WO2022244087A1 - 電力変換装置、車載充電器、及び制御方法 - Google Patents

電力変換装置、車載充電器、及び制御方法 Download PDF

Info

Publication number
WO2022244087A1
WO2022244087A1 PCT/JP2021/018716 JP2021018716W WO2022244087A1 WO 2022244087 A1 WO2022244087 A1 WO 2022244087A1 JP 2021018716 W JP2021018716 W JP 2021018716W WO 2022244087 A1 WO2022244087 A1 WO 2022244087A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge circuit
switching
power
output
output voltage
Prior art date
Application number
PCT/JP2021/018716
Other languages
English (en)
French (fr)
Inventor
圭司 田代
知滉 前田
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Priority to JP2023522031A priority Critical patent/JPWO2022244087A1/ja
Priority to PCT/JP2021/018716 priority patent/WO2022244087A1/ja
Publication of WO2022244087A1 publication Critical patent/WO2022244087A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present disclosure relates to a power converter, an onboard charger, and a control method.
  • a dual active bridge (DAB) system (hereinafter referred to as "DAB system") DC/DC converter, which is a type of insulated power conversion device, is known.
  • a DAB DC/DC converter has a structure in which a bridge circuit is provided on each of the primary and secondary sides of a transformer. Each bridge circuit includes a plurality of bridge-connected switching elements.
  • a DAB DC/DC converter transmits power from the primary side to the secondary side of a transformer or vice versa depending on the phase difference between the voltage of the primary side bridge circuit and the voltage of the secondary side bridge circuit.
  • a DAB-type DC/DC converter is capable of soft switching using the resonance phenomenon.
  • Soft switching has the advantage of being able to reduce switching loss compared to hard switching, which forcibly cuts current by simply turning on and off a switching element.
  • soft switching may not be possible when the difference between the input voltage and the output voltage becomes large. In this case, since some of the switching elements are hard-switched, the switching loss increases and the power conversion efficiency decreases.
  • Patent Document 1 listed below discloses a technique for solving such problems. Specifically, in Patent Document 1, when the output current of the secondary side bridge circuit is detected and the detected output current exceeds a secondary side current threshold value larger than 0, the secondary side bridge circuit Disclosed is a DC/DC converter that controls the phase difference between the switching of the open/closed state of the switching element in the primary side bridge circuit and the switching of the open/closed state of the switching element in the secondary side bridge circuit by switching the open/closed state of the switching element. ing.
  • the secondary current threshold value is calculated based on the output value of the PI calculation section that performs proportional integral calculation on the deviation between the target value of the output voltage and the output voltage.
  • the output current of the secondary side bridge circuit changes in the positive direction and the negative direction depending on the control state of the DC/DC converter. Therefore, in Patent Document 1, as described above, the switching timing of the open/close state of the switching element in the secondary side bridge circuit is controlled based on whether or not the detected value of the output current exceeds the secondary side current threshold value. do. With such a configuration, the DC/DC converter suppresses hard recovery in the secondary side bridge circuit regardless of the input voltage and the output voltage, and extends the voltage range in which soft switching is possible.
  • Patent Document 1 further discloses a configuration in which the control frequency of the bridge circuit is changed based on the output value of the PI calculation section in the above configuration.
  • the freewheeling mode time becomes longer. In that case, there is concern that hard recovery may occur in the primary side bridge circuit at the time of switch switching at the end of the return mode. Therefore, in Patent Literature 1, when the output voltage deviates from the target value and the deviation becomes large, the freewheeling mode time is shortened by increasing the control frequency based on the deviation.
  • the DC/DC converter of Patent Document 1 suppresses occurrence of hard recovery in the primary side bridge circuit when the freewheeling mode ends.
  • a power conversion device is an isolated power conversion device that includes a transformer, a plurality of switching elements, a first bridge circuit provided on the primary side of the transformer, and a plurality of switching elements. and a second bridge circuit provided on the secondary side of the transformer, and a control section for controlling switching of the first bridge circuit and the second bridge circuit, wherein the control section controls the output voltage of the power conversion device And based on the output power, the operating frequencies of the first bridge circuit and the second bridge circuit are switched to a frequency at which soft switching is established in the control of the first bridge circuit and the second bridge circuit.
  • An in-vehicle charger includes a conversion circuit that converts AC power into DC power and outputs the DC power, and the above-described power converter that receives the DC power converted by the conversion circuit.
  • a control method includes a transformer, a plurality of switching elements, a first bridge circuit provided on the primary side of the transformer, and a plurality of switching elements, and a switch on the secondary side of the transformer. and a second bridge circuit provided, wherein the first bridge circuit and the second bridge circuit are arranged such that a phase difference occurs between the first bridge circuit and the second bridge circuit. and setting the operating frequencies of the first bridge circuit and the second bridge circuit to the first bridge circuit and the second bridge based on the output voltage and the output power of the power converter. and switching to a frequency at which soft switching is established in the control of the circuit.
  • the present disclosure can be realized not only as a power conversion device, an on-board charger, or a control method including such a characteristic configuration, but also a characteristic It can also be realized as a program for causing a computer to execute the steps and a recording medium recording the program. Further, it can be implemented as a power converter or other system including an on-board charger.
  • FIG. 1 is a diagram showing a circuit configuration of a power converter according to the first embodiment.
  • FIG. 2 is a waveform diagram for explaining an example of soft switching operation in a DAB DC/DC converter.
  • FIG. 3 is a circuit diagram for explaining an example of soft switching operation in a DAB DC/DC converter.
  • FIG. 4 is a circuit diagram for explaining an example of soft switching operation in a DAB DC/DC converter.
  • FIG. 5 is a circuit diagram for explaining an example of soft switching operation in a DAB DC/DC converter.
  • FIG. 6 is a waveform diagram for explaining an example of hard switching operation in a DAB DC/DC converter.
  • FIG. 7 is a circuit diagram for explaining an example of hard switching operation in a DAB DC/DC converter.
  • FIG. 1 is a diagram showing a circuit configuration of a power converter according to the first embodiment.
  • FIG. 2 is a waveform diagram for explaining an example of soft switching operation in a DAB DC/DC converter.
  • FIG. 3 is
  • FIG. 8 is a circuit diagram for explaining an operation example of hard switching in a DAB DC/DC converter.
  • FIG. 9 is a circuit diagram for explaining an operation example of hard switching in a DAB DC/DC converter.
  • FIG. 10 is a diagram for explaining conditions under which soft switching is established in a DAB DC/DC converter.
  • 11 is a flow chart showing an example of a control structure of a program executed by the power converter shown in FIG. 1.
  • FIG. 12 is a flow chart showing an example of a control structure of a program executed by the power converter shown in FIG. 1.
  • FIG. 13 is a diagram showing verification results of the effect of the power converter shown in FIG.
  • FIG. 14 is a diagram showing verification results of the effect of the power converter shown in FIG. FIG.
  • FIG. 15 is a diagram showing verification results of the effect of the power converter shown in FIG.
  • FIG. 16 is a diagram showing the circuit configuration of the power converter according to the second embodiment.
  • 17 is a block diagram showing a functional configuration of a control unit shown in FIG. 16;
  • FIG. FIG. 18 is a diagram showing an example of a map (table) used by the power converter according to the third embodiment.
  • FIG. 19 is a flow chart showing an example of a control structure of a program executed by the power converter according to the third embodiment.
  • FIG. 20 is a diagram showing an example of a map (table) for determining whether soft switching is possible.
  • FIG. 21 is a diagram showing an example of a map (table) for determining whether soft switching is possible.
  • FIG. 22 is a diagram showing an example of a map (table) for determining whether soft switching is possible.
  • FIG. 23 is a flow chart showing an example of a control structure of a program executed by the power converter according to the fourth embodiment.
  • FIG. 24 is a detailed flow of step S2130 in FIG.
  • FIG. 25 is a diagram for explaining the switching operation of the operating frequency in the power converter according to the fourth embodiment.
  • FIG. 26 is a diagram showing the circuit configuration of a power converter according to the fifth embodiment.
  • 27 is a flow chart showing an example of a control structure of a program executed by the power converter shown in FIG. 26.
  • FIG. FIG. 28 is a detailed flow of step S2132 in FIG.
  • FIG. 29 is a diagram showing a circuit configuration of a power converter according to the sixth embodiment.
  • Patent Literature 1 the output current of the secondary bridge circuit is detected, and the timing of switching between the open/closed states of the switching elements in the secondary bridge circuit is controlled according to the positive/negative of the output current. Therefore, it is necessary to detect, as the output current, the instantaneous value of the current that fluctuates greatly within the switching cycle, and a current sensor capable of detecting high-frequency current with high accuracy is required. Such current sensors are expensive, increasing manufacturing costs. In addition, considering the delay of the current sensor, etc., it becomes difficult to increase the control frequency. Therefore, even when the control frequency of the bridge circuit is changed based on the output value of the PI calculation section, the change range is limited.
  • Patent Document 1 has the disadvantage that its scope of application is limited. Therefore, when the technique described in Patent Document 1 is used, there is a problem that the degree of freedom in design is lowered.
  • one object of the present disclosure is to provide a power conversion device and an on-vehicle charger that have a high degree of design freedom and can suppress a decrease in power conversion efficiency due to hard switching. .
  • Another object of the present disclosure is to provide a control method in a power converter that has a high degree of freedom in design and that can suppress a decrease in power conversion efficiency caused by hard switching.
  • a power conversion device is an insulated power conversion device.
  • This power converter includes a transformer, a plurality of switching elements, a first bridge circuit provided on the primary side of the transformer, and a second bridge circuit provided on the secondary side of the transformer, including a plurality of switching elements. and a control unit for controlling switching of the first bridge circuit and the second bridge circuit.
  • the control unit adjusts the operating frequencies of the first bridge circuit and the second bridge circuit based on the output voltage and the output power of the power conversion device so that soft switching is performed in the control of the first bridge circuit and the second bridge circuit. Switch to a valid frequency.
  • the control unit switches the operating frequencies of the first bridge circuit and the second bridge circuit to frequencies at which soft switching is established, based on the output voltage and output power of the power converter. That is, by switching the operating frequency based on the output voltage and output power, the switching element is prevented from hard switching. As a result, it is possible to reduce the switching loss caused by hard switching and suppress the deterioration of the power conversion efficiency. In addition, by adopting a configuration in which the operating frequency is switched based on the output voltage and output power, soft switching can be achieved even when the input/output voltage or output power changes.
  • the operating frequency in the configuration in which the operating frequency is switched, it is not necessary to detect the instantaneous value of the output current that matches the reactor current, unlike the case of controlling the switching timing of the open/close state of the switching element. Therefore, the operating frequency can be easily increased, and by providing an element such as a capacitor, surge countermeasures or noise countermeasures can be taken. In this way, by adopting the above configuration, it is possible to suppress a decrease in the degree of freedom in design and suppress hard switching.
  • the power conversion device further includes a current sensor and a voltage sensor that respectively detect the output current and the output voltage of the power conversion device, and the control unit detects the output voltage detected by the voltage sensor and the current sensor , and the output power calculated using the output current and the output voltage respectively detected by the voltage sensor, the operating frequencies of the first bridge circuit and the second bridge circuit are switched. Since there is no need to use a current sensor to detect the instantaneous value of the output current that matches the reactor current, an inexpensive current sensor can be used. Since the options for the current sensor are expanded, the degree of freedom in design can be further enhanced. In addition, even if the current sensor has a delay, the operating frequency can be increased.
  • the power converter further includes a circuit that limits the frequency of the output current detected by the current sensor.
  • the current information used to calculate the output power may be frequency-limited information (for example, information from which high-frequency components are cut). Therefore, the configuration can include a circuit for limiting the frequency. In this case, the calculation of the output power becomes easier.
  • the frequency limiting circuit includes a filter circuit arranged between the second bridge circuit and the current sensor. This makes it easier to calculate the output power.
  • the power converter further includes a capacitor arranged in a region between the second bridge circuit and the current sensor and adjacent to the second bridge circuit.
  • the power converter is provided on the secondary side of the transformer and includes a voltage sensor that detects the output voltage of the power converter, and an acquisition unit that acquires the output power as an instruction value from the outside. Further, the controller switches the operating frequencies of the first bridge circuit and the second bridge circuit based on the output voltage detected by the voltage sensor and the output power obtained by the obtaining unit. Since there is no need to calculate the output power, it is possible to easily suppress a decrease in power conversion efficiency due to hard switching.
  • control unit includes a storage unit that stores a determination condition for determining whether or not soft switching is established, and uses the output voltage and the output power and the determination condition to determine the first It is determined whether the switching of the bridge circuit and the second bridge circuit is soft switching, and the operating frequencies of the first bridge circuit and the second bridge circuit are switched according to the determination result.
  • the control unit includes a storage unit that stores a determination condition for determining whether or not soft switching is established, and uses the output voltage and the output power and the determination condition to determine the first It is determined whether the switching of the bridge circuit and the second bridge circuit is soft switching, and the operating frequencies of the first bridge circuit and the second bridge circuit are switched according to the determination result.
  • the storage unit stores, as the determination condition, a table indicating whether various output voltage values and output power values satisfy conditions for establishing soft switching, and the control unit stores the output voltage. and the table for the output power to determine whether the switching of the first bridge circuit and the second bridge circuit is soft switching, and depending on the determination result, the first bridge circuit and the second bridge circuit switch the operating frequency of the bridge circuit. This makes it possible to more easily switch the operating frequencies of the first bridge circuit and the second bridge circuit to frequencies at which soft switching is established.
  • An in-vehicle charger includes a conversion circuit that converts AC power into DC power and outputs the converted DC power, and receives the DC power converted by the conversion circuit. and a power conversion device. As a result, it is possible to suppress a decrease in power conversion efficiency due to hard switching, and an in-vehicle charger with a high degree of freedom in design can be obtained.
  • a control method includes a transformer, a plurality of switching elements, a first bridge circuit provided on the primary side of the transformer, a plurality of switching elements, and a secondary circuit of the transformer. and a second bridge circuit provided on the next side.
  • This control method includes controlling switching of the first bridge circuit and the second bridge circuit so that a phase difference occurs between the first bridge circuit and the second bridge circuit; switching the operating frequencies of the first bridge circuit and the second bridge circuit to frequencies at which soft switching is established in the control of the first bridge circuit and the second bridge circuit based on the output voltage and the output power; include.
  • power converter 50 is an insulated power converter including a transformer TR. More specifically, the power converter 50 is a DAB DC/DC converter.
  • the power conversion device 50 is arranged between a first DC power supply 40, which is a DC voltage source, and a second DC power supply 42, such as a secondary battery, and converts power supplied from the first DC power supply 40. and output to the second DC power supply 42 .
  • the input voltage of the power conversion device 50 that is input to the primary side is E1
  • the output voltage of the power conversion device 50 that is output from the secondary side is E2. Since the DAB DC/DC converter is a bidirectional converter, the power conversion device 50 can also output power supplied from the second DC power supply 42 to the first DC power supply 40. is.
  • the transformer TR includes a primary side coil 60, a secondary side coil 62, and a core member 64.
  • a turn ratio between the primary coil 60 and the secondary coil 62 is, for example, 1:1.
  • the turns ratio of transformer TR is not limited to this.
  • the turns ratio can be appropriately set to any turns ratio.
  • the power conversion device 50 includes a primary side bridge circuit 100 provided on the primary side of the transformer TR, a secondary side bridge circuit 120 provided on the secondary side of the transformer TR, and a current sensor 140 for detecting an output current. , a voltage sensor 150 that detects the output voltage, and a control unit 160 that controls the primary bridge circuit 100 and the secondary bridge circuit 120 .
  • a smoothing capacitor 110 is provided on the input side of the primary side bridge circuit 100
  • a smoothing capacitor 130 is provided on the output side of the secondary side bridge circuit 120 .
  • the primary side bridge circuit 100 is a switching circuit including a plurality of switching elements Q1-Q4. These switching elements Q1 to Q4 form an inverter circuit by full bridge connection. Specifically, the switching element Q1 and the switching element Q2 are connected in series to form a first leg. Similarly, the switching element Q3 and the switching element Q4 are connected in series to form a second leg. The first leg and the second leg are connected in parallel with each other.
  • the contacts of the switching elements Q1 and Q2 in the first leg are connected to one end (first end) of the primary coil 60 of the transformer TR.
  • the other end (second end) of the primary coil 60 of the transformer TR is connected to contacts of the switching elements Q3 and Q4 in the second leg.
  • the switching elements Q1 to Q4 are composed of, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the switching elements Q1 to Q4 may be power semiconductor devices other than MOSFETs, such as IGBTs (Insulated Gate Bipolar Transistors) or HEMTs (High Electron Mobility Transistors).
  • the secondary side bridge circuit 120 also has the same configuration as the primary side bridge circuit 100 . That is, the secondary side bridge circuit 120 is a switching circuit including a plurality of switching elements Q5-Q8. These switching elements Q5 to Q8 constitute an inverter circuit by full bridge connection. Specifically, the switching element Q5 and the switching element Q5 are connected in series to form a third leg. Similarly, switching element Q7 and switching element Q8 are connected in series to form a fourth leg. The third leg and the fourth leg are connected in parallel with each other.
  • the contacts of the switching elements Q5 and Q6 in the third leg are connected to one end (first end) of the secondary coil 62 of the transformer TR.
  • the other end (second end) of the secondary coil 62 of the transformer TR is connected to contacts of the switching elements Q7 and Q8 in the second leg.
  • the switching elements Q5 to Q8, like the switching elements Q1 to Q4, are composed of MOSFETs, for example.
  • the switching elements Q5 to Q8 may also be power semiconductor devices other than MOSFETs, such as IGBTs or HEMTs.
  • Freewheeling diodes D1 to D8 are provided for the switching elements Q1 to Q8, respectively.
  • the smoothing capacitor 110 on the primary side and the smoothing capacitor 130 on the secondary side each have a function of smoothing voltage fluctuations such as ripples.
  • the power converter 50 is a DAB DC/DC converter
  • reactors L 1 and L 2 are provided between the primary bridge circuit 100 and the secondary bridge circuit 120 .
  • the reactors L1 and L2 may be leakage inductances of the transformer TR, or may be external reactors.
  • Current sensor 140 detects an output current flowing to the secondary side and provides the current detection value to control section 160 .
  • Voltage sensor 150 detects output voltage E2 of power conversion device 50 and provides the voltage detection value to controller 160 .
  • Each of the switching elements Q1 to Q8 is connected to the control section 160 and is on/off controlled by a gate signal from the control section 160.
  • FIG. The phase difference between the output voltage V1 of the primary side bridge circuit 100 and the output voltage V2 of the secondary side bridge circuit 120 (that is, the phase difference of the transformer voltage) is controlled by on/off control of each switching element Q1 to Q8. be done.
  • This phase difference causes power to be transferred from the primary side to the secondary side or vice versa. That is, the power converter 50 adjusts the output power by controlling the phase difference between the bridge circuits.
  • the output power E2 of the power converter 50 may be referred to as "DC output voltage".
  • control unit 160 can be realized by one or more processing circuits. More specifically, the control unit 160 is, for example, a microcomputer including a CPU (Central Processing Unit) 162 and a storage unit 164 and controls driving of the primary bridge circuit 100 and the secondary bridge circuit 120 .
  • the control unit 160 outputs gate signals to the primary bridge circuit 100 and the secondary bridge circuit 120 to PWM (Pulse Width Modulation) control the operations of the switching elements Q1 to Q8. More specifically, the control unit 160 drives the primary bridge circuit 100 and the secondary bridge circuit 120 at a predetermined operating frequency (switching frequency). At that time, the control unit 160 drives the secondary bridge circuit 120 so as to output a voltage V2 having a phase difference with respect to the voltage V1 of the primary bridge circuit 100 .
  • PWM Pulse Width Modulation
  • the storage unit 164 stores a computer program for controlling the operation of each of the switching elements Q1 to Q4 of the primary side bridge circuit 100 and each of the switching elements Q5 to Q8 of the secondary side bridge circuit 120.
  • the control unit 160 controls driving of the primary side bridge circuit 100 and the secondary side bridge circuit 120 under the condition that soft switching is established based on the DC output voltage and the output power. Execute the processing to be performed.
  • the control unit 160 may be a control IC such as an analog IC (Integrated Circuit), a dedicated LSI (Large-Scale Integration), or an FPGA (Field-Programmable Gate Array). It may be configured by a hardware circuit.
  • a control IC such as an analog IC (Integrated Circuit), a dedicated LSI (Large-Scale Integration), or an FPGA (Field-Programmable Gate Array). It may be configured by a hardware circuit.
  • the power conversion device 50 determines whether or not soft switching is being performed based on the DC output voltage and the output power, and if the determination result is negative (hard switching is performed). ), suppress hard switching by changing the operating frequency.
  • FIG. 2 shows voltage and current waveforms when soft switching is established.
  • the upper part of FIG. 2 is a waveform diagram of the output voltage V1 of the primary side bridge circuit and the output voltage V2 of the secondary side bridge circuit, and the lower part is a waveform diagram of the reactor current I2 .
  • the primary side bridge circuit and the secondary side bridge circuit are controlled such that the output voltage V1 and the output voltage V2 are respectively a rectangular wave with a duty of 50%.
  • a period from the rise of the output voltage V1 to the rise of the output voltage V2 is defined as a period A
  • a period from the rise of the output voltage V2 to the fall of the output voltage V1 is defined as a period B.
  • a dead time is provided between the period A and the period B.
  • FIG. 2 shows an example in which the output voltage V1 is higher than the output voltage V2.
  • the switching elements Q1 to Q8 are controlled (switched) as shown in Table 1 below.
  • reactor current I2 increases in period A, and reactor current I2 takes a positive value immediately before period A ends.
  • the direction of flow of reactor current I2 the direction of current flowing from secondary coil 62 of transformer TR to reactor L2 is defined as the positive direction. It shifts to period B with a dead time in between. In period B, power is transmitted (transferred) from the primary side to the secondary side.
  • the value of the reactor current I2 when switching from the period A to the period B is positive, and the reactor current I2 flows from the secondary coil 62 of the transformer TR to the reactor Flowing towards L2.
  • the switching elements Q1 and Q4 are turned on, and the switching elements Q2 and Q3 are turned off.
  • the switching elements Q6 and Q7 are turned on, and switching elements Q5 and Q8 are turned off. Since the value of the reactor current I2 is "positive" immediately before the end of the period A, the current flows as indicated by the thick line arrow.
  • switching element Q5 and switching element Q8 are turned on.
  • the switching element Q5 is turned on when the freewheeling diode D5 is conductive, that is, when the voltage is 0V. Therefore, switching to turn on the switching element Q5 is ZVS (Zero Voltage Switching).
  • the switching element Q8 is turned on when the free wheel diode D8 is conducting, that is, when the voltage is 0V. Therefore, switching to turn on the switching element Q8 is also ZVS. Therefore, the switching element Q5 and the switching element Q8 for shifting to the period B are both soft-switching.
  • FIG. 6 shows voltage and current waveforms when soft switching does not occur, that is, when hard switching occurs.
  • the upper part of FIG. 6 is a waveform diagram of the output voltage V1 of the primary side bridge circuit and the output voltage V2 of the secondary side bridge circuit, and the lower part is a waveform diagram of the reactor current I2 .
  • the primary side bridge circuit and the secondary side bridge circuit are controlled so that the output voltage V1 and the output voltage V2 are each a rectangular wave with a duty of 50%. .
  • the period A is the period from the rise of the output voltage V1 to the rise of the output voltage V2
  • the period B is the period from the rise of the output voltage V2 to the fall of the output voltage V1.
  • a dead time is provided between period A and period B in the same manner. Note that FIG. 6 also shows an example in which the output voltage V1 is higher than the output voltage V2.
  • the switching elements Q1 to Q8 are controlled in periods A and B in the same manner as in the soft switching operation example. That is, each switching element Q1-Q8 is controlled as shown in Table 1, respectively.
  • reactor current I2 increases in period A, but reactor current I2 takes a "negative" value just before period A ends. It shifts to period B with a dead time in between. In period B, power is transmitted (transferred) from the primary side to the secondary side. Therefore, as indicated by the dashed line b, the value of the reactor current I2 when switching from the period A to the period B is negative, and the reactor current I2 flows from the reactor L2 to the transformer TR. It flows toward the secondary side coil 62 .
  • reactor current I2 is "negative" immediately before the end of period A, so the current flows as indicated by the thick arrow. That is, the current flows in the direction opposite to that in the case of soft switching shown in FIG.
  • switching element Q5 and switching element Q8 are turned on.
  • the switching element Q5 is turned on with the freewheel diode D6 of the switching element Q6 conducting, that is, with the voltage of the switching element Q5 not 0V, ZVS does not occur.
  • the switching element Q8 is turned on when the freewheeling diode D7 is conducting, that is, when the voltage of the switching element Q8 is not 0V, so ZVS does not occur. Therefore, both the switching element Q5 and the switching element Q8 for shifting to the period B are hard switching.
  • soft switching or hard switching depends on whether the value of reactor current I2 immediately before the end of period A (when switching from period A to period B) is “positive” or “negative”. Judgment is possible.
  • the control unit 160 has a function of determining whether or not the switching of each bridge circuit is soft switching based on the DC output voltage and output power of the power converter 50 .
  • the control unit 160 changes the operating frequency to a frequency at which soft switching is established. This configuration will be described in more detail.
  • the output power P is expressed by the following equation (1).
  • the output power P can be rewritten in the form of Equation (2).
  • whether or not soft switching is established depends on whether the value of the reactor current I2 immediately before the end of the period A (when switching from the period A to the period B) is "positive” or “negative". Soft switching occurs when the value of the reactor current I2 is "positive"(>0), and hard switching occurs when it is "negative"( ⁇ 0).
  • the amount of change ⁇ I in reactor current in period A depends on phase difference T p (that is, output power P). Therefore, whether or not soft switching is established also depends on the output power P.
  • the hard-switching or soft-switching boundary condition can be expressed by the following equation ( 6 ) when the input voltage E1 of the power converter is greater than the output voltage E2 ( E1>E2). Equation (6) is obtained by substituting equation (3) into equation (4).
  • Equations (6) and (7) indicate the case where the turns ratio of the transformer is 1:1.
  • the output voltage E 2 may be set to the output voltage E 2 ' considering the turns ratio of the transformer.
  • the parameters when the input voltage E1 is constant (fixed) are the output voltage E2, the output power P, and the switching period T (that is, the operating frequency). Therefore, by monitoring the output voltage E 2 and the output power P, it is possible to determine whether the switching when the bridge circuit is driven at the switching period T is soft switching or hard switching. If soft switching does not occur, that is, if hard switching is determined, the switching period T (operating frequency) is changed. This satisfies Equation (6) or Equation (7), enabling soft switching.
  • the power converter 50 (control unit 160) according to the present embodiment measures the instantaneous value of the reactor current I 2 (the output current that matches the reactor current I 2 ) immediately before the end of the period A, and software Instead of determining whether or not switching is established, based on the output voltage E 2 and the output power P of the power conversion device 50, the value of the reactor current I 2 immediately before the end of the period A is “positive” or “ Negative”, and based on this, it is determined whether or not soft switching is established.
  • the storage unit 164 of the control unit 160 stores operating frequencies other than the reference operating frequency (switching frequency).
  • the operating frequency to be stored is the operating frequency that can realize soft switching with the DC output voltage and the output power according to the above formula (6 ) and equation (7).
  • the control unit 160 switches the operating frequencies of the primary side bridge circuit 100 and the secondary side bridge circuit 120 to other operating frequencies stored in the storage unit 164 when it is determined that the soft switching is not established.
  • step S1020 which is executed after step S1020; and step S1040, which sets Flag to 1; and a step S1050 of determining whether or not an operation stop instruction to stop the operation of the power conversion device 50 has been issued, and branching the control flow according to the determination result. If it is determined in step S1050 that no operation stop instruction has been issued, control returns to step S1010. If it is determined in step S1050 that an instruction to stop operation has been given, this program ends.
  • this program monitors the shared area of storage unit 164 and waits until Flag is set to 1 in step S2000; A step S2010 of detecting the output current and the DC output voltage via the sensor 150, a step S2020 of calculating the output power using the output current and the DC output voltage after the step S2010, and a step S2020 of the step S2020. , step S2030 for determining whether or not the switching of the bridge circuit is soft switching based on the DC output voltage and the output power, and branching the control flow according to the determination result; switching), and changes the operating frequency in step S2040, and in step S2030, when it is determined to be soft switching or after step S2040, is executed to set Flag to 0.
  • step S2050 It includes step S2050 and step S2060, which is executed after step S2050 and determines whether or not an operation stop instruction to stop the operation of the power conversion device 50 has been issued, and branches the control flow according to the determination result. If it is determined in step S2060 that no operation stop instruction has been issued, control returns to step S2000. If it is determined in step S2060 that an instruction to stop operation has been given, this program ends.
  • the power converter 50 operates as follows.
  • control unit 160 of power conversion device 50 upon receiving an instruction to start operation, initializes the operating frequency and Flag. Specifically, control unit 160 sets a reference operating frequency and sets Flag to 0 (step S1000 in FIG. 11). By reading the set operating frequency (step S1010), the control unit 160 drives each bridge circuit at that operating frequency (step S1030). At that time, switching of the primary side bridge circuit 100 and the secondary side bridge circuit 120 is controlled so that a voltage phase difference occurs between the primary side bridge circuit 100 and the secondary side bridge circuit 120 . In the present embodiment, the control unit 160 operates the primary bridge circuit 100 and the secondary bridge circuit 120 with the input voltage set to a predetermined constant voltage.
  • control unit 160 When switching is performed a predetermined number of times (for example, 10 times) with one cycle of switching as one, the control unit 160 sets 1 to Flag. Control unit 160 repeats the processing of steps S1010 to S1040 until an instruction to stop operation is given. In parallel with the switching control of the primary side bridge circuit 100 and the secondary side bridge circuit 120, the control unit 160 executes a process of determining whether or not soft switching is being performed. Control unit 160 executes this process when Flag is set to 1 (YES in step S2000 of FIG. 12). That is, this process is executed every time the bridge circuit is switched for a predetermined cycle (for example, 10 cycles).
  • a predetermined cycle for example, 10 cycles
  • control unit 160 detects the output voltage and the output current via the current sensor 140 and the voltage sensor 150 (step S2010 in FIG. 12), and calculates the output power from the detected output voltage and output current ( step S2020).
  • the output current used to calculate the output power may be, for example, the average current per switching cycle.
  • the control unit 160 determines whether or not the above formula (6) or formula (7) is satisfied. The use of equations (6) and ( 7 ) is determined by comparing the output voltage E2 with the input voltage E1. If expression (6) or expression (7) is satisfied, control unit 160 determines that soft switching is being performed (YES in step S2030). On the other hand, if expression (6) or expression (7) is not satisfied, control unit 160 determines that soft switching is not being performed, that is, hard switching is performed (NO in step S2030).
  • control unit 160 determines that soft switching is not performed, it changes the operating frequency (step S2040).
  • the control unit 160 sets Flag to 0 (step S2050) and waits again until Flag is set to 1.
  • the control unit 160 reads the changed operating frequency (step S1010 in FIG. 11), and drives each bridge circuit with the changed operating frequency (step S1030).
  • control unit 160 stops the operations of the primary bridge circuit 100 and the secondary bridge circuit 120 (YES in step S1050 of FIG. 11 and YES in step S2060 of FIG. 12).
  • power converter 50 according to the present embodiment has the following effects.
  • the control unit 160 switches the operating frequencies of the primary side bridge circuit 100 and the secondary side bridge circuit 120 to frequencies at which soft switching is established based on the output voltage (DC output voltage) and output power of the power conversion device 50 . That is, by switching the operating frequency based on the output voltage and output power, the switching element is prevented from hard switching. As a result, it is possible to reduce the switching loss caused by hard switching and suppress the deterioration of the power conversion efficiency. In addition, by adopting a configuration in which the operating frequency is switched based on the output voltage and output power, soft switching can be achieved even when the input/output voltage or output power changes.
  • the operating frequency in the configuration in which the operating frequency is switched, it is not necessary to detect the instantaneous value of the output current that matches the reactor current, unlike the case of controlling the switching timing of the open/close state of the switching element. Therefore, the operating frequency can be easily increased, and by providing an element such as a capacitor, surge countermeasures or noise countermeasures can be taken. In this way, by adopting the above configuration, it is possible to suppress a decrease in the degree of freedom in design and suppress hard switching.
  • the delay of the current sensor, etc. should be considered. Then, it becomes difficult to increase the control frequency to, for example, 100 kHz or higher.
  • the power conversion device 50 includes a current sensor 140 and a voltage sensor 150 that respectively detect the output current and output voltage (DC output voltage) on the secondary side.
  • the control unit 160 switches the operating frequencies of the primary side bridge circuit 100 and the secondary side bridge circuit 120 based on the output voltage detected by the voltage sensor 150, the output current, and the output power calculated from the output voltage.
  • the output current used to calculate the output power may be, for example, the average current per switching cycle, and there is no need to detect the instantaneous value of the output current that matches the reactor current with a current sensor. Therefore, an inexpensive current sensor can be used as the current sensor 140 . Since options for the current sensor 140 are expanded, the degree of freedom in design can be further enhanced. In addition, even if the current sensor 140 has a delay, the operating frequency can be increased. As a result, even if the output power is small, the frequency can be easily increased to achieve soft switching.
  • the input voltage E1 was 400 V
  • the output voltage E2 was 300 V
  • the L value of the inductor was 33 ⁇ H.
  • FIG. 13 shows the operation results when the power converter is operated at an operating frequency of 30 kHz and an output power of 3.6 kW.
  • switching element Q6 turns off the gate when reactor current I2 is positive, as shown in FIGS.
  • the charge of the capacitive component is discharged. Therefore, after the drain-source voltage Vds_Q5 of the switching element Q5 drops, the gate-source voltage Vgs_Q5 rises. Therefore, the switching element Q5 becomes soft switching.
  • FIG. 14 shows the operation result when operating in this way.
  • the switching element Q6 turns off its gate when the reactor current I2 is negative.
  • the switching element Q6 includes a freewheeling diode that allows current to flow in the reverse direction, so even if the gate is turned off, the current path of the inductor does not change. Therefore, the switching element Q5 is not discharged, and the gate-source voltage V gs_Q5 rises before the drain-source voltage V ds_Q5 of the switching element Q5 decreases. Therefore, the switching element Q5 in this case becomes hard switching, and a large switching loss occurs.
  • each bridge circuit when the output power is lowered to 1.8 kW, each bridge circuit is driven after changing the operating frequency. At that time, the phase difference may be slightly adjusted by feedback control.
  • FIG. 15 shows the operation results when the power converter is operated at an operating frequency of 60 kHz and an output power of 1.8 kW.
  • the value of the reactor current I2 immediately before the end of the period A (the part circled by the dashed line) is be positive.
  • the switching element Q6 can turn off the gate when the reactor current I2 is positive, so that the switching element Q5 can be discharged. Therefore, the switching element Q5 becomes soft switching, and soft switching can be maintained even when the output power is small.
  • power conversion device 50A receives a control command from external device 200, and determines whether or not soft switching is performed using the output power instruction value included in the control command. This is different from the first embodiment in that respect.
  • the power converter 50A includes a controller 160A instead of the controller 160 (FIG. 1).
  • the control unit 160A controls driving of the primary bridge circuit 100 and the secondary bridge circuit 120 based on control commands from the external device 200 .
  • the control command includes an instruction value of the output power, and the control unit 160A controls the primary side bridge circuit 100 and the secondary side bridge circuit 120 so as to achieve the output power indicated by the instruction value.
  • control unit 160A includes drive control unit 170 that controls driving of primary bridge circuit 100 and secondary bridge circuit 120, acquisition unit 172 that acquires output power as an instruction value from the outside, software Functional units include a determination unit 174 that determines whether or not switching is being performed, and a frequency change unit 176 that changes the operating frequency according to the determination result of the determination unit 174 .
  • the control unit 160A uses the output power indicated by the indicated value when determining whether or not soft switching is being performed. That is, the control unit 160A makes the determination based on the output power indicated by the indicated value and the output voltage (DC output voltage) detected via the voltage sensor 150 . Since there is no need to calculate the output power, it can be easily determined whether or not soft switching is being performed. Therefore, according to the present embodiment, it is possible to easily suppress a decrease in power conversion efficiency due to hard switching.
  • the power converter according to the present embodiment determines whether or not to switch the operating frequency using a table (hereinafter referred to as a "map") for determining whether or not soft switching is possible at the reference operating frequency.
  • a table hereinafter referred to as a "map" for determining whether or not soft switching is possible at the reference operating frequency.
  • This embodiment is different from the first embodiment in terms of determination.
  • the map indicates whether or not conditions for soft switching are satisfied for various DC output voltage values and output power values.
  • FIG. 18 shows an example of a map when the reference operating frequency is 250 kHz.
  • this map is in the form of a matrix with output power (W) on the vertical axis (row) and DC output voltage (V) on the horizontal axis (column).
  • the map shows the result of calculating whether or not soft switching is possible for each DC output voltage and output power using the above equations (6) and (7).
  • the input voltage used for the calculation is 400 V, and the total value Lr of inductor components in series with the transformer is 40 ⁇ H .
  • TRUE in the map indicates that soft switching is possible, and "FALSE” indicates that soft switching is not possible (hard switching).
  • a map as shown in FIG. 18 is stored in advance in the control unit (storage unit), and the power converter according to the present embodiment stores in the storage unit when determining whether or not soft switching is possible. See the map provided.
  • "FALSE1" and "FALSE2" in the map shown in FIG. 18 are respectively associated with switching operating frequencies (predetermined operating frequencies that enable soft switching).
  • FALSE1 is associated with an operating frequency of, for example, 500 kHz
  • FALSE2 is associated with a predetermined operating frequency higher than 500 kHz (eg, 800 kHz). That is, since the condition of FALSE2 is that soft switching cannot be performed even at an operating frequency of 500 kHz, FALSE2 is associated with an operating frequency higher than 500 kHz.
  • the program in FIG. 19 includes steps S2032 and S2034 in place of step S2030 in the program in FIG.
  • the processing in steps S2000 to S2020 and steps S2040 to S2060 in FIG. 19 is the same as the processing in each step shown in FIG. The different parts will be described below.
  • this program is executed after step S2020, and after step S2032 of referring to the map, and after step S2032, based on the map, the DC output voltage and the output power, the bridge circuit It also includes step S2034 of determining whether or not the switching is soft switching, and branching the flow of control according to the determination result. If it is determined in step S2034 that the switching is not soft switching (hard switching), control proceeds to step S2040. If soft switching is determined in step S2034, control proceeds to step S2050.
  • the power converter according to this embodiment operates as follows. Operations other than the operation of referring to the map to determine whether or not soft switching is possible are the same as those of the first embodiment. Therefore, detailed description of similar operations will not be repeated.
  • the power converter refers to the map and extracts truth values corresponding to the DC output voltage and output power. If the extracted truth value is "TRUE" (YES in step S2034), the power electronics device determines that soft switching is being performed and maintains the operating frequency (for example, 250 kHz) being performed. On the other hand, if the extracted truth value is "FALSE” (NO in step S2034), the power electronics device determines that soft switching is not being performed (hard switching), and changes the operating frequency (step S2040). Specifically, when the extracted truth value is "FALSE (FALSE1)” and the operating frequency during execution is 250 kHz, the power converter switches the operating frequency to, for example, 500 kHz. When the extracted truth value is "FALSE (FALSE2)", the power converter switches the operating frequency to a predetermined frequency (for example, 800 kHz) that enables soft switching.
  • a predetermined frequency for example, 800 kHz
  • the power electronics device stores maps corresponding to a plurality of operating frequencies, and after switching the operating frequency, refers to the map corresponding to the operating frequency after switching to continue to determine whether or not soft switching is possible. You can make a decision. For example, after switching the operating frequency to 500 kHz, a map corresponding to 500 kHz may be referenced to determine whether soft switching is possible. In this case, the truth values in the map need not be partitioned as FALSE1 and FALSE2, but can simply be "TRUE" and "FALSE".
  • the operating frequency may be returned to 250 kHz when it is determined that soft switching is possible by referring to the map for 250 kHz.
  • the upper limit of power that can be output decreases as the operating frequency increases. Therefore, by returning the operating frequency to 250 kHz when it is determined that soft switching is possible, the range of power that can be output can be increased.
  • the threshold value of output power for switching the operating frequency is obtained based on a map indicating whether or not soft switching is established, and the operating frequency is switched according to the result of comparison between the output power and the threshold value.
  • Other configurations are the same as those of the embodiment described above.
  • FIG. 20 shows an example of the map when the operating frequency is 250 kHz.
  • FIG. 21 shows an example of the map when the operating frequency is 500 kHz. Similar to the maps shown in FIG. 18, these maps are in the form of a matrix with output power (W) on the vertical axis (rows) and DC output voltage (V) on the horizontal axis (columns).
  • the maps shown in FIGS. 20 and 21 show the results of calculating whether or not soft switching is possible for each DC output voltage and output power using the above equations (6) and (7).
  • the input voltage used for the calculation is 400 V, and the total value Lr of inductor components in series with the transformer is 40 ⁇ H .
  • the map shown in FIG. 22 is obtained.
  • a map with an operating frequency of 250 kHz (FIG. 20) is applied to the region where the output power is 1800 W or higher, and a map with an operating frequency of 500 kHz is applied to the region where the output power is 1600 W or lower (FIG. 22). 21) has been applied. That is, by combining the map of FIG. 20 and the map of FIG. 21, the output power threshold for switching the operating frequency can be obtained.
  • two thresholds of 1600 W and 1800 W are obtained as thresholds of the output power.
  • the threshold of 1600 W is, for example, the threshold when switching the operating frequency from 250 kHz to 500 kHz
  • the threshold of 1800 W is the threshold when switching the operating frequency, for example, from 500 kHz to 250 kHz. can be done.
  • the program in FIG. 23 includes step S2130 instead of steps S2030 and S2040 in the program in FIG.
  • the processing in steps S2000 to S2020, S2050, and S2060 in FIG. 23 is the same as the processing in each step shown in FIG. The different parts will be described below.
  • this program includes step S2130, which is executed after step S2020 and performs processing for switching the operating frequency.
  • FIG. 24 is a detailed flow of step S2130 in FIG. Referring to FIG. 24, this routine determines whether or not the output power is less than 1600 W, and branches the flow of control according to the determination result in step S2200.
  • Step S2210 which is executed when it is determined, determines whether or not the operating frequency being executed is 250 kHz, and branches the flow of control according to the determination result, and in step S2210, the operating frequency being executed is 250 kHz. and step S2220 of switching the operating frequency to 500 kHz.
  • step S2200 This routine is further executed when it is determined in step S2200 that the output power is not less than 1600 W, and in step S2230 it is determined whether the output power is 1800 W or more, and the flow of control is branched according to the determination result.
  • step S2240 which is executed when it is determined in step S2230 that the output power is 1800 W or more, determines whether the operating frequency during execution is 500 kHz, and branches the control flow according to the determination result.
  • a step S2250 of switching the operating frequency to 250 kHz which is executed when it is determined in step S2240 that the operating frequency being executed is 500 kHz.
  • step S2210 If it is determined in step S2210 that the operating frequency being executed is not 250 kHz, if it is determined that the output power is not 1800 W or more in step S2230, or if it is determined that the operating frequency being executed is not 500 kHz in step S2240 If so, this routine ends. Furthermore, this routine also ends when the process of step S2220 or step S2250 ends.
  • step S2250 it is assumed that the power conversion device is operating at an operating frequency of 250 kHz, for example. At this time, if the output power falls below 1600 W (YES in step S2200 of FIG. 24 and YES in step S2210), the control unit of the power converter switches the operating frequency to 500 kHz (step S2220). Furthermore, it is assumed that the power converter operates at an operating frequency of 500 kHz, for example. At this time, if the output power exceeds 1800 W (YES in step S2230 and YES in step S2240), the control unit of the power converter switches the operating frequency to 250 kHz (step S2250).
  • the operating frequency being executed is maintained. Even if the output power is 1800 W or higher (YES in step S2230), if the operating frequency during execution is 250 kHz (NO in step S2240), that operating frequency is maintained. Furthermore, even if the output power is less than 1600 W (YES in step S2200), if the operating frequency during execution is 500 kHz (NO in step S2210), that operating frequency is maintained.
  • the operating frequency is switched at a constant output power regardless of the output voltage (DC output voltage) of the power conversion device. You can change it. For example, at a DC output voltage of 400V, 250kHz operation may be maintained until an output power of 0W, while at a DC output voltage of 500V, 250kHz operation and 500kHz operation may be switched at an output power of 1600W.
  • the operating frequency may be switched according to the DC output voltage. For example, when operating at a constant output power of 1000 W, it should be configured to operate at 250 kHz when the DC output voltage is from 360 V to 440 V, and to operate at 500 kHz when the DC output voltage is from 300 V to 360 V and from 440 V to 500 V. soft-switching behavior can be maintained.
  • the power converter according to the present embodiment is different from the first embodiment in that the input voltage on the primary side is also used to determine whether or not the switching is soft switching.
  • power converter 50B according to the present embodiment further includes a voltage sensor 152 that detects the input voltage on the primary side.
  • the power converter 50B includes a controller 160B instead of the controller 160 (see FIG. 1).
  • Control unit 160B differs from control unit 160 in the program stored in storage unit 164 .
  • the program shown in FIG. 27 is executed instead of the program shown in FIG.
  • the program shown in FIG. 27 is executed in parallel with the program in FIG.
  • the reference operating frequency which is set as the initial value, is 250 kHz, for example.
  • the program in FIG. 27 includes step S2012 in place of step S2010 in the program in FIG. 12, and step S2132 in place of steps S2030 and S2040.
  • the processing in steps S2000, S2020, S2050, and S2060 in FIG. 27 is the same as the processing in each step shown in FIG. The different parts will be described below.
  • this program is executed when it is determined that Flag is 1 in step S2000, and detects the input voltage, output voltage (DC output voltage), and output current of power converter 50B. and step S2132, which is executed after step S2020 and performs processing for switching the operating frequency.
  • FIG. 28 is a detailed flow of step S2132 in FIG. Referring to FIG. 28, this routine determines whether or not the input voltage E1 is greater than the output voltage E2. Step S2310 and step S2310, which are executed when it is determined that E1 is greater than the output voltage E2. Executed when it is determined that the above formula (6) is satisfied in step S2320 for maintaining the operating frequency at 250 kHz, and when it is determined that the above formula (6) is not satisfied in step S2310, and step S2330 of changing the operating frequency to 500 kHz.
  • step S2300 This routine is further executed if it is determined in step S2300 that the input voltage E1 is not greater than the output voltage E2, i.e., the output voltage E2 is greater than or equal to the input voltage E1, and equation (7) above is executed. It is determined whether or not the above formula (7) is satisfied in step S2340, in which it is determined whether or not the condition is satisfied, and the flow of control is branched according to the determination result. and step S2360 of changing the operating frequency to 500 kHz, which is executed when it is determined in step S2340 that the above equation (7) is not satisfied.
  • step S2320 When the processing of step S2320, step S2330, step S2350, or step S2360 ends, this routine ends.
  • the power conversion device 50B also uses the input voltage on the primary side to determine whether soft switching is occurring. Therefore, soft switching can be achieved even when the input voltage on the primary side changes. Therefore, since switching loss can be effectively reduced, it is possible to more easily suppress a decrease in power conversion efficiency due to hard switching.
  • power converter 50C differs from the first embodiment in that a filter circuit 180 and snubber capacitor 190 are further included.
  • the filter circuit 180 is arranged between the secondary side bridge circuit 120 and the current sensor 140 and limits the frequency of the output current detected by the current sensor 140 .
  • Filter circuit 180 is an LC filter including reactor 182 and capacitor 184 .
  • the snubber capacitor 190 is arranged in a region between the secondary bridge circuit 120 and the current sensor 140 and adjacent to the secondary bridge circuit 120 . That is, snubber capacitor 190 is arranged in a region closer to secondary bridge circuit 120 than filter circuit 180 .
  • the current information used to calculate the output power may be frequency-limited information (for example, information from which high-frequency components are cut).
  • the filter circuit 180 that limits the frequency of the current information of the current sensor 140, the output power can be easily calculated when the output power is calculated using the output current and the output voltage (DC output voltage). Become.
  • the snubber capacitor 190 it is possible to take countermeasures against surges or noise, so that the reliability of the power conversion device 50C can be improved. Note that even when the filter circuit 180 and the snubber capacitor 190 are provided, it is possible to determine whether or not soft switching is performed in the same manner as when they are not provided.
  • both the filter circuit 180 and the snubber capacitor 190 are provided has been described in the present embodiment, the present disclosure is not limited to this configuration.
  • either one of the filter circuit 180 and the snubber capacitor 190 may be provided in the power converter.
  • on-vehicle charger 300 includes AC/DC conversion circuit 310 that converts AC power from electric power system 340 into DC power for output, and AC/DC conversion circuit 310. and a power conversion device 320 to which the converted DC power is input.
  • a smoothing capacitor 330 is provided between the AC/DC conversion circuit 310 and the power converter 320 .
  • FIG. 30 omits the description of a control unit that controls the AC/DC conversion circuit 310 and a control unit that controls the power conversion device 320 .
  • the AC/DC conversion circuit 310 converts AC 200V AC power from the electric power system 340 into, for example, DC 400V DC power.
  • the power conversion device 320 is a DAB DC/DC converter. Any of the power conversion devices described in the above embodiments can be used as the power conversion device 320 .
  • the power conversion device 320 converts the 400V DC power output from the AC/DC conversion circuit 310 into, for example, 300V DC power, and outputs the power to the high-voltage battery 350 .
  • High-voltage battery 350 is charged with electric power converted by vehicle-mounted charger 300 .
  • vehicle 400 is an electric vehicle such as a PHEV (Plug-in Hybrid Electric Vehicle) or an EV (Electric Vehicle).
  • This vehicle 400 includes a charging socket 410 , an onboard charger 300 , a high voltage battery 350 , an inverter 420 and a driving device 430 .
  • a charging socket 410 is connected to a charging plug of a charger (not shown) when charging the high-voltage battery 350 .
  • the charger outputs AC 200V AC power from the power system.
  • a charging output from the charger is input to onboard charger 300 via charging socket 410 .
  • In-vehicle charger 300 converts AC 200V AC power into DC 300V DC power, for example, and outputs the DC power to high-voltage battery 350 .
  • the inverter 420 controls energization to the driving device 430 according to a command from a vehicle controller (not shown).
  • Drive device 430 includes a motor, and generates drive power from power supplied from high-voltage battery 350 . That is, the driving device 430 generates driving force for turning the wheels from the AC power converted by the inverter 420 .
  • the number of ports of the power converter which is a DAB DC/DC converter, may be 3 or more.
  • the present disclosure is not limited to such an embodiment.
  • the duty of the output voltage may be other than 50%.
  • the duty of the primary side bridge circuit and the duty of the secondary side bridge circuit may be different values.
  • the technology of the present disclosure can be applied to any circuit whose output changes depending on the phase difference and the operating frequency.
  • the configuration for switching the operating frequency between two values of 30 kHz and 60 kHz has been described, but the present disclosure is not limited to such an embodiment.
  • the operating frequency may be changed in stages between 30 kHz and 60 kHz, such as 30 kHz, 40 kHz, and 50 kHz, or may be changed continuously between 30 kHz and 60 kHz.
  • the above embodiment also shows a configuration in which the operating frequency is switched between two values of 250 kHz and 500 kHz. In this case, similarly to the above, the operating frequency may be switched stepwise between 250 kHz and 500 kHz, or the operating frequency may be changed continuously between 250 kHz and 500 kHz.
  • FALSE soft switching is disabled
  • FALSE1 two operating frequencies
  • FALSE2 two operating frequencies
  • the present disclosure is not limited to such a configuration.
  • three or more operating frequencies to be switched may be set according to the operating frequencies to be switched.
  • the map using the truth value of "TRUE” or "FALSE” was shown as an example of the map for determining whether soft switching is possible.
  • the map may be configured to determine whether soft switching is possible by means other than truth values.
  • a map indicating operating frequencies at which soft switching is possible may be used.
  • frequencies in operation are indicated for combinations of output voltage (DC output voltage) and output power that are soft-switchable, and combinations of output voltage (DC output voltage) and output power that are not soft-switchable are shown. indicates the frequency to be changed. In this case, by referring to the map, it is possible to easily switch to an operating frequency that allows soft switching.
  • the values of the operating frequency, output power, etc. shown in the above embodiment are only examples, and are not limited to these. Further, the maps shown in the above embodiment are also examples and can be changed as appropriate.
  • the output voltage (horizontal axis) and the output power (vertical axis) shown in the map may also indicate respective ranges.
  • an output voltage of 320V shown in the map can be 320V or more and less than 340V (or greater than 320V and 340V or less). In this case, if the detected value of the output voltage is, for example, 330V, the truth value of the output voltage of 320V in the map should be referred to.
  • the output power of 1600 W can be 1600 W or more and less than 1800 W (or more than 1600 W and 1800 W or less).
  • the output power value is, for example, 1650 W
  • the truth value of the output power 1600 W in the map should be referred to.
  • first DC power supply 42 second DC power supply 50, 50A to 50C, 320 power converter 60 primary side coil 62 secondary side coil 64 core member 100 primary side bridge circuit 110, 130, 330 smoothing capacitor 120 secondary side Bridge circuit 140 Current sensor 150, 152 Voltage sensor 160, 160A, 160B Control unit 162 CPU 164 storage unit 170 drive control unit 172 acquisition unit 174 determination unit 176 frequency change unit 180 filter circuit 184 capacitor 190 snubber capacitor 200 external device 300 vehicle charger 310 AC/DC conversion circuit 340 power system 350 high voltage battery 400 vehicle 410 charging socket 420 Inverter 430 Driver D1-D8 Freewheeling diode L 1 , L 2 , 182 Reactor Q1-Q8 Switching element TR Transformer V 1 , V Output voltage of 2 bridge circuit E 1 Input voltage E 2 Output voltage (DC output voltage) V ds_Q5 drain-source voltage V gs_Q5 gate-source voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電力変換装置は、絶縁型の電力変換装置であって、トランスと、複数のスイッチング素子を含み、トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、トランスの二次側に設けられる第2のブリッジ回路と、第1のブリッジ回路及び第2のブリッジ回路のスイッチングを制御する制御部とを含む。制御部は、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を、第1のブリッジ回路及び第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替える。

Description

電力変換装置、車載充電器、及び制御方法
 本開示は、電力変換装置、車載充電器、及び制御方法に関する。
 絶縁型の電力変換装置の一種であるデュアルアクティブブリッジ(DAB:Dual Active Bridge)方式(以下「DAB方式」と記載する)のDC/DCコンバータが知られている。DAB方式のDC/DCコンバータは、トランスの一次側及び二次側の各々にブリッジ回路が設けられた構造を持つ。各ブリッジ回路は、ブリッジ接続された複数のスイッチング素子を含む。DAB方式のDC/DCコンバータは、一次側ブリッジ回路の電圧と二次側ブリッジ回路の電圧との位相差によって、トランスの一次側から二次側、又はその逆方向に電力を送電する。
 DAB方式のDC/DCコンバータは、共振現象を利用したソフトスイッチングを行うことが可能である。ソフトスイッチングは、スイッチング素子の単純なオン・オフで電流を強制的に切るハードスイッチングに比べて、スイッチング損失を低減できるという利点を持つ。一方、DAB方式のDC/DCコンバータでは、入力電圧と出力電圧との差が大きくなるとソフトスイッチングを実施できなくなることがある。この場合、一部のスイッチング素子がハードスイッチングになるため、スイッチング損失が増加し、電力変換効率が低下する。
 後掲の特許文献1は、このような問題を解決するための技術を開示する。具体的には、特許文献1には、二次側ブリッジ回路の出力電流を検出し、検出した出力電流が0より大きい二次側電流しきい値を上回った場合に、二次側ブリッジ回路におけるスイッチング素子の開閉状態を切替えることで、一次側ブリッジ回路におけるスイッチング素子の開閉状態の切替えと二次側ブリッジ回路におけるスイッチング素子の開閉状態の切替えとの位相差を制御するDC/DCコンバータが開示されている。二次側電流しきい値は、出力電圧の目標値と出力電圧との偏差に対して比例積分演算を行うPI演算部の出力値に基づいて算出される。
 二次側ブリッジ回路の出力電流は、DC/DCコンバータの制御状態によって正方向と負方向とに変化する。そのため、特許文献1では、上記のように、出力電流の検出値が二次側電流しきい値を上回ったか否かに基づいて、二次側ブリッジ回路におけるスイッチング素子の開閉状態の切替えタイミングを制御する。こうした構成により、DC/DCコンバータは、入力電圧及び出力電圧に依らずに二次側ブリッジ回路におけるハードリカバリを抑制して、ソフトスイッチングが可能な電圧範囲を拡張する。
 特許文献1ではさらに、上記構成において、PI演算部の出力値に基づいてブリッジ回路の制御周波数を変更する構成も開示されている。出力電圧が目標値から乖離して偏差が大きくなると、還流モードの時間が長くなる。その場合、還流モードの終了時のスイッチ切替時に一次側ブリッジ回路においてハードリカバリが生じることが懸念される。そこで、特許文献1では、出力電圧が目標値から乖離して偏差が大きくなった場合に、その偏差に基づいて制御周波数を高くすることによって還流モードの時間を短くする。特許文献1のDC/DCコンバータは、このような構成を追加することにより、還流モードの終了時に一次側ブリッジ回路においてハードリカバリが発生するのを抑制する。
特開2016-152687号公報
 本開示のある局面に係る電力変換装置は、絶縁型の電力変換装置であって、トランスと、複数のスイッチング素子を含み、トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、トランスの二次側に設けられる第2のブリッジ回路と、第1のブリッジ回路及び第2のブリッジ回路のスイッチングを制御する制御部とを含み、制御部は、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を、第1のブリッジ回路及び第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替える。
 本開示の他の局面に係る車載充電器は、交流電力を直流電力に変換して出力する変換回路と、変換回路が変換した直流電力が入力される上記電力変換装置とを含む。
 本開示のさらに他の局面に係る制御方法は、トランスと、複数のスイッチング素子を含み、トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、トランスの二次側に設けられる第2のブリッジ回路とを含む電力変換装置の制御方法であって、第1のブリッジ回路と第2のブリッジ回路との間で位相差が生じるように、第1のブリッジ回路及び第2のブリッジ回路のスイッチングを制御するステップと、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を、第1のブリッジ回路及び第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替えるステップとを含む。
 本開示は、このような特徴的な構成を含む電力変換装置、車載充電器、又は制御方法として実現できるだけではなく、本電力変換装置、本車載充電器、又は本制御方法が実行する特徴的なステップをコンピュータに実行させるためのプログラム、及びそのプログラムを記録した記録媒体として実現することもできる。さらに、電力変換装置、又は車載充電器を含むその他のシステムとして実現することもできる。
図1は、第1の実施の形態に係る電力変換装置の回路構成を示す図である。 図2は、DAB方式のDC/DCコンバータにおけるソフトスイッチングの動作例を説明するための波形図である。 図3は、DAB方式のDC/DCコンバータにおけるソフトスイッチングの動作例を説明するための回路図である。 図4は、DAB方式のDC/DCコンバータにおけるソフトスイッチングの動作例を説明するための回路図である。 図5は、DAB方式のDC/DCコンバータにおけるソフトスイッチングの動作例を説明するための回路図である。 図6は、DAB方式のDC/DCコンバータにおけるハードスイッチングの動作例を説明するための波形図である。 図7は、DAB方式のDC/DCコンバータにおけるハードスイッチングの動作例を説明するための回路図である。 図8は、DAB方式のDC/DCコンバータにおけるハードスイッチングの動作例を説明するための回路図である。 図9は、DAB方式のDC/DCコンバータにおけるハードスイッチングの動作例を説明するための回路図である。 図10は、DAB方式のDC/DCコンバータにおいて、ソフトスイッチングが成立する条件を説明するための図である。 図11は、図1に示す電力変換装置で実行されるプログラムの制御構造の一例を示すフローチャートである。 図12は、図1に示す電力変換装置で実行されるプログラムの制御構造の一例を示すフローチャートである。 図13は、図1に示す電力変換装置の効果の検証結果を示す図である。 図14は、図1に示す電力変換装置の効果の検証結果を示す図である。 図15は、図1に示す電力変換装置の効果の検証結果を示す図である。 図16は、第2の実施の形態に係る電力変換装置の回路構成を示す図である。 図17は、図16に示す制御部の機能的構成を示すブロック図である。 図18は、第3の実施の形態に係る電力変換装置で用いるマップ(テーブル)の一例を示す図である。 図19は、第3の実施の形態に係る電力変換装置で実行されるプログラムの制御構造の一例を示すフローチャートである。 図20は、ソフトスイッチングが可能か否かを判断するためのマップ(テーブル)の一例を示す図である。 図21は、ソフトスイッチングが可能か否かを判断するためのマップ(テーブル)の一例を示す図である。 図22は、ソフトスイッチングが可能か否かを判断するためのマップ(テーブル)の一例を示す図である。 図23は、第4の実施の形態に係る電力変換装置で実行されるプログラムの制御構造の一例を示すフローチャートである。 図24は、図23のステップS2130の詳細なフローである。 図25は、第4の実施の形態に係る電力変換装置における動作周波数の切替え動作を説明するための図である。 図26は、第5の実施の形態に係る電力変換装置の回路構成を示す図である。 図27は、図26に示す電力変換装置で実行されるプログラムの制御構造の一例を示すフローチャートである。 図28は、図27のステップS2132の詳細なフローである。 図29は、第6の実施の形態に係る電力変換装置の回路構成を示す図である。 図30は、第7の実施の形態に係る車載充電器の構成を示す図である。 図31は、図30に示す車載充電器が搭載された車両を示す模式図である。
 [本開示が解決しようとする課題]
 特許文献1では、二次側ブリッジ回路の出力電流を検出し、その正負に応じて二次側ブリッジ回路におけるスイッチング素子の開閉状態の切替えタイミングを制御する。そのため、出力電流として、スイッチング周期内で大きく変動する電流の瞬時値を検出する必要があり、高周波電流を高精度に検出可能な電流センサが必要となる。こうした電流センサは高価であるため、製造コストが増加する。加えて、電流センサの遅延等を考慮すると、制御周波数を高周波化することが困難となる。したがって、PI演算部の出力値に基づいてブリッジ回路の制御周波数を変更する場合もその変更範囲が制限される。
 さらに、出力電流に基づいてスイッチング素子の開閉状態の切替えタイミングを制御するためには、リアクトル電流と一致した電流を出力電流として検出する必要がある。すなわち、特許文献1では、検出する出力電流が(絶対値を取った後に)リアクトル電流と一致することが前提となる。そのため、出力電流がリアクトル電流と一致することを阻害するコンデンサ等を、出力電流を検出するための電流センサと二次側ブリッジ回路との間に配置できない。このようなコンデンサは、サージ対策、又はノイズ対策等を図るためのスナバコンデンサとして用いられることが多い。したがって、特許文献1に記載の構成では、サージ対策、又はノイズ対策等を図ることが困難となる。
 このように、特許文献1に記載の技術はその適用範囲が限定されるという不都合がある。このため、特許文献1に記載の技術を用いた場合、設計自由度が低下するという問題がある。
 それゆえに、本開示の1つの目的は、設計自由度が高く、かつ、ハードスイッチングに起因する電力変換効率の低下を抑制することが可能な電力変換装置、及び車載充電器を提供することである。
 本開示の他の目的は、設計自由度が高く、かつ、ハードスイッチングに起因する電力変換効率の低下を抑制することが可能な電力変換装置における制御方法を提供することである。
 [本開示の効果]
 本開示によれば、設計自由度が高く、かつ、ハードスイッチングに起因する電力変換効率の低下を抑制することが可能な電力変換装置、及び車載充電器を提供できる。
 本開示によればさらに、設計自由度が高く、かつ、ハードスイッチングに起因する電力変換効率の低下を抑制することが可能な電力変換装置における制御方法を提供できる。
 [本開示の実施形態の説明]
 本開示の好適な実施形態を列記して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 (1)本開示の第1の局面に係る電力変換装置は、絶縁型の電力変換装置である。この電力変換装置は、トランスと、複数のスイッチング素子を含み、トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、トランスの二次側に設けられる第2のブリッジ回路と、第1のブリッジ回路及び第2のブリッジ回路のスイッチングを制御する制御部とを含む。制御部は、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を、第1のブリッジ回路及び第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替える。
 制御部は、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数をソフトスイッチングが成立する周波数に切替える。すなわち、出力電圧及び出力電力に基づいて動作周波数を切替えることで、スイッチング素子がハードスイッチングになるのを抑制する。これにより、ハードスイッチングに起因するスイッチング損失を低減して、電力変換効率の低下を抑制できる。加えて、出力電圧及び出力電力に基づいて動作周波数を切替える構成とすることによって、入出力電圧又は出力電力が変化した場合でもソフトスイッチングを実現できる。さらに、動作周波数を切替える構成では、スイッチング素子の開閉状態の切替えタイミングを制御する場合とは異なり、リアクトル電流と一致する出力電流の瞬時値を検出する必要がない。そのため、動作周波数を容易に高周波化できるとともに、コンデンサ等の素子を設けることによって、サージ対策、又はノイズ対策等を図ることもできる。このように、上記構成を採用することによって、設計自由度の低下の抑制と、ハードスイッチングの抑制とを両立できる。
 (2)好ましくは、電力変換装置は、当該電力変換装置の出力電流及び出力電圧をそれぞれ検出する電流センサ及び電圧センサをさらに含み、制御部は、電圧センサで検出した出力電圧、並びに、電流センサ、及び電圧センサでそれぞれ検出した出力電流及び出力電圧を用いて算出した出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を切替える。リアクトル電流と一致する出力電流の瞬時値を電流センサで検出する必要がないため、安価な電流センサを用いることができる。電流センサの選択肢が広がるため、設計自由度をより高めることができる。加えて、電流センサに遅延があっても、動作周波数を高周波化できる。
 (3)より好ましくは、電力変換装置は、電流センサで検出する出力電流に対して周波数制限をかける回路をさらに含む。出力電力の算出に用いる電流情報は、周波数制限をかけた情報(例えば高周波成分をカットした情報)でもよい。そのため、周波数制限をかける回路を含む構成とすることができる。この場合、出力電力の算出が容易になる。
 (4)さらに好ましくは、周波数制限をかける回路は、第2のブリッジ回路と電流センサとの間に配置されるフィルタ回路を含む。これにより、出力電力をより容易に算出できる。
 (5)さらに好ましくは、電力変換装置は、第2のブリッジ回路と電流センサとの間の領域であって、第2のブリッジ回路と隣り合う領域に配置されるコンデンサをさらに含む。これにより、サージ対策、又はノイズ対策等を図ることができるので、電力変換装置の信頼性を高めることができる。
 (6)さらに好ましくは、電力変換装置は、トランスの二次側に設けられ、当該電力変換装置の出力電圧を検出する電圧センサと、出力電力を外部からの指示値として取得する取得部とをさらに含み、制御部は、電圧センサで検出した出力電圧、及び取得部が取得した出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を切替える。出力電力を算出する必要がないため、容易に、ハードスイッチングに起因する電力変換効率の低下を抑制できる。
 (7)さらに好ましくは、制御部は、ソフトスイッチングが成立するか否かを判定するための判定条件を記憶する記憶部を含み、出力電圧及び出力電力と判定条件とを用いて、第1のブリッジ回路及び第2のブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を切替える。これにより、入出力電圧又は出力電力が変化した場合でも、容易に、第1のブリッジ回路及び第2のブリッジ回路の動作周波数をソフトスイッチングが成立する周波数に切替えることができる。
 (8)さらに好ましくは、記憶部は、判定条件として、種々の出力電圧値及び出力電力値に対してソフトスイッチングの成立条件を満たすか否かを示すテーブルを記憶し、制御部は、出力電圧及び出力電力に対してテーブルを参照することで、第1のブリッジ回路及び第2のブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を切替える。これにより、より容易に、第1のブリッジ回路及び第2のブリッジ回路の動作周波数をソフトスイッチングが成立する周波数に切替えることができる。
 (9)本開示の第2の局面に係る車載充電器は、交流電力を直流電力に変換して出力する変換回路と、変換回路が変換した直流電力が入力される、上記第1の局面に係る電力変換装置とを含む。これにより、ハードスイッチングに起因する電力変換効率の低下を抑制することが可能であって、設計自由度の高い車載充電器が得られる。
 (10)本開示の第3の局面に係る制御方法は、トランスと、複数のスイッチング素子を含み、トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、トランスの二次側に設けられる第2のブリッジ回路とを含む電力変換装置の制御方法である。この制御方法は、第1のブリッジ回路と第2のブリッジ回路との間で位相差が生じるように、第1のブリッジ回路及び第2のブリッジ回路のスイッチングを制御するステップと、電力変換装置の出力電圧及び出力電力に基づいて、第1のブリッジ回路及び第2のブリッジ回路の動作周波数を、第1のブリッジ回路及び第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替えるステップとを含む。このような制御方法を用いることによって、ハードスイッチングに起因する電力変換効率の低下を抑制できるとともに、設計自由度が低下するのを抑制することもできる。
 [本開示の実施形態の詳細]
 以下の実施形態では、同一の部品には同一の参照番号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。
 (第1の実施の形態)
 [全体構成]
 図1を参照して、本実施の形態に係る電力変換装置50は、トランスTRを含む絶縁型の電力変換装置である。より詳細には、電力変換装置50は、DAB方式のDC/DCコンバータである。電力変換装置50は、直流電圧源である第1の直流電源40と二次電池等の第2の直流電源42との間に配置され、第1の直流電源40から供給される電力を変換して第2の直流電源42に出力する。この場合、一次側に入力される、電力変換装置50の入力電圧をEとし、二次側から出力される、電力変換装置50の出力電圧をEとする。DAB方式のDC/DCコンバータは双方向型のコンバータであるため、電力変換装置50は、第2の直流電源42から供給される電力を、第1の直流電源40に対して出力することも可能である。
 トランスTRは、一次側コイル60、二次側コイル62、及び、コア部材64を含む。一次側コイル60と二次側コイル62との巻き数比は、例えば1:1である。ただし、トランスTRの巻き数比はこれに限定されない。巻き数比は任意の巻き数比に適宜設定できる。
 電力変換装置50は、トランスTRに加えて、トランスTRの一次側に設けられる一次側ブリッジ回路100、トランスTRの二次側に設けられる二次側ブリッジ回路120、出力電流を検出する電流センサ140、出力電圧を検出する電圧センサ150、及び、一次側ブリッジ回路100及び二次側ブリッジ回路120を制御する制御部160を含む。一次側ブリッジ回路100の入力側には平滑コンデンサ110が設けられており、二次側ブリッジ回路120の出力側には平滑コンデンサ130が設けられている。
 一次側ブリッジ回路100は、複数のスイッチング素子Q1~Q4を含むスイッチング回路である。これらスイッチング素子Q1~Q4は、フルブリッジ接続されることによってインバータ回路を構成している。具体的には、スイッチング素子Q1とスイッチング素子Q2とが互いに直列接続されて第1のレグを構成している。同様に、スイッチング素子Q3とスイッチング素子Q4とが互いに直列接続されて第2のレグを構成している。第1のレグと第2のレグとは互いに並列接続されている。
 第1のレグにおけるスイッチング素子Q1及びQ2の接点は、トランスTRの一次側コイル60の一方端(第1の端部)と接続されている。トランスTRの一次側コイル60の他方端(第2の端部)は、第2のレグにおけるスイッチング素子Q3及びQ4の接点と接続されている。
 スイッチング素子Q1~Q4は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)から構成されている。なお、スイッチング素子Q1~Q4は、MOSFET以外の例えばIGBT(Insulated Gate Bipolar Transistor)、又はHEMT(High Electron Mobility Transistor)等のパワー半導体デバイスであってもよい。
 二次側ブリッジ回路120も、一次側ブリッジ回路100と同様の構成を有している。すなわち、二次側ブリッジ回路120は、複数のスイッチング素子Q5~Q8を含むスイッチング回路である。これらスイッチング素子Q5~Q8は、フルブリッジ接続されることによってインバータ回路を構成している。具体的には、スイッチング素子Q5とスイッチング素子Q5とが互いに直列接続されて第3のレグを構成している。同様に、スイッチング素子Q7とスイッチング素子Q8とが互いに直列接続されて第4のレグを構成している。第3のレグと第4のレグとは互いに並列接続されている。
 第3のレグにおけるスイッチング素子Q5及びQ6の接点は、トランスTRの二次側コイル62の一方端(第1の端部)と接続されている。トランスTRの二次側コイル62の他方端(第2の端部)は、第2のレグにおけるスイッチング素子Q7及びQ8の接点と接続されている。
 スイッチング素子Q5~Q8も、スイッチング素子Q1~Q4と同様、例えば、MOSFETから構成されている。なお、スイッチング素子Q5~Q8も、MOSFET以外の例えばIGBT、又はHEMT等のパワー半導体デバイスであってもよい。
 各スイッチング素子Q1~Q8には、それぞれ、還流ダイオードD1~D8が設けられている。一次側の平滑コンデンサ110及び二次側の平滑コンデンサ130は、それぞれ、リプル等の電圧変動を平滑化する機能を持つ。電力変換装置50は、DAB方式のDC/DCコンバータであるため、一次側ブリッジ回路100と二次側ブリッジ回路120との間にリアクトルL及びLが設けられる。リアクトルL及びLは、トランスTRの漏れインダクタンスであってもよいし、外付けのリアクトルであってもよい。
 電流センサ140は、二次側に流れる出力電流を検出し、その電流検出値を制御部160に提供する。電圧センサ150は、電力変換装置50の出力電圧Eを検出し、その電圧検出値を制御部160に提供する。
 各スイッチング素子Q1~Q8は、制御部160に接続されており、制御部160からのゲート信号によりオン・オフ制御される。各スイッチング素子Q1~Q8のオン・オフ制御により、一次側ブリッジ回路100の出力電圧Vと二次側ブリッジ回路120の出力電圧Vとの位相差(すなわち、トランス電圧の位相差)が制御される。この位相差によって、一次側から二次側、又はその逆方向に電力が伝送される。すなわち、電力変換装置50は、ブリッジ回路間の位相差を制御することによって出力電力を調整する。なお、一次側ブリッジ回路100及び二次側ブリッジ回路120の各出力電力との混同をさけるために、電力変換装置50の出力電力Eを「直流出力電圧」と呼ぶことがある。
 制御部160における各機能は、一又は複数の処理回路によって実現することが可能である。より詳細には、制御部160は、例えばCPU(Central Processing Unit)162及び記憶部164を含むマイクロコンピュータであり、一次側ブリッジ回路100及び二次側ブリッジ回路120の駆動を制御する。この制御部160は、一次側ブリッジ回路100及び二次側ブリッジ回路120に対してゲート信号を出力することにより、各スイッチング素子Q1~Q8の動作をPWM(Pulse Width Modulation)制御する。より具体的には、制御部160は、一次側ブリッジ回路100及び二次側ブリッジ回路120を所定の動作周波数(スイッチング周波数)で駆動させる。その際、制御部160は、一次側ブリッジ回路100の電圧Vに対して位相差を持つ電圧Vを出力するように、二次側ブリッジ回路120を駆動する。
 記憶部164には、一次側ブリッジ回路100の各スイッチング素子Q1~Q4、及び二次側ブリッジ回路120の各スイッチング素子Q5~Q8の各々の動作を制御するためのコンピュータプログラムが記憶されている。このコンピュータプログラムをCPU162が実行することで、制御部160は、直流出力電圧と出力電力とに基づいて、ソフトスイッチングが成立する条件で一次側ブリッジ回路100及び二次側ブリッジ回路120の駆動を制御する処理を実行する。
 なお、制御部160は、アナログIC(Integrated Circuit)、専用LSI(Large-Scale Integration)、FPGA(Field-Programmable Gate Array)等の制御用ICであってもよいし、その一部又は全部がハードウェア回路によって構成されてもよい。
 DAB方式のDC/DCコンバータでは、入力電圧と出力電圧(直流出力電圧)との差が大きく、出力電力が小さいときに、一部のスイッチング素子がハードスイッチングになる。そのため、本実施の形態に係る電力変換装置50は、直流出力電圧と出力電力とに基づいて、ソフトスイッチングが行われているか否かを判定し、判定結果が否定の場合(ハードスイッチングになっている場合)、動作周波数を変更することでハードスイッチングを抑制する。
 [ソフトスイッチングの動作例]
 図2に、ソフトスイッチングが成立する場合の電圧及び電流の波形を示す。図2の上段は、一次側ブリッジ回路の出力電圧V及び二次側ブリッジ回路の出力電圧Vの波形図であり、下段は、リアクトル電流Iの波形図である。この動作例では、一次側ブリッジ回路及び二次側ブリッジ回路は、それぞれ、出力電圧V及び出力電圧VがDuty50%の矩形波となるように制御されている。出力電圧Vの立ち上がりから出力電圧Vの立ち上がりまでの期間を期間Aとし、出力電圧Vの立ち上がりから出力電圧Vの立ち下がりまでの期間を期間Bとする。期間Aと期間Bとの間にはデッドタイムが設けられている。なお、図2は、出力電圧Vが出力電圧Vより大きい場合の例を示している。
 期間A及び期間Bにおいて、各スイッチング素子Q1~Q8は、それぞれ、以下の表1に示すように制御(スイッチング)される。
Figure JPOXMLDOC01-appb-T000001
 図2を参照して、期間Aではリアクトル電流Iが増加しており、期間Aの終了直前にはリアクトル電流Iは「正」の値となっている。リアクトル電流Iの流れる向きについては、トランスTRの二次側コイル62からリアクトルLに流れる電流の向きを正方向と定義する。デッドタイムを挟んで期間Bへと移行する。期間Bでは、一次側から二次側に電力が伝送(伝達)される。破線aで囲んで示すように、期間Aから期間Bに切替わる時のリアクトル電流Iの値は「正」になっており、リアクトル電流Iは、トランスTRの二次側コイル62からリアクトルLに向けて流れている。
 図3を参照して、期間Aの終了直前は、一次側ブリッジ回路100では、スイッチング素子Q1及びQ4がオンにされ、スイッチング素子Q2及びQ3がオフにされている。二次側ブリッジ回路120では、スイッチング素子Q6及びQ7がオンにされ、スイッチング素子Q5及びQ8がオフにされている。期間Aの終了直前はリアクトル電流Iの値が「正」であるため、電流は、太線矢印のように流れている。
 図4を参照して、デッドタイムでは、二次側ブリッジ回路120のスイッチング素子Q5~Q8の全てがオフにされる。このとき、スイッチング素子Q5の還流ダイオードD5が導通するとともに、スイッチング素子Q8の還流ダイオードD8が導通する。そのため、デッドタイムにおいても、太線矢印で示される経路に沿って電流が流れ続ける。
 図5を参照して、期間Bでは、スイッチング素子Q5及びスイッチング素子Q8がオンされる。スイッチング素子Q5は、還流ダイオードD5が導通した状態、すなわち、電圧0Vの状態でオンされる。そのため、スイッチング素子Q5をオンにするスイッチングはZVS(Zero Voltage Switching)となる。同様に、スイッチング素子Q8は、還流ダイオードD8が導通した状態、すなわち、電圧0Vの状態でオンされる。そのため、スイッチング素子Q8をオンにするスイッチングもZVSとなる。したがって、期間Bに移行するためのスイッチング素子Q5及びスイッチング素子Q8は、いずれも、ソフトスイッチングとなる。
 [ハードスイッチングの動作例]
 図6に、ソフトスイッチングが成立しない場合、すなわちハードスイッチングとなる場合の電圧及び電流の波形を示す。図6の上段は、一次側ブリッジ回路の出力電圧V及び二次側ブリッジ回路の出力電圧Vの波形図であり、下段は、リアクトル電流Iの波形図である。この動作例では、ソフトスイッチングの動作例と同様、一次側ブリッジ回路及び二次側ブリッジ回路は、それぞれ、出力電圧V及び出力電圧VがDuty50%の矩形波となるように制御されている。期間Aは、出力電圧Vの立ち上がりから出力電圧Vの立ち上がりまでの期間であり、期間Bは、出力電圧Vの立ち上がりから出力電圧Vの立ち下がりまでの期間である。期間Aと期間Bとの間にデッドタイムが設けられている点も同様である。なお、図6も、出力電圧Vが出力電圧Vより大きい場合の例を示している。
 各スイッチング素子Q1~Q8は、期間A及び期間Bにおいて、ソフトスイッチングの動作例と同様に制御される。すなわち、各スイッチング素子Q1~Q8は、それぞれ、表1に示したように制御される。
 図6を参照して、期間Aではリアクトル電流Iが増加しているものの、期間Aの終了直前にはリアクトル電流Iは「負」の値となっている。デッドタイムを挟んで期間Bへと移行する。期間Bでは、一次側から二次側に電力が伝送(伝達)される。これより、破線bで囲んで示すように、期間Aから期間Bに切替わる時のリアクトル電流Iの値は「負」になっており、リアクトル電流Iは、リアクトルLからトランスTRの二次側コイル62に向けて流れている。
 図7を参照して、期間Aの終了直前はリアクトル電流Iの値が「負」であるため、電流は、太線矢印のように流れている。すなわち、図3で示した、ソフトスイッチングの場合とは逆方向に電流が流れている。
 図8を参照して、デッドタイムでは、二次側ブリッジ回路120のスイッチング素子Q5~Q8の全てがオフにされる。このとき、スイッチング素子Q6の還流ダイオードD6が導通するとともに、スイッチング素子Q7の還流ダイオードD7が導通する。そのため、デッドタイムにおいても、太線矢印で示される経路に沿って、期間Aの時と同方向に電流が流れ続ける。
 図9を参照して、期間Bでは、スイッチング素子Q5及びスイッチング素子Q8がオンされる。しかし、スイッチング素子Q5は、スイッチング素子Q6の還流ダイオードD6が導通した状態、すなわち、スイッチング素子Q5の電圧が0Vではない状態でオンされるため、ZVSにはならない。同様に、スイッチング素子Q8は、還流ダイオードD7が導通した状態、すなわち、スイッチング素子Q8の電圧が0Vではない状態でオンされるため、ZVSにはならない。したがって、期間Bに移行するためのスイッチング素子Q5及びスイッチング素子Q8は、いずれも、ハードスイッチングとなる。
 以上のように、期間Aの終了直前(期間Aから期間Bに切替わる時)のリアクトル電流Iの値が「正」か「負」かによって、ソフトスイッチングになるかハードスイッチングになるかの判断が可能である。
 [制御部160による制御]
 制御部160は、電力変換装置50の直流出力電圧及び出力電力に基づいて、各ブリッジ回路のスイッチングがソフトスイッチングか否かを判定する機能を持つ。制御部160は、一次側ブリッジ回路100及び二次側ブリッジ回路120のスイッチングがソフトスイッチングでない場合、すなわち、ハードスイッチングとなっている場合に、ソフトスイッチングが成立する周波数に動作周波数を変更する。この構成について、より詳細に説明する。
 電力変換装置50は、DAB方式のDC/DCコンバータであるため、出力電力Pは以下の式(1)で表される。
Figure JPOXMLDOC01-appb-M000002
 P:出力電力
 E:入力電圧
 E’:トランスの巻き数比を考慮した出力電圧(直流出力電圧)
   (出力電圧Eを一次側に換算した電圧)
 L:トランスに直列のインダクタ成分の合計値
 ω:スイッチング周波数×2π
 Φ:ブリッジ回路間の位相差
 出力電力Pは、式(2)の形に書き換えることができる。
Figure JPOXMLDOC01-appb-M000003
 T:スイッチング周期
 T:位相差
 E:出力電圧(直流出力電圧)
 式3では、トランスの巻き数比を1:1として、E’=Eとしている。
 この式(2)より、位相差Tは、式(3)で表される。
Figure JPOXMLDOC01-appb-M000004
 図10を参照して、例えば、電力変換装置の入力電圧E(図1)が出力電圧E(図1)より大きい場合(E>E)、期間Aの終了直前のリアクトル電流Iは式(4)で表すことができる。なお、期間Bの終了直前のリアクトル電流Iは式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上述したように、期間Aの終了直前(期間Aから期間Bに切替わる時)のリアクトル電流Iの値が「正」か「負」かによって、ソフトスイッチングが成立するか否かが決まる。リアクトル電流Iの値が「正」(>0)の場合はソフトスイッチングになり、「負」(<0)の場合はハードスイッチングになる。期間Aにおけるリアクトル電流の変化量ΔIは、位相差T(すなわち出力電力P)に依存する。そのため、ソフトスイッチングが成立するか否かも出力電力Pに依存する。
 ハードスイッチングかソフトスイッチングかの境界条件は、電力変換装置の入力電圧Eが出力電圧Eより大きい場合(E>E)、以下の式(6)で表すことができる。式(6)は、式(3)を式(4)に代入することによって得られる。
Figure JPOXMLDOC01-appb-M000007
 但し、入力電圧E>出力電圧E
 入力電圧Eが出力電圧Eより小さい場合(E<E)、ハードスイッチングかソフトスイッチングかの境界条件は、以下の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000008
 但し、入力電圧E<出力電圧E
 式(6)又は式(7)を満たす場合、ソフトスイッチングが成立し、満たさない場合はハードスイッチングとなる。なお、式(6)及び式(7)は、トランスの巻き数比が1:1の場合を示している。トランスの巻き数比が1:1以外の場合は、出力電圧Eを、トランスの巻き数比を考慮した出力電圧E’とすればよい。
 式(6)及び式(7)より、入力電圧Eを一定(固定)とした場合のパラメータは、出力電圧E、出力電力P、及びスイッチング周期T(すなわち動作周波数)である。そのため、出力電圧E、及び出力電力Pを監視することによって、スイッチング周期Tでブリッジ回路を駆動させているときのスイッチングがソフトスイッチングかハードスイッチングかを判定できる。ソフトスイッチングが成立しない、すなわちハードスイッチングと判定された場合、スイッチング周期T(動作周波数)が変更される。これにより、式(6)又は式(7)が満たされ、ソフトスイッチングを行うことが可能となる。
 このように、本実施の形態に係る電力変換装置50(制御部160)は、期間Aの終了直前のリアクトル電流I(リアクトル電流Iと一致する出力電流)の瞬時値を計測してソフトスイッチングが成立するか否かを判定するのではなく、電力変換装置50の出力電圧E、及び出力電力Pに基づいて、期間Aの終了直前のリアクトル電流Iの値が「正」か「負」かを判定し、これによって、ソフトスイッチングが成立するか否かを判定する。
 再び図1を参照して、例えば、制御部160の記憶部164には基準となる動作周波数(スイッチング周波数)以外の動作周波数が記憶されている。記憶する動作周波数は、例えば、電力変換装置50の直流出力電圧及び出力電力が変更された場合に、その直流出力電圧及び出力電力でソフトスイッチングを実現することが可能な動作周波数を上記式(6)及び式(7)を用いて決定するのが好ましい。制御部160は、ソフトスイッチングが成立しないと判定された場合に、記憶部164に記憶されている他の動作周波数に一次側ブリッジ回路100及び二次側ブリッジ回路120の動作周波数を切替える。
 [ソフトウェア構成]
 図11及び図12を参照して、電力変換装置50の出力電圧(直流出力電圧)と出力電力とに基づいて、ソフトスイッチングが成立する条件で一次側ブリッジ回路100及び二次側ブリッジ回路120の駆動を制御するために、制御部160(図1参照)で実行されるコンピュータプログラムの制御構造について説明する。このプログラムは、電力変換装置50に対する動作開始の指示に応じて開始する。図11に示されるプログラムは、一次側ブリッジ回路100及び二次側ブリッジ回路120のスイッチングを制御するプログラムであり、図12に示されるプログラムは、各ブリッジ回路の駆動時のスイッチングを判定し、その判定結果に応じて動作周波数を変更するプログラムである。図11のプログラムと図12のプログラムとは、並列で実行される。
 図11を参照して、このプログラムは、動作周波数を初期化(基準周波数を設定)するとともに、記憶部164の共有領域のFlagを初期化(Flag=0)するステップS1000と、ステップS1000の後に実行され、動作周波数を読み込むステップS1010と、ステップS1010の後に実行され、読み込んだ動作周波数にて一次側ブリッジ回路100及び二次側ブリッジ回路120をスイッチングすることで各ブリッジ回路を駆動制御するステップS1030を、1サイクルのスイッチングを1回として、各ブリッジ回路のスイッチングが所定回数になるまで繰り返すステップS1020と、ステップS1020の後に実行され、Flagを1に設定するステップS1040と、ステップS1040の後に実行され、電力変換装置50の動作を停止させる動作停止の指示がされたか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS1050とを含む。ステップS1050において、動作停止の指示がされていないと判定された場合、制御はステップS1010に戻る。ステップS1050において、動作停止の指示がされていると判定された場合、このプログラムは終了する。
 図12を参照して、このプログラムは、記憶部164の共有領域を監視し、Flagが1に設定されるまで待機するステップS2000と、Flagが1に設定された場合に、電流センサ140及び電圧センサ150を介して、出力電流及び直流出力電圧を検出するステップS2010と、ステップS2010の後に実行され、出力電流及び直流出力電圧を用いて出力電力を算出するステップS2020と、ステップS2020の後に実行され、直流出力電圧及び出力電力に基づいて、ブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2030と、ステップS2030において、ソフトスイッチングではない(ハードスイッチングである)と判定された場合に実行され、動作周波数を変更するステップS2040と、ステップS2030において、ソフトスイッチングであると判定された場合、又はステップS2040の後に実行され、Flagを0に設定するステップS2050と、ステップS2050の後に実行され、電力変換装置50の動作を停止させる動作停止の指示がされたか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2060とを含む。ステップS2060において、動作停止の指示がされていないと判定された場合、制御はステップS2000に戻る。ステップS2060において、動作停止の指示がされていると判定された場合、このプログラムは終了する。
 [動作]
 本実施の形態に係る電力変換装置50は以下のように動作する。
 図1を参照して、電力変換装置50の制御部160は、動作開始の指示を受けると、動作周波数を初期化するとともにFlagを初期化する。具体的には、制御部160は、基準となる動作周波数を設定するとともに、Flagに0を設定する(図11のステップS1000)。制御部160は、設定した動作周波数を読み込むことによって(ステップS1010)、その動作周波数で各ブリッジ回路を駆動する(ステップS1030)。その際、一次側ブリッジ回路100と二次側ブリッジ回路120との間で電圧の位相差が生じるように、一次側ブリッジ回路100及び二次側ブリッジ回路120のスイッチングを制御する。本実施の形態では、制御部160は、入力電圧を所定の一定電圧として一次側ブリッジ回路100及び二次側ブリッジ回路120を動作させるものとする。
 1サイクルのスイッチングを1回として所定回数(例えば10回)のスイッチングが行われると、制御部160は、Flagに1を設定する。制御部160は、動作停止の指示があるまで、ステップS1010~ステップS1040の処理を繰り返す。制御部160は、一次側ブリッジ回路100及び二次側ブリッジ回路120のスイッチング制御と並行して、ソフトスイッチングが行われているか否かを判定する処理を実行する。制御部160は、Flagが1に設定されると(図12のステップS2000においてYES)、この処理を実行する。すなわち、この処理は、ブリッジ回路のスイッチングを所定サイクル(例えば10サイクル)行う毎に実行される。
 具体的には、制御部160は、電流センサ140及び電圧センサ150を介して出力電圧及び出力電流を検出し(図12のステップS2010)、検出した出力電圧及び出力電流から出力電力を算出する(ステップS2020)。出力電力の算出に用いる出力電流は、例えば、スイッチング周期当たりの平均電流でよい。制御部160は、電力変換装置50の直流出力電圧及び出力電力に基づいて、上記した式(6)又は式(7)を満たすか否かを判定する。式(6)及び式(7)のいずれを用いるかは出力電圧Eを入力電圧Eと比較することによって決まる。式(6)又は式(7)を満たす場合、制御部160は、ソフトスイッチングが実行されていると判定する(ステップS2030においてYES)。一方、式(6)又は式(7)を満たさない場合、制御部160は、ソフトスイッチングが実行されていない、すなわちハードスイッチングになっていると判定する(ステップS2030においてNO)。
 制御部160は、ソフトスイッチングが実行されていないと判定すると、動作周波数を変更する(ステップS2040)。制御部160は、Flagを0に設定し(ステップS2050)、Flagが1に設定されるまで再び待機する。動作周波数が変更されると、制御部160は、変更後の動作周波数を読み込み(図11のステップS1010)、変更後の動作周波数で各ブリッジ回路を駆動する(ステップS1030)。
 動作停止の指示がなされると、制御部160は、一次側ブリッジ回路100及び二次側ブリッジ回路120の動作を停止させる(図11のステップS1050においてYES、及び図12のステップS2060においてYES)。
 [本実施の形態の効果]
 以上の説明から明らかなように、本実施の形態に係る電力変換装置50は以下に述べる効果を奏する。
 制御部160は、電力変換装置50の出力電圧(直流出力電圧)及び出力電力に基づいて、一次側ブリッジ回路100及び二次側ブリッジ回路120の動作周波数をソフトスイッチングが成立する周波数に切替える。すなわち、出力電圧及び出力電力に基づいて動作周波数を切替えることで、スイッチング素子がハードスイッチングになるのを抑制する。これにより、ハードスイッチングに起因するスイッチング損失を低減して、電力変換効率の低下を抑制できる。加えて、出力電圧及び出力電力に基づいて動作周波数を切替える構成とすることによって、入出力電圧又は出力電力が変化した場合でもソフトスイッチングを実現できる。さらに、動作周波数を切替える構成では、スイッチング素子の開閉状態の切替えタイミングを制御する場合とは異なり、リアクトル電流と一致する出力電流の瞬時値を検出する必要がない。そのため、動作周波数を容易に高周波化できるとともに、コンデンサ等の素子を設けることによって、サージ対策、又はノイズ対策等を図ることもできる。このように、上記構成を採用することによって、設計自由度の低下の抑制と、ハードスイッチングの抑制とを両立できる。
 なお、期間Aの終了直前のリアクトル電流の瞬時値を計測し、その正負に応じて二次側ブリッジ回路におけるスイッチング素子の開閉状態の切替えタイミングを制御する方法の場合、電流センサの遅延等を考慮すると、制御周波数を例えば100kHz以上に高周波化することが困難となる。
 電力変換装置50は、二次側における出力電流及び出力電圧(直流出力電圧)をそれぞれ検出する電流センサ140及び電圧センサ150を含む。制御部160は、電圧センサ150で検出した出力電圧、出力電流と出力電圧から算出した出力電力に基づいて、一次側ブリッジ回路100及び二次側ブリッジ回路120の動作周波数を切替える。出力電力の算出に用いる出力電流は、例えば、スイッチング周期当たりの平均電流でよく、リアクトル電流と一致する出力電流の瞬時値を電流センサで検出する必要がない。そのため、電流センサ140として安価な電流センサを用いることができる。電流センサ140の選択肢が広がるため、設計自由度をより高めることができる。加えて、電流センサ140に遅延があっても、動作周波数を高周波化できる。これにより、出力電力が小さい場合でも、容易に周波数を上げてソフトスイッチングを実現できる。
 [検証]
 本実施の形態に係る電力変換装置50の効果を確認するために行った検証の結果について説明する。
 この検証では、入力電圧Eを400V、出力電圧Eを300V、インダクタのL値を33μHとした。
 図13に、動作周波数30kHz、出力電力3.6kWで電力変換装置を動作させた場合の動作結果を示す。図13を参照して、スイッチング素子Q6は、図2~図5に示したように、リアクトル電流Iが正の状態でゲートをオフするため、インダクタに蓄えられたエネルギーでスイッチング素子Q5の並列容量成分の電荷が放電される。そのため、スイッチング素子Q5のドレイン-ソース間電圧Vds_Q5が低下してから、ゲート-ソース間電圧Vgs_Q5が立ち上がる。そのため、スイッチング素子Q5はソフトスイッチングとなる。
 この状態から出力電力を1.8kWに下げる場合、動作周波数を30kHzに維持したままで、位相差を小さくすることが考えられる。DAB方式のDC/DCコンバータでは、通常、このように制御されている。図14に、このように動作させた場合の動作結果を示す。
 図14を参照して、出力電力を1.8kWに下げることによって、期間Aの終了直前(破線の丸で囲んだ部分)のリアクトル電流Iの値は負となっている。スイッチング素子Q6は、リアクトル電流Iが負の状態でゲートをオフする。図6~図9に示したように、スイッチング素子Q6は、逆方向に電流を流すことのできる還流ダイオードを含むため、ゲートをオフしてもインダクタの電流経路は変わらない。そのため、スイッチング素子Q5の電荷放電は行われず、スイッチング素子Q5のドレイン-ソース間電圧Vds_Q5が低下する前にゲート-ソース間電圧Vgs_Q5が立ち上がる。そのため、この場合のスイッチング素子Q5はハードスイッチングとなり、大きなスイッチング損失が発生する。
 本実施の形態では、出力電力を1.8kWに下げる場合、動作周波数を変更した上で各ブリッジ回路の駆動を行う。その際、フィードバック制御によって、位相差を若干調整することがある。
 図15に、動作周波数60kHz、出力電力1.8kWで電力変換装置を動作させた場合の動作結果を示す。図15を参照して、出力電力を1.8kWに下げた場合でも、動作周波数を60kHzに上げることによって、期間Aの終了直前(破線の丸で囲んだ部分)のリアクトル電流Iの値は正となる。これにより、スイッチング素子Q6は、リアクトル電流Iが正の状態でゲートをオフすることができるため、スイッチング素子Q5の電荷放電を引き出すことができる。そのため、スイッチング素子Q5はソフトスイッチングとなり、出力電力が小さい場合でもソフトスイッチングを維持できる。
 以上より、本実施の形態に係る電力変換装置50によれば、出力電力が小さい場合でもソフトスイッチングが維持できることが確認できた。
(第2の実施の形態)
 図16を参照して、本実施の形態に係る電力変換装置50Aは、外部装置200から制御指令を受け取り、制御指令に含まれる出力電力の指示値を用いてソフトスイッチングか否かの判定を行う点において、第1の実施の形態とは異なる。
 電力変換装置50Aは、制御部160(図1)に代えて、制御部160Aを含む。この制御部160Aは、外部装置200からの制御指令に基づいて、一次側ブリッジ回路100及び二次側ブリッジ回路120の駆動を制御する。制御指令には出力電力の指示値が含まれ、制御部160Aは、指示値が示す出力電力となるように、一次側ブリッジ回路100及び二次側ブリッジ回路120を制御する。
 図17を参照して、制御部160Aは、一次側ブリッジ回路100及び二次側ブリッジ回路120の駆動を制御する駆動制御部170、出力電力を外部からの指示値として取得する取得部172、ソフトスイッチングが行われているか否かを判定する判定部174、判定部174の判定結果に応じて動作周波数を変更する周波数変更部176を機能部として含む。
 制御部160Aは、ソフトスイッチングが行われているか否かの判定を行う際に、指示値が示す出力電力を用いる。すなわち、制御部160Aは、指示値が示す出力電力及び電圧センサ150を介して検出した出力電圧(直流出力電圧)に基づいて当該判定を行う。出力電力を算出する必要がないため、ソフトスイッチングが行われているか否かの判定を容易に行うことができる。したがって、本実施の形態によれば、容易に、ハードスイッチングに起因する電力変換効率の低下を抑制できる。
 (第3の実施の形態)
 本実施の形態に係る電力変換装置は、基準となる動作周波数にてソフトスイッチングが可能か否かを判断するテーブル(以下「マップ」と呼ぶ。)を用いて、動作周波数を切替えるか否かを判定する点において、第1の実施の形態とは異なる。マップは、種々の直流出力電圧値及び出力電力値に対してソフトスイッチングの成立条件を満たすか否かを示す。
 図18に、基準となる動作周波数が250kHzの場合のマップの一例を示す。図18を参照して、このマップは、縦軸(行)を出力電力(W)、横軸(列)を直流出力電圧(V)とするマトリクス形状である。マップは、上記した式(6)及び式(7)を用いて、ソフトスイッチングが可能か否かを直流出力電圧及び出力電力毎に算出し、その結果を示している。算出に際し用いた入力電圧は400V、トランスに直列のインダクタ成分の合計値Lは40μHである。マップ中の「TRUE」は、ソフトスイッチングが可能であることを示しており、「FALSE」は、ソフトスイッチングが不可(ハードスイッチング)であることを示している。例えば、出力電力が1600W、直流出力電圧が300Vの場合は「TRUE」であるため、この場合は、ソフトスイッチングが可能であると判定される。一方、例えば、出力電力が1000W、直流出力電圧が300Vの場合は「FALSE」であるため、この場合は、ハードスイッチングと判定される。図18では、切替える動作周波数が異なることを示すために、便宜的に、「FALSE」を「FALSE1」と「FALSE2」とに分けて示している。FALSE1及びFALSE2は、いずれも、ソフトスイッチングが不可(ハードスイッチング)であることを示す点においては同じである。
 図18に示したようなマップが制御部(記憶部)に予め記憶されており、本実施の形態に係る電力変換装置は、ソフトスイッチングが可能か否かを判断する際に、記憶部に記憶されているマップを参照する。図18に示すマップの「FALSE1」及び「FALSE2」には、それぞれ、切替える動作周波数(ソフトスイッチングが可能な所定の動作周波数)が対応付けられている。FALSE1には、例えば、500kHzの動作周波数が対応付けられており、FALSE2には、500kHzより高い所定の動作周波数(例えば、800kHz)が対応付けられている。すなわち、FALSE2の条件は500kHzの動作周波数でもソフトスイッチングが不可のため、FALSE2には、500kHzより高い動作周波数が対応付けられている。
 [ソフトウェア構成]
 本実施の形態に係る電力変換装置では、図12に示されるプログラムに代えて、図19に示されるプログラムが実行される。図19に示されるプログラムは、図11のプログラムと並列で実行される。
 図19のプログラムは、図12のプログラムにおいて、ステップS2030に代えて、ステップS2032及びステップS2034を含む。図19のステップS2000~ステップS2020、及びステップS2040~ステップS2060における処理は、図12に示される各ステップにおける処理と同じである。以下、異なる部分について説明する。
 図19を参照して、このプログラムは、ステップS2020の後に実行され、マップを参照するステップS2032と、ステップS2032の後に実行され、マップと、直流出力電圧及び出力電力とに基づいて、ブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2034とを含む。ステップS2034において、ソフトスイッチングではない(ハードスイッチングである)と判定された場合、制御はステップS2040に進む。ステップS2034において、ソフトスイッチングであると判定された場合、制御はステップS2050に進む。
 [動作]
 本実施の形態に係る電力変換装置は以下のように動作する。なお、マップを参照してソフトスイッチングが可能か否かを判断する動作を除いた動作は、上記第1の実施の形態と同様である。したがって、同様の動作についての詳細な説明は繰返さない。
 電力変換装置は、マップを参照して、直流出力電圧及び出力電力に対応する真理値を抽出する。電力変換装置は、抽出した真理値が「TRUE」の場合(ステップS2034においてYES)、ソフトスイッチングが実行されていると判断して、実行中の動作周波数(例えば250kHz)を維持する。一方、抽出した真理値が「FALSE」の場合(ステップS2034においてNO)、電力変換装置は、ソフトスイッチングが実行されていない(ハードスイッチングになっている)と判断して、動作周波数を変更する(ステップS2040)。具体的には、抽出した真理値が「FALSE(FALSE1)」であって、実行中の動作周波数が250kHzの場合、電力変換装置は、動作周波数を例えば500kHzに切替える。抽出した真理値が「FALSE(FALSE2)」の場合、電力変換装置は、動作周波数をソフトスイッチングが可能な所定の周波数(例えば800kHz)に切替える。
 電力変換装置は、複数の動作周波数に対応するマップを記憶しておき、動作周波数を切替えた後に、切替え後の動作周波数に対応するマップを参照して、引き続き、ソフトスイッチングが可能か否かを判断するようにしてもよい。例えば、動作周波数を500kHzに切替えた後に、500kHzに対応するマップを参照して、ソフトスイッチングが可能か否かを判断してもよい。この場合、マップの真理値をFALSE1及びFALSE2のように区分けする必要がなく、単に、「TRUE」、「FALSE」とすることができる。
 さらに、例えば、動作周波数を500kHzに切替えた後も、250kHzのマップを参照して、ソフトスイッチングが可能と判断された場合に動作周波数を250kHzに戻すようにしてもよい。DAB方式のDC/DCコンバータでは、動作周波数を高くすると出力可能な電力の上限値が小さくなる。そのため、ソフトスイッチングが可能と判断された場合に動作周波数を250kHzに戻すことによって、出力可能な電力の範囲を高めることができる。
 このように、ソフトスイッチングが可能か否かを判断する際にマップ(テーブル)を参照することによって、ソフトスイッチングが可能か否かの判断が容易になる。そのため、より容易に、一次側ブリッジ回路及び二次側ブリッジ回路の動作周波数をソフトスイッチングが成立する周波数に切替えることができる。
 (第4の実施の形態)
 本実施の形態では、ソフトスイッチングが成立するか否かを示すマップに基づいて、動作周波数を切替える出力電力のしきい値を求め、出力電力としきい値との比較結果に応じて動作周波数を切替える。その他の構成は、上記した実施の形態と同様である。
 図20に、動作周波数が250kHzの場合のマップの一例を示す。図21に、動作周波数が500kHzの場合のマップの一例を示す。図18に示したマップと同様、これらのマップは、縦軸(行)を出力電力(W)、横軸(列)を直流出力電圧(V)とするマトリクス形状である。図20及び図21に示すマップは、上記した式(6)及び式(7)を用いて、ソフトスイッチングが可能か否か直流出力電圧及び出力電力毎に算出し、その結果を示している。算出に際し用いた入力電圧は400V、トランスに直列のインダクタ成分の合計値Lは40μHである。
 同様に、マップ中の「TRUE」は、ソフトスイッチングが可能であることを示しており、「FALSE」は、ソフトスイッチングが不可(ハードスイッチング)であることを示している。図21のマップにおいて、真理値が示されていない領域は、その条件では動作できない出力不可(DISABLE)の領域である。そのため、出力不可の領域に対応する直流出力電圧及び出力電力の組み合わせは検出されない。
 図20のマップと図21のマップとを組み合わせることによって、図22に示されるマップが得られる。図22を参照して、このマップは、一例として、出力電力が1800W以上の領域に動作周波数250kHzのマップ(図20)が適用され、出力電力が1600W以下の領域に動作周波数500kHzのマップ(図21)が適用されている。すなわち、図20のマップと図21のマップとを組み合わせることによって、動作周波数を切替える出力電力のしきい値が得られる。図22のマップの例では、出力電力のしきい値として、1600Wと1800Wの2つのしきい値が求められる。1600Wのしきい値は、例えば、動作周波数を250kHzから500kHzに切替えるときのしきい値であり、1800Wのしきい値は、例えば、動作周波数を500kHzから250kHzに切替えるときのしきい値とすることができる。
 [ソフトウェア構成]
 本実施の形態に係る電力変換装置では、図12に示されるプログラムに代えて、図23に示されるプログラムが実行される。図23に示されるプログラムは、図11のプログラムと並列で実行される。
 図23のプログラムは、図12のプログラムにおいて、ステップS2030及びステップS2040に代えて、ステップS2130を含む。図23のステップS2000~ステップS2020、ステップS2050、及びステップS2060における処理は、図12に示される各ステップにおける処理と同じである。以下、異なる部分について説明する。
 図23を参照して、このプログラムは、ステップS2020の後に実行され、動作周波数の切替え処理を行うステップS2130を含む。
 図24は、図23のステップS2130の詳細なフローである。図24を参照して、このルーチンは、出力電力が1600W未満か否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2200と、ステップS2200において、出力電力が1600W未満であると判定された場合に実行され、実行中の動作周波数が250kHzか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2210と、ステップS2210において、実行中の動作周波数が250kHzであると判定された場合に実行され、動作周波数を500kHzに切替えるステップS2220とを含む。
 このルーチンはさらに、ステップS2200において、出力電力が1600W未満ではないと判定された場合に実行され、出力電力が1800W以上か否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2230と、ステップS2230において、出力電力が1800W以上であると判定された場合に実行され、実行中の動作周波数が500kHzか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2240と、ステップS2240において、実行中の動作周波数が500kHzであると判定された場合に実行され、動作周波数を250kHzに切替えるステップS2250とを含む。
 ステップS2210において、実行中の動作周波数が250kHzではないと判定された場合、ステップS2230において、出力電力が1800W以上ではないと判定された場合、又はステップS2240において実行中の動作周波数が500kHzではないと判定された場合は、このルーチンは終了する。さらに、ステップS2220又はステップS2250の処理が終了した場合もこのルーチンは終了する。
 [動作]
 本実施の形態に係る電力変換装置は、以下のように動作する。なお、動作周波数を切替える動作を除いた動作は、上記第1の実施の形態と同様である。したがって、同様の動作についての詳細な説明は繰返さない。
 図25を参照して、例えば動作周波数250kHzで電力変換装置が動作しているとする。このときに、出力電力が1600Wを下回ると(図24のステップS2200においてYES、かつ、ステップS2210においてYES)、電力変換装置の制御部は、動作周波数を500kHzに切替える(ステップS2220)。さらに、電力変換装置が、例えば動作周波数500kHzで動作しているとする。このときに、出力電力が1800Wを上回ると(ステップS2230においてYES、かつ、ステップS2240においてYES)、電力変換装置の制御部は、動作周波数を250kHzに切替える(ステップS2250)。
 出力電力が1600W以上1800W未満の場合(図24のステップS2200においてNO、かつ、ステップS2230においてNO)、実行中の動作周波数が維持される。出力電力が1800W以上の場合でも(ステップS2230においてYES)、実行中の動作周波数が250kHzの場合は(ステップS2240においてNO)、その動作周波数が維持される。さらに、出力電力が1600W未満の場合でも(ステップS2200においてYES)、実行中の動作周波数が500kHzの場合は(ステップS2210においてNO)、その動作周波数が維持される。
 [効果]
 本実施の形態では、ソフトスイッチングか否かを判定するのではなく、ソフトスイッチングか否かを判断するためのマップに基づいて算出したしきい値を用い、出力電力としきい値との比較結果に応じて動作周波数を切替える。これにより、ハードスイッチングになる前に動作周波数を切替えることができるので、ハードスイッチングをより確実に抑制できる。これにより、ハードスイッチングに起因する電力変換効率の低下をより一層容易に抑制することができる。
 なお、本実施の形態では、電力変換装置の出力電圧(直流出力電圧)によらず、一定の出力電力で動作周波数を切替える例について述べたが、出力電圧に応じて出力電力のしきい値を変えるようにしてもよい。例えば、直流出力電圧が400Vでは出力電力0Wまで250kHz動作を維持する一方、直流出力電圧500Vでは出力電力1600Wを境に250kHz動作と500kHz動作を切替えてもよい。
 さらに、直流出力電圧に応じて動作周波数を切替えてもよい。例えば、出力電力を1000W一定で動作するような場合、直流出力電圧360Vから440Vまでは250kHz動作し、直流出力電圧300Vから360Vまで、及び直流出力電圧440Vから500Vまでは500kHz動作するように構成すれば、ソフトスイッチング動作を維持できる。
 (第5の実施の形態)
 本実施の形態に係る電力変換装置は、一次側の入力電圧をも用いてソフトスイッチングか否かの判定を行う点において、第1の実施の形態とは異なる。
 図26を参照して、本実施の形態に係る電力変換装置50Bは、一次側の入力電圧を検出する電圧センサ152をさらに含む。電力変換装置50Bは、制御部160(図1参照)に代えて、制御部160Bを含む。制御部160Bは、記憶部164に記憶されるプログラムが制御部160とは異なる。
 [ソフトウェア構成]
 本実施の形態に係る電力変換装置50Bでは、図12に示されるプログラムに代えて、図27に示されるプログラムが実行される。図27に示されるプログラムは、図11のプログラムと並列で実行される。なお、図27に示されるプログラムでは、初期値として設定される、基準となる動作周波数を例えば250kHzとしている。
 図27のプログラムは、図12のプログラムにおいて、ステップS2010に代えてステップS2012を含み、ステップS2030及びステップS2040に代えて、ステップS2132を含む。図27のステップS2000、ステップS2020、ステップS2050、及びステップS2060における処理は、図12に示される各ステップにおける処理と同じである。以下、異なる部分について説明する。
 図27を参照して、このプログラムは、ステップS2000において、Flagが1であると判定された場合に実行され、電力変換装置50Bの入力電圧、出力電圧(直流出力電圧)、及び出力電流を検出するステップS2012と、ステップS2020の後に実行され、動作周波数の切替え処理を行うステップS2132とを含む。
 図28は、図27のステップS2132の詳細なフローである。図28を参照して、このルーチンは、入力電圧Eが出力電圧Eより大きいか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2300と、ステップS2300において、入力電圧Eが出力電圧Eより大きいと判定された場合に実行され、上記した式(6)を満たすか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2310と、ステップS2310において上記した式(6)を満たすと判定された場合に実行され、動作周波数を250kHzに維持するステップS2320と、ステップS2310において上記した式(6)を満たさないと判定された場合に実行され、動作周波数を500kHzに変更するステップS2330とを含む。
 このルーチンはさらに、ステップS2300において、入力電圧Eが出力電圧Eより大きくない、すなわち出力電圧Eが入力電圧E以上であると判定された場合に実行され、上記した式(7)を満たすか否かを判定し、判定結果に応じて制御の流れを分岐させるステップS2340と、ステップS2340において上記した式(7)を満たすと判定された場合に実行され、動作周波数を250kHzに維持するステップS2350と、ステップS2340において上記した式(7)を満たさないと判定された場合に実行され、動作周波数を500kHzに変更するステップS2360とを含む。
 ステップS2320、ステップS2330、ステップS2350、又はステップS2360の処理が終了すると、このルーチンは終了する。
 本実施の形態に係る電力変換装置50Bは、上記のように、一次側の入力電圧をも用いてソフトスイッチングか否かの判定を行う。そのため、一次側の入力電圧が変わる場合でも、ソフトスイッチングを実現できる。したがって、スイッチング損失を効果的に低減できるので、ハードスイッチングに起因する電力変換効率の低下をより容易に抑制できる。
 (第6の実施の形態)
 図29を参照して、本実施の形態に係る電力変換装置50Cは、フィルタ回路180、及びスナバコンデンサ190をさらに含む点において、第1の実施の形態とは異なる。
 フィルタ回路180は、二次側ブリッジ回路120と電流センサ140との間に配置され、電流センサ140で検出する出力電流に対して周波数制限をかける。フィルタ回路180は、リアクトル182とコンデンサ184とを含むLCフィルタである。
 スナバコンデンサ190は、二次側ブリッジ回路120と電流センサ140との間の領域であって、二次側ブリッジ回路120と隣り合う領域に配置されている。すなわち、スナバコンデンサ190は、フィルタ回路180よりも二次側ブリッジ回路120側の領域に配置されている。
 上記したように、出力電力の算出に用いる電流情報は、周波数制限をかけた情報(例えば高周波成分をカットした情報)でもよい。電流センサ140の電流情報に対して周波数制限をかけるフィルタ回路180を設けることによって、出力電流と出力電圧(直流出力電圧)とを用いて出力電力を算出する際に、出力電力の算出が容易になる。
 さらに、スナバコンデンサ190を設けることによって、サージ対策、又はノイズ対策等を図ることができるので、電力変換装置50Cの信頼性を高めることができる。なお、フィルタ回路180、及びスナバコンデンサ190を設けた場合でも、これらを設けない場合と同様に、ソフトスイッチングか否かの判定を行うことができる。
 本実施の形態では、フィルタ回路180、及びスナバコンデンサ190の両方を設けた例について示したが、本開示はこの構成に限定されない。例えば、フィルタ回路180、及びスナバコンデンサ190のいずれか一方を電力変換装置に設けるようにしてもよい。
 (第7の実施の形態)
 本実施の形態では、上記実施の形態で示した電力変換装置を車載充電器に適用する例について説明する。
 図30を参照して、本実施の形態に係る車載充電器300は、電力系統340からの交流電力を直流電力に変換して出力するAC/DC変換回路310と、AC/DC変換回路310が変換した直流電力が入力される電力変換装置320とを含む。AC/DC変換回路310と電力変換装置320との間には平滑コンデンサ330が設けられている。なお、図30では、AC/DC変換回路310を制御する制御部、及び電力変換装置320を制御する制御部の記載は省略している。
 AC/DC変換回路310は、電力系統340からのAC200Vの交流電力を、例えばDC400Vの直流電力に変換する。
 電力変換装置320は、DAB方式のDC/DCコンバータである。電力変換装置320には、上記実施の形態で示したいずれかの電力変換装置を用いることができる。電力変換装置320は、AC/DC変換回路310から出力されたDC400Vの直流電力を、例えばDC300Vの直流電力に変換して、高圧バッテリ350に出力する。高圧バッテリ350は、車載充電器300によって変換された電力により充電される。
 [車両への搭載]
 図31を参照して、車両400は例えばPHEV(Plug-in Hybrid Electric Vehicle)又はEV(Electric Vehicle)等の電動車両である。この車両400は、充電ソケット410、車載充電器300、高圧バッテリ350、インバータ420、及び駆動装置430を含む。
 充電ソケット410は、高圧バッテリ350の充電時に充電器(図示せず)の充電プラグが接続される。充電器は電力系統からのAC200Vの交流電力を出力する。充電器からの充電出力は、充電ソケット410を介して車載充電器300に入力される。車載充電器300は、AC200Vの交流電力を、例えばDC300Vの直流電力に変換して、高圧バッテリ350に出力する。
 インバータ420は、車両コントローラ(図示せず)からの指令により駆動装置430への通電制御を行う。駆動装置430は、モータを含み、高圧バッテリ350から供給される電力により駆動力を生成する。すなわち、駆動装置430は、インバータ420によって変換された交流電力により車輪を回す駆動力を生み出す。
 (変形例)
 上記実施の形態では、2ポートのDAB方式DC/DCコンバータの例について示したが、本開示はそのような実施の形態には限定されない。DAB方式DC/DCコンバータである電力変換装置のポート数は3ポート以上であってもよい。
 上記実施の形態では、各ブリッジ回路の出力電圧をDuty50%の矩形波状とする例について示したが、本開示はそのような実施の形態には限定されない。出力電圧のDutyは50%以外であってもよい。さらに、一次側ブリッジ回路のDutyと二次側ブリッジ回路のDutyとは異なる値であってもよい。位相差と動作周波数とによって出力が変わる回路であれば、本開示の技術を適用することが可能である。
 上記実施の形態では、動作周波数を30kHzと60kHzの2値間で切替える構成について示したが、本開示はそのような実施の形態には限定されない。例えば、30kHz、40kHz、50kHzというように、30kHzと60kHzとの間を細かく区切り、段階的に動作周波数を切替えるようにしてもよいし、30kHzから60kHzの間で連続的に動作周波数を変更するようにしてもよい。上記実施の形態では、動作周波数を250kHzと500kHzとの2値間で切替える構成についても示している。これについても、上記と同様に、250kHzと500kHzとの間を段階的に切替えるように構成してもよいし、250kHzから500kHzの間で連続的に動作周波数を変更するようにしてもよい。
 上記実施の形態では、図18のマップに示したように、ソフトスイッチングが不可である場合(「FALSE」)に、出力電圧及び出力電力に応じて切替える動作周波数を2つ(「FALSE1」及び「FALSE2」)設定した例を示したが、本開示はこのような構成に限定されない。例えば、切替える動作周波数に応じて切替える動作周波数を3つ以上に設定してもよい。
 上記実施の形態では、ソフトスイッチングが可能か否かを判断するマップの一例として「TRUE」又は「FALSE」の真理値を用いたマップについて示したが、本開示はそのような実施の形態には限定されない。マップは、真理値以外によりソフトスイッチングが可能か否かを判断するように構成してもよい。例えば、真理値に代えて、ソフトスイッチングが可能な動作周波数を示すマップを用いてもよい。このマップでは、例えば、ソフトスイッチングが可能な出力電圧(直流出力電圧)及び出力電力の組み合わせには動作中の周波数が示され、ソフトスイッチングが不可の出力電圧(直流出力電圧)及び出力電力の組み合わせには変更する周波数が示される。この場合、マップを参照することによって、ソフトスイッチングが可能な動作周波数に容易に切替えることができる。
 上記実施の形態で示した動作周波数及び出力電力等の値は一例であって、これに限定されるものではない。また、上記実施の形態で示したマップも一例であって適宜変更することができる。マップに示される出力電圧(横軸)及び出力電力(縦軸)は、各々の範囲を示すものとすることもできる。例えば、マップに示される出力電圧320Vは、320V以上340V未満(又は320Vより大きく340V以下)とすることができる。この場合、出力電圧の検出値が例えば330Vの場合、マップの出力電圧320Vの真理値を参照すればよい。同様に、例えば、出力電力1600Wは、1600W以上1800W未満(又は1600Wより大きく1800W以下)とすることができる。この場合、出力電力の値が例えば1650Wの場合、マップの出力電力1600Wの真理値を参照すればよい。
 なお、上記で開示された技術を適宜組み合わせて得られる実施の形態についても、本開示の技術的範囲に含まれる。
 今回開示された実施の形態は単に例示であって、本開示が上記した実施の形態のみに限定されるわけではない。本開示の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。
 40 第1の直流電源
 42 第2の直流電源
 50、50A~50C、320 電力変換装置
 60 一次側コイル
 62 二次側コイル
 64 コア部材
 100 一次側ブリッジ回路
 110、130、330 平滑コンデンサ
 120 二次側ブリッジ回路
 140 電流センサ
 150、152 電圧センサ
 160、160A、160B 制御部
 162 CPU
 164 記憶部
 170 駆動制御部
 172 取得部
 174 判定部
 176 周波数変更部
 180 フィルタ回路
 184 コンデンサ
 190 スナバコンデンサ
 200 外部装置
 300 車載充電器
 310 AC/DC変換回路
 340 電力系統
 350 高圧バッテリ
 400 車両
 410 充電ソケット
 420 インバータ
 430 駆動装置
 D1~D8 還流ダイオード
 L、L、182 リアクトル
 Q1~Q8 スイッチング素子
 TR トランス
 V、V ブリッジ回路の出力電圧
 E 入力電圧
 E 出力電圧(直流出力電圧)
 Vds_Q5 ドレイン-ソース間電圧
 Vgs_Q5 ゲート-ソース間電圧

Claims (10)

  1.  絶縁型の電力変換装置であって、
     トランスと、
     複数のスイッチング素子を含み、前記トランスの一次側に設けられる第1のブリッジ回路と、
     複数のスイッチング素子を含み、前記トランスの二次側に設けられる第2のブリッジ回路と、
     前記第1のブリッジ回路及び前記第2のブリッジ回路のスイッチングを制御する制御部とを含み、
     前記制御部は、前記電力変換装置の出力電圧及び出力電力に基づいて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を、前記第1のブリッジ回路及び前記第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替える、電力変換装置。
  2.  前記電力変換装置の出力電流及び出力電圧をそれぞれ検出する電流センサ及び電圧センサをさらに含み、
     前記制御部は、前記電圧センサで検出した前記出力電圧、並びに、前記電流センサ、及び前記電圧センサでそれぞれ検出した出力電流及び出力電圧を用いて算出した前記出力電力に基づいて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を切替える、請求項1に記載の電力変換装置。
  3.  前記電流センサで検出する前記出力電流に対して周波数制限をかける回路をさらに含む、請求項2に記載の電力変換装置。
  4.  前記周波数制限をかける回路は、前記第2のブリッジ回路と前記電流センサとの間に配置されるフィルタ回路を含む、請求項3に記載の電力変換装置。
  5.  前記第2のブリッジ回路と前記電流センサとの間の領域であって、前記第2のブリッジ回路と隣り合う領域に配置されるコンデンサをさらに含む、請求項2から請求項4のいずれか一項に記載の電力変換装置。
  6.  前記トランスの前記二次側に設けられ、前記電力変換装置の出力電圧を検出する電圧センサと、
     前記出力電力を外部からの指示値として取得する取得部とをさらに含み、
     前記制御部は、前記電圧センサで検出した前記出力電圧、及び前記取得部が取得した前記出力電力に基づいて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を切替える、請求項1に記載の電力変換装置。
  7.  前記制御部は、ソフトスイッチングが成立するか否かを判定するための判定条件を記憶する記憶部を含み、前記出力電圧及び前記出力電力と前記判定条件とを用いて、前記第1のブリッジ回路及び前記第2のブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を切替える、請求項1から請求項6のいずれか一項に記載の電力変換装置。
  8.  前記記憶部は、前記判定条件として、種々の出力電圧値及び出力電力値に対してソフトスイッチングの成立条件を満たすか否かを示すテーブルを記憶し、
     前記制御部は、前記出力電圧及び前記出力電力に対して前記テーブルを参照することで、前記第1のブリッジ回路及び前記第2のブリッジ回路のスイッチングがソフトスイッチングか否かを判定し、判定結果に応じて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を切替える、請求項7に記載の電力変換装置。
  9.  交流電力を直流電力に変換して出力する変換回路と、
     前記変換回路が変換した直流電力が入力される、請求項1から請求項8のいずれか一項に記載の電力変換装置とを含む、車載充電器。
  10.  トランスと、複数のスイッチング素子を含み、前記トランスの一次側に設けられる第1のブリッジ回路と、複数のスイッチング素子を含み、前記トランスの二次側に設けられる第2のブリッジ回路とを含む電力変換装置の制御方法であって、
     前記第1のブリッジ回路と前記第2のブリッジ回路との間で位相差が生じるように、前記第1のブリッジ回路及び前記第2のブリッジ回路のスイッチングを制御するステップと、
     前記電力変換装置の出力電圧及び出力電力に基づいて、前記第1のブリッジ回路及び前記第2のブリッジ回路の動作周波数を、前記第1のブリッジ回路及び前記第2のブリッジ回路の制御においてソフトスイッチングが成立する周波数に切替えるステップとを含む、制御方法。
PCT/JP2021/018716 2021-05-18 2021-05-18 電力変換装置、車載充電器、及び制御方法 WO2022244087A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522031A JPWO2022244087A1 (ja) 2021-05-18 2021-05-18
PCT/JP2021/018716 WO2022244087A1 (ja) 2021-05-18 2021-05-18 電力変換装置、車載充電器、及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018716 WO2022244087A1 (ja) 2021-05-18 2021-05-18 電力変換装置、車載充電器、及び制御方法

Publications (1)

Publication Number Publication Date
WO2022244087A1 true WO2022244087A1 (ja) 2022-11-24

Family

ID=84141330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018716 WO2022244087A1 (ja) 2021-05-18 2021-05-18 電力変換装置、車載充電器、及び制御方法

Country Status (2)

Country Link
JP (1) JPWO2022244087A1 (ja)
WO (1) WO2022244087A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051082A (ja) * 2015-08-31 2017-03-09 サンケン電気株式会社 双方向dc/dcコンバータ
JP2019126228A (ja) * 2018-01-19 2019-07-25 新電元工業株式会社 Dc/dcコンバータの制御装置
JP2020005331A (ja) * 2018-06-25 2020-01-09 ダイヤモンド電機株式会社 Dc−dcコンバータ
US20200266714A1 (en) * 2017-09-29 2020-08-20 HELLA GmbH & Co. KGaA Multi-phase-shift control of a power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051082A (ja) * 2015-08-31 2017-03-09 サンケン電気株式会社 双方向dc/dcコンバータ
US20200266714A1 (en) * 2017-09-29 2020-08-20 HELLA GmbH & Co. KGaA Multi-phase-shift control of a power converter
JP2019126228A (ja) * 2018-01-19 2019-07-25 新電元工業株式会社 Dc/dcコンバータの制御装置
JP2020005331A (ja) * 2018-06-25 2020-01-09 ダイヤモンド電機株式会社 Dc−dcコンバータ

Also Published As

Publication number Publication date
JPWO2022244087A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
US7848118B2 (en) Bi-directional DC-DC converter and method for controlling the same
JP7140045B2 (ja) 駆動回路
US9487098B2 (en) Power conversion apparatus
EP2717451B1 (en) Resonant DC power supply apparatus and control method thereof
US6570780B2 (en) Resonant inverter control system
WO2014002590A1 (ja) フルブリッジ電力変換装置
JP7374226B2 (ja) 力率改善回路及び空気調和機
JP6702209B2 (ja) 電力変換装置
US11799472B2 (en) Drive circuit
JP3848903B2 (ja) 電力変換装置
WO2022244087A1 (ja) 電力変換装置、車載充電器、及び制御方法
CN108736792B (zh) 矩阵变换器以及交流电动机的常数确定方法
JP7099199B2 (ja) 駆動対象スイッチの駆動回路
JP6758486B2 (ja) 半導体素子の駆動装置および電力変換装置
US20230031930A1 (en) Dual-purpose drive and charger systems and methods thereof
KR102471224B1 (ko) 위상천이형 풀브릿지 컨버터의 입력 신호 제어 장치 및 그 동작 방법
KR102529389B1 (ko) 친환경 차량의 컨버터 제어 시스템 및 그 방법
CN112224062B (zh) 能量转换装置、动力系统以及车辆
CN210007619U (zh) 功率因数校正电路和空调器
JP7087869B2 (ja) 電力変換装置
JP6575462B2 (ja) 電圧変換装置
JP2010166681A (ja) 交流機制御装置
US20230117458A1 (en) Method and System for Controlling Power Factor Correction Circuit
JP7063179B2 (ja) 制御回路
KR20180106622A (ko) 액티브 클램프 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522031

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE