WO2021051777A1 - 空调器的控制方法及装置 - Google Patents

空调器的控制方法及装置 Download PDF

Info

Publication number
WO2021051777A1
WO2021051777A1 PCT/CN2020/082428 CN2020082428W WO2021051777A1 WO 2021051777 A1 WO2021051777 A1 WO 2021051777A1 CN 2020082428 W CN2020082428 W CN 2020082428W WO 2021051777 A1 WO2021051777 A1 WO 2021051777A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
indoor fan
heat exchanger
control method
mode
Prior art date
Application number
PCT/CN2020/082428
Other languages
English (en)
French (fr)
Inventor
邱才光
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021051777A1 publication Critical patent/WO2021051777A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate

Definitions

  • This application relates to the field of air conditioning technology, and in particular to a control method and device of an air conditioner.
  • Air conditioners are used by more and more people to regulate indoor air.
  • the air conditioner is likely to condense water droplets on the heat exchanger of the indoor unit during the cooling or dehumidification process. Therefore, a water receiving tray is set at the bottom of the heat exchanger, and the water receiving tray is used to receive the water on the heat exchanger. The condensed water is then discharged from the indoor unit through the drain pipe.
  • the air conditioner After the air conditioner is turned off, the water droplets attached to the surface of the heat exchanger are small, and hang on the lower edge of the heat exchanger near the wind wheel of the fan due to the action of gravity. After the air conditioner is restarted, the wind wheel rotates, sucking the water droplets from the lower edge of the heat exchanger into the wind wheel, and throws it out from the air outlet of the air conditioner as the wind wheel rotates at a high speed, polluting the room or damping users.
  • the main purpose of this application is to provide a control method and device for an air conditioner, which aims to solve the technical problem that the air conditioner blows water, pollutes the room or wets users.
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger
  • the control method of the air conditioner includes:
  • the indoor fan is controlled to rotate in the second direction, so that the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet.
  • the preset condition includes at least one of the following:
  • the rotation time of the indoor fan rotating in the first direction is greater than the preset time
  • the air conditioner has a storage module, and before the air conditioner is shut down, storing the current operating mode of the air conditioner in the storage module, and after the step of receiving the power-on instruction, the method further includes:
  • the operation mode stored in the storage module of the air conditioner is a cooling mode or a dehumidification mode, and the control of the indoor fan to rotate in a first direction is executed, so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger A step of.
  • the method further includes:
  • the air conditioner is powered on for the first time, and the control of the indoor fan to rotate in the first direction is executed, so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger.
  • the method further includes:
  • the operation mode is a preset mode, and the step of controlling the indoor fan to rotate in a first direction so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger is performed, wherein the preset The mode includes at least one of a cooling mode, a dehumidification mode, and an air supply mode.
  • the method further includes:
  • the step of controlling the indoor fan to rotate in a first direction is executed so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the step of controlling the indoor fan to rotate in a first direction so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger includes:
  • the time interval is less than the preset time interval, and the rotation parameter is determined according to the time interval;
  • the indoor fan is controlled to rotate in a first direction according to the determined rotation parameter, so that the air outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the present application also provides a control method of an air conditioner.
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger, and the control method of the air conditioner includes:
  • the method further includes:
  • the operation mode is a cooling mode or a dehumidification mode, and the step of controlling the indoor fan to rotate in a first direction is executed so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger.
  • the preset condition includes at least one of the following:
  • the rotation time of the indoor fan rotating in the first direction is greater than the preset time
  • this application also provides a control device for an air conditioner, wherein the control device for the air conditioner includes: a memory, a processor, and stored in the memory and capable of running on the processor
  • the control program of the air conditioner when the control program of the air conditioner is executed by the processor, realizes the steps of the control method of the air conditioner as described above.
  • control device of the air conditioner is an air conditioner
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger.
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger. After the air conditioner is turned on, the indoor fan is controlled to rotate in a first direction. When the indoor fan rotates in the first direction, the outlet direction of the indoor fan blows from the air outlet to the heat exchanger. After detecting that the air conditioner meets the preset conditions, the indoor fan is controlled to rotate in the second direction. When the indoor fan rotates in the second direction, the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet, and heat is exchanged with the airflow The cold air or warm air on the surface of the device is blown into the room to realize the regulation of the indoor ambient temperature.
  • the air conditioner After the air conditioner is turned on, first rotate the indoor fan according to the first wind direction, and blow the wind direction of the indoor fan to the heat exchanger, so as to blow the water droplets hanging from the bottom edge of the heat exchanger to the gap of the heat exchanger fins.
  • the gaps of the fins gather and slide down to the water receiving tray and discharge the indoor unit to prevent the air conditioner from starting to blow water and pollute the ground or wet the user.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in a solution of an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a first embodiment of a control method for an air conditioner according to this application;
  • FIG. 3 is a schematic flowchart of a second embodiment of a control method for an air conditioner according to the present application.
  • FIG. 4 is a schematic flowchart of a third embodiment of a control method for an air conditioner according to this application.
  • FIG. 5 is a schematic flowchart of a fourth embodiment of a control method for an air conditioner according to this application.
  • Fig. 6 is a schematic flowchart of a fifth embodiment of a control method for an air conditioner according to the present application.
  • the indoor fan is controlled to rotate in the second direction, so that the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet.
  • the prior art air conditioner Since the prior art air conditioner is shut down, the water droplets attached to the surface of the heat exchanger are relatively small, and they hang on the lower edge of the heat exchanger near the wind wheel of the fan due to the action of gravity. After the air conditioner is restarted, the wind wheel rotates, sucking the water droplets from the lower edge of the heat exchanger into the wind wheel, and throws it out from the air outlet of the air conditioner as the wind wheel rotates at a high speed, polluting the room or damping users.
  • the indoor unit of an air conditioner includes an indoor fan and a heat exchanger. After the air conditioner is turned on, the indoor fan is controlled to rotate in a first direction. When the indoor fan rotates in the first direction, the outlet direction of the indoor fan blows from the air outlet to the heat exchanger. After detecting that the air conditioner meets the preset conditions, the indoor fan is controlled to rotate in the second direction. When the indoor fan rotates in the second direction, the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet, and heat is exchanged with the airflow The cold air or warm air on the surface of the device is blown into the room to realize the regulation of the indoor ambient temperature.
  • the air conditioner After the air conditioner is turned on, first rotate the indoor fan according to the first wind direction, and blow the wind direction of the indoor fan to the heat exchanger, so as to blow the water droplets hanging from the bottom edge of the heat exchanger to the gap of the heat exchanger fins.
  • the gaps of the fins gather and slide down to the water receiving tray and discharge the indoor unit to prevent the air conditioner from starting to blow water and pollute the ground or wet the user.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in a solution of an embodiment of the present application.
  • the terminal of the embodiment of the present application may be an air conditioner, or a mobile terminal device with control functions such as a server, a smart phone, a tablet computer, and a portable computer.
  • the solution of the embodiment of the present application relates to an air conditioner, and the air conditioner includes: a processor 101, such as a CPU, a memory 102, and a communication bus 103.
  • the communication bus 103 is used to implement connection and communication between these components.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the memory 102 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory. As shown in FIG. 1, the memory 102, which is a computer storage medium, may include a control program of the air conditioner; and the processor 101 may be used to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the indoor fan is controlled to rotate in the second direction, so that the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the rotation time of the indoor fan rotating in the first direction is greater than the preset time
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the operation mode stored in the storage module of the air conditioner is a cooling mode or a dehumidification mode, and the control of the indoor fan to rotate in a first direction is executed, so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger A step of.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the air conditioner is powered on for the first time, and the control of the indoor fan to rotate in the first direction is executed, so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the operation mode is a preset mode, and the step of controlling the indoor fan to rotate in a first direction so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger is performed, wherein the preset The mode includes at least one of a cooling mode, a dehumidification mode, and an air supply mode.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the step of controlling the indoor fan to rotate in a first direction is executed so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the time interval is less than the preset time interval, and the rotation parameter is determined according to the time interval;
  • the indoor fan is controlled to rotate in a first direction according to the determined rotation parameter, so that the air outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the operation mode is a cooling mode or a dehumidification mode, and the step of controlling the indoor fan to rotate in a first direction is executed so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger.
  • the processor 101 may call the control program of the air conditioner stored in the memory 102, and also perform the following operations:
  • the rotation time of the indoor fan rotating in the first direction is greater than the preset time
  • the control method of the air conditioner includes:
  • Step S10 receiving a power-on instruction.
  • the power-on instruction received by the air conditioner may be a power-on instruction triggered by the user through the air conditioner's remote control or control panel, or it may be a power-on state instruction set by the air conditioner to start regularly.
  • the air conditioner receives the startup instruction and forwards the startup instruction to the server, so that the server obtains the corresponding control program based on the startup instruction, and executes the control program to control the operation of the air conditioner.
  • Step S20 Control the indoor fan to rotate in the first direction, so that the outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the indoor unit of the air conditioner involved in the present application includes an indoor fan and a heat exchanger, and the indoor fan is installed between the heat exchanger and the air outlet of the indoor unit of the air conditioner.
  • the rotation direction of the indoor fan can be adjusted, that is, driven by the motor, the wind wheel of the fan can rotate in two opposite directions.
  • the indoor unit of the air conditioner also includes a water receiving pan and a drain pipe.
  • the heat exchanger is connected to the water receiving pan, and the water receiving pan is connected to the drain pipe.
  • the surface temperature of the heat exchanger of the air conditioner is low, and water droplets are easy to condense.
  • a large amount of water droplets collect and flow to the drain pan, and discharge the indoor unit along with the drain pipe connected to the drain pan. Avoid condensation dripping on other components of the indoor unit, causing damage to the components.
  • the heat exchanger is composed of a large number of inclined fins, when the water droplets on the surface of the heat exchanger are less condensed, the water droplets are scattered on the surface of the heat exchanger. A small amount of scattered water droplets that have not gathered are suspended on the lower edge of the heat exchanger with the action of gravity.
  • the indoor fan rotates normally (the direction of the wind blows from the heat exchanger to the air outlet), and the airflow sucks the water droplets into the wind wheel of the indoor fan, and then follows the high speed.
  • the spinning wind wheel blows out. Therefore, in order to avoid the above-mentioned water blowing phenomenon when the air conditioner is started, a control method of the air conditioner is provided. After the air conditioner receives the startup instruction, the indoor fan is controlled to rotate in the first direction, so that the air outlet direction of the indoor unit is blown from the air outlet to the heat exchanger.
  • the water droplets hanging from the lower edge of the heat exchanger can be blown into the fins of the heat exchanger.
  • the water droplets gather in the fins, flow into the water receiving pan along the surface of the heat exchanger, and discharge with the drain pipe connected to the water receiving pan Indoor unit.
  • Step S30 When the preset condition is satisfied, the indoor fan is controlled to rotate in the second direction, so that the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet.
  • the indoor fan rotates in the first direction and blows the water droplets on the bottom edge of the heat exchanger to the drain pan, in order to ensure the normal operation of the air conditioner, the indoor fan is controlled to rotate in the second direction, and the air outlet direction of the air conditioner indoor unit is changed from The heat exchanger is blown to the air outlet, thereby blowing the cold or hot air on the surface of the heat exchanger into the room to adjust the indoor ambient temperature.
  • the first direction and the second direction are two opposite directions.
  • the target operating mode of the air conditioner is obtained.
  • the air conditioner runs in the target operating mode. That is, when the indoor fan is controlled to rotate in the second direction, the rotation speed of the indoor fan is the rotation speed corresponding to the target operation mode in the air conditioner operation program.
  • the preset duration can be obtained by specific experiments, and different models and performances of air conditioners can be set with different preset durations.
  • the value of the preset duration can be 20-30 seconds, but is not limited to 20-30 seconds.
  • a humidity sensor is set on the surface of the heat exchanger.
  • the humidity sensor detects the humidity on the surface of the heat exchanger in real time. When the humidity on the surface of the heat exchanger is detected to be less than the preset humidity, it indicates that the water droplets on the lower edge of the heat exchanger have been completely blown down to the surface of the heat exchanger. In the water tray.
  • the preset humidity can be set according to the performance of the air conditioner, and the value of the preset humidity can be any humidity value with a relative humidity less than 50%, but is not limited to less than 50%.
  • a temperature sensor When a temperature sensor is set on the surface of the heat exchanger, it can also be used to obtain the humidity difference between the surface humidity of the heat exchanger and the current humidity when the air conditioner is turned on.
  • the humidity difference is greater than the preset humidity difference, the surface moisture of the heat exchanger decreases, which can be considered The water droplets on the lower edge of the heat exchanger have been completely blown down into the water receiving pan.
  • the preset humidity difference can be any humidity value greater than 20%, but is not limited to greater than 20%.
  • the criterion for judging whether the water droplets on the lower edge of the heat exchanger are completely blown down to the drain pan is whether the current state of the air conditioner or the heat exchanger meets the preset conditions.
  • the preset condition can be that the rotation time of the indoor fan of the air conditioner in the first direction is greater than the preset time, the surface humidity of the heat exchanger is detected to be less than the preset humidity, or it is between the surface humidity of the heat exchanger and the current humidity when the machine is turned on The humidity difference is greater than the preset humidity difference.
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger.
  • the indoor fan is controlled to rotate in the first direction.
  • the indoor fan rotates in the first direction
  • the outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the indoor fan is controlled to rotate in the second direction.
  • the indoor fan rotates in the second direction
  • the air outlet direction of the indoor fan is blown from the heat exchanger to the air outlet, and heat is exchanged with the airflow
  • the cold air or warm air on the surface of the device is blown into the room to realize the regulation of the indoor ambient temperature.
  • the air conditioner After the air conditioner is turned on, first rotate the indoor fan according to the first wind direction, and blow the wind direction of the indoor fan to the heat exchanger, so as to blow the water droplets hanging from the bottom edge of the heat exchanger to the gap of the heat exchanger fins.
  • the gaps of the fins gather and slide down to the water receiving tray and discharge the indoor unit to prevent the air conditioner from starting to blow water and pollute the ground or wet the user.
  • the second embodiment of the control method of the air conditioner of the present application is based on the above-mentioned first embodiment, and after the step S10, it further includes:
  • Step S40 Obtain the operating mode stored in the storage module of the air conditioner.
  • a storage module is provided in the air conditioner, and the operation mode of the air conditioner before the air conditioner is shut down is stored in the storage module. Among them, when storing the operation mode of the air conditioner before this shutdown, the previously stored operation mode in the storage module is deleted, that is, the storage mode of the operation mode is replacement storage, and only one operation mode is stored in the storage module.
  • the storage time is recorded at the same time.
  • the operation mode with the most recent storage time is taken as the operation mode stored in the storage module described in this embodiment, so that the air conditioner or the server can obtain the operation program of the air conditioner according to the operation mode.
  • Control the operation of the air conditioner For example, if "cooling mode, 2019.09.09” and “air supply mode, 2019.09.10" are stored in the storage module, the operation mode stored in the storage module of the air conditioner acquired in this embodiment is the air supply mode.
  • Step S50 It is judged whether the operation mode stored in the storage module of the air conditioner is a cooling mode or a dehumidification mode.
  • the operation mode stored in the storage module of the air conditioner is the cooling mode or the dehumidification mode, and the step S20 is executed, that is, the indoor fan is controlled to rotate in the first direction, so that the air outlet direction of the indoor fan is blown from the air outlet. To the heat exchanger.
  • the air conditioner When the air conditioner is running in the cooling mode or dehumidification mode, the temperature difference between the surface temperature of the heat exchanger and the return air temperature is large, and the surface temperature of the heat exchanger is low, the surface of the heat exchanger is prone to condensation; while in the air supply mode, The surface temperature of the heat exchanger is the same as the indoor temperature. In the heating mode, the surface temperature of the heat exchanger is higher than the return air temperature, and no water droplets are formed on the surface of the heat exchanger.
  • the air conditioner stores the operating mode of the air conditioner before the last shutdown, and determines whether the operating mode is the cooling or dehumidification mode.
  • the indoor fan is controlled to rotate in the first direction to blow air to the heat exchanger and blow away the water droplets hanging along the bottom of the heat exchanger.
  • the indoor fan does not need to be rotated in the first direction, but the target operating mode of the air conditioner is directly operated, that is, the indoor fan is controlled to rotate in the second direction to turn the indoor fan
  • the direction of the air outlet is from the heat exchanger to the air outlet.
  • the server controls the operation of the air conditioner
  • a storage module is established in the server, and the operation mode of the air conditioner before each shutdown is stored in the storage module.
  • the indoor fan of the air conditioner can be controlled to rotate in the first direction or in the second direction according to the stored operation mode.
  • step S20 that is, the subsequent steps, is executed to control the indoor fan to rotate in the first direction, so that the air outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • a storage module is provided in the air conditioner, and the current operating mode of the air conditioner is stored in the storage module every time the air conditioner is shut down.
  • control the indoor fan In the cooling mode or dehumidification mode in the operating mode, control the indoor fan to rotate in the first direction to blow air to the heat exchanger and move the lower edge of the heat exchanger.
  • the hanging water droplets are blown down to the water receiving tray and discharged from the indoor unit to avoid the phenomenon of starting water blowing.
  • the indoor fan is directly controlled to rotate in the second direction to run the target operating mode after the current startup.
  • the third embodiment of the control method of the air conditioner of the present application is based on the above-mentioned first or second embodiment. After the step S10, the method further includes:
  • Step S60 Acquire the current operating mode of the air conditioner, where the preset mode includes at least one of a cooling mode, a dehumidification mode, and an air supply mode.
  • Step S70 Determine whether the current operating mode of the air conditioner is a preset mode.
  • the operation mode is a preset mode, and step S20 is executed, that is, the indoor fan is controlled to rotate in a first direction, so that the air outlet direction of the indoor fan is blown from the air outlet to the heat exchanger.
  • the indoor fan is started to blow air into the room, and the warm air on the surface of the heat exchanger is brought indoors and the indoor temperature is increased. Therefore, in the heating mode, even if there are water droplets on the surface of the heat exchanger, as the temperature of the heat exchanger rises, the water droplets are gradually evaporated. In the cooling mode, dehumidification mode and air supply mode, the water droplets suspended from the heat exchanger will be directly blown into the room.
  • the indoor fan before the indoor fan is controlled to rotate in the first direction and blow air to the heat exchanger, it is judged whether the current operation mode is the preset mode.
  • the operation mode of the air conditioner is the preset mode
  • step S20 To prevent the air conditioner from starting to blow water; when the current operating mode of the air conditioner is a mode other than the preset mode, directly control the air conditioner to operate according to the current operating mode.
  • the preset mode includes at least one of a cooling mode, a dehumidification mode, and an air supply mode.
  • the current operation mode of the air conditioner is obtained.
  • the indoor fan is controlled to rotate in the first direction, Blow air to the heat exchanger.
  • the current operating mode is another mode, the air conditioner is directly controlled to enter the current operating mode.
  • the current operating mode of the air conditioner is obtained to determine whether the water droplets on the surface of the heat exchanger need to be treated, and then the air conditioner is controlled to run the current operating mode.
  • the fourth embodiment of the control method of the air conditioner according to the present application is based on any one of the above-mentioned first to third embodiments, and after the step S10, it further includes:
  • Step S80 Obtain the time interval between the time point when the power-on instruction is received and the time point when the power-off last time.
  • Step S90 Determine whether the time interval is less than a preset time interval.
  • step S10 is executed, that is, the indoor fan is controlled to rotate in a first direction, so that the air outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the water droplets hanging on the bottom edge of the heat exchanger will gradually evaporate naturally when the air conditioner is turned off for a long time. Therefore, after a long interval, the air conditioner is turned on again, and there is no water droplets in the heat exchanger at this time. The water blowing phenomenon will not occur when running the current operating mode directly.
  • step S20 that is, the subsequent steps, to control the indoor fan to rotate in the first direction, blow air to the heat exchanger, and remove the heat on the surface of the heat exchanger.
  • the water droplets collect in the gaps of the heat exchanger fins and then fall into the drain pan to prevent the air conditioner from blowing water, polluting the room or damping users.
  • the time interval is greater than or equal to the preset time interval, the current operating mode of the air conditioner is directly operated, so that the air conditioner enters the working mode as soon as possible, adjusts the indoor environment, and improves the working efficiency of the air conditioner.
  • the rotation parameter of the indoor fan rotating in the first direction is determined according to the specific time interval.
  • the rotation parameters include rotation speed and rotation duration. Since the longer the time interval, the more water droplets on the heat exchanger evaporate, and the rotation parameters are determined according to the time interval, which can save the energy consumption of the indoor fan and shorten the waiting time for the air conditioner to enter the current operating mode.
  • the time interval is inversely proportional to the rotation speed and the rotation time, that is, the longer the time interval, the lower the rotation speed of the indoor fan, and the shorter the rotation time.
  • each time the air conditioner is turned off is recorded, so as to obtain the time interval between the time when the power-on instruction is received and the last time the air conditioner is turned off.
  • step S20 that is, the subsequent steps, to control the indoor fan to rotate in the first direction, blow air to the heat exchanger, and remove the heat on the surface of the heat exchanger.
  • the water droplets collect in the gaps of the heat exchanger fins and then fall into the drain pan to prevent the air conditioner from blowing water, polluting the room or damping users.
  • the current operating mode of the air conditioner is directly operated, so that the air conditioner enters the working mode as soon as possible, adjusts the indoor environment, and improves the working efficiency of the air conditioner.
  • a fifth embodiment of a control method of an air conditioner according to the present application includes:
  • Step S100 receiving a shutdown instruction.
  • Step S110 Control the indoor fan to rotate in a direction opposite to the current rotation direction, so that the air outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the indoor unit of the air conditioner involved in the present application includes an indoor fan and a heat exchanger, and the indoor fan is installed between the heat exchanger and the air outlet of the indoor unit of the air conditioner.
  • the rotation direction of the indoor fan can be adjusted, that is, driven by the motor, the wind wheel of the fan can rotate in two opposite directions.
  • the indoor unit of the air conditioner also includes a water receiving pan and a drain pipe.
  • the heat exchanger is connected to the water receiving pan, and the water receiving pan is connected to the drain pipe.
  • the surface temperature of the heat exchanger of the air conditioner is low, and water droplets are easy to condense.
  • a large amount of water droplets collect and flow to the drain pan, and discharge the indoor unit along with the drain pipe connected to the drain pan. Avoid condensation dripping on other components of the indoor unit, causing damage to the components.
  • the heat exchanger is composed of a large number of inclined fins, when the water droplets on the surface of the heat exchanger are less condensed, the water droplets are scattered on the surface of the heat exchanger. A small amount of scattered water droplets that have not gathered are suspended on the lower edge of the heat exchanger with the action of gravity.
  • the indoor fan rotates normally (the direction of the wind blows from the heat exchanger to the air outlet), and the airflow sucks the water droplets into the wind wheel of the indoor fan, and then follows the high speed. The spinning wind wheel blows out. Therefore, in order to avoid the above-mentioned water blowing phenomenon when the air conditioner is started, a control method of the air conditioner is provided. After receiving the shutdown instruction, before the air conditioner is shut down, the indoor fan is controlled to rotate in the first direction, so that the air outlet direction of the indoor unit is blown from the air outlet to the heat exchanger.
  • the water droplets hanging from the lower edge of the heat exchanger can be blown into the fins of the heat exchanger.
  • the water droplets gather in the fins, flow into the water receiving pan along the surface of the heat exchanger, and discharge with the drain pipe connected to the water receiving pan Indoor unit.
  • step S120 after the preset condition is met, stop the rotation of the indoor fan.
  • the rotation of the indoor fan is stopped when the preset condition is met. Turn off the air conditioner in response to the shutdown command.
  • the preset duration can be obtained by specific experiments, and different models and performances of air conditioners can be set with different preset durations.
  • the value of the preset duration can be 20-30 seconds, but is not limited to 20-30 seconds.
  • a humidity sensor is set on the surface of the heat exchanger.
  • the humidity sensor detects the humidity on the surface of the heat exchanger in real time. When the humidity on the surface of the heat exchanger is detected to be less than the preset humidity, it indicates that the water droplets on the lower edge of the heat exchanger have been completely blown down to the surface of the heat exchanger. In the water tray.
  • the preset humidity can be set according to the performance of the air conditioner, and the value of the preset humidity can be any humidity value with a relative humidity less than 50%, but is not limited to less than 50%.
  • a temperature sensor When a temperature sensor is set on the surface of the heat exchanger, it can also be used to obtain the humidity difference between the surface humidity of the heat exchanger and the current humidity when the air conditioner is turned on.
  • the humidity difference is greater than the preset humidity difference, the surface moisture of the heat exchanger decreases, which can be considered The water droplets on the lower edge of the heat exchanger have been completely blown down into the water receiving pan.
  • the preset humidity difference can be any humidity value greater than 20%, but is not limited to greater than 20%.
  • the criterion for judging whether the water droplets on the lower edge of the heat exchanger are completely blown down to the drain pan is whether the current state of the air conditioner or the heat exchanger meets the preset conditions.
  • the preset condition can be that the rotation time of the indoor fan of the air conditioner in the first direction is greater than the preset time, the surface humidity of the heat exchanger is detected to be less than the preset humidity, or it is between the surface humidity of the heat exchanger and the current humidity when the machine is turned on The humidity difference is greater than the preset humidity difference.
  • the air conditioner when the air conditioner is running in the cooling mode or dehumidification mode, the temperature difference between the surface temperature of the heat exchanger and the return air temperature is large, and the surface temperature of the heat exchanger is low, the surface of the heat exchanger is prone to condensation; while in the air supply mode
  • the surface temperature of the heat exchanger is the same as the indoor temperature.
  • heating mode the surface temperature of the heat exchanger is higher than the return air temperature, and no water droplets are formed on the surface of the heat exchanger.
  • the current mode of the air conditioner is obtained.
  • the indoor fan is controlled to rotate in the first direction, blow air to the heat exchanger, and remove the water hanging along the bottom of the heat exchanger. Bead blown away.
  • the indoor fan does not need to be rotated in the first direction, and the air conditioner is directly controlled to enter the shutdown state. Reduce the operation of the air conditioner, control the air conditioner to enter the shutdown state as soon as possible, protect the internal components of the air conditioner, and extend the service life of the air conditioner.
  • the indoor unit of the air conditioner includes an indoor fan and a heat exchanger.
  • the indoor fan is controlled to rotate in the first direction.
  • the outlet direction of the indoor fan blows from the air outlet to the heat exchanger.
  • the control indoor fan stops rotating, and in response to the shutdown command, the air conditioner enters the shutdown state.
  • the indoor fan Before shutting down the air conditioner, turn the indoor fan according to the first wind direction, and blow the wind direction of the indoor fan to the heat exchanger, so as to blow the water droplets hanging from the bottom edge of the heat exchanger to the gap of the heat exchanger fins.
  • the gaps of the fins gather and slide down to the water receiving tray and discharge the indoor unit to avoid the phenomenon of blowing water when the air conditioner is turned on again, which may pollute the ground or wet the user.
  • an embodiment of the present application also proposes a control device for an air conditioner, and the control device for the air conditioner includes:
  • Memory used to store the control program of the air conditioner
  • the processor is configured to run the control program of the air conditioner stored in the memory to implement the steps of the air conditioner control method described in each of the above embodiments.
  • control device of the air conditioner is provided in the air conditioner, and the indoor unit of the air conditioner includes an indoor fan and a heat exchanger.
  • the indoor fan rotates in the first direction, the outlet direction of the indoor fan blows from the air outlet to the heat exchanger; when the indoor fan rotates in the second direction, the outlet direction of the indoor fan is blown from the heat exchanger to the outlet tuyere.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , Magnetic disks, optical disks), including several instructions to make a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present application.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种空调器的控制方法,所述空调器的室内机包括室内风机和换热器,所述空调器的控制方法包括:接收开机指令;控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器;满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出风方向由换热器吹向出风口。本申请还公开了一种空调器的控制方法及装置。

Description

空调器的控制方法及装置
相关申请
本申请要求2019年09月16日申请的,申请号为201910874291.X,名称为“空调器的控制方法及装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空气调节技术领域,尤其涉及空调器的控制方法及装置。
背景技术
空调器被越来越多的人用来调节室内空气。在室内环境湿度较大时,空调器在制冷或除湿过程中室内机的换热器上容易凝结水珠,所以,在换热器底部设置接水盘,通过接水盘接收换热器上的冷凝水,进而经排水管排出室内机。
空调器关机后,换热器表面附着的水珠较小,随着重力作用悬挂在换热器下沿靠近风机风轮的位置处。在空调器再次启动后,风轮转动,将换热器下沿的水珠吸入风轮,并随着风轮的高速运转从空调器的出风口甩出,污染室内或打湿用户。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请的主要目的在于提供一种空调器的控制方法及装置,旨在解决空调机吹水,污染室内或打湿用户的技术问题。
为实现上述目的,本申请提供一种空调器的控制方法,所述空调器的室内机包括室内风机和换热器,所述空调器的控制方法包括:
接收开机指令;
控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出 风方向由换热器吹向出风口。
可选地,所述预设条件包括如下至少一个:
所述室内风机按照第一方向转动的转动时长大于预设时长;
检测到换热器表面湿度小于预设湿度;
或,获取开机时换热器表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
可选地,所述空调器具有存储模块,在所述空调器关机之前,将所述空调器当前的运行模式存储到存储模块中,所述接收开机指令的步骤之后,还包括:
获取所述空调器存储模块中存储的运行模式;
所述空调器存储模块中存储的运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
可选地,所述接收开机指令的步骤之后,还包括:
所述空调器为首次上电,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
可选地,所述接收开机指令的步骤之后,还包括:
获取所述空调器当前的运行模式;
所述运行模式为预设模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤,其中,所述预设模式至少包括制冷模式、除湿模式以及送风模式中的一个。
可选地,所述接收开机指令的步骤之后,还包括:
获取接收到所述开机指令的时间点与上次关机的时间点之间的时间间隔;
所述时间间隔小于预设时间间隔,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
可选地,所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤包括:
所述时间间隔小于预设时间间隔,根据所述时间间隔确定所述转动参数;
根据确定的所述转动参数控制所述室内风机按照第一方向转动,以使所述室内 风机的出风方向由出风口吹向换热器。
为实现上述目的,本申请还提供一种空调器的控制方法,所述空调器的室内机包括室内风机和换热器,所述空调器的控制方法包括:
接收关机指令;
控制所述室内风机按照与当前转动方向相反的方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
满足预设条件后,停止所述室内风机转动。
可选地,所述接收关机指令的步骤之后,还包括:
获取所述空调器的当前运行模式;
所述运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
可选地,所述预设条件包括如下至少一个:
所述室内风机按照第一方向转动的转动时长大于预设时长;
检测到换热器表面湿度小于预设湿度;
或,获取开机时表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
此外,为实现上述目的,本申请还提供一种空调器的控制装置,其中,所述空调器的控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如上所述的空调器的控制方法的步骤。
可选地,所述空调器的控制装置为空调器,所述空调器的室内机包括室内风机和换热器。
本申请实施例提出的一种空调器的控制方法及装置,空调器的室内机包括室内风机和换热器,在空调器开机后,控制室内风机按照第一方向转动。在室内风机按照第一方向转动时,室内风机的出风方向由出风口吹向换热器。检测到空调器满足预设条件后,控制室内风机按照第二方向转动,在室内风机按照第二方向转动时,室内风机的出风方向由换热器吹向出风口,随着气流将换热器表面的冷空气或暖空气吹向室内,实现对室内环境温度的调节。在空调器开机后 ,先将室内风机按照第一风向转动,将室内风机的风向吹向换热器,从而将换热器下沿悬挂的水珠吹至换热器翅片缝隙,水珠在翅片缝隙聚集滑落至接水盘,排出室内机,避免空调器开机吹水而污染地面或打湿用户。
发明的有益效果
对附图的简要说明
附图说明
图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请空调器的控制方法第一实施例的流程示意图;
图3为本申请空调器的控制方法第二实施例的流程示意图;
图4为本申请空调器的控制方法第三实施例的流程示意图;
图5为本申请空调器的控制方法第四实施例的流程示意图;
图6为本申请空调器的控制方法第五实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。发明实施例
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:
接收开机指令;
控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出风方向由换热器吹向出风口。
由于现有技术空调器关机后,换热器表面附着的水珠较小,随着重力作用悬挂在换热器下沿靠近风机风轮的位置处。在空调器再次启动后,风轮转动,将换热器下沿的水珠吸入风轮,并随着风轮的高速运转从空调器的出风口甩出,污染室内或打湿用户。
本申请提供一种解决方案,空调器的室内机包括室内风机和换热器,在空调器开机后,控制室内风机按照第一方向转动。在室内风机按照第一方向转动时,室内风机的出风方向由出风口吹向换热器。检测到空调器满足预设条件后,控制室内风机按照第二方向转动,在室内风机按照第二方向转动时,室内风机的出风方向由换热器吹向出风口,随着气流将换热器表面的冷空气或暖空气吹向室内,实现对室内环境温度的调节。在空调器开机后,先将室内风机按照第一风向转动,将室内风机的风向吹向换热器,从而将换热器下沿悬挂的水珠吹至换热器翅片缝隙,水珠在翅片缝隙聚集滑落至接水盘,排出室内机,避免空调器开机吹水而污染地面或打湿用户。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端可以是空调器,也可以是服务器、智能手机、平板电脑以及便携计算机等具有控制功能的可移动式终端设备。
本申请实施例方案涉及的是空调器,空调器包括:处理器101,例如CPU,存储器102,通信总线103。其中,通信总线103用于实现这些组件之间的连接通信。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
存储器102可以是高速RAM存储器,也可以是稳定的存储器(non-volatilememory),例如磁盘存储器。如图1所示,作为一种计算机存储介质的存储器102中可以包括空调器的控制程序;而处理器101可以用于调用存储器102中存储的空调器的控制程序,并执行以下操作:
接收开机指令;
控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出风方向由换热器吹向出风口。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
所述室内风机按照第一方向转动的转动时长大于预设时长;
检测到换热器表面湿度小于预设湿度;
或,获取开机时换热器表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
获取所述空调器存储模块中存储的运行模式;
所述空调器存储模块中存储的运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
所述空调器为首次上电,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
获取所述空调器当前的运行模式;
所述运行模式为预设模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤,其中,所述预设模式至少包括制冷模式、除湿模式以及送风模式中的一个。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
获取接收到所述开机指令的时间点与上次关机的时间点之间的时间间隔;
所述时间间隔小于预设时间间隔,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
所述时间间隔小于预设时间间隔,根据所述时间间隔确定所述转动参数;
根据确定的所述转动参数控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
接收关机指令;
控制所述室内风机按照与当前转动方向相反的方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
满足预设条件后,停止所述室内风机转动。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
获取所述空调器的当前运行模式;
所述运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
进一步地,处理器101可以调用存储器102中存储的空调器的控制程序,还执行以下操作:
所述室内风机按照第一方向转动的转动时长大于预设时长;
检测到换热器表面湿度小于预设湿度;
或,获取开机时表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
参照图2,本申请空调器的控制方法第一实施例,所述空调器的控制方法包括:
步骤S10,接收开机指令。
空调器接收到的开机指令,可以是用户通过空调遥控器或控制面板触发的开机指令,也可以是,空调器设置的定时启动的开机状态指令。当空调器的运行由服务器控制时,空调器接收到开机指令,将开机指令转发至服务器,以供服务器基于所述开机指令获取对应的控制程序,并执行控制程序以控制空调器运行。
步骤S20,控制所述室内风机按照第一方向转动,以使所述室内风机的出风方 向由出风口吹向换热器。
本申请涉及的空调器的室内机包括室内风机和换热器,室内风机安装在换热器和空调室内机出风口之间。其中,室内风机的转动方向可调节,即在电机的带动下,风机的风轮可向相反的两个方向旋转。
此外,空调室内机还包括接水盘以及排水管,换热器连接有接水盘,接水盘连接排水管。在空调器运行制冷模式或除湿模式时,空调器换热器表面温度低,容易凝结水珠,大量水珠聚集后流到接水盘,随着接水盘连接的排水管排出室内机。避免冷凝水滴落在室内机其他部件上,造成器件的损坏。由于换热器由大量倾斜的翅片组成,在换热器表面水珠凝结较少时,水珠分散在换热器表面。没有聚集的少量分散水珠,随着重力的作用悬挂在换热器下沿。
换热器下沿悬挂水珠的情况下,空调器启动后,室内风机正常旋转(出风方向由换热器吹向出风口),气流将水珠吸入室内风机的风轮,进而随着高速旋转的风轮吹出。因而,为避免空调器启动时出现上述吹水现象,提供一种空调器的控制方法。在空调器接收到开机指令后,控制室内风机按照第一方向转动,以使得室内机的出风方向由出风口吹向换热器。能够将换热器下沿悬挂的水珠吹入换热器的翅片中,水珠在翅片中聚集,沿着换热器表面流入接水盘,随着接水盘连接的排水管排出室内机。
步骤S30,满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出风方向由换热器吹向出风口。
在室内风机按照第一方向转动,将换热器下沿的水珠吹落至排水盘之后,为保障空调器的正常工作,控制室内风机按照第二方向转动,空调室内机的出风方向由换热器吹向出风口,从而将换热器表面的冷空气或热空气吹向室内,调节室内环境温度。第一方向与第二方向为相反的两个方向。
此外,接收开机指令后,获取空调器的目标运行模式。在室内风机按照第一方向转动后,满足预设条件时,空调器运行目标运行模式。即,控制室内风机按照第二方向转动时,室内风机的转速为空调器运行程序中目标运行模式对应的转速。
进一步,在室内风机按照第一方向转动的转动时长大于预设时长之后,表明换 热器下沿的水珠已经完全吹落至接水盘中。其中,预设时长可由具体实验获得,不同型号和性能的空调器,设置不同的所述预设时长。预设时长的取值可为20-30秒,而并不限定于20-30秒之间。
此外,在换热器表面设置湿度传感器,湿度传感器实时检测换热器表面湿度,当检测到换热器表面湿度小于预设湿度时,表明换热器下沿的水珠已经完全吹落至接水盘中。其中,预设湿度可根据空调器的性能设置,预设湿度的取值可以是相对湿度小于50%的任意湿度值,但并不限定于小于50%。
在换热器表面设置温度传感器时,还可以是获取空调器开机时换热器表面湿度与当前湿度间的湿度差,在湿度差大于预设湿度差时,换热器表面水分降低,可认为换热器下沿的水珠已经完全吹落至接水盘中。预设湿度差可取大于20%的任意湿度值,但并不限定于大于20%。
综上,判断换热器下沿的水珠是否完全吹落至排水盘的判定标准为当前空调器或换热器的状态是否满足预设条件。其中,预设条件可以是空调器室内风机按照第一方向转动的转动时长大于预设时长、检测到换热器表面湿度小于预设湿度,或者是,开机时换热器表面湿度与当前湿度间的湿度差大于预设湿度差。
在本实施例中,空调器的室内机包括室内风机和换热器,在空调器开机后,控制室内风机按照第一方向转动。在室内风机按照第一方向转动时,室内风机的出风方向由出风口吹向换热器。检测到空调器满足预设条件后,控制室内风机按照第二方向转动,在室内风机按照第二方向转动时,室内风机的出风方向由换热器吹向出风口,随着气流将换热器表面的冷空气或暖空气吹向室内,实现对室内环境温度的调节。在空调器开机后,先将室内风机按照第一风向转动,将室内风机的风向吹向换热器,从而将换热器下沿悬挂的水珠吹至换热器翅片缝隙,水珠在翅片缝隙聚集滑落至接水盘,排出室内机,避免空调器开机吹水而污染地面或打湿用户。
进一步的,参照图3,本申请空调器的控制方法第二实施例,基于上述第一实施例,所述步骤S10之后,还包括:
步骤S40,获取所述空调器存储模块中存储的运行模式。
在空调器内设置有存储模块,在存储模块中存储每次空调器关机前空调器的运 行模式。其中,在存储本次关机前空调器的运行模式时,将存储模块中前一次存储的运行模式删除,即,运行模式的存储方式为替换存储,在存储模块中仅存储一个运行模式。
此外,在存储运行模式时,同时记录存储时间。在存储模块中存在多个运行模式时,将存储时间最近的运行模式作为本实施例中所述的存储模块中存储的运行模式,以供空调器或服务器根据该运行模式获取空调器的运行程序,控制空调器运行。例如,存储模块中存储有“制冷模式,2019.09.09”“送风模式,2019.09.10”,则本实施例获取到的空调器存储模块中存储的运行模式为送风模式。
步骤S50,判断所述空调器存储模块中存储的运行模式是否为制冷模式或除湿模式。
所述空调器存储模块中存储的运行模式为制冷模式或除湿模式,执行所述步骤S20,即控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
在空调器运行制冷模式或除湿模式时,换热器表面温度与回风温度间的温差大,且换热器表面温度低,则换热器表面容易凝结水珠;而在送风模式下,换热器表面温度与室内温度相同,制热模式下,换热器表面温度高于回风温度,换热器器表面均没有水珠形成。
所以,空调器存储上一次关机前空调器的运行模式,判断运行模式是否为制冷或除湿模式。当运行模式是制冷模式或除湿模式时,控制室内风机按照第一方向转动,向换热器吹风,将换热器下沿悬挂的水珠吹走。当运行模式是制冷模式或除湿模式之外的其他模式时,无需将室内风机按照第一方向转动,而是直接运行空调器的目标运行模式,即控制室内风机按照第二方向转动,将室内风机的出风方向由换热器吹向出风口。减少空调器的操作,控制空调器尽快进入正常运行模式,提高室内环境的调节效率。
此外,在服务器控制空调器运行时,在服务器中建立存储模块,在存储模块中存储空调器每次关机前的运行模式。以供再次启动空调器时,能够根据存储的运行模式控制空调器的室内风机是按照第一方向转动还是按照第二方向转动。
进一步地,在空调器断电后,空调器存储模块中存储的运行模式丢失,为避免 断电前空调器的运行模式为制冷模式或除湿模式,导致空调器吹水。则在空调器首次上电,执行步骤S20即其后的步骤,控制室内风机按照第一方向转动,以使室内风机的出风方向由出风口吹向换热器。
在本实施例中,在空调器中设置存储模块,在空调器每次关机前,将当前空调器的运行模式存储在存储模块中。再次开机时,首先判断上一次关机时空调器的运行模式,在运行模式时制冷模式或除湿模式时,再控制室内风机按照第一方向转动,以向换热器吹风,将换热器下沿悬挂的水珠吹落至接水盘,排出室内机,避免发生开机吹水现象。而当上一次关机时空调器的运行模式不是制冷或除湿模式时,则直接控制室内风机按照第二方向转动,运行本次开机后的目标运行模式。在控制室内风机按照第一方向转动之前,查看上一次空调器的运行模式,以判断换热器是否悬挂有水珠,在换热器表面没有水珠的情况下,直接控制室内风机正转(第二运行方向转动),进入空调器当前的目标运行模式,在保障空调器不会开机吹水的同时避免不必要的运行延迟。
进一步的,参照图4,本申请空调器的控制方法第三实施例,基于上述第一或第二实施例,所述步骤S10之后,还包括:
步骤S60,获取所述空调器当前的运行模式,其中,所述预设模式至少包括制冷模式、除湿模式以及送风模式中的一个。
步骤S70,判断所述空调器当前的运行模式是否为预设模式。
所述运行模式为预设模式,执行步骤S20,即所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
当空调器运行制热模式时,在换热器温度升高到一定温度之后,再启动室内风机,向室内吹风,将换热器表面的暖空气带向室内,提高室内温度。所以,在制热模式下,即使换热器表面存在水珠,随着换热器温度的升高,水珠也逐渐被蒸发。而在运行制冷模式、除湿模式以及送风模式时,都会直接将换热器悬挂的水珠吹向室内。
因此,在控制室内风机按照第一方向转动,向换热器吹风之前,判断当前运行模式是否为预设模式,当空调器的运行模式为预设模式时,再执行步骤S20及其之后的步骤,以防止空调器开机吹水;当空调器当前的运行模式是预设模式以 外的其他模式时,直接控制空调器按照当前运行模式运行。其中,预设模式至少包括制冷模式、除湿模式以及送风模式中的一个。
在本实施例中,空调器开机后,获取空调器当前的运行模式,当空调器当前的运行模式为制冷模式、除湿模式或者送风模式中的一个时,控制室内风机按照第一方向转动,向换热器吹风。而当前的运行模式为其他模式时,直接控制空调器进入当前的运行模式。在控制室内风机按照第一方向转动之前,获取空调器当前的运行模式,以判断是否需要将换热器表面的水珠处理后,再控制空调器运行当前的运行模式。在不需要处理换热器表面的水珠时,直接控制室内风机正转(第二运行方向转动),进入空调器当前的运行模式,在保障空调器不会开机吹水的同时避免不必要的运行延迟。
进一步的,参照图5,本申请空调器的控制方法第四实施例,基于上述第一至三任一实施例,所述步骤S10之后,还包括:
步骤S80,获取接收到所述开机指令的时间点与上次关机的时间点之间的时间间隔。
步骤S90,判断所述时间间隔是否小于预设时间间隔。
所述时间间隔小于预设时间间隔,执行步骤S10,即所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
换热器下边沿悬挂的水珠,在空调器长时间关机状态下,逐渐自然蒸发。所以,在间隔较长时间后空调器再开机,此时换热器已经没有水珠存在。直接运行当前的运行模式也不会发生吹水现象。
记录每次空调器的关机时间点,从而获取接收到开机指令的时间点与上次空调器关机时间点之间的时间间隔。判断时间间隔是否小于预设时间间隔,当时间间隔小于预设时间间隔时,执行步骤S20即其后的步骤,控制室内风机按照第一方向转动,向换热器吹风,把换热器表面的水珠聚集到换热器翅片缝隙后落入接水盘,避免空调器吹水,污染室内或打湿用户。当时间间隔大于或等于预设时间间隔时,则直接运行空调器当前的运行模式,以使空调器尽快进入工作模式,调节室内环境,提高空调器的工作效率。
进一步的,在时间间隔小于预设时间间隔时,根据具体的时间间隔来确定室内 风机按照第一方向转动的转动参数。其中,转动参数包括转速和转动时长。由于时间间隔越久,换热器上的水珠蒸发的越多,根据时间间隔确定转动参数,能够节约室内风机的能耗,缩短空调器进入当前运行模式的等待时长。时间间隔与转速以及转动时长成反比,即时间间隔越长,室内风机的转速越小,转动时长越短。
在本实施例中,记录每次空调器的关机时间点,从而获取接收到开机指令的时间点与上次空调器关机时间点之间的时间间隔。判断时间间隔是否小于预设时间间隔,当时间间隔小于预设时间间隔时,执行步骤S20即其后的步骤,控制室内风机按照第一方向转动,向换热器吹风,把换热器表面的水珠聚集到换热器翅片缝隙后落入接水盘,避免空调器吹水,污染室内或打湿用户。当时间间隔大于或等于预设时间间隔时,则直接运行空调器当前的运行模式,以使空调器尽快进入工作模式,调节室内环境,提高空调器的工作效率。
参照图6,本申请空调器的控制方法第五实施例,所述空调器的控制方法包括:
步骤S100,接收关机指令。
步骤S110,控制所述室内风机按照与当前转动方向相反的方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
本申请涉及的空调器的室内机包括室内风机和换热器,室内风机安装在换热器和空调室内机出风口之间。其中,室内风机的转动方向可调节,即在电机的带动下,风机的风轮可向相反的两个方向旋转。
此外,空调室内机还包括接水盘以及排水管,换热器连接有接水盘,接水盘连接排水管。在空调器运行制冷模式或除湿模式时,空调器换热器表面温度低,容易凝结水珠,大量水珠聚集后流到接水盘,随着接水盘连接的排水管排出室内机。避免冷凝水滴落在室内机其他部件上,造成器件的损坏。由于换热器由大量倾斜的翅片组成,在换热器表面水珠凝结较少时,水珠分散在换热器表面。没有聚集的少量分散水珠,随着重力的作用悬挂在换热器下沿。
换热器下沿悬挂水珠的情况下,空调器启动后,室内风机正常旋转(出风方向由换热器吹向出风口),气流将水珠吸入室内风机的风轮,进而随着高速旋转 的风轮吹出。因而,为避免空调器启动时出现上述吹水现象,提供一种空调器的控制方法。接收到关机指令,在空调器关机之前,控制室内风机按照第一方向转动,以使得室内机的出风方向由出风口吹向换热器。能够将换热器下沿悬挂的水珠吹入换热器的翅片中,水珠在翅片中聚集,沿着换热器表面流入接水盘,随着接水盘连接的排水管排出室内机。
步骤S120,满足预设条件后,停止所述室内风机转动。
在室内风机按照第一方向转动后,满足预设条件时,停止室内风机转动。响应关机指令将空调器关机。
进一步,在室内风机按照第一方向转动的转动时长大于预设时长之后,表明换热器下沿的水珠已经完全吹落至接水盘中。其中,预设时长可由具体实验获得,不同型号和性能的空调器,设置不同的所述预设时长。预设时长的取值可为20-30秒,而并不限定于20-30秒之间。
此外,在换热器表面设置湿度传感器,湿度传感器实时检测换热器表面湿度,当检测到换热器表面湿度小于预设湿度时,表明换热器下沿的水珠已经完全吹落至接水盘中。其中,预设湿度可根据空调器的性能设置,预设湿度的取值可以是相对湿度小于50%的任意湿度值,但并不限定于小于50%。
在换热器表面设置温度传感器时,还可以是获取空调器开机时换热器表面湿度与当前湿度间的湿度差,在湿度差大于预设湿度差时,换热器表面水分降低,可认为换热器下沿的水珠已经完全吹落至接水盘中。预设湿度差可取大于20%的任意湿度值,但并不限定于大于20%。
综上,判断换热器下沿的水珠是否完全吹落至排水盘的判定标准为当前空调器或换热器的状态是否满足预设条件。其中,预设条件可以是空调器室内风机按照第一方向转动的转动时长大于预设时长、检测到换热器表面湿度小于预设湿度,或者是,开机时换热器表面湿度与当前湿度间的湿度差大于预设湿度差。
进一步,在空调器运行制冷模式或除湿模式时,换热器表面温度与回风温度间的温差大,且换热器表面温度低,则换热器表面容易凝结水珠;而在送风模式下,换热器表面温度与室内温度相同,制热模式下,换热器表面温度高于回风温度,换热器器表面均没有水珠形成。
所以,空调器关机之间,获取空调器的当前模式,在当前模式为制冷模式或除湿模式时,控制室内风机按照第一方向转动,向换热器吹风,将换热器下沿悬挂的水珠吹走。当运行模式是制冷模式或除湿模式之外的其他模式时,无需将室内风机按照第一方向转动,直接控制空调器的进入关机状态。减少空调器的操作,控制空调器尽快进入关机状态,保护空调器内部构件,延长空调器的使用寿命。
在本实施例中,空调器的室内机包括室内风机和换热器,在空调器开机后,控制室内风机按照第一方向转动。在室内风机按照第一方向转动时,室内风机的出风方向由出风口吹向换热器。检测到空调器满足预设条件后,控制室内风机停止转动,响应关机指令,空调器进入关机状态。在空调器关机之前,先将室内风机按照第一风向转动,将室内风机的风向吹向换热器,从而将换热器下沿悬挂的水珠吹至换热器翅片缝隙,水珠在翅片缝隙聚集滑落至接水盘,排出室内机,避免空调器再次开机时出现吹水现象而污染地面或打湿用户。
此外,本申请实施例还提出一种空调器的控制装置,所述空调器的控制装置包括:
存储器,用于存储空调器的控制程序;
处理器,用于运行所述存储器中存储的所述空调器的控制程序,以实现如上各个实施例所述的空调器的控制方法的步骤。
进一步,所述空调器的控制装置设置在空调器,所述空调器的室内机包括室内风机和换热器。室内风机按照第一方向转动时,所述室内风机的出风方向由出风口吹向换热器;室内风机按照第二方向转动时,所述室内风机的出风方向由换热器吹向出风口。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种空调器的控制方法,其中,所述空调器的室内机包括室内风机和换热器,所述空调器的控制方法包括:
    接收开机指令;
    控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
    满足预设条件,控制所述室内风机按照第二方向转动,以使所述室内风机的出风方向由换热器吹向出风口。
  2. 如权利要求1所述的空调器的控制方法,其中,所述预设条件包括如下至少一个:
    所述室内风机按照第一方向转动的转动时长大于预设时长;
    检测到换热器表面湿度小于预设湿度;
    或,获取开机时换热器表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
  3. 如权利要求1所述的空调器的控制方法,其中,所述空调器具有存储模块,在所述空调器关机之前,将所述空调器当前的运行模式存储到存储模块中,所述接收开机指令的步骤之后,还包括:
    获取所述空调器存储模块中存储的运行模式;
    所述空调器存储模块中存储的运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
  4. 如权利要求3所述的空调器的控制方法,其中,所述获取所述空调器存储模块中存储的运行模式的步骤包括:
    所述空调器存储模块中存储有多个运行模式,获取所述存储模块中存储时间最近的运行模式。
  5. 如权利要求1所述的空调器的控制方法,其中,所述接收开机指令的步骤之后,还包括:
    所述空调器为首次上电,执行所述控制所述室内风机按照第一方 向转动,以使所述室内风机的出风方向由出风口吹向换热器。
  6. 如权利要求1所述的空调器的控制方法,其中,所述接收开机指令的步骤之后,还包括:
    获取所述空调器当前的运行模式;
    所述运行模式为预设模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤,其中,所述预设模式至少包括制冷模式、除湿模式以及送风模式中的一个。
  7. 如权利要求6所述的空调器的控制方法,其中,所述运行模式为制热模式,在所述换热器温度升高预设温度后,启动所述室内风机。
  8. 如权利要求1所述的空调器的控制方法,其中,所述接收开机指令的步骤之后,还包括:
    获取接收到所述开机指令的时间点与上次关机的时间点之间的时间间隔;
    所述时间间隔小于预设时间间隔,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
  9. 如权利要求8所述的空调器的控制方法,其中,所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤包括:
    所述时间间隔小于预设时间间隔,根据所述时间间隔确定所述转动参数;
    根据确定的所述转动参数控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器。
  10. 如权利要求9所述的空调器的控制方法,其中,所述转动参数包括转速和转动时长。
  11. 如权利要求10所述的空调器的控制方法,其中,所述时间间隔与 所述转速和所述转送时长成反比。
  12. 如权利要求1所述的空调器的控制方法,其中,所述第一方向与所述第二方向为相反的两个方向。
  13. 一种空调器的控制方法,其中,所述空调器的室内机包括室内风机和换热器,所述空调器的控制方法包括:
    接收关机指令;
    控制所述室内风机按照与当前转动方向相反的方向转动,以使所述室内风机的出风方向由出风口吹向换热器;
    满足预设条件后,停止所述室内风机转动。
  14. 如权利要求13所述的空调器的控制方法,其中,所述接收关机指令的步骤之后,还包括:
    获取所述空调器的当前运行模式;
    所述运行模式为制冷模式或除湿模式,执行所述控制所述室内风机按照第一方向转动,以使所述室内风机的出风方向由出风口吹向换热器的步骤。
  15. 如权利要求13所述的空调器的控制方法,其中,所述预设条件包括如下至少一个:
    所述室内风机按照第一方向转动的转动时长大于预设时长;
    检测到换热器表面湿度小于预设湿度;
    或,获取开机时表面湿度与当前湿度间的湿度差,所述湿度差大于预设湿度差。
  16. 如权利要求13所述的空调器的控制方法,其特征在于,所述所述第一方向与所述第二方向为相反的两个方向。
  17. 一种空调器的控制装置,其中,所述空调器的控制装置包括:
    存储器,用于存储空调器的控制程序;
    处理器,用于运行所述存储器中存储的所述空调器的控制程序,以实现如权利要求1至16中任一项所述的空调器的控制方法的步骤。
  18. 如权利要求17所述的空调器的控制装置,其中,所述空调器的控制装置设置在空调器中,所述空调器的室内机包括室内风机和换热器。
PCT/CN2020/082428 2019-09-16 2020-03-31 空调器的控制方法及装置 WO2021051777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910874291.XA CN110553364B (zh) 2019-09-16 2019-09-16 空调器的控制方法及装置
CN201910874291.X 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051777A1 true WO2021051777A1 (zh) 2021-03-25

Family

ID=68740457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082428 WO2021051777A1 (zh) 2019-09-16 2020-03-31 空调器的控制方法及装置

Country Status (2)

Country Link
CN (1) CN110553364B (zh)
WO (1) WO2021051777A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553364B (zh) * 2019-09-16 2021-06-22 广东美的制冷设备有限公司 空调器的控制方法及装置
CN112303859A (zh) * 2020-10-30 2021-02-02 东莞骏科空调制造有限公司 空调恒温恒湿变频控制方法、装置、设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764149A (zh) * 2015-03-26 2015-07-08 广东美的制冷设备有限公司 空调器控制方法、空调器控制装置和空调器
CN106642325A (zh) * 2016-11-30 2017-05-10 青岛海尔空调器有限总公司 一种空调器及其制热开机控制方法
CN108731212A (zh) * 2018-06-20 2018-11-02 广东美的制冷设备有限公司 空调及其吹余热的控制方法和装置
CN110553364A (zh) * 2019-09-16 2019-12-10 广东美的制冷设备有限公司 空调器的控制方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240994B (zh) * 2015-09-18 2018-09-11 广东美的制冷设备有限公司 空调器的干燥防霉控制方法和装置
CN105546751B (zh) * 2016-01-04 2018-04-10 广东美的暖通设备有限公司 空调器控制方法及空调器
CN105571084A (zh) * 2016-02-29 2016-05-11 广东美的制冷设备有限公司 空调器防吹水控制方法及空调器
CN106871350A (zh) * 2017-02-17 2017-06-20 美的集团武汉制冷设备有限公司 防止凝露吹水的方法、装置和空调器
CN106871356A (zh) * 2017-02-23 2017-06-20 广东美的制冷设备有限公司 空调器的控制方法及装置和空调器
CN107906674A (zh) * 2017-11-09 2018-04-13 海信(山东)空调有限公司 空调器的控制方法
CN107869830B (zh) * 2017-11-13 2020-02-28 珠海格力电器股份有限公司 空调器控制方法及装置
JP6559923B1 (ja) * 2019-03-26 2019-08-14 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764149A (zh) * 2015-03-26 2015-07-08 广东美的制冷设备有限公司 空调器控制方法、空调器控制装置和空调器
CN106642325A (zh) * 2016-11-30 2017-05-10 青岛海尔空调器有限总公司 一种空调器及其制热开机控制方法
CN108731212A (zh) * 2018-06-20 2018-11-02 广东美的制冷设备有限公司 空调及其吹余热的控制方法和装置
CN110553364A (zh) * 2019-09-16 2019-12-10 广东美的制冷设备有限公司 空调器的控制方法及装置

Also Published As

Publication number Publication date
CN110553364B (zh) 2021-06-22
CN110553364A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
CN107525222B (zh) 一种空调防凝露的控制方法及装置
CN108981112B (zh) 空调器及其的控制方法
CN110173826B (zh) 空调器、室内换热器的自清洁方法和计算机可读存储介质
CN105318493B (zh) 加湿空调器的控制方法及装置
WO2021051777A1 (zh) 空调器的控制方法及装置
CN110454933B (zh) 空调及其防霉控制方法、计算机设备、可读存储介质
CN112665117B (zh) 多联机化霜方法、装置、多联机空调系统及可读存储介质
US11460204B2 (en) Automated cooling system for a building structure
WO2022242144A1 (zh) 用于空调自清洁的控制方法及装置、空调
WO2022242141A1 (zh) 用于空调自清洁的控制方法及装置、空调
CN108375171A (zh) 空调器自清扫控制方法
CN109539502A (zh) 一种湿度控制器的控制方法、装置和湿度控制器
CN113251634A (zh) 一种空调器控制方法、装置、电子设备及空调器
CN111059726A (zh) 一种除湿机的控制方法、装置、存储介质及除湿机
CN113669869A (zh) 空调器的控制方法、装置、空调器和可读存储介质
CN107270475B (zh) 空调室外机自主休眠控制方法及装置
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2021035892A1 (zh) 一种空调和空调清洁方法
WO2023040579A1 (zh) 用于调节室内环境的方法及装置、空调器
WO2021077920A1 (zh) 制冷设备的控制方法及装置、制冷设备
CN209415694U (zh) 一种湿度控制器的控制装置和湿度控制器
CN114353252A (zh) 空调器控制方法、装置、空调器以及存储介质
CN114251751A (zh) 一种空调扇及其控制方法、装置、存储介质
CN114165906A (zh) 空调器的控制方法、空调器及存储介质
JP2019128044A (ja) 冷却装置および空冷パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864835

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2022)