WO2022242174A1 - Système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et procédé de production d'hydrogène par électrolyse de l'eau - Google Patents

Système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et procédé de production d'hydrogène par électrolyse de l'eau Download PDF

Info

Publication number
WO2022242174A1
WO2022242174A1 PCT/CN2021/141365 CN2021141365W WO2022242174A1 WO 2022242174 A1 WO2022242174 A1 WO 2022242174A1 CN 2021141365 W CN2021141365 W CN 2021141365W WO 2022242174 A1 WO2022242174 A1 WO 2022242174A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
power supply
power
module
hydrogen production
Prior art date
Application number
PCT/CN2021/141365
Other languages
English (en)
Chinese (zh)
Inventor
徐显明
王金意
张畅
任志博
王鹏杰
Original Assignee
中国华能集团清洁能源技术研究院有限公司
四川华能氢能科技有限公司
华能集团技术创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 四川华能氢能科技有限公司, 华能集团技术创新中心有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022242174A1 publication Critical patent/WO2022242174A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/109Scheduling or re-scheduling the operation of the DC sources in a particular order, e.g. connecting or disconnecting the sources in sequential, alternating or in subsets, to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1552Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a biphase or polyphase arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/1555Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit
    • H02M7/1557Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the technical field of a power supply for electrolyzing water to produce hydrogen through cooperative power supply of non-grid-connected wind power and a power grid, and specifically relates to a wind-network coordinated power supply system and a power supply method for electrolyzing water to produce hydrogen.
  • Hydrogen energy is known as the most promising new energy in the 21st century. As a green new energy, hydrogen energy has the characteristics of environmental protection, high energy density, high conversion efficiency, abundant reserves and wide application range. The high energy density of hydrogen makes many Huge amounts of energy can be generated from a small volume of hydrogen.
  • Hydrogen production by electrolysis of water is a technology with the most potential for large-scale hydrogen production, but hydrogen production by electrolysis of water consumes a lot of electricity, and hydrogen production by electrolysis of water supplied by the power grid is bound to bring overload to the safety, stability and operation scheduling of the entire power grid. .
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the present invention provides a wind-network coordinated power supply system and power supply method for electrolyzing water to produce hydrogen.
  • the method of using non-grid-connected wind power supply and coordinating grid power supply effectively alleviates the large power consumption of electrolyzed water hydrogen production using grid power alone. At the same time, it can effectively use wind energy to realize energy storage and energy conversion of renewable energy.
  • the present invention provides a wind-network coordinated power supply system for electrolyzing water to produce hydrogen, including a non-grid-connected wind power supply module, a grid power supply module and a PLC control module, the non-grid-connected wind power supply Both the module and the grid power supply module are connected to the power supply input end of the electrolyzed water hydrogen production load, and the PLC control module is used to control the input or removal of the grid power supply module according to the rated power of the electrolyzed water hydrogen production load and the output power of non-grid wind power.
  • the non-grid-connected wind power supply module includes a wind power generation unit and a wind power rectification conversion module, the input end of the wind power rectification conversion module is connected to the wind power generation unit, and the output end is connected to the power supply input of the electrolytic water hydrogen production load end.
  • the wind power rectification conversion module includes a first AC/DC conversion module and a DC/DC conversion module
  • the first AC/DC conversion module is composed of a three-phase bridge controlled thyristor rectifier circuit
  • the DC The /DC conversion module is an isolated bidirectional full-bridge DC-DC conversion circuit.
  • the grid power supply module includes a grid rectification conversion module, the input end of the grid rectification conversion module is connected to the power supply grid, and the output end is connected to the power supply input end of the electrolyzed water hydrogen production load.
  • the power grid rectification conversion module includes an AC transformer and a second AC/DC conversion module connected to the secondary winding of the AC transformer, and the second AC/DC conversion module is a three-phase fully-controlled rectification circuit.
  • the signal input terminal of the PLC control module is connected with a voltage feedback module and a current feedback module, and the output terminal is connected with a current given module and a voltage given module;
  • the output ends are all connected to a trigger board, and the trigger board is used to send trigger signals to the non-grid-connected wind power supply module and the grid power supply module to control the non-grid-connected wind power supply module and the grid power supply module.
  • the voltage feedback module is connected to the voltmeter at the input end of the power supply for electrolytic water hydrogen production load, and the current feedback module is connected to a shunt or a Hall current sensor at the input end of the power supply input end for electrolytic water hydrogen production load.
  • the present invention provides a power supply method for hydrogen production by electrolysis of water based on the above power supply system, wherein
  • the non-grid-connected wind power supply module supplies power to the electrolyzed water hydrogen production load, and the excess electric energy is absorbed by increasing the electrolyzed water hydrogen production load;
  • the non-grid-connected wind power supply module and the grid power supply module cooperate to supply power to the electrolyzed water hydrogen production load;
  • the present invention has at least the following beneficial technical effects:
  • the wind-network coordinated power supply system for hydrogen production by electrolysis of water uses the PLC control module to control the rectification and conversion modules of wind power and power grid, so as to realize the synergy of non-grid-connected wind power and power grid to supply power for the load of hydrogen production by electrolysis of water, effectively It alleviates the problem of large power consumption of electrolyzed water hydrogen production technology powered by grid alone, and further alleviates the negative impact of overload caused by electrolyzed water hydrogen produced by separate grid power supply on the safety, stability and operation scheduling of the entire grid, and can effectively utilize wind energy , to realize energy storage and energy conversion of renewable energy.
  • the power supply mode is adjusted in time according to the load size, and on the premise of ensuring effective power supply, non-grid-connected wind power is used as much as possible for power supply.
  • the power supply of non-grid-connected wind power is insufficient, the The combination of wind power and grid power supply for power supply can effectively utilize wind energy and realize energy storage and energy conversion of renewable energy.
  • Fig. 1 is a schematic structural diagram of a wind-network coordinated power supply system for electrolyzing water to produce hydrogen according to an embodiment of the present application;
  • Fig. 2 is a schematic diagram of the wind power rectification conversion module 3 in Fig. 1;
  • FIG. 3 is a schematic diagram of the power grid rectification conversion module 4 in FIG. 1 .
  • Wind power generation unit 2. Grid three-phase alternating current, 3. Wind power rectification conversion module, 4. Grid rectification conversion module, 5. Trigger board, 6. Current given module, 7. Voltage given module, 8. PLC control module, 9. Voltage feedback module, 10. Current feedback module, 11 Electrolyzed water hydrogen production load, 12. First AC/DC conversion module, 13. DC/DC conversion module, 14. AC transformer, 15. A second AC/DC conversion module.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • Non-grid-connected wind power combined with grid power supply to electrolyze water for hydrogen production can effectively alleviate the problem of large power consumption for electrolyzed water hydrogen production powered by grid alone.
  • Wind power generation uses electrolyzed water for hydrogen production technology to convert the electrical energy generated by wind energy into hydrogen. It can be stored, and according to actual needs, hydrogen energy can also be converted into other fuels through subsequent chemical processes.
  • the hydrogen production technology of electrolyzed water provides a shortcut for the beneficial combination of wind energy and hydrogen energy, which effectively alleviates the problem of large power consumption of the electrolyzed water hydrogen production technology of the power grid, and at the same time can effectively utilize wind energy to realize the energy storage and storage of renewable energy. energy conversion.
  • Hydrogen production from electrolyzed water with non-grid-connected wind power combined with grid power supply has a good application prospect.
  • the present application provides a wind-grid coordinated power supply system for electrolyzing water to produce hydrogen, including a wind power generator set 1, a grid three-phase alternating current 2, a wind power rectification conversion module 3, a grid rectification conversion module 4, and a trigger board 5 , a given current module 6 , a given voltage module 7 , a PLC control module 8 , a voltage feedback module 9 , a current feedback module 10 and a load 11 for hydrogen production from electrolyzed water.
  • the non-grid-connected wind power supply and the grid-powered alternating current are rectified and converted to output direct current to supply power for the hydrogen production load of electrolyzed water.
  • the non-grid-connected wind power supply includes wind power generation unit 1 and wind power rectification conversion module 3, and the alternating current generated by wind power generation unit 1 passes through the wind power
  • the rectification conversion module 3 becomes direct current power supply to the electrolytic water hydrogen production load 11;
  • the grid power supply includes the grid three-phase alternating current 2 and the grid rectification conversion module 4, and the grid three-phase alternating current 2 is transformed into direct current by the grid rectification conversion module 4 to supply the electrolytic water system Hydrogen loading11.
  • the conversion circuits of the wind power rectification conversion module 3 and the power grid rectification conversion module 4 are mainly controlled by a trigger pulse signal.
  • the trigger pulse signal is a voltage or current pulse signal sent by the trigger board 5 .
  • the PLC control module is used to control the non-grid-connected wind power and the grid rectification conversion module, so as to realize the synergy of non-grid-connected wind power and power grid for hydrogen production by electrolysis of water The method of supplying power to the load.
  • the non-grid-connected wind power When the output power of non-grid-connected wind power is greater than 95% of the rated working power of the electrolyzed water hydrogen production load and less than 105% of the rated working power of the electrolyzed water hydrogen production load, the non-grid-connected wind power alone supplies power to the electrolyzed water hydrogen production load, Ensure the normal operation of electrolyzed water hydrogen production load.
  • the non-grid-connected wind power When the output power of non-grid-connected wind power is greater than 105% of the rated working power of the electrolyzed water hydrogen production load, the non-grid-connected wind power alone supplies power to the electrolyzed water hydrogen production load, and the excess electric energy can be generated by increasing the electrolyzed water hydrogen production load 11 Consumptive.
  • the non-grid-connected wind power and the grid cooperate to supply power to the electrolyzed water hydrogen production load to ensure the normal operation of the electrolyzed water hydrogen production load.
  • the non-grid-connected wind power stops supplying power at this time, and the grid serves as the power supply to supply the electrolyzed water hydrogen production load to ensure the normal operation of the electrolyzed water hydrogen production load.
  • the wind power rectification conversion module 3 and the power grid rectification conversion module 4 are the key conversion circuits for electrolyzing water to produce hydrogen for power supply.
  • the schematic diagram of the wind power rectification conversion module 3 is shown in FIG. 2 .
  • the wind power rectification conversion module 3 is composed of a first AC/DC conversion module 12 and a DC/DC conversion module 13, and the first AC/DC conversion module 12 and the DC/DC conversion module 13 start working mainly by triggering board 5 to send voltage pulses The signal triggers and controls the first AC/DC conversion module 12 and the DC/DC conversion module 13 .
  • the first AC/DC conversion module 12 is mainly composed of a voltage-type three-phase bridge rectifier circuit.
  • the circuit includes six insulated gate bipolar transistors IGBTs. At any time, two IGBTs must be turned on at the same time to form a current loop, and One of the triodes is a common cathode group, and the other triode is a common anode group.
  • the circuit is characterized by the use of high-frequency PWM rectification technology.
  • the IGBT device is in a high-frequency switching state, and the on and off states of the IGBT device can be controlled.
  • the trigger board 5 sends a voltage pulse signal to control the opening and closing moments of the six IGBT transistors of the first AC/DC conversion module 12 to achieve the purpose of converting the input AC power to the output DC power .
  • the DC/DC conversion module 13 is mainly composed of an isolated bidirectional full-bridge DC-DC conversion circuit.
  • the four IGBT transistors Q1, Q2, Q3, and Q4 in the DC/DC conversion module 13 form an H bridge connected to the primary side.
  • the four IGBT transistors Q5, Q6, Q7, and Q8 in the DC conversion module 13 form an H-bridge connected to the secondary side, and the H-bridge connected to the primary side and the H-bridge connected to the secondary side pass through a high-speed circuit with a transformation ratio of n:1. frequency transformer TR for connection.
  • the trigger board 5 sends a voltage pulse signal to control the turn-on and turn-off timing of the four IGBT transistors on the primary side and the secondary side to achieve the rated low voltage and high current DC power supply to the electrolyzed water hydrogen production load 11 .
  • FIG. 3 A schematic diagram of the grid rectification transformation module 4 is shown in FIG. 3 .
  • the power grid rectification conversion module 4 is composed of an AC transformer 14 and a second AC/DC conversion module 15.
  • the second AC/DC rectification conversion module 15 is composed of a three-phase fully-controlled rectifier circuit, and the three-phase fully-controlled rectifier circuit includes six A controllable thyristor, at any time must ensure that two thyristors are turned on at the same time to form a current loop, and one of the thyristors is a common cathode group, and the other thyristor is a common anode group.
  • the trigger board 5 sends a voltage pulse signal to control the opening and closing time of the six thyristors of the three-phase fully-controlled rectification circuit, and the three-phase alternating current 2 of the grid is stepped down by the AC transformer 14 to convert the high-voltage three-phase alternating current of the grid into a lower voltage Adjust the trigger pulse of the second AC/DC rectification conversion module 15, the low-voltage three-phase alternating current reaches the rated low voltage and high current direct current after the second AC/DC rectification and transformation, and supplies power to the electrolyzed water hydrogen production load 11.
  • the PLC control module is the key control input module.
  • the PLC control module 8 receives the voltage and current feedback signals from the voltage feedback module 9 and the current feedback module 10, and after internal calculation and comparison, outputs the corresponding current given 6 and voltage given 7 pulse signals, and through the trigger board 5 to the wind power
  • the rectification conversion module 3 and the grid rectification conversion module 4 perform trigger control.
  • the voltage and current signals of the voltage feedback module 9 and the current feedback module 10 are respectively the measured voltage and the measured current signal of the power supply input end of the electrolyzed water hydrogen production load 11, the measured voltage signal can be obtained by an ordinary voltmeter, and the measured current signal can be obtained by shunting It can also be obtained by Hall current sensor.
  • the wind-network coordinated power supply system for hydrogen production by electrolysis uses PLC control module to control non-grid-connected wind power and grid rectification module, so as to realize the synergy of non-grid-connected wind power and power grid for electrolyzed water hydrogen production load power supply
  • the method can well alleviate the problem of large power consumption for hydrogen production by electrolysis of water in a separate power grid, and at the same time can effectively utilize wind energy to realize energy storage and energy conversion of renewable energy.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Un système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et un procédé de production d'hydrogène par électrolyse de l'eau sont divulgués dans la présente invention. Un module de conversion de redressement de réseau électrique et d'énergie éolienne non reliée au réseau est commandé pour réaliser un procédé pour alimenter de manière coopérative, au moyen d'un réseau électrique et d'une énergie éolienne non reliée au réseau, une charge pour produire de l'hydrogène par électrolyse de l'eau. Lorsqu'une puissance de sortie de l'énergie éolienne non reliée au réseau n'est pas comprise dans la plage de ± 5 % d'une puissance de fonctionnement nominale de la charge pour produire de l'hydrogène par électrolyse de l'eau, l'alimentation est individuellement fournie, par l'énergie éolienne non reliée au réseau, à la charge pour produire de l'hydrogène par électrolyse de l'eau, ce qui permet d'assurer un fonctionnement normal de la charge pour produire de l'hydrogène par électrolyse de l'eau. Lorsque la puissance de sortie de l'énergie éolienne non reliée au réseau est supérieure à 105 % de la puissance de fonctionnement nominale de la charge pour produire de l'hydrogène par électrolyse de l'eau, l'alimentation est individuellement fournie, par l'énergie éolienne non reliée au réseau, à la charge pour produire de l'hydrogène par électrolyse de l'eau, et l'énergie électrique excédentaire peut être consommée au moyen de l'augmentation d'une charge 11 pour produire de l'hydrogène par électrolyse de l'eau ; et, lorsque la puissance de sortie de l'énergie éolienne non reliée au réseau est inférieure à 95 % de la puissance de fonctionnement nominale de la charge pour produire de l'hydrogène par électrolyse de l'eau, l'alimentation est fournie de manière coopérative, par le réseau électrique et l'énergie éolienne non reliée au réseau, à la charge pour produire de l'hydrogène par électrolyse de l'eau, ce qui permet d'assurer un fonctionnement normal de la charge pour produire de l'hydrogène par électrolyse de l'eau.
PCT/CN2021/141365 2021-05-20 2021-12-24 Système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et procédé de production d'hydrogène par électrolyse de l'eau WO2022242174A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110554163.4 2021-05-20
CN202110554163.4A CN113224745A (zh) 2021-05-20 2021-05-20 一种智慧供电电解水制氢电源系统及供电方法

Publications (1)

Publication Number Publication Date
WO2022242174A1 true WO2022242174A1 (fr) 2022-11-24

Family

ID=77093417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141365 WO2022242174A1 (fr) 2021-05-20 2021-12-24 Système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et procédé de production d'hydrogène par électrolyse de l'eau

Country Status (2)

Country Link
CN (1) CN113224745A (fr)
WO (1) WO2022242174A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224745A (zh) * 2021-05-20 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种智慧供电电解水制氢电源系统及供电方法
CN114934281A (zh) * 2022-05-31 2022-08-23 同济大学 一种耦合电化学电源的混合制氢系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060236A1 (fr) * 2008-11-27 2010-06-03 江苏省信息化研究中心 Procédé pour la préparation de méthanol par l'utilisation directe d'énergie éolienne non raccordée au réseau à grande échelle
CN201699430U (zh) * 2010-06-30 2011-01-05 江西省电力科学研究院 分布式光伏电源并网逆变器测试装置
CN109962482A (zh) * 2017-12-26 2019-07-02 北京有色金属研究总院 基于市电功率补偿的风电非并网制氢系统及其控制方法
CN110635510A (zh) * 2019-10-23 2019-12-31 河北工业大学 非并网风电电解水制氢系统及其协同控制方法
CN111464050A (zh) * 2020-04-28 2020-07-28 深圳供电局有限公司 Ac/dc换流器控制方法、装置、ac/dc换流设备和存储介质
CN113153643A (zh) * 2021-05-20 2021-07-23 中国华能集团清洁能源技术研究院有限公司 一种风网协同智能控制电解水制氢系统及其工作方法
CN113224745A (zh) * 2021-05-20 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种智慧供电电解水制氢电源系统及供电方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060236A1 (fr) * 2008-11-27 2010-06-03 江苏省信息化研究中心 Procédé pour la préparation de méthanol par l'utilisation directe d'énergie éolienne non raccordée au réseau à grande échelle
CN201699430U (zh) * 2010-06-30 2011-01-05 江西省电力科学研究院 分布式光伏电源并网逆变器测试装置
CN109962482A (zh) * 2017-12-26 2019-07-02 北京有色金属研究总院 基于市电功率补偿的风电非并网制氢系统及其控制方法
CN110635510A (zh) * 2019-10-23 2019-12-31 河北工业大学 非并网风电电解水制氢系统及其协同控制方法
CN111464050A (zh) * 2020-04-28 2020-07-28 深圳供电局有限公司 Ac/dc换流器控制方法、装置、ac/dc换流设备和存储介质
CN113153643A (zh) * 2021-05-20 2021-07-23 中国华能集团清洁能源技术研究院有限公司 一种风网协同智能控制电解水制氢系统及其工作方法
CN113224745A (zh) * 2021-05-20 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种智慧供电电解水制氢电源系统及供电方法

Also Published As

Publication number Publication date
CN113224745A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN109004665B (zh) 风电、光电储能及离/并网制氢系统
WO2022242174A1 (fr) Système d'alimentation électrique collaborative à réseau électrique et à énergie éolienne non reliée au réseau et procédé de production d'hydrogène par électrolyse de l'eau
CN207010249U (zh) 一种风电制氢储能的氢燃料复合电池
CN103434421B (zh) 一种基于新能源的混合双向互动式直流牵引供电系统
CN103448573B (zh) 一种双向互动式电气化铁路高压直流牵引供电系统
CN107017651A (zh) 一种风电制氢储能的氢燃料复合电池及其发电方法
CN103407383B (zh) 一种基于新能源的双向互动式直流牵引供电系统
CN203358382U (zh) 基于新能源的双向互动电气化铁路高压直流牵引供电系统
CN108574277B (zh) 大规模电解水制氢装备的电力电子系统模型
CN113153643A (zh) 一种风网协同智能控制电解水制氢系统及其工作方法
CN201398094Y (zh) 一种具有交直流双模式输出的太阳能光伏发电与市电互补装置
CN110601231A (zh) 一种基于光伏制氢储能的光伏和燃料电池一体化发电系统
CN109962482B (zh) 基于市电功率补偿的风电非并网制氢系统及其控制方法
CN201699603U (zh) 用于单晶硅炉的高频电源
CN210711769U (zh) 开关磁阻风力发电制氢系统
CN203358381U (zh) 一种双向互动式直流牵引供电系统
WO2023231274A1 (fr) Système de production d'hydrogène hybride couplé à un supercondensateur, et son procédé de commande
CN214850485U (zh) 一种智慧供电电解水制氢电源系统
CN202197217U (zh) 一种氢氟酸电解用开关电源
CN214741839U (zh) 一种风网协同智能控制电解水制氢系统
CN215628334U (zh) 一种独立式海上风电制氢电力系统
CN204928612U (zh) 一种带有辅助谐振电路的光伏发电装置
CN104659897A (zh) 一种运动会馆用光伏并网供电系统
CN209823438U (zh) 一种基于综合能源的复线全并联at牵引供电系统
WO2015010486A1 (fr) Procédé de régulation de l'alimentation d'un système d'électrolyse de l'aluminium pour alimentation électrique collaborative à énergies multiples non connectée au réseau de distribution d'électricité

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE