WO2022242141A1 - 用于空调自清洁的控制方法及装置、空调 - Google Patents

用于空调自清洁的控制方法及装置、空调 Download PDF

Info

Publication number
WO2022242141A1
WO2022242141A1 PCT/CN2021/138393 CN2021138393W WO2022242141A1 WO 2022242141 A1 WO2022242141 A1 WO 2022242141A1 CN 2021138393 W CN2021138393 W CN 2021138393W WO 2022242141 A1 WO2022242141 A1 WO 2022242141A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
self
humidity
cleaning
change rate
Prior art date
Application number
PCT/CN2021/138393
Other languages
English (en)
French (fr)
Inventor
吕科磊
吕福俊
杨文钧
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022242141A1 publication Critical patent/WO2022242141A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to a control method and device for air conditioner self-cleaning, and an air conditioner.
  • the self-cleaning operation of the air conditioner is mainly divided into the frosting stage and the defrosting stage.
  • the air conditioner operates in cooling mode before the frosting stage, and the moisture in the indoor air is condensed in the form of water droplets on the indoor unit for heat exchange.
  • the air conditioner increases the cooling capacity to condense the water droplets condensed on the surface of the heat exchanger into a frost layer, which combines with the dust on the surface of the heat exchanger and peels it off;
  • the air conditioner operates in heating mode, the temperature of the indoor heat exchanger coil rises, the frost layer melts, and the dust also collects in the water receiving tray along with the melted water flow, completing the self-cleaning operation.
  • the internal environment of the air conditioner is relatively humid, which is very easy to breed bacteria and aggravate the corrosion of the aluminum foil of the air conditioner heat exchanger, thereby reducing the use experience of the air conditioner and reducing the service life of the air conditioner.
  • the embodiments of the present disclosure provide a control method and device for air conditioner self-cleaning, and an air conditioner to solve the problem that after the air conditioner completes the self-cleaning operation, the internal environment of the air conditioner is relatively humid, which is very easy to breed bacteria and aggravate the damage to the heat exchanger of the air conditioner. Corrosion of the aluminum foil, thereby reducing the experience of using the air conditioner and reducing the service life of the air conditioner.
  • control method for air conditioner self-cleaning includes: after receiving an air conditioner self-cleaning instruction, controlling the air conditioner to perform a self-cleaning operation including a frosting stage and a defrosting stage; when the air conditioner completes the self-cleaning operation, Control the reverse operation of the fan of the air conditioner to dry the moisture on the surface of the heat exchanger of the air conditioner.
  • control device for air conditioner self-cleaning includes a processor and a memory storing program instructions, and the processor is configured to execute the aforementioned control method for air conditioner self-cleaning when executing the program instructions.
  • the air conditioner includes the aforementioned control device for self-cleaning of the air conditioner.
  • control method and device for air conditioner self-cleaning, and the air conditioner provided in the embodiments of the present disclosure can achieve the following technical effects:
  • the air conditioner After receiving the self-cleaning instruction of the air conditioner, the air conditioner is controlled to perform self-cleaning operations including the frosting stage and the defrosting stage, and when the air conditioner completes the self-cleaning operation, the fan of the air conditioner is controlled to run in reverse to turn the heat exchanger of the air conditioner Moisture on the surface dries.
  • the self-cleaning of the air conditioner After the self-cleaning of the air conditioner is completed, switch the direction of the air conditioner fan, use the characteristics of the fan to reverse heat, speed up the evaporation of water on the surface of the heat exchanger, and reduce the internal humidity of the air conditioner, which can effectively prevent the growth of bacteria and delay the aluminum foil of the air conditioner heat exchanger.
  • the corrosion process of the sheet can be improved, thereby improving the experience of using the air conditioner and prolonging the service life of the air conditioner.
  • Fig. 1 is a schematic flowchart of a control method for self-cleaning of an air conditioner provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flowchart of another control method for air conditioner self-cleaning provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a control device for self-cleaning of an air conditioner provided by an embodiment of the present disclosure.
  • the term "plurality” means two or more.
  • the character "/" indicates that the preceding and following objects are an "or" relationship.
  • A/B means: A or B.
  • the term “and/or” is an associative relationship describing objects, indicating that there can be three relationships.
  • a and/or B means: A or B, or, A and B, these three relationships.
  • an embodiment of the present disclosure provides a control method for self-cleaning of an air conditioner, including the following steps:
  • the air conditioner controls the air conditioner to perform the self-cleaning operation.
  • the heat exchanger in the air conditioner is self-cleaning, adjust the four-way valve of the air conditioner to control the heat exchanger in the air conditioner to enter the frosting stage.
  • the air conditioner operates in cooling mode, and the moisture in the indoor air is condensed in the form of water droplets on the indoor unit for heat exchange.
  • the air conditioner increases the cooling capacity to condense the water droplets condensed on the surface of the heat exchanger into a frost layer, which combines with the dust on the surface of the heat exchanger and peels it off;
  • the air conditioner operates in heating mode, the temperature of the indoor heat exchanger coil rises, the frost layer melts, and the dust also collects in the water receiving pan along with the melted water flow, completing the self-cleaning operation of the indoor heat exchanger.
  • the outdoor heat exchanger of the air conditioner is self-cleaning, adjust the four-way valve of the air conditioner to control the outdoor heat exchanger of the air conditioner to enter the frosting stage.
  • the air conditioner increases the heating capacity in the later stage of frost condensation, so that the water droplets condensed on the surface of the heat exchanger in the early stage condense into a frost layer, and the frost layer combines with the dust on the surface of the heat exchanger and peels it off;
  • the air conditioner operates in cooling mode, the temperature of the outdoor heat exchanger coil rises, the frost layer melts, and the dust also collects in the water receiving pan along with the melted water flow, completing the self-cleaning operation of the outdoor heat exchanger.
  • the air-conditioning indoor heat exchanger completes the self-cleaning operation
  • the internal environment of the air-conditioning indoor unit is relatively humid, and the indoor fan of the air-conditioning is controlled to run in reverse to dry the moisture on the surface of the air-conditioning indoor heat exchanger.
  • the outdoor heat exchanger of the air conditioner completes the self-cleaning operation
  • the internal environment of the outdoor unit of the air conditioner is relatively humid, and the outdoor fan of the air conditioner is controlled to run in reverse to dry the moisture on the surface of the outdoor heat exchanger of the air conditioner.
  • controlling the fan of the air conditioner to run in reverse includes: controlling the fan to run in reverse at a first speed for a first time period; degree; when the humidity of the first air outlet is greater than the preset humidity, the rotation speed of the control fan to run in reverse is increased to the second speed on the basis of the first speed in a way that the acceleration gradually decreases, and the speed of the fan to run in reverse is controlled.
  • the rotation speed is reduced to the first rotation speed based on the second rotation speed in a manner of gradually increasing acceleration; the fan is controlled to run in reverse at the first rotation speed.
  • the value range of the first duration is [5min, 10min], for example, 5min (minute), 6min, 8min, 10min.
  • the air conditioner fan was controlled to run in reverse at the first speed for the first time, and the air humidity at the air outlet of the air conditioner was recorded when it was confirmed that there was no obvious water drop on the surface of the air conditioner heat exchanger.
  • the preset humidity is the most frequent outlet humidity among the recorded multiple outlet humidity.
  • a humidity sensor is arranged at the air outlet of the air conditioner to detect the humidity of the air outlet at the air outlet of the air conditioner. After controlling the fan to run in reverse at the first speed for the first time, use the humidity sensor to detect the first air outlet humidity at the air outlet of the air conditioner. If the first air outlet humidity is greater than the preset humidity, it indicates that the internal environment humidity of the air conditioner is relatively high. There is more water on the surface of the heater, so increase the reverse speed of the fan to accelerate the evaporation of water.
  • r 2 is the second rotational speed
  • r 1 is the first rotational speed
  • r 2 is the second rotational speed
  • r 1 is the first rotational speed
  • the value range of is [1.6, 2.1], for example, 1.6, 1.8, 2, 2.1.
  • control the air conditioner after receiving the air conditioner self-cleaning instruction, control the air conditioner to perform self-cleaning operations including the frosting stage and the defrosting stage, and when the air conditioner completes the self-cleaning operation Next, control the reverse operation of the fan of the air conditioner to dry the moisture on the surface of the heat exchanger of the air conditioner.
  • control the reverse operation of the fan of the air conditioner to dry the moisture on the surface of the heat exchanger of the air conditioner.
  • switch the direction of the air conditioner fan use the characteristics of the fan to reverse heat, speed up the evaporation of water on the surface of the heat exchanger, and reduce the internal humidity of the air conditioner, which can effectively prevent the growth of bacteria and delay the aluminum foil of the air conditioner heat exchanger.
  • the corrosion process of the sheet can be improved, thereby improving the experience of using the air conditioner and prolonging the service life of the air conditioner.
  • control method for self-cleaning of the air conditioner further includes: after controlling the fan to run in reverse for a second period of time, obtaining the first humidity change rate of the air outlet humidity at the air outlet of the air conditioner; when the first humidity change rate is less than In the case of the first preset humidity change rate, the operation mode of the air conditioner is switched to the preset operation mode.
  • the value range of the second duration is [10min, 15min], for example, 10min, 12min, 13min, 15min.
  • the preset operation mode of the air conditioner is the heating mode; when the outdoor heat exchanger of the air conditioner is self-cleaning, the preset operation mode of the air conditioner is the cooling mode.
  • the air humidity at the air outlet of the air conditioner was recorded at this time.
  • the air conditioner fan Control the air conditioner fan to run reversely at the first speed for the second time, and when it is confirmed that there is no obvious water drop on the surface of the air conditioner heat exchanger, record the humidity of the air at the air outlet of the air conditioner at this time, and calculate the humidity change rate at the air outlet of the air conditioner at this time .
  • the first preset humidity change rate is the humidity change rate that occurs most frequently among the multiple recorded humidity change rates. After controlling the fans to run in reverse for the second time, calculate the first humidity change rate of the air outlet humidity at the air outlet of the air conditioner.
  • the first humidity change rate is less than the first preset humidity change rate, it indicates that the internal environment humidity of the air conditioner is relatively high , there is more water on the surface of the heat exchanger, switch the operation mode of the air conditioner to the preset operation mode to accelerate the evaporation of water.
  • control method for self-cleaning of the air conditioner further includes: after switching the operation mode of the air conditioner to a preset operation mode for a third period of time, obtaining a second humidity change rate of the air outlet humidity at the air outlet of the air conditioner; When the second humidity change rate is less than the second preset humidity change rate, the operating frequency of the compressor of the air conditioner is increased.
  • the value range of the third duration is [5min, 10min], for example, 5min (minute), 6min, 8min, 10min.
  • the preset operation mode of the air conditioner is the heating mode
  • the preset operation mode of the air conditioner is the cooling mode.
  • the second preset humidity change rate is the humidity change rate that occurs most frequently among the multiple recorded humidity change rates.
  • the second humidity change rate of the air outlet humidity at the air outlet of the air conditioner (that is, from switching the operation mode of the air conditioner to the preset operation mode to the third Humidity change rate at the air outlet of the air conditioner), if the second humidity change rate is less than the second preset humidity change rate, it indicates that the internal humidity of the air conditioner is relatively high, and there is more moisture on the surface of the heat exchanger.
  • increasing the operating frequency of the compressor of the air conditioner includes: obtaining the second air outlet humidity at the air outlet of the air conditioner; calculating the humidity difference between the second air outlet humidity and the preset humidity, and determining the operating frequency corresponding to the humidity difference Frequency increment: on the basis of the current operating frequency of the compressor, increase the operating frequency of the compressor according to the operating frequency increment.
  • the selectable value range of the preset humidity is [40%, 60%], for example, 40%, 50%, 55%, 60%.
  • a correspondence table is established between the humidity difference and the operating frequency increment of the compressor, and in the correspondence table, the operating frequency increment is positively correlated with the humidity difference. Based on the calculated humidity difference, the corresponding operating frequency increment of the compressor can be determined by looking up a pre-established correspondence table.
  • the operating frequency increment of the compressor is determined by using the humidity difference between the second air outlet humidity and the preset humidity, and then on the basis of the current operating frequency of the compressor, the operating frequency of the compressor is increased according to the operating frequency increment, which can Realize the precise control of the compressor, and better realize the dehumidification effect of the heat exchanger after the self-cleaning operation of the air conditioner.
  • the air conditioner includes an electric heating device arranged on the heat exchanger; the control method for self-cleaning of the air conditioner further includes: after switching the operation mode of the air conditioner to a preset operation mode for a third period of time, obtaining the air conditioner air outlet The second humidity change rate of the air outlet humidity at the location; when the second humidity change rate is less than the second preset humidity change rate, the electric heating device is controlled to operate.
  • the air conditioner After switching the operation mode of the air conditioner to the preset operation mode and running for the third time, calculate and obtain the second humidity change rate of the air outlet humidity at the air outlet of the air conditioner, if the second humidity change rate is less than the second preset humidity change rate, it indicates The internal humidity of the air conditioner is relatively high, and the surface of the heat exchanger has a lot of water.
  • the operation of the electric heating device By controlling the operation of the electric heating device to accelerate the evaporation of water on the surface of the heat exchanger, it is helpful to better realize the dehumidification of the heat exchanger after the self-cleaning operation of the air conditioner.
  • control method for self-cleaning of the air conditioner further includes: after controlling the air conditioner to complete a self-cleaning operation, obtaining the ambient temperature change rate between the heat exchanger and the fan within a preset period of time after the air conditioner starts running; The relationship between the rate of change of the ambient temperature and the rate of change of the preset temperature determines whether to control the air conditioner to perform the self-cleaning operation again.
  • the preset temperature change rate can be the temperature difference between the heat exchanger and the fan within a preset period of time (for example, 5-10 minutes after startup) detected when the heat exchanger is confirmed to be free of dust accumulation during the preliminary test. rate of change in ambient temperature.
  • the preset period after the air conditioner starts running due to the fact that the dust accumulation of the heat exchanger affects the heat transfer coefficient of the heat exchanger, the ambient temperature change rate between the heat exchanger and the fan when the air conditioner heat exchanger has dust accumulation is less than The ambient temperature change rate between the heat exchanger and the fan when there is no dust accumulation on the heat exchanger of the air conditioner. Therefore, according to the relationship between the rate of change of the ambient temperature and the rate of change of the preset temperature, it is controlled whether the air conditioner performs the self-cleaning operation again, so as to avoid incomplete cleaning in this self-cleaning operation.
  • determining whether to control the air conditioner to perform the self-cleaning operation again according to the magnitude relationship between the rate of change of the ambient temperature and the rate of change of the preset temperature includes: when the rate of change of the ambient temperature is less than the rate of change of the preset temperature, controlling the air conditioner to perform the self-cleaning operation again Self-cleaning operation: when the ambient temperature change rate is greater than or equal to the preset temperature change rate, the air conditioner is controlled to end the self-cleaning operation.
  • the ambient temperature change rate When the ambient temperature change rate is less than the preset temperature change rate, it indicates that there is still dust accumulation in the heat exchanger. When the rate of change is low, it indicates that there is no dust accumulation in the heat exchanger for the time being, and the self-cleaning operation is relatively thorough this time, and the air conditioner is controlled to end the self-cleaning operation. In this way, the cleaning degree of the self-cleaning operation of the air conditioner can be improved.
  • an embodiment of the present disclosure provides a control method for self-cleaning of an air conditioner, including the following steps:
  • S203 Obtain the first humidity change rate of the air outlet humidity at the air outlet of the air conditioner after the fan is controlled to run in reverse for a second period of time.
  • S208 Determine whether to control the air conditioner to perform the self-cleaning operation again according to the magnitude relationship between the rate of change of the ambient temperature and the rate of change of the preset temperature.
  • control method for self-cleaning of the air conditioner provided by the embodiment of the present disclosure, after the self-cleaning of the air conditioner is completed, the direction of the fan of the air conditioner is switched, and the characteristics of the reverse heat generation of the fan are used to speed up the evaporation of water on the surface of the heat exchanger and reduce the humidity inside the air conditioner , can effectively avoid the growth of bacteria and delay the corrosion process of the aluminum foil of the air conditioner heat exchanger, thereby improving the experience of using the air conditioner and prolonging the service life of the air conditioner.
  • the relationship with the preset humidity change rate Switching the operating mode of the air conditioner/controlling the operation of the electric heating device accelerates the evaporation of water on the surface of the heat exchanger, which helps to better realize the dehumidification of the heat exchanger after the self-cleaning operation of the air conditioner.
  • control whether the air conditioner performs the self-cleaning operation again so as to avoid incomplete cleaning in this self-cleaning operation and improve the cleaning degree of the air-conditioning self-cleaning operation.
  • FIG. 3 provides a control device for air conditioner self-cleaning, including a processor (processor) 30 and a memory (memory) 31, and may also include a communication interface (Communication Interface) 32 and a bus 33.
  • the processor 30 , the communication interface 32 , and the memory 31 can communicate with each other through the bus 33 .
  • the communication interface 32 can be used for information transmission.
  • the processor 30 can call the logic instructions in the memory 31 to execute the control method for self-cleaning of the air conditioner in the above embodiments.
  • logic instructions in the above-mentioned memory 31 can be implemented in the form of software function units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 31 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 30 executes the function application and data processing by running the program instructions/modules stored in the memory 31 , that is, implements the control method for self-cleaning of the air conditioner in the above method embodiments.
  • the memory 31 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 31 may include a high-speed random access memory, and may also include a non-volatile memory.
  • control the air conditioner after receiving the air conditioner self-cleaning instruction, control the air conditioner to perform self-cleaning operations including the frosting stage and the defrosting stage, and when the air conditioner completes the self-cleaning operation Next, control the reverse operation of the fan of the air conditioner to dry the moisture on the surface of the heat exchanger of the air conditioner.
  • switch the direction of the air conditioner fan use the characteristics of the fan to reverse heat, speed up the evaporation of water on the surface of the heat exchanger, and reduce the internal humidity of the air conditioner, which can effectively prevent the growth of bacteria and delay the aluminum foil of the air conditioner heat exchanger.
  • the corrosion process of the sheet can be improved, thereby improving the experience of using the air conditioner and prolonging the service life of the air conditioner.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned control device for self-cleaning of the air conditioner.
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned control method for self-cleaning of an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the The computer executes the above control method for self-cleaning of the air conditioner.
  • the above-mentioned computer-readable storage medium may be a transitory computer-readable storage medium, or a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of software products, which are stored in a storage medium and include one or more instructions to make a computer device (which can be a personal computer, a server, or a network equipment, etc.) to perform all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc.
  • first element could be called a second element, and likewise, a second element could be called a first element, without changing the meaning of the description, so long as all occurrences of "first element” are renamed consistently and all occurrences of "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the terms used in the present application are used to describe the embodiments only and are not used to limit the claims. As used in the examples and description of the claims, the singular forms "a”, “an” and “the” are intended to include the plural forms as well unless the context clearly indicates otherwise .
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listed ones.
  • the term “comprise” and its variants “comprises” and/or comprising (comprising) etc. refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method or apparatus comprising said element.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • multiple units or components may be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in the embodiments of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures.
  • two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the operations or steps corresponding to different blocks may also occur in a different order than that disclosed in the description, and sometimes there is no specific agreement between different operations or steps.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware implemented in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种用于空调自清洁的控制方法,包括:接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作;在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。在空调自清洁结束后,转换空调风机转向,利用风机反转发热的特点,加快换热器表面的水分蒸发,降低空调内部环境湿度,能够有效避免细菌滋生并延缓空调换热器的铝箔片的腐蚀进程,从而提高空调的使用体验并提高空调的使用寿命。另外还包括一种用于空调自清洁的控制装置及空调。

Description

用于空调自清洁的控制方法及装置、空调
本申请基于申请号为202110554296.1、申请日为2021年5月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及一种用于空调自清洁的控制方法及装置、空调。
背景技术
空调器制热或制冷运行过程中,外界空气中所夹杂的灰尘、大颗粒杂物等会进入空调器,附着在空调换热器的表面,直接影响到换热器与外界空气的换热,并且影响出风质量。为了保证换热效率及出风质量,需要对空调换热器进行自清洁处理。空调自清洁操作主要分为凝霜阶段和化霜阶段,其中,在凝霜阶段中,凝霜前期空调器以制冷模式运行,将室内空气中的水分以水珠的形式凝结在室内机换热器表面,凝霜后期空调器通过提高制冷量的方式,使前期凝结在换热器表面的水珠凝结成霜层,霜层与换热器表面的灰尘结合,并将其剥离;之后进入化霜阶段,空调器以制热模式运行,室内换热器盘管温度升高,霜层融化,灰尘也随着融化的水流汇集在接水盘中,完成自清洁操作。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
空调在完成自清洁操作后,空调内部环境相对湿润,极易滋生细菌并加重对空调换热器的铝箔片的腐蚀,进而降低空调的使用体验并减少空调的使用寿命。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调自清洁的控制方法及装置、空调,以解决目前空调在完成自清洁操作后,空调内部环境相对湿润,极易滋生细菌并加重对空调换热器的铝箔片的腐蚀,进而降低空调的使用体验并减少空调的使用寿命的问题。
在一些实施例中,用于空调自清洁的控制方法包括:接收到空调自清洁指令后, 控制空调执行包括凝霜阶段和化霜阶段的自清洁操作;在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。
在一些实施例中,用于空调自清洁的控制装置包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行前述用于空调自清洁的控制方法。
在一些实施例中,空调包括前述用于空调自清洁的控制装置。
本公开实施例提供的用于空调自清洁的控制方法及装置、空调,可以实现以下技术效果:
在接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作,并在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。这样,在空调自清洁结束后,转换空调风机转向,利用风机反转发热的特点,加快换热器表面的水分蒸发,降低空调内部环境湿度,能够有效避免细菌滋生并延缓空调换热器的铝箔片的腐蚀进程,从而提高空调的使用体验并提高空调的使用寿命。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于空调自清洁的控制方法的流程示意图;
图2是本公开实施例提供的另一个用于空调自清洁的控制方法的流程示意图;
图3是本公开实施例提供的一个用于空调自清洁的控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二” 等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1所示,本公开实施例提供一种用于空调自清洁的控制方法,包括以下步骤:
S101:接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作。
用户可以根据实际需求,通过遥控器等方式向空调器发送自清洁指令。空调器在接收到空调自清洁指令后,控制空调执行自清洁操作。空调室内换热器自清洁时,调节空调四通阀,控制空调室内换热器进入凝霜阶段,空调器以制冷模式运行,将室内空气中的水分以水珠的形式凝结在室内机换热器表面,凝霜后期空调器通过提高制冷量的方式,使前期凝结在换热器表面的水珠凝结成霜层,霜层与换热器表面的灰尘结合,并将其剥离;之后进入化霜阶段,空调器以制热模式运行,室内换热器盘管温度升高,霜层融化,灰尘也随着融化的水流汇集在接水盘中,完成室内换热器自清洁操作。空调室外换热器自清洁时,调节空调四通阀,控制空调室外换热器进入凝霜阶段,空调器以制热模式运行,将室外空气中的水分以水珠的形式凝结在室外机换热器表面,凝霜后期空调器通过提高制热量的方式,使前期凝结在换热器表面的水珠凝结成霜层,霜层与换热器表面的灰尘结合,并将其剥离;之后进入化霜阶段,空调器以制冷模式运行,室外换热器盘管温度升高,霜层融化,灰尘也随着融化的水流汇集在接水盘中,完成室外换热器自清洁操作。
S102:在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。
在空调室内换热器完成自清洁操作的情况下,空调室内机内部环境相对湿润,控制空调的室内风机反转运行以将空调室内换热器表面的水分烘干。在空调室外换热器完成自清洁操作的情况下,空调室外机内部环境相对湿润,控制空调的室外风机反转运行以将空调室外换热器表面的水分烘干。
可选地,控制空调的风机反转运行,包括:控制风机按照第一转速反转运行第一时长;风机按照第一转速反转运行第一时长后,获得空调出风口处的第一出风湿度;在第一出风湿度大于预设湿度的情况下,控制风机反转运行的转速在第一转速的基础上按照加速度逐渐减小的方式提高至第二转速,并控制风机反转运行的转速在第二转速的基础上按照加速度逐渐增大的方式降低至第一转速;控制风机按照第一转速反转运行。
这里,第一时长的取值范围为[5min,10min],例如,5min(分钟)、6min、8min、10min。前期实验中,控制空调风机按照第一转速反转运行第一时长,且确认空调换热器表面无明显水珠时记录此时空调出风口处的出风湿度。预设湿度为记录的多个出风湿度中出现频次最多的出风湿度。在空调出风口设置湿度传感器,用以检测空调出风口处的出风湿度。控制风机按照第一转速反转运行第一时长后,利用湿度传感器检测获得空调出风口处的第一出风湿度,如果第一出风湿度大于预设湿度,表明空调内部环境湿度较大,换热器表面水分较多,提升风机的反转速度来加速水分的蒸发。
第二转速与第一转速满足如下关系:
Figure PCTCN2021138393-appb-000001
其中,r 2为第二转速,r 1为第一转速,
Figure PCTCN2021138393-appb-000002
为比例系数。
Figure PCTCN2021138393-appb-000003
的取值范围为[1.6,2.1],例如,1.6、1.8、2、2.1。
风机长时间高速反转运行容易损伤风机的使用寿命,而且,风机反转运行发热,一定程度上容易影响空调正常的制冷或制热。考虑到上述因素,本公开技术方案中,在第一出风湿度大于预设湿度的情况下,在提高风机反转速度时,一方面限制风机反转的最高转速,另一方面保持风机高速反转运行的间断性,在加快空调换热器表面水分蒸发的同时,尽量避免对空调风机的损伤,以及对空调正常制冷或制热的影响。
采用本公开实施例提供的用于空调自清洁的控制方法,在接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作,并在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。这样,在空调自清洁结束后,转换空调风机转向,利用风机反转发热的特点,加快换热器表面的水分蒸发,降低空调内部环境湿度,能够有效避免细菌滋生并延缓空调换热器的铝箔片的腐蚀进程,从而提高空调的使用体验并提高空调的使用寿命。
在一些实施例中,用于空调自清洁的控制方法还包括:控制风机反转运行第二时长后,获得空调出风口处的出风湿度的第一湿度变化率;在第一湿度变化率小于第一预设湿度变化率的情况下,将空调的运行模式切换至预设运行模式。
这里,第二时长的取值范围为[10min,15min],例如,10min、12min、13min、15min。在空调室内换热器自清洁时,空调的预设运行模式为制热模式;在空调室外换热器自清洁时,空调的预设运行模式为制冷模式。前期实验中,在空调完成自清洁后,记录此时空调出风口处的出风湿度。控制空调风机按照第一转速反转运行第二时长,且确认空调换热器表面无明显水珠时记录此时空调出风口处的出风湿度,并计算此时空调出风口处的湿度变化率。第一预设湿度变化率为记录的多个湿度变化率中出现频次最多的湿度变化率。控制风机按照反转运行第二时长后,计算获得空调出风口处的出风湿度的第一湿度变化率,如果第一湿度变化率小于第一预设湿度变化率,表明空调内部环境湿度较大,换热器表面水分较多,将空调的运行模式切换至预设运行模式来加速水分的蒸发。
在一些实施例中,用于空调自清洁的控制方法还包括:将空调的运行模式切换至预设运行模式运行第三时长后,获得空调出风口处的出风湿度的第二湿度变化率;在第二湿度变化率小于第二预设湿度变化率的情况下,提高空调的压缩机的运行频率。
这里,第三时长的取值范围为[5min,10min],例如,5min(分钟)、6min、8min、10min。在空调室内换热器自清洁时,空调的预设运行模式为制热模式;在空调室外换热器自清洁时,空调的预设运行模式为制冷模式。前期实验中,将空调的运行模式切换至预设运行模式时,记录此时空调出风口处的出风湿度。将空调的运行模式切换至预设运行模式运行第三时长后,且确认空调换热器表面无水珠时记录此时空调出风口处的出风湿度,并计算此时空调出风口处的湿度变化率。第二预设湿度变化率为记录的多个湿度变化率中出现频次最多的湿度变化率。将空调的运行模式切换至预设运行模式运行第三时长后,计算获得空调出风口处的出风湿度的第二湿度变化率(即从将空调的运行模式切换至预设运行模式至第三时长空调出风口处的湿度变化率),如果第二湿度变化率小于第二预设湿度变化率,表明空调内部环境湿度较大,换热器表面水分较多,通过提高空调的压缩机的运行频率来加速水分的蒸发。
可选地,提高空调的压缩机的运行频率包括:获得空调出风口处的第二出风湿 度;计算第二出风湿度与预设湿度的湿度差值,并确定与湿度差值对应的运行频率增量;在压缩机的当前运行频率的基础上,按照运行频率增量提高压缩机的运行频率。
这里,预设湿度的可选取值范围为[40%,60%],例如,40%、50%、55%、60%。实际应用中,建立湿度差值与压缩机的运行频率增量的对应关系表,在该对应关系表中,运行频率增量与湿度差值正相关。基于计算获得的湿度差值,通过查找预建立的对应关系表即可确定相应的压缩机的运行频率增量。这样,利用第二出风湿度与预设湿度的湿度差值确定压缩机的运行频率增量,进而在压缩机的当前运行频率的基础上,按照运行频率增量提高压缩机的运行频率,能够实现对压缩机的精准控制,更好地实现空调自清洁操作后换热器的除湿作用。
在一些实施例中,空调包括设置于换热器的电加热装置;用于空调自清洁的控制方法还包括:将空调的运行模式切换至预设运行模式运行第三时长后,获得空调出风口处的出风湿度的第二湿度变化率;在第二湿度变化率小于第二预设湿度变化率的情况下,控制电加热装置运行。
将空调的运行模式切换至预设运行模式运行第三时长后,计算获得空调出风口处的出风湿度的第二湿度变化率,如果第二湿度变化率小于第二预设湿度变化率,表明空调内部环境湿度较大,换热器表面水分较多,通过控制电加热装置运行来加速换热器表面水分的蒸发,有助于更好地实现空调自清洁操作后换热器的除湿作用。
在一些实施例中,用于空调自清洁的控制方法还包括:控制空调完成一次自清洁操作后,获得空调启动运行后的预设时段内换热器与风扇之间的环境温度变化率;根据环境温度变化率与预设温度变化率的大小关系,确定是否控制空调再次执行自清洁操作。
这里,预设温度变化率可以是前期试验过程中,当确认换热器无灰尘堆积时检测到的空调启动运行后的预设时段(例如启动后的5~10min)内换热器与风扇之间的环境温度变化率。在空调启动运行后的预设时段内,由于换热器灰尘堆积影响换热器换热系数的原因,空调换热器存在积尘时的换热器与风扇之间的环境温度变化率要小于空调换热器没有灰尘堆积时的换热器与风扇之间的环境温度变化率。因此根据环境温度变化率与预设温度变化率的大小关系,控制空调是否再次执行自清洁操作,以避免此次自清洁操作清洁不彻底。
可选地,根据环境温度变化率与预设温度变化率的大小关系,确定是否控制空调再次执行自清洁操作,包括:在环境温度变化率小于预设温度变化率的情况下,控制空调再次执行自清洁操作;在环境温度变化率大于或等于预设温度变化率的情况下,控制空调结束自清洁操作。
当环境温度变化率小于预设温度变化率时,表明换热器还存在积尘现象,此次自清洁操作不彻底,控制空调再次执行自清洁操作;当环境温度变化率大于或等于预设温度变化率时,表明换热器暂不存在积尘现象,此次自清洁操作较为彻底,控制空调结束自清洁操作。这样,能够提高空调自清洁操作的清洁程度。
结合图2所示,本公开实施例提供一种用于空调自清洁的控制方法,包括以下步骤:
S201:接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作。
S202:在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。
S203:控制风机反转运行第二时长后,获得空调出风口处的出风湿度的第一湿度变化率。
S204:在第一湿度变化率小于第一预设湿度变化率的情况下,将空调的运行模式切换至预设运行模式。
S205:将空调的运行模式切换至预设运行模式运行第三时长后,获得空调出风口处的出风湿度的第二湿度变化率。
S206:在第二湿度变化率小于第二预设湿度变化率的情况下,提高空调的压缩机的运行频率,并控制电加热装置运行。
S207:控制空调完成一次自清洁操作后,获得空调启动运行后的预设时段内换热器与风扇之间的环境温度变化率。
S208:根据环境温度变化率与预设温度变化率的大小关系,确定是否控制空调再次执行自清洁操作。
采用本公开实施例提供的用于空调自清洁的控制方法,在空调自清洁结束后,转换空调风机转向,利用风机反转发热的特点,加快换热器表面的水分蒸发,降低空调内部环境湿度,能够有效避免细菌滋生并延缓空调换热器的铝箔片的腐蚀进程,从而提高空调的使用体验并提高空调的使用寿命,同时,计算获得空调出风口 处的湿度变化率,并根据湿度变化率与预设湿度变化率的关系切换空调的运行模式/控制电加热装置运行,加速换热器表面水分的蒸发,有助于更好地实现空调自清洁操作后换热器的除湿作用,此外,根据环境温度变化率与预设温度变化率的大小关系,控制空调是否再次执行自清洁操作,以避免此次自清洁操作清洁不彻底,能够提高空调自清洁操作的清洁程度。
结合图3所示本公开实施例提供一种用于空调自清洁的控制装置,包括处理器(processor)30和存储器(memory)31,还可以包括通信接口(Communication Interface)32和总线33。其中,处理器30、通信接口32、存储器31可以通过总线33完成相互间的通信。通信接口32可以用于信息传输。处理器30可以调用存储器31中的逻辑指令,以执行上述实施例的用于空调自清洁的控制方法。
此外,上述的存储器31中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器31作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器30通过运行存储在存储器31中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于空调自清洁的控制方法。
存储器31可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器31可以包括高速随机存取存储器,还可以包括非易失性存储器。
采用本公开实施例提供的用于空调自清洁的控制装置,在接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作,并在空调完成自清洁操作的情况下,控制空调的风机反转运行以将空调的换热器表面的水分烘干。这样,在空调自清洁结束后,转换空调风机转向,利用风机反转发热的特点,加快换热器表面的水分蒸发,降低空调内部环境湿度,能够有效避免细菌滋生并延缓空调换热器的铝箔片的腐蚀进程,从而提高空调的使用体验并提高空调的使用寿命。
本公开实施例提供了一种空调,包含上述的用于空调自清洁的控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调自清洁的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计 算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调自清洁的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。例如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。 本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们 有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调自清洁的控制方法,其特征在于,包括:
    接收到空调自清洁指令后,控制空调执行包括凝霜阶段和化霜阶段的自清洁操作;
    在所述空调完成所述自清洁操作的情况下,控制所述空调的风机反转运行以将所述空调的换热器表面的水分烘干。
  2. 根据权利要求1所述的控制方法,其特征在于,所述控制所述空调的风机反转运行,包括:
    控制所述风机按照第一转速反转运行第一时长;
    所述风机按照所述第一转速反转运行所述第一时长后,获得所述空调出风口处的第一出风湿度;
    在所述第一出风湿度大于预设湿度的情况下,控制所述风机反转运行的转速在所述第一转速的基础上按照加速度逐渐减小的方式提高至第二转速,并控制所述风机反转运行的转速在所述第二转速的基础上按照加速度逐渐增大的方式降低至所述第一转速;
    控制所述风机按照所述第一转速反转运行。
  3. 根据权利要求1所述的控制方法,其特征在于,还包括:
    控制所述风机反转运行第二时长后,获得所述空调出风口处的出风湿度的第一湿度变化率;
    在所述第一湿度变化率小于第一预设湿度变化率的情况下,将所述空调的运行模式切换至预设运行模式。
  4. 根据权利要求3所述的控制方法,其特征在于,还包括:
    将所述空调的运行模式切换至所述预设运行模式运行第三时长后,获得所述空调出风口处的出风湿度的第二湿度变化率;
    在所述第二湿度变化率小于第二预设湿度变化率的情况下,提高所述空调的压缩机的运行频率。
  5. 根据权利要求4所述的控制方法,其特征在于,所述提高所述空调的压缩机的运行频率,包括:
    获得所述空调出风口处的第二出风湿度;
    计算所述第二出风湿度与预设湿度的湿度差值,并确定与所述湿度差值对应的 运行频率增量;
    在所述压缩机的当前运行频率的基础上,按照所述运行频率增量提高所述压缩机的运行频率。
  6. 根据权利要求3所述的控制方法,其特征在于,所述空调包括设置于所述换热器的电加热装置;所述控制方法还包括:
    将所述空调的运行模式切换至所述预设运行模式运行第三时长后,获得所述空调出风口处的出风湿度的第二湿度变化率;
    在所述第二湿度变化率小于第二预设湿度变化率的情况下,控制所述电加热装置运行。
  7. 根据权利要求1至6任一项所述的控制方法,其特征在于,还包括:
    控制所述空调完成一次自清洁操作后,获得所述空调启动运行后的预设时段内所述换热器与风扇之间的环境温度变化率;
    根据所述环境温度变化率与预设温度变化率的大小关系,确定是否控制所述空调再次执行自清洁操作。
  8. 根据权利要求7所述的控制方法,其特征在于,所述根据所述环境温度变化率与预设温度变化率的大小关系,确定是否控制所述空调再次执行自清洁操作,包括:
    在所述环境温度变化率小于所述预设温度变化率的情况下,控制所述空调再次执行自清洁操作;
    在所述环境温度变化率大于或等于所述预设温度变化率的情况下,控制所述空调结束自清洁操作。
  9. 一种用于空调自清洁的控制装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的用于空调自清洁的控制方法。
  10. 一种空调,其特征在于,包括如权利要求9所述的用于空调自清洁的控制装置。
PCT/CN2021/138393 2021-05-20 2021-12-15 用于空调自清洁的控制方法及装置、空调 WO2022242141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110554296.1A CN113357791B (zh) 2021-05-20 2021-05-20 用于空调自清洁的控制方法及装置、空调
CN202110554296.1 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022242141A1 true WO2022242141A1 (zh) 2022-11-24

Family

ID=77527106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138393 WO2022242141A1 (zh) 2021-05-20 2021-12-15 用于空调自清洁的控制方法及装置、空调

Country Status (2)

Country Link
CN (1) CN113357791B (zh)
WO (1) WO2022242141A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357791B (zh) * 2021-05-20 2022-09-06 青岛海尔空调器有限总公司 用于空调自清洁的控制方法及装置、空调
CN114264039A (zh) * 2021-12-15 2022-04-01 三菱重工海尔(青岛)空调机有限公司 一种空调机除霜控制方法
CN114719407B (zh) * 2022-02-21 2023-11-07 宁波奥克斯电气股份有限公司 冷凝器除尘控制方法、装置及空调器
CN114877485B (zh) * 2022-03-17 2024-02-20 青岛海尔空调器有限总公司 用于空调器防潮的控制方法及装置、空调器、存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880121A (zh) * 2015-04-27 2015-09-02 广东美的暖通设备有限公司 一种空调冷凝器的清洗装置及自动清洗方法
CN109140707A (zh) * 2018-07-19 2019-01-04 珠海格力电器股份有限公司 一种空调器自清洁方法、系统及空调器
JP2019116993A (ja) * 2017-12-27 2019-07-18 株式会社富士通ゼネラル 空気調和機
CN110736186A (zh) * 2017-06-14 2020-01-31 青岛海尔空调器有限总公司 一种空调器自清洁的控制方法及装置
CN111854053A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN113357791A (zh) * 2021-05-20 2021-09-07 青岛海尔空调器有限总公司 用于空调自清洁的控制方法及装置、空调

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679111B (zh) * 2017-01-23 2020-04-14 深圳创维空调科技有限公司 一种空调器换热器的自动清洁处理方法及系统
CN112128928A (zh) * 2019-06-25 2020-12-25 青岛海尔空调器有限总公司 空调器及其清洁杀菌方法
CN110454914B (zh) * 2019-08-05 2021-04-20 广东美的制冷设备有限公司 空调器的清洁方法、装置、空调器及电子设备
CN112984710B (zh) * 2021-02-01 2022-07-19 青岛海尔空调器有限总公司 用于空调防凝露的控制方法及装置、空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880121A (zh) * 2015-04-27 2015-09-02 广东美的暖通设备有限公司 一种空调冷凝器的清洗装置及自动清洗方法
CN110736186A (zh) * 2017-06-14 2020-01-31 青岛海尔空调器有限总公司 一种空调器自清洁的控制方法及装置
JP2019116993A (ja) * 2017-12-27 2019-07-18 株式会社富士通ゼネラル 空気調和機
CN109140707A (zh) * 2018-07-19 2019-01-04 珠海格力电器股份有限公司 一种空调器自清洁方法、系统及空调器
CN111854053A (zh) * 2020-07-24 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN113357791A (zh) * 2021-05-20 2021-09-07 青岛海尔空调器有限总公司 用于空调自清洁的控制方法及装置、空调

Also Published As

Publication number Publication date
CN113357791B (zh) 2022-09-06
CN113357791A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2022242141A1 (zh) 用于空调自清洁的控制方法及装置、空调
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
JP7383829B2 (ja) エアコンのクリーニング方法及びエアコン
CN112984743B (zh) 用于空调自清洁的控制方法及装置、空调
WO2019148973A1 (zh) 利用自清洁进行防凝露的方法及空调
CN107975914B (zh) 一种电加热控制方法
CN110848882B (zh) 空调器及其自清洁控制方法和控制装置
WO2022242142A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN110736191B (zh) 用于空调自清洁的控制方法及装置、空调
WO2022160649A1 (zh) 用于空调自清洁的控制方法及装置、空调
WO2022160650A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN112460763B (zh) 一种空调控制方法、装置、存储介质及空调
WO2021051777A1 (zh) 空调器的控制方法及装置
WO2024109086A1 (zh) 特定场所的空调器控制方法、空调控制器及相关设备
CN110736196B (zh) 用于空调自清洁的控制方法及装置、空调
CN110848881B (zh) 空调器及其自清洁控制方法和控制装置
WO2023138092A1 (zh) 用于控制空调的方法、装置及空调
WO2021035892A1 (zh) 一种空调和空调清洁方法
WO2023040579A1 (zh) 用于调节室内环境的方法及装置、空调器
CN114383219B (zh) 用于空调器除霜的方法及装置、空调器
CN113357749B (zh) 用于除湿控制的方法及装置、空调器
CN114838494B (zh) 用于空调防凝露的方法、装置、空调和存储介质
CN110848922B (zh) 空调器及其自清洁控制方法和控制装置
CN112665022B (zh) 空调器及其新风除湿系统清洁的控制方法和装置
WO2023159953A1 (zh) 用于空调风机自清洁的方法及装置、空调、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940584

Country of ref document: EP

Kind code of ref document: A1