A, 763B other than the direction changing portion 715 is the same as that of the branch flow paths 563A, 563B shown in FIG.
  • the coolant in the confluence channel 62 moves in the direction opposite to the direction of gravity (in the direction of the arrow shown in FIG. 11), collides with the upper surface of the direction changing portion 715, and flows through the two branch channels 763 into the first spatial channel 16A and the first spatial channel 16A. It is distributed to the sixth spatial flow channel 16F.
  • the refrigerant flow can be directed to the two branch flow paths 763 without bias. Therefore, the refrigerant can be evenly distributed to the first branched flow path 763A and the second branched flow path 763B. Therefore, the unevenness in the amount of refrigerant flowing into the first branched flow path 763A and the second branched flow path 763B can be reduced.
  • the direction changing portion 715 is longer than the inner diameter D 62 in the Y direction at the end (tip) in the +Z direction of the confluence channel 62, the refrigerant in the confluence channel 62 is allowed to reach the upper surface of the direction changing portion 715 having a sufficient length. hit. Thereby, the refrigerant flow can be evenly distributed to the two branch flow paths 763 .
  • FIG. 12 is a plan view of the intermediate plate 814 of the first header 810 of the heat exchanger of the eighth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 12, the intermediate plate 814 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 812. As shown in FIG.
  • the confluence/distribution channel 812 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 863 .
  • the confluence channel 62 extends straight in the +Z direction, which is the opposite direction to the direction of gravity, from the connecting point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end.
  • the two branched channels 863 are referred to as a first branched channel 863A and a second branched channel 863B, respectively.
  • the first branch flow path 863A extends in the -Y direction with the +Z direction end (tip) of the confluence flow path 62 as the base end, extends obliquely upward at the tip, and reaches the first spatial flow path 16A.
  • the second branch flow channel 863B extends in the +Y direction from the +Z direction end (tip) of the confluence flow channel 62 as a base end, extends obliquely downward at the tip, and reaches the sixth spatial flow channel 16F.
  • a portion including the base ends of the branch flow paths 863A and 863B is the direction changing portion 815 .
  • the direction changing portion 815 changes the flow direction of the coolant from the confluence channel 62 .
  • the direction changing portion 815 is formed along the Y direction.
  • the direction changing portion 815 is longer than the Y-direction inner diameter D 62 at the +Z-direction end (tip) of the confluence channel 62 .
  • the formation direction of the direction changing portion 815 is orthogonal to the extension direction (Z direction) of the +Z direction end (tip) of the confluence channel 62 .
  • the configuration of the branch flow paths 863A, 863B other than the direction changing portion 815 is the same as that of the branch flow paths 663A, 663B shown in FIG.
  • the direction changing portion 815 is orthogonal to the confluence flow path 62, the flow direction of the refrigerant can be evenly directed to the first branch flow path 863A and the second branch flow path 863B. Therefore, the unevenness in the amount of refrigerant flowing into the first branched flow path 863A and the second branched flow path 863B can be reduced.
  • the direction changing portion 815 is longer than the inner diameter D 62 in the Y direction at the +Z-direction end (tip) of the confluence channel 62, the coolant in the confluence channel 62 is allowed to reach the upper surface of the direction changing portion 815 having a sufficient length. hit. Thereby, the refrigerant flow can be evenly distributed to the two branch flow paths 863 .
  • FIG. 13 is a plan view of the intermediate plate 914 of the first header 910 of the heat exchanger of the ninth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 13, the intermediate plate 914 may have the same configuration as the intermediate plate 414 shown in FIG. 7 except that two gaps 920 are formed.
  • the gap 920 is linear and passes between the branch channel 63 and the spatial channel 16 closest to the branch channel 63 .
  • the void 920 is formed by a through-hole penetrating through the intermediate plate 414 in the thickness direction.
  • the two gaps 920 are referred to as a first gap 920A and a second gap 920B, respectively.
  • At least part of the first gap 920A is formed between the first branch channel 63A and the third spatial channel 16C.
  • the first gap 920A is formed parallel to the first branch flow path 63A.
  • At least part of the second gap portion 920B is formed between the second branch channel 63B and the fourth spatial channel 16D.
  • the second gap 920B is formed parallel to the second branch flow path 63B.
  • the gap 920 can suppress thermal interference from the spatial flow paths 16C and 16D. Therefore, the deviation of the flow rate of the refrigerant due to the phase change of the refrigerant in the branch flow path 63 can be reduced.
  • FIG. 14 is a plan view of the intermediate plate 1014 of the first header 1010 of the heat exchanger of the comparative form.
  • 15 is an enlarged plan view of intermediate plate 1014.
  • the intermediate plate 1014 has a plurality of spatial channels 16 (16A-16H) and distribution channels 1012.
  • the distribution channel 1012 has an outlet channel 1061 and two branch channels 1063 (1063A, 1063B).
  • the outlet channel 1061 includes a first partial channel 1061A along the Y direction and a second partial channel 1061B along the Z direction.
  • the lead-out channel 1061 is L-shaped.
  • the first partial flow path 1061A is shorter than the pitch of the heat exchange tubes 30 (see P1 shown in FIG. 7). As shown in FIG.
  • the header has a confluence/distribution channel.
  • the confluence/distribution channel merges the refrigerants from the plurality of heat exchange tubes and distributes them to the other plurality of heat exchange tubes.
  • the refrigerant flowing through the plurality of heat exchange tubes can be mixed and redistributed within the converging distribution channel.
  • a difference in heat load may occur between the plurality of heat exchange tubes, but in the heat exchanger of the embodiment, since the refrigerant can be mixed and redistributed, the difference in heat load can be reduced. Therefore, it is possible to suppress a decrease in heat exchange efficiency due to a difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.

Abstract

A heat exchanger according to an embodiment of the present invention has a plurality of heat exchange tubes and headers. The heat exchange tubes are formed with refrigerant channels through which a refrigerant flows. The headers are provided at the ends of the heat exchange tubes. At least one of the headers is formed with a confluence/distribution channel. The confluence/distribution channel merges the refrigerant from two or more of the plurality of heat exchange tubes and distributes the refrigerant to the other two or more heat exchange tubes.

Description

熱交換器および冷凍サイクル装置Heat exchanger and refrigeration cycle equipment
 本発明の実施形態は、熱交換器および冷凍サイクル装置に関する。 Embodiments of the present invention relate to heat exchangers and refrigeration cycle devices.
 ヘッダ型の熱交換器は、複数の熱交換チューブと、ヘッダとを持つ。熱交換チューブは、冷媒流路を有する。ヘッダは、熱交換チューブの端部に設けられる。ヘッダは、冷媒が流れる流路を有する。
 例えば、熱交換チューブが複数列に配置される場合などには、複数の熱交換チューブにおいて熱負荷の差異が生じることがある。この場合、一部の熱交換チューブで熱負荷が過大となることなどによって、熱交換器の熱交換効率が低くなる可能性があった。
A header-type heat exchanger has a plurality of heat exchange tubes and a header. The heat exchange tubes have coolant channels. Headers are provided at the ends of the heat exchange tubes. The header has channels through which the coolant flows.
For example, when heat exchange tubes are arranged in a plurality of rows, heat load differences may occur among the plurality of heat exchange tubes. In this case, there is a possibility that the heat exchange efficiency of the heat exchanger may be lowered due to an excessive heat load on some of the heat exchange tubes.
特開平8-313115号公報JP-A-8-313115
 本発明が解決しようとする課題は、熱交換効率を高めることができる熱交換器および冷凍サイクル装置を提供することである。 The problem to be solved by the present invention is to provide a heat exchanger and a refrigeration cycle device that can improve heat exchange efficiency.
 実施形態の熱交換器は、複数の熱交換チューブと、ヘッダと、を持つ。前記熱交換チューブは、冷媒が流れる冷媒流路が形成されている。前記ヘッダは、前記熱交換チューブの端部に設けられている。少なくとも1つの前記ヘッダに、合流分配流路が形成されている。前記合流分配流路は、複数の前記熱交換チューブのうち2以上からの前記冷媒を合流し、他の2以上の前記熱交換チューブに分配する。 The heat exchanger of the embodiment has a plurality of heat exchange tubes and headers. The heat exchange tube is formed with a refrigerant channel through which a refrigerant flows. The headers are provided at the ends of the heat exchange tubes. At least one of the headers is formed with a confluence/distribution channel. The confluence/distribution channel merges the refrigerant from two or more of the plurality of heat exchange tubes and distributes it to the other two or more of the heat exchange tubes.
実施形態の冷凍サイクル装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the refrigerating-cycle apparatus of embodiment. 第1の実施形態の熱交換器の斜視図。The perspective view of the heat exchanger of 1st Embodiment. 第1の実施形態の熱交換器の分解斜視図。2 is an exploded perspective view of the heat exchanger of the first embodiment; FIG. 第1の実施形態の熱交換器の第1ヘッダの中間板の平面図。FIG. 4 is a plan view of an intermediate plate of the first header of the heat exchanger of the first embodiment; 第2の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 2nd Embodiment. 第3の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 3rd Embodiment. 第4の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 4th Embodiment. 第4の実施形態の熱交換器の第1ヘッダの中間板の拡大した平面図。FIG. 11 is an enlarged plan view of the intermediate plate of the first header of the heat exchanger of the fourth embodiment; 第5の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 5th Embodiment. 第6の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 6th Embodiment. 第7の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 7th Embodiment. 第8の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 8th Embodiment. 第9の実施形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of 9th Embodiment. 比較形態の熱交換器の第1ヘッダの中間板の平面図。The top view of the intermediate plate of the 1st header of the heat exchanger of a comparative form. 比較形態の熱交換器の第1ヘッダの中間板の拡大した平面図。FIG. 4 is an enlarged plan view of the intermediate plate of the first header of the heat exchanger of the comparative form;
 以下、実施形態の熱交換器および冷凍サイクル装置を、図面を参照して説明する。 A heat exchanger and a refrigeration cycle device according to embodiments will be described below with reference to the drawings.
(第1の実施形態)
 図1は、実施形態の冷凍サイクル装置の概略構成図である。
 図1に示すように、冷凍サイクル装置1は、圧縮機2と、四方弁3と、室外熱交換器(熱交換器)4と、膨張装置5と、室内熱交換器(熱交換器)6と、を備える。冷凍サイクル装置1の構成要素は、配管7によって接続されている。図1では、冷房運転時の冷媒(熱媒体)の流通方向は実線矢印で示す。暖房運転時の冷媒の流通方向は破線矢印で示す。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to an embodiment.
As shown in FIG. 1, the refrigeration cycle device 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger (heat exchanger) 4, an expansion device 5, and an indoor heat exchanger (heat exchanger) 6. And prepare. Components of the refrigeration cycle apparatus 1 are connected by piping 7 . In FIG. 1, the flow direction of the refrigerant (heat medium) during the cooling operation is indicated by solid arrows. The flow direction of the refrigerant during heating operation is indicated by a dashed arrow.
 圧縮機2は、圧縮機本体2Aと、アキュムレータ2Bと、を備える。圧縮機本体2Aは、内部に取り込まれる低圧の気体冷媒を圧縮して高温・高圧の気体冷媒にする。アキュムレータ2Bは、気液二相冷媒を分離して、気体冷媒を圧縮機本体2Aに供給する。 The compressor 2 includes a compressor body 2A and an accumulator 2B. The compressor main body 2A compresses the low-pressure gaseous refrigerant taken thereinto into a high-temperature, high-pressure gaseous refrigerant. The accumulator 2B separates the gas-liquid two-phase refrigerant and supplies the gas refrigerant to the compressor body 2A.
 四方弁3は、冷媒の流通方向を逆転させ、冷房運転と暖房運転とを切り替える。冷房運転時に、冷媒は、圧縮機2、四方弁3、室外熱交換器4、膨張装置5、室内熱交換器6の順に流れる。このとき、室外熱交換器4は凝縮器として機能する。室内熱交換器6は蒸発器として機能する。 The four-way valve 3 reverses the flow direction of the refrigerant to switch between cooling operation and heating operation. During cooling operation, the refrigerant flows through the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion device 5, and the indoor heat exchanger 6 in this order. At this time, the outdoor heat exchanger 4 functions as a condenser. The indoor heat exchanger 6 functions as an evaporator.
 暖房運転時に、冷媒は、圧縮機2、四方弁3、室内熱交換器6、膨張装置5、室外熱交換器4の順に流れる。このとき、室内熱交換器6は凝縮器として機能する。室外熱交換器4は蒸発器として機能する。 During heating operation, the refrigerant flows through the compressor 2, the four-way valve 3, the indoor heat exchanger 6, the expansion device 5, and the outdoor heat exchanger 4 in this order. At this time, the indoor heat exchanger 6 functions as a condenser. The outdoor heat exchanger 4 functions as an evaporator.
 凝縮器は、圧縮機2から吐出される高温・高圧の気体冷媒を、外気へ放熱させて凝縮させることにより、高圧の液体冷媒にする。膨張装置5は、凝縮器から送り込まれる高圧の液体冷媒の圧力を下げ、低温・低圧の気液二相冷媒にする。蒸発器は、膨張装置5から送り込まれる低温・低圧の気液二相冷媒を、外気から吸熱させて気化させることにより、低圧の気体冷媒にする。 The condenser converts the high-temperature, high-pressure gaseous refrigerant discharged from the compressor 2 into a high-pressure liquid refrigerant by radiating heat to the outside air and condensing it. The expansion device 5 reduces the pressure of the high-pressure liquid refrigerant sent from the condenser to convert it into a low-temperature, low-pressure gas-liquid two-phase refrigerant. The evaporator absorbs heat from the outside air and evaporates the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5, thereby converting it into a low-pressure gaseous refrigerant.
 冷凍サイクル装置1では、作動流体である冷媒は気体冷媒と液体冷媒との間で相変化しながら循環する。冷媒は、気体冷媒から液体冷媒に相変化する過程で放熱する。冷媒は、液体冷媒から気体冷媒に相変化する過程で吸熱する。冷凍サイクル装置1は、冷媒の放熱または吸熱を利用して、暖房、冷房、除霜などを行う。 In the refrigeration cycle device 1, the refrigerant, which is the working fluid, circulates while changing its phase between gas refrigerant and liquid refrigerant. The refrigerant releases heat during the phase change from gas refrigerant to liquid refrigerant. The refrigerant absorbs heat during the phase change from the liquid refrigerant to the gas refrigerant. The refrigerating cycle device 1 performs heating, cooling, defrosting, etc. by utilizing the heat radiation or heat absorption of the refrigerant.
 図2は、第1の実施形態の熱交換器の斜視図である。図2に示すように、この熱交換器は、冷凍サイクル装置1の室外熱交換器4および室内熱交換器6(図1参照)のうち一方または両方として使用される。以下、実施形態の熱交換器が、冷凍サイクル装置1の室外熱交換器4(図1参照)として使用される場合を例にして説明する。 FIG. 2 is a perspective view of the heat exchanger of the first embodiment. As shown in FIG. 2, this heat exchanger is used as one or both of the outdoor heat exchanger 4 and the indoor heat exchanger 6 (see FIG. 1) of the refrigeration cycle apparatus 1. Hereinafter, a case where the heat exchanger of the embodiment is used as the outdoor heat exchanger 4 (see FIG. 1) of the refrigeration cycle device 1 will be described as an example.
 図2および図3に即して、熱交換器4の位置関係を仮に規定する。X方向、Y方向およびZ方向は、以下のように定義される。Z方向は、第1ヘッダおよび第2ヘッダの長手方向(延在方向)である。例えば、Z方向は鉛直方向である。+Z方向は上方向(高さ方向)である。X方向は、熱交換チューブの中心軸方向(延在方向)である。例えば、X方向は水平方向である。+X方向は第2ヘッダから第1ヘッダに向かう方向である。Y方向は、X方向およびZ方向に垂直な方向である。Y方向は水平方向である。YZ平面は、Y方向とZ方向とによって形成される平面である。 The positional relationship of the heat exchanger 4 is provisionally defined in line with FIGS. The X, Y and Z directions are defined as follows. The Z direction is the longitudinal direction (extending direction) of the first header and the second header. For example, the Z direction is the vertical direction. The +Z direction is the upward direction (height direction). The X direction is the central axis direction (extending direction) of the heat exchange tubes. For example, the X direction is horizontal. The +X direction is the direction from the second header to the first header. The Y direction is the direction perpendicular to the X and Z directions. The Y direction is horizontal. A YZ plane is a plane formed by the Y direction and the Z direction.
 熱交換器4は、第1ヘッダ10と、第2ヘッダ20と、複数の熱交換チューブ(伝熱管)30と、を有する。
 第1ヘッダ10は、熱交換チューブ30の+X方向の端部に接続される。第2ヘッダ20は、熱交換チューブ30の-X方向の端部に接続される。
The heat exchanger 4 has a first header 10 , a second header 20 and a plurality of heat exchange tubes (heat transfer tubes) 30 .
The first header 10 is connected to the +X direction end of the heat exchange tube 30 . The second header 20 is connected to the end of the heat exchange tube 30 in the -X direction.
 第1ヘッダ10および第2ヘッダ20は、YZ平面と平行な平板状に形成される。本実施形態では、X方向から見て、第1ヘッダ10および第2ヘッダ20は矩形状である。第1ヘッダ10および第2ヘッダ20の形状は、長手方向がZ方向に沿う長方形状である。第1ヘッダ10および第2ヘッダ20は、熱伝導率が高く、かつ比重が小さい材料で形成される。「熱伝導率が高く、かつ比重が小さい材料」としては、アルミニウム、アルミニウム合金等の金属が挙げられる。 The first header 10 and the second header 20 are formed in a flat plate shape parallel to the YZ plane. In this embodiment, the first header 10 and the second header 20 are rectangular when viewed from the X direction. The shape of the first header 10 and the second header 20 is a rectangular shape whose longitudinal direction is along the Z direction. The first header 10 and the second header 20 are made of a material with high thermal conductivity and low specific gravity. Metals such as aluminum and aluminum alloys are examples of "materials with high thermal conductivity and low specific gravity".
 図3は、第1の実施形態の熱交換器の分解斜視図である。図3に示すように、第1ヘッダ10は、内端板(第2端板)11と、中間板14と、外端板(第1端板)17と、を備える。内端板11は、中間板14の-X方向側の面に重ねられる。外端板17は、中間板14の+X方向側の面に重ねられる。 FIG. 3 is an exploded perspective view of the heat exchanger of the first embodiment. As shown in FIG. 3 , the first header 10 includes an inner end plate (second end plate) 11 , an intermediate plate 14 and an outer end plate (first end plate) 17 . The inner end plate 11 is superimposed on the surface of the intermediate plate 14 on the −X direction side. The outer end plate 17 overlaps the surface of the intermediate plate 14 on the +X direction side.
 図4は、中間板14の平面図である。図4に示すように、中間板14は、複数の空間流路16(16A,16B,16G,16H)と、空間流路116とを有する。空間流路16,116は、冷媒の流路となる。空間流路16,116は、中間板14を厚さ方向に貫通する貫通孔により形成される。空間流路16,116の開口は、内端板11および外端板17により閉止される(図3参照)。空間流路116は、合流分配流路の一例である。 4 is a plan view of the intermediate plate 14. FIG. As shown in FIG. 4, the intermediate plate 14 has a plurality of spatial channels 16 (16A, 16B, 16G, 16H) and a spatial channel . The spatial channels 16 and 116 serve as coolant channels. The spatial flow paths 16 and 116 are formed by through-holes passing through the intermediate plate 14 in the thickness direction. The openings of the spatial channels 16, 116 are closed by the inner end plate 11 and the outer end plate 17 (see FIG. 3). Spatial channel 116 is an example of a confluence/distribution channel.
 複数の空間流路16は、第1空間流路16A、第2空間流路16B、第3空間流路16Gおよび第4空間流路16Hを含む。空間流路16は、X方向から見て長円形状とされている。「長円形状」は、互いに平行かつ向かい合う2つの直線と、2つの曲線とで構成される形状である。曲線は、2つの直線の端部どうしをそれぞれ結ぶ湾曲凸状(例えば半円状、楕円弧状など)である。空間流路16の長径方向はY方向と平行である。複数の空間流路16は、互いに離間して形成されている。複数の空間流路16は互いに同じ形状である。 The plurality of spatial channels 16 include a first spatial channel 16A, a second spatial channel 16B, a third spatial channel 16G and a fourth spatial channel 16H. The spatial flow path 16 has an oval shape when viewed from the X direction. "Oval shape" is a shape composed of two straight lines parallel to each other and two curved lines. A curve is a curved convex shape (eg, semicircular, elliptical arc, etc.) that connects the ends of two straight lines, respectively. The longitudinal direction of the spatial flow channel 16 is parallel to the Y direction. The plurality of spatial channels 16 are formed apart from each other. The plurality of spatial channels 16 have the same shape.
 第1空間流路16Aおよび第2空間流路16Bは、Y方向に間隔をおいて、Y方向に並んで形成されている。第2空間流路16Bは、第1空間流路16Aに対して+Y方向側に位置する。 The first spatial flow channel 16A and the second spatial flow channel 16B are formed side by side in the Y direction with an interval in the Y direction. The second spatial flow channel 16B is located on the +Y direction side with respect to the first spatial flow channel 16A.
 空間流路116は、第1空間流路16Aおよび第2空間流路16Bに対して低い位置にある。空間流路116は、第1空間流路16Aおよび第2空間流路16Bに対して-Z方向側に離れて位置する。空間流路116は、X方向から見て長円形状とされている。空間流路116の長径方向はY方向と平行である。空間流路116の長径は、空間流路16の長径より大きい。 The spatial channel 116 is positioned lower than the first spatial channel 16A and the second spatial channel 16B. The spatial flow channel 116 is located away from the first spatial flow channel 16A and the second spatial flow channel 16B in the -Z direction. The spatial flow channel 116 has an oval shape when viewed from the X direction. The longitudinal direction of the spatial flow channel 116 is parallel to the Y direction. The long diameter of the spatial flow channel 116 is larger than the long diameter of the spatial flow channel 16 .
 第3空間流路16Gおよび第4空間流路16Hは、空間流路116に対して低い位置にある。第3空間流路16Gおよび第4空間流路16Hは、空間流路116に対して-Z方向側に離れて位置する。第3空間流路16Gおよび第4空間流路16Hは、Y方向に間隔をおいて、Y方向に並んで形成されている。第4空間流路16Hは、第3空間流路16Gに対して、+Y方向側に位置する。 The third spatial flow channel 16G and the fourth spatial flow channel 16H are positioned lower than the spatial flow channel 116. The third spatial flow channel 16G and the fourth spatial flow channel 16H are positioned away from the spatial flow channel 116 in the -Z direction. The third spatial flow channel 16G and the fourth spatial flow channel 16H are formed side by side in the Y direction with an interval in the Y direction. The fourth spatial flow channel 16H is located on the +Y direction side with respect to the third spatial flow channel 16G.
 内端板11には、空間流路16(16A,16B,16G,16H)に相当する位置に、それぞれ1つの貫通孔41が形成されている。貫通孔41は、Y方向に沿うスリット状とされている。貫通孔41には、熱交換チューブ30の+X方向の端部が挿入される。熱交換チューブ30の+X方向の端部は、空間流路16に開口する。そのため、空間流路16は、それぞれ1つの熱交換チューブ30の冷媒流路34と連通する。 In the inner end plate 11, one through hole 41 is formed at each position corresponding to the spatial flow path 16 (16A, 16B, 16G, 16H). The through hole 41 is slit-shaped along the Y direction. The +X direction end of the heat exchange tube 30 is inserted into the through hole 41 . The +X direction end of the heat exchange tube 30 opens into the spatial flow path 16 . Therefore, each spatial channel 16 communicates with the refrigerant channel 34 of one heat exchange tube 30 .
 内端板11の、空間流路16A,16B,16G,16Hに相当する位置に形成された貫通孔41をそれぞれ貫通孔41A,41B,41G,41Hという。 The through holes 41 formed in the inner end plate 11 at positions corresponding to the spatial flow paths 16A, 16B, 16G and 16H are called through holes 41A, 41B, 41G and 41H, respectively.
 内端板11には、空間流路116に相当する位置に、4つの貫通孔41が形成されている。貫通孔41には、熱交換チューブ30の+X方向の端部が挿入される。熱交換チューブ30の+X方向の端部は、空間流路116に開口する。そのため、空間流路116は、4つの熱交換チューブ30の冷媒流路34と連通する。 Four through holes 41 are formed in the inner end plate 11 at positions corresponding to the spatial flow paths 116 . The +X direction end of the heat exchange tube 30 is inserted into the through hole 41 . The +X direction end of the heat exchange tube 30 opens into the spatial flow path 116 . Therefore, the spatial channel 116 communicates with the refrigerant channels 34 of the four heat exchange tubes 30 .
 空間流路116に形成された4つの貫通孔41は、それぞれ貫通孔41C,41D,41E,41Fである。貫通孔41C,41Dは、Y方向に間隔をおいて、Y方向に並んで形成されている。貫通孔41Dは、貫通孔41Cに対して+Y方向側に位置する。貫通孔41E,41Fは、貫通孔41C,41Dに対して-Z方向側に離れて位置する。貫通孔41E,41Fは、Y方向に間隔をおいて、Y方向に並んで形成されている。貫通孔41Fは、貫通孔41Eに対して+Y方向側に位置する。 The four through-holes 41 formed in the spatial flow path 116 are through- holes 41C, 41D, 41E, and 41F, respectively. The through holes 41C and 41D are formed side by side in the Y direction with a space therebetween. The through hole 41D is located on the +Y direction side with respect to the through hole 41C. The through holes 41E and 41F are located away from the through holes 41C and 41D in the -Z direction. The through- holes 41E and 41F are formed side by side in the Y-direction with an interval in the Y-direction. The through hole 41F is positioned on the +Y direction side with respect to the through hole 41E.
 貫通孔41A,41C,41E,41Gは、Z方向に間隔をおいてこの順に並ぶ。貫通孔41B,41D,41F,41Hは、Z方向に間隔をおいてこの順に並ぶ。貫通孔41A~41Hに挿入される熱交換チューブ30を、それぞれ熱交換チューブ30A~30Hという。 The through holes 41A, 41C, 41E, and 41G are arranged in this order at intervals in the Z direction. The through holes 41B, 41D, 41F, and 41H are arranged in this order at intervals in the Z direction. The heat exchange tubes 30 inserted into the through holes 41A-41H are referred to as heat exchange tubes 30A-30H, respectively.
 図3に示すように、外端板17には、2つの貫通孔42が形成されている。貫通孔42には、それぞれ管状の第1冷媒ポート51が挿入される(図2参照)。一方の第1冷媒ポート51の端部は、第3空間流路16Gに開口する。他方の第1冷媒ポート51の端部は、第4空間流路16Hに開口する。これらの開口は、冷媒を熱交換器4に導入する導入部、または冷媒を熱交換器4から導出する導出部となる。 As shown in FIG. 3, two through holes 42 are formed in the outer end plate 17 . Tubular first refrigerant ports 51 are inserted into the through-holes 42 (see FIG. 2). One end of the first coolant port 51 opens to the third spatial flow channel 16G. The other end of the first coolant port 51 opens into the fourth spatial flow channel 16H. These openings serve as inlets for introducing the refrigerant into the heat exchanger 4 or outlets for leading the refrigerant out of the heat exchanger 4 .
 外端板17には、2つの貫通孔43が形成されている。貫通孔43には、それぞれ管状の第2冷媒ポート52が挿入される(図2参照)。一方の第2冷媒ポート52の端部は、第1空間流路16Aに開口する。他方の第2冷媒ポート52の端部は、第2空間流路16Bに開口する。これらの開口は、冷媒を熱交換器4に導入する導入部、または冷媒を熱交換器4から導出する導出部となる。 Two through holes 43 are formed in the outer end plate 17 . Tubular second refrigerant ports 52 are inserted into the through-holes 43 (see FIG. 2). One end of the second coolant port 52 opens into the first spatial flow channel 16A. The other end of the second coolant port 52 opens into the second spatial flow channel 16B. These openings serve as inlets for introducing the refrigerant into the heat exchanger 4 or outlets for leading the refrigerant out of the heat exchanger 4 .
 第2ヘッダ20は、一対の小ヘッダ20A,20Bを有する。小ヘッダ20A,20Bは、Y方向に並んで配置される。小ヘッダ20A,20Bは、内端板21と、中間板24と、外端板27と、を有する。内端板21は、中間板24の+X方向側の面に重ねられる。外端板27は、中間板24の-X方向側の面に重ねられる。 The second header 20 has a pair of small headers 20A and 20B. The small headers 20A and 20B are arranged side by side in the Y direction. Each of the small headers 20A, 20B has an inner end plate 21, an intermediate plate 24, and an outer end plate 27. The inner end plate 21 overlaps the surface of the intermediate plate 24 on the +X direction side. The outer end plate 27 is superimposed on the surface of the intermediate plate 24 on the -X direction side.
 中間板24は、複数の空間流路(図示略)を有する。これらの空間流路は、冷媒の流路となる。これらの空間流路は、中間板24を厚さ方向に貫通する貫通孔により形成される。これらの空間流路の開口は、内端板21および外端板27により閉止される。 The intermediate plate 24 has a plurality of spatial channels (not shown). These spatial channels serve as coolant channels. These spatial flow paths are formed by through holes penetrating through the intermediate plate 24 in the thickness direction. The openings of these spatial channels are closed by the inner end plate 21 and the outer end plate 27 .
 熱交換チューブ30は、偏平管状に形成される。すなわち、熱交換チューブ30は、Z方向の寸法に比べてY方向の寸法が大きい。熱交換チューブ30の、長さ方向に直交する断面(YZ断面)の形状は、長円形状である。熱交換チューブ30は、X方向に延在する。熱交換チューブ30の内部には、冷媒流路34が形成されている。熱交換チューブ30は、熱伝導率が高く、かつ比重が小さい材料で形成される。「熱伝導率が高く、かつ比重が小さい材料」としては、アルミニウム、アルミニウム合金等の金属が挙げられる。 The heat exchange tube 30 is formed in a flat tubular shape. That is, the heat exchange tube 30 has a larger dimension in the Y direction than the dimension in the Z direction. The shape of the cross section (YZ cross section) perpendicular to the length direction of the heat exchange tube 30 is an elliptical shape. The heat exchange tubes 30 extend in the X direction. A refrigerant channel 34 is formed inside the heat exchange tube 30 . The heat exchange tube 30 is made of a material with high thermal conductivity and low specific gravity. Metals such as aluminum and aluminum alloys are examples of "materials with high thermal conductivity and low specific gravity".
 複数の熱交換チューブ30の少なくとも一部は、Z方向に間隔をおいて並列配置される。詳しくは、第1ヘッダ10の貫通孔41A,41C,41E,41Gに接続される4つの熱交換チューブ30(30A,30C,30E,30G)は、Z方向に間隔をおいて並んで配列されている。すなわち、4つの熱交換チューブ30(30A,30C,30E,30G)は、複数段(4段)に配置されている。第1ヘッダ10の貫通孔41B,41D,41F,41Hに接続される4つの熱交換チューブ30(30B,30D,30F,30H)は、Z方向に間隔をおいて並んで配列されている。すなわち、4つの熱交換チューブ30(30B,30D,30F,30H)は、複数段(4段)に配置されている。 At least some of the plurality of heat exchange tubes 30 are arranged in parallel at intervals in the Z direction. Specifically, the four heat exchange tubes 30 (30A, 30C, 30E, 30G) connected to the through holes 41A, 41C, 41E, 41G of the first header 10 are arranged side by side at intervals in the Z direction. there is That is, the four heat exchange tubes 30 (30A, 30C, 30E, 30G) are arranged in multiple stages (four stages). The four heat exchange tubes 30 (30B, 30D, 30F, 30H) connected to the through holes 41B, 41D, 41F, 41H of the first header 10 are arranged side by side at intervals in the Z direction. That is, the four heat exchange tubes 30 (30B, 30D, 30F, 30H) are arranged in multiple stages (four stages).
 8つの熱交換チューブ30は、2列に配列されている。8つの熱交換チューブ30は、X方向から見て、2×4のマトリックス状に並んで配置されている。熱交換チューブ30A,30C,30E,30Gを、第1列の熱交換チューブ30という。熱交換チューブ30B,30D,30F,30Hを、第2列の熱交換チューブ30という。
 なお、複数の熱交換チューブ30が形成する列の数は、2に限らない。複数の熱交換チューブ30が形成する列の数は、複数(2以上の任意の数)であってよい。
The eight heat exchange tubes 30 are arranged in two rows. The eight heat exchange tubes 30 are arranged in a 2×4 matrix when viewed from the X direction. The heat exchange tubes 30A, 30C, 30E, and 30G are referred to as the heat exchange tubes 30 of the first row. The heat exchange tubes 30B, 30D, 30F, and 30H are called the heat exchange tubes 30 of the second row.
Note that the number of rows formed by the plurality of heat exchange tubes 30 is not limited to two. The number of rows formed by the plurality of heat exchange tubes 30 may be plural (any number equal to or greater than 2).
 熱交換チューブ30の-X方向の端部は、第2ヘッダ20に形成された貫通孔45に挿入される。これにより、熱交換チューブ30の冷媒流路34の-X方向の端部は、第2ヘッダ20の空間流路に開口する。そのため、第2ヘッダ20の空間流路は、熱交換チューブ30の冷媒流路34と連通する。 The -X direction end of the heat exchange tube 30 is inserted into the through hole 45 formed in the second header 20 . As a result, the −X direction end of the refrigerant channel 34 of the heat exchange tube 30 opens into the spatial channel of the second header 20 . Therefore, the spatial flow paths of the second header 20 communicate with the refrigerant flow paths 34 of the heat exchange tubes 30 .
 第1ヘッダ10と熱交換チューブ30との隙間、および、第2ヘッダ20と熱交換チューブ30との隙間は、ロウ付け等により封止される。 The gap between the first header 10 and the heat exchange tube 30 and the gap between the second header 20 and the heat exchange tube 30 are sealed by brazing or the like.
 上下に隣り合う熱交換チューブ30の間には、Y方向に沿う外気流路が形成される。熱交換器4は、送風ファン(図示略)等により外気流路に外気を流通させる。熱交換器4は、外気流路を流通する外気と、冷媒流路34を流通する冷媒との間で熱交換させる。熱交換は、熱交換チューブ30を介して間接的に行われる。 Between the vertically adjacent heat exchange tubes 30, outside air flow paths are formed along the Y direction. The heat exchanger 4 circulates outside air through an outside air flow path using a fan (not shown) or the like. The heat exchanger 4 exchanges heat between the outside air flowing through the outside air passage and the refrigerant flowing through the refrigerant passage 34 . Heat exchange is performed indirectly through the heat exchange tubes 30 .
 図1に示す冷凍サイクル装置1が暖房運転を行うとき、熱交換器4は蒸発器として機能する。この場合、熱交換器4は、膨張装置5から送り込まれる低温・低圧の気液二相冷媒を、外気から吸熱させて気化させることにより、低圧の気体冷媒にする。 When the refrigeration cycle device 1 shown in FIG. 1 performs heating operation, the heat exchanger 4 functions as an evaporator. In this case, the heat exchanger 4 converts the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5 into a low-pressure gaseous refrigerant by absorbing heat from the outside air and vaporizing it.
 図4に示すように、例えば、冷媒は、2つの第1冷媒ポート51(図2参照)から、それぞれ第1ヘッダ10の第3空間流路16Gおよび第4空間流路16Hに流入する。図3に示すように、冷媒は、それぞれ熱交換チューブ30G,30Hを-X方向に流れ、それぞれ第2ヘッダ20の異なる空間流路に流入する。冷媒は、熱交換チューブ30E,30Fを+X方向に流れ、第1ヘッダ10の空間流路116に流入する。 As shown in FIG. 4, for example, the coolant flows from the two first coolant ports 51 (see FIG. 2) into the third spatial flow channel 16G and the fourth spatial flow channel 16H of the first header 10, respectively. As shown in FIG. 3, the refrigerant flows through the heat exchange tubes 30G and 30H in the −X direction and into different spatial flow paths of the second header 20, respectively. The refrigerant flows through the heat exchange tubes 30</b>E and 30</b>F in the +X direction, and flows into the spatial flow paths 116 of the first header 10 .
 図4に示すように、熱交換チューブ30Eから流入した冷媒と、熱交換チューブ30Fから流入した冷媒とは、空間流路116内で合流する。空間流路116内の冷媒は、熱交換チューブ30Cと、熱交換チューブ30Dとに分配される。 As shown in FIG. 4, the refrigerant that has flowed in from the heat exchange tubes 30E and the refrigerant that has flowed in from the heat exchange tubes 30F join in the spatial flow path 116. As shown in FIG. Refrigerant in the spatial flow channel 116 is distributed to the heat exchange tubes 30C and the heat exchange tubes 30D.
 図3に示すように、熱交換チューブ30C,30Dに分配された冷媒は、熱交換チューブ30C,30Dを-X方向に流れ、それぞれ第2ヘッダ20の異なる空間流路に流入する。冷媒は、複数の熱交換チューブ30A,30Bを+X方向に流れ、それぞれ第1ヘッダ10の第1空間流路16Aおよび第2空間流路16Bに流入する。冷媒は、第2冷媒ポート52(図2参照)から系外に流出する。 As shown in FIG. 3, the refrigerant distributed to the heat exchange tubes 30C and 30D flows through the heat exchange tubes 30C and 30D in the -X direction and flows into different spatial channels of the second header 20, respectively. The refrigerant flows in the +X direction through the plurality of heat exchange tubes 30A and 30B, and flows into the first spatial flow channel 16A and the second spatial flow channel 16B of the first header 10, respectively. The refrigerant flows out of the system from the second refrigerant port 52 (see FIG. 2).
 この例では、冷媒は、第1冷媒ポート51(図2参照)から導入され、熱交換チューブ30を通って第1ヘッダ10と第2ヘッダ20との間を往復し、第2冷媒ポート52(図2参照)から流出する。 In this example, refrigerant is introduced from the first refrigerant port 51 (see FIG. 2), passes through the heat exchange tubes 30, travels between the first header 10 and the second header 20, and flows through the second refrigerant port 52 (see FIG. 2). 2).
 熱交換器4では、第1ヘッダ10は、空間流路(合流分配流路)116を有する。空間流路116は、2つの熱交換チューブ30(30E,30F)からの冷媒を合流し、他の2つの熱交換チューブ30(30C,30D)に分配する。熱交換器4では、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを空間流路116内で混合し、再分配できる。 In the heat exchanger 4 , the first header 10 has a spatial channel (joint/distribution channel) 116 . The spatial flow path 116 joins the refrigerant from the two heat exchange tubes 30 (30E, 30F) and distributes it to the other two heat exchange tubes 30 (30C, 30D). In the heat exchanger 4 , the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 can be mixed and redistributed within the spatial flow channels 116 .
 第1列の熱交換チューブ30と第2列の熱交換チューブ30との間には、熱負荷に差異が生じることがあるが、熱交換器4では、冷媒の混合、再分配ができるため、熱負荷の差異を小さくできる。したがって、熱負荷の差異を原因として熱交換効率が低くなるのを抑制できる。よって、熱交換器4における熱交換効率を高めることができる。 There may be a difference in heat load between the heat exchange tubes 30 in the first row and the heat exchange tubes 30 in the second row. The difference in heat load can be reduced. Therefore, it is possible to prevent the heat exchange efficiency from being lowered due to the difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger 4 can be improved.
 比較のため、冷媒の混合および再分配のための外部管路(合流分岐管路)が第1ヘッダに設けられた熱交換器を想定する。この構造の熱交換器は、外部管路が第1ヘッダから突出するため、収納性の点で劣る。これに対し、実施形態の熱交換器4では、第1ヘッダ10内で冷媒の混合および再分配を行うため、外部管路は不要である。そのため、図2に示す熱交換器4は、コンパクト化が可能であり、収納性の点で優れている。熱交換器4は、外部管路がないため軽量であるという利点もある。 For comparison, assume a heat exchanger in which the first header is provided with an external pipeline (joint branch pipeline) for mixing and redistributing the refrigerant. A heat exchanger with this structure is inferior in storability because the external pipe line protrudes from the first header. In contrast, in the heat exchanger 4 of the embodiment, since the refrigerant is mixed and redistributed within the first header 10, no external pipe line is required. Therefore, the heat exchanger 4 shown in FIG. 2 can be made compact and is excellent in storability. The heat exchanger 4 also has the advantage of being lightweight due to the lack of external lines.
 この実施形態では、2つの熱交換チューブからの冷媒を合流し、他の2つの熱交換チューブに分配するが、合流する冷媒の数は2に限らず、複数(2以上の任意の数)であってよい。冷媒を分配する熱交換チューブの数も2に限らず、複数(2以上の任意の数)であってよい。すなわち、合流分配流路は、複数の熱交換チューブのうち2以上から供給された冷媒を合流し、他の2以上の熱交換チューブに分配する。
 第1ヘッダに形成される合流分配流路の数は1に限らず、複数(2以上の任意の数)であってよい。合流分配流路は、第2ヘッダの中間板に形成されていてもよい。第2ヘッダに形成される合流分配流路の数は1または複数(2以上の任意の数)であってよい。合流分配流路は、第1ヘッダと第2ヘッダのうち少なくとも1つに形成されている。合流分配流路は、第1ヘッダと第2ヘッダの一方に形成されていてもよいし、両方に形成されていてもよい。
In this embodiment, the refrigerants from two heat exchange tubes are merged and distributed to the other two heat exchange tubes, but the number of refrigerants to be merged is not limited to two, and may be plural (any number equal to or greater than two). It's okay. The number of heat exchange tubes for distributing the refrigerant is not limited to two, and may be plural (any number equal to or greater than two). That is, the confluence distribution channel merges the refrigerant supplied from two or more of the plurality of heat exchange tubes and distributes it to the other two or more heat exchange tubes.
The number of confluence/distribution channels formed in the first header is not limited to one, and may be plural (any number equal to or greater than two). The confluence/distribution channel may be formed in the intermediate plate of the second header. The number of confluence/distribution channels formed in the second header may be one or more (any number equal to or greater than two). The confluence/distribution channel is formed in at least one of the first header and the second header. The confluence/distribution channel may be formed in one of the first header and the second header, or may be formed in both.
(第2の実施形態)
 図5は、第2の実施形態の熱交換器の第1ヘッダ210の中間板214の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。
(Second embodiment)
FIG. 5 is a plan view of the intermediate plate 214 of the first header 210 of the heat exchanger of the second embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
 図5に示すように、中間板214は、空間流路16および空間流路216を有する。第2の実施形態の熱交換器は、空間流路116に代えて空間流路216を有すること以外は、図4に示す第1の実施形態の熱交換器と同様の構成である。空間流路216は、合流分配流路の一例である。 As shown in FIG. 5, the intermediate plate 214 has spatial channels 16 and spatial channels 216 . The heat exchanger of the second embodiment has the same configuration as the heat exchanger of the first embodiment shown in FIG. Spatial channel 216 is an example of a confluence/distribution channel.
 空間流路216は、X方向から見て長円形状とされている。空間流路216の長径方向はY方向と平行である。空間流路216の両端部には、それぞれ突出部217が形成されている。一対の突出部217は、Y方向に沿って互いに近づく方向に突出する。突出部217は、空間流路216の高さ方向のほぼ中央に形成されている。突出部217は、一対の直線部と、湾曲部とを組み合わせたU字形状を有する。一対の直線部は、互いに平行かつ向かい合う。湾曲部は、湾曲凸状(例えば、半円形状)とされている。一方の突出部217の先端と、他方の突出部217の先端との間は、狭小部218である。狭小部218では、冷媒の流路が狭くなっている。 The spatial flow path 216 has an oval shape when viewed from the X direction. The longitudinal direction of the spatial flow channel 216 is parallel to the Y direction. Protrusions 217 are formed at both ends of the spatial flow channel 216 . The pair of protruding portions 217 protrude toward each other along the Y direction. The projecting portion 217 is formed substantially in the center of the spatial flow channel 216 in the height direction. The projecting portion 217 has a U-shape formed by combining a pair of straight portions and a curved portion. The pair of linear portions are parallel and face each other. The curved portion has a curved convex shape (for example, a semicircular shape). A narrow portion 218 is provided between the tip of one protrusion 217 and the tip of the other protrusion 217 . In the narrowed portion 218, the passage of the coolant is narrowed.
 狭小部218は、次の式を満たすことが好ましい。
 D1>2300μA1/W1
(D1は、狭小部218の水力相当直径[m]である。μは、冷媒の粘度[Pa・s]である。A1は、狭小部218の最も狭くなる部分の断面積[m]である。W1は、狭小部218を流れる冷媒の質量流量[kg/s]である。)
 狭小部218の断面積は、狭小部218における冷媒の流れ方向に直交する断面における流路の面積である。狭小部218における冷媒の流れ方向は+Z方向である。狭小部218における冷媒の流れ方向に直交する断面は水平面に沿う。
The narrowed portion 218 preferably satisfies the following equation.
D1>2300μA1/W1
(D1 is the hydraulic equivalent diameter [m] of the narrow portion 218. μ is the viscosity of the refrigerant [Pa s]. A1 is the cross-sectional area [m 2 ] of the narrowest portion of the narrow portion 218. W1 is the mass flow rate [kg/s] of the refrigerant flowing through the narrow portion 218.)
The cross-sectional area of the narrow portion 218 is the area of the flow path in the cross section perpendicular to the flow direction of the coolant in the narrow portion 218 . The flow direction of the coolant in the narrow portion 218 is the +Z direction. A cross section perpendicular to the flow direction of the coolant in the narrow portion 218 is along the horizontal plane.
 狭小部218がこの式を満たすと、狭小部218を流れる冷媒は乱流となりやすいため、空間流路216内の気液二相状態の冷媒における偏流を抑制できる。 When the narrowed portion 218 satisfies this formula, the refrigerant flowing through the narrowed portion 218 tends to become turbulent, so that the non-uniform flow of the gas-liquid two-phase refrigerant in the space flow path 216 can be suppressed.
 熱交換チューブ30Eから流入した冷媒と、熱交換チューブ30Fから流入した冷媒とは、空間流路216内で合流する。図5に矢印で示すように、冷媒は、狭小部218を+Z方向(重力方向と逆向き)に上昇し、空間流路216の上面に衝突して左右に分かれ、熱交換チューブ30Cと熱交換チューブ30Dとに分配される。 The refrigerant that has flowed in from the heat exchange tubes 30E and the refrigerant that has flowed in from the heat exchange tubes 30F join in the spatial flow path 216. As shown by the arrow in FIG. 5, the refrigerant rises in the narrow portion 218 in the +Z direction (opposite to the direction of gravity), collides with the upper surface of the spatial flow path 216, and splits into left and right, and heat-exchanges with the heat exchange tube 30C. and tube 30D.
 この熱交換器では、第1ヘッダ210は、空間流路216を有するため、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを空間流路216内で混合し、再分配できる。よって、熱交換器における熱交換効率を高めることができる。 In this heat exchanger, since the first header 210 has the spatial flow paths 216 , the refrigerant flowing through the heat exchange tubes 30 in the first row and the refrigerant flowing through the heat exchange tubes 30 in the second row flow through the spatial flow paths 216 . can be mixed and redistributed within Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
 この熱交換器では、空間流路216に狭小部218が形成されている。冷媒は、狭い部分に通ることで一旦集約された後に開放されることにより拡散するため、乱流となりやすくなる。よって、空間流路216内の気液二相状態の冷媒の偏流を抑制できる。 In this heat exchanger, a narrowed portion 218 is formed in the space channel 216 . Refrigerants tend to become turbulent because they are diffused when they are released after being collected once by passing through a narrow portion. Therefore, the drift of the gas-liquid two-phase refrigerant in the space channel 216 can be suppressed.
(第3の実施形態)
 図6は、第3の実施形態の熱交換器の第1ヘッダ310の中間板314の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。
 図6に示すように、中間板314は、空間流路16および空間流路316を有する。空間流路316は、合流分配流路の一例である。
(Third Embodiment)
FIG. 6 is a plan view of the intermediate plate 314 of the first header 310 of the heat exchanger of the third embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 6, intermediate plate 314 has spatial channels 16 and spatial channels 316 . Spatial flow channel 316 is an example of a confluence/distribution flow channel.
 空間流路316は、長円形状とされている。空間流路316は、一対の直線部316aと、一対の湾曲部316bとを有する。一対の直線部316aは、互いに平行かつ向かい合う。一方の湾曲部316bは、2つの直線部316aの一方の端部どうしを結ぶ。他方の湾曲部316bは、2つの直線部316aの他方の端部どうしを結ぶ。湾曲部316bは、湾曲凸状(例えば、半円形状)とされている。空間流路316の長径方向は、Y方向に対して傾斜する。空間流路316は、前述の外気流路(隣り合う熱交換チューブ30の間に形成される外気の流路)における外気の流れの上流側にある湾曲部316bが下流側の湾曲部316bに比べて高く位置するように傾斜する。 The spatial flow path 316 has an oval shape. The spatial flow channel 316 has a pair of straight portions 316a and a pair of curved portions 316b. The pair of linear portions 316a are parallel and face each other. One curved portion 316b connects one ends of the two straight portions 316a. The other curved portion 316b connects the other ends of the two straight portions 316a. The curved portion 316b has a curved convex shape (for example, a semicircular shape). The longitudinal direction of the spatial channel 316 is inclined with respect to the Y direction. In the spatial flow channel 316, the curved portion 316b on the upstream side of the outside air flow in the above-described outside air flow channel (the outside air flow channel formed between the adjacent heat exchange tubes 30) is larger than the curved portion 316b on the downstream side. incline so that it is positioned higher than the
 一対の直線部316aには、それぞれ突出部317が形成されている。一対の突出部317は、空間流路316の短径方向に沿って互いに近づく方向に突出する。突出部317は、直線部316aの長さ方向のほぼ中央に形成されている。突出部317は、一対の直線部と、湾曲部とを組み合わせたU字形状を有する。一対の直線部は、互いに平行かつ向かい合う。湾曲部は、湾曲凸状(例えば、半円形状)とされている。一方の突出部317の先端と、他方の突出部317の先端との間は、狭小部318である。 A protruding portion 317 is formed on each of the pair of linear portions 316a. The pair of protruding portions 317 protrude toward each other along the minor axis direction of the spatial flow channel 316 . The projecting portion 317 is formed substantially in the center in the length direction of the straight portion 316a. The projecting portion 317 has a U-shape combining a pair of straight portions and a curved portion. The pair of linear portions are parallel and face each other. The curved portion has a curved convex shape (for example, a semicircular shape). A narrow portion 318 is provided between the tip of one protrusion 317 and the tip of the other protrusion 317 .
 狭小部318は、次の式を満たすことが好ましい。
 D2>2300μA2/W2
(D2は、狭小部318の水力相当直径[m]である。μは、冷媒の粘度[Pa・s]である。A2は、狭小部318の最も狭くなる部分の断面積[m]である。W2は、狭小部218を流れる冷媒の質量流量[kg/s]である。)
 狭小部318の断面積は、狭小部318における冷媒の流れ方向に直交する断面における流路の面積である。
 狭小部318がこの式を満たすと、狭小部318を流れる冷媒は乱流となりやすいため、空間流路316内の気液二相状態の冷媒における偏流を抑制できる。
The narrowed portion 318 preferably satisfies the following equation.
D2>2300μA2/W2
(D2 is the hydraulic equivalent diameter [m] of the narrow portion 318. μ is the viscosity of the refrigerant [Pa s]. A2 is the cross-sectional area [m 2 ] of the narrowest portion of the narrow portion 318. W2 is the mass flow rate [kg/s] of the refrigerant flowing through the narrow portion 218.)
The cross-sectional area of the narrow portion 318 is the area of the flow path in the cross section perpendicular to the flow direction of the coolant in the narrow portion 318 .
When the narrowed portion 318 satisfies this formula, the refrigerant flowing through the narrowed portion 318 tends to be turbulent, so that the flow deviation of the gas-liquid two-phase refrigerant in the space flow path 316 can be suppressed.
 冷媒は、それぞれ第1冷媒ポートから第1ヘッダ10の第2空間流路16Bおよび第4空間流路16Hに流入する。冷媒は、それぞれ熱交換チューブ30B,30Hを-X方向に流れ、それぞれ第2ヘッダ20の異なる空間流路に流入する。冷媒は、熱交換チューブ30D,30Fを+X方向に流れ、第1ヘッダ10の空間流路316に流入する。 The coolant flows from the first coolant port into the second spatial flow channel 16B and the fourth spatial flow channel 16H of the first header 10, respectively. The refrigerants flow through the heat exchange tubes 30B and 30H in the −X direction, respectively, and flow into different spatial flow paths of the second header 20, respectively. The refrigerant flows through the heat exchange tubes 30D and 30F in the +X direction, and flows into the spatial flow paths 316 of the first header 10. As shown in FIG.
 熱交換チューブ30Dから流入した冷媒と、熱交換チューブ30Fから流入した冷媒とは、空間流路316内で合流する。図6の矢印に示すように、冷媒は斜め下方に流れて狭小部318を通り、湾曲部316bの内面に衝突して上下に分かれ、熱交換チューブ30Cと、熱交換チューブ30Eとに分配される。狭小部318を通る冷媒は斜め下方に流れるため、上方に流れる場合(図5参照)に比べて、重力の影響によって流速が高くなりやすい。 The refrigerant that has flowed in from the heat exchange tubes 30D and the refrigerant that has flowed in from the heat exchange tubes 30F join in the spatial flow path 316. As indicated by the arrow in FIG. 6, the refrigerant flows obliquely downward, passes through the narrowed portion 318, collides with the inner surface of the curved portion 316b, and is divided into upper and lower portions, and is distributed to the heat exchange tubes 30C and 30E. . Since the refrigerant passing through the narrow portion 318 flows obliquely downward, the flow velocity tends to be higher due to the influence of gravity than when the refrigerant flows upward (see FIG. 5).
 熱交換チューブ30C,30Eに分配された冷媒は、熱交換チューブ30C,30Eを-X方向に流れ、それぞれ第2ヘッダ20の異なる空間流路に流入する。冷媒は、複数の熱交換チューブ30A,30Gを+X方向に流れ、それぞれ第1ヘッダ10の第1空間流路16Aおよび第3空間流路16Gに流入する。冷媒は、第2冷媒ポートから流出する。 The refrigerant distributed to the heat exchange tubes 30C, 30E flows through the heat exchange tubes 30C, 30E in the -X direction, and flows into different spatial channels of the second header 20, respectively. The refrigerant flows through the plurality of heat exchange tubes 30A and 30G in the +X direction, and flows into the first spatial flow channel 16A and the third spatial flow channel 16G of the first header 10, respectively. Coolant flows out of the second coolant port.
 この熱交換器では、第1ヘッダ310は、空間流路316を有するため、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを空間流路316内で混合し、再分配できる。よって、熱交換器における熱交換効率を高めることができる。 In this heat exchanger, since the first header 310 has the spatial flow paths 316 , the refrigerant flowing through the heat exchange tubes 30 in the first row and the refrigerant flowing through the heat exchange tubes 30 in the second row flow through the spatial flow paths 316 . can be mixed and redistributed within Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
 この熱交換器では、空間流路316に狭小部318が形成されており、かつ空間流路316は傾斜している。そのため、冷媒は、重力の影響によって勢いがついて狭小部318を通過する。この熱交換器では、冷媒を狭い部分に勢いをつけて通すため、冷媒は一旦集約された後に開放されることにより拡散する。したがって、冷媒は乱流となりやすくなる。よって、空間流路316内の気液二相状態の冷媒における偏流を抑制できる。 In this heat exchanger, a narrowed portion 318 is formed in the spatial flow channel 316, and the spatial flow channel 316 is inclined. Therefore, the refrigerant passes through the narrow portion 318 with momentum due to the influence of gravity. In this heat exchanger, since the refrigerant is passed through a narrow portion with force, the refrigerant is once concentrated and then released to diffuse. Therefore, the refrigerant tends to become turbulent. Therefore, it is possible to suppress drift in the gas-liquid two-phase refrigerant in the space channel 316 .
 なお、本実施形態では、空間流路316は傾斜して形成されているが、空間流路316は、長径方向がY方向と平行であってもよい。 Although the spatial flow channel 316 is formed to be inclined in this embodiment, the spatial flow channel 316 may have its major axis direction parallel to the Y direction.
(第4の実施形態)
 図7は、第4の実施形態の熱交換器の第1ヘッダ410の中間板414の平面図である。図8は、中間板414の拡大した平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。
(Fourth embodiment)
FIG. 7 is a plan view of the intermediate plate 414 of the first header 410 of the heat exchanger of the fourth embodiment. FIG. 8 is an enlarged plan view of intermediate plate 414 . Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
 図7に示すように、中間板414は、複数の空間流路16(16A~16H)と、合流分配流路12とを有する。空間流路16は、中間板414を厚さ方向に貫通する貫通孔により形成される。複数の空間流路16は、第1空間流路16A~第8空間流路16Hを含む。空間流路16(16A~16H)は、X方向から見て長円形状とされている。空間流路16の長径方向はY方向と平行である。複数の空間流路16は、互いに離間して形成されている。複数の空間流路16は互いに同じ形状である。 As shown in FIG. 7, the intermediate plate 414 has a plurality of spatial channels 16 (16A to 16H) and the confluence/distribution channels 12. The spatial flow path 16 is formed by a through hole penetrating through the intermediate plate 414 in the thickness direction. The plurality of spatial channels 16 include first spatial channels 16A to eighth spatial channels 16H. The spatial flow channels 16 (16A to 16H) have an oval shape when viewed from the X direction. The longitudinal direction of the spatial flow channel 16 is parallel to the Y direction. The plurality of spatial channels 16 are formed apart from each other. The plurality of spatial channels 16 have the same shape.
 第1空間流路16Aおよび第2空間流路16Bは、Y方向に間隔をおいて、Y方向に並んで形成されている。第2空間流路16Bは、第1空間流路16Aに対して+Y方向側に位置する。 The first spatial flow channel 16A and the second spatial flow channel 16B are formed side by side in the Y direction with an interval in the Y direction. The second spatial flow channel 16B is located on the +Y direction side with respect to the first spatial flow channel 16A.
 第3空間流路16Cおよび第4空間流路16Dは、それぞれ第1空間流路16Aおよび第2空間流路16Bに対して低い位置にある。第3空間流路16Cおよび第4空間流路16Dは、第1空間流路16Aおよび第2空間流路16Bに対して-Z方向側に離れて位置する。第3空間流路16Cおよび第4空間流路16Dは、Y方向に間隔をおいて、Y方向に並んで形成されている。第4空間流路16Dは、第3空間流路16Cに対して、+Y方向側に位置する。 The third spatial flow channel 16C and the fourth spatial flow channel 16D are positioned lower than the first spatial flow channel 16A and the second spatial flow channel 16B, respectively. The third spatial flow channel 16C and the fourth spatial flow channel 16D are located away from the first spatial flow channel 16A and the second spatial flow channel 16B in the -Z direction. The third spatial flow channel 16C and the fourth spatial flow channel 16D are formed side by side in the Y direction with an interval in the Y direction. The fourth spatial flow channel 16D is located on the +Y direction side with respect to the third spatial flow channel 16C.
 第5空間流路16Eおよび第6空間流路16Fは、それぞれ第3空間流路16Cおよび第4空間流路16Dに対して低い位置にある。第5空間流路16Eおよび第6空間流路16Fは、第3空間流路16Cおよび第4空間流路16Dに対して-Z方向側に離れて位置する。第5空間流路16Eおよび第6空間流路16Fは、Y方向に間隔をおいて、Y方向に並んで形成されている。第6空間流路16Fは、第5空間流路16Eに対して、+Y方向側に位置する。 The fifth spatial flow channel 16E and the sixth spatial flow channel 16F are positioned lower than the third spatial flow channel 16C and the fourth spatial flow channel 16D, respectively. The fifth spatial flow channel 16E and the sixth spatial flow channel 16F are located away from the third spatial flow channel 16C and the fourth spatial flow channel 16D in the -Z direction. The fifth spatial flow channel 16E and the sixth spatial flow channel 16F are formed side by side in the Y direction with an interval in the Y direction. The sixth spatial flow channel 16F is located on the +Y direction side with respect to the fifth spatial flow channel 16E.
 第7空間流路16Gおよび第8空間流路16Hは、それぞれ第5空間流路16Eおよび第6空間流路16Fに対して低い位置にある。第7空間流路16Gおよび第8空間流路16Hは、第5空間流路16Eおよび第6空間流路16Fに対して-Z方向側に離れて位置する。第7空間流路16Gおよび第8空間流路16Hは、Y方向に間隔をおいて、Y方向に並んで形成されている。第8空間流路16Hは、第7空間流路16Gに対して、+Y方向側に位置する。 The seventh spatial flow channel 16G and the eighth spatial flow channel 16H are positioned lower than the fifth spatial flow channel 16E and the sixth spatial flow channel 16F, respectively. The seventh spatial flow channel 16G and the eighth spatial flow channel 16H are located away from the fifth spatial flow channel 16E and the sixth spatial flow channel 16F in the -Z direction. The seventh spatial flow channel 16G and the eighth spatial flow channel 16H are formed side by side in the Y direction with an interval in the Y direction. The eighth spatial flow channel 16H is positioned on the +Y direction side with respect to the seventh spatial flow channel 16G.
 空間流路16A,16C,16E,16Gは、Z方向に並んで配置されている。空間流路16B,16D,16F,16Hは、Z方向に並んで配置されている。8つの空間流路16は、2列に配列されている。8つの空間流路16は、2×4のマトリックス状に並んで配置されている。空間流路16A,16C,16E,16Gを、第1列の空間流路16という。空間流路16B,16D,16F,16Hを、第2列の空間流路16という。
 ピッチP1は、上下に隣り合う熱交換チューブ30の中心軸の高低差である。
 なお、複数の空間流路16が形成する列の数は、2に限らない。複数の空間流路16が形成する列の数は、複数(2以上の任意の数)であってよい。
The spatial flow channels 16A, 16C, 16E, and 16G are arranged side by side in the Z direction. The spatial flow channels 16B, 16D, 16F, and 16H are arranged side by side in the Z direction. The eight spatial channels 16 are arranged in two rows. The eight spatial channels 16 are arranged in a 2×4 matrix. The spatial channels 16A, 16C, 16E, and 16G are referred to as the spatial channels 16 of the first row. The spatial channels 16B, 16D, 16F, and 16H are referred to as the spatial channels 16 of the second row.
The pitch P1 is the height difference between the central axes of the vertically adjacent heat exchange tubes 30 .
Note that the number of rows formed by the plurality of spatial flow channels 16 is not limited to two. The number of rows formed by the plurality of spatial flow channels 16 may be plural (any number equal to or greater than 2).
 合流分配流路12は、中間板414を厚さ方向に貫通する貫通孔により形成される。合流分配流路12は、第7空間流路16Gおよび第8空間流路16Hからの冷媒を第5空間流路16Eおよび第6空間流路16Fに分配する。 The confluence/distribution channel 12 is formed by a through-hole that penetrates the intermediate plate 414 in the thickness direction. The confluence distribution channel 12 distributes the coolant from the seventh spatial channel 16G and the eighth spatial channel 16H to the fifth spatial channel 16E and the sixth spatial channel 16F.
 合流分配流路12は、複数の導出流路61と、1つの合流流路62と、複数の分岐流路63とを有する。導出流路61の数は2つである。分岐流路63の数は2つである。なお、導出流路および分岐流路の数は2に限らず、2以上の任意の数であってよい。 The confluence/distribution channel 12 has a plurality of lead-out channels 61 , one confluence channel 62 , and a plurality of branch channels 63 . The number of lead-out channels 61 is two. The number of branch flow paths 63 is two. Note that the number of lead-out channels and branch channels is not limited to two, and may be any number equal to or greater than two.
 分岐流路63A,63Bの基端を含む部分は、方向変換部615である。方向変換部615は、分岐流路63A,63Bの基端部分を含む屈曲形状の流路である。方向変換部615は、合流流路62からの冷媒の流れ方向を変換する。 A portion including the base ends of the branch flow paths 63A and 63B is the direction changing portion 615. The direction changing portion 615 is a curved channel including the base ends of the branch channels 63A and 63B. The direction changing part 615 changes the flow direction of the coolant from the confluence channel 62 .
 2つの導出流路61を、それぞれ第1導出流路61Aおよび第2導出流路61Bという。第1導出流路61Aは、第7空間流路16Gの+Y方向の端を基端として+Y方向に延びる。第1導出流路61Aは、第7空間流路16Gから冷媒を導く。第2導出流路61Bは、第8空間流路16Hの-Y方向の端を基端として-Y方向に延びる。第2導出流路61Bは、第8空間流路16Hから冷媒を導く。第1導出流路61Aと第2導出流路61Bとは同じ高さ位置に形成されている。第1導出流路61Aと第2導出流路61Bとは先端において接続されている。 The two outlet channels 61 are called a first outlet channel 61A and a second outlet channel 61B, respectively. The first lead-out channel 61A extends in the +Y direction with the +Y direction end of the seventh spatial channel 16G as its base end. The first outlet channel 61A guides the coolant from the seventh spatial channel 16G. The second lead-out channel 61B extends in the -Y direction with the -Y direction end of the eighth spatial channel 16H as its base end. The second outlet channel 61B guides the coolant from the eighth spatial channel 16H. The first outlet channel 61A and the second outlet channel 61B are formed at the same height position. The first outlet channel 61A and the second outlet channel 61B are connected at the tip.
 合流流路62は、第1導出流路61Aと第2導出流路61Bとの先端どうしの接続箇所を基端として、重力方向と逆向きである+Z方向にまっすぐに延びる。合流流路62は、上下方向に沿う流路である。合流流路62は、第1列の空間流路16(16A,16C,16E,16G)に比べて+Y方向寄りに位置する。合流流路62は、第2列の空間流路16(16B,16D,16F,16H)に比べて-Y方向寄りに位置する。合流流路62は、複数の空間流路16のうち2以上の空間流路16からの冷媒を合流させる。 The confluence channel 62 extends straight in the +Z direction, which is the direction opposite to the direction of gravity, with the connecting point between the tips of the first outlet channel 61A and the second outlet channel 61B as the base end. The confluence channel 62 is a channel along the vertical direction. The confluence channel 62 is located closer to the +Y direction than the spatial channels 16 (16A, 16C, 16E, 16G) in the first row. The confluence channel 62 is located closer to the -Y direction than the second row of spatial channels 16 (16B, 16D, 16F, 16H). The confluence channel 62 joins the refrigerant from two or more spatial channels 16 out of the plurality of spatial channels 16 .
 図7においては、合流流路62は、第1列の空間流路16(16A,16C,16E,16G)と第2列の空間流路16(16B,16D,16F,16H)のいずれからも同じ距離だけ離れた中間の位置に形成されている。合流流路62の長さL1は、熱交換チューブ30の上下方向のピッチP1より大きい。長さL1がピッチP1より大きいことにより、合流流路62は十分な長さを有する。そのため、合流流路62において気液二相状態の冷媒を十分に混合し、冷媒の偏流を抑制できる。よって、複数の分岐流路63に流入する冷媒の量の偏りを小さくできる。 In FIG. 7, the confluence channel 62 is formed from both the first row of spatial channels 16 (16A, 16C, 16E, 16G) and the second row of spatial channels 16 (16B, 16D, 16F, 16H). It is formed at an intermediate position separated by the same distance. The length L1 of the confluence channel 62 is greater than the vertical pitch P1 of the heat exchange tubes 30 . Since the length L1 is greater than the pitch P1, the confluence channel 62 has a sufficient length. Therefore, the gas-liquid two-phase refrigerant can be sufficiently mixed in the confluence passage 62, and the drift of the refrigerant can be suppressed. Therefore, the unevenness in the amount of refrigerant flowing into the plurality of branched flow paths 63 can be reduced.
 合流流路62の長さL1が熱交換チューブ30のピッチP1より大きいため、合流流路62の+Z方向の端(先端)は、空間流路16E,16Fに接続された熱交換チューブ30より高い位置にある。合流流路62の+Z方向の端(先端)は、空間流路16E,16Fより高い位置にあることが望ましい。 Since the length L1 of the confluence channel 62 is greater than the pitch P1 of the heat exchange tubes 30, the +Z direction end (tip) of the confluence channel 62 is higher than the heat exchange tubes 30 connected to the spatial flow channels 16E and 16F. in position. The +Z-direction end (tip) of the confluence channel 62 is desirably positioned higher than the spatial channels 16E and 16F.
 分岐流路63は、合流流路62からの冷媒を、他の2以上の空間流路16(空間流路16G,16H以外の空間流路16のうち2以上)に分配する。2つの分岐流路63を、それぞれ第1分岐流路63Aおよび第2分岐流路63Bという。第1分岐流路63Aおよび第2分岐流路63Bは、合流流路62が2つに分岐して形成された流路である。 The branch channel 63 distributes the refrigerant from the confluence channel 62 to the other two or more spatial channels 16 (two or more of the spatial channels 16 other than the spatial channels 16G and 16H). The two branched flow paths 63 are referred to as a first branched flow path 63A and a second branched flow path 63B, respectively. The first branched flow path 63A and the second branched flow path 63B are flow paths formed by branching the confluence flow path 62 into two.
 第1分岐流路63Aは、合流流路62の+Z方向の端(先端)を基端として斜め下方に延びる直線状の流路である。第1分岐流路63Aは、-Y方向に行くほど下降するように傾斜する。第1分岐流路63Aは、第5空間流路16Eに達している。第1分岐流路63Aは、冷媒を第5空間流路16Eに導くことができる。第5空間流路16Eは、分配先の空間流路16である。 The first branch flow path 63A is a linear flow path that extends obliquely downward with the end (tip) of the confluence flow path 62 in the +Z direction as the base end. The first branch flow path 63A is inclined downward toward the -Y direction. The first branch channel 63A reaches the fifth spatial channel 16E. The first branch channel 63A can guide the coolant to the fifth spatial channel 16E. The fifth spatial channel 16E is the spatial channel 16 of the distribution destination.
 第2分岐流路63Bは、合流流路62の+Z方向の端(先端)を基端として斜め下方に延びる直線状の流路である。第2分岐流路63Bは、+Y方向に行くほど下降するように傾斜する。第2分岐流路63Bは、第6空間流路16Fに達している。第2分岐流路63Bは、冷媒を第6空間流路16Fに導くことができる。第6空間流路16Fは、分配先の空間流路16である。
 合流流路62に対する第1分岐流路63Aの傾斜角度と、合流流路62に対する第2分岐流路63Bの傾斜角度とは等しい。
The second branch flow path 63B is a linear flow path extending obliquely downward from the +Z direction end (tip) of the confluence flow path 62 as a base end. The second branch channel 63B is inclined so as to descend in the +Y direction. The second branch channel 63B reaches the sixth spatial channel 16F. The second branch channel 63B can guide the coolant to the sixth spatial channel 16F. The sixth spatial channel 16F is the spatial channel 16 of the distribution destination.
The inclination angle of the first branched flow path 63A with respect to the merged flow path 62 and the inclination angle of the second branched flow path 63B with respect to the merged flow path 62 are equal.
 内端板11には、空間流路16(16A~16H)に相当する位置に、それぞれ1つの貫通孔41(41A~41H)が形成されている(図4参照)。貫通孔41には、熱交換チューブ30の+X方向の端部が挿入される。熱交換チューブ30の+X方向の端部は、空間流路16に開口する。そのため、空間流路16は、熱交換チューブ30の冷媒流路34と連通する。 In the inner end plate 11, one through-hole 41 (41A-41H) is formed at each position corresponding to the spatial flow path 16 (16A-16H) (see FIG. 4). The +X direction end of the heat exchange tube 30 is inserted into the through hole 41 . The +X direction end of the heat exchange tube 30 opens into the spatial flow path 16 . Therefore, the spatial channel 16 communicates with the refrigerant channel 34 of the heat exchange tube 30 .
 図1に示す冷凍サイクル装置1が暖房運転を行うとき、熱交換器4は蒸発器として機能する。この場合、熱交換器4は、膨張装置5から送り込まれる低温・低圧の気液二相冷媒を、外気から吸熱させて気化させることにより、低圧の気体冷媒にする。 When the refrigeration cycle device 1 shown in FIG. 1 performs heating operation, the heat exchanger 4 functions as an evaporator. In this case, the heat exchanger 4 converts the low-temperature, low-pressure gas-liquid two-phase refrigerant sent from the expansion device 5 into a low-pressure gaseous refrigerant by absorbing heat from the outside air and vaporizing it.
 図7に示すように、熱交換チューブ30(30G)から第7空間流路16Gに流入した冷媒の少なくとも一部は、第1導出流路61Aを通して合流流路62に流入する。熱交換チューブ30(30H)から第8空間流路16Hに流入した冷媒の少なくとも一部は、第2導出流路61Bを通して合流流路62に流入する。第7空間流路16Gから流入した冷媒と、第8空間流路16Hから流入した冷媒とは、合流流路62内で合流する。 As shown in FIG. 7, at least part of the refrigerant that has flowed from the heat exchange tube 30 (30G) into the seventh spatial flow channel 16G flows into the confluence flow channel 62 through the first outlet flow channel 61A. At least part of the refrigerant that has flowed from the heat exchange tube 30 (30H) into the eighth spatial flow channel 16H flows into the confluence flow channel 62 through the second outlet flow channel 61B. The coolant that has flowed in from the seventh spatial flow channel 16G and the coolant that has flowed in from the eighth spatial flow channel 16H join together in the confluence flow channel 62 .
 合流流路62内の冷媒は、重力方向と逆向き(図8に示す矢印方向)に移動し、方向変換部615の上面に衝突し、2つの分岐流路63によって第5空間流路16Eおよび第6空間流路16Fに分配される。冷媒は方向変換部615によって圧力の偏りなく分配されるため、気液二相状態の冷媒における偏流を抑制できる。そのため、複数の分岐流路63に流入する冷媒の量の偏りを小さくできる。 The coolant in the confluence channel 62 moves in the direction opposite to the direction of gravity (in the direction of the arrow shown in FIG. 8), collides with the upper surface of the direction changing portion 615, and flows through the two branch channels 63 into the fifth spatial channel 16E and the It is distributed to the sixth spatial flow channel 16F. Since the refrigerant is evenly distributed by the direction changing portion 615, it is possible to suppress uneven flow in the gas-liquid two-phase refrigerant. Therefore, the unevenness in the amount of refrigerant flowing into the plurality of branch flow paths 63 can be reduced.
 図8に示すように、分岐流路63の長さをL[m]とする。分岐流路63の水力相当直径をD[m]とする。冷媒の密度をρ[kg/m]とする。冷媒の粘度をμ[Pa・s]とする。合流流路62における冷媒の質量流量をW[kg/s]とする。合流流路62における冷媒の質量流束Gは「G=W/A」[kg/s/m]で表される。Aは、合流流路62の断面積[m]である。流路の断面積は、当該流路の長さ方向に直交する断面の面積である。 As shown in FIG. 8, let the length of the branch flow path 63 be L [m]. Let D [m] be the hydraulic equivalent diameter of the branch flow path 63 . Let ρ [kg/m 3 ] be the density of the refrigerant. Let μ [Pa·s] be the viscosity of the refrigerant. Let W [kg/s] be the mass flow rate of the refrigerant in the confluence channel 62 . The mass flux G of the refrigerant in the confluence channel 62 is represented by "G=W/A" [kg/s/m 2 ]. A is the cross-sectional area [m 2 ] of the confluence channel 62 . The cross-sectional area of the channel is the area of the cross section orthogonal to the length direction of the channel.
 第1分岐流路63Aの長さLはLともいう。第2分岐流路63Bの長さLはLともいう。第1分岐流路63Aの水力相当直径DはDともいう。第2分岐流路63Bの水力相当直径DはDともいう。
 なお、2つの分岐流路63の長さは互いに同じでもよいし、互いに異なっていてもよい。2つの分岐流路63の水力相当直径は互いに同じでもよいし、互いに異なっていてもよい。
The length L of the first branch channel 63A is also called LA . The length L of the second branch channel 63B is also called LB. The hydraulic equivalent diameter D of the first branch flow path 63A is also called DA . The hydraulic equivalent diameter D of the second branch flow path 63B is also referred to as DB.
In addition, the lengths of the two branch flow paths 63 may be the same as each other, or may be different from each other. The hydraulic equivalent diameters of the two branch flow paths 63 may be the same or different.
 分岐流路63の圧力損失ΔPは、次に示す式(1)(ダルシーワイズバッハの式)で表される。 The pressure loss ΔP of the branch flow path 63 is expressed by the following formula (1) (Darcy-Weisbach's formula).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
「λ」は、次に示す式(2)(ブラジウスの式)で表される。 "λ" is represented by the following equation (2) (Blazius equation).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 式(1)に式(2)を代入すると、次の式(3)が得られる。 By substituting formula (2) into formula (1), the following formula (3) is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(3)より、分岐流路63の圧力損失ΔPには、次の式(4)に示すFpが大きな影響を及ぼすことがわかる。 From the equation (3), it can be seen that the pressure loss ΔP of the branch flow path 63 is greatly affected by Fp shown in the following equation (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 2つの分岐流路63のFpの偏差(絶対値)は、20%以下であることが好ましい。例えば、2つの分岐流路63のうち第1の分岐流路63のFpをFp1とする。第2の分岐流路63のFpをFp2とする。Fp1とFp2との平均をFpavとする。|Fp1-Fpav|/Fpav×100、および|Fp2-Fpav|/Fpav×100は、いずれも20(%)以下が好ましい。Fpの偏差(絶対値)が20%以下であると、2つの分岐流路63に流入する冷媒の量の偏りを小さくできる。 The deviation (absolute value) of Fp of the two branched flow paths 63 is preferably 20% or less. For example, the Fp of the first branched channel 63 of the two branched channels 63 is Fp1. Let Fp2 be the Fp of the second branch flow path 63 . Let Fpav be the average of Fp1 and Fp2. |Fp1-Fpav|/Fpav×100 and |Fp2-Fpav|/Fpav×100 are both preferably 20 (%) or less. When the deviation (absolute value) of Fp is 20% or less, the unevenness in the amount of refrigerant flowing into the two branch flow paths 63 can be reduced.
 この熱交換器では、第1ヘッダ410は、合流分配流路12を有するため、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを合流分配流路12内で混合し、再分配できる。第1列の熱交換チューブ30と第2列の熱交換チューブ30との間には、熱負荷に差異が生じることがあるが、この熱交換器では、冷媒の混合、再分配ができるため、熱負荷の差異を小さくできる。したがって、熱負荷の差異によって熱交換効率が低くなるのを抑制できる。よって、熱交換器における熱交換効率を高めることができる。 In this heat exchanger, the first header 410 has the confluence distribution flow path 12, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 12 . Although there may be a difference in heat load between the heat exchange tubes 30 in the first row and the heat exchange tubes 30 in the second row, this heat exchanger can mix and redistribute the refrigerant. The difference in heat load can be reduced. Therefore, it is possible to suppress a decrease in heat exchange efficiency due to a difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
(第5の実施形態)
 図9は、第5の実施形態の熱交換器の第1ヘッダ510の中間板514の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。図9に示すように、中間板514は、複数の空間流路16(16A~16H)と、合流分配流路512とを有する。
(Fifth embodiment)
FIG. 9 is a plan view of the intermediate plate 514 of the first header 510 of the heat exchanger of the fifth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 9, the intermediate plate 514 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 512. As shown in FIG.
 合流分配流路512は、複数(2つ)の導出流路561と、1つの合流流路62と、複数(2つ)の分岐流路563とを有する。2つの導出流路561を、それぞれ第1導出流路561Aおよび第2導出流路561Bという。第1導出流路561Aは、第7空間流路16Gの+Y方向の端を基端として+Y方向に延びる。第2導出流路561Bは、第8空間流路16Hの-Y方向の端を基端として-Y方向に延びる。第1導出流路561Aと第2導出流路561Bとは先端において接続されている。 The confluence/distribution channel 512 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 563 . The two outlet channels 561 are referred to as a first outlet channel 561A and a second outlet channel 561B, respectively. The first lead-out channel 561A extends in the +Y direction with the +Y direction end of the seventh spatial channel 16G as its base end. The second lead-out channel 561B extends in the -Y direction with the -Y direction end of the eighth spatial channel 16H as its base end. The first outlet flow path 561A and the second outlet flow path 561B are connected at their distal ends.
 合流流路62は、第1導出流路561Aと第2導出流路561Bとの先端どうしの接続箇所を基端として、重力方向と逆向きである+Z方向にまっすぐに延びる。合流流路62は、導出流路561に比べて小さい断面積を有する。 The confluence channel 62 extends straight in the +Z direction, which is the direction opposite to the direction of gravity, with the connection point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end. The confluence channel 62 has a smaller cross-sectional area than the outlet channel 561 .
 2つの分岐流路563を、それぞれ第1分岐流路563Aおよび第2分岐流路563Bという。第1分岐流路563Aおよび第2分岐流路563Bは、合流流路62が2つに分岐して形成された流路である。 The two branched flow paths 563 are called a first branched flow path 563A and a second branched flow path 563B, respectively. The first branched flow path 563A and the second branched flow path 563B are flow paths formed by branching the confluence flow path 62 into two.
 第1分岐流路563Aは、L字形状とされている。第1分岐流路563Aは、合流流路62の+Z方向の端(先端)を基端として+Z方向に延び、その先端で-Y方向に方向変換する。第1分岐流路563Aは、第1空間流路16Aに達している。第1分岐流路563Aは、冷媒を第1空間流路16A(分配先の空間流路)に導くことができる。 The first branch channel 563A is L-shaped. The first branch channel 563A extends in the +Z direction with the end (tip) of the confluence channel 62 in the +Z direction as its base end, and changes direction in the -Y direction at the tip. The first branch channel 563A reaches the first spatial channel 16A. The first branch channel 563A can guide the coolant to the first spatial channel 16A (distribution destination spatial channel).
 第2分岐流路563Bは、L字形状とされている。第2分岐流路563Bは、合流流路62の+Z方向の端(先端)を基端として+Y方向に延び、その先端で-Z方向に方向変換する。第2分岐流路563Bは、第6空間流路16Fに達している。第2分岐流路563Bは、冷媒を第6空間流路16F(分配先の空間流路)に導くことができる。 The second branch channel 563B is L-shaped. The second branch channel 563B extends in the +Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, and changes direction to the -Z direction at the tip. The second branch channel 563B reaches the sixth spatial channel 16F. The second branch channel 563B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
 この熱交換器では、第1ヘッダ510は、合流分配流路512を有するため、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを合流分配流路512内で混合し、再分配できる。よって、熱交換器における熱交換効率を高めることができる。 In this heat exchanger, the first header 510 has the confluence distribution flow path 512, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 512 . Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
(第6の実施形態)
 図10は、第6実施形態の熱交換器の第1ヘッダ610の中間板614の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。図10に示すように、中間板614は、複数の空間流路16(16A~16H)と、合流分配流路612とを有する。
(Sixth embodiment)
FIG. 10 is a plan view of the intermediate plate 614 of the first header 610 of the heat exchanger of the sixth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 10, the intermediate plate 614 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 612. As shown in FIG.
 合流分配流路612は、複数(2つ)の導出流路561と、1つの合流流路62と、複数(2つ)の分岐流路663とを有する。分岐流路663の数は2つである。合流流路62は、複数の導出流路561に比べて小さい断面積を有する。2つの分岐流路663を、それぞれ第1分岐流路663Aおよび第2分岐流路663Bという。第1分岐流路663Aおよび第2分岐流路663Bは、合流流路62が2つに分岐して形成された流路である。 The confluence/distribution channel 612 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 663 . The number of branch channels 663 is two. The confluence channel 62 has a smaller cross-sectional area than the plurality of outlet channels 561 . The two branched channels 663 are referred to as a first branched channel 663A and a second branched channel 663B, respectively. The first branched flow path 663A and the second branched flow path 663B are flow paths formed by branching the confluence flow path 62 into two.
 第1分岐流路663Aは、合流流路62の+Z方向の端(先端)を基端として斜め上方に延び、第1空間流路16Aに達している。第1分岐流路663Aは、-Y方向に行くほど上昇するように傾斜する。第1分岐流路663Aは、冷媒を第1空間流路16A(分配先の空間流路)に導くことができる。 The first branch channel 663A extends obliquely upward with the end (tip) of the confluence channel 62 in the +Z direction as its base end, and reaches the first spatial channel 16A. The first branch channel 663A inclines upward in the -Y direction. The first branch channel 663A can guide the coolant to the first spatial channel 16A (distribution destination spatial channel).
 第2分岐流路663Bは、合流流路62の+Z方向の端(先端)を基端として斜め下方に延び、第6空間流路16Fに達している。第2分岐流路663Bは、+Y方向に行くほど下降するように傾斜する。第2分岐流路663Bは、冷媒を第6空間流路16F(分配先の空間流路)に導くことができる。 The second branch channel 663B extends obliquely downward from the +Z direction end (tip) of the confluence channel 62 and reaches the sixth spatial channel 16F. The second branch flow path 663B is inclined downward toward the +Y direction. The second branch channel 663B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
 第1分岐流路663Aおよび第2分岐流路663Bは、合流流路62の断面積よりも大きな断面積を有する。そのため、合流流路62の冷媒は、第1分岐流路663Aおよび第2分岐流路663Bに分配される際に、大きな断面積の流路内に開放されることにより拡散する。したがって、冷媒は乱流となりやすくなる。よって、気液二相状態の冷媒における偏流を抑制できる。 The first branched flow path 663A and the second branched flow path 663B have a cross-sectional area larger than that of the confluence flow path 62. Therefore, the refrigerant in the confluence flow path 62 is diffused by being released into flow paths having a large cross-sectional area when being distributed to the first branch flow path 663A and the second branch flow path 663B. Therefore, the refrigerant tends to become turbulent. Therefore, it is possible to suppress drift in the gas-liquid two-phase refrigerant.
 この熱交換器では、第1ヘッダ610は、合流分配流路612を有するため、第1列の熱交換チューブ30を流れる冷媒と、第2列の熱交換チューブ30を流れる冷媒とを合流分配流路612内で混合し、再分配できる。よって、熱交換器における熱交換効率を高めることができる。 In this heat exchanger, the first header 610 has the confluence distribution flow path 612, so that the refrigerant flowing through the first row of heat exchange tubes 30 and the refrigerant flowing through the second row of heat exchange tubes 30 are merged and distributed. It can be mixed and redistributed within channel 612 . Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
(第7の実施形態)
 図11は、第7の実施形態の熱交換器の第1ヘッダ710の中間板714の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。図11に示すように、中間板714は、複数の空間流路16(16A~16H)と、合流分配流路712とを有する。
(Seventh embodiment)
FIG. 11 is a plan view of the intermediate plate 714 of the first header 710 of the heat exchanger of the seventh embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 11, the intermediate plate 714 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 712. As shown in FIG.
 合流分配流路712は、複数(2つ)の導出流路561と、1つの合流流路62と、複数(2つ)の分岐流路763とを有する。合流流路62は、第1導出流路561Aと第2導出流路561Bとの先端どうしの接続箇所を基端として、重力方向と逆向きである+Z方向にまっすぐに延びる。2つの分岐流路763を、それぞれ第1分岐流路763Aおよび第2分岐流路763Bという。 The confluence/distribution channel 712 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 763 . The confluence channel 62 extends straight in the +Z direction, which is the opposite direction to the direction of gravity, from the connecting point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end. The two branched channels 763 are referred to as a first branched channel 763A and a second branched channel 763B, respectively.
 第1分岐流路763Aは、L字形状とされている。第1分岐流路763Aは、合流流路62の+Z方向の端(先端)を基端として-Y方向に延び、その先端で+Z方向に方向変換し、その先端で-Y方向に方向変換する。第1分岐流路763Aは、第1空間流路16Aに達している。第1分岐流路763Aは、冷媒を第1空間流路16A(分配先の空間流路)に導くことができる。 The first branch channel 763A is L-shaped. The first branch channel 763A extends in the -Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, changes direction at the tip to the +Z direction, and changes direction to the -Y direction at the tip. . The first branch channel 763A reaches the first spatial channel 16A. The first branch channel 763A can guide the refrigerant to the first spatial channel 16A (distribution destination spatial channel).
 第2分岐流路763Bは、L字形状とされている。第2分岐流路763Bは、合流流路62の+Z方向の端(先端)を基端として+Y方向に延び、その先端で-Z方向に方向変換する。第2分岐流路763Bは、第6空間流路16Fに達している。第2分岐流路763Bは、冷媒を第6空間流路16F(分配先の空間流路)に導くことができる。 The second branch channel 763B is L-shaped. The second branch channel 763B extends in the +Y direction with the +Z direction end (tip) of the confluence channel 62 as the base end, and changes direction to the -Z direction at the tip. The second branch channel 763B reaches the sixth spatial channel 16F. The second branch channel 763B can guide the refrigerant to the sixth spatial channel 16F (distribution destination spatial channel).
 分岐流路763A,763Bの基端を含む部分は、方向変換部715である。方向変換部715は、合流流路62からの冷媒の流れ方向を変換する。方向変換部715は、Y方向に沿って形成されている。方向変換部715は、合流流路62の+Z方向の端(先端)におけるY方向の内径D62より長い。方向変換部715の形成方向は、合流流路62の+Z方向の端(先端)における延在方向(Z方向)に直交する。分岐流路763A,763Bの、方向変換部715以外の構成は、図9に示す分岐流路563A,563Bと同様である。 A portion including the base ends of the branch flow paths 763A and 763B is the direction changing portion 715 . The direction changing portion 715 changes the flow direction of the coolant from the confluence flow path 62 . The direction changing portion 715 is formed along the Y direction. The direction changing portion 715 is longer than the Y-direction inner diameter D 62 at the +Z-direction end (tip) of the confluence channel 62 . The formation direction of the direction changing portion 715 is orthogonal to the extension direction (Z direction) of the +Z direction end (tip) of the confluence channel 62 . The configuration of the branch flow paths 763A, 763B other than the direction changing portion 715 is the same as that of the branch flow paths 563A, 563B shown in FIG.
 合流流路62内の冷媒は、重力方向と逆向き(図11に示す矢印方向)に移動し、方向変換部715の上面に衝突し、2つの分岐流路763によって第1空間流路16Aおよび第6空間流路16Fに分配される。 The coolant in the confluence channel 62 moves in the direction opposite to the direction of gravity (in the direction of the arrow shown in FIG. 11), collides with the upper surface of the direction changing portion 715, and flows through the two branch channels 763 into the first spatial channel 16A and the first spatial channel 16A. It is distributed to the sixth spatial flow channel 16F.
 この熱交換器では、方向変換部715が合流流路62に対して直交するため、冷媒の流れを2つの分岐流路763に偏りなく向けることができる。そのため、冷媒を第1分岐流路763Aと第2分岐流路763Bとに均等に分配することができる。よって、第1分岐流路763Aと第2分岐流路763Bとに流入する冷媒の量の偏りを小さくできる。 In this heat exchanger, since the direction changing portion 715 is orthogonal to the confluence flow path 62, the refrigerant flow can be directed to the two branch flow paths 763 without bias. Therefore, the refrigerant can be evenly distributed to the first branched flow path 763A and the second branched flow path 763B. Therefore, the unevenness in the amount of refrigerant flowing into the first branched flow path 763A and the second branched flow path 763B can be reduced.
 方向変換部715は、合流流路62の+Z方向の端(先端)におけるY方向の内径D62より長いため、合流流路62内の冷媒は、十分な長さをもつ方向変換部715の上面に当たる。これにより、冷媒の流れを2つの分岐流路763に均等に分配することができる。 Since the direction changing portion 715 is longer than the inner diameter D 62 in the Y direction at the end (tip) in the +Z direction of the confluence channel 62, the refrigerant in the confluence channel 62 is allowed to reach the upper surface of the direction changing portion 715 having a sufficient length. hit. Thereby, the refrigerant flow can be evenly distributed to the two branch flow paths 763 .
(第8の実施形態)
 図12は、第8の実施形態の熱交換器の第1ヘッダ810の中間板814の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。図12に示すように、中間板814は、複数の空間流路16(16A~16H)と、合流分配流路812とを有する。
(Eighth embodiment)
FIG. 12 is a plan view of the intermediate plate 814 of the first header 810 of the heat exchanger of the eighth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 12, the intermediate plate 814 has a plurality of spatial channels 16 (16A-16H) and a confluence/distribution channel 812. As shown in FIG.
 合流分配流路812は、複数(2つ)の導出流路561と、1つの合流流路62と、複数(2つ)の分岐流路863とを有する。合流流路62は、第1導出流路561Aと第2導出流路561Bとの先端どうしの接続箇所を基端として、重力方向と逆向きである+Z方向にまっすぐに延びる。2つの分岐流路863を、それぞれ第1分岐流路863Aおよび第2分岐流路863Bという。 The confluence/distribution channel 812 has multiple (two) lead-out channels 561 , one confluence channel 62 , and multiple (two) branch channels 863 . The confluence channel 62 extends straight in the +Z direction, which is the opposite direction to the direction of gravity, from the connecting point between the tips of the first outlet channel 561A and the second outlet channel 561B as the base end. The two branched channels 863 are referred to as a first branched channel 863A and a second branched channel 863B, respectively.
 第1分岐流路863Aは、合流流路62の+Z方向の端(先端)を基端として-Y方向に延び、その先端で斜め上方に延び、第1空間流路16Aに達している。第2分岐流路863Bは、合流流路62の+Z方向の端(先端)を基端として+Y方向に延び、その先端で斜め下方に延び、第6空間流路16Fに達している。 The first branch flow path 863A extends in the -Y direction with the +Z direction end (tip) of the confluence flow path 62 as the base end, extends obliquely upward at the tip, and reaches the first spatial flow path 16A. The second branch flow channel 863B extends in the +Y direction from the +Z direction end (tip) of the confluence flow channel 62 as a base end, extends obliquely downward at the tip, and reaches the sixth spatial flow channel 16F.
 分岐流路863A,863Bの基端を含む部分は、方向変換部815である。方向変換部815は、合流流路62からの冷媒の流れ方向を変換する。方向変換部815は、Y方向に沿って形成されている。方向変換部815は、合流流路62の+Z方向の端(先端)におけるY方向の内径D62より長い。方向変換部815の形成方向は、合流流路62の+Z方向の端(先端)における延在方向(Z方向)に直交する。分岐流路863A,863Bの、方向変換部815以外の構成は、図10に示す分岐流路663A,663Bと同様である。 A portion including the base ends of the branch flow paths 863A and 863B is the direction changing portion 815 . The direction changing portion 815 changes the flow direction of the coolant from the confluence channel 62 . The direction changing portion 815 is formed along the Y direction. The direction changing portion 815 is longer than the Y-direction inner diameter D 62 at the +Z-direction end (tip) of the confluence channel 62 . The formation direction of the direction changing portion 815 is orthogonal to the extension direction (Z direction) of the +Z direction end (tip) of the confluence channel 62 . The configuration of the branch flow paths 863A, 863B other than the direction changing portion 815 is the same as that of the branch flow paths 663A, 663B shown in FIG.
 この熱交換器では、方向変換部815が、合流流路62に対して直交するため、冷媒の流れ方向を第1分岐流路863Aと第2分岐流路863Bとに均等に向けることができる。よって、第1分岐流路863Aと第2分岐流路863Bとに流入する冷媒の量の偏りを小さくできる。 In this heat exchanger, since the direction changing portion 815 is orthogonal to the confluence flow path 62, the flow direction of the refrigerant can be evenly directed to the first branch flow path 863A and the second branch flow path 863B. Therefore, the unevenness in the amount of refrigerant flowing into the first branched flow path 863A and the second branched flow path 863B can be reduced.
 方向変換部815は、合流流路62の+Z方向の端(先端)におけるY方向の内径D62より長いため、合流流路62内の冷媒は、十分な長さをもつ方向変換部815の上面に当たる。これにより、冷媒の流れを2つの分岐流路863に均等に分配することができる。 Since the direction changing portion 815 is longer than the inner diameter D 62 in the Y direction at the +Z-direction end (tip) of the confluence channel 62, the coolant in the confluence channel 62 is allowed to reach the upper surface of the direction changing portion 815 having a sufficient length. hit. Thereby, the refrigerant flow can be evenly distributed to the two branch flow paths 863 .
(第9の実施形態)
 図13は、第9の実施形態の熱交換器の第1ヘッダ910の中間板914の平面図である。他の実施形態との共通構成については、同じ符号を付して説明を省略する。図13に示すように、中間板914は、2つの空隙部920が形成されていること以外は、図7に示す中間板414と同様の構成であってよい
(Ninth embodiment)
FIG. 13 is a plan view of the intermediate plate 914 of the first header 910 of the heat exchanger of the ninth embodiment. Configurations common to other embodiments are denoted by the same reference numerals, and descriptions thereof are omitted. As shown in FIG. 13, the intermediate plate 914 may have the same configuration as the intermediate plate 414 shown in FIG. 7 except that two gaps 920 are formed.
 空隙部920は、分岐流路63と、分岐流路63に最も近い空間流路16との間を通る直線状とされている。空隙部920は、中間板414を厚さ方向に貫通する貫通孔により形成される。2つの空隙部920を、それぞれ第1空隙部920Aおよび第2空隙部920Bという。 The gap 920 is linear and passes between the branch channel 63 and the spatial channel 16 closest to the branch channel 63 . The void 920 is formed by a through-hole penetrating through the intermediate plate 414 in the thickness direction. The two gaps 920 are referred to as a first gap 920A and a second gap 920B, respectively.
 第1空隙部920Aの少なくとも一部は、第1分岐流路63Aと第3空間流路16Cとの間に形成されている。例えば、第1空隙部920Aは、第1分岐流路63Aと平行に形成されている。第2空隙部920Bの少なくとも一部は、第2分岐流路63Bと第4空間流路16Dとの間に形成されている。例えば、第2空隙部920Bは、第2分岐流路63Bと平行に形成されている。 At least part of the first gap 920A is formed between the first branch channel 63A and the third spatial channel 16C. For example, the first gap 920A is formed parallel to the first branch flow path 63A. At least part of the second gap portion 920B is formed between the second branch channel 63B and the fourth spatial channel 16D. For example, the second gap 920B is formed parallel to the second branch flow path 63B.
 この熱交換器では、空隙部920によって、空間流路16C,16Dからの熱干渉を抑制することができる。そのため、分岐流路63における冷媒の相変化に起因する冷媒の流量の偏りを小さくできる。 In this heat exchanger, the gap 920 can suppress thermal interference from the spatial flow paths 16C and 16D. Therefore, the deviation of the flow rate of the refrigerant due to the phase change of the refrigerant in the branch flow path 63 can be reduced.
(比較形態)
 図14は、比較形態の熱交換器の第1ヘッダ1010の中間板1014の平面図である。図15は、中間板1014の拡大した平面図である。
 図14に示すように、中間板1014は、複数の空間流路16(16A~16H)と、分配流路1012とを有する。分配流路1012は、導出流路1061と、2つの分岐流路1063(1063A,1063B)とを有する。導出流路1061は、Y方向に沿う第1部分流路1061Aと、Z方向に沿う第2部分流路1061Bとを備える。導出流路1061は、L字状形とされている。第1部分流路1061Aは、熱交換チューブ30のピッチ(図7に示すP1参照)より短い。
 図15に示すように、この熱交換器は、L字状形の導出流路1061の屈曲箇所において、冷媒の液相M1と気相M2との偏りが生じる可能性がある。第1部分流路1061Aは短いため、液相M1と気相M2との混合は不十分となりやすい。そのため、液相M1と気相M2との偏りが維持され、2つの分岐流路1063への冷媒の分配量が不均等となる場合がある。
(comparative form)
FIG. 14 is a plan view of the intermediate plate 1014 of the first header 1010 of the heat exchanger of the comparative form. 15 is an enlarged plan view of intermediate plate 1014. FIG.
As shown in FIG. 14, the intermediate plate 1014 has a plurality of spatial channels 16 (16A-16H) and distribution channels 1012. As shown in FIG. The distribution channel 1012 has an outlet channel 1061 and two branch channels 1063 (1063A, 1063B). The outlet channel 1061 includes a first partial channel 1061A along the Y direction and a second partial channel 1061B along the Z direction. The lead-out channel 1061 is L-shaped. The first partial flow path 1061A is shorter than the pitch of the heat exchange tubes 30 (see P1 shown in FIG. 7).
As shown in FIG. 15, in this heat exchanger, there is a possibility that the liquid phase M1 and the gas phase M2 of the refrigerant may become unbalanced at the bent portion of the L-shaped outlet channel 1061 . Since the first partial channel 1061A is short, mixing of the liquid phase M1 and the gas phase M2 tends to be insufficient. Therefore, the bias between the liquid phase M1 and the gas phase M2 is maintained, and the amount of refrigerant distributed to the two branch flow paths 1063 may become uneven.
 以上説明した少なくともひとつの実施形態によれば、ヘッダは、合流分配流路を有する。合流分配流路は、複数の熱交換チューブからの冷媒を合流し、他の複数の熱交換チューブに分配する。実施形態の熱交換器では、複数の熱交換チューブを流れる冷媒を合流分配流路内で混合し、再分配できる。複数の熱交換チューブの間には、熱負荷に差異が生じることがあるが、実施形態の熱交換器では、冷媒の混合、再分配ができるため、熱負荷の差異を小さくできる。したがって、熱負荷の差異によって熱交換効率が低くなるのを抑制できる。よって、熱交換器における熱交換効率を高めることができる。 According to at least one embodiment described above, the header has a confluence/distribution channel. The confluence/distribution channel merges the refrigerants from the plurality of heat exchange tubes and distributes them to the other plurality of heat exchange tubes. In the heat exchanger of the embodiment, the refrigerant flowing through the plurality of heat exchange tubes can be mixed and redistributed within the converging distribution channel. A difference in heat load may occur between the plurality of heat exchange tubes, but in the heat exchanger of the embodiment, since the refrigerant can be mixed and redistributed, the difference in heat load can be reduced. Therefore, it is possible to suppress a decrease in heat exchange efficiency due to a difference in heat load. Therefore, the heat exchange efficiency in the heat exchanger can be enhanced.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
1 冷凍サイクル装置
4 室外熱交換器(熱交換器)
10 第1ヘッダ(ヘッダ)
12,512,612,712,812 合流分配流路
16 空間流路
30 熱交換チューブ
34 冷媒流路
62 合流流路
63,563,663,763,863 分岐流路
63A,563A,663A,763A,863A 第1分岐流路(分岐流路)
63B,563B,663B,763B,863B 第2分岐流路(分岐流路)
116,216,316 空間流路(合流分配流路)
218,318 狭小部
615,715,815 方向変換部
920 空隙部
L1 合流流路の長さ
P1 熱交換チューブのピッチ
1 refrigeration cycle device 4 outdoor heat exchanger (heat exchanger)
10 First header (header)
12, 512, 612, 712, 812 Combined distribution channel 16 Space channel 30 Heat exchange tube 34 Refrigerant channel 62 Combined channel 63, 563, 663, 763, 863 Branch channel 63A, 563A, 663A, 763A, 863A First branch flow path (branch flow path)
63B, 563B, 663B, 763B, 863B Second branch channel (branch channel)
116, 216, 316 Spatial channel (confluence and distribution channel)
218, 318 Narrow portion 615, 715, 815 Direction changing portion 920 Gap portion L1 Length of merged flow path P1 Pitch of heat exchange tubes

Claims (7)

  1.  冷媒が流れる冷媒流路が形成された複数の熱交換チューブと、
     前記熱交換チューブの端部に設けられたヘッダと、
     を備え、
     少なくとも1つの前記ヘッダに、複数の前記熱交換チューブのうち2以上からの前記冷媒を合流し、他の2以上の前記熱交換チューブに分配する合流分配流路が形成されている、
     熱交換器。
    a plurality of heat exchange tubes formed with refrigerant flow paths through which the refrigerant flows;
    headers provided at the ends of the heat exchange tubes;
    with
    At least one of the headers is formed with a confluence/distribution flow path that merges the refrigerant from two or more of the plurality of heat exchange tubes and distributes the refrigerant to two or more of the other heat exchange tubes.
    Heat exchanger.
  2.  前記合流分配流路は、前記冷媒が流通する狭小部を有し、
     前記狭小部は、次の式を満たす、請求項1記載の熱交換器。
     D1>2300μA1/W1
    (D1は、前記狭小部の水力相当直径[m]である。μは、前記冷媒の粘度[Pa・s]である。A1は、前記狭小部の断面積[m]である。W1は、前記狭小部を流れる前記冷媒の質量流量[kg/s]である。)
    The confluence/distribution channel has a narrow portion through which the refrigerant flows,
    2. The heat exchanger of claim 1, wherein the constriction satisfies the formula:
    D1>2300μA1/W1
    (D1 is the hydraulic equivalent diameter [m] of the narrow portion. μ is the viscosity of the refrigerant [Pa·s]. A1 is the cross-sectional area [m 2 ] of the narrow portion. W1 is , is the mass flow rate [kg/s] of the refrigerant flowing through the narrow portion.)
  3.  複数の前記熱交換チューブのうち少なくとも一部は、複数段に配置され、
     前記ヘッダに、前記熱交換チューブの前記冷媒流路と連通する複数の空間流路が形成され、
     前記合流分配流路は、複数の前記空間流路のうち2以上からの前記冷媒を合流させる合流流路と、前記合流流路から分岐した複数の分岐流路と、を備え、
     前記分岐流路は、前記合流流路からの前記冷媒を他の2以上の前記空間流路に分配し、
     前記合流流路は、上下方向に沿って形成され、前記合流流路の長さは、複数段に配置された前記熱交換チューブのピッチより長い、請求項1または2に記載の熱交換器。
    At least some of the plurality of heat exchange tubes are arranged in multiple stages,
    a plurality of spatial channels communicating with the refrigerant channels of the heat exchange tubes are formed in the header;
    The confluence/distribution channel includes a confluence channel for merging the refrigerant from two or more of the plurality of spatial channels, and a plurality of branch channels branched from the confluence channel,
    the branch channel distributes the refrigerant from the confluence channel to two or more of the other spatial channels;
    3. The heat exchanger according to claim 1, wherein said confluence channel is formed along the vertical direction, and the length of said confluence channel is longer than the pitch of said heat exchange tubes arranged in a plurality of stages.
  4.  前記分岐流路の基端を含む部分は、前記合流流路からの前記冷媒の流れ方向を変換する方向変換部であり、
     前記方向変換部は、前記合流流路の先端における延在方向に直交し、
     前記方向変換部の長さは、前記合流流路の先端における内径より長い、請求項3に記載の熱交換器。
    the portion including the base end of the branch flow path is a direction changing portion that changes the flow direction of the refrigerant from the confluence flow path,
    The direction changing part is orthogonal to the extending direction at the tip of the merged flow path,
    4. The heat exchanger according to claim 3, wherein the length of said direction changing portion is longer than the inner diameter at the tip of said confluence flow path.
  5.  複数の前記分岐流路の、次に示すFpの偏差(絶対値)は、20%以下である、請求項3または4記載の熱交換器。
    Figure JPOXMLDOC01-appb-M000001
    (Lは前記分岐流路の長さ[m]を示す。Gは前記合流流路における前記冷媒の質量流束[kg/s/m]を示す。Dは前記分岐流路の水力相当直径[m]を示す。)
    5. The heat exchanger according to claim 3, wherein the deviation (absolute value) of Fp shown below in the plurality of branch flow paths is 20% or less.
    Figure JPOXMLDOC01-appb-M000001
    (L indicates the length [m] of the branch flow path. G indicates the mass flux [kg/s/m 2 ] of the refrigerant in the combined flow path. D is the hydraulic equivalent diameter of the branch flow path. [m] is shown.)
  6.  前記ヘッダの、前記分岐流路と前記空間流路との間に、空隙部が形成されている、請求項3~5のうちいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 3 to 5, wherein the header has a gap formed between the branch channel and the spatial channel.
  7.  請求項1~6のうちいずれか1項に記載の熱交換器を有する、冷凍サイクル装置。 A refrigeration cycle apparatus having the heat exchanger according to any one of claims 1 to 6.
PCT/JP2021/018753 2021-05-18 2021-05-18 Heat exchanger and refrigeration cycle device WO2022244091A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/018753 WO2022244091A1 (en) 2021-05-18 2021-05-18 Heat exchanger and refrigeration cycle device
JP2023522035A JPWO2022244091A1 (en) 2021-05-18 2021-05-18
CN202180097989.0A CN117321373A (en) 2021-05-18 2021-05-18 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018753 WO2022244091A1 (en) 2021-05-18 2021-05-18 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022244091A1 true WO2022244091A1 (en) 2022-11-24

Family

ID=84141304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018753 WO2022244091A1 (en) 2021-05-18 2021-05-18 Heat exchanger and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2022244091A1 (en)
CN (1) CN117321373A (en)
WO (1) WO2022244091A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513403A (en) * 2001-12-21 2005-05-12 ベール ゲーエムベーハー ウント コー カーゲー Especially heat exchanger for automobile
EP1717530A2 (en) * 2005-04-29 2006-11-02 Behr GmbH & Co. KG Heat exchanger, more particularly rear evaporator for automotive vehicle
JP2008292070A (en) * 2007-05-25 2008-12-04 T Rad Co Ltd Heat exchanger
JP2009097838A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Manufacturing method for heat exchanger and heat exchanger
WO2009101035A1 (en) * 2008-02-15 2009-08-20 Delphi Technologies, Inc. Heat exchanger with a mixing chamber
US20150300758A1 (en) * 2014-02-19 2015-10-22 MAHLE Behr GmbH & Co. KG Heat exchanger
WO2017175346A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Distributor, heat exchanger, and air conditioning device
WO2018116413A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, and refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513403A (en) * 2001-12-21 2005-05-12 ベール ゲーエムベーハー ウント コー カーゲー Especially heat exchanger for automobile
EP1717530A2 (en) * 2005-04-29 2006-11-02 Behr GmbH & Co. KG Heat exchanger, more particularly rear evaporator for automotive vehicle
JP2008292070A (en) * 2007-05-25 2008-12-04 T Rad Co Ltd Heat exchanger
JP2009097838A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Manufacturing method for heat exchanger and heat exchanger
WO2009101035A1 (en) * 2008-02-15 2009-08-20 Delphi Technologies, Inc. Heat exchanger with a mixing chamber
US20150300758A1 (en) * 2014-02-19 2015-10-22 MAHLE Behr GmbH & Co. KG Heat exchanger
WO2017175346A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Distributor, heat exchanger, and air conditioning device
WO2018116413A1 (en) * 2016-12-21 2018-06-28 三菱電機株式会社 Distributor, heat exchanger, and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2022244091A1 (en) 2022-11-24
CN117321373A (en) 2023-12-29

Similar Documents

Publication Publication Date Title
US10571205B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
US11391517B2 (en) Distributor, layered header, heat exchanger, and air-conditioning apparatus
KR100216052B1 (en) Evaporator
CN101487669B (en) Heat exchanger comprising multi-pipe distributer
EP2955464A1 (en) Refrigerant distributor and heat pump device using refrigerant distributor
US10228170B2 (en) Refrigerant distributor of micro-channel heat exchanger
US10060685B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
US11629897B2 (en) Distributor, heat exchanger, and refrigeration cycle apparatus
US9689594B2 (en) Evaporator, and method of conditioning air
JP7045195B2 (en) Heat exchanger
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
EP3348946B1 (en) Laminated header, heat exchanger, and air conditioner
US20160223231A1 (en) Heat exchanger and air conditioner
JP2018169062A (en) Air conditioner
JP2009150574A (en) Distributor, and heat exchanger and air conditioner loading the same
WO2022244091A1 (en) Heat exchanger and refrigeration cycle device
KR20180087775A (en) Heat exchanger for refrigerator
JP2574488B2 (en) Heat exchanger
JP7146139B1 (en) heat exchangers and air conditioners
WO2023119468A1 (en) Heat exchanger and air conditioner
WO2021245901A1 (en) Refrigerant distributor, heat exchanger, and air-conditioning device
JP7004867B2 (en) Heat exchanger and air conditioner
JP7327214B2 (en) Heat exchanger
US20240060659A1 (en) Air conditioner
US20230133342A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE