WO2023119468A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2023119468A1
WO2023119468A1 PCT/JP2021/047498 JP2021047498W WO2023119468A1 WO 2023119468 A1 WO2023119468 A1 WO 2023119468A1 JP 2021047498 W JP2021047498 W JP 2021047498W WO 2023119468 A1 WO2023119468 A1 WO 2023119468A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributor
heat exchange
heat transfer
exchange section
transfer tubes
Prior art date
Application number
PCT/JP2021/047498
Other languages
French (fr)
Japanese (ja)
Inventor
良太 赤岩
洋次 尾中
理人 足立
寧彦 松尾
武巳 松本
幸大 宮川
優紀 大谷
央平 加藤
勇太 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/047498 priority Critical patent/WO2023119468A1/en
Priority to JP2023568865A priority patent/JPWO2023119468A1/ja
Publication of WO2023119468A1 publication Critical patent/WO2023119468A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Definitions

  • the present disclosure relates to a heat exchanger and an air conditioner having heat transfer tubes, and more particularly to a distributor that branches and supplies refrigerant to the heat transfer tubes.
  • a vapor compression refrigeration cycle device widely used in heat pump devices such as air conditioners has four components: a compressor, a heat exchanger functioning as a condenser, an expansion valve, and a heat exchanger functioning as an evaporator. Consists of element parts.
  • a refrigerant which is a first working fluid, flows through these four elemental parts with changes in state.
  • an evaporator provided in a vapor compression refrigeration cycle apparatus includes a plurality of heat transfer tubes to reduce flow loss, and a distributor (header) for distributing the refrigerant to the plurality of heat transfer tubes.
  • the refrigerant flowing out from the expansion valve is in a gas-liquid two-phase refrigerant state in which low-temperature, low-pressure gas refrigerant and liquid refrigerant are mixed, the distribution of the refrigerant to the evaporator tends to become uneven.
  • the low-density gas refrigerant and the high-density liquid refrigerant tend to separate under the influence of gravity in the process in which the refrigerant advances in the vertical direction.
  • the high-density liquid refrigerant may be biased in the traveling direction due to the influence of the inertial force when the refrigerant flows into the distributor.
  • a heat exchanger having a distributor provided with a wall member inside a cylindrical tube having a plurality of outflow tube connection ports in the longitudinal direction (see, for example, Patent Document 1). ).
  • the refrigerant flowing from the flow passage holes of the plurality of heat transfer tubes gathers in the first space located in the lower part of the distributor and the first space located in the upper part of the distributor. It has a second space for distributing the gas-liquid two-phase refrigerant collected in one space to the passage holes of the plurality of heat transfer tubes.
  • the heat exchanger of Patent Document 1 is provided with a partition plate with a hole called a wall member between the first space and the second space. It is said that the liquid refrigerant, which is biased toward the opposing wall surface due to the influence thereof, is guided to the holes to improve the biased distribution in the second space.
  • An object of the present disclosure is to solve the above-described problems, and to provide a heat exchanger and an air conditioner that suppress insufficient supply of liquid refrigerant to the upper portion of the distributor.
  • the heat exchanger includes a plurality of heat transfer tubes arranged at intervals in the vertical direction, and a first distributor formed to extend in the vertical direction and distributing the refrigerant to the plurality of heat transfer tubes.
  • the first distributor includes an insertion surface portion into which the plurality of heat transfer tubes are inserted, a facing surface portion facing the insertion surface portion in the direction in which the plurality of heat transfer tubes extends, and a cross section perpendicular to the longitudinal direction of the first distributor is a wall extending between the insertion surface portion and the opposing surface portion, the opposing surface portion having a side surface portion joined to the opposing surface portion, the opposing surface portion including a flat plate portion connected to the side surface portion;
  • a portion of the inner wall forming the internal space of the first distributor has a bulging portion that bulges from the flat plate portion toward the insertion surface portion in a perpendicular cross section, and the first distributor has a plurality of The shortest distance from the tip of each of the heat transfer tubes to the bulg
  • An air conditioner according to the present disclosure has a heat exchanger according to the present disclosure and a blower that supplies air to the heat exchanger.
  • the heat exchanger according to the present disclosure includes a first distributor that satisfies the relationship of second distance M2 ⁇ 1.5 ⁇ first distance M1.
  • the first distributor can minimize the cross-sectional area of the internal space of the first distributor by setting the second distance M2 to be 1.5 times or more the first distance M1. Additionally, the wet edge length can be increased. Therefore, the first distributor can have a smaller hydraulic equivalent diameter and, as a result, a larger flooding constant.
  • the liquid refrigerant and the gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor, so that the liquid refrigerant can be kept at a flow rate that does not fall, and the liquid refrigerant flows to the upper part of the first distributor. Insufficient supply of liquid refrigerant can be suppressed.
  • the air conditioner according to the present disclosure includes the heat exchanger having the above configuration, the liquid refrigerant and the gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor, and the flow velocity can be maintained so that the liquid refrigerant does not drop. It is possible to suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor.
  • FIG. 1 is a configuration diagram of an air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a heat exchanger according to Embodiment 1;
  • FIG. 1 is a schematic diagram of a first distributor related to Embodiment 1;
  • FIG. 1 is a perspective view of a first distributor according to Embodiment 1;
  • FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line AA shown in FIG. 3;
  • FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line BB shown in FIG. 3;
  • FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line CC shown in FIG.
  • FIG. 10 is a diagram showing the relationship between the flooding constant and the height inside the distributor; 4 is a schematic diagram showing the flow of refrigerant in the first distributor in the heat exchanger of Embodiment 1.
  • FIG. FIG. 8 is a conceptual cross-sectional view of a bulging portion according to Embodiment 2;
  • FIG. 11 is a conceptual cross-sectional view of a first alternative form of a bulging portion according to Embodiment 2;
  • FIG. 11 is a conceptual cross-sectional view of a second alternative form of the bulging portion according to the second embodiment;
  • FIG. 11 is a conceptual cross-sectional view of a third alternative form of the bulging portion according to the second embodiment;
  • FIG. 11 is a conceptual cross-sectional view of a fourth alternative form of the bulging portion according to the second embodiment
  • FIG. 12 is a conceptual cross-sectional view of a fifth alternative form of the bulging portion according to the second embodiment
  • FIG. 11 is a perspective view of a main body of a first distributor according to Embodiment 2
  • FIG. 11 is a conceptual cross-sectional view of a first alternative form of an orifice plate used in a first distributor according to Embodiment 3
  • FIG. 11 is a conceptual cross-sectional view of a second alternative form of the orifice plate used in the first distributor according to Embodiment 3
  • FIG. 12 is a conceptual cross-sectional view of a third alternative form of the orifice plate used in the first distributor according to Embodiment 3;
  • FIG. 11 is a conceptual diagram illustrating the relationship between orifice holes and heat transfer tubes in the first distributor according to Embodiment 4;
  • FIG. 11 is a schematic diagram of a heat exchanger according to Embodiment 5;
  • FIG. 11 is an explanatory diagram of refrigerant flow paths of a heat exchanger according to Embodiment 5;
  • FIG. 11 is a schematic diagram of a modification of the heat exchanger according to Embodiment 5;
  • FIG. 2 is a first schematic diagram showing the relationship between heat exchangers and outdoor fans according to Embodiments 1 to 5;
  • FIG. 4 is a second schematic diagram showing the relationship between the heat exchanger and the outdoor fan according to Embodiments 1 to 5;
  • FIG. 2 is a first schematic diagram showing the relationship between heat exchangers and indoor fans according to Embodiments 1 to 5;
  • FIG. 4 is a second schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5;
  • FIG. 4 is a third schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5;
  • FIG. 4 is a fourth schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5;
  • FIG. 1 is a configuration diagram of an air conditioner 10 according to Embodiment 1.
  • FIG. 1 the dotted arrow indicates the direction in which the refrigerant flows during the cooling operation of the air conditioner 10, and the solid arrow indicates the direction in which the refrigerant flows during the heating operation of the air conditioner 10. It is.
  • an air conditioner 10 having one outdoor heat exchanger 5 and one indoor heat exchanger 3, such as a room air conditioner for home use or a packaged air conditioner for stores or offices. will be explained.
  • the air conditioner 10 has a compressor 1, a flow path switching device 2, an indoor heat exchanger 3, a pressure reducing device 4, and an outdoor heat exchanger 5, which are connected by piping to form a first It constitutes a refrigerant circuit in which a refrigerant, which is a working fluid, circulates.
  • the air conditioner 10 further has an indoor fan 7 that blows air to the indoor heat exchanger 3 and an outdoor fan 6 that blows air to the outdoor heat exchanger 5 .
  • the compressor 1 is a fluid machine that compresses and discharges the sucked refrigerant.
  • the flow path switching device 2 is, for example, a four-way valve, and is a device that switches the flow path of the refrigerant between the cooling operation and the heating operation of the air conditioner 10 under the control of a control device (not shown).
  • the indoor heat exchanger 3 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the indoor air supplied by the indoor blower 7 .
  • the indoor heat exchanger 3 functions as a condenser during heating operation, and functions as an evaporator during cooling operation.
  • the decompression device 4 is, for example, an expansion valve, and is a device that decompresses the refrigerant.
  • the decompression device 4 can use an electronic expansion valve whose opening is controlled by a control device (not shown).
  • the outdoor heat exchanger 5 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the air that is the second working fluid supplied by the outdoor fan 6 .
  • the outdoor heat exchanger 5 functions as an evaporator during heating operation, and functions as a condenser during cooling operation.
  • the liquefied liquid refrigerant passes through the decompression device 4 and reaches a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed, and reaches point C.
  • the two-phase refrigerant that has passed through point C flows through the outdoor heat exchanger 5 and causes the outdoor heat exchanger 5 to act as an evaporator. reach.
  • the gas refrigerant that has passed point D passes through the flow switching device 2 and returns to the compressor 1 .
  • the air conditioner 10 performs a heating operation for heating indoor air by this refrigerant cycle.
  • the operating state of the air conditioner 10 during cooling operation will be described along the flow of the refrigerant.
  • the flow direction of the refrigerant is switched using the flow path switching device 2 so that the flow of the refrigerant flows in the opposite direction.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the channel switching device 2 and reaches a point D.
  • the outdoor heat exchanger 5 acts as a condenser, and the gas refrigerant is cooled and liquefied by the air flowing by the outdoor fan 6 to point C to reach
  • the liquefied liquid refrigerant passes through the decompression device 4 and reaches point B in a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed. After that, the two-phase refrigerant that has passed through point B flows through the interior of the indoor heat exchanger 3, causing the indoor heat exchanger 3 to act as an evaporator. reach.
  • the gas refrigerant that has passed through point A passes through the flow switching device 2 and returns to the compressor 1 .
  • the air conditioner 10 performs a cooling operation for cooling the indoor air by this refrigerant cycle.
  • FIG. 2 is a schematic diagram of the heat exchanger 50 according to the first embodiment.
  • the arrows shown in FIG. 2 indicate the direction in which the coolant flows. 2
  • the horizontal axis indicates the wind speed of the air passing through the heat exchanger 50
  • the vertical axis indicates the height of the heat exchanger 50.
  • the solid line in FIG. 2 indicates the amount of heat in the air.
  • the heat exchanger 50 according to Embodiment 1 will be described with reference to FIG. In the following description, the heat exchanger 50 will be described as a configuration when it is used as the outdoor heat exchanger 5 functioning as an evaporator when the air conditioner 10 is used for heating operation. Note that the heat exchanger 50 is not limited to being used as the outdoor heat exchanger 5 in the air conditioner 10, and can also be used as the indoor heat exchanger 3.
  • the heat exchanger 50 has a heat exchange section 50a, a first distributor 20, a second distributor 30, and a header 80.
  • the first distributor 20 and the second distributor 30 may be called headers.
  • the heat exchanging portion 50a exchanges heat between the air existing around the heat exchanging portion 50a and the refrigerant flowing inside the heat exchanging portion 50a.
  • the heat exchange section 50 a is arranged between the first distributor 20 and the second distributor 30 in the flow of refrigerant flowing through the heat exchanger 50 .
  • the heat exchange portion 50 a is arranged between the second distributor 30 and the header 80 in the flow of refrigerant flowing through the heat exchanger 50 .
  • the heat exchange section 50a has a plurality of heat transfer tubes 12 and a heat transfer promoting member 13 connecting the heat transfer tubes 12 adjacent to each other.
  • Each of the plurality of heat transfer tubes 12 is formed in a tubular shape and circulates the refrigerant inside.
  • Each of the plurality of heat transfer tubes 12 is formed to extend in the first direction (X-axis direction).
  • Each of the plurality of heat transfer tubes 12 is arranged at intervals and arranged in parallel in the axial direction (Z-axis direction), which is the extending direction of the first distributor 20 and the second distributor 30 .
  • the plurality of heat transfer tubes 12 are vertically spaced apart from each other in the second direction. Adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12 are arranged to face each other. Between two adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12, a gap is formed as an air flow path.
  • the extending direction of the plurality of heat transfer tubes 12, which is the first direction is the horizontal direction.
  • the extending direction of the plurality of heat transfer tubes 12, which is the first direction is not limited to the horizontal direction, and may be a direction inclined with respect to the horizontal direction.
  • the arrangement direction of the plurality of heat transfer tubes 12, which is the second direction is the vertical direction.
  • the direction in which the plurality of heat transfer tubes 12 are arranged is not limited to the vertical direction, and may be inclined with respect to the vertical direction.
  • the heat transfer tube 12 is, for example, a circular tube with a circular cross-sectional shape or an elliptical tube with an elliptical shape.
  • the heat transfer tubes 12 are not limited to circular tubes and elliptical tubes, and may be flat tubes in which a plurality of flow paths are formed.
  • Adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12 are connected to each other by heat transfer promoting members 13 .
  • the heat transfer promoting member 13 is, for example, plate fins or corrugated fins.
  • the heat transfer promoting member 13 improves the efficiency of heat exchange between air and refrigerant.
  • the plurality of heat transfer promoting members 13 are arranged at intervals in the heat exchanging portion 50 a and are arranged in parallel in the extending direction (X-axis direction) of the heat transfer tubes 12 .
  • the heat transfer promoting members 13 are plate fins, each of the plurality of heat transfer tubes 12 penetrates the plurality of heat transfer promoting members 13 .
  • the heat exchange section 50a is not limited to having the heat transfer tube 12 and the heat transfer promoting member 13.
  • the heat exchange section 50a may have a plurality of heat transfer tubes 12 and may not have the heat transfer promoting member 13 that connects the adjacent heat transfer tubes 12 to each other.
  • the heat exchange section 50a has an auxiliary heat exchange section 5a positioned upstream of the circulating refrigerant, and a main heat exchange section 5b positioned downstream of the circulating refrigerant.
  • the auxiliary heat exchange section 5a has the remaining heat transfer tubes 12 among the plurality of heat transfer tubes 12 that do not constitute the main heat exchange section 5b.
  • the auxiliary heat exchange section 5 a is connected to the first distributor 20 at one end in the extending direction (X-axis direction) of the heat transfer tubes 12 and connected to the second distributor 30 at the other end.
  • the auxiliary heat exchange section 5 a and the second distributor 30 are connected by a pipe 300 . That is, each of the plurality of heat transfer tubes 12 constituting the auxiliary heat exchange section 5a has one end connected to the first distributor 20 in the first direction (X-axis direction), and the other end connected to the first distributor 20. It is connected to the second distributor 30 via a pipe 300 .
  • the main heat exchange section 5b has more than half of the heat transfer tubes 12 among the plurality of heat transfer tubes 12.
  • the main heat exchange portion 5b is connected to the second distributor 30 at one end in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the header 80 at the other end. More specifically, each of the plurality of heat transfer tubes 12 constituting the main heat exchange section 5b has one end connected to the second distributor 30 in the first direction (X-axis direction), and the other end connected to the second distributor 30. The ends are connected with headers 80 .
  • the main heat exchange section 5b includes an upper main heat exchange section 5b1, a middle upper main heat exchange section 5b2, a middle lower main heat exchange section 5b3, and a lower main heat exchange section 5b4.
  • the main heat exchange section 5b is also a general term for the upper main heat exchange section 5b1, the intermediate upper main heat exchange section 5b2, the intermediate lower main heat exchange section 5b3, and the lower main heat exchange section 5b4.
  • the upper main heat exchange portion 5b1 is a portion located at the upper portion in the vertical direction (Z-axis direction) of the main heat exchange portion 5b, and the middle upper main heat exchange portion 5b2 and the middle lower side are located in the center portion in the direction of gravity. It is a portion located above the main heat exchange portion 5b3.
  • the upper main heat exchange portion 5b1 is a portion of the main heat exchange portion 5b where the heat transfer tubes 12 forming the upper main heat exchange portion 5b1 are connected to the upper second distributor 31 described later.
  • the vertical direction (Z-axis direction) of the main heat exchange portion 5b is also the direction of gravity.
  • the middle upper main heat exchange portion 5b2 is a portion located in the central portion in the vertical direction (Z-axis direction) of the main heat exchange portion 5b, and is located lower than the upper main heat exchange portion 5b1 in the direction of gravity. It is a portion located above the middle and lower main heat exchange portion 5b3 in the direction.
  • the middle upper main heat exchange portion 5b2 is a portion of the main heat exchange portion 5b where the heat transfer tubes 12 forming the middle upper main heat exchange portion 5b2 are connected to the later-described middle upper second distributor 32 .
  • the middle-lower main heat exchange portion 5b3 is a portion positioned in the center in the vertical direction (Z-axis direction) of the main heat-exchange portion 5b, and is positioned lower than the middle-upper main heat exchange portion 5b2 in the gravitational direction. , which is located above the lower main heat exchange portion 5b4 in the direction of gravity.
  • the middle and lower main heat exchange section 5b3 is a portion of the main heat exchange section 5b where the heat transfer tubes 12 forming the middle and lower main heat exchange section 5b3 are connected to the later-described middle and lower second distributor 33 .
  • the middle upper main heat exchange section 5b2 and the middle lower main heat exchange section 5b3 are also referred to as the central main heat exchange section.
  • the center side main heat exchange portion is arranged between the upper side main heat exchange portion 5b1 and the lower side main heat exchange portion 5b4 in the vertical direction (Z-axis direction) of the main heat exchange portion 5b.
  • the center-side main heat exchange section is located on the center side in the vertical direction (Z-axis direction) of the main heat exchange section 5b, and is located on the center side in the gravitational direction (Z-axis direction).
  • the lower main heat exchange section 5b4 is a portion located below the main heat exchange section 5b in the vertical direction (Z-axis direction), and is positioned in the direction of gravity. This is the portion located below 5b3.
  • the lower main heat exchange portion 5b4 is a portion of the main heat exchange portion 5b where the heat transfer pipes 12 forming the lower main heat exchange portion 5b4 are connected to a second lower distributor 34 described later.
  • the main heat exchange portion 5b and the auxiliary heat exchange portion 5a are thermally separated by a space.
  • the first distributor 20 is provided on the refrigerant inflow side of the auxiliary heat exchange section 5a when the heat exchanger 50 functions as an evaporator.
  • the first distributor 20 is connected to one end in the extension direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the auxiliary heat exchange section 5a.
  • the first distributor 20 is connected to the heat transfer tubes 12 of the auxiliary heat exchange section 5a so that the inside of the first distributor 20 and the pipeline of the heat transfer tubes 12 communicate with each other.
  • the first distributor 20 is arranged on the opposite side of the second distributor 30 via the plurality of heat transfer tubes 12 forming the auxiliary heat exchange section 5a in the refrigerant flow.
  • the first distributor 20 is elongated so as to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
  • the first distributor 20 is formed to extend in the vertical direction (Z-axis direction) and distributes the refrigerant to the plurality of heat transfer tubes 12 .
  • the first distributor 20 functions as a distribution mechanism that distributes the refrigerant flowing into the auxiliary heat exchange section 5 a of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
  • An inflow pipe 201 is provided in the first distributor 20 .
  • the inflow pipe 201 is a pipe for causing the refrigerant distributed to the plurality of heat transfer pipes 12 to flow into the heat exchanger 50 .
  • the inflow pipe 201 is a pipe that constitutes a refrigerant flow path between the heat exchanger 50 and the decompression device 4 .
  • a detailed structure of the first distributor 20 will be described later.
  • the second distributor 30 is provided on the refrigerant inflow side of the main heat exchange section 5b when the heat exchanger 50 functions as an evaporator.
  • the second distributor 30 is provided on the refrigerant outflow side of the auxiliary heat exchange section 5a when the heat exchanger 50 functions as an evaporator.
  • the second distributor 30 is connected to the main heat exchange section 5b and distributes the refrigerant flowing out of the auxiliary heat exchange section 5a to the plurality of heat transfer tubes 12 that constitute the main heat exchange section 5b.
  • the second distributor 30 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the main heat exchange section 5b.
  • the second distributor 30 is connected to the heat transfer tubes 12 of the main heat exchange section 5b so that the inside of the second distributor 30 and the pipeline of the heat transfer tubes 12 communicate with each other.
  • the second distributor 30 is arranged on the opposite side of the header 80 via the plurality of heat transfer tubes 12 forming the main heat exchange portion 5b in the flow of the refrigerant. Further, the second distributor 30 is connected via piping 300 to a plurality of heat transfer tubes 12 that constitute the auxiliary heat exchange section 5a.
  • the second distributor 30 is elongated so as to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
  • the second distributor 30 is formed to extend in the vertical direction (Z-axis direction) and distributes the refrigerant to the plurality of heat transfer tubes 12 .
  • the second distributor 30 functions as a distribution mechanism that distributes the refrigerant flowing into the main heat exchange section 5 b of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
  • the second distributor 30 includes an upper second distributor 31 , a middle upper second distributor 32 , a middle lower second distributor 33 , and a lower second distributor 34 .
  • the second distributor 30 is also a general term for the upper second distributor 31 , middle upper second distributor 32 , middle lower second distributor 33 , and lower second distributor 34 .
  • the four second distributors 30 from the upper second distributor 31 to the lower second distributor 34 are configured, but the number of the second distributors 30 may be four as long as it is plural. is not limited to
  • the upper second distributor 31 is positioned above the second distributor 30 in the vertical direction (Z-axis direction), and includes a middle upper second distributor 32 positioned at the center in the direction of gravity and a middle lower second distributor 32 . It is positioned above the second distributor 33 .
  • the upper second distributor 31 is connected to the heat transfer tubes 12 that constitute the upper main heat exchange section 5b1.
  • the middle-upper second distributor 32 is positioned at the central portion in the vertical direction (Z-axis direction) of the second distributor 30, and is positioned lower than the upper second distributor 31 in the direction of gravity. , and is positioned above the second distributor 33 on the middle and lower side.
  • the middle-upper second distributor 32 is connected to the heat transfer tubes 12 that constitute the middle-upper main heat exchange section 5b2.
  • the middle-lower second distributor 33 is positioned at the central portion in the vertical direction (Z-axis direction) of the second distributor 30, and is positioned lower than the middle-upper second distributor 32 in the direction of gravity. It is located above the second lower distributor 34 in the direction of gravity.
  • the middle lower side second distributor 33 is connected to the heat transfer tubes 12 that constitute the middle lower side main heat exchange section 5b3.
  • the lower second distributor 34 is positioned below the second distributor 30 in the vertical direction (Z-axis direction), and the middle upper second distributor 32 and the middle lower side are positioned in the center portion in the direction of gravity. It is positioned below the second distributor 33 .
  • the lower second distributor 34 is connected to the heat transfer tubes 12 that constitute the lower main heat exchange section 5b4.
  • the auxiliary heat exchange section 5a and the second distributor 30 are connected by the pipe 300 as described above.
  • the piping 300 includes an upper piping 301 , a middle upper piping 302 , a middle lower piping 303 and a lower piping 304 .
  • the piping 300 is also a general term for the upper piping 301 , the middle upper piping 302 , the middle lower piping 303 and the lower piping 304 .
  • the upper pipe 301 is a pipe that connects the auxiliary heat exchange section 5 a and the upper second distributor 31 .
  • the upper pipe 301 communicates the lower space 21 a of the first distributor 20 and the inside of the upper second distributor 31 via the heat transfer pipes 12 .
  • the middle upper pipe 302 is a pipe that connects the auxiliary heat exchange section 5 a and the middle upper second distributor 32 .
  • the middle upper pipe 302 communicates the upper space 21 b of the first distributor 20 with the inside of the middle upper second distributor 32 via the heat transfer pipes 12 .
  • the middle-lower pipe 303 is a pipe that connects the auxiliary heat exchange section 5 a and the middle-lower second distributor 33 .
  • the middle-lower pipe 303 communicates the upper space 21 b of the first distributor 20 with the inside of the second middle-lower distributor 33 via the heat transfer pipes 12 .
  • the lower pipe 304 is a pipe that connects the auxiliary heat exchange section 5 a and the lower second distributor 34 .
  • the lower pipe 304 communicates the lower space 21 a of the first distributor 20 with the inside of the second lower distributor 34 via the heat transfer pipes 12 .
  • the number of pipes 300 is not limited to four, and may be the same number as the number of second distributors 30 .
  • the header 80 is connected to the other ends in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the main heat exchange section 5b.
  • the header 80 is connected to the heat transfer tubes 12 of the main heat exchange section 5b so that the inside of the header 80 and the inside of the heat transfer tubes 12 communicate with each other.
  • the header 80 is elongated to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
  • the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the plurality of heat transfer tubes 12 of the main heat exchange section 5b.
  • the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the heat exchange section 50a.
  • the header 80 is provided with an outflow pipe 801 .
  • the outflow pipe 801 is a pipe for discharging from the heat exchanger 50 the refrigerant that has flowed out from the plurality of heat transfer pipes 12 and merged.
  • Embodiment 1 The operation of the heat exchanger 50 according to Embodiment 1 will be described by taking as an example the operation when the heat exchanger 50 functions as the evaporator of the air conditioner 10 .
  • the gas-liquid two-phase refrigerant decompressed by the decompression device 4 flows into the heat exchanger 50 that functions as an evaporator.
  • the refrigerant flows from the first distributor 20 of the heat exchanger 50, flows through the passages in the plurality of heat transfer tubes 12, absorbs heat, and evaporates. After that, the refrigerant flows out from the header 80 and is sucked into the compressor 1 via the flow switching device 2 .
  • refrigerant flows through the first distributor 20, the auxiliary heat exchange section 5a, the second distributor 30, the main heat exchange section 5b, and the header 80 in this order.
  • dryness x which is an expression indicating the mass velocity ratio of the gas to the total mass velocity of the gas-liquid two-phase refrigerant
  • the gas-liquid two-phase refrigerant that has passed through the inflow pipe 201 passes through an insertion surface portion 25 into which the heat transfer pipe 12 is inserted, a facing surface 27a (see FIG. 4) facing the end surface of the heat transfer pipe 12, a lid 41, a lid 42, and an orifice. It flows into the first distributor 20 constituted by the plate 91 . A detailed configuration of the first distributor 20 will be described later. Inside the first distributor 20 , the orifice plate 91 regulates the flow of refrigerant so that gas-rich two-phase gas-liquid refrigerant exists in the lower space 21 a located below the orifice plate 91 .
  • the orifice plate 91 adjusts the flow of the refrigerant so that the liquid-rich two-phase gas-liquid refrigerant exists in the upper space 21 b located above the orifice plate 91 .
  • the gas-liquid two-phase refrigerant is distributed to the heat transfer tubes 12 communicating with the lower space 21a and the heat transfer tubes 12 communicating with the upper space 21b, and flows through the auxiliary heat exchange section 5a, which is a part of the outdoor heat exchanger 5. flow.
  • the gas-liquid two-phase refrigerant that has passed through the auxiliary heat exchange section 5 a flows to the second distributor 30 via the pipe 300 . More specifically, a part of the refrigerant that has passed through the lower space 21a of the first distributor 20 passes through the heat transfer pipes 12 and the upper piping 301 that constitute the auxiliary heat exchange section 5a, and flows inside the upper second distributor 31. flow to Also, part of the refrigerant that has passed through the lower space 21a of the first distributor 20 passes through the heat transfer pipes 12 and the lower piping 304 that constitute the auxiliary heat exchange section 5a, and enters the lower second distributor 34. flow.
  • part of the refrigerant that has passed through the upper space 21b of the first distributor 20 passes through the heat transfer tubes 12 and the middle upper pipe 302 that constitute the auxiliary heat exchange section 5a, and enters the middle upper second distributor 32. flow. Also, part of the refrigerant that has passed through the upper space 21b of the first distributor 20 passes through the heat transfer pipes 12 and the middle and lower side pipes 303 that constitute the auxiliary heat exchange section 5a, and flows through the middle and lower side second distributor 33. flow inside.
  • the dryness x of the gas-liquid two-phase refrigerant flowing through the upper pipe 301, the middle upper pipe 302, the middle lower pipe 303, and the lower pipe 304 is in the range of 0.05 to 0.60. It can be done to some extent.
  • the value of the dryness x varies depending on the ratio of the auxiliary heat exchange section 5a to the entire heat exchange section 50a, the air volume passing through the auxiliary heat exchange section 5a, or the pressure loss from the inflow pipe 201 to the pipe 300. do.
  • the gas-liquid two-phase refrigerant flowing into the upper second distributor 31 to the lower second distributor 34 is distributed into four branches, respectively, and the main heat exchange section 5b as a whole is distributed into a total of 16 branches to each heat transfer tube 12 flow into
  • the gas-liquid two-phase refrigerant distributed to 16 branches flows through the main heat exchange section 5b, and heat exchange is performed between the gas-liquid two-phase refrigerant and the air flowing by the outdoor fan 6 (see FIG. 1).
  • the gas-liquid two-phase refrigerant distributed into four branches by the upper second distributor 31 flows through the upper main heat exchange portion 5b1, and the air flowing by the outdoor fan 6 (see FIG. 1) and the gas-liquid two-phase refrigerant exchange heat. I do.
  • the gas-liquid two-phase refrigerant distributed into four branches by the middle-upper second distributor 32 flows through the middle-upper main heat exchange section 5b2, and the air flowing by the outdoor fan 6 (see FIG. 1) and the gas-liquid two-phase refrigerant are mixed. heat exchange.
  • the gas-liquid two-phase refrigerant distributed into four branches by the middle-lower side second distributor 33 flows through the middle-lower side main heat exchange portion 5b3, and the air and the gas-liquid two-phase refrigerant flowing by the outdoor fan 6 (see FIG. 1) and perform heat exchange.
  • the gas-liquid two-phase refrigerant distributed into four branches by the lower second distributor 34 flows through the lower main heat exchange portion 5b4, and the air and the gas-liquid two-phase refrigerant flowing by the outdoor fan 6 (see FIG. 1) are mixed. heat exchange.
  • the amount of heat of the air passing through the upper main heat exchange portion 5b1 to the lower main heat exchange portion 5b4 varies depending on the magnitude of the wind speed distributed in the height direction as shown on the left side of FIG.
  • the middle upper main heat exchange portion 5b2 and the middle lower main heat exchange portion 5b3, in which the heat quantity of the air is larger than the other portions, are smaller in the heat quantity of the air than the middle upper main heat exchange portion 5b2, and the middle lower main heat exchange portion 5b3. More liquid refrigerant can be evaporated than in the upper main heat exchange portion 5b1 and the lower main heat exchange portion 5b4.
  • the middle upper main heat exchange portion 5b2 is connected to the middle upper second distributor 32, and the middle upper second distributor 32 adjusts the liquid-rich gas-liquid two-phase refrigerant. It is connected to the upper space 21 b of the 1 distributor 20 . That is, the heat exchanger 50 includes the middle upper main heat exchange section 5b2 that evaporates a large amount of liquid refrigerant via the middle upper second distributor 32, and the first distributor 20 that contains liquid-rich gas-liquid two-phase refrigerant. It connects with the upper space 21b.
  • the lower middle main heat exchange portion 5b3 is connected to the second middle lower distributor 33, and the second middle lower distributor 33 converts the liquid-rich gas-liquid two-phase refrigerant. It is connected to the upper space 21b of the first distributor 20 to be adjusted. That is, the heat exchanger 50 includes a middle-lower main heat exchange section 5b3 that evaporates a large amount of liquid refrigerant via the middle-lower second distributor 33, and a first distributor that contains liquid-rich gas-liquid two-phase refrigerant. 20 is connected to the upper space 21b.
  • the refrigerant passing through the main heat exchange portion 5b is in a state of gas refrigerant in which all of the liquid refrigerant is vaporized by heat exchange with the air, or in a gas-liquid state in which most of the liquid refrigerant is vaporized and the dryness x is 0.85 or more. It becomes a two-phase refrigerant and flows out to the header 80 .
  • the 16-branched refrigerant in the main heat exchange portion 5 b joins in the header 80 and flows out of the heat exchanger 50 through the outflow pipe 801 .
  • the refrigerant is branched into four at the first distributor 20 and flows through a part of the evaporator (auxiliary heat exchange section 5a), then from the upper second distributor 31 to the lower second distributor. After being branched into 16 via the evaporator 34, it is configured to flow through a part of the evaporator (main heat exchange section 5b).
  • the heat exchanger 50 is not limited to this configuration. In the heat exchanger 50, the number of branches of the auxiliary heat exchange section 5a and the main heat exchange section 5b may differ from the above embodiment.
  • FIG. 3 is a schematic diagram of first distributor 20 according to the first embodiment.
  • 4 is a perspective view of the first distributor 20 according to Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view perpendicular to the direction in which the main body 20a extends along line AA shown in FIG.
  • FIG. 6 is a cross-sectional view perpendicular to the direction in which the body portion 20a extends along line BB shown in FIG.
  • FIG. 7 is a cross-sectional view perpendicular to the extending direction of the main body portion 20a along line CC shown in FIG.
  • FIG. 4 omits illustration of the lid 41 in order to explain the internal structure of the first distributor 20 .
  • the X-axis direction shown in FIG. 4 is the direction in which the heat transfer tubes 12 extend, and the Z-axis direction is the direction in which the body portion 20a of the first distributor 20 extends.
  • the Z-axis direction is also the direction in which the heat transfer tubes 12 are arranged.
  • the Y-axis direction shown in FIG. 4 is a direction perpendicular to the X-axis direction and the Z-axis direction.
  • the first distributor 20 will be described with reference to FIGS. 3 to 7.
  • FIG. The first distributor 20, as shown in FIG. 3, has a body portion 20a and an inflow pipe 201 attached to the body portion 20a.
  • the body portion 20a is a member formed in a long tubular shape with both ends closed, and a space is formed inside.
  • the main body part 20a of the first distributor 20 is in a state in which the central axis of the longitudinal direction (Z-axis direction) of the first distributor 20 is oriented vertically, or in which the central axis of the longitudinal direction of the first distributor 20 is oriented vertically. It is installed in a tilted state within a range having a vector component.
  • An inlet 44 and an internal space 21 are formed in the body portion 20a.
  • the inflow port 44 is an inflow port that is connected to the inflow pipe 201 and into which the refrigerant flows from the inflow pipe 201 .
  • the internal space 21 communicates with the inner space of the heat transfer tube 12 and the inner space of the inflow pipe 201 , and is a space through which the refrigerant flowing from the inflow port 44 flows upward through the inflow pipe 201 .
  • the body part 20 a has a first part 23 , a second part 24 , lids 41 and 42 , and an orifice plate 91 .
  • the first part 23 and the second part 24 are arranged so as to face each other in the direction in which the heat transfer tubes 12 extend (the X-axis direction).
  • the body portion 20a of the first distributor 20 includes a first component 23 having an insertion surface portion 25 and a side surface portion 26, which will be described later, and a second component 24, which is a facing surface portion. 24 are combined to form a cylindrical shape.
  • the body portion 20a is formed in a tubular shape by combining a first part 23 and a second part 24, and as shown in FIG. Both ends of the two parts 24 in the longitudinal direction (Z-axis direction) are closed with lids 41 and 42 .
  • the body portion 20 a is formed in a columnar shape by combining the first part 23 , the second part 24 , and the lids 41 and 42 .
  • the first part 23 is an elongated member, and has a U-shaped cross section perpendicular to the longitudinal direction (Z-axis direction).
  • a cross section perpendicular to the longitudinal direction (Z-axis direction) of the first distributor 20 including the first component 23 may be referred to as an axis-perpendicular cross section.
  • the first component 23 has an insertion surface portion 25 forming a U-shaped curved portion and a side surface portion 26 forming a flat portion.
  • the side surface portion 26 is not limited to a flat plate-like portion, and may be, for example, a plate-like portion formed in an arc that draws a gentler curve than the insertion surface portion 25 in an axis-perpendicular cross section. .
  • the insertion surface portion 25 and the two side surface portions 26 are integrally formed.
  • the insertion surface portion 25 is formed in an arc shape, and the side surface portion 26 is formed in a substantially linear shape. At least a part of the insertion surface portion 25 is curved so as to be convex toward the side on which the plurality of heat transfer tubes 12 are arranged in an axis-perpendicular cross section. At least a part of the first component 23 is curved so as to protrude on the side opposite to the second component 24 which is the facing surface portion.
  • the first part 23 is formed such that two side surface parts 26 face each other in the Y-axis direction.
  • a side surface portion 26 is provided at both ends of each.
  • the side portion 26 is connected to a later-described flat plate portion 28 of the second component 24 .
  • the side surface portion 26 is a wall extending between the insertion surface portion 25 and the flat plate portion 28 of the opposing surface portion that is the second component 24 in the main body portion 20a, and is a portion that connects the insertion surface portion 25 and the flat plate portion 28 .
  • the side surface portion 26 is formed integrally with the insertion surface portion 25 and is joined to the flat plate portion 28 of the opposing surface portion, which is the second component 24 .
  • a plurality of heat transfer tubes 12 are inserted into the insertion surface portion 25 of the first component 23 .
  • the insertion surface portion 25 of the first component 23 is formed with a connection port 43 into which the heat transfer tube 12 is inserted.
  • the connection port 43 is a through hole and is formed in plurality along the longitudinal direction (Z-axis direction) of the first component 23 .
  • a plurality of connection ports 43 into which a plurality of heat transfer tubes 12 are inserted are formed at intervals in the vertical direction in the body portion 20a.
  • the heat transfer tube 12 is inserted into the connection port 43 and penetrates the wall of the first component 23 .
  • the heat transfer tube 12 inserted into the connection port 43 is held by the first component 23 .
  • the second part 24 is a facing surface portion that faces the insertion surface portion 25 in the direction in which the heat transfer tubes 12 extend, as shown in FIGS.
  • the second part 24 is an elongated member, and has a substantially ⁇ -shaped cross section perpendicular to the longitudinal direction (Z-axis direction).
  • the second component 24, which is the facing surface portion includes a flat plate portion 28 connected to the side surface portion 26 and a part of the inner wall forming the inner space 21 of the first distributor 20 in the cross section perpendicular to the axis of the first distributor 20. and a bulging portion 27 that bulges from the flat plate portion 28 toward the surface portion 25 .
  • the second component 24 which is the facing surface portion, has a bulging portion 27 forming a curved portion and a flat plate portion 28 forming a flat portion.
  • the bulging portion 27 and two flat plate portions 28 located on both sides of the bulging portion 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the second part 24 are integrally formed.
  • the bulging portion 27 is formed in an arc shape, and the flat plate portion 28 is formed in a straight line.
  • two flat plate parts 28 form the same flat plane F, and flat plates are formed on both ends of the bulging part 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the second part 24, respectively.
  • a section 28 is provided.
  • the same plane F is a plane formed by the Z-axis direction and the Y-axis direction, as shown in FIG.
  • the flat plate portions 28 are not limited to being provided at both ends of the bulging portion 27.
  • the flat plate portions 28 located at both ends of the bulging portion 27 are integrally formed. It may be formed as a single plate-like member.
  • the bulging portion 27 is a portion in which at least a portion of the second component 24 that is the facing surface portion bulges toward the insertion surface portion 25 in the axis-perpendicular cross section of the first distributor 20 .
  • the bulging portion 27 is provided between two flat plate portions 28 and bulges from the flat plate portion 28 so as to protrude from the side where the insertion surface portion 25 is formed, that is, the side where the heat transfer tubes 12 are arranged.
  • the bulging portion 27 may be configured as a portion in which at least a portion of the flat plate portion 28 bulges toward the insertion surface portion 25 .
  • the bulging portion 27 is formed along the longitudinal direction of the main body portion 20 a , that is, along the longitudinal direction of the second component 24 .
  • the bulging portion 27 has a facing surface 27 a that faces the inner wall of the insertion surface portion 25 .
  • the bulging portion 27 is formed in a U shape in FIG. 4, the shape of the bulging portion 27 is not limited to this shape.
  • the bulging portion 27 may be formed so as to protrude from the flat plate portion 28 toward the side where the insertion surface portion 25 is formed, that is, toward the side where the heat transfer tubes 12 are arranged. good.
  • At least one inflow port through which the coolant flows into the internal space 21 is formed in the bulging portion 27 of the second part 24 which is the facing surface portion.
  • the inflow port 44 is a through hole into which the inflow pipe 201 is inserted.
  • the inflow pipe 201 is inserted into the inflow port 44 and penetrates the wall of the second part 24 .
  • the inflow tube 201 inserted into the inflow port 44 is held by the second part 24 .
  • the inflow port 44 is formed in the internal space 21 of the main body 20a at a position facing the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 .
  • the inlet 44 is formed so as to be positioned below the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 in the internal space 21 of the main body 20a.
  • the main body portion 20a is formed so that the bulging portion 27 is positioned between two side surface portions 26 facing each other.
  • the body portion 20 a has an internal space 21 formed by an insertion surface portion 25 , two side surface portions 26 , a bulging portion 27 , two flat plate portions 28 , a lid 41 , and an inner wall surface of the lid 42 .
  • the internal space 21 is formed in a substantially U shape in a vertical cross section with respect to the longitudinal direction (Z-axis direction) of the body portion 20a.
  • a representative manufacturing method of the main body 20a is as follows.
  • the first part 23 is formed with a connection port 43 that serves as an insertion port for the heat transfer tube 12, and is formed so that a cross section perpendicular to the longitudinal direction has an arc shape. Therefore, the first component 23 is formed by press work for forming the connection port 43 and bending work for forming the curved surface, and is formed as a semicircular pressed plate component.
  • the second part 24 forms an inflow port 44 that serves as a connection port for the inflow pipe 201, and then forms a bulging portion 27 having an arc-shaped cross section perpendicular to the longitudinal direction. Therefore, the second part 24 is molded by pressing for forming the inlet 44 and bending for forming a curved surface, and is molded as a pressed plate part having the bulging portion 27 .
  • the manufacturing method of the main body portion 20a is not limited to the molding method described above.
  • the body portion 20a is drilled to form the connection port 43 and the inlet port 44, thereby manufacturing the body portion 20a.
  • the main body portion 20a may be manufactured by combining the first part 23 and the second part 24 formed by press working and extrusion, or may be manufactured by using another means such as electric resistance welding pipe processing.
  • the first distributor 20 closes both ends in the longitudinal direction (Z-axis direction) of the first distributor 20 , and defines an internal space 21 together with an insertion surface portion 25 , a second component 24 that is a facing surface portion, and a side surface portion 26 .
  • It has lids 41 and 42 that form.
  • the lids 41 and 42 are members that close both ends of the first component 23 and the second component 24 that are formed in a cylindrical shape.
  • the lids 41 and 42 are plate-shaped.
  • the lids 41 and 42 close both ends of the body portion 20a in the longitudinal direction (Z-axis direction) so as to form the internal space 21 in the body portion 20a.
  • At least one orifice plate 91 is provided inside the main body 20a to divide the internal space 21 of the main body 20a into upper and lower spaces.
  • a lower space 21a positioned below the orifice plate 91 and an upper space 21b positioned above the orifice plate 91 are formed by the orifice plate 91 inside the body portion 20a.
  • An orifice plate 91 is provided inside the body portion 20a, and the internal space 21 is separated by the orifice plate 91 into a lower space 21a and an upper space 21b.
  • the lower space 21 a is a space formed below the orifice plate 91 and the upper space 21 b is a space formed above the orifice plate 91 .
  • orifice holes 92 are formed in the orifice plate 91 .
  • the orifice hole 92 is a through hole formed in the orifice plate 91 and allows the upper and lower spaces of the orifice plate 91 to communicate with each other.
  • the internal space 21 of the body portion 20a communicates with the lower space 21a and the upper space 21b through the orifice hole 92 of the orifice plate 91 .
  • the refrigerant flows through the orifice holes 92 of the orifice plate 91, and moves through the orifice holes 92 from the lower space 21a to the upper space 21b.
  • the upper space 21b of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of second distributors 30, the middle upper main heat exchange section 5b2, the middle lower main heat exchange section 5b3, and the like. It communicates with a plurality of heat transfer tubes 12 that constitute the central side main heat exchange section.
  • the lower space 21a of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of other second distributors 30 that do not communicate with the central side main heat exchange section 5b1. and a plurality of heat transfer tubes 12 forming the lower main heat exchange section 5b4.
  • the orifice plate 91 has one circular orifice hole 92 formed near the center of the orifice plate 91 in FIG.
  • the formation position of the orifice hole 92 is not limited to the vicinity of the center of the orifice plate 91 .
  • the number of orifice holes 92 formed is not limited to one, and two or more orifice holes 92 may be formed in the orifice plate 91 .
  • the hole shape of the orifice hole 92 is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape.
  • connection port 43 is formed in each of the lower body portion 20a1 and the upper body portion 20a2. As shown in FIG. 2, two connection ports 43 are formed in each of the upper body portion 20a2 and the lower body portion 20a1, and four connection ports 43 are formed in the body portion 20a as a whole.
  • a plurality of heat transfer tubes 12 are attached to the lower body portion 20a1, and a plurality of other heat transfer tubes 12 are attached to the upper body portion 20a2.
  • a plurality of heat transfer tubes 12 pass through the connection port 43 of the lower main body portion 20a1, and a plurality of other heat transfer tubes 12 pass through the connection port 43 of the upper main body portion 20a2.
  • the number of connection ports 43 formed in the body portion 20a is not limited to four. The number of connection ports 43 to be formed is determined by the number of heat transfer tubes 12 included in the heat exchange section 50a.
  • An inflow pipe 201 is attached to the body portion 20a.
  • the inflow pipe 201 is attached to the lower body portion 20a1.
  • the inflow pipe 201 communicates with the internal space 21 of the body portion 20a.
  • the inflow pipe 201 communicates with the lower space 21a.
  • the gas-liquid two-phase refrigerant flowing through the internal space 21 of the main body 20 a flows into the inflow pipe 201 when the heat exchanger 50 functions as an evaporator.
  • the inflow pipe 201 is located at a position facing the heat transfer tube 12 located at the bottom of the lower space 21a, or at a position where the gas-liquid two-phase refrigerant flows into the space below the heat transfer tube 12 located at the bottom. It is desirable to attach along the direction (X-axis direction) in which the heat pipe 12 extends.
  • the installation position of the inflow pipe 201 is set at an intermediate point between the heat transfer tubes 12 in the lower space 21a, an upward flow of the refrigerant and a downward flow of the refrigerant will occur, resulting in a gas-liquid two-phase refrigerant.
  • the flow velocity that flows upward decreases. If the flow velocity of the gas-liquid two-phase refrigerant is lowered, separation between the gas refrigerant and the liquid refrigerant is likely to occur. Therefore, the inflow pipe 201 is desirably attached to the position described above.
  • the characteristics of the working fluid when using the first distributor 20 of the present embodiment are shown. Because the gas-liquid two-phase refrigerant flowing from the inflow pipe 201 is sequentially discharged to the plurality of heat transfer tubes 12 connected to the first component 23 when flowing vertically upward in the lower space 21a in the first distributor 20. , the upward flow velocity decreases stepwise.
  • cross-sectional area of the internal space 21 of the first distributor 20 in the cross-sectional view along line AA shown in FIG. 5 is defined as cross-sectional area A 1 [m 2 ].
  • cross-sectional area of the internal space 21 of the first distributor 20 in the cross-sectional view taken along line BB shown in FIG. 6 is defined as cross-sectional area A 2 [m 2 ].
  • the peripheral length of the cross section of the first distributor 20 forming the cross-sectional area A 1 is defined as the wetting edge length L 1 [m].
  • the peripheral length of the cross section of the first distributor 20 forming the cross-sectional area A2 is defined as the wet edge length L2 [m].
  • the equivalent hydraulic diameter in the cross section of the first distributor 20 forming the cross-sectional area A 1 is assumed to be the equivalent hydraulic diameter D 1 [m].
  • the equivalent hydraulic diameter in the cross section of the first distributor 20 forming the cross-sectional area A2 is assumed to be the equivalent hydraulic diameter D2 [m].
  • the circulation amount of the gas-liquid two-phase refrigerant flowing through the internal space 21 is defined as the circulation amount Gr [kg/s]
  • the dryness is defined as the dryness x [ ⁇ ]
  • the density is density ⁇ [kg/m 3 ]
  • the apparent velocity is defined as velocity u [m/s].
  • the dimensionless flooding speed j * [-] and the flooding constant C N [-] are calculated by the following relational expressions.
  • the suffix [_G] is gas
  • the suffix [_L] is liquid.
  • the flooding constant C 2 [ ⁇ ] in the cross-sectional area A 2 is less than 0.4, the gas refrigerant and the liquid refrigerant are likely to separate. Therefore, it is preferable to configure the internal space 21 so that the flooding constant C 2 [-] has a flow velocity of 0.4 or more.
  • the body portion 20a of the first distributor 20 is formed with a corner portion 21c and a corner portion 21d.
  • the first distributor 20 may have only one of the corners 21c and 21d, or may have both the corners 21c and 21d.
  • the corner 21 c and the corner 21 d are spaces surrounded by the flat plate portion 28 , the bulging portion 27 and the side portion 26 and are part of the internal space 21 .
  • the corners 21 c and 21 d are spaces near the flat plate portion 28 in the internal space 21 .
  • Surface tension acts between the corners 21 c and 21 d and the liquid refrigerant due to the surrounding wall surfaces formed by the flat plate portion 28 , the bulging portion 27 , and the side surface portion 26 . Therefore, the first distributor 20 can prevent the liquid refrigerant from falling due to the surface tension acting on the corners 21c and 21d.
  • brazing filler metal fillet is a solidified brazing filler material that is thickly attached to the corners of the joints between members and spreads out from the corners so as to draw a skirt.
  • FIG. 8 is an explanatory diagram for explaining the action of the bulging portion 27.
  • a first tangent line P is defined as a tangent line of a portion of the heat transfer tube 12 that is closest to the second component 24, which is the facing surface portion.
  • the first tangent line P is perpendicular to the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. becomes.
  • a second tangent line Q is defined as a tangent line in contact with the topmost portion 27b of the bulging portion 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body portion 20a.
  • a second tangent line Q is a tangent line of a portion of the bulging portion 27 that is closest to the heat transfer tube 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. be.
  • the second tangent line Q is perpendicular to the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. becomes.
  • the first tangent line P and the second tangent line Q are parallel when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a.
  • the top portion 27b is the portion closest to the heat transfer tube 12 in the direction in which the heat transfer tube 12 extends (the X-axis direction), and is the portion that protrudes most from the flat plate portion 28 . That is, the top portion 27b is the portion closest to the connection port 43 in the second component 24 in the direction in which the heat transfer tube 12 extends (the X-axis direction).
  • a third tangent line R is defined as a tangent line to a portion of the second part 24 that is farthest from the insertion surface portion 25 and forms the internal space 21 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body portion 20a.
  • the third tangent line R contacts the portion of the flat plate portion 28 that forms the inner wall of the internal space 21 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. line parallel to the first tangent line P and the second tangent line Q;
  • the distance between the first tangent line P and the second tangent line Q is defined as a first distance M1
  • the distance between the first tangent line P and the third tangent line R is defined as a first distance M1.
  • the second distance M2 is 1.5 times or more the first distance M1.
  • the first distributor 20 is formed so as to satisfy the relationship of second distance M2 ⁇ 1.5 ⁇ first distance M1 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body 20a.
  • the shortest distance from the tip end portion 12b of each of the plurality of heat transfer tubes 12 to the bulging portion 27 is the first distance M1.
  • the distance from the distal end portion 12b of each of the plurality of heat transfer tubes 12 to the position of the flat plate portion 28 in the direction in which the plurality of heat transfer tubes 12 extend is defined as a second distance M2.
  • the first distributor 20 is formed so as to satisfy the relationship of second distance M2 ⁇ 1.5 ⁇ first distance M1.
  • the second distance M2 is 1.5 times or more the first distance M1, so that the cross-sectional area A2 of the internal space 21 can be minimized.
  • the wet edge length L2 can be increased. Therefore, the first distributor 20 can reduce the hydraulic equivalent diameter D2 , and as a result, can also increase the flooding constant C2 .
  • FIG. 9 is a diagram showing the relationship between the flooding constant CN and the height inside the distributor.
  • "Conventional” shown in FIG. 9 indicates a distributor that does not have the first distributor 20 of the present disclosure, and "Embodiment” indicates the first distributor 20 of this embodiment.
  • the “conventional” distributor is a distributor in which the main body has a perfectly circular cross section in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body. As shown in FIG. 9, as the height inside the first distributor 20 increases, the gas-liquid two-phase refrigerant is sequentially discharged to the heat transfer tubes 12, so the flooding constant CN decreases.
  • the first distributor 20 since the second distance M2 is 1.5 times or more the first distance M1, the flooding constant C2 can be increased as described above, The gas-liquid two-phase refrigerant can be distributed while the flooding constant C2 is set to 0.4 or more. Therefore, the first distributor 20 can prevent separation of the gas refrigerant and the liquid refrigerant, and can suppress insufficient supply of the liquid refrigerant to the upper portion of the first distributor. In addition, the first distributor 20 can prevent the separation of the gas refrigerant and the liquid refrigerant, and in the heat exchange section 50a located downstream of the first distributor 20, the liquid refrigerant is also supplied to the upper portion of the heat exchange section 50a. can supply. Since the heat exchanger 50 has the first distributor 20, the liquid refrigerant can be supplied to the upper portion of the heat exchange section 50a as well, and deterioration of the heat exchanger performance of the heat exchanger 50 can be suppressed.
  • FIG. 10 is a schematic diagram showing the flow of refrigerant in the first distributor 20 in the heat exchanger 50 of Embodiment 1.
  • FIG. The role of the orifice plate 91 in the first distributor 20 will be described with reference to FIG.
  • the gas-liquid two-phase refrigerant 35 supplied from the inflow pipe 201 becomes a liquid refrigerant that rises while adhering to the inner wall surface of the lower body portion 20a1 in the lower space 21a, and becomes a gas that rises without adhering to the inner wall surface. It becomes a state of refrigerant and a state of dispersed liquid refrigerant particles.
  • the liquid refrigerant rising while adhering to the wall surface can proceed upward without falling, and the orifice Plate 91 is reached.
  • the liquid refrigerant and gas refrigerant that have reached the orifice plate 91 are divided into a flow that passes through the orifice holes 92 and a flow that does not pass through the orifice holes 92 due to pressure loss caused by passing through the orifice holes 92 .
  • the gas refrigerant When passing through a nozzle space such as the orifice hole 92, the gas refrigerant, which has a larger volume than the liquid refrigerant when compared with the same mass, causes a large pressure loss. Therefore, the refrigerant passing through the orifice hole 92 is distributed at a large mass flow rate of the liquid refrigerant with a small pressure loss, and the gas-liquid two-phase refrigerant occupying the upper space 21b accounts for about 50.1% or more of the gas-liquid two-phase refrigerant. 58.0% mass flow rate tends to be a liquid-rich refrigerant. Therefore, in the first distributor 20, in the main body portion 20a, as shown in FIG. The gas-liquid two-phase refrigerant flowing into 12 tends to be a liquid-rich refrigerant with a large liquid refrigerant content.
  • the third and fourth heat transfer tubes 12 from the bottom communicate with the upper space 21b.
  • the liquid refrigerant and gas refrigerant that do not pass through the orifice holes 92 are divided into four branches by the four heat transfer tubes 12 in the main body 20a as shown in FIG. It flows into the first heat transfer tube 12 .
  • the gas refrigerant which is difficult to pass through the orifice holes 92 due to the pressure loss caused by passing through the orifice holes 92, is branched into four branches by the four heat transfer tubes 12 in the main body 20a as shown in FIG. In the configuration, it is easy to flow into the first and second heat transfer tubes 12 from below.
  • the gas-liquid two-phase refrigerant flowing into the first and second heat transfer tubes 12 from the bottom tends to be a gas-rich refrigerant with a large gas refrigerant content.
  • the first and second heat transfer tubes 12 from the bottom communicate with the lower space 21a.
  • the orifice hole 92 formed in the orifice plate 91 is a hole corresponding to a Cv value of about 0.05 to 2.0, which is generally treated as a capacity coefficient of a valve or the like.
  • R32 refrigerant flows as a gas-liquid two-phase refrigerant having a mass flow rate of 140 [kg/h] and a dryness of 0.10.
  • an orifice plate is provided between the second heat transfer tube 12 and the third heat transfer tube 12 from the bottom.
  • the orifice hole 92 has a diameter of ⁇ 2.2 [mm ] to ⁇ 6.0 [mm].
  • the heat exchanger 50 includes the first distributor 20 that satisfies the relationship of second distance M2 ⁇ 1.5 ⁇ first distance M1.
  • the first distributor 20 minimizes the cross-sectional area A2 of the internal space 21 of the first distributor 20 by setting the second distance M2 to be 1.5 times or more the first distance M1.
  • the wetting edge length L2 can be increased. Therefore, the first distributor 20 can reduce the hydraulic equivalent diameter D2 , and as a result, can also increase the flooding constant C2 .
  • the first distributor 20 can separate the liquid refrigerant and the gas refrigerant in the gas-liquid two-phase refrigerant in the first distributor 20 and maintain a flow velocity at which the liquid refrigerant does not drop. Insufficient supply of liquid refrigerant to the upper part of the can be suppressed.
  • the insertion surface portion 25 is curved so as to be convex toward the side on which the plurality of heat transfer tubes 12 are arranged in an axis-perpendicular cross section. Since the pressure resistance in the first distributor 20 increases as the body portion 20a of the first distributor 20 is closer to a circular shape, the heat exchanger 50 is configured such that the insertion surface portion 25 is formed with the above-described structure. The withstand voltage of the container 20 can be improved.
  • the first distributor 20 closes both ends in the longitudinal direction (Z-axis direction) of the first distributor 20, and has an internal space with an insertion surface portion 25, a second component 24 that is a facing surface portion, and a side surface portion 26. It has a lid 41 and a lid 42 forming 21 . Without the lids 41 and 42 above and below the first distributor 20, the refrigerant leaks to the outside and a closed space cannot be created.
  • the first distributor 20 can be easily closed by closing the upper and lower ends with the lids 41 and 42 rather than bending the upper and lower ends of the first distributor 20 at right angles and crushing the ends to form a closed space. Space can be formed.
  • the first distributor 20 has at least one or more partitions that separate the internal space 21 into an upper space 21b positioned above and a lower space 21a positioned below in the longitudinal direction (Z-axis direction) of the first distributor 20. It has an orifice plate 91 .
  • the orifice plate 91 is formed with an orifice hole 92 which is a through hole and communicates the upper space 21b and the lower space 21a.
  • the gas refrigerant which has a larger volume than the liquid refrigerant when compared with the same mass, causes a large pressure loss.
  • the refrigerant passing through the orifice hole 92 is distributed at a large mass flow rate of liquid refrigerant with a small pressure loss, and the gas-liquid two-phase refrigerant occupying the upper space 21b tends to be a liquid-rich refrigerant.
  • the first distributor 20 can suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor 20 .
  • the inlet 44 is formed in the internal space 21 of the main body 20a at a position facing the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 .
  • the inlet 44 is formed so as to be positioned below the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 in the internal space 21 of the main body 20a.
  • the formation position of the inflow port 44 to which the inflow pipe 201 is connected is desirably formed at the position described above, and the generation of the refrigerant flow that is divided into the upward flow of the refrigerant and the downward flow of the refrigerant can be suppressed. .
  • the first distributor 20 includes a first component 23 having an insertion surface portion 25 and a side surface portion 26, and a second component 24 which is a facing surface portion, and the first component 23 and the second component 24 are combined. Therefore, it is formed in a cylindrical shape.
  • the first distributor 20 can be made by extrusion molding a cylinder in which the insertion surface portion 25, the side surface portion 26, and the opposing surface portion are all integrated. It is expensive to manufacture because it needs to be Since the first distributor 20 is composed of two halves, the first part 23 and the second part 24, the first part 23 and the second part 24 can be manufactured by press working, and the manufacturing cost can be reduced. You can keep it cheap.
  • the main body portion 20a of the first distributor 20 is in a state in which the central axis of the longitudinal direction (Z-axis direction) of the first distributor 20 is vertical, or the central axis of the longitudinal direction of the first distributor 20 is vertical. It is installed in a tilted state within a range having a directional vector component.
  • the first distributor 20 is a distributor that extends in the vertical direction (the Z-axis direction), but by providing the above-described configuration, it is possible to suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor 20 .
  • the upper space 21b of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of second distributors 30, the middle upper main heat exchange section 5b2 and the middle lower main heat exchange section 5b2. It communicates with a plurality of heat transfer tubes 12 that constitute the central side main heat exchange section such as 5b3.
  • the lower space 21a of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of other second distributors 30 that do not communicate with the central side main heat exchange section 5b1. and a plurality of heat transfer tubes 12 forming the lower main heat exchange portion 5b4.
  • the heat exchanger has the first This can result in inefficient distribution of the working fluid, reducing the efficiency of the heat exchanger.
  • the refrigerant which is the first working fluid
  • the heat exchanger located downstream of the distributor the refrigerant, which is the first working fluid
  • the heat amount of the air which is the second working fluid.
  • the liquid refrigerant is evenly supplied to the heat transfer tubes in which the liquid refrigerant is excessive with respect to the amount of heat exchanged, and the performance of the heat exchanger may be deteriorated.
  • the first distributor 20 utilizes the characteristics of the liquid-rich gas-liquid two-phase refrigerant that passes through the orifice holes 92 of the orifice plate 91, and as shown in FIG.
  • the amount of liquid refrigerant supplied to the heat exchange portions 50a such as the side main heat exchange portion 5b3 can be increased. Therefore, the heat exchanger 50 having the first distributor 20 can improve the heat exchanger performance by appropriately distributing the liquid refrigerant with respect to the heat amount of the second working fluid.
  • the heat exchanger 50 maintains a flow velocity at which liquid refrigerant and gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor 20 so that the liquid refrigerant does not drop, and the main heat exchanger 50 located downstream of the first distributor 20 In the heat exchanging portion 5b, the liquid refrigerant can be appropriately distributed to the heat amount with the second working fluid.
  • the first distributor 20 supplies the gas-liquid two-phase refrigerant to the appropriate distribution of the liquid refrigerant according to the heat amount in the heat exchanger 50 with only simple components even at the upper part of the distributor. It is possible to contribute to the improvement of heat exchanger performance while suppressing material costs.
  • FIG. 11 is a conceptual cross-sectional view of the bulging portion 27 according to the second embodiment. Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiment 1 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • FIG. 11 is a vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a, and is a sectional view conceptually showing the bulging portion 27 shown in the first embodiment.
  • the bulging portion 27 may be formed in a semicircular shape as shown in FIG. 11 .
  • FIG. 12 is a conceptual cross-sectional view of a first alternative form of the bulging portion 27 according to the second embodiment.
  • FIG. 13 is a conceptual cross-sectional view of a second alternative form of the bulging portion 27 according to the second embodiment.
  • the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a is not limited to a semicircular shape.
  • the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a may be formed in a square shape as shown in FIG. 12, or may be formed in a triangular shape as shown in FIG. good too.
  • FIG. 14 is a conceptual cross-sectional view of a third alternative form of the bulging portion 27 according to the second embodiment.
  • FIG. 15 is a conceptual cross-sectional view of a fourth alternative form of the bulging portion 27 according to the second embodiment.
  • FIG. 16 is a conceptual cross-sectional view of a fifth alternative form of the bulging portion 27 according to the second embodiment.
  • the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the main body portion 20a may be formed such that a plurality of small semicircular circular protrusions 27c are continuous. .
  • FIG. 14 the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the main body portion 20a may be formed such that a plurality of small semicircular circular protrusions 27c are continuous. .
  • FIG. 14 the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the main body
  • the shape of the vertical cross section of the bulging portion 27 may be formed such that a plurality of small square-shaped square convex portions 27d are continuous. Moreover, as shown in FIG. 16, the shape of the vertical cross section of the bulging portion 27 may be formed in a sawtooth shape in which a plurality of small triangular mountain-like convex portions 27e are continuous.
  • the bulging portion 27 has one semicircular shape, one square shape, one triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of squares are continuous, or a shape in which a plurality of triangles are formed in an axis-perpendicular cross section. It is formed in a cross-sectional shape of any one of continuous shapes.
  • the bulging portion 27 has, in an axis-perpendicular cross-section, a single semicircular shape, a single square shape, a single triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of squares are continuous, or a shape in which a plurality of squares are continuous.
  • a groove having a cross-sectional shape in which triangles are continuous is formed. Note that the cross-sectional shape of the bulging portion 27 is not limited to these shapes, and may be formed by combining the above-described shapes, for example.
  • FIG. 17 is a perspective view of the main body portion 20a of the first distributor 20 according to Embodiment 2.
  • the first distributor 20 shown in FIG. 17 is different from the semicircular bulging portion 27 described in the first embodiment, and has a bulging portion in which a plurality of small square convex portions 27d are continuously formed. 27. Therefore, in the first distributor 20 shown in FIG. 17, a plurality of projecting surfaces are formed by a plurality of square projections 27d projecting into the internal space 21. As shown in FIG.
  • the wall surface of the bulging portion 27 is in contact with the gas-liquid two-phase refrigerant by forming a plurality of protruding surfaces with a plurality of square convex portions 27d forming the bulging portion 27. Area can be increased.
  • the first distributor 20 in which the bulging portion 27 has a plurality of protruding surfaces, is different from the configuration of the single semicircular bulging portion 27 as in the first embodiment.
  • the portion where the surface tension acts increases, and the fall of the liquid refrigerant can be suppressed.
  • first distributor 20 of FIG. 17 has a single semicircular shape as in the first embodiment by forming a plurality of protruded surfaces with a plurality of square convex portions 27d forming the bulging portion 27.
  • the wetted edge length L2 is increased compared to the configuration of the bulging portion 27 . Therefore, first distributor 20 in which bulging portion 27 has a plurality of protruding surfaces has a larger flooding constant C2 than the configuration of one semicircular bulging portion 27 as in the first embodiment. Separation of gas refrigerant and liquid refrigerant can be suppressed.
  • the first distributor 20 in which the bulging portion 27 has a plurality of protruding surfaces can suppress the liquid refrigerant from falling and can suppress the separation of the gas refrigerant and the liquid refrigerant.
  • the supply of liquid refrigerant to the upper portion of the first distributor 20 is more likely to increase than in the first distributor 20 of 1. Therefore, even if the first distributor 20 has a plurality of heat transfer tubes 12 and the number of refrigerant branches increases, the mass flow rate of the gas-liquid two-phase refrigerant decreases from the bottom to the top of the first distributor 20. , the liquid refrigerant can be easily supplied from the upper portion of the first distributor 20 .
  • the first distributor 20 when the second part 24 is manufactured by extrusion molding, the first distributor 20 according to the second embodiment has a bulging portion 27 formed of a plurality of convex portions as shown in FIGS. 14 to 16. Even if it has a shape, it can be manufactured at a low cost as in the first embodiment.
  • the bulging portion 27 has, in an axis-perpendicular cross section, one semicircular shape, one quadrangular shape, one triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of quadrilaterals are continuous, or a shape in which a plurality of squares are continuous. It is formed in any one cross-sectional shape of a shape in which triangles are continuous.
  • the first distributor 20 can increase the flooding constant C2 by having the bulging portion 27 having such a configuration as compared with the case where the bulging portion 27 is not provided.
  • the first distributor 20 can separate the liquid refrigerant and the gas refrigerant in the gas-liquid two-phase refrigerant in the first distributor 20 and maintain a flow velocity at which the liquid refrigerant does not drop. Insufficient supply of liquid refrigerant to the upper part of the can be suppressed.
  • the first distributor 20 according to Embodiment 2 the amount of liquid refrigerant supplied to the upper portion of the first distributor 20 is can be increased. Therefore, the first distributor 20 according to the second embodiment supplies the liquid refrigerant to the upper part of the first distributor 20 even when the refrigerant distribution path has more branches than the first distributor 20 according to the first embodiment. be able to.
  • FIG. 18 is a conceptual cross-sectional view of another first form of orifice plate 91 used in first distributor 20 according to the third embodiment.
  • FIG. 19 is a conceptual cross-sectional view of a second alternative form of orifice plate 91 used in first distributor 20 according to the third embodiment.
  • FIG. 20 is a conceptual cross-sectional view of a third alternative form of orifice plate 91 used in first distributor 20 according to the third embodiment.
  • 18 to 20 are cross-sectional views taken along line CC of the first distributor 20 shown in FIG.
  • An orifice plate 91 that is different from the first embodiment will be described with reference to FIGS. 18 to 20.
  • FIG. Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiments 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the orifice plate 91 may have two orifice holes 92 such as an orifice hole 92a and an orifice hole 92b shown in FIGS. 18 and 19, the orifice plate 91 is formed with two orifice holes 92 such as an orifice hole 92a and an orifice hole 92b, but the orifice plate 91 is formed with at least one orifice hole 92. It is good if there is for example, the orifice plate 91 may be formed with only one of the orifice holes 92a and 92b shown in FIGS.
  • the hole shape of the orifice hole 92 may be circular as shown in the orifice hole 92 in FIG. 18, or as shown in FIG. It may be formed in a rectangular shape. Also, the shape of the orifice hole 92 may be formed in an elliptical shape (not shown) when viewed in a direction parallel to the longitudinal direction of the body portion 20a.
  • the orifice plate 91 may be formed at the central portion of the orifice plate 91, and as shown in FIGS. may be formed in As shown in FIG. 19, the orifice plate 91 has an orifice hole 92a and an orifice hole 92b, each of which consists of a side surface portion 26, a flat plate portion 28, a bulging portion 27, and an orifice plate 91. It may be formed to be an enclosed space. In other words, the orifice holes 92 may be formed in the corners 21c and 21d described above.
  • the orifice holes 92 are formed in the orifice plate 91 at positions that do not overlap the heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction of the main body 20a. That is, the first distributor 20 is arranged at a position where the plurality of heat transfer tubes 12 and the orifice holes 92 do not overlap when the first distributor 20 is projected in the axial direction of the first distributor 20 . In the advancing direction (Z-axis direction) of the gas-liquid two-phase refrigerant flowing upward in the internal space 21 of the first distributor 20, the heat transfer tubes 12 and the orifice holes 92 are arranged at positions that do not overlap.
  • the gas-liquid two-phase refrigerant that flows upward in the internal space 21 of the first distributor 20 passes through the XY cross section that does not overlap the heat transfer tubes 12 .
  • the flow path of the gas-liquid two-phase refrigerant detours from the traveling direction and advances to the orifice hole 92 due to the existence of the heat transfer tube 12. flow.
  • the distributor 20 is arranged at a position where the plurality of heat transfer tubes 12 and the orifice holes 92 do not overlap when projected in the axial direction of the first distributor 20. ing.
  • the first distributor 20 is formed at a position where the orifice holes 92 and the heat transfer tubes 12 do not overlap, so that the flow of the gas-liquid two-phase refrigerant bypassing the heat transfer tubes 12 is less likely to occur.
  • the gas-liquid two-phase refrigerant flowing upward in the internal space 21 easily passes through the orifice hole 92 . Therefore, the first distributor 20 is formed at a position where the orifice hole 92 and the heat transfer tube 12 do not overlap, thereby ensuring a sufficient supply amount of the liquid-rich gas-liquid two-phase refrigerant flowing into the upper space 21b. It is possible to suppress deterioration of the heat exchanger performance of the heat exchanger 50 .
  • FIG. 21 is a conceptual diagram illustrating the relationship between the orifice holes 92 and the heat transfer tubes 12 in the first distributor 20 according to the fourth embodiment.
  • FIG. 21(a) is a schematic cross-sectional view perpendicular to the direction in which the main body 20a extends along line CC shown in FIG.
  • FIG. 21(b) is a schematic cross-sectional view of the main body 20a taken along line EE in FIG. 21(a).
  • FIG. 21(c) is a diagram showing the "air temperature distribution" with respect to the "air flow direction" in the air flow direction indicated by the white arrow in FIG. 21(b).
  • Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiments 1 to 3 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the heat transfer tube 12 shown in FIG. 21 is formed flat with respect to the air flow direction.
  • the heat transfer tube 12 extends along the Y axis, which is perpendicular to the Z axis, which is the axial direction of the main body 20a, and the X axis, which is the direction in which the heat transfer tube 12 extends. It is formed in a flat shape having a long axis in the direction.
  • the air flow is formed by, for example, the outdoor fan 6 or the indoor fan 7 shown in FIG.
  • the outdoor fan 6 or the indoor fan 7 or the like supplies air to the heat exchanger 50 .
  • Each of the plurality of heat transfer tubes 12 is a flat tube.
  • Each of the plurality of heat transfer tubes 12 has a plurality of coolant channel holes 12a formed therein, and the plurality of coolant channel holes 12a are arranged side by side in the Y-axis direction, which is the air flow direction.
  • the formation position of the orifice hole 92 in the orifice plate 91 is formed at a position deviated to the windward side from the central position of the first distributor 20 . That is, the first distributor 20 is formed such that the orifice hole 92 is located relatively on the windward side with respect to the heat transfer tube 12 in which the plurality of refrigerant flow path holes 12a are arranged side by side in the air flow direction. ing.
  • the air gradually exchanges heat in the direction of flow, resulting in a temperature drop. Therefore, the heat transfer tube 12 tends to lack the amount of heat for heat exchange in the refrigerant passage holes 12a located downstream of the air.
  • the liquid refrigerant that has passed through the orifice hole 92 is most likely to concentrate in the refrigerant flow path hole 12 a that is the shortest distance from the orifice hole 92 .
  • the first distributor 20 is orificed with respect to the heat transfer tubes 12 so that the refrigerant passage hole 12a, which is the shortest distance from the orifice hole 92 where the liquid refrigerant that has passed through the orifice hole 92 is most likely to concentrate, is on the windward side of the air.
  • the formation positions of the holes 92 are biased.
  • Each of the plurality of heat transfer tubes 12 has a plurality of refrigerant passage holes 12a formed therein, and the plurality of refrigerant passage holes 12a are formed by a blower such as the outdoor blower 6 or the indoor blower 7. arranged in the same direction.
  • the orifice hole 92 is formed in the orifice plate 91 at a position that is shifted to the windward side of the center position of the first distributor 20 . Therefore, the first distributor 20 can improve the heat exchanger performance of the heat exchanger 50 by enabling distribution of the liquid refrigerant according to the heat amount of the heat transfer tubes 12 having the plurality of refrigerant flow passage holes 12a. can.
  • the formation positions of the orifice holes 92 are biased with respect to the heat transfer tubes 12 so that the refrigerant flow path holes 12a that are the shortest from the orifice holes 92 are on the windward side of the air. Therefore, the first distributor 20 can improve the heat exchanger performance of the heat exchanger 50 by enabling distribution of the liquid refrigerant according to the heat amount of the heat transfer tubes 12 having the plurality of refrigerant flow passage holes 12a. can.
  • FIG. 22 is a schematic diagram of a heat exchanger 50 according to Embodiment 5.
  • FIG. Components having the same functions and actions as those of the heat exchanger 50 and the like according to Embodiments 1 to 4 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • Solid arrows shown in FIG. 22 indicate the direction in which the coolant flows. 22 indicates the direction of air flow.
  • the heat exchanger 50 will be described as a configuration when it is used as the outdoor heat exchanger 5 functioning as an evaporator when the air conditioner 10 is used for heating operation.
  • the heat exchanger 50 has a heat exchange section 50a, a first distributor 20, a second distributor 30, and a header 80.
  • the first distributor 20 and the second distributor 30 may be called headers.
  • the heat exchanging portion 50a exchanges heat between the air existing around the heat exchanging portion 50a and the refrigerant flowing inside the heat exchanging portion 50a.
  • the heat exchange section 50 a is arranged between the first distributor 20 and the second distributor 30 in the flow of refrigerant flowing through the heat exchanger 50 .
  • the heat exchange portion 50 a is arranged between the second distributor 30 and the header 80 in the flow of refrigerant flowing through the heat exchanger 50 .
  • the heat exchange section 50a has a plurality of heat transfer tubes 12 and a heat transfer promoting member 13 connecting the heat transfer tubes 12 adjacent to each other.
  • the heat exchange section 50a of Embodiment 5 has two or more rows of heat exchange sections 50a. As shown in FIG. 22, the heat exchange section 50a has a first heat exchange section 51 located upstream and a second heat exchange section 52 located downstream in the direction of air flow. The first heat exchange portion 51 and the second heat exchange portion 52 are each formed to form an XZ plane. The first heat exchange section 51 and the second heat exchange section 52 are arranged so as to face each other in the Y-axis direction, which is the direction in which air flows.
  • the outdoor blower 6 forms an air flow passing through the heat exchanger 50 in the air conditioner 10 .
  • the heat exchange section 50a has a first heat exchange section 51 located upstream and a second heat exchange section 52 located downstream in the direction in which the air formed by the outdoor fan 6 flows. That is, the first heat exchange section 51 is arranged on the windward side with respect to the second heat exchange section 52 , and the second heat exchange section 52 is arranged on the leeward side with respect to the first heat exchange section 51 .
  • the first heat exchange section 51 is positioned outside the second heat exchange section 52 . It is arranged on the side close to the blower 6 .
  • the first heat exchange section 51 is compared with the second heat exchange section 52. It is arranged on the far side from the outdoor fan 6.
  • the indoor blower 7 forms an air flow passing through the heat exchanger 50 in the air conditioner 10 .
  • the heat exchange section 50a has a first heat exchange section 51 located on the upstream side and a second heat exchange section 52 located on the downstream side in the direction in which the air formed by the indoor fan 7 flows.
  • the first heat exchange section 51 is positioned indoors relative to the second heat exchange section 52 . It is arranged on the side close to the blower 7 .
  • the indoor fan 7 is located on the leeward side of the heat exchanger 50 in the direction of air flow formed by the indoor fan 7, the first heat exchange section 51 is compared with the second heat exchange section 52. It is arranged on the far side from the indoor fan 7. - ⁇
  • the first heat exchanging portion 51 includes a first auxiliary heat exchanging portion 51a located upstream of the circulating refrigerant, and a first main heat exchanging portion 51b located downstream of the circulating refrigerant.
  • the second heat exchange section 52 includes a second auxiliary heat exchange section 52a positioned upstream of the circulating refrigerant and a second main heat exchange section 52a positioned downstream of the circulating refrigerant. and a portion 52b.
  • refrigerant flows through the first auxiliary heat exchange section 51a, the second auxiliary heat exchange section 52a, the first main heat exchange section 51b, and the second main heat exchange section 52b in this order.
  • the first auxiliary heat exchange section 51a is connected to the first distributor 20 at one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the second auxiliary heat exchange section 52a via a joint 401 at the same first side. It is connected.
  • the first auxiliary heat exchange section 51 a is partly connected to the first distributor 20 and partly connected to the joint 401 .
  • the first auxiliary heat exchange portion 51a has a U-shaped hairpin portion 202 on the other end side in the extending direction (X-axis direction) of the heat transfer tube 12 .
  • the first auxiliary heat exchange section 51 a changes the flow direction of the refrigerant flowing out of the first distributor 20 and flowing through the heat transfer tubes 12 at the hairpin section 202 .
  • the first auxiliary heat exchange portion 51a is formed so that the refrigerant flows from the first distributor 20 toward the hairpin portion 202 and passes through another different heat transfer tube 12 from the hairpin portion 202 toward the arrangement side of the first distributor 20. It is Refrigerant from the hairpin portion 202 toward the arrangement side of the first distributor 20 flows through the joint 401 into the second auxiliary heat exchange portion 52a.
  • the second auxiliary heat exchange section 52a is connected to the first auxiliary heat exchange section 51a via a joint 401 at one end side in the extending direction (X-axis direction) of the heat transfer tube 12, and is connected to the first auxiliary heat exchange section 51a via a pipe 300 at the same one end side. It is connected to the 2 distributor 30 .
  • the second auxiliary heat exchange section 52 a is partly connected to the pipe 300 and partly connected to the joint 401 .
  • the second auxiliary heat exchange portion 52a has a U-shaped hairpin portion 202 (not shown) on the other end side of the heat transfer tube 12 in the extending direction (X-axis direction).
  • the refrigerant flowing out of the joint 401 and flowing through the heat transfer tube 12 changes its flow direction at the hairpin portion 202, and passes through another heat transfer tube 12 different from the heat transfer tube 12 toward the hairpin portion 202. 300 is formed.
  • the second auxiliary heat exchange section 52 a and the second distributor 30 are connected by a pipe 300 .
  • the first main heat exchange section 51b includes an upper main heat exchange section 5b1, a middle upper main heat exchange section 5b2, a middle lower main heat exchange section 5b3, and a lower main heat exchange section 5b4.
  • the upper main heat exchange section 5b1 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the upper main heat exchange section 5b1 are connected to the upper second distributor 31 .
  • the middle upper main heat exchange section 5b2 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the middle upper main heat exchange section 5b2 are connected to the middle upper second distributor 32 (see FIG. 2).
  • the middle and lower main heat exchange portion 5b3 is the portion of the first main heat exchange portion 51b where the heat transfer pipes 12 constituting the middle and lower main heat exchange portion 5b3 are connected to the middle and lower second distributor 33 (see FIG. 2).
  • the lower main heat exchange section 5b4 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the lower main heat exchange section 5b4 are connected to the lower second distributor .
  • the first main heat exchange section 51b is also a general term for the upper main heat exchange section 5b1, the intermediate upper main heat exchange section 5b2, the intermediate lower main heat exchange section 5b3, and the lower main heat exchange section 5b4.
  • the first main heat exchange section 51b is connected to the second distributor 30 on one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the second main heat exchange section 52b via a joint 401 on the same first side. It is connected.
  • the first main heat exchange section 51 b is partly connected to the second distributor 30 and partly connected to the joint 401 .
  • the first main heat exchange portion 51b has a U-shaped hairpin portion 202 on the other end side in the extending direction (X-axis direction) of the heat transfer tube 12 .
  • the direction of flow of the refrigerant flowing out of the second distributor 30 and flowing through the heat transfer tubes 12 is changed at the hairpin portion 202.
  • the first main heat exchange portion 51b is formed such that the refrigerant flows from the second distributor 30 toward the hairpin portion 202 and passes through the different heat transfer tubes 12 from the hairpin portion 202 toward the arrangement side of the second distributor 30. It is Refrigerant from the hairpin portion 202 toward the arrangement side of the second distributor 30 flows through the joint 401 into the second main heat exchange portion 52b.
  • the second main heat exchange portion 52b is connected to the first main heat exchange portion 51b via a joint 401 at one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the header 80 at the same side.
  • the second main heat exchange section 52 b is partly connected to the header 80 and partly connected to the joint 401 .
  • the second main heat exchange portion 52b has a U-shaped hairpin portion 202 (not shown) on the other end side of the heat transfer tube 12 in the extending direction (X-axis direction).
  • the refrigerant flowing out of the joint 401 and flowing through the heat transfer tube 12 changes its flow direction at the hairpin portion 202, and passes through the other heat transfer tube 12 different from the heat transfer tube 12 heading for the hairpin portion 202 and passes through the header. It is formed to face 80.
  • the first distributor 20 is provided on the refrigerant inflow side of the first auxiliary heat exchange section 51a when the heat exchanger 50 functions as an evaporator.
  • the first distributor 20 is connected to one end in the extension direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the first auxiliary heat exchange section 51a.
  • the first distributor 20 is connected to the heat transfer tubes 12 of the first auxiliary heat exchange section 51a so that the inside of the first distributor 20 and the inside of the heat transfer tubes 12 communicate with each other.
  • the first distributor 20 is formed to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
  • the first distributor 20 distributes the refrigerant to the multiple heat transfer tubes 12 .
  • the first distributor 20 functions as a distribution mechanism that distributes the refrigerant flowing into the first auxiliary heat exchange section 51 a of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
  • the second distributor 30 is provided on the refrigerant inflow side of the first main heat exchange section 51b when the heat exchanger 50 functions as an evaporator.
  • the second distributor 30 is provided on the refrigerant outflow side of the second auxiliary heat exchange section 52a when the heat exchanger 50 functions as an evaporator.
  • the second distributor 30 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the first main heat exchange section 51b.
  • the second distributor 30 is connected to the heat transfer tubes 12 of the first main heat exchange section 51b so that the inside of the second distributor 30 and the pipeline of the heat transfer tubes 12 communicate with each other.
  • the second distributor 30 is connected via piping 300 to a plurality of heat transfer tubes 12 that constitute the second auxiliary heat exchange section 52a.
  • the second distributor 30 is formed to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
  • the second distributor 30 distributes the refrigerant to the multiple heat transfer tubes 12 .
  • the second distributor 30 functions as a distribution mechanism that distributes the refrigerant flowing into the first main heat exchange section 51 b of the heat exchange section 50 a to the plurality of heat transfer tubes 12 in the heat exchanger 50 .
  • the second auxiliary heat exchange section 52a and the second distributor 30 are connected by the pipe 300 as described above. More specifically, the second auxiliary heat exchange section 52 a is connected to the upper pipe 301 , the middle upper pipe 302 , the middle lower pipe 303 , and the lower pipe 304 .
  • the upper pipe 301 is a pipe that connects the second auxiliary heat exchange section 52 a and the upper second distributor 31 .
  • the upper pipe 301 communicates the lower space 21 a (see FIG. 2 ) of the first distributor 20 with the inside of the second upper distributor 31 via the heat transfer pipes 12 .
  • the middle upper pipe 302 is a pipe that connects the second auxiliary heat exchange section 52 a and the middle upper second distributor 32 .
  • the middle upper pipe 302 communicates the upper space 21 b (see FIG. 2 ) of the first distributor 20 with the inside of the middle upper second distributor 32 via the heat transfer pipes 12 .
  • the middle and lower pipe 303 is a pipe that connects the second auxiliary heat exchange section 52 a and the middle and lower second distributor 33 .
  • the middle-lower pipe 303 communicates the upper space 21 b (see FIG. 2 ) of the first distributor 20 with the inside of the second middle-lower distributor 33 via the heat transfer pipes 12 .
  • the lower pipe 304 is a pipe that connects the second auxiliary heat exchange section 52 a and the second lower distributor 34 .
  • the lower pipe 304 communicates the lower space 21a (see FIG. 2) of the first distributor 20 with the inside of the second lower distributor 34 via the heat transfer pipes 12 .
  • the header 80 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the second main heat exchange portion 52b.
  • the header 80 is connected to the heat transfer tubes 12 of the second main heat exchange section 52b so that the inside of the header 80 and the inside of the heat transfer tubes 12 communicate with each other.
  • the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the plurality of heat transfer tubes 12 of the second main heat exchange portion 52b.
  • the header 80 may be called a gas header.
  • the heat exchanger 50 shown in Embodiment 5 has the second distributor 30 arranged on the upstream side and the header 80 arranged on the downstream side in the direction of air flow. Moreover, as shown in FIG. 22, the heat exchanger 50 shown in Embodiment 5 has the first distributor 20 arranged on the upstream side and the header 80 arranged on the downstream side in the direction of air flow.
  • the heat exchanger 50 shown in Embodiment 5 has the second distributor 30 arranged above the first distributor 20, and the first distributor 30 below the second distributor 30.
  • a distributor 20 is arranged.
  • the first distributor 20, the lower second distributor 34, the middle-lower second distributor 33, the middle-upper second distributor 32, and the upper-second distributor 31 are arranged vertically.
  • the first distributor 20, the lower second distributor 34, the middle-lower second distributor 33, the middle-upper second distributor 32, and the upper-second distributor 31 are arranged in this order from bottom to top.
  • FIG. 23 is an explanatory diagram of the refrigerant flow paths of the heat exchanger 50 according to Embodiment 5.
  • FIG. "Distributor side” in FIG. 23 represents the end of the heat exchanger 50 on the side where the first distributor 20 is arranged
  • “hairpin side” means the end of the heat exchanger 50 on the side where the hairpin portion 202 is arranged. represent.
  • Dotted line arrows and solid line arrows in FIG. 23 indicate the flow of the coolant.
  • the flow of the refrigerant passage passing through the first heat exchange portion 51 and the second heat exchange portion 52 will be described with reference to FIG. 23 .
  • the inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 conceptually represent openings at the ends of the heat transfer tubes 12. It is.
  • the inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 are connected to the lower body portion 20a1 of the first distributor 20, and the lower space 21a. (see FIG. 3).
  • the inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 are connected to the upper body portion 20a2 of the first distributor 20, It communicates with the space 21b (see FIG. 3).
  • the refrigerant flow when the first heat exchange section 51 shown in FIG. 23 is the first auxiliary heat exchange section 51a and the second heat exchange section 52 is the second auxiliary heat exchange section 52a will be described.
  • the refrigerant RA distributed by the first distributor 20 flows into the first heat exchange portion 51 from the inlet A1 of the first heat exchange portion 51, the refrigerant RA flows from the inlet A1 to the hairpin portion 202 (see FIG. 22). reference).
  • the refrigerant RA that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 one stage above the heat transfer tube 12 that has flowed from the inlet A1 to the hairpin portion 202, It goes from the hairpin part 202 to the opening A2.
  • the opening A2 is located one step above the inlet A1.
  • the opening A2 of the first heat exchange section 51 and the opening A3 of the second heat exchange section 52 are connected by a U vent 402, which is a U-shaped pipe. More specifically, the opening A2 and the opening A3 are provided with a joint 401 (see FIG. 22), and a U-bent is formed to connect the joint 401 of the opening A2 and the joint 401 of the opening A3. 402 is provided.
  • Refrigerant RA moves along the line from the first heat exchange section 51 to the second heat exchange section 52 by means of the U vent 402 .
  • the refrigerant RA that has flowed out from the opening A2 of the first heat exchange section 51 passes through the U vent 402 and flows into the opening A3 of the second heat exchange section 52 .
  • the refrigerant RA that has flowed into the second heat exchange portion 52 from the opening A3 flows from the opening A3 to the hairpin portion 202 (see FIG. 22).
  • the refrigerant RA that has reached the hairpin section 202 makes a U-turn at the hairpin section 202, flows through the heat transfer tube 12 one stage below the heat transfer tube 12 that has flowed from the opening A3 to the hairpin section 202, It goes from the hairpin part 202 to the outflow port A4.
  • the outflow port A4 is located one step below the opening A3. Refrigerant RA flowing out of second heat exchange section 52 from outlet A4 flows into second distributor 30 through pipe 300 (see FIG. 22).
  • the refrigerant RB distributed by the first distributor 20 flows into the first heat exchanging portion 51 from the inflow port B1 of the first heat exchanging portion 51, the refrigerant RB flows from the inflow port B1 to the hairpin portion 202 ( 22).
  • the inflow port B1 is located one step below the inflow port A1.
  • the refrigerant RB that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 that is one step below the heat transfer tube 12 that has flowed from the inlet B1 to the hairpin portion 202, It goes from the hairpin part 202 to the opening B2.
  • the opening B2 is located one step below the inlet B1.
  • the opening B2 of the first heat exchange section 51 and the opening B3 of the second heat exchange section 52 are connected by a U vent 402, which is a U-shaped tube. More specifically, a joint 401 (see FIG. 22) is provided at the openings B2 and B3, and a U-bent is formed to connect the joint 401 of the opening B2 and the joint 401 of the opening B3. 402 is provided.
  • Refrigerant RB moves along the line from the first heat exchange section 51 to the second heat exchange section 52 by means of the U vent 402 .
  • Refrigerant RB that has flowed out from the opening B2 of the first heat exchange section 51 passes through the U vent 402 and flows into the opening B3 of the second heat exchange section 52 .
  • the refrigerant RB that has flowed into the second heat exchange portion 52 from the opening B3 flows from the opening B3 to the hairpin portion 202 (see FIG. 22).
  • the refrigerant RB that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 one stage above the heat transfer tube 12 that has flowed from the opening B3 to the hairpin portion 202, It goes from the hairpin part 202 to the outflow port B4.
  • the outflow port B4 is located one step above the opening B3. Refrigerant RB flowing out of second heat exchange section 52 from outlet B4 flows into second distributor 30 through pipe 300 (see FIG. 22). Note that the outflow port B4 is formed one step below the outflow port A4.
  • the above description of the flow of the refrigerant RA and the refrigerant RB is for the case where the first heat exchange section 51 is the first auxiliary heat exchange section 51a and the second heat exchange section 52 is the second auxiliary heat exchange section 52a. It explains the flow of When the first heat exchange section 51 is the first main heat exchange section 51b and the second heat exchange section 52 is the second main heat exchange section 52b, the refrigerant RA flows from the second distributor 30 to the inlet A1. Refrigerant RB flows from the second distributor 30 into the inlet B1.
  • the refrigerant RA flows through the second heat exchange portion 52.
  • the refrigerant RB flows into the header 80 from the outlet A4, and the refrigerant RB flows into the header 80 from the outlet B4 of the second heat exchange section 52.
  • the flow of the refrigerant RA from the inflow port A1 to the outflow port A4 and the flow of the refrigerant RB from the inflow port B1 to the outflow port B4 are caused by the first auxiliary heat exchange portion 51a.
  • the second heat exchange section 52 is the second auxiliary heat exchange section 52a.
  • FIG. 24 is a schematic diagram of a modification of the heat exchanger 50 according to the fifth embodiment.
  • a modification of heat exchanger 50 according to Embodiment 5 has distributor 120 .
  • the distributor 120 is formed by integrally forming the first distributor 20 and the second distributor 30 . More specifically, the distributor 120 includes a first distributor 20, an upper second distributor 31, a middle upper second distributor 32, a middle lower second distributor 33, and a lower second distributor. 34 are integrally formed.
  • second distributor 30 is formed in the same shape as first distributor 20 . That is, the second distributor 30 is formed of the first part 23 and the second part 24 together with the first distributor 20 .
  • the parts constituting the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 are arranged vertically. They are arranged side by side (in the Z-axis direction).
  • the parts constituting the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 are arranged from below. They are arranged in this order toward the top, and these parts are integrally formed.
  • the first distributor 20 and the second distributor 30 are integrally formed so as to extend in the vertical direction (Z-axis direction). It has a partition plate 94 separating it from the space.
  • a partition plate 94 partitions between the first distributor 20 and the second distributor 30 , that is, between the first distributor 20 and the lower second distributor 34 .
  • the space of the first distributor 20 and the space of the lower second distributor 34 are separated by a partition plate 94 .
  • the partition plate 94 partitions between the lower second distributor 34 and the middle-lower second distributor 33, between the middle-lower second distributor 33 and the middle-upper second distributor 32, and between the middle-upper second distributor 32 and the upper second distributor 31 are also partitioned by the partition plate 94 .
  • a partition plate 94 separates the space of the lower second distributor 34 from the space of the middle lower second distributor 33 .
  • a partition plate 94 separates the space of the middle-lower second distributor 33 and the space of the middle-upper second distributor 32 .
  • a partition plate 94 separates the space of the middle upper second distributor 32 and the space of the upper second distributor 31 .
  • first distributor 20 and second distributor 30 are integrally formed so as to extend in the vertical direction (Z-axis direction). 20 and a partition plate 94 separating the internal space of the second distributor 30 .
  • the parts that constitute the first part 23 (see FIG. 4) and the parts that constitute the second part 24 are made of long objects, they can be divided into partition plates 94 or the like. By using small parts, the first distributor 20 and the second distributor 30 can be configured.
  • the distributor 120 includes the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31, respectively. are separated by a partition plate 94.
  • a partition plate 94 In the distributor 120, if the parts constituting the first part 23 and the parts constituting the second part 24 are made of long pieces, a small part such as the partition plate 94 is used to form the first distributor 20 and the lower part.
  • a second distributor 34, a middle-lower second distributor 33, a middle-upper second distributor 32, and an upper-second distributor 31 can be configured.
  • a modification of the heat exchanger 50 according to Embodiment 5 has a distributor 120, and by using a partition plate 94, the distributor 120 includes the first distributor 20, the lower second distributor 34, and the middle and lower distributors.
  • the side second distributor 33, the middle upper side second distributor 32, and the upper side second distributor 31 can be configured.
  • the heat exchanger 50 configures the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 with simple components. and reduce material and manufacturing costs compared to making these parts separately.
  • the heat exchanger 50 includes a first distributor 20, a lower second distributor 34, a middle lower second distributor 33, a middle upper second distributor 32, and an upper second distributor 31 with simple components. can be configured, and compactness can be achieved as compared with the case where these parts are made separately.
  • the heat exchanger 50 includes a first distributor 20, a lower second distributor 34, a middle lower second distributor 33, a middle upper second distributor 32, and an upper second distributor 31 with simple components. can be configured. Therefore, the heat exchanger 50 can contribute to improvement in assembling efficiency by reducing the number of parts compared to the case where these parts are made separately.
  • FIG. 25 is a first schematic diagram showing the relationship between the heat exchanger 50 and the outdoor fan 6 according to Embodiments 1-5. Arrows shown in FIG. 25 indicate the flow of air.
  • An outdoor fan 6 shown in FIG. 25 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the outdoor heat exchanger 5 .
  • the outdoor unit 111 has an outdoor heat exchanger 5 and an outdoor fan 6.
  • the outdoor unit 111 is used for the air conditioner 10 .
  • the outdoor unit 111 is, for example, a domestic or commercial outdoor unit, and has a side-flow type outdoor fan 6 .
  • the outdoor heat exchanger 5 used in the outdoor unit 111 the heat exchanger 50 described above is used.
  • the outdoor unit 111 may be an indoor unit.
  • the outdoor heat exchanger 5 is the indoor heat exchanger 3 (see FIG. 1)
  • the outdoor fan 6 is the indoor fan 7 .
  • FIG. 26 is a second schematic diagram showing the relationship between the heat exchanger 50 and the outdoor fan 6 according to Embodiments 1-5. Arrows shown in FIG. 26 indicate the flow of air.
  • An outdoor fan 6 shown in FIG. 26 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the outdoor heat exchanger 5 .
  • the outdoor unit 112 has an outdoor heat exchanger 5 and an outdoor fan 6.
  • the outdoor unit 112 is used for the air conditioner 10 .
  • the outdoor unit 112 is, for example, an outdoor unit for a building, and is equipped with a top-flow type outdoor fan 6 .
  • the outdoor heat exchanger 5 used in the outdoor unit 112 the heat exchanger 50 described above is used.
  • the outdoor unit 112 may be an indoor unit.
  • the outdoor heat exchanger 5 is the indoor heat exchanger 3 (see FIG. 1)
  • the outdoor fan 6 is the indoor fan 7 .
  • FIG. 27 is a first schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIG. 27 indicate the flow of air.
  • An indoor fan 7 shown in FIG. 27 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 .
  • the indoor unit 113 has an indoor heat exchanger 3 and an indoor fan 7.
  • the indoor unit 113 is used for the air conditioner 10 .
  • the indoor unit 113 is, for example, a cassette type indoor unit for commercial use, and is equipped with a turbo fan as the indoor air blower 7 .
  • the heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor unit 113 .
  • the indoor unit 113 may be an outdoor unit. In this case, the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6.
  • FIG. 28 is a second schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIG. 28 indicate the flow of air.
  • An indoor fan 7 shown in FIG. 28 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 .
  • the indoor unit 114 has an indoor heat exchanger 3 and an indoor fan 7.
  • the indoor unit 114 is used for the air conditioner 10 .
  • the indoor unit 114 is, for example, a domestic indoor unit, and is equipped with a cross-flow fan as the indoor blower 7 .
  • the heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor unit 114 .
  • the indoor unit 114 may be an outdoor unit, in which case the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6 .
  • FIG. 29 is a third schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5.
  • FIG. 30 is a fourth schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIGS. 29 and 30 indicate the flow of air.
  • the indoor fan 7 shown in FIGS. 29 and 30 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 .
  • the indoor unit 115 and the indoor unit 116 have an indoor heat exchanger 3 and an indoor fan 7.
  • FIGS. 29 the indoor unit 115 and the indoor unit 116 have an indoor heat exchanger 3 and an indoor fan 7. As shown in FIGS.
  • the indoor fan 7 is arranged on the upstream side with respect to the indoor heat exchanger 3, and the indoor heat exchanger 3 is arranged on the downstream side with respect to the indoor fan 7 in the direction of air flow formed by the indoor fan 7. are placed in
  • the indoor fan 7 is arranged downstream with respect to the indoor heat exchanger 3, and the indoor heat exchanger 3 is arranged upstream with respect to the indoor fan 7 in the direction of air flow formed by the indoor fan 7. are placed in
  • the indoor unit 115 and the indoor unit 116 are used in the air conditioner 10.
  • the indoor unit 115 and the indoor unit 116 are, for example, ceiling-embedded indoor units, and are equipped with a sirocco fan as the indoor air blower 7 .
  • the heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor units 115 and 116 .
  • the indoor unit 115 and the indoor unit 116 may be outdoor units. In this case, the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6.
  • the heat exchanger 50 having the distributor of Embodiments 1 to 5 may be used in order to suppress the shortage of the liquid refrigerant to the upper part of the distributor when the flow rate of the refrigerant is small.
  • the air conditioner 10 includes the heat exchanger 50 according to any one of the first to fifth embodiments described above. Therefore, the air conditioner 10 can obtain the same effect as any of the heat exchangers 50 according to Embodiments 1-5.
  • Embodiments 1 to 5 can be implemented in combination with each other.
  • the configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technique, and the configuration can be configured without departing from the gist of the present disclosure. It is also possible to omit or change part of The heat exchanger 50 according to the present disclosure can be applied to, for example, a heat pump device, a hot water supply device, a refrigeration device, etc., in addition to the air conditioner 10 described above. Further, the heat exchanger 50 may be used as an upstream distributor that does not require the auxiliary heat exchange section 5a. Also, the second distributor 30 may have the orifice plate 91 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger is provided with: a plurality of heat transfer pipes arranged vertically at an interval; a first distributor that is formed so as to extend vertically and distributes a refrigerant to the plurality of heat transfer pipes. The first distributor has: an insertion surface part through which the plurality of heat transfer pipes are inserted; an opposite surface part that is opposite to the insertion surface part in a direction in which the plurality of heat transfer pipes extend; a lateral surface part that is a wall extending between the insertion surface part and the opposite surface part in an axially-perpendicular cross-section, being a perpendicular cross-section relative to the longitudinal direction of the first distributor, and that is joined to the opposite surface part. The opposite surface part has: a flat-plate portion connected to the lateral surface part; and a swelling-expansion portion that is formed such that a portion of an inner wall forming the internal space of the first distributor swellingly expands from the flat-plate portion toward the insertion surface part, in the axially-perpendicular cross-section. The first distributor is configured such that, in the axially-perpendicular cross-section, when the minimum distance from the the leading ends of the plurality of the heat transfer pipes to the swelling-expansion portion is defined as a first distance M1 and the distance from the leading ends of the plurality of heat transfer pipes in the extension direction of the plurality of heat transfer pipes to the position of the flat-plate portion is defined as a second distance M2, the relationship of second distance M2 ≥ 1.5×first distance M1 is satisfied.

Description

熱交換器及び空気調和装置heat exchangers and air conditioners
 本開示は、伝熱管を有する熱交換器及び空気調和装置に関するものであり、特に冷媒を分岐して伝熱管へ供給する分配器に関するものである。 The present disclosure relates to a heat exchanger and an air conditioner having heat transfer tubes, and more particularly to a distributor that branches and supplies refrigerant to the heat transfer tubes.
 一般に空気調和装置等のヒートポンプ装置で広く用いられる蒸気圧縮式の冷凍サイクル装置は、圧縮機、凝縮器として機能する熱交換器、膨張弁、及び、蒸発器として機能する熱交換器等の4つの要素部品で構成される。この冷凍サイクル装置は、第一の作動流体である冷媒が状態変化を伴いながらこの4つの要素部品を流れている。従来、蒸気圧縮式の冷凍サイクル装置が備える蒸発器として、流動損失を低減するために複数の伝熱管と、この複数の伝熱管に対して冷媒を分配する分配器(ヘッダ)とを備えたものがある。そして、蒸発器を高効率に機能させるためには、例えば冷媒と熱交換をする空気等の第二の作動流体との熱量に応じて複数の伝熱管の各伝熱管に冷媒を分配する必要がある。 Generally, a vapor compression refrigeration cycle device widely used in heat pump devices such as air conditioners has four components: a compressor, a heat exchanger functioning as a condenser, an expansion valve, and a heat exchanger functioning as an evaporator. Consists of element parts. In this refrigeration cycle device, a refrigerant, which is a first working fluid, flows through these four elemental parts with changes in state. Conventionally, an evaporator provided in a vapor compression refrigeration cycle apparatus includes a plurality of heat transfer tubes to reduce flow loss, and a distributor (header) for distributing the refrigerant to the plurality of heat transfer tubes. There is In order for the evaporator to function with high efficiency, it is necessary to distribute the refrigerant to each of the plurality of heat transfer tubes according to the amount of heat between the refrigerant and the second working fluid, such as air, which exchanges heat with the refrigerant. be.
 一方、膨張弁から流出される冷媒は、低温低圧のガス冷媒と液冷媒とが混在した気液二相冷媒状態であるため、蒸発器への冷媒の分配が不均等になりやすい。特に分配器の長手方向を鉛直向きに配置した場合に、冷媒が鉛直方向に進む過程において、密度の低いガス冷媒と密度の高い液冷媒とが重力の影響を受けて分離しやすくなる。また、冷媒が鉛直方向に進む過程において、分配器に流入する際の慣性力の影響を受けて密度の高い液冷媒が進行方向に偏る場合がある。 On the other hand, since the refrigerant flowing out from the expansion valve is in a gas-liquid two-phase refrigerant state in which low-temperature, low-pressure gas refrigerant and liquid refrigerant are mixed, the distribution of the refrigerant to the evaporator tends to become uneven. In particular, when the longitudinal direction of the distributor is arranged vertically, the low-density gas refrigerant and the high-density liquid refrigerant tend to separate under the influence of gravity in the process in which the refrigerant advances in the vertical direction. In addition, in the process in which the refrigerant advances in the vertical direction, the high-density liquid refrigerant may be biased in the traveling direction due to the influence of the inertial force when the refrigerant flows into the distributor.
 そこで、冷媒の分配配分を改善するため、長手方向に複数の流出管接続口を有した円筒管内に壁部材を備えた分配器を有する熱交換器が提案されている(例えば、特許文献1参照)。特許文献1の熱交換器では、複数の伝熱管の流路穴から流れてきた冷媒が、分配器の下部に位置する内部空間において集合する第1空間と、分配器の上部に位置して第1空間で集合した気液二相冷媒を複数の伝熱管の流路穴へと分配する第2空間を有している。特許文献1の熱交換器は、第1空間と第2空間との間に壁部材と呼ぶ孔付きの仕切り板を備えることで、第1空間に気液二相冷媒が流出した際に慣性の影響で対向する壁面に偏る液冷媒を孔まで導き、第2空間における分配の偏りを改善するとされている。 Therefore, in order to improve the distribution of the refrigerant, there has been proposed a heat exchanger having a distributor provided with a wall member inside a cylindrical tube having a plurality of outflow tube connection ports in the longitudinal direction (see, for example, Patent Document 1). ). In the heat exchanger of Patent Document 1, the refrigerant flowing from the flow passage holes of the plurality of heat transfer tubes gathers in the first space located in the lower part of the distributor and the first space located in the upper part of the distributor. It has a second space for distributing the gas-liquid two-phase refrigerant collected in one space to the passage holes of the plurality of heat transfer tubes. The heat exchanger of Patent Document 1 is provided with a partition plate with a hole called a wall member between the first space and the second space. It is said that the liquid refrigerant, which is biased toward the opposing wall surface due to the influence thereof, is guided to the holes to improve the biased distribution in the second space.
特開2013-61114号公報JP 2013-61114 A
 しかしながら、特許文献1に記載された分配器では、流速が低下して液冷媒とガス冷媒とが分離しやすい分配器内の下流部において液冷媒がガス冷媒と分離して落下し、分配器上部への液冷媒の供給が不足してしまい、熱交換器性能が低下する恐れがある。 However, in the distributor described in Patent Document 1, the liquid refrigerant separates from the gas refrigerant in the downstream part of the distributor where the flow velocity decreases and the liquid refrigerant and the gas refrigerant tend to separate, and the upper part of the distributor falls. There is a risk that the supply of liquid refrigerant to will be insufficient and the performance of the heat exchanger will be degraded.
 本開示は、上記のような課題を解決するものであり、分配器上部への液冷媒の供給不足を抑制する熱交換器及び空気調和装置を提供することを目的とする。 An object of the present disclosure is to solve the above-described problems, and to provide a heat exchanger and an air conditioner that suppress insufficient supply of liquid refrigerant to the upper portion of the distributor.
 本開示に係る熱交換器は、上下方向に間隔を空けて配置された複数の伝熱管と、上下方向に延びるように形成されており、複数の伝熱管に冷媒を分配する第1分配器と、を備え、第1分配器は、複数の伝熱管が挿入される挿入面部と、複数の伝熱管の延びる方向において、挿入面部と対向する対向面部と、第1分配器の長手方向に対する垂直断面である軸直角断面において、挿入面部と対向面部との間に延びる壁であって、対向面部と接合される側面部と、を有し、対向面部は、側面部と接続する平板部と、軸直角断面において、第1分配器の内部空間を形成する内壁の一部が挿入面部に向かって平板部から膨出する膨出部とを有し、第1分配器は、軸直角断面において、複数の伝熱管のそれぞれの先端部から膨出部までの最短距離を第1距離M1とし、複数の伝熱管の延びる方向における複数の伝熱管のそれぞれの先端部から平板部の位置までの距離を第2距離M2とした場合に、第2距離M2≧1.5×第1距離M1の関係を満たしているものである。 The heat exchanger according to the present disclosure includes a plurality of heat transfer tubes arranged at intervals in the vertical direction, and a first distributor formed to extend in the vertical direction and distributing the refrigerant to the plurality of heat transfer tubes. , wherein the first distributor includes an insertion surface portion into which the plurality of heat transfer tubes are inserted, a facing surface portion facing the insertion surface portion in the direction in which the plurality of heat transfer tubes extends, and a cross section perpendicular to the longitudinal direction of the first distributor is a wall extending between the insertion surface portion and the opposing surface portion, the opposing surface portion having a side surface portion joined to the opposing surface portion, the opposing surface portion including a flat plate portion connected to the side surface portion; A portion of the inner wall forming the internal space of the first distributor has a bulging portion that bulges from the flat plate portion toward the insertion surface portion in a perpendicular cross section, and the first distributor has a plurality of The shortest distance from the tip of each of the heat transfer tubes to the bulging portion is the first distance M1, and the distance from the tip of each of the plurality of heat transfer tubes to the position of the flat plate portion in the direction in which the plurality of heat transfer tubes extends is the first When two distances M2 are used, the relationship of second distance M2≧1.5×first distance M1 is satisfied.
 本開示に係る空気調和装置は、本開示に係る熱交換器と、熱交換器に空気を供給する送風機と、を有するものである。 An air conditioner according to the present disclosure has a heat exchanger according to the present disclosure and a blower that supplies air to the heat exchanger.
 本開示に係る熱交換器は、第2距離M2≧1.5×第1距離M1の関係を満たす第1分配器を備えている。第1分配器は、第2距離M2が第1距離M1の1.5倍以上の大きさであることによって、第1分配器の内部空間の断面積を最小限の大きさにすることができる上に、濡れぶち長さを大きくすることができる。そのため、第1分配器は、水力相当直径を小さくすることができ、結果としてフラッディング定数も大きくすることができる。その結果、第1分配器は、第1分配器内の気液二相冷媒において液冷媒とガス冷媒とが分離して液冷媒が落下しない流速を保つことができ、第1分配器の上部への液冷媒の供給不足を抑制できる。 The heat exchanger according to the present disclosure includes a first distributor that satisfies the relationship of second distance M2≧1.5×first distance M1. The first distributor can minimize the cross-sectional area of the internal space of the first distributor by setting the second distance M2 to be 1.5 times or more the first distance M1. Additionally, the wet edge length can be increased. Therefore, the first distributor can have a smaller hydraulic equivalent diameter and, as a result, a larger flooding constant. As a result, in the first distributor, the liquid refrigerant and the gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor, so that the liquid refrigerant can be kept at a flow rate that does not fall, and the liquid refrigerant flows to the upper part of the first distributor. Insufficient supply of liquid refrigerant can be suppressed.
 本開示に係る空気調和装置は、上記構成の熱交換器を備えるため第1分配器内の気液二相冷媒において液冷媒とガス冷媒とが分離して液冷媒が落下しない流速を保つことができ、第1分配器の上部への液冷媒の供給不足を抑制できる。 Since the air conditioner according to the present disclosure includes the heat exchanger having the above configuration, the liquid refrigerant and the gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor, and the flow velocity can be maintained so that the liquid refrigerant does not drop. It is possible to suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor.
実施の形態1に係る空気調和装置の構成図である。1 is a configuration diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の概略図である。1 is a schematic diagram of a heat exchanger according to Embodiment 1; FIG. 実施の形態1に関する第1分配器の概要図である。1 is a schematic diagram of a first distributor related to Embodiment 1; FIG. 実施の形態1に係る第1分配器の斜視図である。1 is a perspective view of a first distributor according to Embodiment 1; FIG. 図3に示すA-A線における本体部の延びる方向に対して垂直な断面図である。FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line AA shown in FIG. 3; 図3に示すB-B線における本体部の延びる方向に対して垂直な断面図である。FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line BB shown in FIG. 3; 図3に示すC-C線における本体部の延びる方向に対して垂直な断面図である。FIG. 4 is a cross-sectional view perpendicular to the direction in which the main body extends along line CC shown in FIG. 3; 膨出部の作用を説明するための説明図である。It is an explanatory view for explaining an action of a swelling part. 分配器内高さに対するフラッディング定数の関係を示した図である。FIG. 10 is a diagram showing the relationship between the flooding constant and the height inside the distributor; 実施の形態1の熱交換器において、第1分配器内の冷媒の流れを示した模式図である。4 is a schematic diagram showing the flow of refrigerant in the first distributor in the heat exchanger of Embodiment 1. FIG. 実施の形態2に係る膨出部の概念的な断面図である。FIG. 8 is a conceptual cross-sectional view of a bulging portion according to Embodiment 2; 実施の形態2に係る膨出部の第1の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a first alternative form of a bulging portion according to Embodiment 2; 実施の形態2に係る膨出部の第2の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a second alternative form of the bulging portion according to the second embodiment; 実施の形態2に係る膨出部の第3の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a third alternative form of the bulging portion according to the second embodiment; 実施の形態2に係る膨出部の第4の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a fourth alternative form of the bulging portion according to the second embodiment; 実施の形態2に係る膨出部の第5の別形態の概念的な断面図である。FIG. 12 is a conceptual cross-sectional view of a fifth alternative form of the bulging portion according to the second embodiment; 実施の形態2に係る第1分配器の本体部の斜視図である。FIG. 11 is a perspective view of a main body of a first distributor according to Embodiment 2; 実施の形態3に係る第1分配器に用いられるオリフィス板の第1の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a first alternative form of an orifice plate used in a first distributor according to Embodiment 3; 実施の形態3に係る第1分配器に用いられるオリフィス板の第2の別形態の概念的な断面図である。FIG. 11 is a conceptual cross-sectional view of a second alternative form of the orifice plate used in the first distributor according to Embodiment 3; 実施の形態3に係る第1分配器に用いられるオリフィス板の第3の別形態の概念的な断面図である。FIG. 12 is a conceptual cross-sectional view of a third alternative form of the orifice plate used in the first distributor according to Embodiment 3; 実施の形態4に係る第1分配器において、オリフィス孔と伝熱管との関係を説明する概念図である。FIG. 11 is a conceptual diagram illustrating the relationship between orifice holes and heat transfer tubes in the first distributor according to Embodiment 4; 実施の形態5に係る熱交換器の概略図である。FIG. 11 is a schematic diagram of a heat exchanger according to Embodiment 5; 実施の形態5に係る熱交換器の冷媒流路の説明図である。FIG. 11 is an explanatory diagram of refrigerant flow paths of a heat exchanger according to Embodiment 5; 実施の形態5に係る熱交換器の変形例の概略図である。FIG. 11 is a schematic diagram of a modification of the heat exchanger according to Embodiment 5; 実施の形態1~5に係る熱交換器と室外送風機との関係を示す第1の概要図である。FIG. 2 is a first schematic diagram showing the relationship between heat exchangers and outdoor fans according to Embodiments 1 to 5; 実施の形態1~5に係る熱交換器と室外送風機との関係を示す第2の概要図である。FIG. 4 is a second schematic diagram showing the relationship between the heat exchanger and the outdoor fan according to Embodiments 1 to 5; 実施の形態1~5に係る熱交換器と室内送風機との関係を示す第1の概要図である。FIG. 2 is a first schematic diagram showing the relationship between heat exchangers and indoor fans according to Embodiments 1 to 5; 実施の形態1~5に係る熱交換器と室内送風機との関係を示す第2の概要図である。FIG. 4 is a second schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5; 実施の形態1~5に係る熱交換器と室内送風機との関係を示す第3の概要図である。FIG. 4 is a third schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5; 実施の形態1~5に係る熱交換器と室内送風機との関係を示す第4の概要図である。FIG. 4 is a fourth schematic diagram showing the relationship between the heat exchangers and indoor fans according to Embodiments 1 to 5;
 以下、本開示を実施するための形態について、図面を参照して説明する。ここで、図1を含めた、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. Here, in the following drawings including FIG. 1, the same reference numerals denote the same or corresponding parts, and are common throughout the embodiments described below. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification.
実施の形態1.
 図1は、実施の形態1に係る空気調和装置10の構成図である。図1において、点線で示す矢印は、空気調和装置10の冷房運転時における冷媒の流れる方向を示すものであり、実線で示す矢印は、空気調和装置10の暖房運転時における冷媒の流れる方向を示すものである。図1を用いて、家庭用のルームエアコンあるいは店舗用もしくはオフィス用のパッケージエアコンのような、1つの室外熱交換器5と1つの室内熱交換器3とを有する空気調和装置10の構成及び動作について説明する。
Embodiment 1.
FIG. 1 is a configuration diagram of an air conditioner 10 according to Embodiment 1. FIG. In FIG. 1, the dotted arrow indicates the direction in which the refrigerant flows during the cooling operation of the air conditioner 10, and the solid arrow indicates the direction in which the refrigerant flows during the heating operation of the air conditioner 10. It is. Referring to FIG. 1, the configuration and operation of an air conditioner 10 having one outdoor heat exchanger 5 and one indoor heat exchanger 3, such as a room air conditioner for home use or a packaged air conditioner for stores or offices. will be explained.
[空気調和装置10の構成]
 空気調和装置10は、圧縮機1と、流路切替装置2と、室内熱交換器3と、減圧装置4と、室外熱交換器5とを有し、これらが配管で接続されて第一の作動流体である冷媒が循環する冷媒回路を構成している。空気調和装置10は更に、室内熱交換器3に送風する室内送風機7と、室外熱交換器5に送風する室外送風機6とを有している。
[Configuration of air conditioner 10]
The air conditioner 10 has a compressor 1, a flow path switching device 2, an indoor heat exchanger 3, a pressure reducing device 4, and an outdoor heat exchanger 5, which are connected by piping to form a first It constitutes a refrigerant circuit in which a refrigerant, which is a working fluid, circulates. The air conditioner 10 further has an indoor fan 7 that blows air to the indoor heat exchanger 3 and an outdoor fan 6 that blows air to the outdoor heat exchanger 5 .
 圧縮機1は、吸入した冷媒を圧縮して吐出する流体機械である。流路切替装置2は、例えば四方弁であり、制御装置(図示は省略)の制御により、空気調和装置10の冷房運転時と暖房運転時とにおいて冷媒の流路を切り替える装置である。室内熱交換器3は、内部を流通する冷媒と、室内送風機7により供給される室内空気と、の熱交換を行う熱交換器である。室内熱交換器3は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。 The compressor 1 is a fluid machine that compresses and discharges the sucked refrigerant. The flow path switching device 2 is, for example, a four-way valve, and is a device that switches the flow path of the refrigerant between the cooling operation and the heating operation of the air conditioner 10 under the control of a control device (not shown). The indoor heat exchanger 3 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the indoor air supplied by the indoor blower 7 . The indoor heat exchanger 3 functions as a condenser during heating operation, and functions as an evaporator during cooling operation.
 減圧装置4は、例えば膨張弁であり、冷媒を減圧させる装置である。減圧装置4は、制御装置(図示は省略)の制御により開度が調節される電子膨張弁を用いることができる。室外熱交換器5は、内部を流通する冷媒と、室外送風機6により供給される第二の作動流体である空気と、の熱交換を行う熱交換器である。室外熱交換器5は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。 The decompression device 4 is, for example, an expansion valve, and is a device that decompresses the refrigerant. The decompression device 4 can use an electronic expansion valve whose opening is controlled by a control device (not shown). The outdoor heat exchanger 5 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the air that is the second working fluid supplied by the outdoor fan 6 . The outdoor heat exchanger 5 functions as an evaporator during heating operation, and functions as a condenser during cooling operation.
[空気調和装置10の動作]
 次に、図1を用いて空気調和装置10の暖房運転時の運転状態を冷媒の流れに沿って説明する。圧縮機1で圧縮された高温高圧のガス冷媒は、流路切替装置2を通過して点Aに到達する。そして、ガス冷媒は、点Aを通過した後、室内熱交換器3を通過する際、室内熱交換器3を凝縮器として作用させ、室内送風機7によって流れる空気により冷却され液化した状態で点Bに到達する。
[Operation of air conditioner 10]
Next, the operating state of the air conditioner 10 during heating operation will be described along the flow of the refrigerant with reference to FIG. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 reaches the point A after passing through the channel switching device 2 . When the gas refrigerant passes through the indoor heat exchanger 3 after passing through the point A, the indoor heat exchanger 3 acts as a condenser, and the gas refrigerant is cooled by the air flowing by the indoor fan 7 and is liquefied at the point B to reach
 液化された液冷媒は、減圧装置4を通過することで低温低圧のガス冷媒と液冷媒とが混在した二相冷媒状態となり点Cに到る。その後、点Cを通過した二相冷媒は、室外熱交換器5内を流れて室外熱交換器5を蒸発器として作用させ、室外送風機6によって流れる空気により加熱されてガス化した状態で点Dに到る。点Dを経たガス冷媒は、流路切替装置2を通過して圧縮機1に戻る。空気調和装置10は、この冷媒のサイクルにより、室内空気を加熱する暖房運転を行う。 The liquefied liquid refrigerant passes through the decompression device 4 and reaches a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed, and reaches point C. After that, the two-phase refrigerant that has passed through point C flows through the outdoor heat exchanger 5 and causes the outdoor heat exchanger 5 to act as an evaporator. reach. The gas refrigerant that has passed point D passes through the flow switching device 2 and returns to the compressor 1 . The air conditioner 10 performs a heating operation for heating indoor air by this refrigerant cycle.
 次に、図1を用いて空気調和装置10の冷房運転時の運転状態を冷媒の流れに沿って説明する。空気調和装置10の冷房運転時には、上記の冷媒の流れが逆方向に流れるように流路切替装置2を用いて冷媒の流れる方向が切り替えられる。圧縮機1で圧縮された高温高圧のガス冷媒は、流路切替装置2を通過して点Dに到達する。そして、ガス冷媒は、点Dを通過した後、室外熱交換器5を通過する際、室外熱交換器5を凝縮器として作用させ、室外送風機6によって流れる空気により冷却され液化した状態で点Cに到達する。 Next, using FIG. 1, the operating state of the air conditioner 10 during cooling operation will be described along the flow of the refrigerant. During the cooling operation of the air conditioner 10, the flow direction of the refrigerant is switched using the flow path switching device 2 so that the flow of the refrigerant flows in the opposite direction. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the channel switching device 2 and reaches a point D. As shown in FIG. Then, when the gas refrigerant passes through the outdoor heat exchanger 5 after passing through the point D, the outdoor heat exchanger 5 acts as a condenser, and the gas refrigerant is cooled and liquefied by the air flowing by the outdoor fan 6 to point C to reach
 液化された液冷媒は、減圧装置4を通過することで低温低圧のガス冷媒と液冷媒とが混在した二相冷媒状態となり点Bに到る。その後、点Bを通過した二相冷媒は、室内熱交換器3内を流れて室内熱交換器3を蒸発器として作用させ、室内送風機7によって流れる空気により加熱されてガス化した状態で点Aに到る。点Aを経たガス冷媒は、流路切替装置2を通過して圧縮機1に戻る。空気調和装置10は、この冷媒のサイクルにより、室内空気を冷却する冷房運転を行う。 The liquefied liquid refrigerant passes through the decompression device 4 and reaches point B in a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed. After that, the two-phase refrigerant that has passed through point B flows through the interior of the indoor heat exchanger 3, causing the indoor heat exchanger 3 to act as an evaporator. reach. The gas refrigerant that has passed through point A passes through the flow switching device 2 and returns to the compressor 1 . The air conditioner 10 performs a cooling operation for cooling the indoor air by this refrigerant cycle.
[熱交換器50]
 図2は、実施の形態1に係る熱交換器50の概略図である。図2に示す矢印は、冷媒の流れる方向を示している。また、図2の左側に示す図において、横軸は、熱交換器50を通過する空気の風速を示し、縦軸は、熱交換器50の高さを示している。また、図2の実線は、空気の熱量を示している。次に図2を用いて実施の形態1に係る熱交換器50について説明する。以下の説明では、熱交換器50は、空気調和装置10を用いて暖房運転を行う際に、蒸発器として機能する室外熱交換器5に使用された場合の構成として説明する。なお、熱交換器50は、空気調和装置10において、室外熱交換器5として使用されるものに限定されるものではなく、室内熱交換器3として使用することもできる。
[Heat exchanger 50]
FIG. 2 is a schematic diagram of the heat exchanger 50 according to the first embodiment. The arrows shown in FIG. 2 indicate the direction in which the coolant flows. 2, the horizontal axis indicates the wind speed of the air passing through the heat exchanger 50, and the vertical axis indicates the height of the heat exchanger 50. As shown in FIG. Also, the solid line in FIG. 2 indicates the amount of heat in the air. Next, the heat exchanger 50 according to Embodiment 1 will be described with reference to FIG. In the following description, the heat exchanger 50 will be described as a configuration when it is used as the outdoor heat exchanger 5 functioning as an evaporator when the air conditioner 10 is used for heating operation. Note that the heat exchanger 50 is not limited to being used as the outdoor heat exchanger 5 in the air conditioner 10, and can also be used as the indoor heat exchanger 3.
 図2に示すように、熱交換器50は、熱交換部50aと、第1分配器20と、第2分配器30と、ヘッダ80と、を有する。なお、第1分配器20及び第2分配器30は、ヘッダと称してもよい。 As shown in FIG. 2, the heat exchanger 50 has a heat exchange section 50a, a first distributor 20, a second distributor 30, and a header 80. The first distributor 20 and the second distributor 30 may be called headers.
(熱交換部50a)
 熱交換部50aは、熱交換部50aの周囲に存在する空気と熱交換部50aの内部を流れる冷媒とを熱交換させる。熱交換部50aは、熱交換器50を流れる冷媒の流れの中において、第1分配器20と第2分配器30との間に配置されている。また、熱交換部50aは、熱交換器50を流れる冷媒の流れの中において、第2分配器30とヘッダ80との間に配置されている。熱交換部50aは、複数の伝熱管12と、隣り合う伝熱管12同士を接続する伝熱促進部材13とを有する。
(Heat exchange portion 50a)
The heat exchanging portion 50a exchanges heat between the air existing around the heat exchanging portion 50a and the refrigerant flowing inside the heat exchanging portion 50a. The heat exchange section 50 a is arranged between the first distributor 20 and the second distributor 30 in the flow of refrigerant flowing through the heat exchanger 50 . Also, the heat exchange portion 50 a is arranged between the second distributor 30 and the header 80 in the flow of refrigerant flowing through the heat exchanger 50 . The heat exchange section 50a has a plurality of heat transfer tubes 12 and a heat transfer promoting member 13 connecting the heat transfer tubes 12 adjacent to each other.
 複数の伝熱管12のそれぞれは、管状に形成されており、内部に冷媒を流通させる。複数の伝熱管12のそれぞれは、第1方向(X軸方向)に延びるように形成されている。複数の伝熱管12のそれぞれは、互いに間隔をあけて配列され、第1分配器20及び第2分配器30の延伸方向である軸方向(Z軸方向)に並列している。 Each of the plurality of heat transfer tubes 12 is formed in a tubular shape and circulates the refrigerant inside. Each of the plurality of heat transfer tubes 12 is formed to extend in the first direction (X-axis direction). Each of the plurality of heat transfer tubes 12 is arranged at intervals and arranged in parallel in the axial direction (Z-axis direction), which is the extending direction of the first distributor 20 and the second distributor 30 .
 第1分配器20及び第2分配器30の延伸方向である軸方向(Z軸方向)は、第2方向であり、第2方向は第1方向と交わる方向である。複数の伝熱管12は、第2方向において、互いに上下方向に間隔を空けて配置されている。複数の伝熱管12のうち隣り合う伝熱管12は、互いに対向するように配置されている。複数の伝熱管12のうち隣り合う2つの伝熱管12の間には、空気の流路となる隙間が形成されている。 The axial direction (Z-axis direction), which is the extending direction of the first distributor 20 and the second distributor 30, is the second direction, and the second direction is the direction crossing the first direction. The plurality of heat transfer tubes 12 are vertically spaced apart from each other in the second direction. Adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12 are arranged to face each other. Between two adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12, a gap is formed as an air flow path.
 熱交換器50は、第1方向である複数の伝熱管12の延伸方向を水平方向としている。ただし、第1方向である複数の伝熱管12の延伸方向は、水平方向に限定されるものではなく、水平方向に対して傾いた方向でもよい。また、熱交換器50は、第2方向である複数の伝熱管12の配列方向を鉛直方向としている。ただし、複数の伝熱管12の配列方向は、鉛直方向に限定されるものではなく、鉛直方向に対して傾いた方向でもよい。 In the heat exchanger 50, the extending direction of the plurality of heat transfer tubes 12, which is the first direction, is the horizontal direction. However, the extending direction of the plurality of heat transfer tubes 12, which is the first direction, is not limited to the horizontal direction, and may be a direction inclined with respect to the horizontal direction. In the heat exchanger 50, the arrangement direction of the plurality of heat transfer tubes 12, which is the second direction, is the vertical direction. However, the direction in which the plurality of heat transfer tubes 12 are arranged is not limited to the vertical direction, and may be inclined with respect to the vertical direction.
 伝熱管12は、例えば、断面形状が円形の円管、あるいは、楕円形状の楕円管である。なお、伝熱管12は、円管及び楕円管に限定されるものではなく、内部に複数の流路が形成された扁平管でもよい。 The heat transfer tube 12 is, for example, a circular tube with a circular cross-sectional shape or an elliptical tube with an elliptical shape. The heat transfer tubes 12 are not limited to circular tubes and elliptical tubes, and may be flat tubes in which a plurality of flow paths are formed.
 複数の伝熱管12の中で隣り合う伝熱管12は、互いの伝熱管12同士が伝熱促進部材13によって接続されている。伝熱促進部材13は、例えば、プレートフィン、あるいは、コルゲートフィン等である。伝熱促進部材13は、空気と冷媒との熱交換効率を向上させるものである。複数の伝熱促進部材13は、熱交換部50aにおいて、互いに間隔をあけて配列され、伝熱管12の延伸方向(X軸方向)に並列している。伝熱促進部材13がプレートフィンの場合には、複数の伝熱管12のそれぞれが複数の伝熱促進部材13を貫通している。 Adjacent heat transfer tubes 12 among the plurality of heat transfer tubes 12 are connected to each other by heat transfer promoting members 13 . The heat transfer promoting member 13 is, for example, plate fins or corrugated fins. The heat transfer promoting member 13 improves the efficiency of heat exchange between air and refrigerant. The plurality of heat transfer promoting members 13 are arranged at intervals in the heat exchanging portion 50 a and are arranged in parallel in the extending direction (X-axis direction) of the heat transfer tubes 12 . When the heat transfer promoting members 13 are plate fins, each of the plurality of heat transfer tubes 12 penetrates the plurality of heat transfer promoting members 13 .
 なお、熱交換部50aは、伝熱管12と、伝熱促進部材13とを有するものに限定されるものではない。例えば、熱交換部50aは、複数の伝熱管12を有し、隣り合う伝熱管12同士を接続する伝熱促進部材13を有さない構成でもよい。 It should be noted that the heat exchange section 50a is not limited to having the heat transfer tube 12 and the heat transfer promoting member 13. For example, the heat exchange section 50a may have a plurality of heat transfer tubes 12 and may not have the heat transfer promoting member 13 that connects the adjacent heat transfer tubes 12 to each other.
 熱交換部50aは、図2に示すように、流通する冷媒の上流側に位置する補助熱交換部5aと、流通する冷媒の下流側に位置する主熱交換部5bと、を有する。 As shown in FIG. 2, the heat exchange section 50a has an auxiliary heat exchange section 5a positioned upstream of the circulating refrigerant, and a main heat exchange section 5b positioned downstream of the circulating refrigerant.
 補助熱交換部5aは、複数の伝熱管12の内、主熱交換部5bを構成しない残りの伝熱管12を有する。補助熱交換部5aは、伝熱管12の延伸方向(X軸方向)の一端側が第1分配器20と接続され、他端側が第2分配器30と接続されている。なお、補助熱交換部5aと第2分配器30とは配管300によって接続されている。すなわち、補助熱交換部5aを構成する複数の伝熱管12のそれぞれは、第1方向(X軸方向)において、一方の端部が第1分配器20と接続しており、他方の端部が配管300を介して第2分配器30と接続している。 The auxiliary heat exchange section 5a has the remaining heat transfer tubes 12 among the plurality of heat transfer tubes 12 that do not constitute the main heat exchange section 5b. The auxiliary heat exchange section 5 a is connected to the first distributor 20 at one end in the extending direction (X-axis direction) of the heat transfer tubes 12 and connected to the second distributor 30 at the other end. In addition, the auxiliary heat exchange section 5 a and the second distributor 30 are connected by a pipe 300 . That is, each of the plurality of heat transfer tubes 12 constituting the auxiliary heat exchange section 5a has one end connected to the first distributor 20 in the first direction (X-axis direction), and the other end connected to the first distributor 20. It is connected to the second distributor 30 via a pipe 300 .
 主熱交換部5bは、複数の伝熱管12の内、半分以上の伝熱管12を有する。主熱交換部5bは、伝熱管12の延伸方向(X軸方向)の一端側が第2分配器30と接続され、他端側がヘッダ80と接続されている。より詳細には、主熱交換部5bを構成する複数の伝熱管12のそれぞれは、第1方向(X軸方向)において、一方の端部が第2分配器30と接続されており、他方の端部がヘッダ80と接続されている。 The main heat exchange section 5b has more than half of the heat transfer tubes 12 among the plurality of heat transfer tubes 12. The main heat exchange portion 5b is connected to the second distributor 30 at one end in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the header 80 at the other end. More specifically, each of the plurality of heat transfer tubes 12 constituting the main heat exchange section 5b has one end connected to the second distributor 30 in the first direction (X-axis direction), and the other end connected to the second distributor 30. The ends are connected with headers 80 .
 主熱交換部5bは、上側主熱交換部5b1、中上側主熱交換部5b2、中下側主熱交換部5b3、及び下側主熱交換部5b4を含む。主熱交換部5bは、上側主熱交換部5b1、中上側主熱交換部5b2、中下側主熱交換部5b3、及び下側主熱交換部5b4の総称でもある。 The main heat exchange section 5b includes an upper main heat exchange section 5b1, a middle upper main heat exchange section 5b2, a middle lower main heat exchange section 5b3, and a lower main heat exchange section 5b4. The main heat exchange section 5b is also a general term for the upper main heat exchange section 5b1, the intermediate upper main heat exchange section 5b2, the intermediate lower main heat exchange section 5b3, and the lower main heat exchange section 5b4.
 上側主熱交換部5b1は、主熱交換部5bの上下方向(Z軸方向)において、上部に位置する部分であり、重力方向で中央部分に位置する中上側主熱交換部5b2及び中下側主熱交換部5b3よりも上方に位置する部分である。上側主熱交換部5b1は、上側主熱交換部5b1を構成する伝熱管12が後述する上側第2分配器31と接続する主熱交換部5bの部分である。なお、主熱交換部5bの上下方向(Z軸方向)は、重力方向でもある。 The upper main heat exchange portion 5b1 is a portion located at the upper portion in the vertical direction (Z-axis direction) of the main heat exchange portion 5b, and the middle upper main heat exchange portion 5b2 and the middle lower side are located in the center portion in the direction of gravity. It is a portion located above the main heat exchange portion 5b3. The upper main heat exchange portion 5b1 is a portion of the main heat exchange portion 5b where the heat transfer tubes 12 forming the upper main heat exchange portion 5b1 are connected to the upper second distributor 31 described later. The vertical direction (Z-axis direction) of the main heat exchange portion 5b is also the direction of gravity.
 中上側主熱交換部5b2は、主熱交換部5bの上下方向(Z軸方向)において、中央部分に位置する部分であり、重力方向で上側主熱交換部5b1よりも下方に位置し、重力方向で中下側主熱交換部5b3よりも上方に位置する部分である。中上側主熱交換部5b2は、中上側主熱交換部5b2を構成する伝熱管12が後述する中上側第2分配器32と接続する主熱交換部5bの部分である。 The middle upper main heat exchange portion 5b2 is a portion located in the central portion in the vertical direction (Z-axis direction) of the main heat exchange portion 5b, and is located lower than the upper main heat exchange portion 5b1 in the direction of gravity. It is a portion located above the middle and lower main heat exchange portion 5b3 in the direction. The middle upper main heat exchange portion 5b2 is a portion of the main heat exchange portion 5b where the heat transfer tubes 12 forming the middle upper main heat exchange portion 5b2 are connected to the later-described middle upper second distributor 32 .
 中下側主熱交換部5b3は、主熱交換部5bの上下方向(Z軸方向)において、中央部分に位置する部分であり、重力方向で中上側主熱交換部5b2よりも下方に位置し、重力方向で下側主熱交換部5b4よりも上方に位置する部分である。中下側主熱交換部5b3は、中下側主熱交換部5b3を構成する伝熱管12が後述する中下側第2分配器33と接続する主熱交換部5bの部分である。 The middle-lower main heat exchange portion 5b3 is a portion positioned in the center in the vertical direction (Z-axis direction) of the main heat-exchange portion 5b, and is positioned lower than the middle-upper main heat exchange portion 5b2 in the gravitational direction. , which is located above the lower main heat exchange portion 5b4 in the direction of gravity. The middle and lower main heat exchange section 5b3 is a portion of the main heat exchange section 5b where the heat transfer tubes 12 forming the middle and lower main heat exchange section 5b3 are connected to the later-described middle and lower second distributor 33 .
 中上側主熱交換部5b2及び中下側主熱交換部5b3は、中央側主熱交換部ともいう。中央側主熱交換部は、主熱交換部5bの上下方向(Z軸方向)において上側主熱交換部5b1と下側主熱交換部5b4との間に配置されている。中央側主熱交換部は、主熱交換部5bの上下方向(Z軸方向)において中央側に位置しており、重力方向(Z軸方向)において中央側に位置している。 The middle upper main heat exchange section 5b2 and the middle lower main heat exchange section 5b3 are also referred to as the central main heat exchange section. The center side main heat exchange portion is arranged between the upper side main heat exchange portion 5b1 and the lower side main heat exchange portion 5b4 in the vertical direction (Z-axis direction) of the main heat exchange portion 5b. The center-side main heat exchange section is located on the center side in the vertical direction (Z-axis direction) of the main heat exchange section 5b, and is located on the center side in the gravitational direction (Z-axis direction).
 下側主熱交換部5b4は、主熱交換部5bの上下方向(Z軸方向)において、下部に位置する部分であり、重力方向で中上側主熱交換部5b2及び中下側主熱交換部5b3よりも下方に位置する部分である。下側主熱交換部5b4は、下側主熱交換部5b4を構成する伝熱管12が後述する下側第2分配器34と接続する主熱交換部5bの部分である。そして、主熱交換部5bと補助熱交換部5aとは空間を有して熱的に分離されている。 The lower main heat exchange section 5b4 is a portion located below the main heat exchange section 5b in the vertical direction (Z-axis direction), and is positioned in the direction of gravity. This is the portion located below 5b3. The lower main heat exchange portion 5b4 is a portion of the main heat exchange portion 5b where the heat transfer pipes 12 forming the lower main heat exchange portion 5b4 are connected to a second lower distributor 34 described later. The main heat exchange portion 5b and the auxiliary heat exchange portion 5a are thermally separated by a space.
(第1分配器20)
 第1分配器20は、熱交換器50が蒸発器として機能する場合に、補助熱交換部5aの冷媒の流入側に設けられている。第1分配器20は、補助熱交換部5aを構成する複数の伝熱管12の延伸方向(X軸方向)において、一方の端部に接続されている。第1分配器20は、第1分配器20の内部と伝熱管12の管路内とが連通するように、補助熱交換部5aの伝熱管12に接続されている。第1分配器20は、冷媒の流れにおいて、補助熱交換部5aを構成する複数の伝熱管12を介して第2分配器30の反対側に配置されている。
(First distributor 20)
The first distributor 20 is provided on the refrigerant inflow side of the auxiliary heat exchange section 5a when the heat exchanger 50 functions as an evaporator. The first distributor 20 is connected to one end in the extension direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the auxiliary heat exchange section 5a. The first distributor 20 is connected to the heat transfer tubes 12 of the auxiliary heat exchange section 5a so that the inside of the first distributor 20 and the pipeline of the heat transfer tubes 12 communicate with each other. The first distributor 20 is arranged on the opposite side of the second distributor 30 via the plurality of heat transfer tubes 12 forming the auxiliary heat exchange section 5a in the refrigerant flow.
 第1分配器20は、複数の伝熱管12の配列方向(Z軸方向)に沿って延伸するように長尺に形成されている。第1分配器20は、上下方向(Z軸方向)に延びるように形成されており、複数の伝熱管12に冷媒を分配する。第1分配器20は、熱交換器50において、熱交換部50aの補助熱交換部5aに流入する冷媒を、複数の伝熱管12に分配する分配機構として機能する。 The first distributor 20 is elongated so as to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 . The first distributor 20 is formed to extend in the vertical direction (Z-axis direction) and distributes the refrigerant to the plurality of heat transfer tubes 12 . In the heat exchanger 50 , the first distributor 20 functions as a distribution mechanism that distributes the refrigerant flowing into the auxiliary heat exchange section 5 a of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
 第1分配器20には、流入管201が設けられている。流入管201は、複数の伝熱管12に分配される冷媒を熱交換器50に流入させるための配管である。なお、流入管201は、熱交換器50と減圧装置4との間の冷媒の流路を構成する配管である。第1分配器20の詳細な構造については後述する。 An inflow pipe 201 is provided in the first distributor 20 . The inflow pipe 201 is a pipe for causing the refrigerant distributed to the plurality of heat transfer pipes 12 to flow into the heat exchanger 50 . Note that the inflow pipe 201 is a pipe that constitutes a refrigerant flow path between the heat exchanger 50 and the decompression device 4 . A detailed structure of the first distributor 20 will be described later.
(第2分配器30)
 第2分配器30は、熱交換器50が蒸発器として機能する場合に、主熱交換部5bの冷媒の流入側に設けられている。第2分配器30は、熱交換器50が蒸発器として機能する場合に、補助熱交換部5aの冷媒の流出側に設けられている。第2分配器30は、主熱交換部5bに接続され、主熱交換部5bを構成する複数の伝熱管12に補助熱交換部5aから流出した冷媒を分配する。
(Second distributor 30)
The second distributor 30 is provided on the refrigerant inflow side of the main heat exchange section 5b when the heat exchanger 50 functions as an evaporator. The second distributor 30 is provided on the refrigerant outflow side of the auxiliary heat exchange section 5a when the heat exchanger 50 functions as an evaporator. The second distributor 30 is connected to the main heat exchange section 5b and distributes the refrigerant flowing out of the auxiliary heat exchange section 5a to the plurality of heat transfer tubes 12 that constitute the main heat exchange section 5b.
 第2分配器30は、主熱交換部5bを構成する複数の伝熱管12の延伸方向(X軸方向)において、一方の端部に接続されている。第2分配器30は、第2分配器30の内部と伝熱管12の管路内とが連通するように、主熱交換部5bの伝熱管12に接続されている。第2分配器30は、冷媒の流れにおいて、主熱交換部5bを構成する複数の伝熱管12を介してヘッダ80の反対側に配置されている。また、第2分配器30は、配管300を介して補助熱交換部5aを構成する複数の伝熱管12と接続されている。 The second distributor 30 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the main heat exchange section 5b. The second distributor 30 is connected to the heat transfer tubes 12 of the main heat exchange section 5b so that the inside of the second distributor 30 and the pipeline of the heat transfer tubes 12 communicate with each other. The second distributor 30 is arranged on the opposite side of the header 80 via the plurality of heat transfer tubes 12 forming the main heat exchange portion 5b in the flow of the refrigerant. Further, the second distributor 30 is connected via piping 300 to a plurality of heat transfer tubes 12 that constitute the auxiliary heat exchange section 5a.
 第2分配器30は、複数の伝熱管12の配列方向(Z軸方向)に沿って延伸するように長尺に形成されている。第2分配器30は、上下方向(Z軸方向)に延びるように形成されており、複数の伝熱管12に冷媒を分配する。第2分配器30は、熱交換器50において、熱交換部50aの主熱交換部5bに流入する冷媒を、複数の伝熱管12に分配する分配機構として機能する。 The second distributor 30 is elongated so as to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 . The second distributor 30 is formed to extend in the vertical direction (Z-axis direction) and distributes the refrigerant to the plurality of heat transfer tubes 12 . In the heat exchanger 50 , the second distributor 30 functions as a distribution mechanism that distributes the refrigerant flowing into the main heat exchange section 5 b of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
 第2分配器30は、上側第2分配器31、中上側第2分配器32、中下側第2分配器33、下側第2分配器34を含む。第2分配器30は、上側第2分配器31、中上側第2分配器32、中下側第2分配器33、下側第2分配器34の総称でもある。なお、図2では、上側第2分配器31~下側第2分配器34の4つの第2分配器30から構成されているが、第2分配器30の数は複数であればよく4つに限定されるものではない。 The second distributor 30 includes an upper second distributor 31 , a middle upper second distributor 32 , a middle lower second distributor 33 , and a lower second distributor 34 . The second distributor 30 is also a general term for the upper second distributor 31 , middle upper second distributor 32 , middle lower second distributor 33 , and lower second distributor 34 . In FIG. 2, the four second distributors 30 from the upper second distributor 31 to the lower second distributor 34 are configured, but the number of the second distributors 30 may be four as long as it is plural. is not limited to
 上側第2分配器31は、第2分配器30の上下方向(Z軸方向)において、上部に位置しており、重力方向で中央部分に位置する中上側第2分配器32及び中下側第2分配器33よりも上方に位置している。上側第2分配器31は、上側主熱交換部5b1を構成する伝熱管12と接続する。 The upper second distributor 31 is positioned above the second distributor 30 in the vertical direction (Z-axis direction), and includes a middle upper second distributor 32 positioned at the center in the direction of gravity and a middle lower second distributor 32 . It is positioned above the second distributor 33 . The upper second distributor 31 is connected to the heat transfer tubes 12 that constitute the upper main heat exchange section 5b1.
 中上側第2分配器32は、第2分配器30の上下方向(Z軸方向)において、中央部分に位置しており、重力方向で上側第2分配器31よりも下方に位置し、重力方向で中下側第2分配器33よりも上方に位置している。中上側第2分配器32は、中上側主熱交換部5b2を構成する伝熱管12と接続する。 The middle-upper second distributor 32 is positioned at the central portion in the vertical direction (Z-axis direction) of the second distributor 30, and is positioned lower than the upper second distributor 31 in the direction of gravity. , and is positioned above the second distributor 33 on the middle and lower side. The middle-upper second distributor 32 is connected to the heat transfer tubes 12 that constitute the middle-upper main heat exchange section 5b2.
 中下側第2分配器33は、第2分配器30の上下方向(Z軸方向)において、中央部分に位置しており、重力方向で中上側第2分配器32よりも下方に位置し、重力方向で下側第2分配器34よりも上方に位置している。中下側第2分配器33は、中下側主熱交換部5b3を構成する伝熱管12と接続する。 The middle-lower second distributor 33 is positioned at the central portion in the vertical direction (Z-axis direction) of the second distributor 30, and is positioned lower than the middle-upper second distributor 32 in the direction of gravity. It is located above the second lower distributor 34 in the direction of gravity. The middle lower side second distributor 33 is connected to the heat transfer tubes 12 that constitute the middle lower side main heat exchange section 5b3.
 下側第2分配器34は、第2分配器30の上下方向(Z軸方向)において、下部に位置しており、重力方向で中央部分に位置する中上側第2分配器32及び中下側第2分配器33よりも下方に位置している。下側第2分配器34は、下側主熱交換部5b4を構成する伝熱管12と接続する。 The lower second distributor 34 is positioned below the second distributor 30 in the vertical direction (Z-axis direction), and the middle upper second distributor 32 and the middle lower side are positioned in the center portion in the direction of gravity. It is positioned below the second distributor 33 . The lower second distributor 34 is connected to the heat transfer tubes 12 that constitute the lower main heat exchange section 5b4.
 補助熱交換部5aと第2分配器30とは、上述したように配管300で接続されている。配管300は、上側配管301、中上側配管302、中下側配管303及び下側配管304を含む。配管300は、上側配管301、中上側配管302、中下側配管303及び下側配管304の総称でもある。 The auxiliary heat exchange section 5a and the second distributor 30 are connected by the pipe 300 as described above. The piping 300 includes an upper piping 301 , a middle upper piping 302 , a middle lower piping 303 and a lower piping 304 . The piping 300 is also a general term for the upper piping 301 , the middle upper piping 302 , the middle lower piping 303 and the lower piping 304 .
 上側配管301は、補助熱交換部5aと上側第2分配器31とを接続する配管である。上側配管301は、伝熱管12を介して第1分配器20の下部空間21aと、上側第2分配器31の内部とを連通させる。中上側配管302は、補助熱交換部5aと中上側第2分配器32とを接続する配管である。中上側配管302は、伝熱管12を介して第1分配器20の上部空間21bと、中上側第2分配器32の内部とを連通させる。 The upper pipe 301 is a pipe that connects the auxiliary heat exchange section 5 a and the upper second distributor 31 . The upper pipe 301 communicates the lower space 21 a of the first distributor 20 and the inside of the upper second distributor 31 via the heat transfer pipes 12 . The middle upper pipe 302 is a pipe that connects the auxiliary heat exchange section 5 a and the middle upper second distributor 32 . The middle upper pipe 302 communicates the upper space 21 b of the first distributor 20 with the inside of the middle upper second distributor 32 via the heat transfer pipes 12 .
 中下側配管303は、補助熱交換部5aと中下側第2分配器33とを接続する配管である。中下側配管303は、伝熱管12を介して第1分配器20の上部空間21bと、中下側第2分配器33の内部とを連通させる。下側配管304は、補助熱交換部5aと下側第2分配器34とを接続する配管である。下側配管304は、伝熱管12を介して第1分配器20の下部空間21aと、下側第2分配器34の内部とを連通させる。配管300の数は、4本に限定されるものではなく、第2分配器30の数と同じ数であればよい。 The middle-lower pipe 303 is a pipe that connects the auxiliary heat exchange section 5 a and the middle-lower second distributor 33 . The middle-lower pipe 303 communicates the upper space 21 b of the first distributor 20 with the inside of the second middle-lower distributor 33 via the heat transfer pipes 12 . The lower pipe 304 is a pipe that connects the auxiliary heat exchange section 5 a and the lower second distributor 34 . The lower pipe 304 communicates the lower space 21 a of the first distributor 20 with the inside of the second lower distributor 34 via the heat transfer pipes 12 . The number of pipes 300 is not limited to four, and may be the same number as the number of second distributors 30 .
(ヘッダ80)
 ヘッダ80は、主熱交換部5bを構成する複数の伝熱管12の、延伸方向(X軸方向)の他方の端部に接続されている。ヘッダ80は、ヘッダ80の内部と伝熱管12の管路内とが連通するように、主熱交換部5bの伝熱管12に接続されている。ヘッダ80は、複数の伝熱管12の配列方向(Z軸方向)に沿って延伸するように長尺に形成されている。
(Header 80)
The header 80 is connected to the other ends in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the main heat exchange section 5b. The header 80 is connected to the heat transfer tubes 12 of the main heat exchange section 5b so that the inside of the header 80 and the inside of the heat transfer tubes 12 communicate with each other. The header 80 is elongated to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 .
 ヘッダ80は、熱交換器50において、主熱交換部5bの複数の伝熱管12から流出する冷媒が合流する際の合流機構として機能する。ヘッダ80は、熱交換器50において、熱交換部50aから流出する冷媒が合流する際の合流機構として機能する。 In the heat exchanger 50, the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the plurality of heat transfer tubes 12 of the main heat exchange section 5b. In the heat exchanger 50, the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the heat exchange section 50a.
 ヘッダ80には、流出管801が設けられている。流出管801は、複数の伝熱管12から流出して合流した冷媒を熱交換器50から排出させるための配管である。 The header 80 is provided with an outflow pipe 801 . The outflow pipe 801 is a pipe for discharging from the heat exchanger 50 the refrigerant that has flowed out from the plurality of heat transfer pipes 12 and merged.
[熱交換器50の動作例]
 実施の形態1に係る熱交換器50の動作について、熱交換器50が空気調和装置10の蒸発器として機能する際の動作を例に挙げて説明する。蒸発器として機能する熱交換器50には、減圧装置4で減圧された気液二相冷媒が流入する。この際、冷媒は、熱交換器50の第1分配器20から流入し、複数の伝熱管12内の通路を流通して吸熱及び蒸発する。その後、冷媒は、ヘッダ80から流出し、流路切替装置2を経由して圧縮機1に吸入される。
[Example of operation of heat exchanger 50]
The operation of the heat exchanger 50 according to Embodiment 1 will be described by taking as an example the operation when the heat exchanger 50 functions as the evaporator of the air conditioner 10 . The gas-liquid two-phase refrigerant decompressed by the decompression device 4 flows into the heat exchanger 50 that functions as an evaporator. At this time, the refrigerant flows from the first distributor 20 of the heat exchanger 50, flows through the passages in the plurality of heat transfer tubes 12, absorbs heat, and evaporates. After that, the refrigerant flows out from the header 80 and is sucked into the compressor 1 via the flow switching device 2 .
 図2を用いて更に詳細に熱交換器50の動作例を説明する。熱交換器50は、冷媒が第1分配器20、補助熱交換部5a、第2分配器30、主熱交換部5b、ヘッダ80の順に流れる。気液二相冷媒の全質量速度に占める気体の質量速度比を示す表現の乾き度xを用いた場合、室外熱交換器5を構成する熱交換器50に流れる冷媒は、乾き度xがx=0.05~0.30の範囲程度の気液二相状態で図中の流入管201から第1分配器20に流入する。 An operation example of the heat exchanger 50 will be described in more detail using FIG. In the heat exchanger 50, refrigerant flows through the first distributor 20, the auxiliary heat exchange section 5a, the second distributor 30, the main heat exchange section 5b, and the header 80 in this order. When the dryness x, which is an expression indicating the mass velocity ratio of the gas to the total mass velocity of the gas-liquid two-phase refrigerant, is used, the refrigerant flowing through the heat exchanger 50 constituting the outdoor heat exchanger 5 has a dryness x of x = 0.05 to 0.30, and flows into the first distributor 20 from the inflow pipe 201 in the drawing.
 流入管201を通過した気液二相冷媒は、伝熱管12が挿入される挿入面部25、伝熱管12の端面と対向する対向面27a(図4参照)、蓋41、蓋42、及び、オリフィス板91によって構成される第1分配器20に流入する。なお、第1分配器20の詳細な構成は後述する。第1分配器20の内部では、オリフィス板91によって、オリフィス板91の下方に位置する下部空間21aではガスリッチの気液二相冷媒が存在するように冷媒の流れが調整される。また、第1分配器20の内部では、オリフィス板91によって、オリフィス板91の上方に位置する上部空間21bでは液リッチの気液二相冷媒が存在するように冷媒の流れが調整される。気液二相冷媒は、下部空間21aに連通する伝熱管12と、上部空間21bに連通する伝熱管12とへ分配され、室外熱交換器5の一部である補助熱交換部5aの内部を流れる。 The gas-liquid two-phase refrigerant that has passed through the inflow pipe 201 passes through an insertion surface portion 25 into which the heat transfer pipe 12 is inserted, a facing surface 27a (see FIG. 4) facing the end surface of the heat transfer pipe 12, a lid 41, a lid 42, and an orifice. It flows into the first distributor 20 constituted by the plate 91 . A detailed configuration of the first distributor 20 will be described later. Inside the first distributor 20 , the orifice plate 91 regulates the flow of refrigerant so that gas-rich two-phase gas-liquid refrigerant exists in the lower space 21 a located below the orifice plate 91 . Inside the first distributor 20 , the orifice plate 91 adjusts the flow of the refrigerant so that the liquid-rich two-phase gas-liquid refrigerant exists in the upper space 21 b located above the orifice plate 91 . The gas-liquid two-phase refrigerant is distributed to the heat transfer tubes 12 communicating with the lower space 21a and the heat transfer tubes 12 communicating with the upper space 21b, and flows through the auxiliary heat exchange section 5a, which is a part of the outdoor heat exchanger 5. flow.
 この際、補助熱交換部5aの伝熱管12を流れる気液二相冷媒と、室外送風機6(図1参照)によって流れる空気とが熱交換を行う。気液二相冷媒と空気とが熱交換を行うことによって、気液二相冷媒は、気液二相冷媒のうち液冷媒が蒸発し、全質量速度のうち気体の質量速度が占める割合を変化させながら補助熱交換部5aを通過し終える。 At this time, heat is exchanged between the gas-liquid two-phase refrigerant flowing through the heat transfer tubes 12 of the auxiliary heat exchange section 5a and the air flowing by the outdoor fan 6 (see FIG. 1). By exchanging heat between the gas-liquid two-phase refrigerant and the air, the liquid refrigerant in the gas-liquid two-phase refrigerant evaporates, and the ratio of the gas mass velocity to the total mass velocity changes. , and finishes passing through the auxiliary heat exchange section 5a.
 補助熱交換部5aを通過した気液二相冷媒は、配管300を介して第2分配器30へ流れる。より詳細には、第1分配器20の下部空間21aを通過した一部の冷媒は、補助熱交換部5aを構成する伝熱管12と上側配管301とを通り、上側第2分配器31の内部へ流れる。また、第1分配器20の下部空間21aを通過した一部の冷媒は、補助熱交換部5aを構成する伝熱管12と下側配管304とを通り、下側第2分配器34の内部へ流れる。また、第1分配器20の上部空間21bを通過した一部の冷媒は、補助熱交換部5aを構成する伝熱管12と中上側配管302とを通り、中上側第2分配器32の内部へ流れる。また、第1分配器20の上部空間21bを通過した一部の冷媒は、補助熱交換部5aを構成する伝熱管12と中下側配管303とを通り、中下側第2分配器33の内部へ流れる。 The gas-liquid two-phase refrigerant that has passed through the auxiliary heat exchange section 5 a flows to the second distributor 30 via the pipe 300 . More specifically, a part of the refrigerant that has passed through the lower space 21a of the first distributor 20 passes through the heat transfer pipes 12 and the upper piping 301 that constitute the auxiliary heat exchange section 5a, and flows inside the upper second distributor 31. flow to Also, part of the refrigerant that has passed through the lower space 21a of the first distributor 20 passes through the heat transfer pipes 12 and the lower piping 304 that constitute the auxiliary heat exchange section 5a, and enters the lower second distributor 34. flow. Also, part of the refrigerant that has passed through the upper space 21b of the first distributor 20 passes through the heat transfer tubes 12 and the middle upper pipe 302 that constitute the auxiliary heat exchange section 5a, and enters the middle upper second distributor 32. flow. Also, part of the refrigerant that has passed through the upper space 21b of the first distributor 20 passes through the heat transfer pipes 12 and the middle and lower side pipes 303 that constitute the auxiliary heat exchange section 5a, and flows through the middle and lower side second distributor 33. flow inside.
 この際、上側配管301、中上側配管302、中下側配管303、及び、下側配管304を流れる気液二相冷媒の乾き度xは、乾き度x=0.05~0.60の範囲程度にまで成り得る。乾き度xの値は、熱交換部50aの全体において補助熱交換部5aが占める割合、補助熱交換部5aを通過する風量、あるいは、流入管201から配管300までの圧力損失等の影響によって変化する。 At this time, the dryness x of the gas-liquid two-phase refrigerant flowing through the upper pipe 301, the middle upper pipe 302, the middle lower pipe 303, and the lower pipe 304 is in the range of 0.05 to 0.60. It can be done to some extent. The value of the dryness x varies depending on the ratio of the auxiliary heat exchange section 5a to the entire heat exchange section 50a, the air volume passing through the auxiliary heat exchange section 5a, or the pressure loss from the inflow pipe 201 to the pipe 300. do.
 上側第2分配器31~下側第2分配器34に流入した気液二相冷媒は、それぞれ4分岐ずつに分配され、主熱交換部5b全体として合計16分岐に分配されて各伝熱管12へ流入する。16分岐に分配された気液二相冷媒は、主熱交換部5bを流れ、室外送風機6(図1参照)によって流れる空気と気液二相冷媒とが熱交換を行う。 The gas-liquid two-phase refrigerant flowing into the upper second distributor 31 to the lower second distributor 34 is distributed into four branches, respectively, and the main heat exchange section 5b as a whole is distributed into a total of 16 branches to each heat transfer tube 12 flow into The gas-liquid two-phase refrigerant distributed to 16 branches flows through the main heat exchange section 5b, and heat exchange is performed between the gas-liquid two-phase refrigerant and the air flowing by the outdoor fan 6 (see FIG. 1).
 上側第2分配器31で4分岐に分配された気液二相冷媒は、上側主熱交換部5b1を流れ、室外送風機6(図1参照)によって流れる空気と気液二相冷媒とが熱交換を行う。中上側第2分配器32で4分岐に分配された気液二相冷媒は、中上側主熱交換部5b2を流れ、室外送風機6(図1参照)によって流れる空気と気液二相冷媒とが熱交換を行う。中下側第2分配器33で4分岐に分配された気液二相冷媒は、中下側主熱交換部5b3を流れ、室外送風機6(図1参照)によって流れる空気と気液二相冷媒とが熱交換を行う。下側第2分配器34で4分岐に分配された気液二相冷媒は、下側主熱交換部5b4を流れ、室外送風機6(図1参照)によって流れる空気と気液二相冷媒とが熱交換を行う。 The gas-liquid two-phase refrigerant distributed into four branches by the upper second distributor 31 flows through the upper main heat exchange portion 5b1, and the air flowing by the outdoor fan 6 (see FIG. 1) and the gas-liquid two-phase refrigerant exchange heat. I do. The gas-liquid two-phase refrigerant distributed into four branches by the middle-upper second distributor 32 flows through the middle-upper main heat exchange section 5b2, and the air flowing by the outdoor fan 6 (see FIG. 1) and the gas-liquid two-phase refrigerant are mixed. heat exchange. The gas-liquid two-phase refrigerant distributed into four branches by the middle-lower side second distributor 33 flows through the middle-lower side main heat exchange portion 5b3, and the air and the gas-liquid two-phase refrigerant flowing by the outdoor fan 6 (see FIG. 1) and perform heat exchange. The gas-liquid two-phase refrigerant distributed into four branches by the lower second distributor 34 flows through the lower main heat exchange portion 5b4, and the air and the gas-liquid two-phase refrigerant flowing by the outdoor fan 6 (see FIG. 1) are mixed. heat exchange.
 ここで、上側主熱交換部5b1~下側主熱交換部5b4を通過する空気は、図2の左側に示すように高さ方向に分布された風速の大きさによって熱量が異なる。空気の熱量が他の部分より大きい中上側主熱交換部5b2及び中下側主熱交換部5b3は、空気の熱量が中上側主熱交換部5b2及び中下側主熱交換部5b3よりも小さい上側主熱交換部5b1及び下側主熱交換部5b4と比較して多くの液冷媒を蒸発させられる。 Here, the amount of heat of the air passing through the upper main heat exchange portion 5b1 to the lower main heat exchange portion 5b4 varies depending on the magnitude of the wind speed distributed in the height direction as shown on the left side of FIG. The middle upper main heat exchange portion 5b2 and the middle lower main heat exchange portion 5b3, in which the heat quantity of the air is larger than the other portions, are smaller in the heat quantity of the air than the middle upper main heat exchange portion 5b2, and the middle lower main heat exchange portion 5b3. More liquid refrigerant can be evaporated than in the upper main heat exchange portion 5b1 and the lower main heat exchange portion 5b4.
 そのため、熱交換器50は、中上側主熱交換部5b2が中上側第2分配器32と接続されており、中上側第2分配器32が液リッチの気液二相冷媒へと調整する第1分配器20の上部空間21bと接続されている。すなわち、熱交換器50は、中上側第2分配器32を介して多くの液冷媒を蒸発させる中上側主熱交換部5b2と、液リッチの気液二相冷媒を含む第1分配器20の上部空間21bとを接続させている。 Therefore, in the heat exchanger 50, the middle upper main heat exchange portion 5b2 is connected to the middle upper second distributor 32, and the middle upper second distributor 32 adjusts the liquid-rich gas-liquid two-phase refrigerant. It is connected to the upper space 21 b of the 1 distributor 20 . That is, the heat exchanger 50 includes the middle upper main heat exchange section 5b2 that evaporates a large amount of liquid refrigerant via the middle upper second distributor 32, and the first distributor 20 that contains liquid-rich gas-liquid two-phase refrigerant. It connects with the upper space 21b.
 また、熱交換器50は、中下側主熱交換部5b3が中下側第2分配器33と接続されており、中下側第2分配器33が液リッチの気液二相冷媒へと調整する第1分配器20の上部空間21bと接続されている。すなわち、熱交換器50は、中下側第2分配器33を介して多くの液冷媒を蒸発させる中下側主熱交換部5b3と、液リッチの気液二相冷媒を含む第1分配器20の上部空間21bとを接続させている。 In the heat exchanger 50, the lower middle main heat exchange portion 5b3 is connected to the second middle lower distributor 33, and the second middle lower distributor 33 converts the liquid-rich gas-liquid two-phase refrigerant. It is connected to the upper space 21b of the first distributor 20 to be adjusted. That is, the heat exchanger 50 includes a middle-lower main heat exchange section 5b3 that evaporates a large amount of liquid refrigerant via the middle-lower second distributor 33, and a first distributor that contains liquid-rich gas-liquid two-phase refrigerant. 20 is connected to the upper space 21b.
 主熱交換部5bを通過する冷媒は、空気との熱交換によって、液冷媒が全て気化したガス冷媒の状態、もしくは、多くの液冷媒が気化して乾き度x=0.85以上の気液二相冷媒の状態となり、ヘッダ80へと流出する。主熱交換部5bにおいて16分岐していた冷媒は、ヘッダ80においてそれぞれ合流して流出管801を通って熱交換器50から流出する。 The refrigerant passing through the main heat exchange portion 5b is in a state of gas refrigerant in which all of the liquid refrigerant is vaporized by heat exchange with the air, or in a gas-liquid state in which most of the liquid refrigerant is vaporized and the dryness x is 0.85 or more. It becomes a two-phase refrigerant and flows out to the header 80 . The 16-branched refrigerant in the main heat exchange portion 5 b joins in the header 80 and flows out of the heat exchanger 50 through the outflow pipe 801 .
 熱交換器50は、例として、冷媒が第1分配器20で4分岐して蒸発器の一部(補助熱交換部5a)を流れ、次に上側第2分配器31~下側第2分配器34を経由して16分岐した後に蒸発器の一部(主熱交換部5b)を流れる構成としている。なお、熱交換器50は、当該構成に限定されるものではない。熱交換器50は、補助熱交換部5a及び主熱交換部5bの分岐数が上記形態と異なってもよい。 In the heat exchanger 50, for example, the refrigerant is branched into four at the first distributor 20 and flows through a part of the evaporator (auxiliary heat exchange section 5a), then from the upper second distributor 31 to the lower second distributor. After being branched into 16 via the evaporator 34, it is configured to flow through a part of the evaporator (main heat exchange section 5b). Note that the heat exchanger 50 is not limited to this configuration. In the heat exchanger 50, the number of branches of the auxiliary heat exchange section 5a and the main heat exchange section 5b may differ from the above embodiment.
(第1分配器20の詳細な構成)
 図3は、実施の形態1に関する第1分配器20の概要図である。図4は、実施の形態1に係る第1分配器20の斜視図である。図5は、図3に示すA-A線における本体部20aの延びる方向に対して垂直な断面図である。図6は、図3に示すB-B線における本体部20aの延びる方向に対して垂直な断面図である。図7は、図3に示すC-C線における本体部20aの延びる方向に対して垂直な断面図である。
(Detailed Configuration of First Distributor 20)
FIG. 3 is a schematic diagram of first distributor 20 according to the first embodiment. 4 is a perspective view of the first distributor 20 according to Embodiment 1. FIG. FIG. 5 is a cross-sectional view perpendicular to the direction in which the main body 20a extends along line AA shown in FIG. FIG. 6 is a cross-sectional view perpendicular to the direction in which the body portion 20a extends along line BB shown in FIG. FIG. 7 is a cross-sectional view perpendicular to the extending direction of the main body portion 20a along line CC shown in FIG.
 図4は、第1分配器20の内部構造を説明するために蓋41の図示を省略している。図4に示すX軸方向は、伝熱管12の延びる方向であり、Z軸方向は第1分配器20の本体部20aの延びる方向である。また、Z軸方向は、伝熱管12の配列方向でもある。図4に示すY軸方向は、X軸方向及びZ軸方向に垂直な方向である。図3~図7を用いて第1分配器20について説明する。第1分配器20は、図3に示すように、本体部20aと、本体部20aに取り付けられた流入管201とを有する。 FIG. 4 omits illustration of the lid 41 in order to explain the internal structure of the first distributor 20 . The X-axis direction shown in FIG. 4 is the direction in which the heat transfer tubes 12 extend, and the Z-axis direction is the direction in which the body portion 20a of the first distributor 20 extends. The Z-axis direction is also the direction in which the heat transfer tubes 12 are arranged. The Y-axis direction shown in FIG. 4 is a direction perpendicular to the X-axis direction and the Z-axis direction. The first distributor 20 will be described with reference to FIGS. 3 to 7. FIG. The first distributor 20, as shown in FIG. 3, has a body portion 20a and an inflow pipe 201 attached to the body portion 20a.
(本体部20a)
 本体部20aは、両端が閉塞された長尺の筒状に形成された部材であり、内部に空間が形成されている。第1分配器20の本体部20aは、第1分配器20の長手方向(Z軸方向)の中心軸が鉛直向きの状態、又は、第1分配器20の長手方向の中心軸が鉛直向きのベクトル成分を有する範囲で傾いた状態で設置される。本体部20aには、流入口44と、内部空間21とが形成されている。
(Body portion 20a)
The body portion 20a is a member formed in a long tubular shape with both ends closed, and a space is formed inside. The main body part 20a of the first distributor 20 is in a state in which the central axis of the longitudinal direction (Z-axis direction) of the first distributor 20 is oriented vertically, or in which the central axis of the longitudinal direction of the first distributor 20 is oriented vertically. It is installed in a tilted state within a range having a vector component. An inlet 44 and an internal space 21 are formed in the body portion 20a.
 流入口44は、流入管201と接続し、流入管201から冷媒が流入する流入口である。内部空間21は、伝熱管12の管内空間と連通し、並びに、流入管201の管内空間と連通し、流入管201を介して流入口44から流入した冷媒が上方向に流れる空間である。 The inflow port 44 is an inflow port that is connected to the inflow pipe 201 and into which the refrigerant flows from the inflow pipe 201 . The internal space 21 communicates with the inner space of the heat transfer tube 12 and the inner space of the inflow pipe 201 , and is a space through which the refrigerant flowing from the inflow port 44 flows upward through the inflow pipe 201 .
 本体部20aは、第1部品23と、第2部品24と、蓋41及び蓋42と、オリフィス板91と、を有する。第1部品23と第2部品24とは、伝熱管12の延びる方向(X軸方向)において、互いに対向するように配置されている。第1分配器20の本体部20aは、後述する挿入面部25と側面部26とを有する第1部品23と、対向面部である第2部品24と、を備え、第1部品23と第2部品24とを組み合わせることにより筒状に形成されている。 The body part 20 a has a first part 23 , a second part 24 , lids 41 and 42 , and an orifice plate 91 . The first part 23 and the second part 24 are arranged so as to face each other in the direction in which the heat transfer tubes 12 extend (the X-axis direction). The body portion 20a of the first distributor 20 includes a first component 23 having an insertion surface portion 25 and a side surface portion 26, which will be described later, and a second component 24, which is a facing surface portion. 24 are combined to form a cylindrical shape.
 本体部20aは、図4に示すように、第1部品23と第2部品24との組み合わせにより筒状に形成され、図3に示すように、筒状に形成された第1部品23及び第2部品24の長手方向(Z軸方向)の両端が蓋41及び蓋42によって閉塞されている。本体部20aは、第1部品23と、第2部品24と、蓋41及び蓋42とを組み合わせることによって柱状に形成されている。 As shown in FIG. 4, the body portion 20a is formed in a tubular shape by combining a first part 23 and a second part 24, and as shown in FIG. Both ends of the two parts 24 in the longitudinal direction (Z-axis direction) are closed with lids 41 and 42 . The body portion 20 a is formed in a columnar shape by combining the first part 23 , the second part 24 , and the lids 41 and 42 .
 第1部品23は、長尺に形成された部材であり、長手方向(Z軸方向)に対する垂直断面がU字形状に形成されている。なお、第1部品23を含む第1分配器20の長手方向(Z軸方向)に対する垂直断面を軸直角断面と称する場合がある。第1部品23は、図4及び図5に示すように、U字形状に湾曲した部分を形成する挿入面部25と、平板状に形成された部分を形成する側面部26とを有する。なお、側面部26は、平板状に形成された部分に限定されるものではなく、例えば、軸直角断面において挿入面部25よりも緩やかな曲線を描く円弧状に形成された板状の部分でもよい。挿入面部25と2つの側面部26とは一体に形成されている。 The first part 23 is an elongated member, and has a U-shaped cross section perpendicular to the longitudinal direction (Z-axis direction). A cross section perpendicular to the longitudinal direction (Z-axis direction) of the first distributor 20 including the first component 23 may be referred to as an axis-perpendicular cross section. As shown in FIGS. 4 and 5, the first component 23 has an insertion surface portion 25 forming a U-shaped curved portion and a side surface portion 26 forming a flat portion. Note that the side surface portion 26 is not limited to a flat plate-like portion, and may be, for example, a plate-like portion formed in an arc that draws a gentler curve than the insertion surface portion 25 in an axis-perpendicular cross section. . The insertion surface portion 25 and the two side surface portions 26 are integrally formed.
 第1部品23の長手方向(Z軸方向)に対する垂直断面において、挿入面部25は、円弧状に形成されており、側面部26は略直線状に形成されている。挿入面部25は、軸直角断面において、複数の伝熱管12の配置側に凸となるように少なくとも一部が湾曲している。第1部品23は、対向面部である第2部品24とは反対側に凸となるように少なくとも一部が湾曲して形成されている。 In a cross section perpendicular to the longitudinal direction (Z-axis direction) of the first component 23, the insertion surface portion 25 is formed in an arc shape, and the side surface portion 26 is formed in a substantially linear shape. At least a part of the insertion surface portion 25 is curved so as to be convex toward the side on which the plurality of heat transfer tubes 12 are arranged in an axis-perpendicular cross section. At least a part of the first component 23 is curved so as to protrude on the side opposite to the second component 24 which is the facing surface portion.
 第1部品23は、Y軸方向において2つの側面部26が対向するように形成されており、第1部品23の長手方向(Z軸方向)に対する垂直断面における円弧状に形成された挿入面部25の両端部にそれぞれ側面部26が設けられている。側面部26は、第2部品24の後述する平板部28と接続される。側面部26は、本体部20aにおいて、挿入面部25と第2部品24である対向面部の平板部28との間に延びる壁であって、挿入面部25と平板部28とをつなぐ部分である。側面部26は、挿入面部25と一体に形成されており、第2部品24である対向面部の平板部28と接合される。 The first part 23 is formed such that two side surface parts 26 face each other in the Y-axis direction. A side surface portion 26 is provided at both ends of each. The side portion 26 is connected to a later-described flat plate portion 28 of the second component 24 . The side surface portion 26 is a wall extending between the insertion surface portion 25 and the flat plate portion 28 of the opposing surface portion that is the second component 24 in the main body portion 20a, and is a portion that connects the insertion surface portion 25 and the flat plate portion 28 . The side surface portion 26 is formed integrally with the insertion surface portion 25 and is joined to the flat plate portion 28 of the opposing surface portion, which is the second component 24 .
 第1部品23の挿入面部25は、複数の伝熱管12が挿入される。第1部品23の挿入面部25には、図3及び図4に示すように、伝熱管12が挿入される接続口43が形成されている。接続口43は、貫通孔であり第1部品23の長手方向(Z軸方向)に沿って複数形成されている。本体部20aには、複数の伝熱管12が挿入される複数の接続口43が上下方向に間隔をあけて形成されている。伝熱管12は、接続口43に挿入されて第1部品23の壁を貫通している。接続口43に挿入された伝熱管12は、第1部品23によって保持される。 A plurality of heat transfer tubes 12 are inserted into the insertion surface portion 25 of the first component 23 . As shown in FIGS. 3 and 4, the insertion surface portion 25 of the first component 23 is formed with a connection port 43 into which the heat transfer tube 12 is inserted. The connection port 43 is a through hole and is formed in plurality along the longitudinal direction (Z-axis direction) of the first component 23 . A plurality of connection ports 43 into which a plurality of heat transfer tubes 12 are inserted are formed at intervals in the vertical direction in the body portion 20a. The heat transfer tube 12 is inserted into the connection port 43 and penetrates the wall of the first component 23 . The heat transfer tube 12 inserted into the connection port 43 is held by the first component 23 .
 第2部品24は、図3及び図6に示すように、複数の伝熱管12の延びる方向において、挿入面部25と対向する対向面部である。第2部品24は、長尺に形成された部材であり、長手方向(Z軸方向)に対する垂直断面が略Ω字状に形成されている。対向面部である第2部品24は、側面部26と接続する平板部28と、第1分配器20の軸直角断面において、第1分配器20の内部空間21を形成する内壁の一部が挿入面部25に向かって前記平板部28から膨出する膨出部27とを有する。換言すれば、対向面部である第2部品24は、湾曲した部分を形成する膨出部27と、平板状に形成された部分を形成する平板部28とを有する。膨出部27と、第2部品24の長手方向(Z軸方向)に対する垂直断面において膨出部27の両側に位置する2つの平板部28とは一体に形成されている。 The second part 24 is a facing surface portion that faces the insertion surface portion 25 in the direction in which the heat transfer tubes 12 extend, as shown in FIGS. The second part 24 is an elongated member, and has a substantially Ω-shaped cross section perpendicular to the longitudinal direction (Z-axis direction). The second component 24, which is the facing surface portion, includes a flat plate portion 28 connected to the side surface portion 26 and a part of the inner wall forming the inner space 21 of the first distributor 20 in the cross section perpendicular to the axis of the first distributor 20. and a bulging portion 27 that bulges from the flat plate portion 28 toward the surface portion 25 . In other words, the second component 24, which is the facing surface portion, has a bulging portion 27 forming a curved portion and a flat plate portion 28 forming a flat portion. The bulging portion 27 and two flat plate portions 28 located on both sides of the bulging portion 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the second part 24 are integrally formed.
 第2部品24の長手方向(Z軸方向)に対する垂直断面において、膨出部27は、円弧状に形成されており、平板部28は直線状に形成されている。第2部品24は、2つの平板部28の平板面が同一平面Fを形成しており、第2部品24の長手方向(Z軸方向)に対する垂直断面における膨出部27の両端部にそれぞれ平板部28が設けられている。同一平面Fは、図4に示すように、Z軸方向とY軸方向とによって形成される平面である。なお、平板部28は、膨出部27の両端部にそれぞれ設けられている構成に限定されるものではなく、例えば、膨出部27の両端部に位置する平板部28が一体に形成された1枚の平板状の部材として形成されてもよい。 In a cross section perpendicular to the longitudinal direction (Z-axis direction) of the second part 24, the bulging portion 27 is formed in an arc shape, and the flat plate portion 28 is formed in a straight line. In the second part 24, two flat plate parts 28 form the same flat plane F, and flat plates are formed on both ends of the bulging part 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the second part 24, respectively. A section 28 is provided. The same plane F is a plane formed by the Z-axis direction and the Y-axis direction, as shown in FIG. It should be noted that the flat plate portions 28 are not limited to being provided at both ends of the bulging portion 27. For example, the flat plate portions 28 located at both ends of the bulging portion 27 are integrally formed. It may be formed as a single plate-like member.
 膨出部27は、第1分配器20の軸直角断面において、対向面部である第2部品24のうち少なくとも一部が挿入面部25に向かって膨出している部分である。膨出部27は、2つの平板部28の間に設けられており、平板部28から挿入面部25の形成側、すなわち、伝熱管12の配置側に突出するように膨出している。膨出部27は、1枚の平板部28のうち少なくとも一部が挿入面部25に向かって膨出している部分として構成されてもよい。膨出部27は、本体部20aの長手方向、すなわち、第2部品24の長手方向に沿って形成されている。 The bulging portion 27 is a portion in which at least a portion of the second component 24 that is the facing surface portion bulges toward the insertion surface portion 25 in the axis-perpendicular cross section of the first distributor 20 . The bulging portion 27 is provided between two flat plate portions 28 and bulges from the flat plate portion 28 so as to protrude from the side where the insertion surface portion 25 is formed, that is, the side where the heat transfer tubes 12 are arranged. The bulging portion 27 may be configured as a portion in which at least a portion of the flat plate portion 28 bulges toward the insertion surface portion 25 . The bulging portion 27 is formed along the longitudinal direction of the main body portion 20 a , that is, along the longitudinal direction of the second component 24 .
 膨出部27は、挿入面部25の内壁と対向する対向面27aを有する。なお、図4では、膨出部27は、U字状に形成されているが、膨出部27の形状は、当該形状に限定されるものではない。膨出部27は、平板部28から挿入面部25の形成側、すなわち、伝熱管12の配置側に突出するように形成されていればよく、例えば、中実の半円状に形成されてもよい。 The bulging portion 27 has a facing surface 27 a that faces the inner wall of the insertion surface portion 25 . Although the bulging portion 27 is formed in a U shape in FIG. 4, the shape of the bulging portion 27 is not limited to this shape. The bulging portion 27 may be formed so as to protrude from the flat plate portion 28 toward the side where the insertion surface portion 25 is formed, that is, toward the side where the heat transfer tubes 12 are arranged. good.
 対向面部である第2部品24の膨出部27には、内部空間21に冷媒が流入する流入口が少なくとも1つ以上形成されている。流入口44は、貫通孔であり、流入管201が挿入される。流入管201は、流入口44に挿入されて第2部品24の壁を貫通している。流入口44に挿入された流入管201は、第2部品24によって保持される。 At least one inflow port through which the coolant flows into the internal space 21 is formed in the bulging portion 27 of the second part 24 which is the facing surface portion. The inflow port 44 is a through hole into which the inflow pipe 201 is inserted. The inflow pipe 201 is inserted into the inflow port 44 and penetrates the wall of the second part 24 . The inflow tube 201 inserted into the inflow port 44 is held by the second part 24 .
 流入口44は、本体部20aの内部空間21において、複数の伝熱管12の中で最下部に位置する伝熱管12と対向する位置に形成されている。または、図3に示すように、流入口44は、本体部20aの内部空間21において、複数の伝熱管12の中で最下部に位置する伝熱管12よりも下方に位置するように形成されている。 The inflow port 44 is formed in the internal space 21 of the main body 20a at a position facing the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 . Alternatively, as shown in FIG. 3 , the inlet 44 is formed so as to be positioned below the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 in the internal space 21 of the main body 20a. there is
 本体部20aは、対向する2つの側面部26の間に膨出部27が位置するように形成されている。本体部20aは、挿入面部25、2つの側面部26、膨出部27、2つの平板部28、蓋41、及び、蓋42の内壁面によって内部空間21が形成されている。本体部20aの長手方向(Z軸方向)に対する垂直断面において、内部空間21は、図4に示すように、略U字形状に形成されている。 The main body portion 20a is formed so that the bulging portion 27 is positioned between two side surface portions 26 facing each other. The body portion 20 a has an internal space 21 formed by an insertion surface portion 25 , two side surface portions 26 , a bulging portion 27 , two flat plate portions 28 , a lid 41 , and an inner wall surface of the lid 42 . As shown in FIG. 4, the internal space 21 is formed in a substantially U shape in a vertical cross section with respect to the longitudinal direction (Z-axis direction) of the body portion 20a.
 本体部20aの代表的な製造方法は次のようなものである。第1部品23は、伝熱管12の挿入口となる接続口43を形成した上で、長手方向に対する垂直断面が円弧状になるように形成する。そのため、第1部品23は、接続口43を形成するためのプレス加工と、曲面を形成するための曲げ加工とによって成型され、半円状のプレス板部品として成型される。 A representative manufacturing method of the main body 20a is as follows. The first part 23 is formed with a connection port 43 that serves as an insertion port for the heat transfer tube 12, and is formed so that a cross section perpendicular to the longitudinal direction has an arc shape. Therefore, the first component 23 is formed by press work for forming the connection port 43 and bending work for forming the curved surface, and is formed as a semicircular pressed plate component.
 第2部品24は、流入管201の接続口となる流入口44を形成した上で、長手方向に対する垂直断面が円弧状の膨出部27を形成する。そのため、第2部品24は、流入口44を形成するためのプレス加工と、曲面を形成するための曲げ加工とによって成型され、膨出部27のあるプレス板部品として成型される。 The second part 24 forms an inflow port 44 that serves as a connection port for the inflow pipe 201, and then forms a bulging portion 27 having an arc-shaped cross section perpendicular to the longitudinal direction. Therefore, the second part 24 is molded by pressing for forming the inlet 44 and bending for forming a curved surface, and is molded as a pressed plate part having the bulging portion 27 .
 なお、本体部20aの製造方法は、上記成型方法に限定されるものではない。例えば、第1部品23と第2部品24とが一体化した本体部20aを押出成型した後に、本体部20aに穴加工を行い接続口43及び流入口44を形成して本体部20aを製造してもよい。あるいは、本体部20aは、第1部品23及び第2部品24をそれぞれプレス加工と押出加工とによって成型したものを組み合わせて製造してもよく、電縫管加工など別の手段を用いて製造してもよい。 The manufacturing method of the main body portion 20a is not limited to the molding method described above. For example, after extrusion molding of the body portion 20a in which the first part 23 and the second part 24 are integrated, the body portion 20a is drilled to form the connection port 43 and the inlet port 44, thereby manufacturing the body portion 20a. may Alternatively, the main body portion 20a may be manufactured by combining the first part 23 and the second part 24 formed by press working and extrusion, or may be manufactured by using another means such as electric resistance welding pipe processing. may
 第1分配器20は、第1分配器20の長手方向(Z軸方向)の両端部を塞ぎ、挿入面部25と、対向面部である第2部品24と、側面部26と共に、内部空間21を形成する蓋41及び蓋42を有する。蓋41及び蓋42は、筒状に形成された第1部品23及び第2部品24の両端を塞ぐ部材である。蓋41及び蓋42は、板状に形成されている。蓋41及び蓋42は、本体部20aに内部空間21を形成するように、本体部20aの長手方向(Z軸方向)の両端部を閉塞する。 The first distributor 20 closes both ends in the longitudinal direction (Z-axis direction) of the first distributor 20 , and defines an internal space 21 together with an insertion surface portion 25 , a second component 24 that is a facing surface portion, and a side surface portion 26 . It has lids 41 and 42 that form. The lids 41 and 42 are members that close both ends of the first component 23 and the second component 24 that are formed in a cylindrical shape. The lids 41 and 42 are plate-shaped. The lids 41 and 42 close both ends of the body portion 20a in the longitudinal direction (Z-axis direction) so as to form the internal space 21 in the body portion 20a.
 本体部20aの内部には、図3及び図7に示すように、本体部20aの内部空間21を上下の空間に隔てる少なくとも1つ以上のオリフィス板91が設けられている。本体部20aの内部には、オリフィス板91によってオリフィス板91の下方に位置する下部空間21aと、オリフィス板91の上方に位置する上部空間21bとが形成されている。本体部20aは、内部にオリフィス板91が設けられており、内部空間21が、オリフィス板91によって下部空間21aと上部空間21bとに隔てられている。本体部20aの内部空間21において、下部空間21aはオリフィス板91の下方に形成された空間であり、上部空間21bはオリフィス板91の上方に形成された空間である。 As shown in FIGS. 3 and 7, at least one orifice plate 91 is provided inside the main body 20a to divide the internal space 21 of the main body 20a into upper and lower spaces. A lower space 21a positioned below the orifice plate 91 and an upper space 21b positioned above the orifice plate 91 are formed by the orifice plate 91 inside the body portion 20a. An orifice plate 91 is provided inside the body portion 20a, and the internal space 21 is separated by the orifice plate 91 into a lower space 21a and an upper space 21b. In the internal space 21 of the body portion 20 a , the lower space 21 a is a space formed below the orifice plate 91 and the upper space 21 b is a space formed above the orifice plate 91 .
 図3及び図7に示すように、オリフィス板91には、オリフィス孔92が形成されている。オリフィス孔92は、オリフィス板91に形成された貫通孔であり、オリフィス板91の上下の空間を連通させる。本体部20aの内部空間21は、オリフィス板91のオリフィス孔92によって、下部空間21aと上部空間21bとが連通している。本体部20aは、オリフィス板91のオリフィス孔92の中を冷媒が流れ、オリフィス孔92を介して、下方の下部空間21aから上方の上部空間21bへ冷媒が移動する。第1分配器20は、このような形態のオリフィス板91を用いることによって低流量時におけるガス冷媒の不均等を抑制することができる。 As shown in FIGS. 3 and 7, orifice holes 92 are formed in the orifice plate 91 . The orifice hole 92 is a through hole formed in the orifice plate 91 and allows the upper and lower spaces of the orifice plate 91 to communicate with each other. The internal space 21 of the body portion 20a communicates with the lower space 21a and the upper space 21b through the orifice hole 92 of the orifice plate 91 . In the body portion 20a, the refrigerant flows through the orifice holes 92 of the orifice plate 91, and moves through the orifice holes 92 from the lower space 21a to the upper space 21b. By using the orifice plate 91 having such a configuration, the first distributor 20 can suppress non-uniformity of the gas refrigerant when the flow rate is low.
 第1分配器20の上部空間21bは、補助熱交換部5aと複数の第2分配器30の1つ以上とを介して、中上側主熱交換部5b2及び中下側主熱交換部5b3等の中央側主熱交換部を構成する複数の伝熱管12と連通している。第1分配器20の下部空間21aは、補助熱交換部5aと中央側主熱交換部と連通しない他の複数の第2分配器30の1つ以上とを介して、上側主熱交換部5b1及び下側主熱交換部5b4を構成する複数の伝熱管12と連通している。 The upper space 21b of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of second distributors 30, the middle upper main heat exchange section 5b2, the middle lower main heat exchange section 5b3, and the like. It communicates with a plurality of heat transfer tubes 12 that constitute the central side main heat exchange section. The lower space 21a of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of other second distributors 30 that do not communicate with the central side main heat exchange section 5b1. and a plurality of heat transfer tubes 12 forming the lower main heat exchange section 5b4.
 オリフィス板91は、図7ではオリフィス板91の中央付近に円形状のオリフィス孔92が1つ形成されている。しかし、オリフィス孔92の形成位置は、オリフィス板91の中央付近に限定されるものではない。また、オリフィス孔92の形成数は1つに限定されるものではなく、オリフィス板91には、2つ以上のオリフィス孔92が形成されてもよい。また、オリフィス孔92の穴形状は円形状に限定されるものではなく、例えば長方形の形状に形成されてもよく楕円形状に形成されてもよい。 The orifice plate 91 has one circular orifice hole 92 formed near the center of the orifice plate 91 in FIG. However, the formation position of the orifice hole 92 is not limited to the vicinity of the center of the orifice plate 91 . Also, the number of orifice holes 92 formed is not limited to one, and two or more orifice holes 92 may be formed in the orifice plate 91 . Further, the hole shape of the orifice hole 92 is not limited to a circular shape, and may be, for example, a rectangular shape or an elliptical shape.
 図3に示すように、本体部20aにおいて、下部空間21aを形成する部分が下部本体部20a1であり、上部空間21bを形成する部分が上部本体部20a2である。下部本体部20a1及び上部本体部20a2にはそれぞれ接続口43が形成されている。図2に示すように、上部本体部20a2及び下部本体部20a1にはそれぞれ2つの接続口43が形成されており、本体部20a全体としては4つの接続口43が形成されている。 As shown in FIG. 3, in the body part 20a, the part forming the lower space 21a is the lower body part 20a1, and the part forming the upper space 21b is the upper body part 20a2. A connection port 43 is formed in each of the lower body portion 20a1 and the upper body portion 20a2. As shown in FIG. 2, two connection ports 43 are formed in each of the upper body portion 20a2 and the lower body portion 20a1, and four connection ports 43 are formed in the body portion 20a as a whole.
 複数の伝熱管12は、下部本体部20a1に取り付けられ、他の複数の伝熱管12は、上部本体部20a2に取り付けられている。複数の伝熱管12は、下部本体部20a1の接続口43を貫通し、他の複数の伝熱管12は、上部本体部20a2の接続口43を貫通している。なお、本体部20aの接続口43の形成数は、4つに限定されるものではない。接続口43の形成数は、熱交換部50aが有する伝熱管12の本数によって規定される。 A plurality of heat transfer tubes 12 are attached to the lower body portion 20a1, and a plurality of other heat transfer tubes 12 are attached to the upper body portion 20a2. A plurality of heat transfer tubes 12 pass through the connection port 43 of the lower main body portion 20a1, and a plurality of other heat transfer tubes 12 pass through the connection port 43 of the upper main body portion 20a2. Note that the number of connection ports 43 formed in the body portion 20a is not limited to four. The number of connection ports 43 to be formed is determined by the number of heat transfer tubes 12 included in the heat exchange section 50a.
(流入管201)
 本体部20aには、流入管201が取り付けられている。流入管201は、下部本体部20a1に取り付けられている。流入管201は、本体部20aの内部空間21と連通している。流入管201は下部空間21aと連通する。流入管201には、熱交換器50が蒸発器として機能する際に本体部20aの内部空間21を流れる気液二相冷媒が流入する。
(Inflow pipe 201)
An inflow pipe 201 is attached to the body portion 20a. The inflow pipe 201 is attached to the lower body portion 20a1. The inflow pipe 201 communicates with the internal space 21 of the body portion 20a. The inflow pipe 201 communicates with the lower space 21a. The gas-liquid two-phase refrigerant flowing through the internal space 21 of the main body 20 a flows into the inflow pipe 201 when the heat exchanger 50 functions as an evaporator.
 次に、図3を用いて流入管201の取り付け位置について説明する。流入管201は、下部空間21aの最下段に位置する伝熱管12と対向する位置、又は、最下段に位置する伝熱管12よりも下方の空間に気液二相冷媒が流入する位置において、伝熱管12の延びる方向(X軸方向)に沿って取り付けられるのが望ましい。 Next, the attachment position of the inflow pipe 201 will be described using FIG. The inflow pipe 201 is located at a position facing the heat transfer tube 12 located at the bottom of the lower space 21a, or at a position where the gas-liquid two-phase refrigerant flows into the space below the heat transfer tube 12 located at the bottom. It is desirable to attach along the direction (X-axis direction) in which the heat pipe 12 extends.
 流入管201の取り付け位置を、下部空間21a内において、伝熱管12同士の間の中間地点にしてしまうと冷媒の上向きの流れと冷媒の下向きの流れとが発生してしまい、気液二相冷媒を上向きに流す流速が低下してしまう。そして、気液二相冷媒を上向きに流す流速が低下してしまうと、ガス冷媒と液冷媒との分離が発生しやすくなる。そのため、流入管201は、上述した位置に取り付けられるのが望ましい。 If the installation position of the inflow pipe 201 is set at an intermediate point between the heat transfer tubes 12 in the lower space 21a, an upward flow of the refrigerant and a downward flow of the refrigerant will occur, resulting in a gas-liquid two-phase refrigerant. The flow velocity that flows upward decreases. If the flow velocity of the gas-liquid two-phase refrigerant is lowered, separation between the gas refrigerant and the liquid refrigerant is likely to occur. Therefore, the inflow pipe 201 is desirably attached to the position described above.
 次に本実施の形態の第1分配器20を用いた際の作動流体の特徴を示す。流入管201から流入する気液二相冷媒は、第1分配器20内の下部空間21aを鉛直上方へと流れる際、第1部品23に接続された複数の伝熱管12へ順次排出されるため、上向きの流速が段階的に低下する。 Next, the characteristics of the working fluid when using the first distributor 20 of the present embodiment are shown. Because the gas-liquid two-phase refrigerant flowing from the inflow pipe 201 is sequentially discharged to the plurality of heat transfer tubes 12 connected to the first component 23 when flowing vertically upward in the lower space 21a in the first distributor 20. , the upward flow velocity decreases stepwise.
 ここで、図5に示すA-A線断面図における第1分配器20の内部空間21の断面積を断面積A[m]と定義する。また、図6に示すB-B線断面図における第1分配器20の内部空間21の断面積を断面積A[m]と定義する。 Here, the cross-sectional area of the internal space 21 of the first distributor 20 in the cross-sectional view along line AA shown in FIG. 5 is defined as cross-sectional area A 1 [m 2 ]. Further, the cross-sectional area of the internal space 21 of the first distributor 20 in the cross-sectional view taken along line BB shown in FIG. 6 is defined as cross-sectional area A 2 [m 2 ].
 また、断面積Aを形成する第1分配器20の断面における周長を濡れぶち長さL[m]と定義する。また、断面積Aを形成する第1分配器20の断面における周長を濡れぶち長さL[m]と定義する。また、断面積Aを形成する第1分配器20の断面における水力相当直径を水力相当直径D[m]とする。また、断面積Aを形成する第1分配器20の断面における水力相当直径を水力相当直径D[m]とする。そして、内部空間21を流れる気液二相冷媒の循環量を循環量Gr[kg/s]と定義し、乾き度を乾き度x[-]と定義し、密度を密度ρ[kg/m]と定義し、見かけの速度を速度u[m/s]と定義する。各値を以上のように定義した場合、以下の関係式により無次元フラッディング速度j[-]と、フラッディング定数C[-]とを算出する。下記式において、添え字[_N]はN=1or2or3であり、添え字[_G]はガスであり、添え字[_L]は液である。 Also, the peripheral length of the cross section of the first distributor 20 forming the cross-sectional area A 1 is defined as the wetting edge length L 1 [m]. Also, the peripheral length of the cross section of the first distributor 20 forming the cross-sectional area A2 is defined as the wet edge length L2 [m]. Also, the equivalent hydraulic diameter in the cross section of the first distributor 20 forming the cross-sectional area A 1 is assumed to be the equivalent hydraulic diameter D 1 [m]. Also, the equivalent hydraulic diameter in the cross section of the first distributor 20 forming the cross-sectional area A2 is assumed to be the equivalent hydraulic diameter D2 [m]. Then, the circulation amount of the gas-liquid two-phase refrigerant flowing through the internal space 21 is defined as the circulation amount Gr [kg/s], the dryness is defined as the dryness x [−], and the density is density ρ [kg/m 3 ] and the apparent velocity is defined as velocity u [m/s]. When each value is defined as above, the dimensionless flooding speed j * [-] and the flooding constant C N [-] are calculated by the following relational expressions. In the following formula, the suffix [_N] is N=1 or 2 or 3, the suffix [_G] is gas, and the suffix [_L] is liquid.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、断面積Aにおけるフラッディング定数C[-]が0.4を下回るとガス冷媒と液冷媒との分離が生じやすい。そのため、フラッディング定数C[-]が0.4以上の流速を持つように内部空間21を構成するのがよい。 Here, if the flooding constant C 2 [−] in the cross-sectional area A 2 is less than 0.4, the gas refrigerant and the liquid refrigerant are likely to separate. Therefore, it is preferable to configure the internal space 21 so that the flooding constant C 2 [-] has a flow velocity of 0.4 or more.
 図5及び図6に示すように、第1分配器20の本体部20aには、隅部21c及び隅部21dが形成されている。なお、第1分配器20は、隅部21c及び隅部21dのいずれか一方のみが形成されてもよく、あるいは、隅部21c及び隅部21dの両方が形成されてもよい。隅部21c及び隅部21dは、平板部28と膨出部27と側面部26とによって囲われた空間であり、内部空間21の一部である。隅部21c及び隅部21dは、内部空間21において、平板部28付近の空間である。隅部21c及び隅部21dは、平板部28と膨出部27と側面部26とによって構成される周囲の壁面によって、液冷媒との間に表面張力が働く。そのため、第1分配器20は、隅部21c及び隅部21dに働く表面張力によって液冷媒の落下を抑えることができる。 As shown in FIGS. 5 and 6, the body portion 20a of the first distributor 20 is formed with a corner portion 21c and a corner portion 21d. The first distributor 20 may have only one of the corners 21c and 21d, or may have both the corners 21c and 21d. The corner 21 c and the corner 21 d are spaces surrounded by the flat plate portion 28 , the bulging portion 27 and the side portion 26 and are part of the internal space 21 . The corners 21 c and 21 d are spaces near the flat plate portion 28 in the internal space 21 . Surface tension acts between the corners 21 c and 21 d and the liquid refrigerant due to the surrounding wall surfaces formed by the flat plate portion 28 , the bulging portion 27 , and the side surface portion 26 . Therefore, the first distributor 20 can prevent the liquid refrigerant from falling due to the surface tension acting on the corners 21c and 21d.
 また、第1分配器20は、隅部21c及び隅部21dを設けることによって、側面部26と平板部28との接合部28aと伝熱管12との距離を遠ざけることができる。そのため、側面部26と平板部28との接続をロウ付けにより行う場合に、接合部28aに供給されるロウ材が過剰になったとしても、接合部28aと伝熱管12との距離が遠ざけられているため、伝熱管12内の冷媒流路をロウ材によって塞いでしまうことがない。なお、側面部26と平板部28との接合強度を向上させるために、側面部26と平板部28との接合部28aにロウ材のフィレットを形成してもよい。ロウ材のフィレットとは、部材同士の接続部分の角にロウ材が厚く付着して、そこから裾を引くように広がった形状の凝固したロウ材である。 In addition, by providing the corners 21c and 21d of the first distributor 20, the distance between the heat transfer tubes 12 and the joints 28a between the side surface portion 26 and the flat plate portion 28 can be increased. Therefore, when the side portion 26 and the flat plate portion 28 are connected by brazing, even if the brazing material supplied to the joint portion 28a becomes excessive, the distance between the joint portion 28a and the heat transfer tube 12 is increased. Therefore, the refrigerant flow path in the heat transfer tube 12 is not clogged with the brazing filler metal. In order to improve the joint strength between the side surface portion 26 and the flat plate portion 28, a brazing fillet may be formed at the joint portion 28a between the side surface portion 26 and the flat plate portion 28. FIG. A brazing filler metal fillet is a solidified brazing filler material that is thickly attached to the corners of the joints between members and spreads out from the corners so as to draw a skirt.
 図8は、膨出部27の作用を説明するための説明図である。本体部20aの長手方向(Z軸方向)に対する軸直角断面において、伝熱管12のうち対向面部である第2部品24と最も接近した部分の接線を第1接線Pとする。第1接線Pは、第1分配器20及び本体部20aの長手方向(Z軸方向)と平行な方向に見た場合に、複数の伝熱管12の延びる方向(X軸方向)と直角な関係となる。 FIG. 8 is an explanatory diagram for explaining the action of the bulging portion 27. FIG. In a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body 20a, a first tangent line P is defined as a tangent line of a portion of the heat transfer tube 12 that is closest to the second component 24, which is the facing surface portion. The first tangent line P is perpendicular to the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. becomes.
 本体部20aの長手方向(Z軸方向)に対する軸直角断面において、膨出部27のうち最頂部27bと接する接線を第2接線Qと定義する。第2接線Qは、第1分配器20及び本体部20aの長手方向(Z軸方向)と平行な方向に見た場合に、膨出部27のうち伝熱管12に最も接近した部分の接線である。第2接線Qは、第1分配器20及び本体部20aの長手方向(Z軸方向)と平行な方向に見た場合に、複数の伝熱管12の延びる方向(X軸方向)と直角な関係となる。第1分配器20及び本体部20aの長手方向(Z軸方向)と平行な方向に見た場合に、第1接線Pと第2接線Qとは平行である。 A second tangent line Q is defined as a tangent line in contact with the topmost portion 27b of the bulging portion 27 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body portion 20a. A second tangent line Q is a tangent line of a portion of the bulging portion 27 that is closest to the heat transfer tube 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. be. The second tangent line Q is perpendicular to the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. becomes. The first tangent line P and the second tangent line Q are parallel when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a.
 最頂部27bは、伝熱管12の延びる方向(X軸方向)において、最も伝熱管12に近い部分であり、平板部28から最も突出した部分である。すなわち、最頂部27bは、伝熱管12の延びる方向(X軸方向)において、第2部品24の中で最も接続口43に近い部分である。 The top portion 27b is the portion closest to the heat transfer tube 12 in the direction in which the heat transfer tube 12 extends (the X-axis direction), and is the portion that protrudes most from the flat plate portion 28 . That is, the top portion 27b is the portion closest to the connection port 43 in the second component 24 in the direction in which the heat transfer tube 12 extends (the X-axis direction).
 そして、本体部20aの長手方向(Z軸方向)に対する軸直角断面において、挿入面部25から最も離れた第2部品24における内部空間21を形成する部分との接線を第3接線Rと定義する。第3接線Rは、第1分配器20及び本体部20aの長手方向(Z軸方向)と平行な方向に見た場合に、平板部28であって内部空間21の内壁を構成する部分と接する線であり、第1接線P及び第2接線Qと平行な線である。 A third tangent line R is defined as a tangent line to a portion of the second part 24 that is farthest from the insertion surface portion 25 and forms the internal space 21 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body portion 20a. The third tangent line R contacts the portion of the flat plate portion 28 that forms the inner wall of the internal space 21 when viewed in a direction parallel to the longitudinal direction (Z-axis direction) of the first distributor 20 and the main body portion 20a. line parallel to the first tangent line P and the second tangent line Q;
 伝熱管12の延びる方向(X軸方向)において、第1接線Pと第2接線Qとの間の距離を第1距離M1とし、第1接線Pと第3接線Rとの間の距離を第2距離M2とした場合、第2距離M2は、第1距離M1の1.5倍以上の大きさである。第1分配器20は、本体部20aの長手方向(Z軸方向)に対する軸直角断面において、第2距離M2≧1.5×第1距離M1の関係を満たすように形成されている。 In the direction in which the heat transfer tube 12 extends (the X-axis direction), the distance between the first tangent line P and the second tangent line Q is defined as a first distance M1, and the distance between the first tangent line P and the third tangent line R is defined as a first distance M1. In the case of two distances M2, the second distance M2 is 1.5 times or more the first distance M1. The first distributor 20 is formed so as to satisfy the relationship of second distance M2≧1.5×first distance M1 in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body 20a.
 換言すれば、第1分配器20は、軸直角断面において、複数の伝熱管12のそれぞれの先端部12bから膨出部27までの最短距離を第1距離M1とする。また、第1分配器20において、複数の伝熱管12の延びる方向における複数の伝熱管12のそれぞれの先端部12bから平板部28の位置までの距離を第2距離M2とする。このような場合に、第1分配器20は、第2距離M2≧1.5×第1距離M1の関係を満たすように形成されている。 In other words, in the axis-perpendicular cross section of the first distributor 20, the shortest distance from the tip end portion 12b of each of the plurality of heat transfer tubes 12 to the bulging portion 27 is the first distance M1. Further, in the first distributor 20, the distance from the distal end portion 12b of each of the plurality of heat transfer tubes 12 to the position of the flat plate portion 28 in the direction in which the plurality of heat transfer tubes 12 extend is defined as a second distance M2. In such a case, the first distributor 20 is formed so as to satisfy the relationship of second distance M2≧1.5×first distance M1.
 第1分配器20は、第2距離M2が第1距離M1の1.5倍以上の大きさであることによって、内部空間21の断面積Aを最小限の大きさにすることができる上に、濡れぶち長さLを大きくすることができる。そのため、第1分配器20は、水力相当直径Dを小さくすることができ、結果としてフラッディング定数Cも大きくすることができる。 In the first distributor 20, the second distance M2 is 1.5 times or more the first distance M1, so that the cross-sectional area A2 of the internal space 21 can be minimized. In addition, the wet edge length L2 can be increased. Therefore, the first distributor 20 can reduce the hydraulic equivalent diameter D2 , and as a result, can also increase the flooding constant C2 .
 図9は、分配器内高さに対するフラッディング定数Cの関係を示した図である。図9に示す「従来」は本開示の第1分配器20を有さない分配器を示し、「実施の形態」は本実施の形態の第1分配器20を示している。なお、「従来」の分配器は、本体部の長手方向(Z軸方向)に対する軸直角断面において、本体部が真円形状の断面を有する分配器である。図9に示すように、第1分配器20内の高さの位置が上部に行くにつれ、伝熱管12へと順次気液二相冷媒が排出されるためフラッディング定数Cは低下していく。 FIG. 9 is a diagram showing the relationship between the flooding constant CN and the height inside the distributor. "Conventional" shown in FIG. 9 indicates a distributor that does not have the first distributor 20 of the present disclosure, and "Embodiment" indicates the first distributor 20 of this embodiment. The "conventional" distributor is a distributor in which the main body has a perfectly circular cross section in a cross section perpendicular to the longitudinal direction (Z-axis direction) of the main body. As shown in FIG. 9, as the height inside the first distributor 20 increases, the gas-liquid two-phase refrigerant is sequentially discharged to the heat transfer tubes 12, so the flooding constant CN decreases.
 従来の分配器は、内部空間21の水力相当直径Dが大きくなってしまうため、フラッディング定数Cが小さくなりフラッディング定数Cが0.4を下回ることでガス冷媒と液冷媒との分離が生じる。そのため、従来の分配器は、分配器内の高さの最上部にはガス冷媒のみしか供給されないことが起き、気液二相冷媒の分配が不均等になることで熱交換器性能が低下しやすい。 In the conventional distributor, since the hydraulic equivalent diameter D2 of the internal space 21 becomes large, the flooding constant C2 becomes small and the flooding constant C2 falls below 0.4, so that the gas refrigerant and the liquid refrigerant cannot be separated. occur. Therefore, in the conventional distributor, only the gas refrigerant is supplied to the top of the height inside the distributor, and the distribution of the gas-liquid two-phase refrigerant becomes uneven, resulting in a decrease in heat exchanger performance. Cheap.
 一方、本開示の第1分配器20では、第2距離M2が第1距離M1の1.5倍以上の大きさであることによって、上述したようにフラッディング定数Cを大きくすることができ、フラッディング定数Cを0.4以上にした状態で気液二相冷媒を分配できる。そのため、第1分配器20は、ガス冷媒と液冷媒との分離を防ぐことができ、第1分配器の上部への液冷媒の供給不足を抑制できる。また、第1分配器20は、ガス冷媒と液冷媒との分離を防ぐことができ、第1分配器20の下流に位置する熱交換部50aにおいて、熱交換部50aの上部にも液冷媒を供給することができる。熱交換器50は、第1分配器20を有することによって、熱交換部50aの上部にも液冷媒を供給することができ、熱交換器50の熱交換器性能の低下を抑えることができる。 On the other hand, in the first distributor 20 of the present disclosure, since the second distance M2 is 1.5 times or more the first distance M1, the flooding constant C2 can be increased as described above, The gas-liquid two-phase refrigerant can be distributed while the flooding constant C2 is set to 0.4 or more. Therefore, the first distributor 20 can prevent separation of the gas refrigerant and the liquid refrigerant, and can suppress insufficient supply of the liquid refrigerant to the upper portion of the first distributor. In addition, the first distributor 20 can prevent the separation of the gas refrigerant and the liquid refrigerant, and in the heat exchange section 50a located downstream of the first distributor 20, the liquid refrigerant is also supplied to the upper portion of the heat exchange section 50a. can supply. Since the heat exchanger 50 has the first distributor 20, the liquid refrigerant can be supplied to the upper portion of the heat exchange section 50a as well, and deterioration of the heat exchanger performance of the heat exchanger 50 can be suppressed.
 図10は、実施の形態1の熱交換器50において、第1分配器20内の冷媒の流れを示した模式図である。図10を用いて、第1分配器20におけるオリフィス板91の役割を説明する。流入管201から供給された気液二相冷媒35は、下部空間21aにおいて、下部本体部20a1の内壁面に付着しながら上昇する液冷媒の状態になり、内壁面に付着せずに上昇するガス冷媒の状態及び飛散した液冷媒の粒子の状態になる。 FIG. 10 is a schematic diagram showing the flow of refrigerant in the first distributor 20 in the heat exchanger 50 of Embodiment 1. FIG. The role of the orifice plate 91 in the first distributor 20 will be described with reference to FIG. The gas-liquid two-phase refrigerant 35 supplied from the inflow pipe 201 becomes a liquid refrigerant that rises while adhering to the inner wall surface of the lower body portion 20a1 in the lower space 21a, and becomes a gas that rises without adhering to the inner wall surface. It becomes a state of refrigerant and a state of dispersed liquid refrigerant particles.
 図9で説明したように、第1分配器20内のフラッディング定数Cが0.4以上に大きいと壁面に付着しながら上昇する液冷媒は落下することなく上部へと進むことができ、オリフィス板91へと到達する。オリフィス板91に到達した液冷媒及びガス冷媒は、オリフィス孔92を通過する流れと、オリフィス孔92を通過するための圧力損失の影響でオリフィス孔92を通過しない流れとに分けられる。 As described with reference to FIG. 9, when the flooding constant C2 in the first distributor 20 is 0.4 or more, the liquid refrigerant rising while adhering to the wall surface can proceed upward without falling, and the orifice Plate 91 is reached. The liquid refrigerant and gas refrigerant that have reached the orifice plate 91 are divided into a flow that passes through the orifice holes 92 and a flow that does not pass through the orifice holes 92 due to pressure loss caused by passing through the orifice holes 92 .
 オリフィス孔92のようなノズル空間を通過する際、同一質量で比較すると液冷媒よりも体積の大きいガス冷媒は圧力損失が大きく生じてしまう。そのため、オリフィス孔92を通過する冷媒は、圧力損失が小さい液冷媒の質量流量が多く配分され、上部空間21bに占める気液二相冷媒は、気液二相冷媒のうち約50.1%~58.0%の質量流量が液冷媒となる液リッチの冷媒となりやすい。そのため、第1分配器20では、本体部20aにおいて、図8に示すように4つの伝熱管12によって冷媒の流れが4分岐に分岐された構成の内、下から3本目と4本目の伝熱管12へ流入する気液二相冷媒は、液冷媒の含有量が多い液リッチの冷媒となりやすい。下から3本目と4本目の伝熱管12は、上部空間21bと連通している。 When passing through a nozzle space such as the orifice hole 92, the gas refrigerant, which has a larger volume than the liquid refrigerant when compared with the same mass, causes a large pressure loss. Therefore, the refrigerant passing through the orifice hole 92 is distributed at a large mass flow rate of the liquid refrigerant with a small pressure loss, and the gas-liquid two-phase refrigerant occupying the upper space 21b accounts for about 50.1% or more of the gas-liquid two-phase refrigerant. 58.0% mass flow rate tends to be a liquid-rich refrigerant. Therefore, in the first distributor 20, in the main body portion 20a, as shown in FIG. The gas-liquid two-phase refrigerant flowing into 12 tends to be a liquid-rich refrigerant with a large liquid refrigerant content. The third and fourth heat transfer tubes 12 from the bottom communicate with the upper space 21b.
 オリフィス孔92を通過しない液冷媒及びガス冷媒は、本体部20aにおいて、図8に示すように4つの伝熱管12によって冷媒の流れが4分岐に分岐された構成の内、下から1本目と2本目の伝熱管12へ流入する。オリフィス孔92を通過するための圧力損失の影響でオリフィス孔92を通過しにくいガス冷媒は、図8のように本体部20aにおいて、4つの伝熱管12によって冷媒の流れが4分岐に分岐された構成では、下から1本目と2本目の伝熱管12へ流入しやすい。そのため、第1分配器20では、下から1本目と2本目の伝熱管12へ流入する気液二相冷媒は、ガス冷媒の含有量が多いガスリッチの冷媒となりやすい。下から1本目と2本目の伝熱管12は、下部空間21aと連通する。 The liquid refrigerant and gas refrigerant that do not pass through the orifice holes 92 are divided into four branches by the four heat transfer tubes 12 in the main body 20a as shown in FIG. It flows into the first heat transfer tube 12 . The gas refrigerant, which is difficult to pass through the orifice holes 92 due to the pressure loss caused by passing through the orifice holes 92, is branched into four branches by the four heat transfer tubes 12 in the main body 20a as shown in FIG. In the configuration, it is easy to flow into the first and second heat transfer tubes 12 from below. Therefore, in the first distributor 20, the gas-liquid two-phase refrigerant flowing into the first and second heat transfer tubes 12 from the bottom tends to be a gas-rich refrigerant with a large gas refrigerant content. The first and second heat transfer tubes 12 from the bottom communicate with the lower space 21a.
 オリフィス板91に形成されているオリフィス孔92は、バルブ等の容量係数として一般的に扱われるCv値が0.05~2.0程度の大きさに相当する穴である。オリフィス孔92の穴の大きさを決定するにあたり、例えば、第1分配器20において、質量流量が140[kg/h]及び乾き度が0.10の気液二相冷媒として、R32冷媒が流入管201から内部空間21に流入する場合について検討する。また、第1分配器20において、4つの伝熱管12によって冷媒の流れが4分岐に分岐された構成の内、下から2本目の伝熱管12と3本目の伝熱管12との間にオリフィス板91を備えた場合について検討する。上述したR32冷媒を用い、4分岐の内、下から2本目の伝熱管12と3本目の伝熱管12との間にオリフィス板91を備えた場合、オリフィス孔92は、直径Φ2.2[mm]~Φ6.0[mm]程度の大きさの穴が望ましい。 The orifice hole 92 formed in the orifice plate 91 is a hole corresponding to a Cv value of about 0.05 to 2.0, which is generally treated as a capacity coefficient of a valve or the like. In determining the hole size of the orifice hole 92, for example, in the first distributor 20, R32 refrigerant flows as a gas-liquid two-phase refrigerant having a mass flow rate of 140 [kg/h] and a dryness of 0.10. Consider the case of flowing from pipe 201 into interior space 21 . Further, in the first distributor 20, among the configuration in which the flow of the refrigerant is branched into four branches by the four heat transfer tubes 12, an orifice plate is provided between the second heat transfer tube 12 and the third heat transfer tube 12 from the bottom. Consider the case with 91 . When the R32 refrigerant described above is used and the orifice plate 91 is provided between the second heat transfer tube 12 and the third heat transfer tube 12 from the bottom of the four branches, the orifice hole 92 has a diameter of Φ2.2 [mm ] to Φ6.0 [mm].
[熱交換器50の作用効果]
 本開示に係る熱交換器50は、第2距離M2≧1.5×第1距離M1の関係を満たす第1分配器20を備えている。第1分配器20は、第2距離M2が第1距離M1の1.5倍以上の大きさであることによって、第1分配器20の内部空間21の断面積Aを最小限の大きさにすることができる上に、濡れぶち長さLを大きくすることができる。そのため、第1分配器20は、水力相当直径Dを小さくすることができ、結果としてフラッディング定数Cも大きくすることができる。その結果、第1分配器20は、第1分配器20内の気液二相冷媒において液冷媒とガス冷媒とが分離して液冷媒が落下しない流速を保つことができ、第1分配器20の上部への液冷媒の供給不足を抑制できる。
[Action and effect of heat exchanger 50]
The heat exchanger 50 according to the present disclosure includes the first distributor 20 that satisfies the relationship of second distance M2≧1.5×first distance M1. The first distributor 20 minimizes the cross-sectional area A2 of the internal space 21 of the first distributor 20 by setting the second distance M2 to be 1.5 times or more the first distance M1. In addition, the wetting edge length L2 can be increased. Therefore, the first distributor 20 can reduce the hydraulic equivalent diameter D2 , and as a result, can also increase the flooding constant C2 . As a result, the first distributor 20 can separate the liquid refrigerant and the gas refrigerant in the gas-liquid two-phase refrigerant in the first distributor 20 and maintain a flow velocity at which the liquid refrigerant does not drop. Insufficient supply of liquid refrigerant to the upper part of the can be suppressed.
 また、挿入面部25は、軸直角断面において、複数の伝熱管12の配置側に凸となるように少なくとも一部が湾曲している。第1分配器20の本体部20aは、円形に近いほど第1分配器20内の耐圧が強くなるため、熱交換器50は、挿入面部25が上記の構造で形成されることによって第1分配器20の耐圧を向上させることができる。 In addition, at least a part of the insertion surface portion 25 is curved so as to be convex toward the side on which the plurality of heat transfer tubes 12 are arranged in an axis-perpendicular cross section. Since the pressure resistance in the first distributor 20 increases as the body portion 20a of the first distributor 20 is closer to a circular shape, the heat exchanger 50 is configured such that the insertion surface portion 25 is formed with the above-described structure. The withstand voltage of the container 20 can be improved.
 また、第1分配器20は、第1分配器20の長手方向(Z軸方向)の両端部を塞ぎ、挿入面部25と、対向面部である第2部品24と、側面部26と共に、内部空間21を形成する蓋41及び蓋42を有する。第1分配器20の上下に蓋41及び蓋42が無いと冷媒が外部へと漏れ出て閉じた空間にできないため、第1分配器20は、蓋41及び蓋42を有している。第1分配器20は、第1分配器20の上下端を直角に折り曲げて端部を潰して閉空間を形成するよりも、蓋41及び蓋42によって上下の端部を閉じることによって簡易に閉空間を形成できる。 In addition, the first distributor 20 closes both ends in the longitudinal direction (Z-axis direction) of the first distributor 20, and has an internal space with an insertion surface portion 25, a second component 24 that is a facing surface portion, and a side surface portion 26. It has a lid 41 and a lid 42 forming 21 . Without the lids 41 and 42 above and below the first distributor 20, the refrigerant leaks to the outside and a closed space cannot be created. The first distributor 20 can be easily closed by closing the upper and lower ends with the lids 41 and 42 rather than bending the upper and lower ends of the first distributor 20 at right angles and crushing the ends to form a closed space. Space can be formed.
 また、第1分配器20は、第1分配器20の長手方向(Z軸方向)において内部空間21を上方に位置する上部空間21bと下方に位置する下部空間21aとに隔てる少なくとも1つ以上のオリフィス板91を有する。オリフィス板91には、貫通孔であって上部空間21bと下部空間21aとを連通させるオリフィス孔92が形成されている。オリフィス孔92のようなノズル空間を通過する際、同一質量で比較すると液冷媒よりも体積の大きいガス冷媒は圧力損失が大きく生じてしまう。そのため、オリフィス孔92を通過する冷媒は、圧力損失が小さい液冷媒の質量流量が多く配分され、上部空間21bに占める気液二相冷媒は、液リッチの冷媒となりやすい。その結果、第1分配器20は、第1分配器20の上部への液冷媒の供給不足を抑制できる。 In addition, the first distributor 20 has at least one or more partitions that separate the internal space 21 into an upper space 21b positioned above and a lower space 21a positioned below in the longitudinal direction (Z-axis direction) of the first distributor 20. It has an orifice plate 91 . The orifice plate 91 is formed with an orifice hole 92 which is a through hole and communicates the upper space 21b and the lower space 21a. When passing through a nozzle space such as the orifice hole 92, the gas refrigerant, which has a larger volume than the liquid refrigerant when compared with the same mass, causes a large pressure loss. Therefore, the refrigerant passing through the orifice hole 92 is distributed at a large mass flow rate of liquid refrigerant with a small pressure loss, and the gas-liquid two-phase refrigerant occupying the upper space 21b tends to be a liquid-rich refrigerant. As a result, the first distributor 20 can suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor 20 .
 また、流入口44は、本体部20aの内部空間21において、複数の伝熱管12の中で最下部に位置する伝熱管12と対向する位置に形成されている。または、図3に示すように、流入口44は、本体部20aの内部空間21において、複数の伝熱管12の中で最下部に位置する伝熱管12よりも下方に位置するように形成されている。流入口44に接続される流入管201の取り付け位置を、内部空間21において、伝熱管12同士の間の中間地点にしてしまうと冷媒の上向きの流れと冷媒の下向きの流れとが発生してしまい、気液二相冷媒を上向きに流す流速が低下してしまう。そして、気液二相冷媒を上向きに流す流速が低下してしまうと、ガス冷媒と液冷媒との分離が発生しやすくなる。そのため、流入管201が接続される流入口44の形成位置は、上述した位置に形成されることが望ましく、冷媒の上向きの流れと冷媒の下向きの流れとに分かれる冷媒の流れの発生を抑制できる。 In addition, the inlet 44 is formed in the internal space 21 of the main body 20a at a position facing the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 . Alternatively, as shown in FIG. 3 , the inlet 44 is formed so as to be positioned below the lowermost heat transfer tube 12 among the plurality of heat transfer tubes 12 in the internal space 21 of the main body 20a. there is If the installation position of the inflow pipe 201 connected to the inflow port 44 is set at the middle point between the heat transfer tubes 12 in the internal space 21, an upward flow of the refrigerant and a downward flow of the refrigerant will occur. , the flow velocity at which the gas-liquid two-phase refrigerant flows upward decreases. If the flow velocity of the gas-liquid two-phase refrigerant is lowered, separation between the gas refrigerant and the liquid refrigerant is likely to occur. Therefore, the formation position of the inflow port 44 to which the inflow pipe 201 is connected is desirably formed at the position described above, and the generation of the refrigerant flow that is divided into the upward flow of the refrigerant and the downward flow of the refrigerant can be suppressed. .
 また、第1分配器20は、挿入面部25と側面部26とを有する第1部品23と、対向面部である第2部品24と、を備え、第1部品23と第2部品24とを組み合わせることにより筒状に形成されている。第1分配器20は、挿入面部25、側面部26及び対向面部の全てが一体となっている筒を押出成型で作ることも可能であるが、接続口43及び流入口44を押出成型後に切削する必要があるため製造コストがかかる。第1分配器20は、半割れの第1部品23及び第2部品24の2部品で構成されているため、第1部品23及び第2部品24のそれぞれをプレス加工で製造でき、製造コストを安く抑えることができる。 Further, the first distributor 20 includes a first component 23 having an insertion surface portion 25 and a side surface portion 26, and a second component 24 which is a facing surface portion, and the first component 23 and the second component 24 are combined. Therefore, it is formed in a cylindrical shape. The first distributor 20 can be made by extrusion molding a cylinder in which the insertion surface portion 25, the side surface portion 26, and the opposing surface portion are all integrated. It is expensive to manufacture because it needs to be Since the first distributor 20 is composed of two halves, the first part 23 and the second part 24, the first part 23 and the second part 24 can be manufactured by press working, and the manufacturing cost can be reduced. You can keep it cheap.
 また、第1分配器20の本体部20aは、第1分配器20の長手方向(Z軸方向)の中心軸が鉛直向きの状態、又は、第1分配器20の長手方向の中心軸が鉛直向きのベクトル成分を有する範囲で傾いた状態で設置される。第1分配器20は、上下方向(Z軸方向)に延びる分配器であるが、上述した構成を備えることにより、第1分配器20の上部への液冷媒の供給不足を抑制できる。 Further, the main body portion 20a of the first distributor 20 is in a state in which the central axis of the longitudinal direction (Z-axis direction) of the first distributor 20 is vertical, or the central axis of the longitudinal direction of the first distributor 20 is vertical. It is installed in a tilted state within a range having a directional vector component. The first distributor 20 is a distributor that extends in the vertical direction (the Z-axis direction), but by providing the above-described configuration, it is possible to suppress insufficient supply of liquid refrigerant to the upper portion of the first distributor 20 .
 また、第1分配器20の上部空間21bは、補助熱交換部5aと複数の第2分配器30の1つ以上とを介して、中上側主熱交換部5b2及び中下側主熱交換部5b3等の中央側主熱交換部を構成する複数の伝熱管12と連通している。第1分配器20の下部空間21aは、補助熱交換部5aと中央側主熱交換部と連通しない他の複数の第2分配器30の1つ以上とを介して、上側主熱交換部5b1及び下側主熱交換部5b4を構成する複数の伝熱管12と連通している。 In addition, the upper space 21b of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of second distributors 30, the middle upper main heat exchange section 5b2 and the middle lower main heat exchange section 5b2. It communicates with a plurality of heat transfer tubes 12 that constitute the central side main heat exchange section such as 5b3. The lower space 21a of the first distributor 20 passes through the auxiliary heat exchange section 5a and one or more of the plurality of other second distributors 30 that do not communicate with the central side main heat exchange section 5b1. and a plurality of heat transfer tubes 12 forming the lower main heat exchange portion 5b4.
 ここで、熱交換器は、分配器の下流側に位置する熱交換器における第一の作動流体と第二の作動流体との熱交換において、第二の作動流体の熱量に対して第一の作動流体の非効率な分配の配分を生じてしまい熱交換器の効率を低下させてしまう場合がある。例えば、特許文献1の熱交換器は、分配器の下流に位置する熱交換器において第二の作動流体である空気の熱量に対して第一の作動流体である冷媒が適切な液冷媒の配分にならない場合がある。このため、特許文献1の熱交換器は、均等に液冷媒が供給されることで熱交換量に対して液冷媒が過剰な伝熱管が生じ、熱交換器性能が低下する恐れがある。 Here, in the heat exchange between the first working fluid and the second working fluid in the heat exchanger located downstream of the distributor, the heat exchanger has the first This can result in inefficient distribution of the working fluid, reducing the efficiency of the heat exchanger. For example, in the heat exchanger of Patent Document 1, in the heat exchanger located downstream of the distributor, the refrigerant, which is the first working fluid, is distributed appropriately with respect to the heat amount of the air, which is the second working fluid. may not be For this reason, in the heat exchanger of Patent Document 1, the liquid refrigerant is evenly supplied to the heat transfer tubes in which the liquid refrigerant is excessive with respect to the amount of heat exchanged, and the performance of the heat exchanger may be deteriorated.
 第1分配器20は、オリフィス板91のオリフィス孔92を通過する液リッチの気液二相冷媒の特徴を活かし、図2で示したように熱量が大きい中上側主熱交換部5b2及び中下側主熱交換部5b3等の熱交換部50aへの液冷媒の供給量を増やすことができる。そのため、第1分配器20を有する熱交換器50は、第二の作動流体の熱量に対して適切な液冷媒の配分に分配することで熱交換器性能を向上させることができる。熱交換器50は、第1分配器20内の気液二相冷媒において液冷媒とガス冷媒とが分離して液冷媒が落下しない流速を保ちつつ、第1分配器20の下流に位置する主熱交換部5bにおいて第二の作動流体との熱量に対して適切な液冷媒の配分に分配することができる。 The first distributor 20 utilizes the characteristics of the liquid-rich gas-liquid two-phase refrigerant that passes through the orifice holes 92 of the orifice plate 91, and as shown in FIG. The amount of liquid refrigerant supplied to the heat exchange portions 50a such as the side main heat exchange portion 5b3 can be increased. Therefore, the heat exchanger 50 having the first distributor 20 can improve the heat exchanger performance by appropriately distributing the liquid refrigerant with respect to the heat amount of the second working fluid. The heat exchanger 50 maintains a flow velocity at which liquid refrigerant and gas refrigerant are separated in the gas-liquid two-phase refrigerant in the first distributor 20 so that the liquid refrigerant does not drop, and the main heat exchanger 50 located downstream of the first distributor 20 In the heat exchanging portion 5b, the liquid refrigerant can be appropriately distributed to the heat amount with the second working fluid.
 以上のように、第1分配器20は、簡素な構成要素のみにより気液二相冷媒を熱交換器50における熱量に応じて適切な液冷媒の配分に分配器の上部であっても供給することができ、材料費を抑えながらも熱交換器性能の向上に貢献できる。 As described above, the first distributor 20 supplies the gas-liquid two-phase refrigerant to the appropriate distribution of the liquid refrigerant according to the heat amount in the heat exchanger 50 with only simple components even at the upper part of the distributor. It is possible to contribute to the improvement of heat exchanger performance while suppressing material costs.
実施の形態2.
 図11は、実施の形態2に係る膨出部27の概念的な断面図である。なお、実施の形態1に係る第1分配器20等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図11は、本体部20aの長手方向(Z軸方向)に対する膨出部27の垂直断面であって、実施の形態1で示した膨出部27を概念的に示した断面図である。膨出部27は、図11に示すように、半円形状に形成されてもよい。
Embodiment 2.
FIG. 11 is a conceptual cross-sectional view of the bulging portion 27 according to the second embodiment. Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiment 1 are denoted by the same reference numerals, and descriptions thereof are omitted. FIG. 11 is a vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a, and is a sectional view conceptually showing the bulging portion 27 shown in the first embodiment. The bulging portion 27 may be formed in a semicircular shape as shown in FIG. 11 .
 図12は、実施の形態2に係る膨出部27の第1の別形態の概念的な断面図である。図13は、実施の形態2に係る膨出部27の第2の別形態の概念的な断面図である。本体部20aの長手方向(Z軸方向)に対する膨出部27の垂直断面の形状は、半円形状に限定されるものはない。本体部20aの長手方向(Z軸方向)に対する膨出部27の垂直断面の形状は、図12に示すように四角形状に形成されてもよく、図13に示すように三角形状に形成されてもよい。 FIG. 12 is a conceptual cross-sectional view of a first alternative form of the bulging portion 27 according to the second embodiment. FIG. 13 is a conceptual cross-sectional view of a second alternative form of the bulging portion 27 according to the second embodiment. The shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a is not limited to a semicircular shape. The shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the body portion 20a may be formed in a square shape as shown in FIG. 12, or may be formed in a triangular shape as shown in FIG. good too.
 図14は、実施の形態2に係る膨出部27の第3の別形態の概念的な断面図である。図15は、実施の形態2に係る膨出部27の第4の別形態の概念的な断面図である。図16は、実施の形態2に係る膨出部27の第5の別形態の概念的な断面図である。本体部20aの長手方向(Z軸方向)に対する膨出部27の垂直断面の形状は、図14に示すように、小さな半円形状の円形凸部27cが複数連続するように形成されてもよい。また、膨出部27の垂直断面の形状は、図15に示すように、小さな四角形状の四角状凸部27dが複数連続するように形成されてもよい。また、膨出部27の垂直断面の形状は、図16に示すように、小さな三角形状の山状凸部27eが複数連続した鋸歯状に形成されてもよい。 FIG. 14 is a conceptual cross-sectional view of a third alternative form of the bulging portion 27 according to the second embodiment. FIG. 15 is a conceptual cross-sectional view of a fourth alternative form of the bulging portion 27 according to the second embodiment. FIG. 16 is a conceptual cross-sectional view of a fifth alternative form of the bulging portion 27 according to the second embodiment. As shown in FIG. 14, the shape of the vertical cross section of the bulging portion 27 with respect to the longitudinal direction (Z-axis direction) of the main body portion 20a may be formed such that a plurality of small semicircular circular protrusions 27c are continuous. . Moreover, as shown in FIG. 15, the shape of the vertical cross section of the bulging portion 27 may be formed such that a plurality of small square-shaped square convex portions 27d are continuous. Moreover, as shown in FIG. 16, the shape of the vertical cross section of the bulging portion 27 may be formed in a sawtooth shape in which a plurality of small triangular mountain-like convex portions 27e are continuous.
 膨出部27は、軸直角断面において、1つの半円形状、1つの四角形状、1つの三角形状、複数の半円形が連続する形状、複数の四角形が連続する形状、又は、複数の三角形が連続する形状のいずれか1つの断面形状に形成されている。また、膨出部27は、軸直角断面において、1つの半円形状、1つの四角形状、1つの三角形状、複数の半円形が連続する形状、複数の四角形が連続する形状、あるいは、複数の三角形が連続する形状の断面形状を有する溝を形成する。なお、膨出部27の断面形状は、これらの形状に限定されるものではなく、例えば、上述した形状が組み合わされて形成されてもよい。 The bulging portion 27 has one semicircular shape, one square shape, one triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of squares are continuous, or a shape in which a plurality of triangles are formed in an axis-perpendicular cross section. It is formed in a cross-sectional shape of any one of continuous shapes. In addition, the bulging portion 27 has, in an axis-perpendicular cross-section, a single semicircular shape, a single square shape, a single triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of squares are continuous, or a shape in which a plurality of squares are continuous. A groove having a cross-sectional shape in which triangles are continuous is formed. Note that the cross-sectional shape of the bulging portion 27 is not limited to these shapes, and may be formed by combining the above-described shapes, for example.
 図17は、実施の形態2に係る第1分配器20の本体部20aの斜視図である。第1分配器20の1例として、図17を用いて、図15で示した第4の別形態の膨出部27を有する第1分配器20について説明する。図17に示す第1分配器20は、実施の形態1で説明した半円形状の膨出部27と異なり、小さな四角形状の四角状凸部27dが複数連続するように形成された膨出部27を有している。そのため、図17に示す第1分配器20は、内部空間21に突出する複数の四角状凸部27dによって複数の突出面を形成している。 FIG. 17 is a perspective view of the main body portion 20a of the first distributor 20 according to Embodiment 2. FIG. As an example of the first distributor 20, the first distributor 20 having the fourth different form of the bulging portion 27 shown in FIG. 15 will be described with reference to FIG. The first distributor 20 shown in FIG. 17 is different from the semicircular bulging portion 27 described in the first embodiment, and has a bulging portion in which a plurality of small square convex portions 27d are continuously formed. 27. Therefore, in the first distributor 20 shown in FIG. 17, a plurality of projecting surfaces are formed by a plurality of square projections 27d projecting into the internal space 21. As shown in FIG.
[熱交換器50の作用効果]
 一般的に、分配器の内部空間を上昇しながら流れる気液二相冷媒は、分配器内の壁面に液冷媒が集中し、分配器内の空洞中央部にガス冷媒が集中しやすい。図17の第1分配器20は、膨出部27を構成する複数の四角状凸部27dにより複数の突出面を形成することによって、膨出部27の壁面と気液二相冷媒との接する面積を増加させることができる。そのため、膨出部27が複数の突出面を有する第1分配器20は、実施の形態1のように1つの半円形状の膨出部27の構成と比較して、気液二相冷媒の表面張力が働く部分が増加し、更に液冷媒の落下を抑制できる。
[Action and effect of heat exchanger 50]
In general, in the gas-liquid two-phase refrigerant that flows upward in the inner space of the distributor, the liquid refrigerant tends to concentrate on the wall surface inside the distributor, and the gas refrigerant tends to concentrate on the central portion of the hollow inside the distributor. In the first distributor 20 of FIG. 17, the wall surface of the bulging portion 27 is in contact with the gas-liquid two-phase refrigerant by forming a plurality of protruding surfaces with a plurality of square convex portions 27d forming the bulging portion 27. Area can be increased. Therefore, the first distributor 20, in which the bulging portion 27 has a plurality of protruding surfaces, is different from the configuration of the single semicircular bulging portion 27 as in the first embodiment. The portion where the surface tension acts increases, and the fall of the liquid refrigerant can be suppressed.
 また、図17の第1分配器20は、膨出部27を構成する複数の四角状凸部27dにより複数の突出面を形成することによって、実施の形態1のように1つの半円形状の膨出部27の構成と比較して濡れぶち長さLが大きくなる。そのため、膨出部27が複数の突出面を有する第1分配器20は、実施の形態1のように1つの半円形状の膨出部27の構成と比較してフラッディング定数Cが大きくなりガス冷媒と液冷媒との分離を抑制できる。 Further, the first distributor 20 of FIG. 17 has a single semicircular shape as in the first embodiment by forming a plurality of protruded surfaces with a plurality of square convex portions 27d forming the bulging portion 27. The wetted edge length L2 is increased compared to the configuration of the bulging portion 27 . Therefore, first distributor 20 in which bulging portion 27 has a plurality of protruding surfaces has a larger flooding constant C2 than the configuration of one semicircular bulging portion 27 as in the first embodiment. Separation of gas refrigerant and liquid refrigerant can be suppressed.
 図17に示すように膨出部27が複数の突出面を有する第1分配器20は、液冷媒の落下を抑制でき、また、ガス冷媒と液冷媒との分離を抑制できるため、実施の形態1の第1分配器20よりも、第1分配器20の上部への液冷媒の供給が増加しやすい。そのため、第1分配器20は、複数の伝熱管12を有して冷媒の分岐数が増え、第1分配器20の下部から上部に向かうほど気液二相冷媒の質量流量が低下する場合でも、第1分配器20の上部から液冷媒の供給がしやすくなる。 As shown in FIG. 17, the first distributor 20 in which the bulging portion 27 has a plurality of protruding surfaces can suppress the liquid refrigerant from falling and can suppress the separation of the gas refrigerant and the liquid refrigerant. The supply of liquid refrigerant to the upper portion of the first distributor 20 is more likely to increase than in the first distributor 20 of 1. Therefore, even if the first distributor 20 has a plurality of heat transfer tubes 12 and the number of refrigerant branches increases, the mass flow rate of the gas-liquid two-phase refrigerant decreases from the bottom to the top of the first distributor 20. , the liquid refrigerant can be easily supplied from the upper portion of the first distributor 20 .
 また、第2部品24を押出成型による製作とした場合、実施の形態2に係る第1分配器20は、図14~図16で示すように複数の凸部によって形成された膨出部27の形状であっても実施の形態1と同様に安価に製造することができる。 Further, when the second part 24 is manufactured by extrusion molding, the first distributor 20 according to the second embodiment has a bulging portion 27 formed of a plurality of convex portions as shown in FIGS. 14 to 16. Even if it has a shape, it can be manufactured at a low cost as in the first embodiment.
 また、膨出部27は、軸直角断面において、1つの半円形状、1つの四角形状、1つの三角形状、複数の半円形が連続する形状、複数の四角形が連続する形状、又は、複数の三角形が連続する形状のいずれか1つの断面形状に形成されている。第1分配器20は、当該構成の膨出部27を有することによって、膨出部27を有していない場合と比較してフラッディング定数Cを大きくすることができる。その結果、第1分配器20は、第1分配器20内の気液二相冷媒において液冷媒とガス冷媒とが分離して液冷媒が落下しない流速を保つことができ、第1分配器20の上部への液冷媒の供給不足を抑制できる。 In addition, the bulging portion 27 has, in an axis-perpendicular cross section, one semicircular shape, one quadrangular shape, one triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of quadrilaterals are continuous, or a shape in which a plurality of squares are continuous. It is formed in any one cross-sectional shape of a shape in which triangles are continuous. The first distributor 20 can increase the flooding constant C2 by having the bulging portion 27 having such a configuration as compared with the case where the bulging portion 27 is not provided. As a result, the first distributor 20 can separate the liquid refrigerant and the gas refrigerant in the gas-liquid two-phase refrigerant in the first distributor 20 and maintain a flow velocity at which the liquid refrigerant does not drop. Insufficient supply of liquid refrigerant to the upper part of the can be suppressed.
 以上のことから、実施の形態2に係る第1分配器20は、第2部品24が備える膨出部27の周長を増加させることにより第1分配器20の上部への液冷媒の供給量を増加させるができる。そのため、実施の形態2に係る第1分配器20は、冷媒の分配経路が実施の形態1の第1分配器20以上に多分岐の場合でも液冷媒を第1分配器20の上部まで供給することができる。 As described above, in the first distributor 20 according to Embodiment 2, the amount of liquid refrigerant supplied to the upper portion of the first distributor 20 is can be increased. Therefore, the first distributor 20 according to the second embodiment supplies the liquid refrigerant to the upper part of the first distributor 20 even when the refrigerant distribution path has more branches than the first distributor 20 according to the first embodiment. be able to.
実施の形態3.
 図18は、実施の形態3に係る第1分配器20に用いられるオリフィス板91の第1の別形態の概念的な断面図である。図19は、実施の形態3に係る第1分配器20に用いられるオリフィス板91の第2の別形態の概念的な断面図である。図20は、実施の形態3に係る第1分配器20に用いられるオリフィス板91の第3の別形態の概念的な断面図である。なお、図18~図20の断面図は、図3に示す第1分配器20のC-C線位置の断面図である。図18~図20を用いて実施の形態1とは別形態のオリフィス板91について説明する。なお、実施の形態1及び実施の形態2に係る第1分配器20等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 3.
FIG. 18 is a conceptual cross-sectional view of another first form of orifice plate 91 used in first distributor 20 according to the third embodiment. FIG. 19 is a conceptual cross-sectional view of a second alternative form of orifice plate 91 used in first distributor 20 according to the third embodiment. FIG. 20 is a conceptual cross-sectional view of a third alternative form of orifice plate 91 used in first distributor 20 according to the third embodiment. 18 to 20 are cross-sectional views taken along line CC of the first distributor 20 shown in FIG. An orifice plate 91 that is different from the first embodiment will be described with reference to FIGS. 18 to 20. FIG. Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiments 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
 オリフィス板91のオリフィス孔92は、図18及び図19に示すオリフィス孔92a及びオリフィス孔92bのように2つ形成されてもよい。図18及び図19ではオリフィス板91には、オリフィス孔92a及びオリフィス孔92bのように2つのオリフィス孔92が形成されているが、オリフィス板91には少なくとも1つ以上のオリフィス孔92が形成されていればよい。例えば、オリフィス板91には、図18及び図19に示すオリフィス孔92a又はオリフィス孔92bのいずれか一方のオリフィス孔92のみが形成されていてもよい。 The orifice plate 91 may have two orifice holes 92 such as an orifice hole 92a and an orifice hole 92b shown in FIGS. 18 and 19, the orifice plate 91 is formed with two orifice holes 92 such as an orifice hole 92a and an orifice hole 92b, but the orifice plate 91 is formed with at least one orifice hole 92. It is good if there is For example, the orifice plate 91 may be formed with only one of the orifice holes 92a and 92b shown in FIGS.
 本体部20aの長手方向と平行な方向に見た場合に、オリフィス孔92の穴形状は、図18のオリフィス孔92に示すように円形状に形成されてもよく、図20に示すように、長方形の形状に形成されてもよい。また、オリフィス孔92の穴形状は、本体部20aの長手方向と平行な方向に見た場合に、楕円形状(図示は省略)に形成されてもよい。 When viewed in a direction parallel to the longitudinal direction of the body portion 20a, the hole shape of the orifice hole 92 may be circular as shown in the orifice hole 92 in FIG. 18, or as shown in FIG. It may be formed in a rectangular shape. Also, the shape of the orifice hole 92 may be formed in an elliptical shape (not shown) when viewed in a direction parallel to the longitudinal direction of the body portion 20a.
 また、オリフィス孔92の形成位置は、図7及び図20に示すように、オリフィス板91の中央部分に形成されてもよく、図18及び図19に示すように、オリフィス板91の端部部分に形成されてもよい。図19に示すように、オリフィス板91は、オリフィス孔92a及びオリフィス孔92bの2つのオリフィス孔92のそれぞれが、側面部26と、平板部28と、膨出部27と、オリフィス板91とで囲われる空間となるように形成されてもよい。換言すれば、オリフィス孔92は、上述した隅部21c及び隅部21dに形成されてもよい。 7 and 20, the orifice plate 91 may be formed at the central portion of the orifice plate 91, and as shown in FIGS. may be formed in As shown in FIG. 19, the orifice plate 91 has an orifice hole 92a and an orifice hole 92b, each of which consists of a side surface portion 26, a flat plate portion 28, a bulging portion 27, and an orifice plate 91. It may be formed to be an enclosed space. In other words, the orifice holes 92 may be formed in the corners 21c and 21d described above.
 図18~図20に示すように、オリフィス孔92は、オリフィス板91において、本体部20aの長手方向と平行な方向に見た場合に伝熱管12と重ならない位置に形成されている。すなわち、第1分配器20は、第1分配器20を第1分配器20の軸方向に投影した場合に、複数の伝熱管12とオリフィス孔92とは重ならない位置に配置されている。第1分配器20の内部空間21を上昇しながら流れる気液二相冷媒の進行方向(Z軸方向)において、伝熱管12とオリフィス孔92とは重ならない位置に配置されている。 As shown in FIGS. 18 to 20, the orifice holes 92 are formed in the orifice plate 91 at positions that do not overlap the heat transfer tubes 12 when viewed in a direction parallel to the longitudinal direction of the main body 20a. That is, the first distributor 20 is arranged at a position where the plurality of heat transfer tubes 12 and the orifice holes 92 do not overlap when the first distributor 20 is projected in the axial direction of the first distributor 20 . In the advancing direction (Z-axis direction) of the gas-liquid two-phase refrigerant flowing upward in the internal space 21 of the first distributor 20, the heat transfer tubes 12 and the orifice holes 92 are arranged at positions that do not overlap.
 第1分配器20の内部空間21を上昇しながら流れる気液二相冷媒は、流路断面が伝熱管12と重ならないX-Y断面を通過すると考えられる。この場合、オリフィス孔92の形成位置が伝熱管12と重なる部分に配置されると、気液二相冷媒の流路は、伝熱管12の存在によって進行方向から迂回してオリフィス孔92へと進む流れとなる。 It is considered that the gas-liquid two-phase refrigerant that flows upward in the internal space 21 of the first distributor 20 passes through the XY cross section that does not overlap the heat transfer tubes 12 . In this case, when the formation position of the orifice hole 92 is arranged in a portion overlapping with the heat transfer tube 12, the flow path of the gas-liquid two-phase refrigerant detours from the traveling direction and advances to the orifice hole 92 due to the existence of the heat transfer tube 12. flow.
 分配器は、このように伝熱管12を迂回する気液二相冷媒の流れにすると、オリフィス孔92を通過するための圧力損失が過剰に発生しやすくガス冷媒の供給が減少するだけでなく液冷媒の供給も減少しやすくなる。そのため、第1分配器20は、図18~図20に示すように、第1分配器20の軸方向に投影した場合に、複数の伝熱管12とオリフィス孔92とが重ならない位置に配置されている。 If the flow of the gas-liquid two-phase refrigerant bypasses the heat transfer tubes 12 in this way, the distributor is likely to cause excessive pressure loss due to passage through the orifice holes 92, which not only reduces the supply of gas refrigerant but also The supply of refrigerant also tends to decrease. Therefore, as shown in FIGS. 18 to 20, the first distributor 20 is arranged at a position where the plurality of heat transfer tubes 12 and the orifice holes 92 do not overlap when projected in the axial direction of the first distributor 20. ing.
[熱交換器50の作用効果]
 第1分配器20は、オリフィス孔92と伝熱管12とが重ならない位置に形成されていることで、伝熱管12を迂回する気液二相冷媒の流れが生じにくく、第1分配器20の内部空間21を上昇しながら流れる気液二相冷媒がオリフィス孔92を通過しやすくなる。そのため、第1分配器20は、オリフィス孔92と伝熱管12とが重ならない位置に形成されていることで、上部空間21bに流入する液リッチな気液二相冷媒の供給量を十分に確保することができ、熱交換器50の熱交換器性能の低下を抑えることができる。
[Action and effect of heat exchanger 50]
The first distributor 20 is formed at a position where the orifice holes 92 and the heat transfer tubes 12 do not overlap, so that the flow of the gas-liquid two-phase refrigerant bypassing the heat transfer tubes 12 is less likely to occur. The gas-liquid two-phase refrigerant flowing upward in the internal space 21 easily passes through the orifice hole 92 . Therefore, the first distributor 20 is formed at a position where the orifice hole 92 and the heat transfer tube 12 do not overlap, thereby ensuring a sufficient supply amount of the liquid-rich gas-liquid two-phase refrigerant flowing into the upper space 21b. It is possible to suppress deterioration of the heat exchanger performance of the heat exchanger 50 .
実施の形態4.
 図21は、実施の形態4に係る第1分配器20において、オリフィス孔92と伝熱管12との関係を説明する概念図である。図21(a)は、図3に示すC-C線における本体部20aの延びる方向に対して垂直な断面模式図である。図21(b)は、図21(a)のE-E線における本体部20aの断面模式図である。図21(c)は、図21(b)白抜き矢印で示す空気の流れ方向において、「空気の流れ方向」に対する「空気の温度分布」を示した図である。なお、実施の形態1~実施の形態3に係る第1分配器20等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。
Embodiment 4.
FIG. 21 is a conceptual diagram illustrating the relationship between the orifice holes 92 and the heat transfer tubes 12 in the first distributor 20 according to the fourth embodiment. FIG. 21(a) is a schematic cross-sectional view perpendicular to the direction in which the main body 20a extends along line CC shown in FIG. FIG. 21(b) is a schematic cross-sectional view of the main body 20a taken along line EE in FIG. 21(a). FIG. 21(c) is a diagram showing the "air temperature distribution" with respect to the "air flow direction" in the air flow direction indicated by the white arrow in FIG. 21(b). Components having the same functions and actions as those of the first distributor 20 and the like according to Embodiments 1 to 3 are denoted by the same reference numerals, and descriptions thereof are omitted.
 図21を用いて、オリフィス孔92の形成位置と、伝熱管12との関係について説明する。図21に示す伝熱管12は、空気の流れ方向に対して扁平状に形成されている。伝熱管12は、本体部20aの軸方向となるZ軸に対して、本体部20aの軸方向となるZ軸と伝熱管12が延びる方向であるX軸方向とに垂直な方向であるY軸方向に長軸を有する扁平形状に形成されている。空気の流れは、例えば、図1に示す室外送風機6又は室内送風機7等によって形成される。室外送風機6又は室内送風機7等は、熱交換器50に空気を供給する。 The relationship between the positions where the orifice holes 92 are formed and the heat transfer tubes 12 will be described with reference to FIG. The heat transfer tube 12 shown in FIG. 21 is formed flat with respect to the air flow direction. The heat transfer tube 12 extends along the Y axis, which is perpendicular to the Z axis, which is the axial direction of the main body 20a, and the X axis, which is the direction in which the heat transfer tube 12 extends. It is formed in a flat shape having a long axis in the direction. The air flow is formed by, for example, the outdoor fan 6 or the indoor fan 7 shown in FIG. The outdoor fan 6 or the indoor fan 7 or the like supplies air to the heat exchanger 50 .
 複数の伝熱管12のそれぞれは、扁平管である。複数の伝熱管12のそれぞれは、内部に複数の冷媒流路穴12aが形成されており、複数の冷媒流路穴12aは、空気の流れ方向となるY軸方向に並んで配置されている。オリフィス板91においてオリフィス孔92の形成位置は、第1分配器20の中心位置よりも風上側に偏った位置に形成されている。すなわち、第1分配器20は、複数の冷媒流路穴12aが空気の流れ方向に並んで配置されている伝熱管12に対し、オリフィス孔92が相対的に風上側に位置するように形成されている。 Each of the plurality of heat transfer tubes 12 is a flat tube. Each of the plurality of heat transfer tubes 12 has a plurality of coolant channel holes 12a formed therein, and the plurality of coolant channel holes 12a are arranged side by side in the Y-axis direction, which is the air flow direction. The formation position of the orifice hole 92 in the orifice plate 91 is formed at a position deviated to the windward side from the central position of the first distributor 20 . That is, the first distributor 20 is formed such that the orifice hole 92 is located relatively on the windward side with respect to the heat transfer tube 12 in which the plurality of refrigerant flow path holes 12a are arranged side by side in the air flow direction. ing.
 図21(c)に示すように、空気は流れ方向に対して徐々に熱交換をして温度降下が生じてしまう。そのため、伝熱管12は、空気の下流に位置する冷媒流路穴12aでは熱交換するための熱量が不足しやすくなる。オリフィス孔92から最短距離にある冷媒流路穴12aには、オリフィス孔92を通過した液冷媒が最も集中しやすい。第1分配器20は、オリフィス孔92を通過した液冷媒が最も集中しやすいオリフィス孔92から最短距離にある冷媒流路穴12aが、空気の風上側となるように伝熱管12に対してオリフィス孔92の形成位置を偏らせている。 As shown in FIG. 21(c), the air gradually exchanges heat in the direction of flow, resulting in a temperature drop. Therefore, the heat transfer tube 12 tends to lack the amount of heat for heat exchange in the refrigerant passage holes 12a located downstream of the air. The liquid refrigerant that has passed through the orifice hole 92 is most likely to concentrate in the refrigerant flow path hole 12 a that is the shortest distance from the orifice hole 92 . The first distributor 20 is orificed with respect to the heat transfer tubes 12 so that the refrigerant passage hole 12a, which is the shortest distance from the orifice hole 92 where the liquid refrigerant that has passed through the orifice hole 92 is most likely to concentrate, is on the windward side of the air. The formation positions of the holes 92 are biased.
[熱交換器50の作用効果]
 複数の伝熱管12のそれぞれは、内部に複数の冷媒流路穴12aが形成されており、複数の冷媒流路穴12aは、室外送風機6又は室内送風機7等の送風機によって形成される空気の流れる方向に並んで配置されている。第1分配器20は、オリフィス板91においてオリフィス孔92の形成位置が、第1分配器20の中心位置よりも風上側に偏った位置に形成されている。そのため、第1分配器20は、複数の冷媒流路穴12aを備える伝熱管12の熱量に応じた液冷媒の配分を可能とすることで熱交換器50の熱交換器性能を向上させることができる。
[Action and effect of heat exchanger 50]
Each of the plurality of heat transfer tubes 12 has a plurality of refrigerant passage holes 12a formed therein, and the plurality of refrigerant passage holes 12a are formed by a blower such as the outdoor blower 6 or the indoor blower 7. arranged in the same direction. In the first distributor 20 , the orifice hole 92 is formed in the orifice plate 91 at a position that is shifted to the windward side of the center position of the first distributor 20 . Therefore, the first distributor 20 can improve the heat exchanger performance of the heat exchanger 50 by enabling distribution of the liquid refrigerant according to the heat amount of the heat transfer tubes 12 having the plurality of refrigerant flow passage holes 12a. can.
 また、第1分配器20は、オリフィス孔92から最短距離にある冷媒流路穴12aが、空気の風上側となるように伝熱管12に対してオリフィス孔92の形成位置を偏らせている。そのため、第1分配器20は、複数の冷媒流路穴12aを備える伝熱管12の熱量に応じた液冷媒の配分を可能とすることで熱交換器50の熱交換器性能を向上させることができる。 In addition, in the first distributor 20, the formation positions of the orifice holes 92 are biased with respect to the heat transfer tubes 12 so that the refrigerant flow path holes 12a that are the shortest from the orifice holes 92 are on the windward side of the air. Therefore, the first distributor 20 can improve the heat exchanger performance of the heat exchanger 50 by enabling distribution of the liquid refrigerant according to the heat amount of the heat transfer tubes 12 having the plurality of refrigerant flow passage holes 12a. can.
実施の形態5.
 図22は、実施の形態5に係る熱交換器50の概略図である。なお、実施の形態1~実施の形態4に係る熱交換器50等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。図22に示す実線矢印は、冷媒の流れる方向を示している。また、図22に示す白抜矢印は、空気の流れる方向を示している。以下の説明では、熱交換器50は、空気調和装置10を用いて暖房運転を行う際に、蒸発器として機能する室外熱交換器5に使用された場合の構成として説明する。
Embodiment 5.
FIG. 22 is a schematic diagram of a heat exchanger 50 according to Embodiment 5. FIG. Components having the same functions and actions as those of the heat exchanger 50 and the like according to Embodiments 1 to 4 are denoted by the same reference numerals, and descriptions thereof are omitted. Solid arrows shown in FIG. 22 indicate the direction in which the coolant flows. 22 indicates the direction of air flow. In the following description, the heat exchanger 50 will be described as a configuration when it is used as the outdoor heat exchanger 5 functioning as an evaporator when the air conditioner 10 is used for heating operation.
 図22に示すように、熱交換器50は、熱交換部50aと、第1分配器20と、第2分配器30と、ヘッダ80と、を有する。なお、第1分配器20及び第2分配器30は、ヘッダと称してもよい。 As shown in FIG. 22, the heat exchanger 50 has a heat exchange section 50a, a first distributor 20, a second distributor 30, and a header 80. The first distributor 20 and the second distributor 30 may be called headers.
(熱交換部50a)
 熱交換部50aは、熱交換部50aの周囲に存在する空気と熱交換部50aの内部を流れる冷媒とを熱交換させる。熱交換部50aは、熱交換器50を流れる冷媒の流れの中において、第1分配器20と第2分配器30との間に配置されている。また、熱交換部50aは、熱交換器50を流れる冷媒の流れの中において、第2分配器30とヘッダ80との間に配置されている。熱交換部50aは、複数の伝熱管12と、隣り合う伝熱管12同士を接続する伝熱促進部材13とを有する。
(Heat exchange portion 50a)
The heat exchanging portion 50a exchanges heat between the air existing around the heat exchanging portion 50a and the refrigerant flowing inside the heat exchanging portion 50a. The heat exchange section 50 a is arranged between the first distributor 20 and the second distributor 30 in the flow of refrigerant flowing through the heat exchanger 50 . Also, the heat exchange portion 50 a is arranged between the second distributor 30 and the header 80 in the flow of refrigerant flowing through the heat exchanger 50 . The heat exchange section 50a has a plurality of heat transfer tubes 12 and a heat transfer promoting member 13 connecting the heat transfer tubes 12 adjacent to each other.
 実施の形態5の熱交換部50aは、2列以上の熱交換部50aを有している。熱交換部50aは、図22に示すように、空気の流れる方向において、上流側に位置する第1熱交換部51と下流側に位置する第2熱交換部52とを有する。第1熱交換部51及び第2熱交換部52はそれぞれ、XZ平面を形成するように形成されている。第1熱交換部51及び第2熱交換部52は、空気の流れる方向となるY軸方向において、互いに対向するように配置されている。 The heat exchange section 50a of Embodiment 5 has two or more rows of heat exchange sections 50a. As shown in FIG. 22, the heat exchange section 50a has a first heat exchange section 51 located upstream and a second heat exchange section 52 located downstream in the direction of air flow. The first heat exchange portion 51 and the second heat exchange portion 52 are each formed to form an XZ plane. The first heat exchange section 51 and the second heat exchange section 52 are arranged so as to face each other in the Y-axis direction, which is the direction in which air flows.
 熱交換器50が室外熱交換器5(図1参照)である場合には、空気調和装置10は、室外送風機6によって熱交換器50を通過する空気の流れが形成される。この場合、熱交換部50aは、室外送風機6によって形成される空気の流れる方向において、上流側に位置する第1熱交換部51と下流側に位置する第2熱交換部52とを有する。すなわち、第1熱交換部51は第2熱交換部52に対して風上側に配置され、第2熱交換部52は第1熱交換部51に対して風下側に配置されている。 When the heat exchanger 50 is the outdoor heat exchanger 5 (see FIG. 1), the outdoor blower 6 forms an air flow passing through the heat exchanger 50 in the air conditioner 10 . In this case, the heat exchange section 50a has a first heat exchange section 51 located upstream and a second heat exchange section 52 located downstream in the direction in which the air formed by the outdoor fan 6 flows. That is, the first heat exchange section 51 is arranged on the windward side with respect to the second heat exchange section 52 , and the second heat exchange section 52 is arranged on the leeward side with respect to the first heat exchange section 51 .
 例えば、室外送風機6によって形成される空気の流れる方向において、室外送風機6が熱交換器50の風上側に位置する場合には、第1熱交換部51は第2熱交換部52に対して室外送風機6に近い側に配置される。あるいは、室外送風機6によって形成される空気の流れる方向において、室外送風機6が熱交換器50の風下側に位置する場合には、第1熱交換部51は第2熱交換部52と比較して室外送風機6から遠い側に配置される。 For example, when the outdoor fan 6 is positioned on the windward side of the heat exchanger 50 in the direction of air flow formed by the outdoor fan 6 , the first heat exchange section 51 is positioned outside the second heat exchange section 52 . It is arranged on the side close to the blower 6 . Alternatively, when the outdoor fan 6 is located on the leeward side of the heat exchanger 50 in the direction of air flow formed by the outdoor fan 6, the first heat exchange section 51 is compared with the second heat exchange section 52. It is arranged on the far side from the outdoor fan 6. - 特許庁
 熱交換器50が室内熱交換器3(図1参照)である場合には、空気調和装置10は、室内送風機7によって熱交換器50を通過する空気の流れが形成される。この場合、熱交換部50aは、室内送風機7によって形成される空気の流れる方向において、上流側に位置する第1熱交換部51と下流側に位置する第2熱交換部52とを有する。 When the heat exchanger 50 is the indoor heat exchanger 3 (see FIG. 1), the indoor blower 7 forms an air flow passing through the heat exchanger 50 in the air conditioner 10 . In this case, the heat exchange section 50a has a first heat exchange section 51 located on the upstream side and a second heat exchange section 52 located on the downstream side in the direction in which the air formed by the indoor fan 7 flows.
 例えば、室内送風機7によって形成される空気の流れる方向において、室内送風機7が熱交換器50の風上側に位置する場合には、第1熱交換部51は第2熱交換部52に対して室内送風機7に近い側に配置される。あるいは、室内送風機7によって形成される空気の流れる方向において、室内送風機7が熱交換器50の風下側に位置する場合には、第1熱交換部51は第2熱交換部52と比較して室内送風機7から遠い側に配置される。 For example, when the indoor fan 7 is located on the windward side of the heat exchanger 50 in the direction in which the air formed by the indoor fan 7 flows, the first heat exchange section 51 is positioned indoors relative to the second heat exchange section 52 . It is arranged on the side close to the blower 7 . Alternatively, when the indoor fan 7 is located on the leeward side of the heat exchanger 50 in the direction of air flow formed by the indoor fan 7, the first heat exchange section 51 is compared with the second heat exchange section 52. It is arranged on the far side from the indoor fan 7. - 特許庁
 第1熱交換部51は、図22に示すように、流通する冷媒の上流側に位置する第1補助熱交換部51aと、流通する冷媒の下流側に位置する第1主熱交換部51bと、を有する。同様に、第2熱交換部52は、図22に示すように、流通する冷媒の上流側に位置する第2補助熱交換部52aと、流通する冷媒の下流側に位置する第2主熱交換部52bと、を有する。熱交換部50aは、第1補助熱交換部51a、第2補助熱交換部52a、第1主熱交換部51b、第2主熱交換部52bの順に冷媒が流れる。 As shown in FIG. 22, the first heat exchanging portion 51 includes a first auxiliary heat exchanging portion 51a located upstream of the circulating refrigerant, and a first main heat exchanging portion 51b located downstream of the circulating refrigerant. , has Similarly, as shown in FIG. 22, the second heat exchange section 52 includes a second auxiliary heat exchange section 52a positioned upstream of the circulating refrigerant and a second main heat exchange section 52a positioned downstream of the circulating refrigerant. and a portion 52b. In the heat exchange section 50a, refrigerant flows through the first auxiliary heat exchange section 51a, the second auxiliary heat exchange section 52a, the first main heat exchange section 51b, and the second main heat exchange section 52b in this order.
 第1補助熱交換部51aは、伝熱管12の延伸方向(X軸方向)の一端側が第1分配器20と接続され、また、同じ一旦側がジョイント401を介して第2補助熱交換部52aと接続されている。第1補助熱交換部51aは、複数の伝熱管12の内、一部が第1分配器20と接続されており、他の一部がジョイント401と接続されている。第1補助熱交換部51aは、伝熱管12の延伸方向(X軸方向)の他端側にU字形状に形成されたヘアピン部202を有している。 The first auxiliary heat exchange section 51a is connected to the first distributor 20 at one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the second auxiliary heat exchange section 52a via a joint 401 at the same first side. It is connected. Among the plurality of heat transfer tubes 12 , the first auxiliary heat exchange section 51 a is partly connected to the first distributor 20 and partly connected to the joint 401 . The first auxiliary heat exchange portion 51a has a U-shaped hairpin portion 202 on the other end side in the extending direction (X-axis direction) of the heat transfer tube 12 .
 第1補助熱交換部51aは、第1分配器20を流出して伝熱管12を流れる冷媒がヘアピン部202で流れる向きを変える。第1補助熱交換部51aは、第1分配器20からヘアピン部202に向かって冷媒が流れ、異なる他の伝熱管12を通りヘアピン部202から第1分配器20の配置側に向かうように形成されている。ヘアピン部202から、第1分配器20の配置側に向かう冷媒はジョイント401を介して第2補助熱交換部52aへ流入する。 The first auxiliary heat exchange section 51 a changes the flow direction of the refrigerant flowing out of the first distributor 20 and flowing through the heat transfer tubes 12 at the hairpin section 202 . The first auxiliary heat exchange portion 51a is formed so that the refrigerant flows from the first distributor 20 toward the hairpin portion 202 and passes through another different heat transfer tube 12 from the hairpin portion 202 toward the arrangement side of the first distributor 20. It is Refrigerant from the hairpin portion 202 toward the arrangement side of the first distributor 20 flows through the joint 401 into the second auxiliary heat exchange portion 52a.
 第2補助熱交換部52aは、伝熱管12の延伸方向(X軸方向)の一端側がジョイント401を介して第1補助熱交換部51aと接続され、また、同じ一端側が配管300を介して第2分配器30と接続されている。第2補助熱交換部52aは、複数の伝熱管12の内、一部が配管300と接続されており、他の一部がジョイント401と接続されている。第2補助熱交換部52aは、伝熱管12の延伸方向(X軸方向)の他端側にU字形状に形成されたヘアピン部202(図示は省略)を有している。 The second auxiliary heat exchange section 52a is connected to the first auxiliary heat exchange section 51a via a joint 401 at one end side in the extending direction (X-axis direction) of the heat transfer tube 12, and is connected to the first auxiliary heat exchange section 51a via a pipe 300 at the same one end side. It is connected to the 2 distributor 30 . Among the plurality of heat transfer tubes 12 , the second auxiliary heat exchange section 52 a is partly connected to the pipe 300 and partly connected to the joint 401 . The second auxiliary heat exchange portion 52a has a U-shaped hairpin portion 202 (not shown) on the other end side of the heat transfer tube 12 in the extending direction (X-axis direction).
 第2補助熱交換部52aは、ジョイント401を流出して伝熱管12を流れる冷媒がヘアピン部202で流れる向きを変え、ヘアピン部202に向かう伝熱管12とは異なる他の伝熱管12を通り配管300に向かうように形成されている。第2補助熱交換部52aと第2分配器30とは配管300によって接続されている。 In the second auxiliary heat exchange portion 52a, the refrigerant flowing out of the joint 401 and flowing through the heat transfer tube 12 changes its flow direction at the hairpin portion 202, and passes through another heat transfer tube 12 different from the heat transfer tube 12 toward the hairpin portion 202. 300 is formed. The second auxiliary heat exchange section 52 a and the second distributor 30 are connected by a pipe 300 .
 第1主熱交換部51bは、上側主熱交換部5b1、中上側主熱交換部5b2、中下側主熱交換部5b3、及び下側主熱交換部5b4を含む。上側主熱交換部5b1は、上側主熱交換部5b1を構成する伝熱管12が上側第2分配器31と接続する第1主熱交換部51bの部分である。中上側主熱交換部5b2は、中上側主熱交換部5b2を構成する伝熱管12が中上側第2分配器32(図2参照)と接続する第1主熱交換部51bの部分である。 The first main heat exchange section 51b includes an upper main heat exchange section 5b1, a middle upper main heat exchange section 5b2, a middle lower main heat exchange section 5b3, and a lower main heat exchange section 5b4. The upper main heat exchange section 5b1 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the upper main heat exchange section 5b1 are connected to the upper second distributor 31 . The middle upper main heat exchange section 5b2 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the middle upper main heat exchange section 5b2 are connected to the middle upper second distributor 32 (see FIG. 2).
 中下側主熱交換部5b3は、中下側主熱交換部5b3を構成する伝熱管12が中下側第2分配器33(図2参照)と接続する第1主熱交換部51bの部分である。下側主熱交換部5b4は、下側主熱交換部5b4を構成する伝熱管12が下側第2分配器34と接続する第1主熱交換部51bの部分である。第1主熱交換部51bは、上側主熱交換部5b1、中上側主熱交換部5b2、中下側主熱交換部5b3、及び下側主熱交換部5b4の総称でもある。 The middle and lower main heat exchange portion 5b3 is the portion of the first main heat exchange portion 51b where the heat transfer pipes 12 constituting the middle and lower main heat exchange portion 5b3 are connected to the middle and lower second distributor 33 (see FIG. 2). is. The lower main heat exchange section 5b4 is a portion of the first main heat exchange section 51b where the heat transfer tubes 12 forming the lower main heat exchange section 5b4 are connected to the lower second distributor . The first main heat exchange section 51b is also a general term for the upper main heat exchange section 5b1, the intermediate upper main heat exchange section 5b2, the intermediate lower main heat exchange section 5b3, and the lower main heat exchange section 5b4.
 第1主熱交換部51bは、伝熱管12の延伸方向(X軸方向)の一端側が第2分配器30と接続され、また、同じ一旦側がジョイント401を介して第2主熱交換部52bと接続されている。第1主熱交換部51bは、複数の伝熱管12の内、一部が第2分配器30と接続されており、他の一部がジョイント401と接続されている。第1主熱交換部51bは、伝熱管12の延伸方向(X軸方向)の他端側にU字形状に形成されたヘアピン部202を有している。 The first main heat exchange section 51b is connected to the second distributor 30 on one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the second main heat exchange section 52b via a joint 401 on the same first side. It is connected. Among the plurality of heat transfer tubes 12 , the first main heat exchange section 51 b is partly connected to the second distributor 30 and partly connected to the joint 401 . The first main heat exchange portion 51b has a U-shaped hairpin portion 202 on the other end side in the extending direction (X-axis direction) of the heat transfer tube 12 .
 第1主熱交換部51bは、第2分配器30を流出して伝熱管12を流れる冷媒がヘアピン部202で流れる向きを変える。第1主熱交換部51bは、第2分配器30からヘアピン部202に向かって冷媒が流れ、異なる他の伝熱管12を通りヘアピン部202から第2分配器30の配置側に向かうように形成されている。ヘアピン部202から、第2分配器30の配置側に向かう冷媒はジョイント401を介して第2主熱交換部52bへ流入する。 In the first main heat exchange portion 51b, the direction of flow of the refrigerant flowing out of the second distributor 30 and flowing through the heat transfer tubes 12 is changed at the hairpin portion 202. The first main heat exchange portion 51b is formed such that the refrigerant flows from the second distributor 30 toward the hairpin portion 202 and passes through the different heat transfer tubes 12 from the hairpin portion 202 toward the arrangement side of the second distributor 30. It is Refrigerant from the hairpin portion 202 toward the arrangement side of the second distributor 30 flows through the joint 401 into the second main heat exchange portion 52b.
 第2主熱交換部52bは、伝熱管12の延伸方向(X軸方向)の一端側がジョイント401を介して第1主熱交換部51bと接続され、また、同じ一旦側がヘッダ80と接続されている。第2主熱交換部52bは、複数の伝熱管12の内、一部がヘッダ80と接続されており、他の一部がジョイント401と接続されている。第2主熱交換部52bは、伝熱管12の延伸方向(X軸方向)の他端側にU字形状に形成されたヘアピン部202(図示は省略)を有している。 The second main heat exchange portion 52b is connected to the first main heat exchange portion 51b via a joint 401 at one end side in the extending direction (X-axis direction) of the heat transfer tubes 12, and is connected to the header 80 at the same side. there is Among the plurality of heat transfer tubes 12 , the second main heat exchange section 52 b is partly connected to the header 80 and partly connected to the joint 401 . The second main heat exchange portion 52b has a U-shaped hairpin portion 202 (not shown) on the other end side of the heat transfer tube 12 in the extending direction (X-axis direction).
 第2主熱交換部52bは、ジョイント401を流出して伝熱管12を流れる冷媒がヘアピン部202で流れる向きを変え、ヘアピン部202に向かう伝熱管12とは異なる他の伝熱管12を通りヘッダ80に向かうように形成されている。 In the second main heat exchange portion 52b, the refrigerant flowing out of the joint 401 and flowing through the heat transfer tube 12 changes its flow direction at the hairpin portion 202, and passes through the other heat transfer tube 12 different from the heat transfer tube 12 heading for the hairpin portion 202 and passes through the header. It is formed to face 80.
(第1分配器20)
 第1分配器20は、熱交換器50が蒸発器として機能する場合に、第1補助熱交換部51aの冷媒の流入側に設けられている。第1分配器20は、第1補助熱交換部51aを構成する複数の伝熱管12の延伸方向(X軸方向)において、一方の端部に接続されている。第1分配器20は、第1分配器20の内部と伝熱管12の管路内とが連通するように、第1補助熱交換部51aの伝熱管12に接続されている。
(First distributor 20)
The first distributor 20 is provided on the refrigerant inflow side of the first auxiliary heat exchange section 51a when the heat exchanger 50 functions as an evaporator. The first distributor 20 is connected to one end in the extension direction (X-axis direction) of the plurality of heat transfer tubes 12 that constitute the first auxiliary heat exchange section 51a. The first distributor 20 is connected to the heat transfer tubes 12 of the first auxiliary heat exchange section 51a so that the inside of the first distributor 20 and the inside of the heat transfer tubes 12 communicate with each other.
 第1分配器20は、複数の伝熱管12の配列方向(Z軸方向)に沿って延伸するように形成されている。第1分配器20は、複数の伝熱管12に冷媒を分配する。第1分配器20は、熱交換器50において、熱交換部50aの第1補助熱交換部51aに流入する冷媒を、複数の伝熱管12に分配する分配機構として機能する。 The first distributor 20 is formed to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 . The first distributor 20 distributes the refrigerant to the multiple heat transfer tubes 12 . In the heat exchanger 50 , the first distributor 20 functions as a distribution mechanism that distributes the refrigerant flowing into the first auxiliary heat exchange section 51 a of the heat exchange section 50 a to the plurality of heat transfer tubes 12 .
(第2分配器30)
 第2分配器30は、熱交換器50が蒸発器として機能する場合に、第1主熱交換部51bの冷媒の流入側に設けられている。第2分配器30は、熱交換器50が蒸発器として機能する場合に、第2補助熱交換部52aの冷媒の流出側に設けられている。
(Second distributor 30)
The second distributor 30 is provided on the refrigerant inflow side of the first main heat exchange section 51b when the heat exchanger 50 functions as an evaporator. The second distributor 30 is provided on the refrigerant outflow side of the second auxiliary heat exchange section 52a when the heat exchanger 50 functions as an evaporator.
 第2分配器30は、第1主熱交換部51bを構成する複数の伝熱管12の延伸方向(X軸方向)において、一方の端部に接続されている。第2分配器30は、第2分配器30の内部と伝熱管12の管路内とが連通するように、第1主熱交換部51bの伝熱管12に接続されている。第2分配器30は、配管300を介して第2補助熱交換部52aを構成する複数の伝熱管12と接続されている。 The second distributor 30 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the first main heat exchange section 51b. The second distributor 30 is connected to the heat transfer tubes 12 of the first main heat exchange section 51b so that the inside of the second distributor 30 and the pipeline of the heat transfer tubes 12 communicate with each other. The second distributor 30 is connected via piping 300 to a plurality of heat transfer tubes 12 that constitute the second auxiliary heat exchange section 52a.
 第2分配器30は、複数の伝熱管12の配列方向(Z軸方向)に沿って延伸するように形成されている。第2分配器30は、複数の伝熱管12に冷媒を分配する。第2分配器30は、熱交換器50において、熱交換部50aの第1主熱交換部51bに流入する冷媒を、複数の伝熱管12に分配する分配機構として機能する。 The second distributor 30 is formed to extend along the arrangement direction (Z-axis direction) of the plurality of heat transfer tubes 12 . The second distributor 30 distributes the refrigerant to the multiple heat transfer tubes 12 . The second distributor 30 functions as a distribution mechanism that distributes the refrigerant flowing into the first main heat exchange section 51 b of the heat exchange section 50 a to the plurality of heat transfer tubes 12 in the heat exchanger 50 .
 第2補助熱交換部52aと第2分配器30とは、上述したように配管300で接続されている。より詳細には、第2補助熱交換部52aは、上側配管301、中上側配管302、中下側配管303、及び、下側配管304と接続されている。 The second auxiliary heat exchange section 52a and the second distributor 30 are connected by the pipe 300 as described above. More specifically, the second auxiliary heat exchange section 52 a is connected to the upper pipe 301 , the middle upper pipe 302 , the middle lower pipe 303 , and the lower pipe 304 .
 上側配管301は、第2補助熱交換部52aと上側第2分配器31とを接続する配管である。上側配管301は、伝熱管12を介して第1分配器20の下部空間21a(図2参照)と、上側第2分配器31の内部とを連通させる。中上側配管302は、第2補助熱交換部52aと中上側第2分配器32とを接続する配管である。中上側配管302は、伝熱管12を介して第1分配器20の上部空間21b(図2参照)と、中上側第2分配器32の内部とを連通させる。 The upper pipe 301 is a pipe that connects the second auxiliary heat exchange section 52 a and the upper second distributor 31 . The upper pipe 301 communicates the lower space 21 a (see FIG. 2 ) of the first distributor 20 with the inside of the second upper distributor 31 via the heat transfer pipes 12 . The middle upper pipe 302 is a pipe that connects the second auxiliary heat exchange section 52 a and the middle upper second distributor 32 . The middle upper pipe 302 communicates the upper space 21 b (see FIG. 2 ) of the first distributor 20 with the inside of the middle upper second distributor 32 via the heat transfer pipes 12 .
 中下側配管303は、第2補助熱交換部52aと中下側第2分配器33とを接続する配管である。中下側配管303は、伝熱管12を介して第1分配器20の上部空間21b(図2参照)と、中下側第2分配器33の内部とを連通させる。下側配管304は、第2補助熱交換部52aと下側第2分配器34とを接続する配管である。下側配管304は、伝熱管12を介して第1分配器20の下部空間21a(図2参照)と、下側第2分配器34の内部とを連通させる。 The middle and lower pipe 303 is a pipe that connects the second auxiliary heat exchange section 52 a and the middle and lower second distributor 33 . The middle-lower pipe 303 communicates the upper space 21 b (see FIG. 2 ) of the first distributor 20 with the inside of the second middle-lower distributor 33 via the heat transfer pipes 12 . The lower pipe 304 is a pipe that connects the second auxiliary heat exchange section 52 a and the second lower distributor 34 . The lower pipe 304 communicates the lower space 21a (see FIG. 2) of the first distributor 20 with the inside of the second lower distributor 34 via the heat transfer pipes 12 .
(ヘッダ80)
 ヘッダ80は、第2主熱交換部52bを構成する複数の伝熱管12の、延伸方向(X軸方向)の一方の端部に接続されている。ヘッダ80は、ヘッダ80の内部と伝熱管12の管路内とが連通するように、第2主熱交換部52bの伝熱管12に接続されている。ヘッダ80は、熱交換器50において、第2主熱交換部52bの複数の伝熱管12から流出する冷媒が合流する際の合流機構として機能する。なお、ヘッダ80は、ガスヘッダと称する場合がある。
(Header 80)
The header 80 is connected to one end in the extending direction (X-axis direction) of the plurality of heat transfer tubes 12 forming the second main heat exchange portion 52b. The header 80 is connected to the heat transfer tubes 12 of the second main heat exchange section 52b so that the inside of the header 80 and the inside of the heat transfer tubes 12 communicate with each other. In the heat exchanger 50, the header 80 functions as a merging mechanism for merging the refrigerants flowing out from the plurality of heat transfer tubes 12 of the second main heat exchange portion 52b. In addition, the header 80 may be called a gas header.
 実施の形態5に示す熱交換器50は、図22に示すように、空気の流れる方向において、上流側に第2分配器30が配置され、下流側にヘッダ80が配置されている。また、実施の形態5に示す熱交換器50は、図22に示すように、空気の流れる方向において、上流側に第1分配器20が配置され、下流側にヘッダ80が配置されている。 As shown in FIG. 22, the heat exchanger 50 shown in Embodiment 5 has the second distributor 30 arranged on the upstream side and the header 80 arranged on the downstream side in the direction of air flow. Moreover, as shown in FIG. 22, the heat exchanger 50 shown in Embodiment 5 has the first distributor 20 arranged on the upstream side and the header 80 arranged on the downstream side in the direction of air flow.
 また、実施の形態5に示す熱交換器50は、図22に示すように、第1分配器20の上方に第2分配器30が配置されており、第2分配器30の下方に第1分配器20が配置されている。実施の形態5に示す熱交換器50は、第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31が、上下方向に並んで配置されている。実施の形態5に示す熱交換器50は、第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31が、下方から上方に向かってこの順番に並んで配置されている。 22, the heat exchanger 50 shown in Embodiment 5 has the second distributor 30 arranged above the first distributor 20, and the first distributor 30 below the second distributor 30. A distributor 20 is arranged. In the heat exchanger 50 shown in Embodiment 5, the first distributor 20, the lower second distributor 34, the middle-lower second distributor 33, the middle-upper second distributor 32, and the upper-second distributor 31 are , are arranged vertically. In the heat exchanger 50 shown in Embodiment 5, the first distributor 20, the lower second distributor 34, the middle-lower second distributor 33, the middle-upper second distributor 32, and the upper-second distributor 31 are , are arranged in this order from bottom to top.
 図23は、実施の形態5に係る熱交換器50の冷媒流路の説明図である。図23の「分配器側」は、熱交換器50の第1分配器20の配置側の端部を表し、「ヘアピン側」は、熱交換器50のヘアピン部202の配置側の端部を表している。図23の点線矢印及び実線矢印は冷媒の流れを示している。図23を用いて第1熱交換部51と第2熱交換部52とを通過する冷媒流路の流れを説明する。なお、流入口A1、開口部A2、開口部A3、流出口A4、流入口B1、開口部B2、開口部B3、流出口B4は、伝熱管12の端部の開口部を概念的に示したものである。 FIG. 23 is an explanatory diagram of the refrigerant flow paths of the heat exchanger 50 according to Embodiment 5. FIG. "Distributor side" in FIG. 23 represents the end of the heat exchanger 50 on the side where the first distributor 20 is arranged, and "hairpin side" means the end of the heat exchanger 50 on the side where the hairpin portion 202 is arranged. represent. Dotted line arrows and solid line arrows in FIG. 23 indicate the flow of the coolant. The flow of the refrigerant passage passing through the first heat exchange portion 51 and the second heat exchange portion 52 will be described with reference to FIG. 23 . Note that the inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 conceptually represent openings at the ends of the heat transfer tubes 12. It is.
 流入口A1、開口部A2、開口部A3、流出口A4、流入口B1、開口部B2、開口部B3、流出口B4は、第1分配器20の下部本体部20a1と接続し、下部空間21aに連通している(図3参照)。また、流入口A1、開口部A2、開口部A3、流出口A4、流入口B1、開口部B2、開口部B3、流出口B4は、第1分配器20の上部本体部20a2と接続し、上部空間21bに連通している(図3参照)。 The inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 are connected to the lower body portion 20a1 of the first distributor 20, and the lower space 21a. (see FIG. 3). In addition, the inlet A1, the opening A2, the opening A3, the outlet A4, the inlet B1, the opening B2, the opening B3, and the outlet B4 are connected to the upper body portion 20a2 of the first distributor 20, It communicates with the space 21b (see FIG. 3).
 例えば、図23に示す第1熱交換部51が第1補助熱交換部51aであり、第2熱交換部52が第2補助熱交換部52aである場合の冷媒の流れについて説明する。第1分配器20によって分配された冷媒RAが、第1熱交換部51の流入口A1から第1熱交換部51内に流入した場合、冷媒RAは、流入口A1からヘアピン部202(図22参照)まで流れる。 For example, the refrigerant flow when the first heat exchange section 51 shown in FIG. 23 is the first auxiliary heat exchange section 51a and the second heat exchange section 52 is the second auxiliary heat exchange section 52a will be described. When the refrigerant RA distributed by the first distributor 20 flows into the first heat exchange portion 51 from the inlet A1 of the first heat exchange portion 51, the refrigerant RA flows from the inlet A1 to the hairpin portion 202 (see FIG. 22). reference).
 第1熱交換部51において、ヘアピン部202に到達した冷媒RAは、ヘアピン部202でUターンし、流入口A1からヘアピン部202まで流れた伝熱管12の1段上の伝熱管12を流れ、ヘアピン部202から開口部A2に向かう。開口部A2は、流入口A1よりも一段上に位置している。 In the first heat exchange section 51, the refrigerant RA that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 one stage above the heat transfer tube 12 that has flowed from the inlet A1 to the hairpin portion 202, It goes from the hairpin part 202 to the opening A2. The opening A2 is located one step above the inlet A1.
 第1熱交換部51の開口部A2と、第2熱交換部52の開口部A3とは、U字形状の管であるUベント402によって接続されている。より詳細には、開口部A2及び開口部A3には、ジョイント401(図22参照)が設けられており、開口部A2のジョイント401と、開口部A3のジョイント401とを接続するようにUベント402が設けられている。 The opening A2 of the first heat exchange section 51 and the opening A3 of the second heat exchange section 52 are connected by a U vent 402, which is a U-shaped pipe. More specifically, the opening A2 and the opening A3 are provided with a joint 401 (see FIG. 22), and a U-bent is formed to connect the joint 401 of the opening A2 and the joint 401 of the opening A3. 402 is provided.
 冷媒RAは、Uベント402によって、第1熱交換部51から第2熱交換部52へと列を移動する。第1熱交換部51の開口部A2から流出した冷媒RAは、Uベント402を通り、第2熱交換部52の開口部A3に流入する。開口部A3から第2熱交換部52内に流入した冷媒RAは、開口部A3からヘアピン部202(図22参照)まで流れる。 Refrigerant RA moves along the line from the first heat exchange section 51 to the second heat exchange section 52 by means of the U vent 402 . The refrigerant RA that has flowed out from the opening A2 of the first heat exchange section 51 passes through the U vent 402 and flows into the opening A3 of the second heat exchange section 52 . The refrigerant RA that has flowed into the second heat exchange portion 52 from the opening A3 flows from the opening A3 to the hairpin portion 202 (see FIG. 22).
 第2熱交換部52において、ヘアピン部202に到達した冷媒RAは、ヘアピン部202でUターンし、開口部A3からヘアピン部202まで流れた伝熱管12の1段下の伝熱管12を流れ、ヘアピン部202から流出口A4に向かう。流出口A4は、開口部A3よりも一段下に位置している。流出口A4から第2熱交換部52を流出する冷媒RAは、配管300(図22参照)を通り、第2分配器30へ流入する。 In the second heat exchange section 52, the refrigerant RA that has reached the hairpin section 202 makes a U-turn at the hairpin section 202, flows through the heat transfer tube 12 one stage below the heat transfer tube 12 that has flowed from the opening A3 to the hairpin section 202, It goes from the hairpin part 202 to the outflow port A4. The outflow port A4 is located one step below the opening A3. Refrigerant RA flowing out of second heat exchange section 52 from outlet A4 flows into second distributor 30 through pipe 300 (see FIG. 22).
 また、第1分配器20によって分配された冷媒RBが、第1熱交換部51の流入口B1から第1熱交換部51内に流入した場合、冷媒RBは、流入口B1からヘアピン部202(図22参照)まで流れる。流入口B1は、流入口A1よりも一段下に位置している。 Further, when the refrigerant RB distributed by the first distributor 20 flows into the first heat exchanging portion 51 from the inflow port B1 of the first heat exchanging portion 51, the refrigerant RB flows from the inflow port B1 to the hairpin portion 202 ( 22). The inflow port B1 is located one step below the inflow port A1.
 第1熱交換部51において、ヘアピン部202に到達した冷媒RBは、ヘアピン部202でUターンし、流入口B1からヘアピン部202まで流れた伝熱管12の1段下の伝熱管12を流れ、ヘアピン部202から開口部B2に向かう。開口部B2は、流入口B1よりも一段下に位置している。 In the first heat exchange section 51, the refrigerant RB that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 that is one step below the heat transfer tube 12 that has flowed from the inlet B1 to the hairpin portion 202, It goes from the hairpin part 202 to the opening B2. The opening B2 is located one step below the inlet B1.
 第1熱交換部51の開口部B2と、第2熱交換部52の開口部B3とは、U字形状の管であるUベント402によって接続されている。より詳細には、開口部B2及び開口部B3には、ジョイント401(図22参照)が設けられており、開口部B2のジョイント401と、開口部B3のジョイント401とを接続するようにUベント402が設けられている。 The opening B2 of the first heat exchange section 51 and the opening B3 of the second heat exchange section 52 are connected by a U vent 402, which is a U-shaped tube. More specifically, a joint 401 (see FIG. 22) is provided at the openings B2 and B3, and a U-bent is formed to connect the joint 401 of the opening B2 and the joint 401 of the opening B3. 402 is provided.
 冷媒RBは、Uベント402によって、第1熱交換部51から第2熱交換部52へと列を移動する。第1熱交換部51の開口部B2から流出した冷媒RBは、Uベント402を通り、第2熱交換部52の開口部B3に流入する。開口部B3から第2熱交換部52内に流入した冷媒RBは、開口部B3からヘアピン部202(図22参照)まで流れる。 Refrigerant RB moves along the line from the first heat exchange section 51 to the second heat exchange section 52 by means of the U vent 402 . Refrigerant RB that has flowed out from the opening B2 of the first heat exchange section 51 passes through the U vent 402 and flows into the opening B3 of the second heat exchange section 52 . The refrigerant RB that has flowed into the second heat exchange portion 52 from the opening B3 flows from the opening B3 to the hairpin portion 202 (see FIG. 22).
 第2熱交換部52において、ヘアピン部202に到達した冷媒RBは、ヘアピン部202でUターンし、開口部B3からヘアピン部202まで流れた伝熱管12の1段上の伝熱管12を流れ、ヘアピン部202から流出口B4に向かう。流出口B4は、開口部B3よりも一段上に位置している。流出口B4から第2熱交換部52を流出する冷媒RBは、配管300(図22参照)を通り、第2分配器30へ流入する。なお、流出口B4は、流出口A4よりも一段下に形成されている。 In the second heat exchange portion 52, the refrigerant RB that has reached the hairpin portion 202 makes a U-turn at the hairpin portion 202, flows through the heat transfer tube 12 one stage above the heat transfer tube 12 that has flowed from the opening B3 to the hairpin portion 202, It goes from the hairpin part 202 to the outflow port B4. The outflow port B4 is located one step above the opening B3. Refrigerant RB flowing out of second heat exchange section 52 from outlet B4 flows into second distributor 30 through pipe 300 (see FIG. 22). Note that the outflow port B4 is formed one step below the outflow port A4.
 上記の冷媒RA及び冷媒RBの流れの説明は、第1熱交換部51が、第1補助熱交換部51aであり、第2熱交換部52が第2補助熱交換部52aである場合の冷媒の流れについて説明したものである。第1熱交換部51が、第1主熱交換部51bであり、第2熱交換部52が第2主熱交換部52bである場合、冷媒RAは、第2分配器30から流入口A1に流入し、冷媒RBは、第2分配器30から流入口B1に流入する。 The above description of the flow of the refrigerant RA and the refrigerant RB is for the case where the first heat exchange section 51 is the first auxiliary heat exchange section 51a and the second heat exchange section 52 is the second auxiliary heat exchange section 52a. It explains the flow of When the first heat exchange section 51 is the first main heat exchange section 51b and the second heat exchange section 52 is the second main heat exchange section 52b, the refrigerant RA flows from the second distributor 30 to the inlet A1. Refrigerant RB flows from the second distributor 30 into the inlet B1.
 また、第1熱交換部51が、第1主熱交換部51bであり、第2熱交換部52が第2主熱交換部52bである場合、冷媒RAは、第2熱交換部52の流出口A4からヘッダ80内に流入し、冷媒RBは、第2熱交換部52の流出口B4からヘッダ80内に流入する。流入口A1から流出口A4へ向かう冷媒RAの流れ、及び、流入口B1から流出口B4へ向かう冷媒RBの流れは、上述した第1熱交換部51が、第1補助熱交換部51aであり、第2熱交換部52が第2補助熱交換部52aである場合と同じである。 Further, when the first heat exchange portion 51 is the first main heat exchange portion 51b and the second heat exchange portion 52 is the second main heat exchange portion 52b, the refrigerant RA flows through the second heat exchange portion 52. The refrigerant RB flows into the header 80 from the outlet A4, and the refrigerant RB flows into the header 80 from the outlet B4 of the second heat exchange section 52. As shown in FIG. The flow of the refrigerant RA from the inflow port A1 to the outflow port A4 and the flow of the refrigerant RB from the inflow port B1 to the outflow port B4 are caused by the first auxiliary heat exchange portion 51a. , is the same as the case where the second heat exchange section 52 is the second auxiliary heat exchange section 52a.
 図24は、実施の形態5に係る熱交換器50の変形例の概略図である。実施の形態5に係る熱交換器50の変形例は、分配器120を有している。分配器120は、第1分配器20と、第2分配器30とが一体に形成されている。より詳細には、分配器120は、第1分配器20と、上側第2分配器31と、中上側第2分配器32と、中下側第2分配器33と、下側第2分配器34とが一体に形成されている。実施の形態5に係る熱交換器50の変形例は、第2分配器30が第1分配器20と同じ形状に形成されている。すなわち、第2分配器30は、第1分配器20と共に第1部品23及び第2部品24で形成されている。 FIG. 24 is a schematic diagram of a modification of the heat exchanger 50 according to the fifth embodiment. A modification of heat exchanger 50 according to Embodiment 5 has distributor 120 . The distributor 120 is formed by integrally forming the first distributor 20 and the second distributor 30 . More specifically, the distributor 120 includes a first distributor 20, an upper second distributor 31, a middle upper second distributor 32, a middle lower second distributor 33, and a lower second distributor. 34 are integrally formed. In a modification of heat exchanger 50 according to Embodiment 5, second distributor 30 is formed in the same shape as first distributor 20 . That is, the second distributor 30 is formed of the first part 23 and the second part 24 together with the first distributor 20 .
 分配器120は、第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成する部分が、上下方向(Z軸方向)に並んで配置されている。分配器120は、第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成する部分が、下方から上方に向かってこの順番に並んで配置されており、これらの部分が一体に形成されている。 In the distributor 120, the parts constituting the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 are arranged vertically. They are arranged side by side (in the Z-axis direction). In the distributor 120, the parts constituting the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 are arranged from below. They are arranged in this order toward the top, and these parts are integrally formed.
 第1分配器20と第2分配器30とは、上下方向(Z軸方向)に延びるように一体に形成されており、第1分配器20の内部の空間と第2分配器30の内部の空間とを隔てる仕切板94を有している。 The first distributor 20 and the second distributor 30 are integrally formed so as to extend in the vertical direction (Z-axis direction). It has a partition plate 94 separating it from the space.
 第1分配器20と第2分配器30との間、すなわち、第1分配器20と下側第2分配器34との間は仕切板94によって仕切られている。第1分配器20の空間と下側第2分配器34の空間とは、仕切板94によって隔てられている。同様に、下側第2分配器34と中下側第2分配器33との間、中下側第2分配器33と中上側第2分配器32との間、中上側第2分配器32と上側第2分配器31との間も仕切板94によって仕切られている。 A partition plate 94 partitions between the first distributor 20 and the second distributor 30 , that is, between the first distributor 20 and the lower second distributor 34 . The space of the first distributor 20 and the space of the lower second distributor 34 are separated by a partition plate 94 . Similarly, between the lower second distributor 34 and the middle-lower second distributor 33, between the middle-lower second distributor 33 and the middle-upper second distributor 32, and between the middle-upper second distributor 32 and the upper second distributor 31 are also partitioned by the partition plate 94 .
 下側第2分配器34の空間と中下側第2分配器33の空間とは仕切板94によって隔てられている。また、中下側第2分配器33の空間と中上側第2分配器32の空間とは仕切板94によって隔てられている。また、中上側第2分配器32の空間と上側第2分配器31の空間とは仕切板94によって隔てられている。 A partition plate 94 separates the space of the lower second distributor 34 from the space of the middle lower second distributor 33 . A partition plate 94 separates the space of the middle-lower second distributor 33 and the space of the middle-upper second distributor 32 . A partition plate 94 separates the space of the middle upper second distributor 32 and the space of the upper second distributor 31 .
[熱交換器50の作用効果]
 実施の形態5に係る熱交換器50の変形例は、第1分配器20と第2分配器30とが上下方向(Z軸方向)に延びるように一体に形成されており、第1分配器20の内部の空間と第2分配器30の内部の空間とを隔てる仕切板94を有している。実施の形態5に係る熱交換器50の変形例は、第1部品23(図4参照)を構成する部品と、第2部品24を構成する部品とを長物で作れば仕切板94のような小部品を用いることで第1分配器20と第2分配器30とを構成することができる。
[Action and effect of heat exchanger 50]
In a modification of heat exchanger 50 according to Embodiment 5, first distributor 20 and second distributor 30 are integrally formed so as to extend in the vertical direction (Z-axis direction). 20 and a partition plate 94 separating the internal space of the second distributor 30 . In a modification of the heat exchanger 50 according to Embodiment 5, if the parts that constitute the first part 23 (see FIG. 4) and the parts that constitute the second part 24 are made of long objects, they can be divided into partition plates 94 or the like. By using small parts, the first distributor 20 and the second distributor 30 can be configured.
 また、分配器120は、第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成する部分のそれぞれの間が仕切板94によって仕切られている。分配器120は、第1部品23を構成する部品と、第2部品24を構成する部品とを長物で作れば仕切板94のような小部品を用いることで第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成できる。 In addition, the distributor 120 includes the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31, respectively. are separated by a partition plate 94. In the distributor 120, if the parts constituting the first part 23 and the parts constituting the second part 24 are made of long pieces, a small part such as the partition plate 94 is used to form the first distributor 20 and the lower part. A second distributor 34, a middle-lower second distributor 33, a middle-upper second distributor 32, and an upper-second distributor 31 can be configured.
 実施の形態5に係る熱交換器50の変形例は、分配器120を有し、仕切板94を用いることで分配器120内に第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成することができる。熱交換器50は、簡素な構成要素によって第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成することができ、これらの部分を別々に作る場合と比較して材料コストと製造コストとを低減できる。 A modification of the heat exchanger 50 according to Embodiment 5 has a distributor 120, and by using a partition plate 94, the distributor 120 includes the first distributor 20, the lower second distributor 34, and the middle and lower distributors. The side second distributor 33, the middle upper side second distributor 32, and the upper side second distributor 31 can be configured. The heat exchanger 50 configures the first distributor 20, the lower second distributor 34, the middle lower second distributor 33, the middle upper second distributor 32, and the upper second distributor 31 with simple components. and reduce material and manufacturing costs compared to making these parts separately.
 また、熱交換器50は、簡素な構成要素によって第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成することができ、これらの部分を別々に作る場合と比較してコンパクト化を図ることができる。 In addition, the heat exchanger 50 includes a first distributor 20, a lower second distributor 34, a middle lower second distributor 33, a middle upper second distributor 32, and an upper second distributor 31 with simple components. can be configured, and compactness can be achieved as compared with the case where these parts are made separately.
 また、熱交換器50は、簡素な構成要素によって第1分配器20、下側第2分配器34、中下側第2分配器33、中上側第2分配器32、上側第2分配器31を構成することができる。そのため、熱交換器50は、これらの部分を別々に作る場合と比較して部品数が少ないことでの組立性の向上に貢献することができる。 In addition, the heat exchanger 50 includes a first distributor 20, a lower second distributor 34, a middle lower second distributor 33, a middle upper second distributor 32, and an upper second distributor 31 with simple components. can be configured. Therefore, the heat exchanger 50 can contribute to improvement in assembling efficiency by reducing the number of parts compared to the case where these parts are made separately.
[熱交換器50の利用例]
 図25は、実施の形態1~5に係る熱交換器50と室外送風機6との関係を示す第1の概要図である。図25に示す矢印は空気の流れを示している。また、図25に示す室外送風機6は、室外熱交換器5を構成する熱交換器50の複数の伝熱管12に空気を供給する送風機である。
[Usage example of heat exchanger 50]
FIG. 25 is a first schematic diagram showing the relationship between the heat exchanger 50 and the outdoor fan 6 according to Embodiments 1-5. Arrows shown in FIG. 25 indicate the flow of air. An outdoor fan 6 shown in FIG. 25 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the outdoor heat exchanger 5 .
 図25に示すように、室外機111は、室外熱交換器5と、室外送風機6とを有する。室外機111は、空気調和装置10に用いられる。室外機111は、例えば家庭用もしくは業務用の室外機であって、サイドフロー型の室外送風機6を有している。室外機111に用いられる室外熱交換器5には、上述した熱交換器50が用いられる。なお、室外機111は、室内機でもよく、この場合、室外熱交換器5は室内熱交換器3(図1参照)であり、室外送風機6は室内送風機7である。 As shown in FIG. 25, the outdoor unit 111 has an outdoor heat exchanger 5 and an outdoor fan 6. The outdoor unit 111 is used for the air conditioner 10 . The outdoor unit 111 is, for example, a domestic or commercial outdoor unit, and has a side-flow type outdoor fan 6 . As the outdoor heat exchanger 5 used in the outdoor unit 111, the heat exchanger 50 described above is used. The outdoor unit 111 may be an indoor unit. In this case, the outdoor heat exchanger 5 is the indoor heat exchanger 3 (see FIG. 1), and the outdoor fan 6 is the indoor fan 7 .
 図26は、実施の形態1~5に係る熱交換器50と室外送風機6との関係を示す第2の概要図である。図26に示す矢印は空気の流れを示している。また、図26に示す室外送風機6は、室外熱交換器5を構成する熱交換器50の複数の伝熱管12に空気を供給する送風機である。 FIG. 26 is a second schematic diagram showing the relationship between the heat exchanger 50 and the outdoor fan 6 according to Embodiments 1-5. Arrows shown in FIG. 26 indicate the flow of air. An outdoor fan 6 shown in FIG. 26 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the outdoor heat exchanger 5 .
 図26に示すように、室外機112は、室外熱交換器5と、室外送風機6とを有する。室外機112は、空気調和装置10に用いられる。室外機112は、例えばビル用室外機であって、トップフロー型の室外送風機6を搭載している。室外機112に用いられる室外熱交換器5には、上述した熱交換器50が用いられる。なお、室外機112は、室内機でもよく、この場合、室外熱交換器5は室内熱交換器3(図1参照)であり、室外送風機6は室内送風機7である。 As shown in FIG. 26, the outdoor unit 112 has an outdoor heat exchanger 5 and an outdoor fan 6. The outdoor unit 112 is used for the air conditioner 10 . The outdoor unit 112 is, for example, an outdoor unit for a building, and is equipped with a top-flow type outdoor fan 6 . As the outdoor heat exchanger 5 used in the outdoor unit 112, the heat exchanger 50 described above is used. The outdoor unit 112 may be an indoor unit. In this case, the outdoor heat exchanger 5 is the indoor heat exchanger 3 (see FIG. 1), and the outdoor fan 6 is the indoor fan 7 .
 図27は、実施の形態1~5に係る熱交換器50と室内送風機7との関係を示す第1の概要図である。図27に示す矢印は空気の流れを示している。また、図27に示す室内送風機7は、室内熱交換器3を構成する熱交換器50の複数の伝熱管12に空気を供給する送風機である。 FIG. 27 is a first schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIG. 27 indicate the flow of air. An indoor fan 7 shown in FIG. 27 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 .
 図27に示すように、室内機113は、室内熱交換器3と、室内送風機7とを有する。室内機113は、空気調和装置10に用いられる。室内機113は、例えばカセット型の業務用の室内機であって、ターボファンを室内送風機7として搭載している。室内機113に用いられる室内熱交換器3には、上述した熱交換器50が用いられる。なお、室内機113は、室外機でもよく、この場合、室内熱交換器3は室外熱交換器5(図1参照)であり、室内送風機7は室外送風機6である。 As shown in FIG. 27, the indoor unit 113 has an indoor heat exchanger 3 and an indoor fan 7. The indoor unit 113 is used for the air conditioner 10 . The indoor unit 113 is, for example, a cassette type indoor unit for commercial use, and is equipped with a turbo fan as the indoor air blower 7 . The heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor unit 113 . The indoor unit 113 may be an outdoor unit. In this case, the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6.
 図28は、実施の形態1~5に係る熱交換器50と室内送風機7との関係を示す第2の概要図である。図28に示す矢印は空気の流れを示している。また、図28に示す室内送風機7は、室内熱交換器3を構成する熱交換器50の複数の伝熱管12に空気を供給する送風機である。 FIG. 28 is a second schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIG. 28 indicate the flow of air. An indoor fan 7 shown in FIG. 28 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 .
 図28に示すように、室内機114は、室内熱交換器3と、室内送風機7とを有する。室内機114は、空気調和装置10に用いられる。室内機114は、例えば家庭用室内機であって、クロスフローファンを室内送風機7として搭載している。室内機114に用いられる室内熱交換器3には、上述した熱交換器50が用いられる。なお、室内機114は、室外機でもよく、この場合、室内熱交換器3は室外熱交換器5(図1参照)であり、室内送風機7は室外送風機6である。 As shown in FIG. 28, the indoor unit 114 has an indoor heat exchanger 3 and an indoor fan 7. The indoor unit 114 is used for the air conditioner 10 . The indoor unit 114 is, for example, a domestic indoor unit, and is equipped with a cross-flow fan as the indoor blower 7 . The heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor unit 114 . The indoor unit 114 may be an outdoor unit, in which case the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6 .
 図29は、実施の形態1~5に係る熱交換器50と室内送風機7との関係を示す第3の概要図である。図30は、実施の形態1~5に係る熱交換器50と室内送風機7との関係を示す第4の概要図である。図29及び図30に示す矢印は空気の流れを示している。また、図29及び図30に示す室内送風機7は、室内熱交換器3を構成する熱交換器50の複数の伝熱管12に空気を供給する送風機である。図29及び図30に示すように、室内機115及び室内機116は、室内熱交換器3と、室内送風機7とを有する。 FIG. 29 is a third schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. FIG. 30 is a fourth schematic diagram showing the relationship between the heat exchanger 50 and the indoor fan 7 according to Embodiments 1-5. Arrows shown in FIGS. 29 and 30 indicate the flow of air. The indoor fan 7 shown in FIGS. 29 and 30 is a fan that supplies air to the plurality of heat transfer tubes 12 of the heat exchanger 50 that constitutes the indoor heat exchanger 3 . As shown in FIGS. 29 and 30, the indoor unit 115 and the indoor unit 116 have an indoor heat exchanger 3 and an indoor fan 7. As shown in FIGS.
 室内機115は、室内送風機7によって形成される空気の流れる方向において、室内送風機7が室内熱交換器3に対して上流側に配置され、室内熱交換器3が室内送風機7に対して下流側に配置されている。室内機116は、室内送風機7によって形成される空気の流れる方向において、室内送風機7が室内熱交換器3に対して下流側に配置され、室内熱交換器3が室内送風機7に対して上流側に配置されている。 In the indoor unit 115, the indoor fan 7 is arranged on the upstream side with respect to the indoor heat exchanger 3, and the indoor heat exchanger 3 is arranged on the downstream side with respect to the indoor fan 7 in the direction of air flow formed by the indoor fan 7. are placed in In the indoor unit 116, the indoor fan 7 is arranged downstream with respect to the indoor heat exchanger 3, and the indoor heat exchanger 3 is arranged upstream with respect to the indoor fan 7 in the direction of air flow formed by the indoor fan 7. are placed in
 室内機115及び室内機116は、空気調和装置10に用いられる。室内機115及び室内機116は、例えば天井埋込型の室内機であって、シロッコファンを室内送風機7として搭載している。室内機115及び室内機116に用いられる室内熱交換器3には、上述した熱交換器50が用いられる。なお、室内機115及び室内機116は、室外機でもよく、この場合、室内熱交換器3は室外熱交換器5(図1参照)であり、室内送風機7は室外送風機6である。 The indoor unit 115 and the indoor unit 116 are used in the air conditioner 10. The indoor unit 115 and the indoor unit 116 are, for example, ceiling-embedded indoor units, and are equipped with a sirocco fan as the indoor air blower 7 . The heat exchanger 50 described above is used as the indoor heat exchanger 3 used in the indoor units 115 and 116 . The indoor unit 115 and the indoor unit 116 may be outdoor units. In this case, the indoor heat exchanger 3 is the outdoor heat exchanger 5 (see FIG. 1), and the indoor fan 7 is the outdoor fan 6.
 なお、図29及び図30のように室内熱交換器3が重力方向に対して傾斜して設置される際、課題としている液冷媒とガス冷媒との分離による液冷媒の落下は生じにくくなる。しかし、冷媒の流量が少ない場合の分配器上部への液冷媒の不足を抑えるために実施の形態1~5の分配器を有する熱交換器50を用いてもよい。 In addition, when the indoor heat exchanger 3 is installed inclined with respect to the direction of gravity as shown in FIGS. 29 and 30, the liquid refrigerant is less likely to fall due to the separation of the liquid refrigerant and the gas refrigerant, which is a problem. However, the heat exchanger 50 having the distributor of Embodiments 1 to 5 may be used in order to suppress the shortage of the liquid refrigerant to the upper part of the distributor when the flow rate of the refrigerant is small.
[空気調和装置10の作用効果]
 空気調和装置10は、上述した実施の形態1~5のいずれかに係る熱交換器50を備えたものである。したがって、空気調和装置10は、実施の形態1~5に係る熱交換器50のいずれかと同様の効果を得ることができる。
[Action and effect of the air conditioner 10]
The air conditioner 10 includes the heat exchanger 50 according to any one of the first to fifth embodiments described above. Therefore, the air conditioner 10 can obtain the same effect as any of the heat exchangers 50 according to Embodiments 1-5.
 上記の各実施の形態1~5は、互いに組み合わせて実施することが可能である。また、以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。本開示に係る熱交換器50は、上記の空気調和装置10以外にも、例えば、ヒートポンプ装置、給湯装置又は冷凍装置等に適用することができる。また、熱交換器50は、補助熱交換部5aを必要としない形態の上流側分配器として用いる場合でもよい。また、第2分配器30がオリフィス板91を有していてもよい。 Each of the above-described Embodiments 1 to 5 can be implemented in combination with each other. In addition, the configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technique, and the configuration can be configured without departing from the gist of the present disclosure. It is also possible to omit or change part of The heat exchanger 50 according to the present disclosure can be applied to, for example, a heat pump device, a hot water supply device, a refrigeration device, etc., in addition to the air conditioner 10 described above. Further, the heat exchanger 50 may be used as an upstream distributor that does not require the auxiliary heat exchange section 5a. Also, the second distributor 30 may have the orifice plate 91 .
 1 圧縮機、2 流路切替装置、3 室内熱交換器、4 減圧装置、5 室外熱交換器、5a 補助熱交換部、5b 主熱交換部、5b1 上側主熱交換部、5b2 中上側主熱交換部、5b3 中下側主熱交換部、5b4 下側主熱交換部、6 室外送風機、7 室内送風機、10 空気調和装置、12 伝熱管、12a 冷媒流路穴、12b 先端部、13 伝熱促進部材、20 第1分配器、20a 本体部、20a1 下部本体部、20a2 上部本体部、21 内部空間、21a 下部空間、21b 上部空間、21c 隅部、21d 隅部、23 第1部品、24 第2部品、25 挿入面部、26 側面部、27 膨出部、27a 対向面、27b 最頂部、27c 円形凸部、27d 四角状凸部、27e 山状凸部、28 平板部、28a 接合部、30 第2分配器、31 上側第2分配器、32 中上側第2分配器、33 中下側第2分配器、34 下側第2分配器、35 気液二相冷媒、41 蓋、42 蓋、43 接続口、44 流入口、50 熱交換器、50a 熱交換部、51 第1熱交換部、51a 第1補助熱交換部、51b 第1主熱交換部、52 第2熱交換部、52a 第2補助熱交換部、52b 第2主熱交換部、80 ヘッダ、91 オリフィス板、92 オリフィス孔、92a オリフィス孔、92b オリフィス孔、94 仕切板、111 室外機、112 室外機、113 室内機、114 室内機、115 室内機、116 室内機、120 分配器、201 流入管、202 ヘアピン部、300 配管、301 上側配管、302 中上側配管、303 中下側配管、304 下側配管、401 ジョイント、402 Uベント、801 流出管、A1 流入口、A2 開口部、A3 開口部、A4 流出口、B1 流入口、B2 開口部、B3 開口部、B4 流出口。 1 compressor, 2 channel switching device, 3 indoor heat exchanger, 4 decompression device, 5 outdoor heat exchanger, 5a auxiliary heat exchange section, 5b main heat exchange section, 5b1 upper main heat exchange section, 5b2 middle upper main heat exchange part, 5b3 middle and lower main heat exchange part, 5b4 lower main heat exchange part, 6 outdoor fan, 7 indoor fan, 10 air conditioner, 12 heat transfer tube, 12a refrigerant flow path hole, 12b tip, 13 heat transfer Promotion member, 20 first distributor, 20a main body, 20a1 lower main body, 20a2 upper main body, 21 internal space, 21a lower space, 21b upper space, 21c corner, 21d corner, 23 first part, 24 second 2 parts, 25 insertion surface portion, 26 side surface portion, 27 bulging portion, 27a facing surface, 27b top portion, 27c circular convex portion, 27d square convex portion, 27e mountain convex portion, 28 flat plate portion, 28a joint portion, 30 Second distributor, 31 Upper second distributor, 32 Middle upper second distributor, 33 Middle lower second distributor, 34 Lower second distributor, 35 Gas-liquid two-phase refrigerant, 41 Lid, 42 Lid, 43 connection port, 44 inlet, 50 heat exchanger, 50a heat exchange section, 51 first heat exchange section, 51a first auxiliary heat exchange section, 51b first main heat exchange section, 52 second heat exchange section, 52a second 2 auxiliary heat exchange section, 52b second main heat exchange section, 80 header, 91 orifice plate, 92 orifice hole, 92a orifice hole, 92b orifice hole, 94 partition plate, 111 outdoor unit, 112 outdoor unit, 113 indoor unit, 114 Indoor unit, 115 Indoor unit, 116 Indoor unit, 120 Distributor, 201 Inflow pipe, 202 Hairpin part, 300 Pipe, 301 Upper pipe, 302 Middle upper pipe, 303 Middle lower pipe, 304 Lower pipe, 401 Joint, 402 U vent, 801 outflow pipe, A1 inflow port, A2 opening, A3 opening, A4 outflow port, B1 inflow port, B2 opening, B3 opening, B4 outflow port.

Claims (13)

  1.  上下方向に間隔を空けて配置された複数の伝熱管と、
     前記上下方向に延びるように形成されており、前記複数の伝熱管に冷媒を分配する第1分配器と、
    を備え、
     前記第1分配器は、
     前記複数の伝熱管が挿入される挿入面部と、
     前記複数の伝熱管の延びる方向において、前記挿入面部と対向する対向面部と、
     前記第1分配器の長手方向に対する垂直断面である軸直角断面において、前記挿入面部と前記対向面部との間に延びる壁であって、前記対向面部と接合される側面部と、
    を有し、
     前記対向面部は、
     前記側面部と接続する平板部と、前記軸直角断面において、前記第1分配器の内部空間を形成する内壁の一部が前記挿入面部に向かって前記平板部から膨出する膨出部とを有し、
     前記第1分配器は、
     前記軸直角断面において、前記複数の伝熱管のそれぞれの先端部から前記膨出部までの最短距離を第1距離M1とし、前記複数の伝熱管の延びる方向における前記複数の伝熱管のそれぞれの先端部から前記平板部の位置までの距離を第2距離M2とした場合に、第2距離M2≧1.5×第1距離M1の関係を満たしている熱交換器。
    a plurality of heat transfer tubes arranged at intervals in the vertical direction;
    a first distributor formed to extend in the vertical direction for distributing a refrigerant to the plurality of heat transfer tubes;
    with
    The first distributor is
    an insertion surface portion into which the plurality of heat transfer tubes are inserted;
    a facing surface portion facing the insertion surface portion in the extending direction of the plurality of heat transfer tubes;
    a wall extending between the insertion surface portion and the facing surface portion in an axis-perpendicular cross section that is a cross section perpendicular to the longitudinal direction of the first distributor, the side portion being joined to the facing surface portion;
    has
    The facing surface portion is
    A flat plate portion connected to the side surface portion, and a bulging portion in which a part of an inner wall forming an internal space of the first distributor bulges from the flat plate portion toward the insertion surface portion in the axis-perpendicular cross section. have
    The first distributor is
    In the axis-perpendicular cross-section, the shortest distance from the tip of each of the plurality of heat transfer tubes to the bulging portion is defined as a first distance M1, and the tip of each of the plurality of heat transfer tubes in the direction in which the plurality of heat transfer tubes extend A heat exchanger that satisfies the relationship of second distance M2≧1.5×first distance M1, where the distance from the portion to the position of the flat plate portion is a second distance M2.
  2.  前記挿入面部は、
     前記軸直角断面において、前記複数の伝熱管の配置側に凸となるように少なくとも一部が湾曲している請求項1に記載の熱交換器。
    The insertion surface portion is
    2. The heat exchanger according to claim 1, wherein at least a portion of the cross section perpendicular to the axis is curved so as to be convex toward the arrangement side of the plurality of heat transfer tubes.
  3.  前記第1分配器は、
     前記第1分配器の長手方向の両端部を塞ぎ、前記挿入面部と、前記対向面部と、前記側面部と共に前記内部空間を形成する蓋を有する請求項1又は2に記載の熱交換器。
    The first distributor is
    3. The heat exchanger according to claim 1, further comprising a lid that closes both ends of the first distributor in the longitudinal direction and forms the internal space together with the insertion surface portion, the facing surface portion, and the side surface portion.
  4.  前記第1分配器は、
     前記第1分配器の長手方向において前記内部空間を上方に位置する上部空間と下方に位置する下部空間とに隔てる少なくとも1つ以上のオリフィス板を有し、
     前記オリフィス板には、貫通孔であって前記上部空間と前記下部空間とを連通させるオリフィス孔が形成されている請求項1~3のいずれか1項に記載の熱交換器。
    The first distributor is
    At least one orifice plate separating the internal space into an upper space located above and a lower space located below in the longitudinal direction of the first distributor,
    The heat exchanger according to any one of claims 1 to 3, wherein the orifice plate is formed with an orifice hole that is a through hole and communicates the upper space and the lower space.
  5.  前記第1分配器は、
     前記第1分配器の軸方向に投影した場合に、前記複数の伝熱管と前記オリフィス孔とが重ならない位置に配置されている請求項4に記載の熱交換器。
    The first distributor is
    5. The heat exchanger according to claim 4, wherein the plurality of heat transfer tubes and the orifice holes are arranged so as not to overlap each other when projected in the axial direction of the first distributor.
  6.  前記対向面部には、前記内部空間に冷媒が流入する流入口が少なくとも1つ以上形成されており、
     前記流入口は、
     前記内部空間において、前記複数の伝熱管の中で最下部に位置する伝熱管と対向する位置に形成されているか、又は、前記複数の伝熱管の中で前記最下部に位置する伝熱管よりも下方に位置するように形成されている請求項1~5のいずれか1項に記載の熱交換器。
    At least one inflow port through which a coolant flows into the internal space is formed in the facing surface portion,
    The inlet is
    In the internal space, it is formed at a position facing the lowermost heat transfer tube among the plurality of heat transfer tubes, or the heat transfer tube positioned at the lowermost among the plurality of heat transfer tubes The heat exchanger according to any one of claims 1 to 5, which is formed so as to be positioned downward.
  7.  前記第1分配器は、
     前記挿入面部と前記側面部とを有する第1部品と、
     前記対向面部である第2部品と、
    を備え、
     前記第1部品と前記第2部品とを組み合わせることにより筒状に形成されている請求項1~6のいずれか1項に記載の熱交換器。
    The first distributor is
    a first component having the insertion surface portion and the side surface portion;
    a second component that is the facing surface portion;
    with
    The heat exchanger according to any one of claims 1 to 6, wherein the first part and the second part are combined to form a tubular shape.
  8.  前記膨出部は、
     前記軸直角断面において、1つの半円形状、1つの四角形状、1つの三角形状、複数の半円形が連続する形状、複数の四角形が連続する形状、又は、複数の三角形が連続する形状のいずれか1つの断面形状に形成されている請求項1~7のいずれか1項に記載の熱交換器。
    The bulging portion is
    In the axis-perpendicular cross section, any of one semicircular shape, one quadrangular shape, one triangular shape, a shape in which a plurality of semicircles are continuous, a shape in which a plurality of quadrilaterals are continuous, or a shape in which a plurality of triangles are continuous. The heat exchanger according to any one of claims 1 to 7, wherein the heat exchanger is formed in one cross-sectional shape.
  9.  前記複数の伝熱管の内、半分以上の伝熱管を有する主熱交換部と、
     前記複数の伝熱管の内、前記主熱交換部を構成しない残りの伝熱管を有する補助熱交換部と、
     前記補助熱交換部に接続される前記第1分配器と、
     前記主熱交換部に接続され、前記主熱交換部を構成する前記複数の伝熱管に前記補助熱交換部から流出した冷媒を分配する第2分配器と、
    を備え、
     前記第1分配器と前記第2分配器とは、前記上下方向に延びるように一体に形成されており、前記第1分配器の内部の空間と前記第2分配器の内部の空間とを隔てる仕切板を有する請求項1~8のいずれか1項に記載の熱交換器。
    a main heat exchange section having at least half of the plurality of heat transfer tubes;
    an auxiliary heat exchange section having remaining heat transfer tubes that do not constitute the main heat exchange section among the plurality of heat transfer tubes;
    the first distributor connected to the auxiliary heat exchange unit;
    a second distributor connected to the main heat exchange section for distributing the refrigerant flowing out of the auxiliary heat exchange section to the plurality of heat transfer tubes constituting the main heat exchange section;
    with
    The first distributor and the second distributor are integrally formed so as to extend in the vertical direction, and separate the space inside the first distributor from the space inside the second distributor. The heat exchanger according to any one of claims 1 to 8, which has a partition plate.
  10.  前記複数の伝熱管の内、半分以上の伝熱管を有する主熱交換部と、
     前記複数の伝熱管の内、前記主熱交換部を構成しない残りの伝熱管を有する補助熱交換部と、
     前記補助熱交換部に接続される前記第1分配器と、
     前記主熱交換部に接続され、前記主熱交換部を構成する前記複数の伝熱管に前記補助熱交換部から流出した冷媒を分配する複数の第2分配器と、
    を備え、
     前記主熱交換部は、
     前記主熱交換部の前記上下方向において上部に位置する上側主熱交換部と、
     前記主熱交換部の前記上下方向において下部に位置する下側主熱交換部と、
     前記主熱交換部の前記上下方向において前記上側主熱交換部と前記下側主熱交換部との間に配置された中央側主熱交換部と、
    を有し、
     前記第1分配器には、
     前記オリフィス板の上方の空間を形成する前記上部空間と、前記オリフィス板の下方の空間を形成する前記下部空間とが形成されており、
     前記上部空間は、
     前記補助熱交換部と前記複数の第2分配器の1つ以上とを介して、前記中央側主熱交換部を構成する前記複数の伝熱管と連通しており、
     前記下部空間は、
     前記補助熱交換部と前記中央側主熱交換部と連通しない他の前記複数の第2分配器の1つ以上とを介して、前記上側主熱交換部及び前記下側主熱交換部を構成する前記複数の伝熱管と連通している請求項4又は5に記載の熱交換器。
    a main heat exchange section having at least half of the plurality of heat transfer tubes;
    an auxiliary heat exchange section having remaining heat transfer tubes that do not constitute the main heat exchange section among the plurality of heat transfer tubes;
    the first distributor connected to the auxiliary heat exchange unit;
    a plurality of second distributors connected to the main heat exchange section for distributing the refrigerant flowing out of the auxiliary heat exchange section to the plurality of heat transfer tubes constituting the main heat exchange section;
    with
    The main heat exchange part is
    an upper main heat exchange section positioned above the main heat exchange section in the vertical direction;
    a lower main heat exchange section located below the main heat exchange section in the vertical direction;
    a center side main heat exchange section disposed between the upper main heat exchange section and the lower main heat exchange section in the vertical direction of the main heat exchange section;
    has
    In the first distributor,
    The upper space forming a space above the orifice plate and the lower space forming a space below the orifice plate are formed,
    The upper space is
    communicates with the plurality of heat transfer tubes constituting the center-side main heat exchange section via the auxiliary heat exchange section and one or more of the plurality of second distributors;
    The lower space is
    The upper main heat exchange section and the lower main heat exchange section are configured via the auxiliary heat exchange section and one or more of the plurality of other second distributors that do not communicate with the central main heat exchange section. 6. The heat exchanger according to claim 4 or 5, which communicates with said plurality of heat transfer tubes.
  11.  前記第1分配器は、
     前記第1分配器の長手方向の中心軸が鉛直向きの状態、又は、前記第1分配器の長手方向の中心軸が鉛直向きのベクトル成分を有する範囲で傾いた状態で設置される請求項1~10のいずれか1項に記載の熱交換器。
    The first distributor is
    2. The first distributor is installed in a state in which the central axis of the longitudinal direction of the first distributor is oriented vertically, or in a state in which the central axis of the longitudinal direction of the first distributor is inclined within a range having a vector component in the vertical direction. 11. The heat exchanger according to any one of items 1 to 10.
  12.  請求項4又は5に記載の熱交換器と、
     前記熱交換器に空気を供給する送風機と、
    を有し、
     前記複数の伝熱管のそれぞれは、内部に複数の冷媒流路穴が形成されており、
     前記複数の冷媒流路穴は、前記送風機によって形成される空気の流れる方向に並んで配置されており、
     前記オリフィス板において前記オリフィス孔の形成位置は、前記第1分配器の中心位置よりも風上側に偏った位置に形成されている空気調和装置。
    A heat exchanger according to claim 4 or 5;
    a blower that supplies air to the heat exchanger;
    has
    Each of the plurality of heat transfer tubes has a plurality of coolant channel holes formed therein,
    The plurality of coolant channel holes are arranged side by side in a direction in which the air formed by the blower flows,
    The air conditioner according to claim 1, wherein the orifice hole is formed in the orifice plate at a position that is inclined toward the windward side of the central position of the first distributor.
  13.  請求項1~11のいずれか1項に記載の熱交換器と、
     前記熱交換器に空気を供給する送風機と、を有する空気調和装置。
    A heat exchanger according to any one of claims 1 to 11;
    and a blower that supplies air to the heat exchanger.
PCT/JP2021/047498 2021-12-22 2021-12-22 Heat exchanger and air conditioner WO2023119468A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/047498 WO2023119468A1 (en) 2021-12-22 2021-12-22 Heat exchanger and air conditioner
JP2023568865A JPWO2023119468A1 (en) 2021-12-22 2021-12-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047498 WO2023119468A1 (en) 2021-12-22 2021-12-22 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2023119468A1 true WO2023119468A1 (en) 2023-06-29

Family

ID=86901680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047498 WO2023119468A1 (en) 2021-12-22 2021-12-22 Heat exchanger and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023119468A1 (en)
WO (1) WO2023119468A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085343A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same
WO2019207838A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085343A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same
WO2019207838A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner

Also Published As

Publication number Publication date
JPWO2023119468A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
WO2020161761A1 (en) Heat exchanger and air-conditioner provided with same
US10041710B2 (en) Heat exchanger and air conditioner
US11402162B2 (en) Distributor and heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
CN105209846A (en) Heat exchanger
JP6890509B2 (en) Air conditioner
JPH04295599A (en) Heat exchanger
CN112567193A (en) Heat exchanger and air conditioner
JP7278430B2 (en) Heat exchanger and refrigeration cycle equipment
JP6854971B2 (en) Refrigerant distributor, heat exchanger and air conditioner
JP2012021679A (en) Refrigerant distribution device, heat exchange device with the same, and air conditioning apparatus with the heat exchange device
JPWO2019003428A1 (en) Heat exchanger and refrigeration cycle device
WO2023119468A1 (en) Heat exchanger and air conditioner
CN111902683B (en) Heat exchanger and refrigeration cycle device
JP3632248B2 (en) Refrigerant evaporator
JP7146139B1 (en) heat exchangers and air conditioners
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
US11280528B2 (en) Heat exchanger, and refrigeration cycle apparatus
JP7327214B2 (en) Heat exchanger
JP2574488B2 (en) Heat exchanger
JP7310655B2 (en) Heat exchanger
JP7327213B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023568865

Country of ref document: JP