WO2022242650A1 - 用于检测光学性能的装置及方法、光学性能检测方法、电子设备 - Google Patents

用于检测光学性能的装置及方法、光学性能检测方法、电子设备 Download PDF

Info

Publication number
WO2022242650A1
WO2022242650A1 PCT/CN2022/093355 CN2022093355W WO2022242650A1 WO 2022242650 A1 WO2022242650 A1 WO 2022242650A1 CN 2022093355 W CN2022093355 W CN 2022093355W WO 2022242650 A1 WO2022242650 A1 WO 2022242650A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging system
optical performance
image data
test
image
Prior art date
Application number
PCT/CN2022/093355
Other languages
English (en)
French (fr)
Inventor
张葵阳
何超
Original Assignee
上海微觅医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微觅医疗器械有限公司 filed Critical 上海微觅医疗器械有限公司
Publication of WO2022242650A1 publication Critical patent/WO2022242650A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0292Testing optical properties of objectives by measuring the optical modulation transfer function
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection

Definitions

  • the present application relates to the technical field of optical performance detection, and in particular to a device and method for detecting the optical performance of an imaging system, a method for detecting the optical performance of an imaging system, and electronic equipment.
  • Imaging systems are now widely used.
  • the optical performance of the imaging system is a very important index of the imaging system. Considering that the production of the imaging system is complicated and the application occasion is very important, it is particularly important to test the optical performance of the imaging system.
  • Embodiments of the present application provide a device and method for detecting the optical performance of an imaging system, a method for detecting the optical performance of the imaging system, and electronic equipment, so as to detect the optical performance of the imaging system.
  • the first aspect of the embodiments of the present application provides a device for detecting the optical performance of an imaging system, including:
  • test board the test board is provided with at least one group of test patterns
  • the moving part is used to move the test board relative to the imaging system, so that each group of test patterns on the test board is aligned with the detection point of the lens in the imaging system;
  • An image acquisition device configured to acquire image data formed by the imaging system for imaging the test pattern after alignment, and the image data is used to detect the optical performance of the imaging system.
  • the second aspect of the embodiments of the present application provides a method for detecting the optical performance of an imaging system, including:
  • test board is provided with at least one set of test patterns
  • the third aspect of the embodiments of the present application provides a method for detecting optical performance of an imaging system, including:
  • the image data is processed to obtain the optical performance parameters of the imaging system.
  • an electronic device including:
  • a memory storing program instructions, wherein the program instructions are configured to be executed by the at least one processor, the program instructions comprising instructions for performing the method as described in the third aspect.
  • the technical solution provided by some embodiments of this specification can move the test board relative to the imaging system, so that each group of test patterns on the test board is aligned with the detection point of the lens in the imaging system.
  • the image data formed by the imaging system after the alignment of the test pattern can be collected, and the image data is used to detect the optical performance of the imaging system. In this way, the detection of the optical performance of the imaging system is realized by making the test board move relative to the imaging system.
  • the optical performance parameters of the imaging system can be obtained according to the image data formed by imaging of the imaging system, and the detection of the optical performance of the imaging system can be realized.
  • Figure 1a is a schematic diagram of the detection of an imaging system with a viewing angle of 0 degrees according to an embodiment of the present application
  • Figure 1b is a schematic diagram of the detection of an imaging system with a viewing angle of 30 degrees according to an embodiment of the present application
  • Figure 2a is a schematic diagram of the detection points of the imaging system lens in the embodiment of the present application.
  • Fig. 2b is a schematic diagram of the detection points of the imaging system lens in the embodiment of the present application.
  • Figure 3a is a schematic diagram of the resolution board in the embodiment of the present application.
  • Figure 3b is a schematic diagram of the distortion plate in the embodiment of the present application.
  • Figure 3c is a schematic diagram of the light effect panel in the embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a moving part in an embodiment of the present application.
  • FIG. 5 is a flowchart of a method for detecting the optical performance of an imaging system in an embodiment of the present application
  • FIG. 6 is a flowchart of a method for detecting optical performance of an imaging system in an embodiment of the present application
  • FIG. 7 is a flow chart of processing image data in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of the first grayscale image and the second grayscale image in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of an image mask in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an imaging system optical performance detection device in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • an optical performance parameter of an imaging system can be obtained, and the optical performance parameter can be used to characterize the optical performance of the imaging system.
  • the imaging system may include an endoscope, and the optical performance parameter may include a modulation transfer function value.
  • the edge method can be used to obtain the SFR (Spatial Frequency Response, spatial frequency response) value at a specific position of the endoscope lens, the SFR value can be converted into a modulation transfer function value, and the modulation transfer function can be used to The function value characterizes the modulation transfer function performance of the endoscope.
  • SFR Spaquency Response, spatial frequency response
  • An embodiment of the present application provides a device for detecting optical performance of an imaging system.
  • the optical properties include, but are not limited to, Modulation Transfer Function (MTF), distortion, depth of field, light effect, and the like.
  • the imaging system 4 may include an endoscope, a camera, a thermal imager, and the like.
  • the endoscope may include a medical endoscope, an industrial endoscope, and the like.
  • the endoscope may also include rigid endoscopes, flexible endoscopes and the like.
  • the imaging system may 4 have components such as a lens and an image sensor.
  • the lens is used to image the subject on the image sensor, and the image sensor is used to output an electrical signal according to the imaging of the lens, and the electrical signal is used to generate image data including the subject.
  • the optical properties of the imaging system 4 can be checked using the image data.
  • a detection point can be set in the field of view of the lens.
  • the image data corresponding to the detection point can be obtained, and the optical performance of the imaging system 4 can be detected by using the image data corresponding to the detection point.
  • multiple detection points may also be set in the field of view of the lens. In this way, the image data corresponding to the multiple detection points can be obtained, and the optical performance of the imaging system 4 can be detected by using the image data corresponding to the multiple detection points.
  • Figure 2a shows a way of setting detection points. In Figure 2a, five detection points are set in the field of view of the lens.
  • Fig. 2b shows another way of setting detection points. In Figure 2b, 4 detection points are set in the field of view of the lens.
  • the device for testing the optical performance of the imaging system may include a test board 3 , a moving part 2 and an image acquisition device 6 .
  • At least one set of test patterns may be provided on the test board 3 , and each set of test patterns may include one or more test patterns.
  • multiple sets of test patterns can be arranged on the test board 3 .
  • a plurality of image data formed by the imaging system 4 for the imaging of the multiple groups of test patterns can be obtained, and the plurality of image data can be used to detect the The optical performance of the imaging system 4 at this detection point. This makes the test results more accurate.
  • multiple optical performance parameters of the imaging system 4 at the detection point can be obtained according to the multiple image data, and the multiple optical performance parameters can be used to characterize the imaging system 4 at the detection point. optical performance.
  • the multiple optical performance parameters may be directly used to characterize the optical performance of the imaging system 4 at the detection point.
  • an optical performance curve may also be generated according to the plurality of optical performance parameters, and the optical performance curve may be used to characterize the optical performance of the imaging system 4 at the detection point.
  • a resolution test board can be used when the modulation transfer function performance needs to be tested.
  • At least one set of resolution patterns may be provided on the resolution test board.
  • Each set of resolution patterns may correspond to a resolution level and include one or more resolution patterns.
  • 25 sets of resolution patterns can be provided on the resolution plate shown in FIG. 3a.
  • the 25 sets of resolution patterns correspond to 25 resolution gears.
  • Each set of resolution patterns may include 4 resolution patterns, and the resolution patterns may include black and white parallel lines. The direction of the parallel lines is different among the 4 resolution patterns. Inside each set of resolution patterns, the density of parallel lines is consistent. Between different sets of resolution patterns, the degree of density between parallel lines is different.
  • the modulation transfer function performance of the imaging system 4 can be checked using the resolution plate.
  • the distortion plate shown in FIG. 3b can be used.
  • the light effect plate shown in FIG. 3c can be used.
  • the test board 3 can be arranged on the moving part 2 .
  • the moving part 2 is used to move the test board 3 relative to the imaging system 4 , so that each group of test patterns on the test board 3 is aligned with the detection point of the lens in the imaging system 4 .
  • the test board 3 is perpendicular to the imaging optical axis of the imaging system 4 .
  • the imaging optical axis is the central axis of the field of view of the imaging system 4 .
  • the moving part 2 may include a horizontal guide rail 23 and a vertical guide rail 21 .
  • the vertical guide rail 21 can be arranged on the horizontal guide rail 23 , and the vertical guide rail 21 can move along the horizontal guide rail 23 in the horizontal direction.
  • the test board 3 can be arranged on the vertical guide rail 21 , and the test board 3 can move in the vertical direction along the vertical guide rail 21 .
  • the horizontal direction and the vertical direction may be perpendicular to the imaging optical axis of the imaging system 4 .
  • the test board 3 is perpendicular to the imaging optical axis of the imaging system 4 during the moving process.
  • the test board 3 can be directly arranged on the vertical guide rail 21 .
  • the test board 3 can also be arranged on the vertical guide rail 21 through a supporting component.
  • the test board 3 can be moved vertically and/or horizontally by manual operation.
  • the vertical guide rail 21 can be moved along the horizontal guide rail 23 and/or the test board 3 can be moved along the vertical guide rail 21 by manual operation.
  • the image acquisition device 6 may also control the test board 3 to move vertically and/or horizontally. In this way, automatic detection can be realized and detection efficiency can be improved.
  • the horizontal guide rail 23 may be provided with a first driving component 24 (such as a driving motor), and the first driving component 24 may be used to drive the vertical guide rail 21 to move along the horizontal guide rail 23 .
  • the vertical guide rail 21 may be provided with a second driving component 22 (such as a drive motor), and the second driving component 22 may be used to drive the test board 3 to move along the vertical guide rail 21.
  • the image acquisition device 6 can send control signals to the first drive part 24 and the second drive part 22 to control the test board 3 to move along the vertical guide rail 21 and to control the vertical guide rail 21 to move along the horizontal guide rail 23 move.
  • the number of the detection point may be one.
  • the moving part 2 can move the test board 3 so that each group of test patterns on the test board 3 is respectively aligned with the detection points.
  • the number of detection points may also be multiple.
  • the moving part 2 can move the test board 3 so that each group of test patterns on the test board 3 is aligned with the plurality of detection points one by one.
  • each group of test patterns on the test board 3 can be aligned with one detection point respectively, and then each group of test patterns on the test board 3 can be aligned with another detection point, so as to continuously circulate, thereby realizing detection.
  • each group of test patterns with the detection points may be that the detection points are located at a specific position (eg, the center position) of the group of test patterns.
  • each group of test patterns can also be provided with a reference point, and the reference point is located at a specific position (such as a central position) of the group of test patterns. In this way, the alignment of each group of test patterns with the detection points can be the alignment of the detection points with the reference points.
  • the image acquisition device 6 may include a desktop computer, a portable computer (such as a notebook computer), a mobile smart phone, a tablet computer, and the like.
  • the image acquisition device 6 can be communicatively connected with the imaging system 4 .
  • the image acquisition device 6 is used to collect the image data formed by the imaging system 4 for the imaging of the test patterns after each group of test patterns on the test board 3 is aligned with the detection point of the lens in the imaging system 4 .
  • the image data can be captured by the imaging system 4 , or can also be generated by the image acquisition device 6 .
  • the image data can be used to detect optical properties. Further, the image acquisition device 6 can also be used to process image data to obtain optical performance detection results.
  • the optical performance detection results are used to characterize the optical performance of the imaging system 4 .
  • the optical performance detection results may include optical performance parameters and/or optical performance curves.
  • the optical performance parameters may include modulation transfer function values, distortion rates, brightness uniformity, and the like.
  • the MTF value is used to characterize the MTF performance of the imaging system 4 .
  • the distortion rate is used to characterize the distortion (Distortion, also called distortion) performance of the imaging system 4 .
  • the brightness uniformity is used to characterize the light effect performance of the imaging system 4 .
  • the optical performance curve includes a modulation transfer function curve and the like.
  • the optical performance curve can be generated by the image acquisition device 6 according to the optical performance parameters, which can more visually characterize the optical performance of the imaging system 4 .
  • the modulation transfer function curve may be generated by the image acquisition device 6 according to the modulation transfer function value.
  • the optical performance parameters obtained by the image acquisition device 6 may include at least one of the following conditions.
  • a group of test patterns is set on the test board 3 , and the number of the test point is one.
  • the image acquisition device 6 can acquire an image data formed by the imaging system 4 for imaging a group of test patterns, and can process the image data to obtain an optical performance parameter of the detection point.
  • the optical performance parameters may be used to characterize the optical performance of the imaging system 4 at the detection point.
  • the test board 3 is provided with multiple sets of test patterns, and the number of the test point is one.
  • the image acquisition device 6 can acquire a plurality of image data formed by the imaging system 4 for the imaging of the plurality of groups of test patterns, and can process the plurality of image data to obtain a plurality of optical performance parameters of the detection point.
  • the multiple optical performance parameters can characterize the optical performance of the imaging system 4 more accurately. Wherein, the multiple optical performance parameters may be directly used to characterize the optical performance of the imaging system 4 at the detection point. Alternatively, an optical performance curve may also be obtained according to the plurality of optical performance parameters, and the optical performance curve may be used to characterize the optical performance of the imaging system 4 at the detection point.
  • a group of test patterns is provided on the test board 3 , and the number of the test points is multiple.
  • the image acquisition device 6 can collect an image data formed by the imaging system 4 for imaging a group of test patterns, and can process the image data to obtain an optical performance parameter of the detection point. In this way, the optical performance parameters of multiple detection points can be obtained, and the detection of multiple detection points can be realized.
  • the test board 3 is provided with multiple sets of test patterns, and the number of the detection points is multiple.
  • the image acquisition device 6 can collect a plurality of image data formed by the imaging system 4 for the imaging of multiple groups of test patterns, and can process the multiple image data to obtain multiple optical images of the detection point. performance parameters.
  • the optical performance parameters of multiple detection points can be obtained, and the detection of multiple detection points can be realized.
  • multiple optical performance parameters of each detection point can be directly used to characterize the optical performance of the imaging system 4 at the detection point.
  • an optical performance curve can also be obtained according to multiple optical performance parameters of each detection point, and the optical performance curve can be used to characterize the optical performance of the imaging system 4 at the detection point.
  • the device for detecting the optical performance of the imaging system may further include a light source 1 .
  • the light source 1 can be used to provide parallel light to illuminate the test board 3 .
  • the light source 1 may be a parallel light transmission light box. Of course, other light sources capable of providing parallel light may also be used in practice.
  • the test board 3 may include a transmission type test board.
  • the transmission test board can be located between the light source 1 and the imaging system 4 , so that the parallel light output by the light source 1 can pass through the transmission test board and enter the lens of the imaging system 4 .
  • the test board 3 may also include a reflective test board.
  • the light source 1 and the imaging system 4 may be located on the same side of the reflective test board.
  • the device for detecting the optical performance of the imaging system may further include a supporting component 5 .
  • the support member 5 can be used to support the imaging system 4, so that the imaging optical axis of the imaging system 4 is consistent with the beam direction of the parallel light.
  • the support component 5 may only be able to support an imaging system with a certain viewing angle.
  • the supporting component 5 may also support various imaging systems, and the various imaging systems have different viewing angles.
  • the support member 5 may include a support platform and at least two uprights. The support platform is used to support the imaging system 4, and the at least two columns are used to support the support platform. By modulating the height difference between the columns, the support component 5 can support various imaging systems with different viewing angles.
  • the support member 5 supports an imaging system with a viewing angle of 0 degrees.
  • the support member 5 supports an imaging system with a viewing angle of 30 degrees.
  • the device for detecting the optical performance of the imaging system may further include a display device 7 .
  • the display device 7 may include a desktop computer, a portable computer (such as a notebook computer), a mobile smart phone, a tablet computer, and the like.
  • the display device 7 can be communicatively connected with the imaging system 4 .
  • the display device 7 and the image acquisition device 6 may be different devices respectively. Alternatively, the display device 7 and the image acquisition device 6 may also be integrated into the same device.
  • the display device 7 is used to display the imaging of the imaging system 4 so as to observe the alignment of each group of test patterns and detection points. Further, the display device 7 can also receive the optical performance detection result sent by the image acquisition device 6, and can display the optical performance detection result. Further, the display device 7 can also display the field of view of the lens of the imaging system 4, so that inspectors can set multiple detection points in the field of view. The display device 7 can obtain the detection points set by the detection personnel.
  • the embodiment of the present application also provides a method for detecting the optical performance of the imaging system correspondingly. See Figure 5.
  • the method may include the following steps.
  • Step S501 providing a test board 3, on which at least one group of test patterns is set.
  • parallel light can also be provided to illuminate the test board 3 .
  • Step S503 moving the test board 3 relative to the imaging system 4 , so that each group of test patterns on the test board 3 is aligned with the detection point of the lens in the imaging system 4 .
  • the imaging system 4 may be an imaging system to be inspected.
  • the imaging system 4 can be arranged on a support member 5 .
  • the support member 5 can be adjusted according to the viewing angle of the imaging system 4 . So that, after the imaging system 4 is arranged on the support member 5, the imaging optical axis of the imaging system 4 is consistent with the beam direction of the parallel light.
  • the detection point can be set by the detection personnel in the field of view of the lens of the imaging system 4 .
  • the display device 7 can display the field of view of the lens in the imaging system 4, so that inspectors can set multiple detection points in the field of view.
  • the display device 7 can obtain the detection points set by the detection personnel.
  • each group of test patterns with the detection points may be that the detection points are located at a specific position (eg, a central position) of the group of test patterns.
  • each set of test patterns may be provided with a reference point located at a specific position (eg, a central position) of the set of test patterns.
  • the alignment of each group of test patterns with the detection points may be the alignment of the detection points with the reference points.
  • the display device 7 can display the imaging of the imaging system 4, so as to observe the alignment of each group of test patterns and detection points.
  • the number of detection points may be one.
  • the moving part 2 can move the test board 3 so that each group of test patterns on the test board 3 is aligned with the detection points.
  • the number of detection points may also be multiple.
  • the moving part 2 can move the test board 3 so that each group of test patterns on the test board 3 is aligned with the plurality of detection points one by one.
  • each group of test patterns on the test board 3 can be aligned with one detection point respectively, and then each group of test patterns on the test board 3 can be aligned with another detection point, so as to continuously circulate, thereby realizing detection.
  • the moving part 2 may include a horizontal guide rail 23 and a vertical guide rail 21 .
  • the vertical guide rail 21 can be arranged on the horizontal guide rail 23 , and the vertical guide rail 21 can move along the horizontal guide rail 23 in the horizontal direction.
  • the test board 3 can be arranged on the vertical guide rail 21 , and the test board 3 can move in the vertical direction along the vertical guide rail 21 . Therefore, the test board 3 can be moved in the horizontal direction by the horizontal guide rail 23 .
  • the test board 3 can be moved in the vertical direction through the vertical guide rail 21 .
  • the horizontal direction and the vertical direction may be perpendicular to the imaging optical axis of the imaging system 4 .
  • the image acquisition device 6 can control the test board 3 to move along the vertical guide rail 21 , and control the vertical guide rail 21 to move along the horizontal guide rail 23 .
  • Step S505 collecting the image data formed by the imaging system 4 after the alignment of the test pattern, the image data is used to detect the optical performance of the imaging system 4 .
  • the image acquisition device 6 can collect the image data formed by the imaging system 4 for the imaging of the test patterns after each group of test patterns on the test board 3 is aligned with the detection point of the lens in the imaging system 4, so The set of test patterns may be included in the image data.
  • multiple groups of test patterns may be provided on the test board 3 .
  • the number of the detection point may be one.
  • the moving part 2 can move the test board 3 so that a group of test patterns on the test board 3 are aligned with the detection points. After the group of test patterns is aligned with the detection points, the image acquisition device 6 can collect the image data formed by the imaging system 4 for the imaging of the group of test patterns. Then, the moving part 2 can continue to move the test board 3 so as to align another group of test patterns on the test board 3 with the detection points. After the group of test patterns is aligned with the detection points, the image acquisition device 6 can collect the image data formed by the imaging system 4 for the imaging of the group of test patterns.
  • Such continuous circulation can make multiple sets of test patterns on the test board 3 aligned with the detection points one by one, and a plurality of image data corresponding to the detection points can be collected.
  • multiple groups of test patterns may be provided on the test board 3 .
  • the number of detection points can be multiple.
  • the moving part 2 can move the test board 3 so that multiple groups of test patterns on the test board 3 are aligned with a detection point of the lens in the imaging system 4 .
  • the image acquisition device 6 can acquire a plurality of image data formed by the imaging system 4 for imaging multiple sets of test patterns. Then, the moving part 2 can continue to move the test board 3 , so that multiple sets of test patterns on the test board 3 are aligned with another detection point of the lens in the imaging system 4 .
  • the image acquisition device 6 can acquire a plurality of image data formed by the imaging system 4 for imaging multiple sets of test patterns.
  • Such continuous circulation can align multiple groups of test patterns on the test board 3 with multiple detection points, and can collect multiple image data corresponding to the
  • the image acquisition device 6 can also process the image data to obtain the optical property detection result.
  • the optical performance detection results are used to characterize the optical performance of the imaging system 4 .
  • the optical performance detection results may include optical performance parameters and/or optical performance curves.
  • the image acquisition device 6 can also send the optical performance detection result to the display device 7, and the display device 7 can receive the optical performance detection result and can display the optical performance detection result.
  • the imaging system 4 may be a medical rigid endoscope, and the viewing angle of the medical rigid endoscope is 0 degrees.
  • the device for detecting the optical performance of the imaging system may include a light source 1 , a resolution plate, a moving part 2 , an image acquisition device 6 and a display device 7 .
  • the light source 1 may be a parallel light transmission light box.
  • the support member 5 can be adjusted according to the viewing angle of the medical rigid endoscope, so that after the medical rigid endoscope is set on the support member 5, the imaging optical axis of the medical rigid endoscope and the parallel light The beam direction is the same.
  • the medical rigid endoscope can be set on the adjusted support member 5 .
  • the display device 7 can be connected with the medical rigid endoscope, and the image acquisition device 6 can be connected with the medical rigid endoscope.
  • the resolution board may be as shown in Figure 3a.
  • the resolution plate may be a transmissive resolution plate.
  • the resolution board can be located between the parallel light transmission light box and the medical rigid endoscope. The distance between the parallel light transmission light box and the resolution board, and the distance between the resolution board and the medical rigid endoscope can be adjusted, so that the imaging of the resolution pattern on the medical rigid endoscope lens is clear.
  • the display device 7 can display the field of view of the medical rigid endoscope lens, so that inspectors can set five inspection points such as A, B, C, D, and E in the field of view.
  • the moving part 2 can move the resolution plate, so that a group of resolution patterns on the resolution plate are aligned with the detection point A of the medical rigid endoscope lens. After the group of resolution patterns is aligned with the detection point A, the image acquisition device 6 can collect image data corresponding to the detection point A formed by the imaging of the group of resolution patterns by the medical rigid endoscope. Then, the moving part 2 can continue to move the resolution board, so that another group of resolution patterns on the resolution board is aligned with the detection point A. After the group of resolution patterns is aligned with the detection point A, the image acquisition device 6 can collect image data corresponding to the detection point A formed by the imaging of the group of resolution patterns by the medical rigid endoscope.
  • 25 sets of resolution patterns on the resolution board can be aligned with the detection point A of the medical rigid endoscope lens, so that 25 image data corresponding to the detection point A can be collected.
  • 25 sets of resolution patterns on the resolution board can be aligned with the detection point B of the medical rigid endoscope lens, and 25 image data corresponding to the detection point B can be collected.
  • the 25 sets of resolution patterns on the resolution board can be aligned with the detection point C of the medical rigid endoscope lens, and 25 image data corresponding to the detection point C can be collected.
  • 25 sets of resolution patterns on the resolution board can be aligned with the detection point D of the medical rigid endoscope lens, and 25 image data corresponding to the detection point D can be collected.
  • 25 sets of resolution patterns on the resolution board can be aligned with the detection point E of the medical rigid endoscope lens, and 25 image data corresponding to the detection point E can be collected.
  • the image acquisition device 6 can obtain 5 image data sets, and the 5 image data sets correspond to 5 detection points such as A, B, C, D, and E.
  • Each image data set may include 25 image data, and each image data may contain a set of resolution patterns.
  • Each group of resolution patterns corresponds to a resolution level, including one or more resolution patterns.
  • the test board can be moved relative to the imaging system, so that each group of test patterns on the test board is aligned with the detection points of the lens in the imaging system; Image data formed by the imaging system for imaging the test pattern. The image data is used to detect the optical performance of the imaging system. In this way, the detection of the optical performance of the imaging system is realized by making the test board move relative to the imaging system.
  • the embodiment of the present application further provides a method for detecting the optical performance of the imaging system.
  • the method for detecting the optical performance of the imaging system can be applied to electronic equipment, for example, it can be applied to the image acquisition equipment in the aforementioned apparatus for detecting the optical performance of the imaging system. See Figure 6.
  • the method for detecting the optical performance of the imaging system may include the following steps.
  • Step S601 Obtain image data formed by imaging of the imaging system, the image data includes a test pattern.
  • the image data may be a color image.
  • the image data may be individual image data.
  • the image data may also be an image data frame in a video.
  • the image data is formed by imaging the test pattern by the imaging system after the test pattern is aligned with the detection point of the lens in the imaging system.
  • the image data may correspond to a detection point of the lens of the imaging system.
  • the image data may include a set of test patterns, and the set of test patterns may include one or more test patterns.
  • the image data may include a set of resolution patterns, and the set of resolution patterns may correspond to a resolution level in the resolution, and may specifically include multiple resolution patterns.
  • the test pattern in the image data may also be other patterns, for example, it may also be the pattern in the distortion plate shown in FIG. 3b.
  • Step S603 Process the image data to obtain optical performance parameters of the imaging system.
  • a grayscale image can be generated according to the image data; the grayscale value corresponding to the test pattern can be determined in the grayscale image; the imaging system can be calculated according to the grayscale value.
  • Optical performance parameters In some implementations of this embodiment, please refer to FIG. 7 , the processing of image data may include the following steps.
  • Step S701 Generate a first grayscale image and a second grayscale image according to image data.
  • Grayscale processing may be performed on the image data to obtain a first grayscale image and a second grayscale image.
  • the first grayscale image is the same as the second grayscale image.
  • the first grayscale image and the second grayscale image may be as shown in FIG. 8 .
  • the grayscale image shown in FIG. 8 may contain 4 resolution patterns, and the 4 resolution patterns correspond to resolution level 1 on the resolution board shown in FIG. 3 a .
  • the resolution pattern may include black and white parallel lines.
  • Step S703 Determine the first target area where the test pattern is located in the first grayscale image.
  • the first threshold can be determined; the first threshold can be used to determine the first target area where the test pattern is located in the first grayscale image, so as to distinguish the first target area from other areas other than the first target area.
  • the first threshold may be an empirical value.
  • the first threshold may also be obtained through an image segmentation algorithm.
  • the image segmentation algorithm may include Otsu method (OTSU), mean iteration method, maximum entropy method and the like. It is worth noting that the image data contains one or more test patterns, so one or more first target regions can be determined in the first grayscale image.
  • Step S705 Perform morphological processing on the first target area.
  • a morphological operation may be used to perform morphological processing on the first target region.
  • the holes in the first target area can be filled, and the burrs in the first target area can also be removed, so that the processed first target area is closer to the real contour shape of the test pattern. near.
  • the morphological operation may include an image opening operation and/or an image closing operation and the like.
  • Step S707 Generate an image mask according to the processed first target area.
  • the image mask may be a binary image.
  • the pixel value of each pixel in the processed first target area is one value, and the pixel value of each pixel in other areas is another value.
  • the pixel value of each pixel in the processed first target area may be 0, and the pixel value of each pixel in other areas may be 1.
  • the processed first target area is black, and other areas are white.
  • the pixel value of each pixel in the processed first target area may be 1, and the pixel value of the pixel in other areas may be 0. In this way, the processed first target area is white, and other areas are black.
  • the pixel value of each pixel in the processed first target area can be set to a value, and the pixel value of each pixel in other areas can be set to another value to obtain an image mask.
  • the first grayscale image may be as shown in FIG. 8 .
  • the image opening operation and the image closing operation can be used to process each first target area respectively, so as to fill the holes between the white lines in each first target area; according to each first target area after processing, a graph as shown in FIG. 9 can be generated.
  • Step S709 Using the image mask, determine the grayscale value corresponding to the test pattern in the second grayscale image.
  • Step S711 Calculate the optical performance parameters of the imaging system according to the gray value.
  • the optical performance parameters may include modulation transfer function values, distortion rates, brightness uniformity, and the like.
  • the MTF values can be used to characterize the MTF performance of the imaging system.
  • the distortion rate can be used to characterize the distortion performance of the imaging system.
  • the brightness uniformity can be used to characterize the light efficiency performance of the imaging system.
  • the image mask can be used to determine the second target area where the test pattern is located in the second grayscale image; the grayscale value corresponding to the test pattern can be determined in the second target area; and the optical performance parameter can be calculated according to the grayscale value.
  • the contour information of the test pattern can be obtained from the image mask, and the second target area where the test pattern is located can be determined in the second grayscale image according to the contour information.
  • the contour information may include position information of pixels. It is worth noting that the image data contains one or more test patterns, so one or more second target regions can be determined in the second grayscale image.
  • the gray value corresponding to the test pattern can be determined according to the gray value of the pixels in the second target area.
  • the test pattern may include a first sub-pattern and a second sub-pattern.
  • the first subregion where the first subpattern is located and the second subregion where the second subpattern is located may be determined in the second target region;
  • the first grayscale value corresponding to the first subpattern may be determined in the first subregion;
  • the second grayscale value corresponding to the second subpattern can be determined in the second subregion;
  • the optical performance parameter of the imaging system can be calculated according to the first grayscale value and the second grayscale value.
  • the first sub-pattern and the second sub-pattern are different.
  • the test pattern may be the resolution pattern shown in Fig. 3a.
  • the first sub-pattern may be white lines.
  • the second sub-pattern may be black lines.
  • the second threshold can be determined; the first sub-region and the second sub-region can be determined in the second target region by using the second threshold.
  • the second threshold may be the same as the first threshold. Alternatively, the second threshold may also be different from the first threshold.
  • the process of determining the second threshold is similar to the process of determining the first threshold, and the two can be explained in comparison.
  • a pixel point can be arbitrarily selected in the first sub-region, and the gray value of the pixel point can be used as the first gray value.
  • an average value of grayscale values of pixels in the first sub-region may also be calculated as the first grayscale value.
  • the median of grayscale values of pixels in the first sub-region may also be calculated as the first grayscale value.
  • the process of determining the second grayscale value is similar to the process of determining the first grayscale value, and the two can be explained in contrast.
  • the optical performance parameters may be modulation transfer function values.
  • the test pattern may be a resolution pattern, and the resolution pattern includes black and white parallel lines.
  • the first sub-pattern may be a white line, and the first sub-area may be a white line area.
  • the first gray value corresponding to the white line may be determined in the white line area.
  • the second sub-pattern may be a black line, and the second sub-area may be a black line area.
  • the second gray value corresponding to the black line can be determined in the black line area.
  • MTF represents a modulation transfer function value
  • Imax represents a first grayscale value
  • Imin represents a second grayscale value
  • Imax ⁇ Imin represents a first component
  • Imax+Imin represents a second component
  • the image data may include a test pattern.
  • An optical performance parameter can be obtained through this embodiment.
  • the image data may also include multiple test patterns.
  • One or more optical performance parameters can be obtained through this embodiment.
  • the test pattern may include a first sub-pattern and a second sub-pattern.
  • a plurality of second target regions may be determined in the second grayscale image.
  • the first sub-area where the first sub-pattern is located and the second sub-area where the second sub-pattern is located can be determined in the second target area; the first sub-area can be determined in the first sub-area The first grayscale value corresponding to the pattern; the second grayscale value corresponding to the second subpattern can be determined in the second subregion.
  • a plurality of first grayscale values and a plurality of second grayscale values corresponding to the plurality of second target areas are obtained.
  • the first representative value can be determined according to the plurality of first grayscale values; the second representative value can be determined according to the plurality of second grayscale values; the first representative value can be determined according to the first representative value and the second representative value value to calculate the optical performance parameters.
  • one first grayscale value may be arbitrarily selected from a plurality of first grayscale values as the first representative value.
  • an average value of multiple first grayscale values may also be calculated as the first representative value.
  • the median of multiple first grayscale values may also be calculated as the first representative value.
  • the process of determining the second representative value is similar to the process of determining the first representative value, and the two can be explained in contrast.
  • the process of calculating the optical performance parameter according to the first representative value and the second representative value is similar to the process of calculating the optical performance parameter according to the first grayscale value and the second grayscale value, and the two can be explained in contrast.
  • the optical performance parameters may be calculated respectively according to the first grayscale value and the second grayscale value corresponding to each second target area. In this way, multiple optical performance parameters can be obtained.
  • the processing of the image data may further include the following steps: generating a grayscale image according to the image data; determining the target area where the test pattern is located in the grayscale image; Determine the grayscale value corresponding to the test pattern in the target area; calculate the optical performance parameter according to the grayscale value.
  • the process of determining the target area where the test pattern is located in the grayscale image is similar to the process of determining the first target area where the test pattern is located in the first grayscale image in the embodiment corresponding to FIG. 7 , and the two can be explained in comparison.
  • the process of determining the grayscale value corresponding to the test pattern in the target area is similar to the process of determining the grayscale value corresponding to the test pattern in the second target area in the embodiment corresponding to FIG. 7 , and the two can be explained in comparison.
  • optical performance parameters may also be sent to the display device.
  • the display device can receive the optical performance parameter and can display the optical performance parameter.
  • an image data can be obtained, and the image data can correspond to a detection point of the lens in the imaging system.
  • an optical performance parameter can be obtained through this embodiment.
  • the optical performance parameter corresponds to the detection point corresponding to the image data, and is used to characterize the optical performance of the imaging system at the detection point.
  • At least one image dataset may be obtained.
  • Each image data set may correspond to a detection point of the lens in the imaging system, and includes at least one image data.
  • Each image data may include a set of test patterns on the test board, and the set of test patterns may include one or more test patterns.
  • an optical performance parameter can be obtained through this embodiment.
  • the optical performance parameters obtained from the image data in each image data set may be included in the optical performance parameter set corresponding to the image data set.
  • the optical performance parameter set includes at least one optical performance parameter, which is used to characterize the optical performance of the imaging system at the detection point corresponding to the image data set.
  • an optical performance graph may be generated according to each optical performance parameter set.
  • the optical performance graph can more vividly characterize the optical performance of the imaging system at the detection point.
  • the optical performance parameters in the set of optical performance parameters may include modulation transfer function values. This allows the generation of modulation transfer function curves for each set of optical performance parameters.
  • the modulation transfer function curve can be generated by means of curve fitting.
  • an optical performance graph (such as a modulation transfer function curve) may also be sent to the display device. The display device can receive the optical performance graph and can display the optical performance graph.
  • the optical performance detection method of the imaging system in the embodiment of the present application can obtain the optical performance parameters used to characterize the optical performance of the imaging system according to the image data formed by the imaging system, so as to realize the detection of the optical performance of the imaging system.
  • the embodiment of the present application also provides a device for detecting optical performance of an imaging system.
  • the imaging system optical performance detection device may include the following units.
  • Acquisition unit 1001 used to obtain the image data formed by the imaging of the imaging system, the image data includes a test pattern
  • the processing unit 1003 is configured to process the image data to obtain optical performance parameters of the imaging system.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device may include a memory and a processor.
  • the memory includes but not limited to Dynamic Random Access Memory (Dynamic Random Access Memory, DRAM) and Static Random Access Memory (Static Random Access Memory, SRAM).
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • the memory may be used to store computer instructions.
  • the processor may be implemented in any suitable manner.
  • the processor may take the form of a microprocessor or a processor and a computer-readable medium storing computer-readable program code (such as software or firmware) executable by the (micro)processor, logic gates, switches, application-specific integrated Circuits (Application Specific Integrated Circuit, ASIC), programmable logic controllers and embedded microcontrollers, etc.
  • the processor may be used to execute the computer instructions to implement the embodiment corresponding to FIG. 6 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种用于检测光学性能的装置及方法、光学性能检测方法、电子设备。用于检测成像系统光学性能的装置包括:测试板(3),测试板(3)上设置有至少一组测试图案;移动部件(2),用于使测试板(3)相对成像系统(4)移动,以使所述测试板(3)上的每组测试图案与成像系统(4)中镜头的检测点对齐;图像采集设备(6),用于采集成像系统(4)针对测试图案在对齐后的成像所形成的图像数据,图像数据用于检测成像系统(4)的光学性能。本方案可以实现对成像系统(4)的光学性能进行检测。

Description

用于检测光学性能的装置及方法、光学性能检测方法、电子设备
本申请要求于2021年05月18日递交的申请号为202110539160.3、发明名称为“用于检测光学性能的装置及方法、光学性能检测方法、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学性能检测技术领域,特别涉及一种用于检测成像系统光学性能的装置及方法、成像系统光学性能检测方法、电子设备。
背景技术
目前成像系统获得了广泛的应用。成像系统的光学性能是成像系统非常重要的指标。考虑到成像系统的生产复杂,使用场合非常重要,因而对成像系统的光学性能进行检测显得尤为重要。
发明内容
本申请实施例提供一种用于检测成像系统光学性能的装置及方法、成像系统光学性能检测方法、电子设备,以对成像系统的光学性能进行检测。
本申请实施例的第一方面,提供了一种用于检测成像系统光学性能的装置,包括:
测试板,所述测试板上设置有至少一组测试图案;
移动部件,用于使所述测试板相对成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的检测点对齐;
图像采集设备,用于采集所述成像系统针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测所述成像系统的光学性能。
本申请实施例的第二方面,提供了一种用于检测成像系统光学性能的方法,包括:
提供测试板,所述测试板上设置有至少一组测试图案;
使所述测试板相对成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的检测点对齐;
用于采集所述成像系统针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测所述成像系统的光学性能。
本申请实施例的第三方面,提供了一种成像系统光学性能检测方法,包括:
获得成像系统的成像形成的图像数据,所述图像数据中包含测试图案;
对所述图像数据进行处理,得到所述成像系统的光学性能参数。
本申请实施例的第四方面,提供了一种电子设备,包括:
至少一个处理器;
存储有程序指令的存储器,其中,所述程序指令被配置为适于由所述至少一个处理器执行,所述程序指令包括用于执行如第三方面所述方法的指令。
本说明书一些实施例提供的技术方案,可以使测试板相对成像系统移动,以使测试板上的每组测试图案与所述成像系统中镜头的检测点对齐。可以采集所述成像系统针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测所述成像系统的光学性能。这样通过使测试板相对成像系统移动,实现了对成像系统光学性能的检测。
本说明书一些实施例提供的技术方案,可以根据成像系统的成像形成的图像数据,获得所述成像系统的光学性能参数,实现了对成像系统光学性能的检测。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例对视向角为0度的成像系统进行检测的示意图;
图1b为本申请实施例对视向角为30度的成像系统进行检测的示意图;
图2a为本申请实施例中成像系统镜头的检测点的示意图;
图2b为本申请实施例中成像系统镜头的检测点的示意图;
图3a为本申请实施例中分辨率板的示意图;
图3b为本申请实施例中畸变板的示意图;
图3c为本申请实施例中光效板的示意图;
图4为本申请实施例中移动部件的结构示意图;
图5为本申请实施例中用于检测成像系统光学性能的方法的流程图;
图6为本申请实施例中成像系统光学性能检测方法的流程图;
图7为本申请实施例中对图像数据进行处理的流程图;
图8为本申请实施例中第一灰度图和第二灰度图的示意图;
图9为本申请实施例中图像掩膜的示意图;
图10为本申请实施例中成像系统光学性能检测装置的结构示意图;
图11为本申请实施例中电子设备的结构示意图。
附图标记说明:
1、光源;2、移动部件;21、竖直导轨;22、第二驱动部件;23、水平导轨;24、第一驱动部件;3、测试板;4、成像系统;5、支撑部件;6、图像采集设备;7、显示设备。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
需要说明的是,当元件被称为“设置”于另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“竖直的”、“水平的”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
在相关技术中,可以获得成像系统的一个光学性能参数,可以利用所述光学性能参数表征所述成像系统的光学性能。例如,所述成像系统可以包括内窥镜,所述光学性能参数可以包括调制传递函数值。那么,可以采用刃边法,获得内窥镜镜头的一个特定位置处的SFR(Spatial Frequency Response,空间频率响应)值,可以将所述SFR值转换为调制传递函数值,可以利用所述调制传递函数值表征所述内窥镜的调制传递函数性能。但是,单个光学性能参数是无法准确地表征成像系统的光学性能的。
请参阅图1a和图1b。本申请实施例提供一种用于检测成像系统光学性能的装置。
所述光学性能包括但不限于调制传递函数(Modulation Transfer Function,MTF)、畸变、景深、光效等。所述成像系统4可以包括内窥镜、相机、热像仪等。所述内窥镜可以包括医用内窥镜和工业内窥镜等。所述内窥镜还可以包括硬性内窥镜和软性内窥镜等。所述成像系统可以4具有镜头和图像传感器等部件。所述镜头用于将被摄物体成像于图像传感器上,所述图像传感器用于根据镜头的成像输出电信号,所述电信号用于生成包含被摄物体的图像数据。利用所述图像数据可以检测所述成像系统4的光学性能。
在实际应用中,可以在镜头的视场中设置一个检测点。这样可以获得与所述检测点相对应的图像数据,可以利用与所述检测点相对应的图像数据检测成像系统4的光学性能。或者,考虑到镜头不同位置处的成像质量是不同的,为了全面地检测成像系统4的光学性能,还可以在镜头的视场中设置多个检测点。这样可以获得与所述多个检测点相对应的图像数据,可以利用与所述多个检测点相对应的图像数据检测成像系统4的光学性能。图2a示出了一种检测点设置方式。图2a中,在镜头的视场中设置了5个检测点。图2b示出了另一种检测点设置方式。图2b中,在镜头的视场中设置了4个检测点。
所述用于检测成像系统光学性能的装置可以包括测试板3、移动部件2和图像采集设备6。
在一些实施例中,所述测试板3上可以设置有至少一组测试图案,每组测试图案可以包括一个或多个测试图案。优选地,所述测试板3上可以设置有多组测试图案。这样针对所述成像系统4中镜头的每个检测点,可以获得所述成像系统4针对所述多组测试 图案的成像形成的多个图像数据,所述多个图像数据可以用于检测所述成像系统4在该检测点的光学性能。从而使检测结果更为精准。在实际应用中,可以根据所述多个图像数据获得所述成像系统4在该检测点的多个光学性能参数,所述多个光学性能参数可以用于表征所述成像系统4在该检测点的光学性能。其中,可以直接利用所述多个光学性能参数表征所述成像系统4在该检测点的光学性能。或者,还可以根据所述多个光学性能参数生成光学性能曲线,可以利用所述光学性能曲线表征所述成像系统4在该检测点的光学性能。
在需要检测不同的光学性能时,可以采用不同的测试板3。例如,在需要检测调制传递函数性能时,可以采用分辨率测试板。所述分辨率测试板上可以设置有至少一组分辨率图案。每组分辨率图案可以对应一个分辨率档位,并且包括一个或多个分辨率图案。例如,图3a所示的分辨率板上可以设置有25组分辨率图案。所述25组分辨率图案对应了25个分辨率档位。每组分辨率图案可以包括4个分辨率图案,所述分辨率图案可以包括黑白相间的平行线条。所述4个分辨率图案之间,平行线条的方向是不同的。每组分辨率图案内部,平行线条之间的疏密程度是一致的。不同组分辨率图案之间,平行线条之间的疏密程度是不同的。这样便可以利用所述分辨率板,检测成像系统4的调制传递函数性能。另举一例,在需要检测成像系统4的畸变性能时,可以采用图3b所示的畸变板。另举一例,在需要检测成像系统4的光效性能时,可以采用图3c所示的光效板。
在一些实施例中,所述测试板3可以设置在移动部件2上。所述移动部件2用于使测试板3相对成像系统4移动,以使测试板3上的每组测试图案与成像系统4中镜头的检测点对齐。在对后,所述测试板3与成像系统4的成像光轴垂直。所述成像光轴为成像系统4的视场中心轴。
请参阅图4。所述移动部件2可以包括水平导轨23和竖直导轨21。所述竖直导轨21可以设置在水平导轨23上,所述竖直导轨21能沿着水平导轨23在水平方向上移动。所述测试板3可以设置在竖直导轨21上,所述测试板3能沿着竖直导轨21在竖直方向上移动。所述水平方向和所述竖直方向可以与成像系统4的成像光轴垂直。通过所述水平导轨23和所述竖直导轨21,使所述测试板3在移动的过程中与成像系统4的成像光轴垂直。其中,所述测试板3可以直接设置在竖直导轨21上。或者,所述测试板3还可以通过支撑部件设置在竖直导轨21上。
在实际应用中,可以采用手动操作的方式,使测试板3在竖直方向上移动和/或在水平方向上移动。例如,可以采用手动操作的方式,使竖直导轨21沿着水平导轨23移动和/或使测试板3沿着竖直导轨21移动。或者,所述图像采集设备6还可以控制测试板3在竖直方向上移动和/或在水平方向上移动。这样可以实现自动化检测,提高检测效率。具体的,所述水平导轨23上可以设置有第一驱动部件24(例如驱动电机),所述第一驱动部件24可以用于驱动竖直导轨21沿着水平导轨23移动。所述竖直导轨21上可以 设置有第二驱动部件22(例如驱动电机),所述第二驱动部件22可以用于驱动测试板3沿着竖直导轨21移动。所述图像采集设备6可以向所述第一驱动部件24和所述第二驱动部件22发送控制信号,以控制测试板3沿着竖直导轨21移动以及控制竖直导轨21沿着水平导轨23移动。
所述检测点的数量可以为一个。所述移动部件2可以使测试板3移动,以使测试板3上的各组测试图案分别与所述检测点对齐。或者,所述检测点的数量还可以为多个。所述移动部件2可以使测试板3移动,以使测试板3上的各组测试图案与所述多个检测点逐个对齐。在实际应用中,可以先使测试板3上的各组测试图案分别与一个检测点对齐,后使测试板3上的各组测试图案分别与另外一个检测点对齐,如此不断地循环,从而实现检测。
每组测试图案与检测点的对齐,可以是检测点位于该组测试图案的特定位置(例如中心位置)。或者,每组测试图案还可以设置有参考点,所述参考点位于该组测试图案的特定位置(例如中心位置)。这样,每组测试图案与检测点的对齐,可以是检测点与参考点的对准。
在一些实施例中,所述图像采集设备6可以包括台式机、便携式计算机(例如笔记本电脑)、移动智能电话、平板电脑等。所述图像采集设备6可以与所述成像系统4通信连接。所述图像采集设备6用于在测试板3上的每组测试图案与成像系统4中镜头的检测点对齐以后,采集成像系统4针对所述测试图案的成像形成的图像数据。所述图像数据可以由成像系统4拍摄得到,或者,还可以由图像采集设备6生成得到。所述图像数据可以用于检测光学性能。进一步地,所述图像采集设备6还可以用于对图像数据进行处理,获得光学性能检测结果。所述光学性能检测结果用于表征成像系统4的光学性能。所述光学性能检测结果可以包括光学性能参数和/或光学性能曲线。所述光学性能参数可以包括调制传递函数值、畸变率、亮度均匀度等。所述调制传递函数值用于表征成像系统4的调制传递函数性能。所述畸变率用于表征成像系统4的畸变(Distortion,又称为失真)性能。所述亮度均匀度用于表征成像系统4的光效性能。所述光学性能曲线包括调制传递函数曲线等。所述光学性能曲线可以由所述图像采集设备6根据光学性能参数生成,能更加形象化地表征成像系统4的光学性能。例如,所述调制传递函数曲线可以由所述图像采集设备6根据调制传递函数值生成。
所述图像采集设备6获得光学性能参数,可以包括以下至少一种情况。
情况(1),所述测试板3上设置有一组测试图案,所述检测点的数量为一个。所述图像采集设备6可以采集成像系统4针对一组测试图案的成像形成的一个图像数据,可以对所述图像数据进行处理,获得该检测点的一个光学性能参数。所述光学性能参数可以用于表征所述成像系统4在该检测点的光学性能。
情况(2),所述测试板3上设置有多组测试图案,所述检测点的数量为一个。所述 图像采集设备6可以采集成像系统4针对所述多组测试图案的成像形成的多个图像数据,可以对所述多个图像数据进行处理,获得该检测点的多个光学性能参数。所述多个光学性能参数可以更加准确地表征所述成像系统4的光学性能。其中,可以直接利用所述多个光学性能参数表征所述成像系统4在该检测点的光学性能。或者,还可以根据所述多个光学性能参数获得光学性能曲线,可以利用所述光学性能曲线表征所述成像系统4在该检测点的光学性能。
情况(3),所述测试板3上设置有一组测试图案,所述检测点的数量为多个。针对每个检测点,所述图像采集设备6可以采集成像系统4针对一组测试图案的成像形成的一个图像数据,可以对所述图像数据进行处理,获得该检测点的一个光学性能参数。这样可以获得多个检测点的光学性能参数,实现对多个检测点进行检测。
情况(4),所述测试板3上设置有多组测试图案,所述检测点的数量为多个。针对每个检测点,所述图像采集设备6可以采集成像系统4针对多组测试图案的成像形成的多个图像数据,可以对所述多个图像数据进行处理,获得该检测点的多个光学性能参数。这样可以获得多个检测点的光学性能参数,实现对多个检测点进行检测。其中,可以直接利用每个检测点的多个光学性能参数表征所述成像系统4在该检测点的光学性能。或者,还可以根据每个检测点的多个光学性能参数获得光学性能曲线,可以利用所述光学性能曲线表征所述成像系统4在该检测点的光学性能。
在一些实施例中,所述用于检测成像系统光学性能的装置还可以包括光源1。
所述光源1可以用于提供平行光,以对测试板3进行照明。所述光源1可以为平行光透射灯箱。当然在实际中还可以采用其它能够提供平行光的光源。
所述测试板3可以包括透射型测试板。所述透射型测试板可以位于光源1和成像系统4之间,以使光源1输出的平行光可以穿过透射型测试板进入成像系统4的镜头。当然,所述测试板3还可以包括反射型测试板。光源1和成像系统4可以位于所述反射型测试板的同侧。
在一些实施例中,所述用于检测成像系统光学性能的装置还可以包括支撑部件5。所述支撑部件5可以用于支撑成像系统4,以使成像系统4的成像光轴与平行光的光束方向一致。所述支撑部件5可以仅能支撑具有某种特定视向角的成像系统。或者,所述支撑部件5还可以支撑多种成像系统,所述多种成像系统具有不同的视向角。例如,所述支撑部件5可以包括支撑平台和至少两个立柱。所述支撑平台用于支撑成像系统4,所述至少两个立柱用于支撑所述支撑平台。通过调制立柱之间的高度差,可以使支撑部件5支撑多种不同视向角的成像系统。当然,本领域技术人员可以理解的是,以上支撑部件5的结构仅为示例,在实际中支撑部件5还可以为其它形式的结构。在图1a中,所述支撑部件5支撑了视向角为0度的成像系统。在图1b中,所述支撑部件5支撑了视向角为30度的成像系统。
在一些实施例中,所述用于检测成像系统光学性能的装置还可以包括显示设备7。所述显示设备7可以包括台式机、便携式计算机(例如笔记本电脑)、移动智能电话、平板电脑等。所述显示设备7可以与所述成像系统4通信连接。所述显示设备7和所述图像采集设备6可以分别为不同的设备。或者,所述显示设备7和所述图像采集设备6还可以集成在同一个设备中。所述显示设备7用于显示成像系统4的成像,以便观测每组测试图案与检测点的对齐情况。进一步地,所述显示设备7还可以接收图像采集设备6发来的光学性能检测结果,可以显示所述光学性能检测结果。进一步地,所述显示设备7还可以显示成像系统4镜头的视场,以供检测人员在所述视场中设置多个检测点。所述显示设备7可以获得检测人员设置的检测点。
基于本申请实施例提供的用于检测成像系统光学性能的装置,本申请实施例还相应地提供了一种用于检测成像系统光学性能的方法。请参阅图5。所述方法可以包括以下步骤。
步骤S501:提供测试板3,在所述测试板3上设置有至少一组测试图案。
在一些实施例中,还可以提供平行光,以对所述测试板3进行照明。
步骤S503:使所述测试板3相对成像系统4移动,以使所述测试板3上的每组测试图案与成像系统4中镜头的检测点对齐。
在一些实施例中,所述成像系统4可以为待检测的成像系统。所述成像系统4可以设置在支撑部件5上。在实际中,可以根据成像系统4的视向角,对所述支撑部件5进行调整。使得,在将成像系统4设置在支撑部件5上以后,成像系统4的成像光轴与平行光的光束方向一致。
在一些实施例中,所述检测点可以由检测人员在成像系统4镜头的视场中进行设置。具体的,显示设备7可以显示成像系统4中镜头的视场,以供检测人员在所述视场中设置多个检测点。所述显示设备7可以获得检测人员设置的检测点。
在一些实施例中,每组测试图案与检测点的对齐,可以是检测点位于该组测试图案的特定位置(例如中心位置)。或者,每组测试图案可以设置有参考点,所述参考点位于该组测试图案的特定位置(例如中心位置)。每组测试图案与检测点的对齐,可以是检测点与参考点的对准。显示设备7可以显示成像系统4的成像,以便观测每组测试图案与检测点的对齐情况。
在一些实施例中,所述检测点的数量可以为一个。所述移动部件2可以使测试板3移动,以使测试板3上的各组测试图案与所述检测点对齐。或者,所述检测点的数量还可以为多个。所述移动部件2可以使测试板3移动,以使测试板3上的各组测试图案与所述多个检测点逐个对齐。在实际应用中,可以先使测试板3上的各组测试图案分别与一个检测点对齐,后使测试板3上的各组测试图案分别与另外一个检测点对齐,如此不断地循环,从而实现检测。
所述移动部件2可以包括水平导轨23和竖直导轨21。所述竖直导轨21可以设置在水平导轨23上,所述竖直导轨21能沿着水平导轨23在水平方向上移动。所述测试板3可以设置在竖直导轨21上,所述测试板3能沿着竖直导轨21在竖直方向上移动。故此,可以通过水平导轨23,使测试板3在水平方向上移动。可以通过竖直导轨21,使测试板3在竖直方向上移动。所述水平方向和所述竖直方向可以与成像系统4的成像光轴垂直。在实际应用中,图像采集设备6可以控制测试板3沿着竖直导轨21移动,以及控制竖直导轨21沿着水平导轨23移动。
步骤S505:采集成像系统4针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测成像系统4的光学性能。
在一些实施例中,图像采集设备6可以在测试板3上的每组测试图案与成像系统4中镜头的检测点对齐后,采集成像系统4针对所述测试图案的成像形成的图像数据,所述图像数据中可以包含该组测试图案。
在一些实施例中,所述测试板3上可以设置有多组测试图案。所述检测点的数量可以为一个。所述移动部件2可以使测试板3移动,以使测试板3上的一组测试图案与所述检测点对齐。在该组测试图案与所述检测点对齐以后,图像采集设备6可以采集成像系统4针对该组测试图案的成像形成的图像数据。然后,所述移动部件2可以继续使测试板3移动,以使测试板3上的另外一组测试图案与所述检测点对齐。在该组测试图案与所述检测点对齐以后,图像采集设备6可以采集成像系统4针对该组测试图案的成像形成的图像数据。如此不断地循环,可以使测试板3上的多组测试图案与所述检测点逐个对齐,可以采集得到与所述检测点相对应的多个图像数据。或者,所述测试板3上可以设置有多组测试图案。所述检测点的数量可以为多个。所述移动部件2可以使测试板3移动,以使测试板3上的多组测试图案与成像系统4中镜头的一个检测点对齐。所述图像采集设备6可以采集成像系统4针对多组测试图案的成像形成的多个图像数据。然后,所述移动部件2可以继续使测试板3移动,以使测试板3上的多组测试图案与成像系统4中镜头的另一个检测点对齐。所述图像采集设备6可以采集成像系统4针对多组测试图案的成像形成的多个图像数据。如此不断地循环,可以使测试板3上的多组测试图案与多个检测点对齐,可以采集得到与多个检测点相对应的多个图像数据。
在一些实施例中,图像采集设备6还可以对图像数据进行处理,获得光学性能检测结果。所述光学性能检测结果用于表征成像系统4的光学性能。所述光学性能检测结果可以包括光学性能参数和/或光学性能曲线。进一步地,图像采集设备6还可以将光学性能检测结果发送给显示设备7,所述显示设备7可以接收光学性能检测结果,可以显示光学性能检测结果。
以下介绍本申请实施例的一个场景示例。
在本场景示例中,所述成像系统4可以为医用硬性内窥镜,所述医用硬性内窥镜的 视向角为0度。所述用于检测成像系统光学性能的装置可以包括光源1、分辨率板、移动部件2、图像采集设备6和显示设备7。所述光源1可以为平行光透射灯箱。可以根据医用硬性内窥镜的视向角,对所述支撑部件5进行调整,使得,在将医用硬性内窥镜设置在支撑部件5上以后,医用硬性内窥镜的成像光轴与平行光的光束方向一致。可以将所述医用硬性内窥镜设置在调整后的支撑部件5上。可以连接显示设备7与医用硬性内窥镜,可以连接图像采集设备6与医用硬性内窥镜。
在本场景示例中,所述分辨率板可以如图3a所示。所述分辨率板可以为透射型分辨率板。所述分辨率板可以位于平行光透射灯箱和医用硬性内窥镜之间。可以调整平行光透射灯箱与分辨率板之间的距离、以及分辨率板与医用硬性内窥镜之间的距离,使分辨率图案在医用硬性内窥镜镜头的成像清晰。所述显示设备7可以显示医用硬性内窥镜镜头的视场,以供检测人员在所述视场中设置A、B、C、D、E等5个检测点。
在本场景示例中,所述移动部件2可以使分辨率板移动,以使分辨率板上的一组分辨率图案与医用硬性内窥镜镜头的检测点A对齐。在该组分辨率图案与检测点A对齐以后,图像采集设备6可以采集医用硬性内窥镜针对该组分辨率图案的成像形成的与检测点A相对应的图像数据。然后,所述移动部件2可以继续使分辨率板移动,以使分辨率板上的另一组分辨率图案与检测点A对齐。在该组分辨率图案与检测点A对齐以后,图像采集设备6可以采集医用硬性内窥镜针对该组分辨率图案的成像形成的与检测点A相对应的图像数据。这样,通过不断地进行循环,可以使分辨率板上的25组分辨率图案与医用硬性内窥镜镜头的检测点A对齐,从而可以采集得到与检测点A相对应的25个图像数据。重复以上过程,可以使分辨率板上的25组分辨率图案与医用硬性内窥镜镜头的检测点B对齐,可以采集得到与检测点B相对应的25个图像数据。重复以上过程,可以使分辨率板上的25组分辨率图案与医用硬性内窥镜镜头的检测点C对齐,可以采集得到与检测点C相对应的25个图像数据。重复以上过程,可以使分辨率板上的25组分辨率图案与医用硬性内窥镜镜头的检测点D对齐,可以采集得到与检测点D相对应的25个图像数据。重复以上过程,可以使分辨率板上的25组分辨率图案与医用硬性内窥镜镜头的检测点E对齐,可以采集得到与检测点E相对应的25个图像数据。
在本场景示例中,图像采集设备6可以获得5个图像数据集,所述5个图像数据集与A、B、C、D、E等5个检测点相对应。每个图像数据集可以包括25个图像数据,每个图像数据中可以包含一组分辨率图案。每组分辨率图案对应一个分辨率档位,包括一个或多个分辨率图案。
本申请实施例的用于检测成像系统光学性能的方法,可以使测试板相对成像系统移动,以使测试板上的每组测试图案与成像系统中镜头的检测点对齐;在对齐后,可以采集成像系统针对所述测试图案的成像形成的图像数据。所述图像数据用于检测所述成像系统的光学性能。这样通过使测试板相对成像系统移动,实现了对成像系统光学性能的 检测。
基于本申请实施例提供的用于检测成像系统光学性能的装置,本申请实施例还提供一种成像系统光学性能检测方法。所述成像系统光学性能检测方法可以应用于电子设备,例如可以应用于前述用于检测成像系统光学性能的装置中的图像采集设备。请参阅图6。所述成像系统光学性能检测方法可以包括以下步骤。
步骤S601:获得成像系统的成像形成的图像数据,所述图像数据中包含测试图案。
在一些实施例中,所述图像数据可以为彩色图。所述图像数据可以为单独的图像数据。或者,所述图像数据还可以为视频中的图像数据帧。所述图像数据是在所述测试图案与所述成像系统中镜头的检测点对齐以后,由所述成像系统针对所述测试图案的成像形成的。所述图像数据可以对应成像系统镜头的一个检测点。所述图像数据中可以包含一组测试图案,该组测试图案可以包括一个或多个测试图案。例如,所述图像数据中可以包含一组分辨率图案,该组分辨率图案可以对应分辨率上的一个分辨率档位,具体可以包括多个分辨率图案。当然,所述图像数据中的测试图案还可以为其它的图案,例如还可以为图3b所示畸变板中的图案。
步骤S603:对所述图像数据进行处理,得到所述成像系统的光学性能参数。
在一些实施例中,可以根据所述图像数据生成灰度图;可以在所述灰度图中确定所述测试图案对应的灰度值;可以根据所述灰度值,计算所述成像系统的光学性能参数。在本实施例的一些实施方式中,请参阅图7,所述对图像数据的处理可以包括以下步骤。
步骤S701:根据图像数据生成第一灰度图和第二灰度图。
可以对图像数据进行灰度化处理,得到第一灰度图和第二灰度图。所述第一灰度图和所述第二灰度图相同。例如,所述第一灰度图和所述第二灰度图可以如图8所示。图8所示的灰度图中可以包含4个分辨率图案,所述4个分辨率图案对应图3a所示分辨率板上的分辨率档位1。所述分辨率图案可以包括黑白相间的平行线条。
步骤S703:在第一灰度图中确定测试图案所在的第一目标区域。
可以确定第一阈值;可以利用所述第一阈值,在第一灰度图中确定测试图案所在的第一目标区域,以对第一目标区域和第一目标区域以外的其它区域进行区分。其中,所述第一阈值可以为经验值。或者,所述第一阈值也可以通过图像分割算法获得。所述图像分割算法可以包括大津法(OTSU)、均值迭代法、最大熵法等。值得说明的是,所述图像数据中包含一个或多个测试图案,因而在第一灰度图中可以确定得到一个或多个第一目标区域。
步骤S705:对第一目标区域进行形态学处理。
可以采用形态学运算,对第一目标区域进行形态学处理。
通过对第一目标区域进行形态学处理,可以对第一目标区域中的空洞进行填充,还可以去除第一目标区域的毛刺,使得处理后的第一目标区域与测试图案的真实轮廓形态 更为接近。所述形态学运算可以包括图像开运算和/或图像闭运算等。
步骤S707:根据处理后的第一目标区域,生成图像掩膜。
所述图像掩膜(mask)可以为二值图像。在所述图像掩膜中,处理后的第一目标区域中各像素点的像素值为一个数值,其它区域中各像素点的像素值为另一个数值。例如,处理后的第一目标区域中各像素点的像素值可以为0,其它区域中各像素点的像素值可以为1。这样,处理后的第一目标区域为黑色,其它区域为白色。另举一例,处理后的第一目标区域中各像素点的像素值可以为1,其它区域中像素点的像素值可以为0。这样,处理后的第一目标区域为白色,其它区域为黑色。
在所述第一灰度图中,可以将处理后的第一目标区域中各像素点的像素值设置为一个数值,可以将其它区域中各像素点的像素值设置为另一个数值,得到图像掩膜。
例如,所述第一灰度图可以如图8所示。所述第一灰度图中第一目标区域的数量为4个。可以采用图像开运算和图像闭运算分别对各第一目标区域进行处理,以填充各第一目标区域中白线条之间的空洞;可以根据处理后的各第一目标区域,生成如图9所示的图像掩膜。
步骤S709:利用图像掩膜,在第二灰度图中确定测试图案对应的灰度值。
步骤S711:根据灰度值,计算所述成像系统的光学性能参数。
所述光学性能参数可以包括调制传递函数值、畸变率、亮度均匀度等。所述调制传递函数值可以用于表征成像系统的调制传递函数性能。所述畸变率可以用于表征成像系统的畸变性能。所述亮度均匀度可以用于表征成像系统的光效性能。
可以利用图像掩膜,在第二灰度图中确定测试图案所在的第二目标区域;可以在第二目标区域中确定测试图案对应的灰度值;可以根据灰度值,计算光学性能参数。其中,可以从图像掩膜中获得测试图案的轮廓信息,可以根据所述轮廓信息,在第二灰度图中确定测试图案所在的第二目标区域。所述轮廓信息可以包括像素点的位置信息。值得说明的是,所述图像数据中包含一个或多个测试图案,因而在第二灰度图中可以确定得到一个或多个第二目标区域。可以根据第二目标区域中像素点的灰度值,确定测试图案对应的灰度值。
所述测试图案可以包括第一子图案和第二子图案。可以在第二目标区域中确定第一子图案所在的第一子区域和第二子图案所在的第二子区域;可以在第一子区域中确定第一子图案对应的第一灰度值;可以在第二子区域中确定第二子图案对应的第二灰度值;可以根据第一灰度值和第二灰度值,计算所述成像系统的光学性能参数。
其中,对于不同类型的测试图案,第一子图案和第二子图案是不同的。例如,所述测试图案可以为图3a所示的分辨率图案。所述第一子图案可以为白线条。所述第二子图案可以为黑线条。
其中,可以确定第二阈值;可以利用第二阈值,在第二目标区域中确定第一子区域 和第二子区域。所述第二阈值可以与所述第一阈值相同。或者,所述第二阈值还可以与所述第一阈值不同。所述第二阈值的确定过程与所述第一阈值的确定过程类似,二者可以对照解释。
其中,可以在第一子区域中任意选择一个像素点,可以将该像素点的灰度值作为第一灰度值。或者,也可以计算第一子区域中各像素点灰度值的平均值,作为第一灰度值。或者,还可以计算第一子区域中各像素点灰度值的中位数,作为第一灰度值。确定第二灰度值的过程与确定第一灰度值的过程类似,二者可以对照解释。
其中,可以采用不同的计算方式计算不同类型的光学性能参数,例如,所述光学性能参数可以为调制传递函数值。所述测试图案可以为分辨率图案,所述分辨率图案包括黑白相间的平行线条。所述第一子图案可以为白线条,所述第一子区域可以为白线条区域。可以在白色线条区域中确定白线条对应的第一灰度值。所述第二子图案可以为黑线条,所述第二子区域可以为黑线条区域。可以在黑色线条区域中确定黑线条对应的第二灰度值。可以将第一灰度值和第二灰度值相减,得到调制传递函数值的第一分量;可以将第一灰度值和第二灰度值相加,得到调制传递函数值的第二分量;可以将第一分量和第二分量相除,得到调制传递函数值。具体的,例如,可以通过公式MTF=(Imax-Imin)/(Imax+Imin)计算调制传递函数值。其中,MTF表示调制传递函数值,Imax表示第一灰度值,Imin表示第二灰度值,Imax-Imin表示第一分量,Imax+Imin表示第二分量。当然,本领域技术人员可以理解的是,此处调制传递函数值的计算公式仅为举例,在实际中所述公式还可以有其它的变形或者变化。
所述图像数据中可以包含一个测试图案。通过本实施方式可以获得一个光学性能参数。或者,所述图像数据中还可以包含多个测试图案。通过本实施方式可以获得一个或多个光学性能参数。具体的,所述测试图案可以包括第一子图案和第二子图案。在图像数据中包含多个测试图案的情况下,可以在第二灰度图中确定多个第二目标区域。针对每个第二目标区域,可以在该第二目标区域中确定第一子图案所在的第一子区域和第二子图案所在的第二子区域;可以在第一子区域中确定第一子图案对应的第一灰度值;可以在第二子区域中确定第二子图案对应的第二灰度值。从而得到与多个第二目标区域相对应的多个第一灰度值和多个第二灰度值。在一些实施方式中,可以根据所述多个第一灰度值确定第一代表值;可以根据所述多个第二灰度值确定第二代表值;可以根据第一代表值和第二代表值,计算光学性能参数。这样便可以获得一个光学性能参数。其中,可以从多个第一灰度值中任意选择一个第一灰度值作为第一代表值。或者,也可以计算多个第一灰度值的平均值作为第一代表值。或者,还可以计算多个第一灰度值的中位数作为第一代表值。确定第二代表值的过程与确定第一代表值的过程类似,二者可以对照解释。根据第一代表值和第二代表值计算光学性能参数的过程与根据第一灰度值和第二灰度值计算光学性能参数的过程类似,二者可以对照解释。在另一些实施方式中,可以 根据各第二目标区域所对应的第一灰度值和第二灰度值,分别计算光学性能参数。这样便可以获得多个光学性能参数。
在本实施例的另一些实施方式中,所述对图像数据的处理还可以包括以下步骤:根据所述图像数据生成一个灰度图;在所述灰度图中确定测试图案所在的目标区域;在所述目标区域中确定测试图案对应的灰度值;根据灰度值,计算光学性能参数。其中,在灰度图中确定测试图案所在的目标区域的过程,与图7所对应实施方式中在第一灰度图中确定测试图案所在的第一目标区域的过程类似,二者可以对照解释。在目标区域中确定测试图案对应的灰度值的过程,与图7所对应实施方式中在第二目标区域中确定测试图案对应的灰度值的过程相类似,二者可以对照解释。
在一些实施例中,还可以向显示设备发送光学性能参数。所述显示设备可以接收所述光学性能参数,可以显示所述光学性能参数。
在一些实施例中,可以获得一个图像数据,所述图像数据可以对应成像系统中镜头的一个检测点。这样针对所述图像数据,通过本实施例可以获得一个光学性能参数。所述光学性能参数与该图像数据所对应的检测点相对应,用于表征成像系统在该检测点的光学性能。
在一些实施例中,可以获得至少一个图像数据集。每个图像数据集可以对应成像系统中镜头的一个检测点,并且包括至少一个图像数据。每个图像数据中可以包含测试板上的一组测试图案,该组测试图案可以包括一个或多个测试图案。这样针对每个图像数据,通过本实施例可以获得一个光学性能参数。可以将根据每个图像数据集中的图像数据所获得的光学性能参数,计入与该图像数据集相对应的光学性能参数集。所述光学性能参数集包括至少一个光学性能参数,用于表征成像系统在该图像数据集所对应检测点的光学性能。
进一步地,可以根据每个光学性能参数集生成光学性能图形。所述光学性能图形可以更加形象地表征所述成像系统在检测点的光学性能。例如,所述光学性能参数集中的光学性能参数可以包括调制传递函数值。这样可以根据每个光学性能参数集,生成调制传递函数曲线。在实际中,例如,可以采用曲线拟合的方式生成调制传递函数曲线。进一步地,还可以向显示设备发送光学性能图形(例如调制传递函数曲线)。所述显示设备可以接收所述光学性能图形,可以显示所述光学性能图形。
本申请实施例的成像系统光学性能检测方法,可以根据成像系统的成像形成的图像数据,获得用于表征成像系统光学性能的光学性能参数,从而实现对成像系统光学性能的检测。
本申请实施例还提供一种成像系统光学性能检测装置。
请参阅图10,所述成像系统光学性能检测装置可以包括以下单元。
获取单元1001,用于获得成像系统的成像形成的图像数据,所述图像数据中包含测 试图案;
处理单元1003,用于对所述图像数据进行处理,得到所述成像系统的光学性能参数。
请参阅图11。本申请实施例还提供一种电子设备。
所述电子设备可以包括存储器和处理器。
在本实施例中,所述存储器包括但不限于动态随机存取存储器(Dynamic Random Access Memory,DRAM)和静态随机存取存储器(Static Random Access Memory,SRAM)等。所述存储器可以用于存储计算机指令。
在本实施例中,所述处理器可以按任何适当的方式实现。例如,所述处理器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式等等。所述处理器可以用于执行所述计算机指令以实现图6所对应的实施例。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似部分相互参照即可,每个实施例重点说明的都是与其他实施例不同之处。另外,以上所述仅为本申请的几个实施例,虽然本申请所揭露的实施例如上,但所述内容只是为了便于理解本申请而采用的实施例,并非用于限定本申请。任何本申请所属技术领域的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施例的形式上及细节上作任何的修改与变化,但本申请的专利保护范围,仍须以所附权利要求书所界定的范围为准。

Claims (28)

  1. 一种用于检测成像系统光学性能的装置,包括:
    测试板,所述测试板上设置有至少一组测试图案;
    移动部件,用于使所述测试板相对成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的检测点对齐;
    图像采集设备,用于采集所述成像系统针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测所述成像系统的光学性能。
  2. 如权利要求1所述的用于检测成像系统光学性能的装置,所述测试板包括分辨率板,所述分辨率板上设置有多组分辨率图案;
    每组分辨率图案包括至少一个分辨率图案。
  3. 如权利要求1所述的用于检测成像系统光学性能的装置,所述检测点的数量为多个;
    所述移动部件用于使所述测试板相对所述成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的多个检测点逐个对齐。
  4. 如权利要求1所述的用于检测成像系统光学性能的装置,所述图像采集设备还用于控制所述移动部件,以使所述测试板在竖直方向上移动和/或在水平方向上移动;所述水平方向和所述竖直方向与所述成像系统的成像光轴垂直。
  5. 如权利要求4所述的用于检测成像系统光学性能的装置,所述移动部件包括水平导轨和竖直导轨;所述竖直导轨设置在所述水平导轨上,所述竖直导轨能沿着所述水平导轨在水平方向上移动;所述测试板设置在所述竖直导轨上,所述测试板能沿着所述竖直导轨在竖直方向上移动。
  6. 如权利要求1所述的用于检测成像系统光学性能的装置,所述图像采集设备还用于对所述图像数据进行处理,以获得所述成像系统的光学性能检测结果。
  7. 如权利要求6所述的用于检测成像系统光学性能的装置,所述光学性能检测结果包括光学性能参数和/或光学性能曲线,所述光学性能参数包括以下至少一种:调制传递函数值、畸变率、亮度均匀度,所述光学性能曲线包括调制传递函数曲线。
  8. 如权利要求1所述的用于检测成像系统光学性能的装置,还包括:
    光源,用于提供平行光,以对所述测试板进行照明。
  9. 如权利要求8所述的用于检测成像系统光学性能的装置,
    所述测试板包括透射型测试板;
    检测时,所述透射型测试板位于所述光源和所述成像系统之间。
  10. 如权利要求8所述的用于检测成像系统光学性能的装置,还包括:
    支撑部件,用于支撑所述成像系统,以使所述成像系统的成像光轴与所述平行光的光束方向一致。
  11. 如权利要求10所述的用于检测成像系统光学性能的装置,
    所述支撑部件能支撑多种不同视向角的成像系统。
  12. 如权利要求1所述的用于检测成像系统光学性能的装置,还包括:
    显示设备,用于显示所述成像系统的成像和/或所述成像系统的光学性能检测结果。
  13. 一种用于检测成像系统光学性能的方法,包括:
    提供测试板,所述测试板上设置有至少一组测试图案;
    使所述测试板相对成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的检测点对齐;
    用于采集所述成像系统针对所述测试图案在对齐后的成像所形成的图像数据,所述图像数据用于检测所述成像系统的光学性能。
  14. 如权利要求13所述的用于检测成像系统光学性能的方法,
    所述测试图案包括分辨率图案。
  15. 如权利要求13所述的用于检测成像系统光学性能的方法,还包括:
    对所述图像数据进行处理,以获得所述成像系统的光学性能检测结果。
  16. 如权利要求13所述的用于检测成像系统光学性能的方法,所述检测点的数量为多个;所述使所述测试板相对成像系统移动,包括:
    使所述测试板相对所述成像系统移动,以使所述测试板上的每组测试图案与所述成像系统中镜头的多个检测点逐个对齐。
  17. 如权利要求13所述的用于检测成像系统光学性能的方法,所述使所述测试板相对成像系统移动,包括:
    控制移动部件,以使所述测试板在竖直方向上移动和/或在水平方向上移动;所述水平方向和所述竖直方向与所述成像系统的成像光轴垂直。
  18. 一种成像系统光学性能检测方法,包括:
    获得成像系统的成像形成的图像数据,所述图像数据中包含测试图案;
    对所述图像数据进行处理,得到所述成像系统的光学性能参数。
  19. 如权利要求18所述的成像系统光学性能检测方法,
    所述图像数据是在所述测试图案与所述成像系统中镜头的检测点对齐以后,由所述成像系统针对所述测试图案的成像形成的。
  20. 如权利要求18所述的成像系统光学性能检测方法,
    所述对所述图像数据进行处理,包括:
    根据所述图像数据生成灰度图;
    在所述灰度图中确定所述测试图案对应的灰度值;
    根据所述灰度值,计算所述成像系统的光学性能参数。
  21. 如权利要求20所述的成像系统光学性能检测方法,
    所述根据所述图像数据生成灰度图,包括:
    根据所述图像数据生成第一灰度图和第二灰度图,所述第一灰度图和所述第二灰度 图相同;
    所述在所述灰度图中确定所述测试图案对应的灰度值,包括:
    在所述第一灰度图中确定所述测试图案所在的第一目标区域;
    对所述第一目标区域进行形态学处理;
    根据处理后的第一目标区域,生成图像掩膜;
    利用所述图像掩膜,在所述第二灰度图中确定所述测试图案对应的灰度值。
  22. 如权利要求21所述的成像系统光学性能检测方法,所述测试图案包括第一子图案和第二子图案;所述在所述第二灰度图中确定所述测试图案对应的灰度值,包括:
    利用所述图像掩膜,在所述第二灰度图中确定所述测试图案所在的第二目标区域;
    在所述第二目标区域中确定所述第一子图案所在的第一子区域和所述第二子图案所在的第二子区域;
    在所述第一子区域中确定所述第一子图案对应的第一灰度值;
    在所述第二子区域中确定所述第二子图案对应的第二灰度值;
    所述计算所述成像系统的光学性能参数,包括:
    根据所述第一灰度值和所述第二灰度值,计算所述成像系统的光学性能参数。
  23. 如权利要求22所述的成像系统光学性能检测方法,所述测试图案包括分辨率图案,所述光学性能参数包括调制传递函数值;所述计算所述成像系统的光学性能参数,包括:
    将所述第一灰度值和所述第二灰度值相减,得到调制传递函数值的第一分量;
    将所述第一灰度值和所述第二灰度值相加,得到调制传递函数值的第二分量;
    将所述第一分量和所述第二分量相除,得到调制传递函数值。
  24. 如权利要求18所述的成像系统光学性能检测方法,还包括:
    向显示设备发送所述光学性能参数,以便所述显示设备显示所述光学性能参数。
  25. 如权利要求18所述的成像系统光学性能检测方法,所述获得成像系统的成像形成的图像数据,包括:
    获得成像系统的成像形成的至少一个图像数据集,每个图像数据集对应所述成像系统中镜头的一个检测点;
    所述成像系统光学性能检测方法还包括:
    针对每个图像数据集,将根据该图像数据集中的图像数据所获得的光学性能参数,计入与该图像数据集相对应的光学性能参数集,所述光学性能参数集包括至少一个光学性能参数,用于表征所述成像系统在该图像数据集所对应检测点的光学性能。
  26. 如权利要求25所述的成像系统光学性能检测方法,所述光学性能参数集包括多个调制传递函数值,所述成像系统光学性能检测方法还包括:
    根据所述光学性能参数集,生成调制传递函数曲线。
  27. 如权利要求26所述的成像系统光学性能检测方法,还包括:
    向显示设备发送所述调制传递函数曲线,以便显示设备显示所述调制传递函数曲线。
  28. 一种电子设备,包括:
    至少一个处理器;
    存储有程序指令的存储器,其中,所述程序指令被配置为适于由所述至少一个处理器执行,所述程序指令包括用于执行如权利要求18-27中任一项所述方法的指令。
PCT/CN2022/093355 2021-05-18 2022-05-17 用于检测光学性能的装置及方法、光学性能检测方法、电子设备 WO2022242650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110539160.3A CN115371961A (zh) 2021-05-18 2021-05-18 用于检测光学性能的装置及方法、光学性能检测方法、电子设备
CN202110539160.3 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022242650A1 true WO2022242650A1 (zh) 2022-11-24

Family

ID=84058783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093355 WO2022242650A1 (zh) 2021-05-18 2022-05-17 用于检测光学性能的装置及方法、光学性能检测方法、电子设备

Country Status (2)

Country Link
CN (1) CN115371961A (zh)
WO (1) WO2022242650A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118639A (en) * 1980-02-25 1981-09-17 Nec Corp Mtf measuring apparatus for radiometer
CN1384345A (zh) * 2001-04-28 2002-12-11 慧生科技股份有限公司 光学单元的光学特性自动量测系统与方法
CN101458441A (zh) * 2007-12-11 2009-06-17 鸿富锦精密工业(深圳)有限公司 测试线对图板、镜头光学解析量测系统及其量测方法
AU2008229672A1 (en) * 2008-09-26 2010-04-15 Canon Kabushiki Kaisha Image quality test chart calibration
CN102141218A (zh) * 2010-02-03 2011-08-03 鸿富锦精密工业(深圳)有限公司 光源装置
CN104111165A (zh) * 2014-08-08 2014-10-22 中国科学院光电技术研究所 一种近眼显示光学镜头像质的评价装置
CN110958450A (zh) * 2019-12-29 2020-04-03 中国科学院西安光学精密机械研究所 一种成像系统空间测试装置、对比度及频率测试方法
CN211374003U (zh) * 2019-09-30 2020-08-28 宁波舜宇车载光学技术有限公司 镜头测试装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452199B (zh) * 2007-11-30 2011-03-30 鸿富锦精密工业(深圳)有限公司 调制传递函数值的测量方法
CN104122077B (zh) * 2014-07-31 2016-08-17 福州锐景达光电科技有限公司 无限共轭光路测量光学镜头的调制传递函数的方法及装置
CN104198162B (zh) * 2014-09-17 2017-02-15 中国科学院光电技术研究所 一种用于光学成像相机整机系统传递函数的测试方法
CN108931357B (zh) * 2017-05-22 2020-10-23 宁波舜宇车载光学技术有限公司 测试标靶和相应的镜头mtf检测系统及方法
CN110132547A (zh) * 2019-05-14 2019-08-16 杭州电子科技大学 一种内窥镜头光学性能检测装置及检测方法
CN211401623U (zh) * 2019-12-27 2020-09-01 欧菲影像技术(广州)有限公司 光学镜头检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118639A (en) * 1980-02-25 1981-09-17 Nec Corp Mtf measuring apparatus for radiometer
CN1384345A (zh) * 2001-04-28 2002-12-11 慧生科技股份有限公司 光学单元的光学特性自动量测系统与方法
CN101458441A (zh) * 2007-12-11 2009-06-17 鸿富锦精密工业(深圳)有限公司 测试线对图板、镜头光学解析量测系统及其量测方法
AU2008229672A1 (en) * 2008-09-26 2010-04-15 Canon Kabushiki Kaisha Image quality test chart calibration
CN102141218A (zh) * 2010-02-03 2011-08-03 鸿富锦精密工业(深圳)有限公司 光源装置
CN104111165A (zh) * 2014-08-08 2014-10-22 中国科学院光电技术研究所 一种近眼显示光学镜头像质的评价装置
CN211374003U (zh) * 2019-09-30 2020-08-28 宁波舜宇车载光学技术有限公司 镜头测试装置
CN110958450A (zh) * 2019-12-29 2020-04-03 中国科学院西安光学精密机械研究所 一种成像系统空间测试装置、对比度及频率测试方法

Also Published As

Publication number Publication date
CN115371961A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN101140365B (zh) 不均匀检查方法、显示面板的制造方法以及不均匀检查装置
CN103217436B (zh) 一种背光模组瑕疵的检测方法及设备
KR100805486B1 (ko) 디스플레이의 다각도 계측 시스템 및 방법
KR102542503B1 (ko) 표시 패널 검사 장치 및 그 구동 방법
CN104484659A (zh) 一种对医学彩色和灰阶图像自动识别及校准的方法
WO2019105433A1 (zh) 影像畸变检测方法和系统
CN105092473A (zh) 一种多晶硅薄膜的质量检测方法和系统
CN106839976A (zh) 一种检测镜头中心的方法及装置
CN110261069B (zh) 一种用于光学镜头的检测方法
CN109932369A (zh) 一种异形显示面板检测方法及装置
CN109949725A (zh) 一种aoi系统图像灰度标准化方法及系统
US8547430B2 (en) System and method for marking discrepancies in image of object
CN110415223B (zh) 一种无参考的拼接图像质量评价方法及系统
KR20100067085A (ko) 멀티 컴포넌트 디스플레이용 인터스티셜 확산기의 위치 결정
CN108876747B (zh) 一种oled绘素的提取方法及装置
WO2022242650A1 (zh) 用于检测光学性能的装置及方法、光学性能检测方法、电子设备
KR102454986B1 (ko) 얼룩 검출 장치 및 이를 이용한 얼룩 검출 방법
CN113723393B (zh) 图像采集方法、装置、电子设备及介质
CN113706508B (zh) 光束质量分析方法、设备、光束分析系统及存储介质
CN115546140A (zh) 一种显示面板检测方法、系统及电子装置
JPH11257937A (ja) 欠陥検査方法
CN105516716A (zh) 闭环安防系统视频画质的现场测试方法
CN114688998A (zh) 载片台平整度的调节方法及装置
JP2004219291A (ja) 画面の線欠陥検出方法及び装置
US9135692B2 (en) Electronic device and method for analyzing image noise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803970

Country of ref document: EP

Kind code of ref document: A1