WO2022242733A1 - 电子雾化装置及控制方法 - Google Patents

电子雾化装置及控制方法 Download PDF

Info

Publication number
WO2022242733A1
WO2022242733A1 PCT/CN2022/094011 CN2022094011W WO2022242733A1 WO 2022242733 A1 WO2022242733 A1 WO 2022242733A1 CN 2022094011 W CN2022094011 W CN 2022094011W WO 2022242733 A1 WO2022242733 A1 WO 2022242733A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak voltage
electronic atomization
atomization device
vibration
vibratable
Prior art date
Application number
PCT/CN2022/094011
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Priority to EP22804053.1A priority Critical patent/EP4353107A1/en
Publication of WO2022242733A1 publication Critical patent/WO2022242733A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/05Devices without heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes

Definitions

  • the embodiments of the present application relate to the technical field of electronic atomization, and in particular, to an electronic atomization device and a control method.
  • Smoking articles eg, cigarettes, cigars, etc.
  • Burn tobacco during use to produce tobacco smoke.
  • Attempts have been made to replace these tobacco-burning products by making products that release compounds without burning them.
  • nebulizing devices eg heated nebulizing devices or ultrasonic nebulizing devices.
  • the heating atomization device is to heat and vaporize the liquid delivered by the capillary element through the heating element to generate an aerosol for inhalation;
  • the ultrasonic atomization device is to use a vibrating part that can reciprocate and vibrate at high frequency, such as a piezoelectric ceramic sheet through a high Frequency vibration breaks up the liquid delivered by the capillary element into fine particles, forming an inhalable aerosol.
  • the liquid may contain nicotine and/or flavorants and/or aerosol generating substances (eg glycerin).
  • Heated atomizing devices usually monitor the temperature of the heating element to determine whether the liquid supplied to the vibrating part is sufficient; for ultrasonic atomizing devices, it is impossible to accurately determine whether the liquid supplied to the vibrating part is sufficient.
  • This application provides an electronic atomization device, including:
  • a liquid storage cavity used for storing liquid matrix
  • a vibratable element configured to vibrate to atomize the liquid substrate to generate an aerosol
  • a peak voltage detection module configured to detect a peak voltage across the vibratable element
  • a controller configured to control vibration of the vibratable element based on the peak voltage.
  • controlling the vibration of the vibratable element may include: controlling the vibration frequency, amplitude, displacement, velocity or acceleration, and phase of the vibratable element.
  • the above peak voltage is the maximum value of the voltage across the oscillating element that changes harmonically.
  • the controller is configured to determine the damping of the vibratable element based on the peak voltage, and to control the vibration of the vibratable element according to the damping.
  • the damping of the vibratable element is produced by a liquid matrix provided to the vibratable element.
  • the controller is configured to compare the damping with a preset value and prevent the vibratable element from vibrating when the damping is less than the preset value.
  • the peak voltage detection module includes:
  • a holding capacitor configured to hold a peak voltage across the vibratable element.
  • the peak voltage detection module also includes:
  • an operational amplifier configured to output a voltage across the vibratable element to the holding capacitor
  • a voltage follower configured to output the peak voltage across the oscillatable element held by the holding capacitor.
  • the peak voltage detection module also includes:
  • a discharge switch configured to discharge the holding capacitor when turned on.
  • the sampling terminal of the operational amplifier is connected to the vibrator element
  • the holding capacitor includes three circuits; wherein, the first circuit is connected to the output terminal of the operational amplifier, the second circuit is connected to the discharge switch, and the third circuit is connected to the sampling terminal of the voltage follower.
  • the vibratable element includes at least piezoelectric ceramics.
  • the controller is configured to determine the vibration frequency of the vibratable element based on the peak voltage.
  • the controller is further configured to:
  • the vibration frequency of the vibratable element is adjusted so that the vibration frequency remains the same as or substantially close to a preset frequency.
  • the controller is configured to:
  • the optimum resonant frequency of the oscillating element is determined.
  • This application also proposes an electronic atomization device, including:
  • a liquid storage cavity used for storing liquid matrix
  • a vibratable element configured to vibrate to atomize the liquid substrate to generate an aerosol
  • the controller is configured to control vibration of the vibratable element based on damping of the vibratable element by a liquid matrix.
  • the controller is configured to compare the damping with a preset value and prevent the vibratable element from vibrating when the damping is less than the preset value.
  • the present application also proposes a method for controlling an electronic atomization device.
  • the electronic atomization device includes: a liquid storage chamber for storing a liquid substrate;
  • a vibratable element configured to vibrate to atomize the liquid substrate to generate an aerosol
  • the methods include:
  • Vibration of the vibratable element is controlled based on the peak voltage.
  • controlling the vibration of the vibratable element based on the peak voltage comprises:
  • Damping of the vibratable element by the liquid matrix is determined based on the peak voltage, and vibration of the vibratable element is controlled based on the damping.
  • controlling the vibration of the vibratable element based on the peak voltage comprises:
  • the vibration frequency of the vibratable element is adjusted so that the vibration frequency remains the same as or substantially close to a preset frequency.
  • the above electronic atomization device can obtain the liquid matrix supply and working parameters on the vibrating element by detecting the peak voltage at both ends of the vibrating element, and then adjust the work of the vibrating element accordingly to prevent the vibrating element from working under the condition of insufficient liquid supply or deviation .
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application
  • Fig. 2 is a structural block diagram of an embodiment of the circuit in Fig. 1;
  • FIG 3 is a schematic diagram of the basic components of one embodiment of the drive module in Figure 2;
  • Fig. 4 is a schematic diagram of the voltage change of the vibrator element sampled at the first sampling point in Fig. 3;
  • FIG. 5 is a schematic diagram of the basic components of one embodiment of the peak voltage detection module in Figure 2;
  • Fig. 6 is a schematic diagram of the output result of the peak voltage detection module in Fig. 5;
  • Figure 7 is a schematic diagram of the voltage change of the vibrator element when the liquid matrix is sufficient in one embodiment
  • Figure 8 is a schematic diagram of the voltage change of the vibratable element after the consumption of the liquid matrix in one embodiment
  • Fig. 9 is a schematic diagram of a control method of an electronic atomization device in an embodiment
  • Fig. 10 is a schematic diagram of the voltage change of the vibrator element during frequency sweep in one embodiment
  • Fig. 11 is a schematic diagram of a control method of an electronic atomization device in another embodiment.
  • An embodiment of the present application provides an electronic atomization device for atomizing a liquid matrix to generate an aerosol for inhalation.
  • the electronic nebulization devices disclosed herein may also be characterized as aerosol generating systems or drug delivery articles. Accordingly, such devices or systems may be adapted to provide one or more substances in an inhalable form or state (eg, flavorants and/or pharmaceutically active ingredients).
  • an inhalable substance may be substantially in aerosol form (ie, a suspension of fine solid particles or liquid droplets in a gas).
  • Figure 1 shows a schematic structural view of one embodiment of an electronic atomization device 100; the device generally includes several components disposed within an external body or housing (which may be referred to as a housing).
  • the overall design of the outer body or housing may vary, and the type or configuration of the outer body that may define the overall size and shape of the electronic atomization device 100 may vary.
  • the elongated body similar in shape to a cigarette or cigar, may be formed from a single unitary housing, or the elongated housing may be formed from two or more separable bodies.
  • the electronic atomization device 100 may have a control body at one end equipped with an accumulator containing one or more reusable components (e.g., a rechargeable battery and/or a rechargeable supercapacitor, and a battery for controlling the article of manufacture).
  • an accumulator containing one or more reusable components (e.g., a rechargeable battery and/or a rechargeable supercapacitor, and a battery for controlling the article of manufacture).
  • various electronics for the operation of the device and at the other end has an outer body or housing that is removably coupled and contains a disposable portion (eg, a disposable fragrance-containing cartridge).
  • the electronic atomization device 100 includes an atomizer 10 that stores a liquid substrate and atomizes it to generate an aerosol, and a power supply mechanism 20 that supplies power to the atomizer 10 .
  • the power supply mechanism 20 and the atomizer 10 are removably aligned in functional relationship.
  • Various mechanisms may be utilized to connect the cartomizer 10 to the power supply mechanism 20, resulting in a threaded engagement, a force fit engagement, an interference fit, a magnetic engagement, and the like.
  • the electronic atomization device 100 may be substantially in the shape of a rod, a flat cylinder, a rod, a column, etc.
  • the power supply mechanism 20 and the cartomizer 10 may comprise separate, separate housings or outer bodies formed from any of a number of different materials.
  • the housing may be formed from any suitable structurally sound material.
  • the housing may be formed from a metal or alloy such as stainless steel, aluminum.
  • Other suitable materials include various plastics (eg, polycarbonate), metal-plating over plastic, ceramics, and the like.
  • the electronic atomization device 100 has a proximal end 110 and a distal end 120 that are opposite along the length direction; wherein, in use, the proximal end 110 is usually used as the end that is inhaled by the user, and the distal end 120 is the end that is away from the user. one end.
  • the atomizer 10 is arranged at the proximal end 110
  • the power supply mechanism 20 is arranged at the distal end 120 .
  • the power supply mechanism 20 includes:
  • a battery cell 21 for power supply; the battery cell 21 may include, for example, a battery (disposable or rechargeable), a rechargeable supercapacitor, a rechargeable solid-state battery (SSB), a rechargeable lithium-ion battery (LiB), etc. or some combination of them.
  • a battery dispenser or rechargeable
  • SSB rechargeable solid-state battery
  • LiB rechargeable lithium-ion battery
  • the circuit 22 is used to guide current between the electric core 21 and the atomizer 10 .
  • the atomizer 10 includes:
  • the mouth A of the suction nozzle located at the proximal end 110 is used for sucking by the user;
  • the oscillating element 12 is in fluid communication with the liquid storage chamber 11, and the liquid matrix transferred to the oscillating element 12 is atomized into an aerosol through mechanical vibration;
  • the liquid transfer element 13 is used for transferring the liquid matrix between the liquid storage chamber 11 and the vibrator element 12 .
  • the vibrator element 12 may be a common sheet-shaped ultrasonic vibrating component or a sheet-shaped piezoelectric ceramic; or an ultrasonic atomizing sheet such as that proposed in Patent No. CN112335933A.
  • these vibratory elements 12 disperse the liquid matrix through high-frequency vibration (preferably, the vibration frequency is 1.7MHz-4.0MHz, which exceeds the range of human hearing and belongs to the ultrasonic frequency range) to generate an aerosol in which particles are naturally suspended.
  • the liquid transfer element 13 may be a common capillary element, such as fiber cotton, porous body and the like.
  • the liquid transfer element 13 can be a micropump, which pumps a predetermined amount of liquid matrix from the liquid storage chamber 11 onto the vibrator element 12; for example, a micro pump based on microelectromechanical system (MEMS) technology. Pump.
  • MEMS microelectromechanical system
  • suitable micropumps include micropumps type MDP2205 and other micropumps from thinXXS Microtechnology AG, micropumps type mp5 and mp6 and other micropumps from Bartels Mikrotechnik GmbH, and piezoelectric micropumps from Takasago Fluidic Systems.
  • Further circuitry 22 includes several electronic components, and in some examples may be formed on a printed circuit board (PCB) that supports and electrically connects the electronic components.
  • Electronic components may include a microprocessor or processor core and memory.
  • the control component may include a microcontroller with an integrated processor core and memory, and may further include one or more integrated input/output peripherals.
  • the circuit 22 includes:
  • the driving module 222 is positioned between the battery cell 10 and the vibratory element 12 to guide current between them. Based on the usual implementation of ultrasonic atomization, there can be two types of current driving the vibrator element 12 for ultrasonic atomization, one is common high-frequency alternating current, and the other is pulsed current with a constant direction and magnitude. Specifically, in a more preferred embodiment, the driving module 222 is preferably guided to generate alternating current including periodic positive current and negative current to supply to the vibrator element 12;
  • the peak voltage detection module 223 is configured to detect the peak voltage at both ends of the vibrator element 12 .
  • FIG. 3 shows a schematic diagram of the structure of the basic components of the driving module 222 of an embodiment; in the embodiment shown in FIG. 3 , the driving module 222 includes:
  • the first inductance L1 the first end is connected to the voltage output end of the battery cell 21, and the second end is connected to the first end of the vibrating element 12;
  • the second inductance L2 the first end is connected to the voltage output end of the battery cell 21, and the second end is connected to the second end of the vibrating element 12;
  • the first switching tube Q1, the D pole is connected to the second end of the first inductor L1, the S pole is grounded, and the G pole receives the pwm1 driving signal of the MCU controller 221 to turn on/off;
  • the D pole of the first switching tube Q2 is connected to the second end of the second inductor L2, the S pole is grounded, and the G pole receives the pwm2 driving signal of the MCU controller 221 to be turned on/off.
  • the above drive module 222 conducts alternately the first switching tube Q1 and the second switching tube Q2 , and then periodically guides alternating positive and negative currents to supply the vibrator element 12 , so that the vibrator element 12 vibrates back and forth.
  • the working state of the vibrating element 12 includes:
  • the driving frequency and the driving current are set by the MCU controller 221, which can be considered as given or known; then the peak voltage is basically only related to the damping, and the damping force is provided and generated by the liquid matrix, based on which It can be determined whether the liquid matrix on the vibrator element 12 is sufficient by detecting the peak voltage, and further can determine whether it is "dry burning".
  • the MCU controller 221 makes the driving frequency the same as or very close to the natural frequency of the vibratory element 12 during the control process, and the vibratable element 12 is in the working state. In the resonant state, the efficiency is the largest; similarly, the amplitude and peak voltage are also the largest in the resonant state. Furthermore, in yet another preferred implementation, the MCU controller 221 can also find or obtain the optimum resonance frequency of the vibrator element 12 through the detection of the peak voltage in the above resonance state, and use the optimum resonance frequency as the driving frequency to drive the vibrator The vibrating element 12 works.
  • FIG. 4 shows a schematic diagram of the forward voltage signal S1 of the vibrator element 12 and the PWM1 control signal S2 acquired through sampling at the first sampling point W1 in FIG. 3 .
  • the voltage change at both ends of the vibrator component 12 composed of the voltage change sampled at the second sampling point W2 and the forward voltage signal S1 sampled at the first sampling point W1 is generally a simple harmonic waveform.
  • FIG. 5 shows a schematic diagram of the structure of the basic components of the peak voltage detection module 223 of an embodiment; including:
  • Operational amplifier U1 the sampling terminal in- of this operational amplifier U1 is connected with the first sampling point W1 and/or the second sampling point W2 at both ends of the oscillating element 12 in Fig. 3, to obtain the voltage at both ends of the oscillating element 12, and pass The diode D1 outputs the operation result;
  • the holding capacitor C1 is connected to the output terminal of the operational amplifier U1, and the peak output voltage of the operational amplifier U1 can be held or locked by the holding capacitor C1.
  • the operational amplifier U1 outputs a gradually increasing voltage value
  • the holding capacitor C1 receives the output voltage and stores it until the time t2 when the operational amplifier U1 outputs the voltage value
  • the voltage at both ends of the holding capacitor C1 reaches the maximum synchronously
  • time t2 passes, the output of the operational amplifier U1 will gradually decrease until it reaches 0; but since the holding capacitor C1 is not discharged, the voltage value at both ends remains at the peak value all the time ;
  • the voltage follower U2 follows the peak voltage held by the output holding capacitor C1.
  • the output peak voltage can be kept at any time during the detection process, and the MCU controller 221 can acquire or sample the detected peak voltage at any time.
  • the operational amplifier U1 is used as the basic usage of the comparator, and the reference signal input terminal in+ of the specific operational amplifier U1 is connected to a fixed signal of the output signal through a capacitor, then the operation
  • the amplifier U1 is used as a comparator to output the result of the comparison operation between the voltage at both ends of the vibrating element 12 and the fixed reference signal; that is, when the voltage signal sampled by the sampling terminal in- of the operational amplifier U1 is higher than the reference voltage signal input by the input terminal in+, the operation
  • the amplifier U1 outputs the comparison result to the holding capacitor C1 for holding until the voltage signal received by the holding capacitor C1 is the maximum when the voltage signal sampled by the sampling terminal in- is at a peak value, which is the peak voltage.
  • FIG. 6 shows a schematic diagram of the voltage signal of the result signal Vout output by the peak voltage detection module 223; it can be seen from FIG. 6 that the signal S3 output by the peak voltage detection module 223 is always the peak voltage.
  • the sampling terminal in+ of the voltage follower U2 is connected to the sampling terminal in+ of the operational amplifier U1 .
  • the peak voltage detection module 223 also includes a number of basic devices such as resistors and capacitors, which are used for basic voltage division, voltage stabilization, and current limiting functions.
  • the negative terminal of the holding capacitor C1 in the peak voltage detection module 223 is grounded, and there are three connections in the positive terminal connection;
  • the first path is connected to the output terminal of the operational amplifier U1 for receiving the voltage output by the operational amplifier U1;
  • the second way is connected to the sampling terminal in- of the voltage follower U2, so that the voltage follower U2 can output the peak voltage held by the holding capacitor C1;
  • the third path is grounded through the switch tube Q3, and the MCU controller 221 discharges the positive terminal of the holding capacitor C1 to 0 by turning on the switch tube Q3, so as to facilitate the next peak voltage sampling.
  • Fig. 7 shows a schematic diagram of the voltage change at both ends of the vibrating element 12 when the liquid matrix in the liquid storage chamber 11 of the electronic atomization device of an embodiment is sufficient
  • Fig. 8 shows the liquid storage chamber of an electronic atomization device of an embodiment Schematic diagram of the voltage change at both ends of the vibrating element 12 after the liquid matrix in 11 is consumed.
  • the peak voltage at both ends of the vibrating element 12 is 51.2V when the liquid matrix is supplied sufficiently, and the vibrating element 12 is not supplied with liquid matrix.
  • the peak voltage across the two terminals in operation is 67.2V.
  • an embodiment of the present application proposes a method for controlling the electronic atomization device by detecting the damping of the liquid matrix in the vibrating element 12 to determine whether the supply of the liquid matrix is sufficient, etc., as shown in FIG. 9 , including the following steps:
  • the peak voltage detection module 223 detects the peak voltage at both ends of the vibrator element 12;
  • the above steps are based on the damping produced by the amount of liquid matrix supplied to the vibrator element 12 during the vibration process, causing the difference in peak voltage across the vibrator element 12 , and then monitoring whether the liquid matrix is sufficiently supplied to the vibrator element 12 .
  • the damping is too small below the preset value, it indicates that the amount of liquid base on the vibrating element 12 is insufficient, and the controller 221 can control to prevent the vibrating element 12 from continuing to vibrate, so as to avoid "dry burning".
  • the above method can also be used to determine whether the liquid matrix carried on the vibrating element 12 has been atomized in one number of suction ports; in one number of suction ports, when the liquid matrix is gradually reduced by atomization, the damping is gradually
  • the peak voltage of the oscillating element 12 increases gradually; furthermore, in a number of suction ports, when the damping decreases below the preset value, it indicates that the liquid matrix loaded on the oscillating element 12 has basically been atomized completely. , you can control it to stop the vibration.
  • FIG. 10 shows a result of obtaining the optimum driving frequency of the vibrator element 12 through frequency sweeping, and a series of different frequencies are sent by the MCU controller 221 (can be from large to small or From small to large) the vibrating element 12 can work, and the peak voltage detection module 223 correspondingly detects the peak voltage; it can be seen from Figure 9 that the peak voltage is different under different driving frequencies; and in one of the 2.5-2.6MHz The peak voltage in the frequency band can reach the maximum. At this time, it can basically be determined that the frequency corresponding to the maximum peak voltage is the natural frequency of the vibrating element 12. Driving the vibrating element 12 with this natural frequency can make the vibrating element 12 in the best resonance. down to work.
  • weep frequency is an electrical term, which refers to the continuous change of the signal within a frequency range and the frequency from high to low (or from low to high); it is usually used for testing.
  • another embodiment of the present application also proposes a method for automatically finding and obtaining the optimum vibration frequency, including: driving the vibrator element 12 to vibrate by means of frequency sweeping, and detecting the peak voltage at both ends of the vibrator element 12; When the peak voltage at both ends of the oscillating element 12 reaches the maximum, it is determined that the currently swept frequency is the resonant frequency sought.
  • another embodiment of the present application also proposes a method for adaptively adjusting the vibration frequency of the vibrating element 12 of the electronic atomization device, as shown in FIG. 11 , including:
  • the MCU controller 221 determines the current vibration frequency of the oscillating element 12 according to the detected peak voltage, and adjusts the driving frequency provided to the oscillating element 12, so that the vibration frequency remains the same or substantially the same as the desired optimum frequency near.
  • the current vibration frequency is reversely calculated through the correlation between the peak voltage and the frequency detected by the peak voltage detection module 223, and then the driving frequency is adaptively adjusted to be the same as or substantially close to the optimal resonance frequency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种电子雾化装置及控制方法;其中,电子雾化装置(100)包括:储液腔(11);可振动元件(12),被配置为产生振动,以雾化液体基质生成气溶胶;峰值电压检测模块(223),被配置为检测可振动元件(12)两端的峰值电压;控制器(221),被配置为基于峰值电压控制可振动元件(12)的振动。以上电子雾化装置(100)通过检测可振动元件(12)两端的峰值电压,可获取可振动元件(12)上的液体基质供应和工作参数,进而对应调节可振动元件(12)工作以阻止可振动元件(12)在供液不足或偏离状态下工作。

Description

电子雾化装置及控制方法
相关申请的交叉参考
本申请要求于2021年05月21日提交中国专利局,申请号为202110560160.1,发明名称为“电子雾化装置及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子雾化技术领域,尤其涉及一种电子雾化装置及控制方法。
背景技术
烟制品(例如,香烟、雪茄等)在使用过程中燃烧烟草以产生烟草烟雾。人们试图通过制造在不燃烧的情况下释放化合物的产品来替代这些燃烧烟草的制品。
此类产品的示例为雾化装置,例如,加热式雾化装置或超声雾化装置。其中,加热式雾化装置,是通过加热元件加热汽化由毛细元件递送的液体生成供吸食的气溶胶;超声雾化装置,是通过可以往复高频振动的振动部件,例如压电陶瓷片通过高频振动打散毛细元件递送的液体变成微粒,形成可吸入的气溶胶。该液体可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油)。以上雾化装置工作时,需要保持毛细元件递送给加热元件或振动部件的液体充足,以避免在供液不足时产生“干烧”。加热式雾化装置通常通过监测加热元件的温度,确定供应至振动部件的液体是否充足;而对于超声雾化装置,无法准确确定供应至振动部件的液体是否充足。
发明内容
本申请提供了一种电子雾化装置,包括:
储液腔,用于存储液体基质;
可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
峰值电压检测模块,被配置为检测所述可振动元件两端的峰值电压;
控制器,被配置为基于所述峰值电压控制所述可振动元件的振动。
在一些实施例中,控制所述可振动元件的振动可以包括:控制可振动元件的振动频率、振幅、位移、速度或加速度、相位。
以上峰值电压是可振动元件两端呈简谐变化的电压的最大值。
在优选的实施例中,所述控制器被配置为基于所述峰值电压确定所述可振动元件所受的阻尼,并根据该阻尼控制所述可振动元件的振动。在可选的实施例中,所述可振动元件所受的阻尼是由提供至所述可振动元件的液体基质所产生的。
在优选的实施例中,所述控制器被配置为将所述阻尼与预设值进行比较,并在所述阻尼小于预设值时阻止所述可振动元件振动。
在优选的实施例中,所述峰值电压检测模块包括:
保持电容,被配置为保持所述可振动元件两端的峰值电压。
在优选的实施例中,所述峰值电压检测模块还包括:
运算放大器,被配置为向所述保持电容输出所述可振动元件两端的电压;
电压跟随器,被配置为输出所述保持电容保持的所述可振动元件两端的峰值电压。
在优选的实施例中,所述峰值电压检测模块还包括:
放电开关,被配置为在导通时使所述保持电容放电。
在优选的实施例中,所述运算放大器的采样端与所述可振动元件连接;
所述保持电容包括三路;其中,第一路与所述运算放大器的输出端连接,第二路与所述放电开关连接,第三路与所述电压跟随器的采样端连接。
在优选的实施例中,所述可振动元件至少包括压电陶瓷。
在优选的实施例中,所述控制器被配置为基于所述峰值电压确定所述可振动元件的振动频率。
在优选的实施例中,所述控制器还被配置为:
调整所述可振动元件的振动频率,以使所述振动频率与预设频率保持相同或基本接近。
在优选的实施例中,所述控制器被配置为:
采用变化频率驱动所述可振动元件振动,检测所述可振动元件两端的峰值电压;
根据所述峰值电压的最大值,确定所述可振动元件的最适的谐振频率。
本申请还提出了一种电子雾化装置,包括:
储液腔,用于存储液体基质;
可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
所述控制器被配置为根据所述可振动元件受液体基质的阻尼控制所述可振动元件的振动。
在优选的实施例中,所述控制器被配置为将所述阻尼与预设值进行比较,并在所述阻尼小于预设值时阻止所述可振动元件振动。
本申请还提出了一种电子雾化装置的控制方法,所述电子雾化装置包括:储液腔,用于存储液体基质;
可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
所述方法包括:
检测所述可振动元件两端的峰值电压;
基于所述峰值电压控制所述可振动元件的振动。
在优选的实施例中,基于所述峰值电压控制所述可振动元件的振动包括:
基于所述峰值电压确定所述可振动元件受液体基质的阻尼,并根据该阻尼控制所述可振动元件的振动。
在优选的实施例中,基于所述峰值电压控制所述可振动元件的振动包括:
基于所述峰值电压确定所述可振动元件的振动频率;
调整所述可振动元件的振动频率,以使所述振动频率与预设频率保持相同或基本接近。
以上电子雾化装置通过检测可振动元件两端的峰值电压,可获取可振动元件上的液体基质供应和工作参数,进而对应调节可振动元件工作以阻止可振动元件在供液不足或偏离状态下工作。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例提供的电子雾化装置的结构示意图;
图2是图1中电路一个实施例的结构框图;
图3是图2中驱动模块一个实施例的基本组件的示意图;
图4是图3中第一采样点采样的可振动元件的电压变化的示意图;
图5是图2中峰值电压检测模块一个实施例的基本组件的示意图;
图6是图5中峰值电压检测模块的输出结果的示意图;
图7是一个实施例中液体基质充足时可振动元件的电压变化的示意图;
图8是一个实施例中液体基质消耗后可振动元件的电压变化的示意图;
图9是一个实施例中电子雾化装置的控制方法的示意图;
图10是一个实施例中扫频时可振动元件的电压变化的示意图;
图11是又一个实施例中电子雾化装置的控制方法的示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。
本申请的一个实施例提出一种电子雾化装置,用于雾化液体基质生成供吸食的气溶胶。本申请公开的电子雾化装置还可以被表征为气溶胶生成系统或药物递送制品。因此,这种装置或系统可以被适配以便提供一种或多种可吸入形式或状态的物质(例如,风味剂和/或药物活性成分)。例如,可吸入物质可以是基本上呈气溶胶形式(即,气体中细固体颗粒或液滴的悬浮液)。
图1示出了电子雾化装置100的一个实施例的结构示意图;装置通常包括设置在外部主体或外壳(可以被称为壳体)内的数个部件。外部主体或外壳的总体设计可变化,且可限定电子雾化装置100的总体尺寸和形状的外部主体的型式或配置可变化。通常,类似于香烟或雪茄的形状的细长主体可由单个一体式壳体形成,或细长壳体可由两个或更多个可分离的主体形成。例如,电子雾化装置100可以在一端具有控制主体,该控制主体具备包含一个或多个可重复使用的部件(例如,充电电池和/或可充电的超级电容器的蓄电池、以及用于控制该制品的操作的各种电子器件)的壳体,并且在另一端具有可移除地耦合且包含一次性部分(例如,一次性含香料筒)的外部主体或外壳。
具体进一步参见图1所示,电子雾化装置100包括存储有液体基质并对其进行雾化生成气溶胶的雾化器10、以及为雾化器10供电的电源机构20。电源机构20和雾化器10以功能性关系可拆卸地对齐。可以利用各种机构将雾化器10连接到电源机构20,从而产生螺纹接合、压入配合接合、过盈配合、磁性接合等等。在一些示例实施方式中,当雾化器10和电源机构20处于组装配置时,电子雾化装置100可基本上是棒状、扁筒状、杆状、柱状形状等。
在可选的实施方式中,电源机构20和雾化器10可包括由多种不同材料中的任意材料形成的分离的单独的壳体或外部主体。壳体可由任何适合的结构上完好的材料形成。在一些示例方式中,壳体可由诸如不锈钢、铝之类的金属或合金形成。其它适合的材料包括各种塑料(例如,聚碳酸酯)、金属电镀塑料(metal-plating over plastic)、陶瓷等等。
进一步参见图1所示,电子雾化装置100具有沿长度方向相对的近 端110和远端120;其中,在使用中近端110通常作为被用户抽吸的一端、远端120作为远离用户的一端。雾化器10被布置于近端110,电源机构20被布置于远端120。
根据图1,电源机构20包括:
电芯21,用于供电;电芯21可包括例如电池(一次性的或可充电的)、可充电的超级电容器、可充电的固态电池(SSB)、可充电的锂离子电池(LiB)等或它们的某种组合。
电路22,用于在电芯21和雾化器10之间引导电流。
根据图1所示,雾化器10包括:
位于近端110的吸嘴口A,用于供用户抽吸;
储液腔11,用于存储液体基质;
可振动元件12,与储液腔11流体连通的,通过机械振动将传递至可振动元件12上的液体基质雾化成气溶胶;
液体传递元件13,用于在储液腔11与可振动元件12之间传递液体基质。
在一个可选的实施方式中,可振动元件12可以是通常的片状的超声振动部件或者是片状的压电陶瓷;或者是例如CN112335933A号专利提出的超声波雾化片等。这些可振动元件12在使用中通过高频振动(优选振动频率为1.7MHz~4.0MHz,超过人的听觉范围,属于超声频段)将液体基质打散而产生微粒自然悬浮的气溶胶。
在一个可选的实施方式中,液体传递元件13可以是通常的毛细元件,例如纤维棉、多孔体等。在其他的优选的实施方式中,液体传递元件13可以是微型泵,将预定量的液体基质从储液腔11中泵出至可振动元件12上;例如基于微机电系统(MEMS)技术的微型泵。合适的微型泵的例子包括thinXXS Microtechnology AG的MDP2205型微型泵和其他微型泵、Bartels Mikrotechnik GmbH的mp5和mp6型微型泵和其他微型泵、以及Takasago Fluidic Systems的压电微型泵。
进一步电路22包括数个电子部件,且在一些示例中可以形成在支撑且电连接电子部件的印刷电路板(PCB)上。电子部件可包括微处理器 或处理器核以及存储器。在一些示例中,控制部件可包括具有集成的处理器核和存储器的微控制器,且可以进一步包括一个或多个集成输入/输出外围设备。
根据图2所示,电路22包括有:
MCU控制器221;
驱动模块222,定位于电芯10和可振动元件12之间,以在它们之间引导电流。基于超声雾化的通常实施方式,驱动可振动元件12超声雾化的电流可以有两种,一种是通常的高频交流,另一种是脉冲式的方向恒定大小变化的电流。具体在比较优选的实施方式中,该驱动模块222优选采用引导产生包括呈周期性的正向电流和负向电流的交流电供应至可振动元件12上;
峰值电压检测模块223,用于检测可振动元件12两端的峰值电压。
进一步图3示出了一个实施例的驱动模块222的基本器件的结构的示意图;在图3所示的实施例中驱动模块222包括:
第一电感L1,第一端与电芯21的电压输出端连接、第二端与可振动元件12的第一端连接;
第二电感L2,第一端与电芯21的电压输出端连接、第二端与可振动元件12的第二端连接;
第一开关管Q1,D极与第一电感L1的第二端连接、S极接地、G极接收MCU控制器221的pwm1驱动信号进而导通/断开;
第一开关管Q2,D极与第二电感L2的第二端连接、S极接地、G极接收MCU控制器221的pwm2驱动信号进而导通/断开。
以上驱动模块222通过第一开关管Q1和第二开关管Q2的交替导通,进而周期性地引导交替的正向和负向电流供应至可振动元件12,以使可振动元件12往复振动。
进一步对于可振动元件12的工作状态,包括:
当没有液体基质提供至可振动元件12时,其振动过程可以等同于无阻尼振动;当有液体基质提供至可振动元件12时,其振动过程可以等同于阻尼振动。则可振动元件12振动过程中的振幅和两端的峰值电 压与驱动频率、驱动电流和所受阻尼力相关。其中:
驱动频率和驱动电流是由MCU控制器221设定的,可认为是给定的或已知的;则峰值电压基本仅与所受阻尼相关,而阻尼力由液体基质提供和产生,基于此即可通过检测峰值电压确定可振动元件12上的液体基质是否充分,进一步可以确定是否“干烧”。
在进一步优选的实施方式中,基于提升可振动元件12的振动效率,MCU控制器221控制过程中使驱动频率与可振动元件12的固有振动频率相同或非常接近,则可振动元件12工作中处于谐振状态,效率最大;同样,谐振状态下振幅和峰值电压也是最大的。进而在又一个优选的实施中,MCU控制器221还可以通过以上谐振状态时峰值电压的检测,寻找或获取可振动元件12的最适谐振频率,并采用该最适谐振频率作为驱动频率驱动可振动元件12工作。
进一步图4示出了图3中通过第一采样点W1采样获取的可振动元件12的正向电压信号S1与PWM1控制信号S2的示意图。同理可知,第二采样点W2采样的电压变化与第一采样点W1采样的正向电压信号S1共同组成可振动元件12的两端的电压变化大体是简谐波形。
进一步图5示出了一个实施例的峰值电压检测模块223的基本器件的结构的示意图;包括:
运算放大器U1,该运算放大器U1的采样端in-与图3中可振动元件12两端的第一采样点W1和/或第二采样点W2连接,以获取可振动元件12两端的电压,并通过二极管D1输出运算结果;
保持电容C1,与运算放大器U1的输出端是连接的,进而通过该保持电容C1可以保持或锁定运算放大器U1输出峰值电压。例如在图4中所示的电压变化周期的t1~t2时间段中,运算放大器U1输出逐步增大的电压值,保持电容C1接收输出的电压并存储,直至t2时刻当运算放大器U1输出电压值达到最大时,保持电容C1两端的电压同步达到最大;而当时间经过t2时刻后,运算放大器U1输出会逐步降低直至为0;但保持电容C1由于没有放电,则两端的电压值始终保持在峰值;
电压跟随器U2,跟随输出保持电容C1所保持的峰值电压。
通过以上保持电容C1和电压跟随器U2,可以始终在检测过程的任意时刻均保持输出峰值电压,进而MCU控制器221可以在任意时刻均能获取或采样所检测的峰值电压。
在图5中所示的优选实施方式中,运算放大器U1是作为比较器的基础用法使用的,具体运算放大器U1的基准信号输入端in+通过一个电容连接到输出信号的一个固定的信号,则运算放大器U1作为比较器输出可振动元件12两端的电压与固定基准信号的比较运算的结果;即当运算放大器U1的采样端in-采样的电压信号高于输入端in+输入的基准电压信号时,运算放大器U1输出比较结果至保持电容C1保持,直至当采样端in-采样的电压信号为峰值时保持电容C1接收的电压最大即为峰值电压。
具体地,图6示出了由峰值电压检测模块223输出的结果信号Vout的电压信号的示意图;从图6中可以看出,峰值电压检测模块223输出的信号S3始终是可振动元件12两端的峰值电压。
进一步在图5所示的优选实施方式中,基于常规跟随输出的连接方式,电压跟随器U2的采样端in+与运算放大器U1的采样端in+是连接的。同时在峰值电压检测模块223还包含有若干电阻、电容等基本器件,它们是用于基本的分压、稳压、以及限流的功能。
具体在图5所示的实施方式中,峰值电压检测模块223中保持电容C1的负端是接地的、正端连接中包括有三路;其中,
第一路是与运算放大器U1的输出端连接,以用于接收运算放大器U1输出的电压;
第二路是与电压跟随器U2的采样端in-连接,以使电压跟随器U2能输出由保持电容C1保持的峰值电压;
第三路是通过开关管Q3接地的,MCU控制器221通过导通该开关管Q3对保持电容C1的正端进行放电至0,便于下一次峰值电压的采样。
图7示出了一个实施例的电子雾化装置的储液腔11内液体基质充足时可振动元件12两端的电压变化示意图;图8示出了一个实施例的电子雾化装置的储液腔11内液体基质消耗完后可振动元件12两端的电 压变化示意图。根据图7和图8可以看出,在基本相同的驱动频率和驱动电流下,液体基质供应充足时可振动元件12工作中两端的峰值电压为51.2V,而无液体基质供应时可振动元件12工作中两端的峰值电压为67.2V。进而基于液体基质提供阻尼导致的可振动元件12峰值电压的变化,即可确定液体基质的提供是否充足,进而确定是否产生“干烧”。
进而本申请的一个实施例提出了一种通过检测液体基质在可振动元件12中的阻尼确定液体基质的提供是否充足等进而控制电子雾化装置的方法,参见图9所示,包括如下步骤:
S10,峰值电压检测模块223检测可振动元件12两端的峰值电压;
S20,根据可振动元件12两端的峰值电压确定液体基质对可振动元件12产生的阻尼;
S30,将液体基质对可振动元件12产生的阻尼与预设值比较,当阻尼小于预设值时阻止可振动元件12振动。
以上步骤中基于振动过程中,供应给可振动元件12的液体基质的量产生的阻尼引起可振动元件12两端的峰值电压的不同,进而监测液体基质是否充足供应至可振动元件12。当阻尼低于预设值过小时,则表明可振动元件12上的液体基质量是不足的,则控制器221可以控制阻止可振动元件12继续振动,以避免“干烧”。
以上方法还可以用于确定在一个抽吸口数中可振动元件12上所载有的液体基质是否被雾化完;在一个抽吸口数中,当液体基质逐渐被雾化减少时,阻尼是逐渐减小而可振动元件12的峰值电压是逐渐增大的;进而在一个抽吸口数中,当阻尼减小至低于预设值表明可振动元件12上负载的液体基质基本已经被雾化完全,即可控制使其停止振动。
进一步在又一个优选的实施方式中,图10示出了一个通过扫频获取可振动元件12最适驱动频率的结果,分别通过MCU控制器221发出一系列不同的频率(可以由大到小或由小到大)的驱动可振动元件12工作,并由以上峰值电压检测模块223对应检测峰值电压;从图9中看出,不同的驱动频率下峰值电压不同;并且在其中一个2.5~2.6MHz频段下峰值电压能达到最大,此时基本可以确定该最大的峰值电压对应的 频率为可振动元件12的固有频率,以此固有频率驱动可振动元件12即可使可振动元件12在最佳谐振下工作。
以上“扫频”是电学术语,是指采用信号在一个频段范围内、频率由高到低(或由低到高)连续变化;通常用于测试。
基于以上,本申请的又一个实施例还提出一种自动寻找和获取最适振动频率的方法,包括:通过扫频的方法驱动可振动元件12振动,并检测可振动元件12两端的峰值电压;当可振动元件12两端的峰值电压达到最大时,即确定当前扫频的频率为所寻找的谐振频率。
基于以上,本申请的又一个实施例还提出一种自适应调节电子雾化装置的可振动元件12振动频率的方法,参见图11所示,包括:
S100,通过峰值电压检测模块223检测可振动元件12两端的峰值电压;
S200,MCU控制器221根据所检测的峰值电压确定可振动元件12当前的振动频率,并调整提供给可振动元件12的驱动频率大小,以使振动频率与所需的最适频率保持相同或基本接近。
该实施例中通过峰值电压检测模块223检测的峰值电压与频率的相关关系反向计算当前的振动频率,而后自适应调节驱动频率与最适谐振频率相同或基本接近。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (16)

  1. 一种电子雾化装置,其特征在于,包括:
    储液腔,用于存储液体基质;
    可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
    峰值电压检测模块,被配置为检测所述可振动元件两端的峰值电压;
    控制器,被配置为基于所述峰值电压控制所述可振动元件的振动。
  2. 根据权利要求1所述的电子雾化装置,其特征在于,所述控制器被配置为基于所述峰值电压确定所述可振动元件所受的阻尼,并根据该阻尼控制所述可振动元件的振动。
  3. 根据权利要求2所述的电子雾化装置,其特征在于,所述控制器被配置为将所述阻尼与预设值进行比较,并在所述阻尼小于预设值时阻止所述可振动元件振动。
  4. 根据权利要求1至3任一项所述的电子雾化装置,其特征在于,所述峰值电压检测模块包括:
    保持电容,被配置为保持所述可振动元件两端的峰值电压。
  5. 根据权利要求4所述的电子雾化装置,其特征在于,所述峰值电压检测模块还包括:
    运算放大器,被配置为向所述保持电容输出所述可振动元件两端的电压;
    电压跟随器,被配置为输出所述保持电容保持的所述可振动元件两端的峰值电压。
  6. 根据权利要求5所述的电子雾化装置,其特征在于,所述峰值电压检测模块还包括:
    放电开关,被配置为在导通时使所述保持电容放电。
  7. 根据权利要求6所述的电子雾化装置,其特征在于,所述运算放大器的采样端与所述可振动元件连接;
    所述保持电容包括三路;其中,第一路与所述运算放大器的输出端连接,第二路与所述放电开关连接,第三路与所述电压跟随器的采样端连接。
  8. 根据权利要求1至3任一项所述的电子雾化装置,其特征在于,所述可振动元件至少包括压电陶瓷。
  9. 根据权利要求1至3任一项所述的电子雾化装置,其特征在于,所述控制器被配置为基于所述峰值电压确定所述可振动元件的振动频率。
  10. 根据权利要求9所述的电子雾化装置,其特征在于,所述控制器还被配置为:
    调整所述可振动元件的振动频率,以使所述振动频率与预设频率保持相同或基本接近。
  11. 根据权利要求1至3任一项所述的电子雾化装置,其特征在于,所述控制器被配置为:
    采用变化频率驱动所述可振动元件振动,检测所述可振动元件两端的峰值电压;
    根据所述峰值电压的最大值,确定所述可振动元件的最适谐振频率。
  12. 一种电子雾化装置,其特征在于,包括:
    储液腔,用于存储液体基质;
    可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
    所述控制器被配置为根据所述可振动元件所受的阻尼控制所述可振动元件的振动。
  13. 根据权利要求12所述的电子雾化装置,其特征在于,所述控制器被配置为将所述阻尼与预设值进行比较,并在所述阻尼小于预设值时阻止所述可振动元件振动。
  14. 一种电子雾化装置的控制方法,所述电子雾化装置包括:储液腔,用于存储液体基质;
    可振动元件,被配置为产生振动以雾化液体基质生成气溶胶;
    其特征在于,所述方法包括:
    检测所述可振动元件两端的峰值电压;
    基于所述峰值电压控制所述可振动元件的振动。
  15. 根据权利要求14所述的电子雾化装置的控制方法,其特征在于,基于所述峰值电压控制所述可振动元件的振动包括:
    基于所述峰值电压确定所述可振动元件所受的阻尼,并根据该阻尼控制所述可振动元件的振动。
  16. 根据权利要求14所述的电子雾化装置的控制方法,其特征在于,基于所述峰值电压控制所述可振动元件的振动包括:
    基于所述峰值电压确定所述可振动元件的振动频率;
    调整所述可振动元件的振动频率,以使所述振动频率与预设频率保持相同或基本接近。
PCT/CN2022/094011 2021-05-21 2022-05-20 电子雾化装置及控制方法 WO2022242733A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22804053.1A EP4353107A1 (en) 2021-05-21 2022-05-20 Electronic atomization apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110560160.1 2021-05-21
CN202110560160.1A CN115363282A (zh) 2021-05-21 2021-05-21 电子雾化装置及控制方法

Publications (1)

Publication Number Publication Date
WO2022242733A1 true WO2022242733A1 (zh) 2022-11-24

Family

ID=84059496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094011 WO2022242733A1 (zh) 2021-05-21 2022-05-20 电子雾化装置及控制方法

Country Status (3)

Country Link
EP (1) EP4353107A1 (zh)
CN (1) CN115363282A (zh)
WO (1) WO2022242733A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001650A (en) * 1975-09-02 1977-01-04 Puritan-Bennett Corporation Method and apparatus for ultrasonic transducer protection
US4689515A (en) * 1985-09-30 1987-08-25 Siemens Aktiengesellschaft Method for operating an ultrasonic frequency generator
CN101615432A (zh) * 2009-07-29 2009-12-30 杭州士兰微电子股份有限公司 峰值采样保持电路,峰值采样保持方法及应用
CN107257123A (zh) * 2017-07-03 2017-10-17 广东美的制冷设备有限公司 干烧保护电路、加湿装置、空调器及加湿装置的控制方法
US20180065160A1 (en) * 2016-09-02 2018-03-08 Hcmed Innovations Co., Ltd Atomization device and cleaning method thereof
CN108720081A (zh) * 2017-04-13 2018-11-02 湖南中烟工业有限责任公司 一种超声波电子烟电路及实现方法
CN108940704A (zh) * 2018-09-12 2018-12-07 河北华旭达医疗器械科技有限公司 超声波雾化器缺液保护电路及缺液控制方法
CN109007974A (zh) * 2017-06-08 2018-12-18 湖南中烟工业有限责任公司 一种超声波电子烟电路及该超声波电子烟
CN112335933A (zh) 2019-08-07 2021-02-09 湖南中烟工业有限责任公司 一种超声波雾化片及其制作工艺、超声波电子烟
CN113827818A (zh) * 2021-08-20 2021-12-24 深圳摩尔雾化健康医疗科技有限公司 干烧检测方法及装置、干烧保护方法及装置、雾化器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001650A (en) * 1975-09-02 1977-01-04 Puritan-Bennett Corporation Method and apparatus for ultrasonic transducer protection
US4689515A (en) * 1985-09-30 1987-08-25 Siemens Aktiengesellschaft Method for operating an ultrasonic frequency generator
CN101615432A (zh) * 2009-07-29 2009-12-30 杭州士兰微电子股份有限公司 峰值采样保持电路,峰值采样保持方法及应用
US20180065160A1 (en) * 2016-09-02 2018-03-08 Hcmed Innovations Co., Ltd Atomization device and cleaning method thereof
CN108720081A (zh) * 2017-04-13 2018-11-02 湖南中烟工业有限责任公司 一种超声波电子烟电路及实现方法
CN109007974A (zh) * 2017-06-08 2018-12-18 湖南中烟工业有限责任公司 一种超声波电子烟电路及该超声波电子烟
CN107257123A (zh) * 2017-07-03 2017-10-17 广东美的制冷设备有限公司 干烧保护电路、加湿装置、空调器及加湿装置的控制方法
CN108940704A (zh) * 2018-09-12 2018-12-07 河北华旭达医疗器械科技有限公司 超声波雾化器缺液保护电路及缺液控制方法
CN112335933A (zh) 2019-08-07 2021-02-09 湖南中烟工业有限责任公司 一种超声波雾化片及其制作工艺、超声波电子烟
CN113827818A (zh) * 2021-08-20 2021-12-24 深圳摩尔雾化健康医疗科技有限公司 干烧检测方法及装置、干烧保护方法及装置、雾化器

Also Published As

Publication number Publication date
EP4353107A1 (en) 2024-04-17
CN115363282A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
KR102661607B1 (ko) 진동 부재를 포함하는 에어로졸 발생 시스템
JP2020527945A (ja) 非加熱、非燃焼式喫煙物品
US6978779B2 (en) Vibrating element liquid discharging apparatus having gas pressure sensing
EP1332006B1 (en) Device and method for detecting and controlling liquid supply to an apparatus discharging liquid
JP6085306B2 (ja) ネブライザ、これを制御する制御ユニット及びネブライザの動作方法
WO2001076762A2 (en) Method of maximizing the mechanical displacement of a piezoelectric nebulizer apparatus
JP7369293B2 (ja) エアロゾル生成装置及びその動作方法
WO2022242733A1 (zh) 电子雾化装置及控制方法
KR102582125B1 (ko) 에어로졸 생성 장치
CN114867372A (zh) 包括表面声波雾化器的气溶胶生成器
JP7413539B2 (ja) 振動子を含むエアロゾル生成装置及びその動作方法
JP7312269B2 (ja) カートリッジ及びそれを含むエアロゾル生成装置
KR102523580B1 (ko) 에어로졸 생성 장치 및 그의 동작 방법
KR20230088391A (ko) 곡선형 챔버를 갖는 에어로졸 발생기
US20230080902A1 (en) Aerosol-generating device with feedback control of transducer
JP7472303B2 (ja) カートリッジ及びそれを含むエアロゾル生成装置
JP2023517128A (ja) エアロゾル生成装置
JP2023541500A (ja) エアロゾル生成装置及びその制御方法
KR20220107882A (ko) 에어로졸 생성 장치
KR20230024816A (ko) 에어로졸 생성 장치 및 이의 제어 방법
JP2023541757A (ja) エアロゾル生成装置
KR20220162012A (ko) 초음파진동식 에어로졸 생성 장치 및 그 장치를 제어하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022804053

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804053

Country of ref document: EP

Effective date: 20231221