WO2022243576A1 - Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp - Google Patents

Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp Download PDF

Info

Publication number
WO2022243576A1
WO2022243576A1 PCT/ES2021/070350 ES2021070350W WO2022243576A1 WO 2022243576 A1 WO2022243576 A1 WO 2022243576A1 ES 2021070350 W ES2021070350 W ES 2021070350W WO 2022243576 A1 WO2022243576 A1 WO 2022243576A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
taf
pixels
martensite
zones
Prior art date
Application number
PCT/ES2021/070350
Other languages
English (en)
French (fr)
Inventor
Amaia IZA MENDIA
Denis JORGE BADIOLA
Isabel GUTIERREZ SANZ
Original Assignee
Asociacion Centro Tecnologico Ceit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asociacion Centro Tecnologico Ceit filed Critical Asociacion Centro Tecnologico Ceit
Priority to PCT/ES2021/070350 priority Critical patent/WO2022243576A1/es
Priority to EP21940635.2A priority patent/EP4336175A1/en
Publication of WO2022243576A1 publication Critical patent/WO2022243576A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents

Definitions

  • the present invention belongs to the field of metallurgy, more specifically to the field of metallurgical characterization by microscopy, and refers to a method for characterizing dual ferrite-martensite steels, specifically to identify and quantify the area of ferrite affected by the transformation of the martensite in dual steels, using the EBSD microscopic technique.
  • the invention also refers to the use of said quantification of TAF (transformation affected ferrite) zones in models for predicting mechanical properties.
  • TAF zones affected by the transformation of the pre-existing austenite into martensite.
  • TAF zones The origin of the hardening of the ferrite zones (TAF zones) adjacent to the martensite lies in the volumetric change caused by the transformation of these austenite zones (high-temperature phase) into martensite (low-temperature phase) during cooling after annealing. Expansion occurs in the martensite, which produces plastic deformation of the adjacent ferrite, giving rise to TAF zones.
  • these TAF zones have different characteristics from those of conventional ferrite, such as greater hardness. That is why the characterization of said hardened TAF zones is important, for example, to correctly predict the mechanical properties of DP steels, and thus cover a current need in the state of the art.
  • nanoindentation For the characterization of the mechanical properties of ferrite-martensite steels, nanoindentation is used in the state of the art.
  • the nanoindentation has the limitation that nanohardness measurements are affected by the proximity of the indentation location to the ferrite-martensite interface, F/M, resulting in some spatial limitation, particularly below the surface, where the position of the interface is unknown, this may result in obtaining local hardness values that are not sufficiently representative of the sample.
  • the present invention contemplates using the EBSD technique, associated with scanning electron microscopy.
  • the EBSD (Electron Backscatter Diffraction) technique is an accessory attached to a scanning electron microscope that allows the identification of phases of a crystalline material (for example, a metal such as steel), as well as disorientations between the crystals of the phases present in said material. material, both for single-phase and multiphase materials.
  • an area of the sample to be measured is selected, which is divided into pixels of the size chosen by the user, making a scan in said area that irradiates the area of each pixel with a beam of electrons.
  • Each pixel is assigned a misorientation based on the Kikuchi pattern that the electron beam from that sample pixel projects onto a phosphorescent detection screen.
  • EBSD EBSD in a field emission scanning electron microscope is a fast, reliable, and very high-resolution method to obtain data on crystal structures and their orientation in 3 dimensions.
  • the disorientation data for each pixel of the area has been obtained using EBSD, these are processed using data processing software, and there are various data processing software obtained using EBSD, such as the commercial software TSL-OIM.
  • data processing software such as the commercial software TSL-OIM.
  • the data obtained through EBSD can be processed with any of the data processing software adapted for it.
  • Patent documents on quantitative measurement methods of microstructural characteristics in steels using the EBSD technique are known in the state of the art, as well as scientific publications that analyze the ferrite-martensite interface using EBSD; but none of them disclose or suggest a methodology for the identification and quantification of TAF zones.
  • CN102735703A Method for quantitatively evaluating retained austenite in Steel by EBSD (electron back scattering diffraction).
  • CN103454294A Method for quantitatively evaluating each phase structure in hot rolling TRIP (transformation-induced plasticity) steel.
  • CN105203438A Determination method for austenitic grain size of pearlite type wire rod.
  • the present invention aims to overcome the previous limitations of the state of the art, providing a robust and precise methodology for the characterization of the hardened ferrite zones (TAF zones) affected by martensite in ferrite-martensite dual steels, using the EBSD technique. . This methodology will make it possible to identify and quantify the TAF zones.
  • the object of the present invention is a method to characterize a steel sample. Specifically, it is a method for the identification and quantification, from the obtaining and processing of data obtained by EBSD, of TAF zones in recrystallized dual DP (ferrite-martensite) steels, by differentiating the ferrite into its ferrite subphases. soft and hardened ferrite (TAF zones).
  • TAF zones correspond to the ferrite zones that are hardened by the surrounding martensite resulting from the transformation of austenite into martensite. That is why the quantification of said hardened TAF zones is important, for example, to correctly predict the mechanical properties of DP ferrite-martensite steels, thus covering a current need in the state of the art.
  • the invention is therefore capable of identifying and quantifying the TAF zones in recrystallized dual steels using EBSD, a technique never used before for this purpose. This is achieved by identifying the ferrite and martensite phases in the pixels of an EBSD scan carried out on the recrystallized dual steel sample, and by appropriate inventive selection of Kernel Average Misdirection Parameter (KAM) thresholds, or "Kernel Average Misorientation", during the analysis of the data obtained through EBSD, which is a parameter whose use is conventional for EBSD data.
  • KAM Kernel Average Misdirection Parameter
  • the KAM parameter has never been used to differentiate subphases of the same phase in the state of the art, for example to differentiate between soft ferrite and hardened ferrite (TAF zones), as is the case with the present invention.
  • the characterization method of a recrystallized dual steel sample of the present invention comprises identifying the TAF zones of the sample, by carrying out the following steps a-e):
  • TAF zone the ferrite pixels adjacent to at least one ferrite pixel assigned as TAF zone, and which also have a KAM deviation with respect to their n-neighbors within a range [a, b], where a 3 0.3° and b £ 2.0°;
  • step d) Iterate step d) with respect to all the ferrite pixels adjacent to those previously assigned as the TAF zone.
  • step c) optionally and preferably, to the condition of assigning the ferrite pixels adjacent to at least one martensite pixel as the TAF zone, the additional condition is also imposed that said ferrite pixels adjacent to the martensite have a deviation KAM with respect to its n-neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°.
  • the first stage a) consists of identifying the ferrite areas by performing at least one EBSD scan on the sample. Once the data corresponding to the ferrite has been identified (stage a), for the detection of the hardened ferrite subphase (TAF zones) in the phase of ferrite, the inventors according to the method of the present invention have established to carry out the above-mentioned steps b).
  • Steps a-e) of the characterization method of the present invention will be explained in more detail later in the detailed description of the invention.
  • a ferrite pixel will be identified as a "TAF zone" if it meets one of the following two criteria:
  • the first criterion is that the TAF zone must be adjacent to the ferrite the martensite, that is to say a zone of interface of the ferrite with the martensite, that is to say, pixels of ferrite adjacent to pixels of martensite.
  • the additional condition is imposed that the pixels must have KAM values with respect to their neighbors between 0.3-2°.
  • the second criterion is that the pixels identified as TAF zones, in addition to being adjacent to pixels previously identified as TAF zones, must have KAM values with respect to their neighbors between 0.3-2°.
  • KAM Kernel Average Misorientation
  • the soft phase will therefore be the remaining phase of soft ferrite, also being quantified.
  • any conventional mathematical method of data selection and quantification can be used.
  • TAF zones soft ferrite and hardened ferrite
  • the TAF zones are characterized according to the invention by means of those pixels adjacent to martensite pixels, or as those ferrite pixels adjacent to previously identified TAF pixels and that additionally present orientation gradients caused by the neighboring martensite expressed by means of the KAM parameter, with a range between 0.3-2°.
  • a second aspect of the invention includes the application of the quantification of the TAF (hardened ferrite) zones in conventional tools for predicting the mechanical properties of dual DP steels of the state of the art, for the simulation of the micromechanical behavior of said steels; steel widely used in the form of sheet metal in the automotive industry.
  • TAF hardened ferrite
  • Figure 1 visually and schematically shows an example of a pixel scan such as the one that would be performed using the EBSD technique using the method for characterizing a dual recrystallized steel sample of the present invention, in which the pixels of the sample Dual steel DP (ferrite-martensite) are identified according to the method of the invention in Martensite (M), soft Ferrite (F) and hardened ferrite or TAF (TAF).
  • M Martensite
  • F soft Ferrite
  • TAF hardened ferrite or TAF
  • the present invention describes a method to characterize a steel sample. More specifically, it is a method to identify and quantify the hardened ferrite zone (TAF zones) in recrystallized DP dual steels containing ferrite and martensite, by differentiating the ferrite into its soft ferrite and hardened ferrite subphases (TAF zones). , using the EBSD technique (“backscattered electron diffraction technique”).
  • TAF zones hardened ferrite zone
  • EBSD technique backscattered electron diffraction technique
  • TAF zones correspond to the ferrite zones that are hardened by the surrounding martensite resulting from the transformation of austenite into martensite. That is why the quantification of said hardened TAF zones is important, for example, to correctly predict the mechanical properties of DP steels, thus covering a current need in the state of the art.
  • KAM Kernel parameter
  • the invention refers to a method for characterizing a recrystallized dual steel sample, which comprises identifying the TAF zones of the sample, comprising the following steps:
  • TAF zone the ferrite pixels adjacent to at least one ferrite pixel assigned as TAF zone in the previous stage, and which also have a KAM deviation with respect to n neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°;
  • step d) Iterate step d) with respect to all the ferrite pixels adjacent to those previously assigned as the TAF zone.
  • step c) optionally and preferably, to the condition of assigning the ferrite pixels adjacent to at least one martensite pixel as the TAF zone, the additional condition is also imposed that said ferrite pixels adjacent to the martensite have a deviation KAM with respect to its n-neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°.
  • the first characteristic of the present invention is the performance of at least one scan to obtain data by means of EBSD, preferably by means of a fine scanning step, in order to be able to measure the ferrite zones affected by the transformation into martensite (TAF zones). .
  • This preferable fine scanning can be performed after a previous larger scanning step, or performed independently of it.
  • the fine scanning step according to the present invention will be less than or equal to 200 nm, preferably less than or equal to 100 nm, more preferably less than 60 nm, and even more preferably between 50-60 nm.
  • a fine step size greater than 60 nm results in a less adequate characterization of the TAF zones, therefore values less than 60 nm are more preferred. It seems that a sufficiently fine step size (ie at least 60 nm) allows to analyze in better detail the surroundings or edges of the martensite and ferrite grains, thus being able to obtain a more precise identification and quantification of the phases.
  • a fine scanning step of 50 nm could be used, covering an area of for example 10 6 pixels (50 pm x 50 pm).
  • the additional use of at least one first coarse pitch scan, before performing the fine pitch scan, is optional and preferred for the implementation of the present invention.
  • the largest step size would not be limited, but would preferably be equal to or greater than 60 nm, for example 200 nm. Carrying out at least one additional scan of a larger size allows obtaining a first characterization of the microstructure of the sample, in order to locate oneself in the microstructure of the sample and locate the ferrite-martensite interface of interest, for its subsequent detailed study with a size step. fine in order to identify and quantify the hardened ferrite zones surrounding the martensite. The optimum major step size will be determined based on the size of the steel microstructure to be analysed.
  • sweeps with different step sizes can be performed.
  • a scan with a larger step size will be carried out to measure the grain size of the microstructure and including all phases of the steel, and another subsequent fine size scan for the measurement at a higher resolution of the hardened ferrite zones (zones TAF) affected by the transformation of the surrounding martensite.
  • zones TAF hardened ferrite zones
  • the ferrite pixels must first be selected, by partitioning the data corresponding to the martensite phase. This selection can be made, for example, using commercial software, such as the TSL-OIM software.
  • the zones corresponding to the ferrite phase and the martensite phase can be separated in a conventional way, through the quality parameter IQ (“Image Quality”) of the Kikuchi pattern, since that both produce different and characteristic Kikuchi patterns, allowing their identification in ferrite or martensite.
  • Quality parameter IQ Image Quality
  • the differentiation between the ferrite and martensite phase by means of the EBSD technique is somewhat conventional and has been used for quite some time (numerous publications indicate so).
  • the martensite is differentiated by its size and by the quality of the Kikuchi patterns. Specifically, martensite and ferrite are differentiated by: a. The grain size (set of pixels that make up a unit of ferrite or martensite), which is smaller in the case of martensite than in the ferrite in this type of steel; and b. Quality of the Kikuchi lines (worse in martensite than in ferrite).
  • the resulting data set only includes the ferrite; specifically its 2 subphases, both soft ferrite and hardened ferrite (TAF zones).
  • the ferrite subphases have not yet been identified as soft ferrite or TAF zones. It will be in the subsequent analysis of the data obtained, for example, through EBSD data analysis software, where the subphases of the ferrite will be differentiated into soft ferrite or hardened ferrite (TAF). This software may be incorporated into or independent of the EBSD data collection software. The use of any conventional EBSD data processing software is contemplated, such as the commercial software TSL-OIM.
  • step a After carrying out step a), it will then be necessary to separate the ferrite pixels into their soft ferrite and hardened ferrite (TAF) subphases.
  • TAF soft ferrite and hardened ferrite
  • TAF zone the ferrite pixels adjacent to at least one ferrite pixel assigned as TAF zone in the previous stage, and which also have a KAM deviation with respect to n neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°;
  • step d) Iterate step d) with respect to all the ferrite pixels adjacent to those previously assigned as the TAF zone.
  • stage c For stage c), optionally and preferably, to the condition of assigning the ferrite pixels adjacent to at least one martensite pixel as the TAF zone, the additional condition is also imposed that said ferrite pixels adjacent to the martensite have a deviation KAM with respect to its n-neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°.
  • TAF zones those pixels adjacent to the TAF zones previously identified in stage c) that additionally present a Kernel Average Disorientation (KAM) between 0.3-2° will also be identified as TAF zones.
  • KAM Kernel Average Disorientation
  • the calculation of the KAM deviation, ie step b), can be performed at any time before step c) or d).
  • the KAM parameter it is possible to detect and quantify the TAF zones, that is, the ferrite zones adjacent to the newly formed martensite and whose hardness is affected by the new martensite. This selection of a value for the KAM between 0.3-2° is a specific feature of the present invention.
  • the KAM value of each pixel is calculated with respect to the neighboring pixels, preferably according to this invention with respect to third neighbors, that is to say with respect to three pixels away in all directions with respect to the ferrite pixel under study.
  • stage e) will be carried out. That is, step d) will be iterated with respect to all the ferrite pixels adjacent to those previously assigned as the TAF zone. This will also identify as TAF zones all those ferrite pixels adjacent to other previously identified TAF zones, as long as they additionally present KAM deviations between 0.3-2°. This stage e) of iteration of stage d) makes it possible to identify all the TAF zones present in the sample.
  • the pixels not identified as TAF zones will therefore be identified as conventional or soft ferrite.
  • a ferrite zone will be identified as "TAF zone ”, if it meets one of the following two criteria:
  • the first criterion is that the TAF zone must be ferrite adjacent to the martensite, that is, an interface zone of the ferrite with the martensite, that is, ferrite pixels adjacent to martensite pixels.
  • the additional condition that said ferrite pixels adjacent to the martensite present a KAM between 0.3-2° is imposed on the first criterion.
  • the second criterion is that the pixels identified as TAF zones, in addition to being adjacent to pixels previously identified as TAF zones, must have KAM values with respect to their neighbors between 0.3-2°.
  • TAF zones are ferrite zones adjacent to martensite pixels or to pixels previously identified as TAF zones
  • a perfect crystal may present deviations within the grain between pixels, and it may be the case that they present average misorientations with KAM values of up to 2°, and therefore these pixels may be erroneously identified as TAF zones.
  • This definition (being adjacent) avoids the possibility of mistakenly defining areas of soft ferrite as TAF hardened ferrite.
  • the second criterion includes that the pixel presents a value of the parameter "Kernel misorientation approximation (KAM)" between 0.3-2°.
  • KAM Kernel misorientation approximation
  • the KAM parameter is a preset parameter known by the scientific field that uses the EBSD technique, which allows the quantification of the disorientation between pixels.
  • neither the KAM parameter nor the identification of its ranges have been previously used for the identification and quantification of phases or subphases, such as the hardened ferrite (TAF zones) of the present invention.
  • TAF zones hardened ferrite zones
  • the KAM parameter calculates the mean or average misorientation of a point or pixel with respect to all its neighbors, defining each of them by its misorientation angle.
  • Kernel mean misorientation is a measure of local kernel misorientation that is usually derived from EBSD data. To formally define the KAM, denote by Oi the orientation at the pixel position (/,_/) and by N(iJ) the set of all neighboring pixels.
  • the mean Kernel misorientation (KAM ⁇ j ) at pixel position (i,j) is given by:
  • refers to the number of all considered neighboring pixels and the misorientation angle ⁇ ( ⁇ 3 ⁇ 4, ⁇ 3 ⁇ 4,/ ) between the orientation a , and in the center (i,j) and the neighboring orientation ⁇ 3 ⁇ 4,/ corresponding to the pixel (k,l).
  • n 3 (measure of disorientation with respect to up to 3 neighboring pixels, or third neighboring pixels), and ferrite pixels with KAM values between 0.3-2° would be compulsorily selected.
  • the KAM for a given point or the average misorientation of that point with all its neighbors is calculated with the condition that the misorientations that exceed the imposed tolerance value (max disorientation of 2° and minimum of 0.3° in this invention) are excluded from the calculation of the average. Therefore, the ferrite pixels adjacent to pixels previously identified as TAF zones that exceed a KAM of 2° or present a KAM of less than 0.3° will not be identified as TAF zones.
  • TAF zones hardened ferrite zones
  • said pixel satisfies the condition of a KAM between a minimum angle and a maximum angle or KAM range [a, b], where a 3 0.3° and b ⁇ 2.0°; with respect to their neighbors.
  • the KAM calculation will be made relative to its third neighbors for scan (or step) sizes of 50-60 nm.
  • the subgrains bordering the hardened ferrite or TAF subgrains could be both soft ferrite and hardened ferrite, so they cannot be unequivocally established as TAF zones using the present method; and that is why said bordering sub-grains are excluded from the calculation.
  • zones measured by EBSD of all the 3 phases present in the sample have been identified: as zones of martensite, soft ferrite, and hardened ferrite (TAF).
  • TAF hardened ferrite
  • the method includes defining a minimum angular tolerance of 2° for the determination of the subgrain size during the data analysis phase.
  • This 2° limit defines the subgrain border (and therefore delimits the area that constitutes a subgrain) considering that the misorientation between adjacent points is greater than 2 o .
  • This limit is imposed by the patent applicant, and it is an upper limit imposed on the KAM parameter that no pixel of the scan must exceed to be considered as belonging to the subgrain. His choice is based on the fact that the 2° limit the disorientation from which the minimum microstructural unit known as subgrain is defined. With this, it is possible to define the edges of the subgrain, such as those with a misorientation of more than 2° between contiguous points or pixels, and thereby establish the area of the subgrain.
  • this method can only be applied to the identification of TAF zones in dual recrystallized steel (deformation free) and subsequently tempered, which is what is generally obtained in these steels.
  • new internal disorientations would be introduced, and the grain and subgrain boundaries would be reorganized, so the maximum KAM threshold criterion of 2° would no longer be useful to identify and separate the TAF zones of the ferrite with respect to those of soft ferrite.
  • this invention would apply exclusively to dual (ferrite-martensite) and recrystallized steels, for example, obtained through annealing and subsequent cooling during which the transformation of austenite into martensite occurs, the resulting steel being dual ( ferrite-martensite), and without mechanical strain being applied to the steel before characterizing it by the method of the present invention.
  • the percentage or area fraction of each phase or subphase can be calculated mathematically, and with them, therefore, the area fraction of the hard phase of this steel (which would be the martensite plus the ferrite). hardened or TAF zones) and that of the soft phase (which would be the soft ferrite).
  • any conventional mathematical method of data selection and quantification can be used.
  • An example of a mathematical quantization method according to the invention would consist of the following data post-processing steps: a. Selection of the data corresponding to the martensite and ferrite grains and calculation of the total area fraction of martensite, subtracting the area fraction of ferrite. b. In the ferrite grains, data partition corresponding to TAF zones. c. Measurement of the number of pixels or the area corresponding to each one of the TAF zones, and subtraction of this value from the number of ferrite pixels or the total area of the affected ferrite grain that contains the TAF zone, thus obtaining the fraction in total area of TAF zones. d.
  • the total area fraction of the soft phase (soft ferrite), which will be the result of subtracting the fraction of TAF zones from the ferrite fraction. and. Quantification of the total area fraction of the hard phase with respect to the total. This will be the sum of the martensite fraction and the affected (hardened) ferrite fraction, obtaining the total hard phase.
  • the calculation of the area fractions can be made from the martensite grain or subgrain sizes of the ferrite subphases, instead of from the number of pixels in each phase or subphase.
  • a plurality of scans can be performed with a smaller and smaller pixel size, in order to increase the precision in the amount of hardened ferrite identified.
  • the number of pixels identified as TAF would be calculated with respect to the total number of pixels. This would allow to quantify the hardened ferrite more precisely, repeating the scan until the proportion of ferrite pixels that meet the conditions to be identified as TAF zones, for each scan, converges to a proportion that corresponds to the amount of hardened ferrite.
  • TAF zones soft ferrite and hardened ferrite
  • the TAF zones are characterized according to the invention by means of those pixels adjacent to martensite pixels or as those pixels of ferrite adjacent to previously identified TAF pixels and that additionally present orientation gradients caused by the neighboring martensite expressed by means of the KAM parameter, with a range between 0.3-2°.
  • a specific feature of this invention is the selection of the maximum of the KAM parameter as 2° and the minimum of the KAM parameter as 0.3° to identify the ferrite zones adjacent to the martensite (or to the zones previously defined as TAF) as TAF zones.
  • a preferable feature of this invention is the selection of a fine scanning step less than or equal to 60 nm (preferably between 50-60nm), which allows for more accurate characterization.
  • a first embodiment of the invention comprises a method for characterizing a recrystallized dual steel sample, which comprises identifying the TAF zones of the sample, comprising the following steps:
  • TAF zone the ferrite pixels adjacent to at least one ferrite pixel assigned as TAF zone in the previous stage, and which also have a KAM deviation with respect to n neighbors included in a range [a, b], where a 3 0.3° and b £ 2.0°.
  • step d) Iterate step d) with respect to all the ferrite pixels adjacent to those previously assigned as the TAF zone.
  • a second embodiment of the invention comprises that in step c) above, in order to assign the TAF zones to the ferrite pixels adjacent to at least one martensite pixel, the additional condition is imposed that they have a KAM deviation with respect to n neighbors comprised in a range [a, b], where a 3 0.3° and b £ 2.0°.
  • a fifth embodiment of the invention defines the EBSD scanning pixel size as ⁇ 200 nm, preferably ⁇ 100 nm, more preferably ⁇ 60 nm, and most preferably between 50-60 nm, according to any of the above embodiments.
  • a seventh embodiment of the invention comprises carrying out the hardened ferrite identification method according to one of the previous embodiments, performing a plurality of scans with a smaller and smaller pixel size, calculating for each scan the proportion of the number of pixels of ferrite that meet the conditions of the previous embodiments to be considered TAF zones. This allows the hardened ferrite to be quantified more precisely; repeating the scan until the proportion of ferrite pixels meeting said conditions for each scan converges to a proportion corresponding to the amount of hardened ferrite.
  • control means are configured to perform a method according to one of the above embodiments.
  • a ninth embodiment of the invention relates to the computer program comprising instructions for causing the apparatus of claim 7 to execute steps of the method according to one of the above embodiments.
  • a tenth embodiment of the invention refers to the computer program that includes instructions for processing data previously obtained by means of EBSD so as to execute the sample characterization steps of the method, specifically identification and, optionally, quantification of TAF zones according to one of the previous realizations.
  • An eleventh embodiment of the invention relates to the computer-readable medium having stored the computer program of the eighth and/or ninth embodiment.
  • a twelfth and last embodiment of the invention refers to the use of the quantification of the TAF (hardened ferrite) zones in conventional tools for predicting the mechanical properties of dual DP steels of the state of the art, for the simulation of the micromechanical behavior of said steels; steel widely used in the form of sheet metal in the automotive industry.
  • the hardening of the ferrite causes a change in the mechanical behavior of the material, which must be taken into account in the prediction models of mechanical properties of steels.
  • This makes it possible to determine the mechanical properties of dual steels during industrial forming operations through the improvement of micromechanical models, which make it possible to predict the mechanical behavior of these grades of steel more precisely, and which can be integrated into simulation software for the cold formed.
  • this invention contributes to the development of design tools for steels with improved mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

La invención se refiere al método para caracterizar una muestra de acero dual recristalizado, que comprende identificar las zonas TAF de la muestra, comprendiendo las siguientes etapas: a) Realizar al menos un barrido por EBSD de un área superficial de la muestra para identificar píxeles de ferrita y píxeles de martensita; b) Calcular una desviación KAM respecto a n vecinos para los pixeles de ferrita; c) Asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita, d) Asignar adicionalmente como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF en la etapa anterior, y que además tienen una desviación KAM respecto a n vecinos comprendida en un rango [α, β], donde α ≥ 0,3º y β ≤ 2,0º. e) Iterar la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF. La invención también se refiere al aparato capaz de caracterizar una muestra de acero según el método de la invención, y a los programas de ordenador capaces de ejecutar dicho aparato y de tratar los datos obtenidos mediante EBSD según el método de la invención.

Description

DESCRIPCIÓN
MÉTODO PARA LA EVALUACIÓN CUANTITATIVA DE LA ZONA AFECTADA POR TRANSFORMACIÓN EN LA FERRITA EN ACEROS DUALES DP
Sector de la técnica
La presente invención pertenece al campo de la metalurgia, más concretamente al campo de la caracterización metalúrgica por microscopía, y se refiere a un método para caracterizar aceros duales ferrita-martensita, concretamente para identificar y cuantificar la zona de ferrita afectada por la transformación de la martensita en aceros duales, mediante la técnica microscópica de EBSD. La invención también se refiere al uso de dicha cuantificación de zonas TAF (acrónimo en inglés de “Transformation Affected Ferrite”, es decir ferrita afectada por la transformación) en modelos de predicción de propiedades mecánicas.
Estado de la técnica
Cuando se habla de aceros duales, se trata de aceros con una microestructura resultante de ferrita-martensita a temperatura ambiente. La forma de obtener estos aceros es a través de un recocido intercrítico que produce en esta etapa de alta temperatura, una microestructura ferrita-austenita antes del enfriamiento final. Tras el temple o enfriamiento rápido, la austenita se transforma en martensita, obteniéndose la estructura dual ferrita-martensita del acero final.
Como resultado de la transformación de austenita en martensita (M) en aceros duales DP (“Dual Phase”), la ferrita colindante a la martensita se endurece. Estas zonas de ferrita, afectadas por la transformación de la preexistente austenita en martensita, han sido denominadas por los autores de la invención como “zonas TAF”. La formación de zonas TAF se limita a la generación de pequeñas desorientaciones de carácter local en la ferrita colindante a la martensita.
El origen del endurecimiento de las zonas de ferrita (zonas TAF) colindantes a la martensita está en el cambio volumétrico provocado por la transformación de esas zonas de austenita (fase de alta temperatura) en martensita (fase de baja temperatura) durante el enfriamiento tras el recocido. Se produce una dilatación en la martensita, que produce la deformación plástica de la ferrita adyacente, dando lugar a las zonas TAF. Así pues, estas zonas TAF presentan características diferentes a las de la ferrita convencional, tales como una mayor dureza. Es por ello que la caracterización de dichas zonas TAF endurecidas es importante, por ejemplo, para predecir correctamente las propiedades mecánicas de aceros DP, y cubrir así una necesidad actual del estado de la técnica.
Para la caracterización de las propiedades mecánicas de los aceros ferrita-martensita, se utiliza en el estado de la técnica la nanoindentación. No obstante, la nanoindentación tiene la limitación de que las mediciones de nanodureza se ven afectadas por la proximidad de la ubicación de la indentación a la intercara ferrita-martensita, F/M, lo que deriva en cierta limitación espacial, particularmente por debajo de la superficie, donde se desconoce la posición de la intercara, pudiendo esto resultar en la obtención de valores de dureza locales no suficientemente representativos de la muestra.
En el estado de la técnica también existen enfoques micromecánicos para la predicción del comportamiento mecánico de aceros DP. Sin embargo, la aplicación directa de estos modelos a los aceros DP ha dado lugar a importantes desviaciones entre los resultados experimentales y las predicciones. Uno de los factores que se esgrime como determinante en las discrepancias que se observan es el que corresponde al efecto del endurecimiento de la ferrita como consecuencia de la transformación de austenita a martensita durante el enfriamiento del acero, es decir la formación de zonas de ferrita endurecida ( zonas TAF), que los modelos micromecánicos existentes suelen pasar por alto. Como se ha explicado, la martensita, a través de su mecanismo de formación, induce la deformación plástica en la ferrita, endureciéndola cerca de la intercara ferrita-martensita (FM) durante el enfriamiento. Este fenómeno contribuye a un endurecimiento adicional del acero que se suele omitir.
Es por ello que la caracterización de las zonas de ferrita afectadas por la transformación (TAF) es importante, resultando esta compleja. No obstante, actualmente en el estado de la técnica no hay ninguna metodología capaz de caracterizar las zonas TAF, es decir, identificarlas y cuantificarlas, o dicho de otra forma, de diferenciar entre diferentes estados de la ferrita, concretamente entre ferrita blanda y ferrita dura (TAF) en los aceros DP.
Para conseguir identificar y cuantificar las zonas TAF, en la presente invención se contempla emplear la técnica de EBSD, asociada a la microscopía electrónica de barrido. La técnica EBSD (“Electron Backscatter Diffraction”) es un accesorio adjunto a un microscopio electrónico de barrido que permite identificar fases de un material cristalino (por ejemplo un metal como el acero), así como desorientaciones entre los cristales de las fases presentes en dicho material, tanto para materiales monofásicos como multifásicos. Primeramente, tras preparar la muestra, se selecciona un área de la muestra a medir que se divide en pixeles del tamaño escogido por el usuario, haciéndose un barrido en dicha área que irradia el área de cada píxel con un haz de electrones. A cada píxel se le asigna una desorientación en función del patrón Kikuchi que el haz de electrones proveniente de dicho píxel de la muestra proyecta sobre una pantalla fosforescente de detección. El uso de EBSD en un microscopio electrónico de barrido de emisión de campo es un método rápido, fiable, y de muy alta resolución para obtener datos de estructuras cristalinas y su orientación en 3 dimensiones.
Una vez obtenidos los datos de desorientación para cada píxel del área mediante EBSD, estos son tratados mediante un software de tratamiento de datos, existiendo diversos softwares de tratamiento de datos obtenidos mediante EBSD como, por ejemplo, el software comercial TSL- OIM. Así pues, los datos obtenidos mediante EBSD pueden ser tratados con cualquiera de los softwares de tratamiento de datos adaptados para ello.
Hasta la fecha, según el conocimiento del solicitante de la presente invención, no se ha empleado la técnica EBSD de forma sistemática y estructurada para la definición y cuantificación de zonas de ferrita endurecida (TAF) afectadas por la martensita colindante. De hecho, no hay ninguna metodología establecida en el estado de la técnica capaz de diferenciar entre ferrita, concretamente entre ferrita blanda y ferrita dura (TAF), que a partir de ahora se denominarán subfases de ferrita, de forma precisa.
Son conocidos en el estado de la técnica documentos de patente sobre métodos de medida cuantitativa de características microestructurales en aceros mediante la técnica de EBSD, así como publicaciones científicas que analizan la intercara ferrita martensita mediante EBSD; pero ninguno de ellos divulga ni sugiere una metodología para la identificación y cuantificación de zonas TAF.
Se enumeran a continuación algunos de estos documentos de patente ya conocidos: CN102735703A: Method for quantitatively evaluating retained austenite in Steel by EBSD (electrón back scattering diffraction).
CN103454294A: Method for quantitatively evaluating each phase structure in hot rolling TRIP (transformation-induced plasticity) steel.
CN105203438A: Determination method for austenitic grain size of pearlite type wire rod.
La presente invención pretende superar las anteriores limitaciones del estado de la técnica, proporcionando una metodología robusta y precisa para la caracterización de las zonas de ferrita endurecida (zonas TAF) afectadas por la martensita en aceros duales ferrita-martensita, utilizando para ello la técnica EBSD. Esta metodología permitirá identificar y cuantificar las zonas TAF.
Objeto de la invención
El objeto de la presente invención es un método para caracterizar una muestra de acero. Concretamente, se trata de un método para la identificación y cuantificación, a partir de la obtención y tratamiento de datos obtenidos mediante EBSD, de zonas TAF en aceros duales DP (ferrita-martensita) recristalizados, mediante la diferenciación de la ferrita en sus subfases ferrita blanda y ferrita endurecida (zonas TAF).
Estas zonas TAF corresponden a las zonas de ferrita que se ven endurecidas por la martensita colindante resultante de la transformación de la austenita en martensita. Es por ello que la cuantificación de dichas zonas TAF endurecidas es importante, por ejemplo, para predecir correctamente las propiedades mecánicas de aceros DP ferrita-martensita, cubriendo así una necesidad actual del estado de la técnica.
La invención por tanto es capaz de identificar y cuantificar las zonas TAF en aceros duales recristalizados mediante EBSD, una técnica nunca antes utilizada para ello. Esto se consigue mediante la identificación de las fases ferrita y martensita en los píxeles de un barrido EBSD llevado a cabo en la muestra de acero dual recristalizado, y mediante una selección adecuada según la invención de umbrales del parámetro de desorientación promedio Kernel (KAM), o “Kernel Average Misorientation”, durante el análisis de los datos obtenidos mediante EBSD, que es un parámetro cuyo uso es convencional para datos de EBSD. El parámetro KAM nunca se ha utilizado para diferenciar subfases de una misma fase en el estado de la técnica, por ejemplo para diferenciar la ferrita en ferrita blanda y ferrita endurecida (zonas TAF), como es el caso de la presente invención. Esto es porque a priori, al tratarse de la misma fase (ferrita), mediante EBSD no es esperable que se pueda diferenciar la ferrita blanda de la ferrita endurecida (zonas TAF) afectada por la transformación martensítica adyacente, ya que ambas presentan el mismo patrón Kikuchi característico de su estructura cristalina y orientación, al ser ambas ferrita, y serían identificadas convencionalmente como ferrita mediante EBSD. Es por ello que no se contemplaría la técnica EBSD para cuantificar TAF, al no ser capaz dicha técnica de diferenciar entre subfases de ferrita a priori.
El método de caracterización de una muestra de acero dual recristalizado de la presente invención, comprende identificar las zonas TAF de la muestra, mediante la realización de las siguientes etapas a-e):
- a) Realizar al menos un barrido por EBSD de un área superficial de la muestra para identificar píxeles de ferrita y píxeles de martensita;
- b) Calcular una desviación KAM respecto a n vecinos para los píxeles de ferrita;
- c) Asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita;
- d) Asignar adicionalmente como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF, y que además tienen una desviación KAM respecto a sus n-vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°;
- e) Iterar la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF.
Para la etapa c), opcionalmente y preferiblemente, a la condición de asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita, también se impone la condición adicional de que dichos píxeles de ferrita adyacentes a la martensita tengan una desviación KAM respecto a sus n-vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
La primera etapa a) consta de identificar las zonas de ferrita a partir de la realización de, al menos, un barrido EBSD en la muestra. Una vez identificados los datos correspondientes a la ferrita (etapa a), para la detección de la subfase de ferrita endurecida (zonas TAF) en la fase de ferrita, los inventores según el método de la presente invención han establecido realizar las etapas b-e) anteriormente mencionadas.
Las etapas a-e) del método de caracterización de la presente invención se explicarán de forma más detallada más adelante, en la descripción detallada de la invención.
Así pues, según el método de caracterización de aceros duales de la presente invención, un píxel de ferrita será identificado como “zona TAF”, si cumple uno los siguientes dos criterios: · El primer criterio es que la zona TAF debe ser ferrita adyacente a la martensita, es decir una zona de intercara de la ferrita con la martensita, es decir, píxeles de ferrita adyacentes a píxeles de martensita. Opcionalmente, se impone la condición adicional de que los píxeles deben tener valores KAM respecto a sus vecinos entre 0.3-2°.
• El segundo criterio es que los píxeles identificados como zonas TAF, además de ser adyancentes a píxeles identificados previamente como zonas TAF, deben tener valores KAM respecto a sus vecinos entre 0.3-2°.
Este segundo criterio se refiere al parámetro “Desorientación de Kernel promedia” (KAM), del inglés “Kernel Average Misorientation”. Este es un parámetro preestablecido y conocido por el ámbito científico que usa la técnica de EBSD, que permite la cuantificación de la desorientación entre píxeles. No obstante, ni el parámetro KAM ni menos aún la definición de sus rangos se ha utilizado anteriormente para la identificación y cuantificación de la ferrita endurecida (TAF) en aceros DP. Tras aplicar el método para caracterizar una muestra de acero dual recristalizado ferrita- martensita de la presente invención, se conseguirá identificar los píxeles de la muestra caracterizada correspondientes a las 3 fases, concretamente la fase martensita y las subfases ferrita blanda y ferrita endurecida (zonas TAF). Es por ello posible a continuación calcular matemáticamente el porcentaje o fracción de cada fase, y con ellos por tanto el porcentaje de la fase dura de este acero, que sería el de martensita más el de ferrita endurecida (zonas
TAF). La fase blanda será, por tanto, la fase restante de ferrita blanda, quedando también cuantificada. Para realizar la cuantificación de las 3 fases, una vez identificados qué píxeles corresponden a cada fase, se puede utilizar cualquier método matemático convencional de selección y cuantificación de datos.
Un ejemplo de un método matemático de cuantificación según la invención, que consta de varios pasos de posprocesado de datos, se proveerá más adelante, en la descripción detallada de la invención.
En resumen, de acuerdo a la presente invención, la utilización de la técnica de EBSD y el posterior tratamiento de datos permite:
• Diferenciar y cuantificar las dos fases existentes: ferrita (F) y martensita (M), lo cual ya es conocido.
• Identificar y cuantificar las subfases de la ferrita en ferrita blanda y ferrita endurecida (zonas TAF), siendo ésta la parte novedosa de la invención. Las zonas TAF se caracterizan según la invención mediante aquellos píxeles adyacentes a píxeles de martensita, o como aquellos píxeles de ferrita adyacentes a píxeles TAF previamente identificados y que adicionalmente presentan gradientes de orientación causados por la martensita colindante expresados mediante el parámetro KAM, con un rango entre 0.3-2°.
Un segundo aspecto de la invención incluye la aplicación de la cuantificación de las zonas TAF (ferrita endurecida) en herramientas convencionales de predicción de propiedades mecánicas de aceros duales DP del estado de la técnica, para la simulación del comportamiento micromecánico de dichos aceros; aceros de amplio uso en forma de chapa en la industria automovilística.
Descripción de las Figuras
La figura 1 muestra de forma visual y esquemática un ejemplo de un barrido en píxeles como el que se realizaría mediante la técnica de EBSD mediante el método para caracterizar una muestra de acero dual recristalizado de la presente invención, en el que los píxeles de la muestra de acero dual DP (ferrita - martensita) se identifican según el método de la invención en Martensita (M), Ferrita blanda (F) y ferrita endurecida o TAF (TAF). Descripción detallada de la invención
La presente invención describe un método para caracterizar una muestra de acero. Más concretamente, se trata de un método para identificar y cuantificar la zona de ferrita endurecida (zonas TAF) en aceros duales DP recristalizados que contienen ferrita y martensita, mediante la diferenciación de la ferrita en sus subfases ferrita blanda y ferrita endurecida (zonas TAF), utilizando para ello la técnica de EBSD (“técnica de difracción de electrones retrodispersados”).
Estas zonas TAF corresponden a las zonas de ferrita que se ven endurecidas por la martensita colindante resultante de la transformación de la austenita en martensita. Es por ello que la cuantificación de dichas zonas TAF endurecidas es importante, por ejemplo, para predecir correctamente las propiedades mecánicas de aceros DP, cubriendo así una necesidad actual del estado de la técnica.
Esto se consigue mediante la realización sobre la muestra de acero DP recristalizado, de al menos un barrido EBSD de tamaño de paso adecuado, para obtener los datos, y mediante una selección adecuada de umbrales en el parámetro de Kernel (KAM) durante la etapa de análisis de los datos, que es un parámetro cuyo uso es conocido para la técnica EBSD.
Más concretamente, la invención se refiere a un método para caracterizar una muestra de acero dual recristalizado, que comprende identificar las zonas TAF de la muestra, comprendiendo las siguientes etapas:
- a) Realizar al menos un barrido por EBSD de un área superficial de la muestra para identificar píxeles de ferrita y píxeles de martensita;
- b) Calcular una desviación KAM respecto a n vecinos para los píxeles de ferrita;
- c) Asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita;
- d) Asignar adicionalmente como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF en la etapa anterior, y que además tienen una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°;
- e) Iterar la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF. Para la etapa c), opcionalmente y preferiblemente, a la condición de asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita, también se impone la condición adicional de que dichos píxeles de ferrita adyacentes a la martensita tengan una desviación KAM respecto a sus n-vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
Sorprendentemente se ha observado que no todas las zonas de ferrita adyacentes a la martensita se ven necesariamente afectadas por la martensita colindante; es decir, no son necesariamente zonas TAF. Así pues, imponer la condición adicional de que dichos píxeles de ferrita adyacentes a la martensita presenten un KAM entre 0.3-2°, resulta en valores más óptimos en cuánto a la identificación de píxeles de ferrita como zonas TAF.
A continuación se describe en más detalle el método de caracterización de zonas TAF de la invención mediante EBSD, paso a paso.
1) Realización de al menos un barrido de EBSD para identificar píxeles de ferrita y píxeles de martensita (etapa a):
La primera característica propia de la presente invención es la realización de al menos un barrido para la obtención de datos mediante EBSD, preferiblemente mediante un paso de barrido fino, para así poder medir las zonas de ferrita afectadas por la transformación en martensita (zonas TAF). Este barrido fino preferible puede realizarse tras un paso de barrido mayor previo, o realizarse independientemente de éste.
El paso de barrido fino según la presente invención será menor o igual a 200 nm, preferiblemente menor o igual a 100 nm, más preferiblemente menor a 60 nm, y aún más preferiblemente entre 50-60 nm.
De hecho, los inventores han concluido que un tamaño de paso fino superior a 60 nm resulta en una caracterización menos adecuada de las zonas TAF, siendo por ello más preferidos valores menores a 60 nm. Parece ser que un tamaño de paso suficientemente fino (i.e. al menos de 60 nm) permite analizar en mejor detalle los alrededores o bordes de los granos de martensita y ferrita, pudiendo obtener así una identificación y cuantificación de las fases más precisa. A modo de ejemplo no limitativo, se podría utilizar un paso de barrido fino de 50 nm, cubriendo un área de por ejemplo 106 píxeles (50 pm x 50 pm). Aunque actualmente no es posible la resolución de dos patrones Kikuchi bajo condiciones estándar de microscopía en posiciones más cercanas o inferiores a 50 nm, debido a la limitación espacial de la técnica. Los inventores entienden que en un futuro podrían ser resolubles dichos patrones a distancias menores, por ejemplo, debido a mejoras en la propia técnica de EBSD como es la técnica TKD (“Transmission Kikuchi Diffraction”) basada en EBSD, y es por ello que se contemplan tamaños de paso menores a 50 nm en la presente invención.
La utilización adicional de al menos un primer barrido de paso mayor, antes de realizar el barrido de paso fino, es opcional y preferida para la realización de la presente invención. El tamaño de paso mayor no estaría limitado, pero será preferiblemente igual o mayor a 60 nm, por ejemplo 200 nm. Realizar al menos un barrido adicional de tamaño mayor permite obtener una primera caracterización de la microestructura de la muestra, para así situarse en la microestructura de la muestra y localizar la intercara ferrita-martensita de interés, para su posterior estudio detallado con un paso de tamaño fino con el fin de identificar y cuantificar las zonas de ferrita endurecida circundantes a la martensita. El tamaño de paso mayor óptimo se determinará en función del tamaño de la microestructura de acero a analizar. Así pues, será preferiblemente aquel que permita cumplir las siguientes 2 características para la microestructura específica del acero a observar: 1) definir los granos con suficiente resolución dentro del barrido, permitiendo distinguir claramente el tamaño de grano de la ferrita y de la martensita; y 2) que además cubra un área representativa y significativa de la microestructura.
Según la presente invención, se pueden realizar barridos con diferentes tamaños de paso. Preferiblemente, se realizará un barrido de tamaño de paso mayor para la medida del tamaño de grano de la microestructura e incluyendo todas las fases del acero, y otro barrido de tamaño fino posterior para la medida a mayor resolución de las zonas de ferrita endurecidas (zonas TAF) afectadas por la transformación de la martensita colindante. Se contempla la realización de varios barridos, tanto de paso mayor como de paso fino.
Dado que en el barrido se han obtenido tanto píxeles de ferrita como de martensita, primeramente se deberá proceder a seleccionar los píxeles de ferrita, mediante la partición de los datos correspondientes a la fase martensita. Esta selección se puede realizar por ejemplo mediante un software comercial, tal como el software TSL-OIM.
Se puede separar las zonas correspondientes a la fase ferrita y la fase martensita de forma convencional, a través del parámetro IQ (“Image Quality”) de calidad del patrón de Kikuchi, ya que ambas producen patrones Kikuchi diferentes y característicos, permitiendo su identificación en ferrita o martensita. La diferenciación entre la fase ferrita y martensita mediante la técnica EBSD es algo convencional y se ha venido usando desde hace bastante tiempo (numerosas publicaciones así lo indican).
La martensita se diferencia por su tamaño y por la calidad de los patrones de Kikuchi. Concretamente, la martensita y la ferrita se diferencian por: a. El tamaño de grano (conjunto de pixeles que conforman una unidad de ferrita o de martensita), que es menor en el caso de la martensita que en la ferrita en este tipo de aceros; y b. Calidad de las líneas de Kikuchi (peor en la martensita que en la ferrita).
Así pues, tras esta partición, se consigue separar la fase martensítica de los datos, de forma que el conjunto de datos resultante tan sólo incluye la ferrita; concretamente sus 2 subfases, tanto la ferrita blanda como la ferrita endurecida (zonas TAF).
Cabe tener en cuenta que en esta etapa, en el propio barrido, aún no se han identificado las subfases de la ferrita como ferrita blanda o zonas TAF. Será en el posterior análisis de los datos obtenidos, por ejemplo, mediante software de análisis de datos de EBSD, donde se diferenciarán las subfases de la ferrita en ferrita blanda o ferrita endurecida (TAF). Este software puede estar incorporado en el mismo software de obtención de datos de EBSD, o ser independiente de éste. Se contempla el uso de cualquier software convencional de tratamiento de datos de EBSD, como por ejemplo el software comercial TSL-OIM.
Esta identificación de las subfases de ferrita se realizará según las etapas b)-e) que se expondrán a continuación.
2) Identificación de zonas TAF de la fase ferrita (etapas b-e):
Tras realizar la etapa a), seguidamente cabrá separar los pixeles de ferrita en sus subfases ferrita blanda y ferrita endurecida (TAF). Para ello se utilizará o bien un software comercial tal como el software TSL-OIM, o bien un software adaptado para este fin. Para ello, se realizarán las siguientes etapas b-e):
- b) Calcular una desviación KAM respecto a n vecinos para los pixeles de ferrita;
- c) Asignar como zona TAF los pixeles de ferrita adyacentes a, al menos, un píxel de martensita
- d) Asignar adicionalmente como zona TAF los pixeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF en la etapa anterior, y que además tienen una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°;
- e) Iterar la etapa d) con respecto a todos los pixeles de ferrita adyacentes a los previamente asignados como zona TAF.
Para la etapa c), opcionalmente y preferiblemente, a la condición de asignar como zona TAF los pixeles de ferrita adyacentes a al menos un píxel de martensita, también se impone la condición adicional de que dichos pixeles de ferrita adyacentes a la martensita tengan una desviación KAM respecto a sus n-vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
Primeramente, en los datos correspondientes a la ferrita ya separados, se definen como zonas TAF aquellos pixeles de ferrita justamente adyacentes a los pixeles de martensita, sin imponerles a estos primeros pixeles ninguna condición del valor KAM. Esto corresponde a la etapa c) del método de la presente invención.
A continuación, se identificarán también como zonas TAF aquellos pixeles adyacentes a las zonas TAF identificadas previamente en la etapa c) que adicionalmente presenten una Desorientación Promedio de Kernel (KAM) entre 0,3-2°. Dicho de otra forma, es a los pixeles no justamente adyacentes a la intercara ferrita-martensita, a los que imponemos la condición de que además de ser adyacentes a una zona TAF anteriormente definida, cumplan la condición de que presenten un KAM menor o igual a 2° para ser definidos como zona TAF. Esto corresponde a la etapa d) del método de la presente invención.
El cálculo de la desviación KAM, es decir la etapa b), puede realizarse en cualquier momento antes de la etapa c) o d). Mediante el parámetro KAM, se consigue detectar y cuantificar las zonas TAF, es decir las zonas de ferrita adyacentes a la martensita nuevamente formada y cuya dureza se ve afectada por la nueva martensita. Esta selección de un valor para el KAM entre 0,3-2°, es una característica específica de la presente invención. Además, el valor KAM de cada píxel se calcula respecto a los píxeles vecinos, preferiblemente según esta invención respecto a terceros vecinos, es decir respecto a tres píxeles de distancia en todas las direcciones respecto al píxel de ferrita de estudio.
Finalmente, se realizará la etapa e); es decir se iterará la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF. Esto identificará también como zonas TAF todos aquellos píxeles de ferrita adyacentes a otras zonas TAF previamente identificadas, siempre y cuando adicionalmente presenten desviaciones KAM comprendidas entre 0.3-2°. Esta etapa e) de iteración de la etapa d) permite identificar todas las zonas TAF presentes en la muestra.
Los píxeles no identificados como zonas TAF serán identificados por tanto como ferrita convencional o blanda.
Por tanto, según el método de caracterización de aceros duales anteriormente definido por los inventores de la presente invención, para la detección de la subfase de ferrita endurecida (zonas TAF) en la fase de ferrita, una zona de ferrita será identificada como “zona TAF”, si cumple uno de los siguientes dos criterios:
• El primer criterio es que la zona TAF debe ser ferrita adyacente a la martensita, es decir una zona de intercara de la ferrita con la martensita, es decir píxeles de ferrita adyacentes a píxeles de martensita. Opcionalmente y preferiblemente, se impone al primer criterio la condición adicional de que dichos píxeles de ferrita adyacentes a la martensita presenten un KAM entre 0.3-2°.
• El segundo criterio es que los píxeles identificados como zonas TAF, además de ser adyacentes a píxeles identificados previamente como zonas TAF, deben tener valores KAM respecto a sus vecinos entre 0,3-2°.
Definir la condición del primer criterio de que las zonas TAF sean zonas de ferrita adyacentes a píxeles de martensita o a píxeles previamente identificados como zonas TAF es importante, ya que el interior de los granos de ferrita ya de por sí, por su propia deformación, y por no ser un cristal perfecto, puede presentar desviaciones dentro del grano entre píxeles, pudiendo darse el caso de que presenten desorientaciones promedio con valores KAM de hasta 2°, y por ello ser erróneamente identificados estos píxeles como zonas TAF. Esta definición (ser adyacente) evita la posibilidad de definir zonas de ferrita blanda erróneamente como ferrita endurecida TAF.
El segundo criterio comprende que el píxel presente un valor del parámetro “aproximación de desorientación de Kernel (KAM)’’ entre 0,3-2°. El parámetro KAM es un parámetro preestablecido y conocido por el ámbito científico que usa la técnica de EBSD, que permite la cuantificación de la desorientación entre píxeles. No obstante, ni el parámetro KAM ni la identificación de sus rangos se han utilizado anteriormente para la identificación y cuantificación de fases o subfases, como por ejemplo la ferrita endurecida (zonas TAF) de la presente invención. La definición de zonas TAF como zonas de ferrita con desorientación promedio KAM entre 0,3-2° es una característica propia de la invención, y permite caracterizar las zonas TAF de aceros duales mediante la técnica EBSD.
El parámetro KAM, según su definición, calcula la desorientación media o promedio de un punto o píxel respecto a todos sus vecinos, definiendo cada uno de ellos por su ángulo de desorientación.
La desorientación media de Kernel (KAM) es una medida de la desorientación local del grano que generalmente se deriva de los datos EBSD. Para definir formalmente el KAM, se denota por Oi la orientación en la posición de píxel (/,_/) y por N(iJ) el conjunto de todos los píxeles vecinos. La desorientación media de Kernel (KAM¡j) en la posición del píxel (i,j) viene dada por:
Figure imgf000015_0001
Aquí |N(i,j)| hace referencia al número de todos los píxeles vecinos considerados y el ángulo de desorientación ø(<¾, <¾,/ ) entre la orientación a, y en el centro (i,j) y la orientación vecina <¾,/ correspondiente al píxel (k,l). La elección específica del conjunto N(i,j) de píxeles vecinos es crucial para la computación del KAM. Se suelen imponer criterios adicionales para su cálculo: considerar vecinos hasta el orden n, por ejemplo, n = 1, 2, 3... • considerar sólo vecinos con un ángulo de desorientación menor que un ángulo umbral KAM.
El criterio preferido impuesto sobre n para esta invención es de n igual a 3 (medida de la desorientación respecto hasta 3 píxeles vecinos, o terceros vecinos), y se seleccionarían obligatoriamente píxeles de ferrita con valores de KAM entre 0,3-2°. Así pues, el criterio de n = 3 es preferido, pudiéndose realizar la presente invención seleccionando otros múltiplos enteros de n (número de vecinos). De hecho, se ha observado que aunque elegir un valor de n elevado mejora la precisión del cálculo del KAM al hacerse respecto a un mayor número de píxeles, por otra parte al ser estos píxeles vecinos cada vez más lejanos conforme aumenta n o el número de vecinos, los valores del KAM son menos representativos del entorno inmediato del píxel de estudio. Por ello hay un compromiso en la elección del valor n para optimizar la precisión del cálculo del KAM del píxel de estudio. Se ha observado que un valor n = 3 permite obtener valores del KAM más óptimos.
Según la presente invención, el KAM para un punto dado o la desorientación promedio de ese punto con todos sus vecinos (preferiblemente hasta los terceros vecinos en esta invención), se calcula con la condición de que las desorientaciones que excedan el valor de tolerancia impuesto (desorientación máxima de 2° y mínima de 0.3° en esta invención) se excluyan del cálculo del promedio. Por tanto, no se identificarán como zonas TAF los píxeles de ferrita adyacentes a píxeles anteriormente identificados como zonas TAF que excedan un KAM de 2° o presenten un KAM inferior a 0.3°.
Matemáticamente, según el método de caracterización de la presente invención, quedarán definidas como zonas de ferrita endurecida (zonas TAF), aquellos píxeles de ferrita que cumplan una de las siguientes condiciones:
1) Que sea un píxel de ferrita cuya posición sea (i±1 , j±1) respecto a un píxel de martensita (i,j); es decir, que sea un píxel de ferrita adyacente a un píxel de martensita, y
Opcionalmente y preferiblemente, que además, dicho píxel satisfaga la condición de un KAM comprendido entre un ángulo mínimo y un ángulo máximo o rango KAM [a, b], donde a ³ 0,3° y b < 2,0°; respecto a sus vecinos. 2) Que sea un píxel de ferrita cuya posición sea (i±1 , j±1) respecto a un píxel previamente definido como TAF (i,j); es decir, que sea un píxel de ferrita adyacente a un píxel de zona TAF, y que además dicho píxel satisfaga la condición de un KAM comprendido entre un ángulo mínimo y un ángulo máximo o rango KAM [a, b], donde a ³ 0,3° y b < 2,0°; respecto a sus vecinos, preferiblemente respecto a sus terceros vecinos para un tamaño de paso comprendido 50-60 nm.
En una realización preferida, el cálculo del KAM se hará respecto a sus terceros vecinos para tamaños de barrido (o de paso) de 50-60 nm.
En el caso del límite superior del KAM de 2o, se trata de un límite superior impuesto al parámetro KAM que ningún píxel del barrido puede superar. Su elección se fundamenta en que los 2° limitan la desorientación a partir de la cual se define la unidad microestructural mínima conocida como subgrano. La formación de un subgrano, entendido como la unidad cristalográfica que está limitada por desorientaciones de entre 2 y 15°, no podría justificarse como resultante del efecto de la transformación martensítica, y es por ello que se define 2° como el límite superior. Dicho de otra forma, la formación de diferentes subgranos es característica de las microestructuras metálicas, incluso de las monofásicas de ferrita blanda. Es por ello que los subgranos limítrofes a los subgranos de ferrita endurecida o TAF, podrían ser tanto de ferrita blanda como de ferrita endurecida, por lo que no pueden establecerse inequívocamente como zonas TAF mediante el presente método; y es por ello que dichos subgranos limítrofes quedan excluidos del cálculo.
En el caso del límite inferior del KAM de 0,3°, su selección se fundamenta en que se ha observado que determina un umbral angular por debajo del cual el ruido afecta a la medida, y también se fundamenta en la observación de que la zona TAF, a causa de la afección por la martensita, presenta pequeñas desorientaciones en su propia estructura. El ruido depende de varios factores, entre ellos la preparación de la muestra, las condiciones establecidas para la adquisición de las señales, e incluso de la incorporación abrupta como TAF de un gran número de píxeles en la ferrita recristalizada.
Así pues, tras la realización del análisis de datos y hasta este punto, se han identificado las zonas medidas mediante EBSD de todas las 3 fases presentes en la muestra: como zonas de martensita, ferrita blanda, y ferrita endurecida (TAF). Esta identificación de cada uno de los píxeles como pertenecientes a una de las 3 fases anteriores queda representada de forma visual y esquemática a modo de ejemplo en la Figura 1.
Opcionalmente, si interesa determinar el tamaño de subgrano de cualquiera de las fases, el método incluye definir una tolerancia angular mínima de 2° para la determinación del tamaño de subgrano durante la fase de análisis de datos. Este límite de 2° define el borde de subgrano (y por tanto delimita el área que constituye un subgrano) considerando que la desorientación entre puntos contiguos es mayor que 2o. Este límite se impone por el solicitante de la Patente, y se trata de un límite superior impuesto al parámetro KAM que ningún pixel del barrido debe superar para ser considerado como perteneciente al subgrano. Su elección se fundamenta en que los 2° limitan la desorientación a partir de la cual se define la unidad microestructural mínima conocida como subgrano. Con ello se consigue definir los bordes del subgrano, como aquellos con desorientación superior a 2° entre puntos o píxeles contiguos, y con ello establecer el área del subgrano.
Cabe destacar que este método solo se puede aplicar a la identificación de zonas TAF en acero dual recristalizado (libre de deformación) y posteriormente templado, que es el que se obtiene de forma general en estos aceros. Por el contrario, si tras la transformación martensítica resultante del templado el acero se deformara mecánicamente, se introducirían nuevas desorientaciones internas, y se reorganizarían los bordes de grano y subgrano, por lo que el criterio del umbral máximo del KAM de 2° no sería ya útil para identificar y separar las zonas TAF de la ferrita respecto a las de ferrita blanda. Por tanto, esta invención se aplicaría exclusivamente a aceros duales (ferrita-martensita) y recristalizados, por ejemplo, obtenidos a través de un recocido y posterior enfriamiento durante el que se produce la transformación de la austenita en martensita, siendo el acero resultante dual (ferrita-martensita), y sin serle aplicada deformación mecánica al acero antes de caracterizarlo mediante el método de la presente invención.
Este método es novedoso y permite algo inesperado hasta ahora, la detección mediante una técnica de microscopía como el EBSD de subfases de ferrita que a priori resultan indistinguibles microscópica o cristalográficamente, al tratarse ambas de ferrita.
3) Cuantificación de las fases:
Una vez aplicados los anteriores criterios, se ha conseguido identificar los píxeles de muestra correspondientes a las 3 fases, concretamente a la fase martensita y a las subfases ferrita blanda y ferrita endurecida (zonas TAF). Esta identificación de cada uno de los píxeles como pertenecientes a una de las 3 fases anteriores queda representada de forma visual y esquemática a modo de ejemplo en la Figura 1.
Es por ello que, a continuación, se puede calcular matemáticamente el porcentaje o fracción en área de cada fase o subfase, y con ellos por tanto la fracción en área de la fase dura de este acero (que sería la de martensita más la de ferrita endurecida o zonas TAF) y la de la fase blanda (que sería la de ferrita blanda).
Para realizar la cuantificación de las 3 fases, una vez identificados qué píxeles corresponden a cada una de ellas, se puede utilizar cualquier método matemático convencional de selección y cuantificación de datos.
Un ejemplo de un método matemático de cuantificación según la invención, constaría de los siguientes pasos de posprocesado de datos: a. Selección de los datos correspondientes a los granos de martensita y de ferrita y cálculo de la fracción en área total de martensita, sustrayendo la fracción en área de ferrita. b. En los granos de ferrita, partición de datos correspondientes a zonas TAF. c. Medida del número de píxeles o del área correspondiente a cada una de las zonas TAF, y sustracción de este valor al número de píxeles de ferrita o al área total del grano de ferrita afectado que contiene la zona TAF, obteniendo así la fracción en área total de zonas TAF. d. Obtención de la fracción en área total de la fase blanda (ferrita blanda), que será la resultante de sustraer a la fracción de ferrita la fracción de zonas TAF. e. Cuantificación de la fracción en área total de la fase dura respecto al total. Esta será la suma de la fracción de martensita y de la fracción de ferrita afectada (endurecida), obteniendo el total de fase dura. f. Opcionalmente, el cálculo de las fracciones en área se puede realizar a partir de los tamaños de grano de martensita o de subgrano de las subfases de ferrita, en vez de a partir del número de píxeles de cada fase o subfase.
Opcionalmente, para la obtención de los datos de EBSD, se puede realizar una pluralidad de barridos con un tamaño de píxel cada vez menor, con el fin de aumentar la precisión en la cantidad de ferrita endurecida identificada. Tras cada barrido, se calcularía el número de píxeles identificado como TAF respecto al total de píxeles. Esto permitiría cuantificar la ferrita endurecida de forma más precisa, repitiendo el barrido hasta que la proporción de píxeles de ferrita que cumplen las condiciones para ser identificados como zonas TAF, para cada barrido, converja a una proporción que corresponda a la cantidad de ferrita endurecida.
En resumen, de acuerdo a la presente invención, la utilización de la técnica de EBSD y el posterior tratamiento de datos permite:
• diferenciar y cuantificar las dos fases existentes: ferrita (F) y martensita (M), lo cual ya es conocido.
• Identificar y cuantificar las subfases de la ferrita en ferrita blanda y ferrita endurecida (zonas TAF) de forma sistemática, siendo esta la parte novedosa de la invención. Las zonas TAF se caracterizan según la invención mediante aquellos píxeles adyacentes a píxeles de martensita o como aquellos píxeles de ferrita adyacentes a píxeles TAF previamente identificados y que adicionalmente, presentan gradientes de orientación causados por la martensita colindante expresados mediante el parámetro KAM, con un rango entre 0,3-2°.
De hecho, hasta la fecha, no se ha observado que en el estado de la técnica:
• Se apliquen este tipo de estrategias a partir de datos obtenidos mediante EBSD para la cuantificación de zonas TAF en aceros duales (ferrita-martensita), previa diferenciación entre martensita y ferrita.
• Una característica específica de esta invención es la selección del máximo del parámetro KAM como 2° y del mínimo del parámetro KAM como 0.3° para identificar las zonas de ferrita colindantes a la martensita (o a las zonas previamente definidas como TAF) como zonas TAF.
• Una característica preferible de esta invención es la selección de un paso de barrido fino inferior o igual a 60 nm (preferiblemente entre 50-60nm), que permite una caracterización más precisa.
• Otra característica preferible de esta invención es el cálculo del KAM de un píxel respecto a terceros vecinos (n=3) que permite una caracterización más precisa.
• Otra característica aún más preferible es la selección de un barrido inferior o igual a 60 nm (preferiblemente entre 50-60 nm), y que el cálculo del KAM de un píxel sea respecto a terceros vecinos (n=3), lo que permite una caracterización aún más precisa.
Una primera realización de la invención comprende un método para caracterizar una muestra de acero dual recristalizado, que comprende identificar las zonas TAF de la muestra, comprendiendo las siguientes etapas:
- a) Realizar al menos un barrido por EBSD de un área superficial de la muestra para identificar píxeles de ferrita y píxeles de martensita;
- b) Calcular una desviación KAM respecto a n vecinos para los píxeles de ferrita;
- c) Asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita,
- d) Asignar adicionalmente como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF en la etapa anterior, y que además tienen una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
- e) Iterar la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF.
Una segunda realización de la invención, comprende que en la etapa c) anterior, para asignar las zonas TAF a los píxeles de ferrita adyacentes a al menos un píxel de martensita, se impone la condición adicional de que tengan una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
Una tercera realización de la invención, comprende adicionalmente cuantificar las zonas TAF de la muestra mediante la siguiente etapa:
- Contar el número de píxeles de ferrita identificados como zonas TAF de la muestra y compararlo con el número total de píxeles del área superficial de la muestra.
Una cuarta realización de la invención, comprende la definición preferida de n = 3 para el cálculo del KAM del píxel según cualquiera de las anteriores realizaciones, es decir cálculo del KAM del píxel respecto a sus terceros vecinos.
Una quinta realización de la invención define el tamaño de píxel de barrido por EBSD como < 200 nm, preferiblemente < 100 nm, más preferiblemente < 60 nm, y aún más preferiblemente entre 50-60 nm, según cualquiera de las anteriores realizaciones. Una sexta realización de la invención, define ambos de forma conjunta: que el tamaño de pixel del barrido por EBSD sea < 60 nm, y que el cálculo del KAM de un pixel sea respecto a terceros vecinos (n = 3).
Una séptima realización de la invención, comprende llevar a cabo el método de identificación de ferrita endurecida según una de las anteriores realizaciones, realizando una pluralidad de barridos con un tamaño de pixel cada vez menor, calculando para cada barrido la proporción del número de píxeles de ferrita que cumplen las condiciones de las realizaciones anteriores para ser consideradas zonas TAF. Esto permite cuantificar la ferrita endurecida de forma más precisa; repitiendo el barrido hasta que la proporción de píxeles de ferrita que cumplen dichas condiciones para cada barrido converja a una proporción que corresponde a la cantidad de ferrita endurecida.
Una octava realización de la invención se refiere al aparato para caracterizar una muestra de acero dual recristalizado que comprende:
- un microscopio electrónico de barrido y
- medios de control del microscopio de barrido para realizar un barrido por EBSD; caracterizado por que los medios de control están configurados para realizar un método según una de las anteriores realizaciones.
Una novena realización de la invención se refiere al programa de ordenador que comprende instrucciones para causar que el aparato de la reivindicación 7 ejecute las etapas del método según una de las anteriores realizaciones.
Una décima realización de la invención se refiere al programa de ordenador que comprende instrucciones para tratar datos obtenidos previamente mediante EBSD de forma que ejecute las etapas de caracterización de la muestra del método, concretamente identificación y, opcionalmente, cuantificación de zonas TAF según una de las anteriores realizaciones.
Una undécima realización de la invención se refiere al soporte legible por ordenador que tiene almacenado el programa de ordenador de la octava y/o novena realización.
Una duodécima y última realización de la invención se refiere a la utilización de la cuantificación de las zonas TAF (ferrita endurecida) en herramientas convencionales de predicción de propiedades mecánicas de aceros duales DP del estado de la técnica, para la simulación del comportamiento micromecánico de dichos aceros; aceros de amplio uso en forma de chapa en la industria automovilística. Resulta que el endurecimiento de la ferrita provoca un cambio en el comportamiento mecánico del material, que debe tenerse en cuenta en los modelos de predicción de propiedades mecánicas de aceros. Esto permite determinar las propiedades mecánicas de aceros duales durante las operaciones de conformado industrial a través de la mejora de modelos micromecánicos, que permitan predecir el comportamiento mecánico de estos grados de acero de forma más precisa, y que puedan ser integrados en software de simulación del conformado en frío. Así pues, esta invención contribuye al desarrollo de herramientas de diseño de aceros con propiedades mecánicas mejoradas.
Finalmente, debe tenerse en cuenta que en este documento se describen sólo algunas realizaciones de la invención, por lo que el experto en la materia comprenderá que también son posibles otras realizaciones equivalentes o alternativas de la invención, así como sus modificaciones obvias y equivalentes. Es por ello que el alcance de los aspectos de la invención no debe limitarse a las realizaciones concretas específicamente descritas.

Claims

REIVINDICACIONES
1. Método para caracterizar una muestra de acero dual recristalizado, que comprende identificar las zonas TAF de la muestra, comprendiendo las siguientes etapas:
- a) Realizar al menos un barrido por EBSD de un área superficial de la muestra para identificar píxeles de ferrita y píxeles de martensita;
- b) Calcular una desviación KAM respecto a n vecinos para los píxeles de ferrita;
- c) Asignar como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de martensita;
- d) Asignar adicionalmente como zona TAF los píxeles de ferrita adyacentes a al menos un píxel de ferrita asignado como zona TAF en la etapa anterior, y que además tienen una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°;
- e) Iterar la etapa d) con respecto a todos los píxeles de ferrita adyacentes a los previamente asignados como zona TAF.
2. Método según la reivindicación 1 , en el que en la etapa c), para asignar las zonas TAF a los píxeles de ferrita adyacentes a al menos un píxel de martensita, se impone la condición adicional de que_tengan una desviación KAM respecto a n vecinos comprendida en un rango [a, b], donde a ³ 0,3° y b £ 2,0°.
3. Método según una de las reivindicaciones 1 o 2, que comprende cuantificar las zonas TAF de la muestra mediante la siguiente etapa:
- Contar el número de píxeles de ferrita identificados como zonas TAF de la muestra y compararlo con el número total de píxeles del área superficial de la muestra.
4. Método según una de las reivindicaciones 1 a 3, en el que n = 3.
5. Método según una de las reivindicaciones 1 a 4, en el que el tamaño de píxel del barrido por EBSD es < 200 nm, preferiblemente < 100 nm, más preferiblemente < 60 nm., y aún más preferiblemente entre 50-60 nm.
6. Método según una de las reivindicaciones 1 a 5, en el que el tamaño de píxel del barrido por EBSD es £ 60 nm, y el cálculo del KAM de un píxel sea respecto a terceros vecinos (n = 3).
7. Método según una de las reivindicaciones 1 a 6, que comprende realizar una pluralidad de barridos con un tamaño de pixel cada vez menor, calculando para cada barrido la proporción de zonas TAF.
8. Aparato para caracterizar una muestra de acero dual recristalizado, que comprende:
- un microscopio electrónico de barrido y
- medios de control del microscopio de barrido para realizar un barrido EBSD; caracterizado por que los medios de control están configurados para realizar un método según una de las reivindicaciones 1 a 7.
9. Programa de ordenador que comprende instrucciones para causar que el aparato de la reivindicación 8 ejecute las etapas del método según una de las reivindicaciones 1 a 7.
10. Programa de ordenador capaz de tratar datos obtenidos previamente mediante EBSD de forma que ejecute las etapas b-e) del método según una de las reivindicaciones 1 a 4.
11. Soporte legible por ordenador que tiene almacenado el programa de ordenador de las reivindicaciones 9 y/o 10.
PCT/ES2021/070350 2021-05-17 2021-05-17 Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp WO2022243576A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2021/070350 WO2022243576A1 (es) 2021-05-17 2021-05-17 Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp
EP21940635.2A EP4336175A1 (en) 2021-05-17 2021-05-17 Method for the quantitative assessment of the area affected by the transformation of ferrite in dual-phase steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070350 WO2022243576A1 (es) 2021-05-17 2021-05-17 Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp

Publications (1)

Publication Number Publication Date
WO2022243576A1 true WO2022243576A1 (es) 2022-11-24

Family

ID=84141132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070350 WO2022243576A1 (es) 2021-05-17 2021-05-17 Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp

Country Status (2)

Country Link
EP (1) EP4336175A1 (es)
WO (1) WO2022243576A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929964A (zh) * 2009-06-25 2010-12-29 宝山钢铁股份有限公司 一种辨别铸态铁素体不锈钢中马氏体和计算其两相比例的方法
CN102735703A (zh) 2012-07-05 2012-10-17 首钢总公司 采用ebsd定量评价钢中残余奥氏体的方法
CN103454294A (zh) 2013-08-16 2013-12-18 江苏省沙钢钢铁研究院有限公司 一种定量评价热轧trip钢中各相组织的方法
CN105203438A (zh) 2015-10-14 2015-12-30 武汉钢铁(集团)公司 珠光体类盘条奥氏体晶粒度的测定方法
CN109959670A (zh) * 2017-12-26 2019-07-02 上海梅山钢铁股份有限公司 采用电子背散射衍射技术测量双相钢中马氏体含量的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929964A (zh) * 2009-06-25 2010-12-29 宝山钢铁股份有限公司 一种辨别铸态铁素体不锈钢中马氏体和计算其两相比例的方法
CN102735703A (zh) 2012-07-05 2012-10-17 首钢总公司 采用ebsd定量评价钢中残余奥氏体的方法
CN103454294A (zh) 2013-08-16 2013-12-18 江苏省沙钢钢铁研究院有限公司 一种定量评价热轧trip钢中各相组织的方法
CN105203438A (zh) 2015-10-14 2015-12-30 武汉钢铁(集团)公司 珠光体类盘条奥氏体晶粒度的测定方法
CN109959670A (zh) * 2017-12-26 2019-07-02 上海梅山钢铁股份有限公司 采用电子背散射衍射技术测量双相钢中马氏体含量的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDO REON, MATSUNO TAKASHI, MATSUDA TOMOKO, YAMASHITA NORIO, YOKOTA HIDEO, GOTO KENTA, WATANABE IKUMU: "Analysis of nano-hardness distribution near the ferrite-martensite interface in a dual phase steel with factorization of its scattering behavior", TETSU TO HAGANE: JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, IRON AND STEEL INSTITUTE OF JAPAN. TOKYO., JP, vol. 106, no. 12, 1 January 2020 (2020-01-01), JP , pages 944 - 952, XP093009671, ISSN: 0021-1575, DOI: 10.2355/tetsutohagane.TETSU-2020-037 *
ISASTI NEREA ET AL.: "Analysis of Complex Steel Microstructures by High-Resolution EBSD", JOM : JOURNAL OF METALS, vol. 68, no. 1, 26 October 2015 (2015-10-26), New York Llc, United States, pages 215 - 223, XP035949050, ISSN: 1047-4838, [retrieved on 20211203], DOI: 10.1007/s11837-015-1677-0 *

Also Published As

Publication number Publication date
EP4336175A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
Guglielmi et al. On a novel strain indicator based on uncorrelated misorientation angles for correlating dislocation density to local strength
Guo et al. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D
Schayes et al. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading
Rowenhorst et al. 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning
Marteau et al. Investigation of strain heterogeneities between grains in ferritic and ferritic-martensitic steels
Wang et al. Evaluation of aggregate resistance to wear with Micro-Deval test in combination with aggregate imaging techniques
Goto et al. Determining suitable parameters for inverse estimation of plastic properties based on indentation marks
KR101659702B1 (ko) 재료조직 예측 장치, 제품 제조 방법 및 재료조직 예측 방법
JP5701109B2 (ja) 舗装の健全性の評価方法
Ghosh et al. Correlating r-value and through thickness texture in Al–Mg–Si alloy sheets
Radwański Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy
Davut et al. Statistical reliability of phase fraction determination based on electron backscatter diffraction (EBSD) investigations on the example of an Al-TRIP steel
Britton et al. Probing deformation and revealing microstructural mechanisms with cross-correlation-based, high-resolution electron backscatter diffraction
Ali-Benyahia et al. Improvement of nondestructive assessment of on-site concrete strength: Influence of the selection process of cores location on the assessment quality for single and combined NDT techniques
Kim et al. Three-dimensional crystal plasticity finite element analysis of microstructure and texture evolution during channel die compression of IF steel
Jorge‐Badiola et al. Evaluation of intragranular misorientation parameters measured by EBSD in a hot worked austenitic stainless steel
Wu et al. Automatic determination of recrystallization parameters based on EBSD mapping
Meyer et al. Microstructure and mechanical properties of the running band in a pearlitic rail steel: Comparison between biaxially deformed steel and field samples
Zamri et al. Variations in the microstructure and mechanical properties of the oxide layer on high speed steel hot rolling work rolls
KR101382381B1 (ko) 표면 반발 경도계를 이용한 암석의 풍화도지수 산출방법
KR101301684B1 (ko) 전자후방산란회절을 이용한 이상조직강의 상분석 방법
Yoo et al. Relating microstructure to defect behavior in AA6061 using a combined computational and multiscale electron microscopy approach
Henning et al. Local mechanical behavior and slip band formation within grains of thin sheets
Esmailzadeh et al. Relationship between texture and uniaxial compressive strength of rocks
WO2022243576A1 (es) Método para la evaluación cuantitativa de la zona afectada por transformación en la ferrita en aceros duales dp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021940635

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021940635

Country of ref document: EP

Effective date: 20231205

NENP Non-entry into the national phase

Ref country code: DE