WO2022241800A1 - 配电装置、车辆及故障处理方法 - Google Patents

配电装置、车辆及故障处理方法 Download PDF

Info

Publication number
WO2022241800A1
WO2022241800A1 PCT/CN2021/095352 CN2021095352W WO2022241800A1 WO 2022241800 A1 WO2022241800 A1 WO 2022241800A1 CN 2021095352 W CN2021095352 W CN 2021095352W WO 2022241800 A1 WO2022241800 A1 WO 2022241800A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection module
circuit protection
circuit
bus
state
Prior art date
Application number
PCT/CN2021/095352
Other languages
English (en)
French (fr)
Inventor
张国防
李凡
王全武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/095352 priority Critical patent/WO2022241800A1/zh
Priority to EP21940253.4A priority patent/EP4335681A1/en
Priority to CN202180006258.0A priority patent/CN115697753A/zh
Publication of WO2022241800A1 publication Critical patent/WO2022241800A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for

Definitions

  • the present application relates to the technical field of new energy vehicles under electric vehicles, and also to the technical field of battery management, in particular to a power distribution device, a vehicle with the power distribution device, and a fault handling method based on the power distribution device.
  • Levels include L1 driver assistance, L2 partial automation, L3 conditional automation, L4 high automation, and L5 full automation.
  • the driver is not allowed to drive without hands, at levels above L2+, the driver is allowed to drive without hands, and above level L3, the driver is allowed to drive without hands and eyes, and even the driver does not need to pay attention to the driving situation of the vehicle.
  • the electronic steering/braking system must not only meet the high safety of electronic steering/braking under intelligent driving conditions, but also meet the high safety and high availability requirements for operation under fault conditions, so as to avoid the loss of electronic steering/brake boosting.
  • the manual steering/braking force demand is too large, and the vehicle cannot be turned or braked in time, causing the vehicle to lose control.
  • the automatic driving system/advanced driver assistance system (Automated Driving system/Advanced driver -assistance systems, ADS/ADAS) need to meet the high safety and high availability requirements for operation under failure, and avoid the loss of control of the vehicle due to the failure of the intelligent driving system.
  • the low-voltage power supply system (such as 12V power supply system, 24V power supply system, etc.) High security requirements. Therefore, under the high-availability and high-safety requirements, how to realize the power distribution of the low-voltage power supply system is a technical problem to be solved in this application.
  • this application provides a power distribution device, a vehicle with the power distribution device, and a fault handling method based on the power distribution device, so as to realize that the power distribution of low-cost low-voltage power supply systems can meet the fault High availability and high security requirements running under the environment.
  • the first aspect of the present application provides a power distribution device, a bus bar, the bus bar includes a first end and a second end; a branch line is provided between the first end and the second end of the bus bar, and the branch line is used to connect the load ;
  • the first end of the bus bar is used to connect to the battery, and the second end is used to connect to the second power supply device;
  • a first circuit protection module is connected in series at the first end of the busbar
  • the first circuit protection module is configured such that when one side of the circuits on both sides of the first circuit protection module is electrically faulty, the first circuit protection module is in a state of making the circuit on the side of the electrical failure and the circuit on the other side non-conductive.
  • the power distribution device of this application when the power distribution device of this application is applied, by adding the first circuit protection module and adopting a battery configuration, the electrical failure of one side of the first circuit protection module, such as over/undervoltage, or overcurrent, etc.
  • the fault side to the other side In the event of a fault, the fault side to the other side is in a non-conductive state, avoiding the influence of the other side of the fault side circuit, and realizing the requirement of supporting operation under fault conditions.
  • the overall cost of the low-voltage power supply system is also reduced.
  • the first circuit protection module is specifically configured as: when the battery side circuit of the first circuit protection module is electrically faulty, the first circuit protection module is in the state of connecting the battery side circuit to the bus side circuit is in a non-conductive state.
  • the first circuit protection module through the configuration of the first circuit protection module, it can be realized that when the circuit on the side of the first circuit protection module connected to the battery has an electrical fault, such as an over/undervoltage or overcurrent fault on the side circuit, the first circuit The non-conduction state of the battery side of the protection module to the bus side avoids the impact of the battery side circuit on the bus bar.
  • the second power supply device can be used to supply power to meet the requirements of supporting operation under fault conditions.
  • the first circuit protection module is specifically configured to: when the state of the battery in the battery side circuit of the first circuit protection module is abnormal, the first circuit protection module is in the state of causing the battery side circuit to The bus side circuit is in a non-conductive state.
  • the abnormal state of the battery includes low voltage or undervoltage of the battery, overcurrent/short circuit of the battery, intermittent, discontinuous, or even open circuit of the battery output voltage, expiration of battery life or capacity decay, failure to charge, high temperature, etc. abnormal situation.
  • the first circuit protection module is specifically configured as: when the bus-side circuit of the first circuit protection module is electrically faulty, the first circuit protection module is in the state of connecting the bus-side circuit to the battery-side circuit is in a non-conductive state.
  • the power distribution device on the premise that the power distribution device is connected to a battery, it can also make the bus and the battery in an open circuit state when there is an electrical fault on the bus side, such as over/undervoltage, overcurrent or leakage. , can avoid the influence of the bus failure on the battery, and meet the safety requirements for operation under failure.
  • the busbars are two parallel busbars, and the first end of each busbar is connected in series with a first circuit protection module; the first circuit protection module on the two busbars is specifically configured as follows: When the battery-side circuit of the first circuit protection module on the two buses is electrically faulty or the state of the battery is abnormal, the first circuit protection module on the two buses is in the state of making the battery-side circuit to the bus-side circuit non-conductive.
  • each busbar is equipped with a first circuit protection module, which can realize the electrical failure of the battery side without affecting the circuits on the two busbar sides, and meet the high safety power supply requirements for faulty operation.
  • the first circuit protection module on the first bus of the two buses is also specifically configured: when the circuit on the side of the second bus is electrically faulty, and the second bus When the first circuit protection module on the first bus is in the conduction state from the second bus side circuit to the battery side circuit, the first circuit protection module on the first bus is in a non-conductive state from the battery side circuit to the first bus side circuit. conduction state.
  • each busbar is equipped with a first circuit protection module.
  • At least one of the branch lines is connected with a sub-branch line, and the sub-branch line is used for connecting a load.
  • the sub-branch is provided with a third circuit protection module connected in series in the sub-branch;
  • the third circuit protection module is configured as follows: when an electrical failure occurs on the load side of the sub-branch line, the third circuit protection module is in a state of disconnecting the sub-branch line.
  • the third circuit protection module of the sub-branch line when the electrical failure of the sub-branch line connected to the load side occurs, such as overcurrent, short circuit and other faults, the power supply of the sub-branch line can be disconnected to prevent the load side connected to the sub-branch line from being damaged. busbar influence.
  • the branch line is provided with a fourth circuit protection module connected in series in the branch line;
  • the fourth circuit protection module set on it is configured as follows: when the branch line is connected to the load side and there is an electrical fault, the fourth circuit protection module is in the state of making the branch line open circuit, or
  • the fourth circuit protection module provided on it is configured as follows: when the branch line connects to the sub-branch line and the closing side has an electrical failure, the fourth circuit protection module is in the state of breaking the branch line.
  • the response time of the fourth circuit protection module to the electrical fault is shorter than the response time of the third circuit protection module to the electrical fault.
  • the fourth circuit protection module such as high safety load overcurrent protection circuit
  • the third circuit protection circuit module such as conventional load overcurrent protection circuit
  • a second circuit protection module is connected in series at the second end of the busbar; the second circuit protection module is configured to: when one of the circuits on both sides of the second circuit protection module has an electrical failure , the first circuit protection module is in a non-conductive state from the circuit on the electrical fault side to the circuit on the other side;
  • the electrical faults include at least one of the following: over-current faults, over-voltage faults, and under-voltage faults.
  • one side of the first circuit protection module has an electrical fault, such as over/undervoltage, or overcurrent, etc., and the fault side is connected to the The other side is in a non-conductive state, avoiding the influence of the other side of the circuit on the fault side, and realizing the requirement of supporting operation under fault conditions.
  • the second circuit protection module is specifically configured to: when the circuit on the second power supply device side of the second circuit protection module is electrically faulty, the second circuit protection module is in the state of making the second power supply device The side circuit to the bus side circuit is in a non-conductive state.
  • the second circuit protection module it is possible to realize the electrical failure of the terminal side circuit of the second power supply device, such as over/undervoltage, or overcurrent, etc., through the non-conduction state, to avoid the second power supply device terminal
  • the impact of the side circuit on the busbar can be powered by the battery at this time to meet the requirements of supporting operation under fault conditions.
  • the second circuit protection module is specifically configured to: when the bus side of the second circuit protection module is electrically faulty, the second circuit protection module is in the state of connecting the bus side circuit to the second power supply device The side circuit is in a non-conductive state.
  • the busbars are two busbars connected in parallel, and one end of each busbar used to connect to the second power supply device is connected in series with a second circuit protection module; the second circuit protection module on the two busbars Specifically, it is configured as follows: when the second power supply device side circuit of the second circuit protection module on the two bus lines is electrically faulty, the second circuit protection module on the two bus lines is in such a state that the second power supply device side circuit is connected to the bus bar side circuit. non-conductive state.
  • each busbar is equipped with a second circuit protection module, which can realize the electrical failure of the second power supply side without affecting the circuits on the two busbar sides, and meet the high safety power supply requirements for faulty operation.
  • the second circuit protection module on the first bus of the two buses is also specifically configured to: when the circuit on the side of the second bus of the two buses fails electrically, And when the second circuit protection module on the second bus is in the conduction state from the circuit on the side of the second bus to the circuit on the side of the second power supply device, the second circuit protection module on the first bus is in the state of making the second power supply device The side circuit to the first bus side circuit is in a non-conductive state.
  • each busbar is equipped with a second circuit protection module.
  • a control module is further included, configured to receive information about electrical faults and/or battery status information, and control at least one circuit protection module to be in a closed circuit or open circuit state.
  • control module can be used to realize real-time monitoring and management of electrical faults on the battery side, the second power supply device side, each branch line or sub-branch side, and the busbar side, so as to realize load fault management and fast fault positioning, and troubleshooting.
  • the control modules are two control modules communicating with each other;
  • the information of each electrical fault received by one of the control modules, the circuit protection module controlled corresponds to a bus, or the branch line connected to the bus bar, or the sub-branch line connected to the branch line;
  • the electrical fault information received by another control module, and the circuit protection module controlled by it correspond to another bus, or a branch connected to the bus, or a sub-branch connected to the branch.
  • control modules correspond to a bus respectively, which can realize decentralized control of risks and improve safety.
  • the second aspect of the present application provides a vehicle, including the above-mentioned power distribution device of the first aspect.
  • the power distribution device of the first aspect above can be applied in a vehicle to support the operation of the power distribution system of the vehicle under failure.
  • the third aspect of the present application provides a fault handling method, which is applied to a power distribution device.
  • the power distribution device includes a bus bar, and the bus bar includes a first end and a second end; the first end of the bus bar is connected to a battery; the first end of the bus bar is connected in series with the second end.
  • the fault handling method includes: when an electrical fault is detected on one side of the circuits on both sides of the first circuit protection module, the first circuit protection module is in a first state, and the first state includes making the first circuit protection module in the electrical fault side The circuit to the other side is in a non-conductive state.
  • the first circuit protection module is arranged between the first end of the bus bar and the battery. Through the first circuit protection module, the circuit on the electrical fault side and the circuit on the other side can be in a non-conductive state, and the fault of the vehicle can be realized. run.
  • the second end of the bus is connected to the second power supply device, and the second end of the bus is connected in series with the second circuit protection module;
  • the fault handling method specifically includes:
  • the first circuit protection module When the first fault is detected, the first circuit protection module is in the second disconnection state;
  • the first failure includes at least one of the following: electrical failure of the battery side circuit, abnormal battery state, and battery overtemperature failure;
  • the second disconnection state includes: the first circuit protection module is in a non-conductive state from the battery side circuit to the bus side circuit;
  • the third disconnection state includes: the second circuit protection module is in a non-conductive state from the busbar side circuit to the second power supply device side circuit.
  • the first circuit protection module when the battery side circuit has an electrical failure or the battery state is abnormal, the first circuit protection module can be in the second disconnection state to avoid the influence of the battery side circuit failure on the bus. And when the first circuit protection module cannot be in the second disconnection state, by making the corresponding second circuit protection module in the third disconnection state, the impact of the battery side circuit fault on the second power supply device side through the bus bar can be avoided, and the fault rate is improved. reliability and safety of operation.
  • the third aspect further includes: when the first circuit protection module is in the second disconnection state, executing a first failure strategy, where the first failure strategy includes a low-voltage battery failure strategy of the vehicle; or
  • the second failure strategy is executed, and the second failure strategy includes failure strategies of the vehicle's low-voltage battery and one power distribution.
  • it further includes: after the first circuit protection module is in the second disconnection state, after detecting that the first fault is recovered, making the first circuit protection module in the first conduction state;
  • the first conduction state includes: the first circuit protection module is in a conduction state from the battery side circuit to the bus side circuit.
  • the second end of the bus is connected to the second power supply device, and the second end of the bus is connected in series with the second circuit protection module;
  • the fault handling method specifically includes:
  • the second circuit protection module When an electrical fault is detected in the circuit on the second power supply device side, the second circuit protection module is in a fourth disconnection state;
  • the first disconnection state includes: the first circuit protection module is in a non-conductive state from the bus side circuit to the battery side circuit;
  • the fourth disconnection state includes: the second circuit protection module is in a non-conductive state from the circuit on the second power supply device side to the circuit on the bus bar side.
  • the second circuit protection module can be in the fourth disconnection state to avoid the influence of the circuit fault on the side of the second power supply device on the bus. And when the second circuit protection module cannot be in the fourth disconnection state, by making the corresponding first circuit protection module in the second disconnection state, the influence of the second power supply device side circuit fault on the battery side through the bus bar can be avoided, and the fault rate is improved. reliability and safety of operation.
  • the method further includes: when the second circuit protection module is in the fourth disconnection state, executing a third failure strategy, where the third failure strategy includes a failure strategy of the vehicle's second power supply device; or
  • the fourth failure strategy includes the second power supply device of the vehicle and the failure strategy of one power distribution.
  • the method further includes:
  • the second end of the bus bar is connected to the second power supply device, and the second end of the bus bar is connected in series with the second circuit protection module; a branch line is provided between the first end and the second end of the bus bar, There is a fourth circuit protection module connected in series on the branch line; the troubleshooting methods include:
  • the fourth circuit protection module When the second fault is detected, the fourth circuit protection module is in an open circuit state
  • the second fault includes at least one of the following: an electrical fault on the side where the branch line is connected to the load, and an electrical fault on the side where the branch line is connected to the sub-branch line.
  • the fourth circuit protection module when the branch line is connected to the load side or the sub-branch line closing side is electrically faulty, the fourth circuit protection module is in an open circuit state to avoid the influence of the load or sub-branch line failure on the bus. And when the fourth circuit protection module cannot be in the disconnected state, by making the corresponding first circuit protection module in the first disconnected state and the second circuit protection module in the third disconnected state, it is possible to avoid faults passing through the bus to the battery side, the second The influence of the side of the power supply device improves the reliability and safety of operation under fault conditions.
  • the third aspect also includes:
  • the fourth circuit protection module When the fourth circuit protection module is in the open circuit state, execute the fifth failure strategy, and the fifth failure strategy includes the failure strategy of one branch line; or
  • the sixth failure strategy is executed, and the sixth failure strategy includes the failure of one power distribution of the vehicle Strategy.
  • the second end of the bus bar is connected to the second power supply device, and the second end of the bus bar is connected in series with the second circuit protection module;
  • a branch line is provided between the first end and the second end of the bus bar, a fourth circuit protection module is connected in series on the branch line, a sub-branch line is provided on the branch line, and a third circuit protection module is connected in series on the sub-branch line;
  • Troubleshooting methods specifically include:
  • the third circuit protection module When an electrical fault on the load side connected to the sub-branch line is detected, the third circuit protection module is in an open circuit state;
  • the fourth circuit protection module cannot be in the disconnected state
  • the first circuit protection module on the bus where the branch line is located is in the first disconnected state
  • the second circuit protection module is in the third disconnected state.
  • the third circuit protection module when the electrical fault occurs on the side of the sub-branch, the third circuit protection module is in the disconnected state to avoid the influence of the fault of the sub-branch on the bus. Moreover, when the third circuit protection module cannot be disconnected, the fourth circuit protection module is in the disconnected state to avoid the impact of the sub-branch fault on the bus. And when the fourth circuit protection module cannot be in the disconnected state, by making the corresponding first circuit protection module in the first disconnected state and the second circuit protection module in the third disconnected state, it is possible to avoid faults passing through the bus to the battery side, the second The influence of the side of the power supply device improves the reliability and safety of operation under fault conditions.
  • the third aspect also includes:
  • the fourth circuit protection module When the fourth circuit protection module is in the open circuit state, execute the fifth failure strategy, and the fifth failure strategy includes the failure strategy of one branch line; or
  • the sixth failure strategy is executed, and the sixth failure strategy includes the failure strategy of the vehicle's one-way power distribution .
  • the second end of the bus is connected to the second power supply device, and the second end of the bus is connected in series with the second circuit protection module;
  • the fault handling method specifically includes:
  • the first circuit protection module on the faulty bus is in the first disconnection state, and the second circuit protection module on the faulty bus is in the third disconnection state;
  • the first circuit protection module on the faulty busbar is in the first disconnection state
  • the second circuit protection module is in the third disconnection state, which can prevent the faulty busbar from supplying power to the battery side and the second circuit protection module.
  • the influence of the device side and another busbar improves the reliability and safety of operation under fault conditions.
  • the first circuit protection module on the other bus is in the second disconnection state, which can avoid the influence of the faulty bus on the other bus and improve the reliability of operation under fault conditions. Reliability, safety.
  • the second circuit protection module on the other bus is in the fourth disconnection state, which can avoid the influence of the faulty bus on the other bus, and improve the reliability of operation under fault conditions. Reliability, safety.
  • the fourth aspect of the present application provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed, any fault handling method in the above third aspect is implemented.
  • the first circuit protection module by adding the first circuit protection module, it can support the operation under the condition of a single battery and greatly reduce the power distribution system. overall cost. Specifically, when the single busbar structure is adopted, the accurate and rapid detection and safe isolation of the second power supply device side fault, battery side fault, and load side fault of the power distribution system are realized, and the single-circuit low-voltage power distribution system can meet ASIL B level fault conditions. High security power supply requirements for operation.
  • the power distribution system of the power distribution device with double busbar structure when adopted, the accurate and rapid detection and safety isolation of the second power supply device side power supply fault, two power supply line faults, load side faults, and battery side faults can be realized.
  • the power distribution system of the power distribution device with double busbar structure can meet the high safety power supply requirements of ASIL D level fault operation.
  • the fourth circuit protection module such as a high-safety load overcurrent protection circuit
  • the third circuit protection circuit module such as a conventional load overcurrent protection circuit
  • Fig. 1 is a schematic structural diagram of an embodiment of the power distribution device of the present application
  • Fig. 2a-1 is a first structural schematic diagram of the first specific embodiment of the power distribution device of the present application.
  • Fig. 2a-2 is a second structural schematic diagram of the first specific embodiment of the power distribution device of the present application.
  • Fig. 2b is a schematic diagram of the first structure of the second embodiment of the power distribution device of the present application.
  • Fig. 2c-1 is a schematic diagram of the first structure of the third embodiment of the power distribution device of the present application.
  • Fig. 2c-2 is a second structural schematic diagram of the third embodiment of the power distribution device of the present application.
  • Fig. 2c-3 is a third structural schematic diagram of the third embodiment of the power distribution device of the present application.
  • Fig. 2c-4 is a fourth structural schematic diagram of the third embodiment of the power distribution device of the present application.
  • FIG. 3 is a schematic diagram of the system architecture of an embodiment of the power distribution device of the present application.
  • Fig. 4a is a flow chart of DC-DC end-side fault control corresponding to a specific embodiment of the present application
  • Fig. 4b is a flow chart of load circuit fault control corresponding to a specific embodiment of the present application.
  • Fig. 4c is a flow chart of two-stage load circuit fault control corresponding to a specific embodiment of the present application.
  • Fig. 4d is a flow chart of fault control on the low-voltage battery side corresponding to a specific embodiment of the present application
  • Fig. 4e is a flow chart of bus fault control of a single power distribution circuit corresponding to a specific embodiment of the present application
  • Fig. 5a is a flow chart of executing the failure strategy of the second power supply device corresponding to a specific embodiment of the present application
  • Fig. 5b is a flow chart of executing a branch line failure strategy corresponding to a specific embodiment of the present application.
  • a power distribution system for a vehicle is a low-voltage power distribution system using double batteries.
  • the power distribution system uses two batteries and two battery detection modules to realize independent power supply for redundant loads.
  • the battery detection module uses an intelligent Battery sensor (Intelligent battery sensor, IBS). Due to the use of a battery and two battery detection modules, it can meet the requirements of high safety and high availability operation, but on the other hand, it also leads to the redundant structure of the power distribution system, resulting in a relatively high cost.
  • IBS Intelligent Battery sensor
  • the embodiment of the present application provides an improved power distribution device.
  • the power distribution device adopts a power distribution box, and when configuring the access of the battery, it can also achieve high safety and high Availability requirements greatly reduce the overall cost of the power distribution system.
  • high safety systems such as the intelligent driving system of the vehicle, the electronic steering control system by wire, the electronic brake control system by wire, and the electronic power assist system of the chassis of heavy vehicles, and provide high-level support for operation under power failure. Safe and highly available low-voltage power supply to ensure that in the event of a power-related failure, the driver can safely take over the driving system, safely operate the steering and braking, and improve driving safety.
  • the power distribution device of the embodiment of the present application can be applied to vehicles, such as intelligent vehicles (Smart/Intelligent Car), pure electric vehicles (Pure EV/Battery EV), hybrid electric vehicles (Hybrid Electric Vehicle/HEV), and extended-range electric vehicles (Range Extended EV/REEV), plug-in hybrid electric vehicle (Plug-in HEV/PHEV), new energy vehicle (New Energy Vehicle), flight equipment (such as aircraft), etc.
  • intelligent vehicles Smart/Intelligent Car
  • pure electric vehicles Pure EV/Battery EV
  • Hybrid Electric Vehicle/HEV Hybrid Electric Vehicle/HEV
  • extended-range electric vehicles Range Extended EV/REEV
  • plug-in hybrid electric vehicle Plug-in HEV/PHEV
  • New Energy Vehicle new energy vehicle
  • flight equipment such as aircraft
  • a power distribution device provided by an embodiment of the present application is introduced.
  • the power distribution device in Fig. 1 has a solid line part and a dotted line part, and the dotted line part indicates an optional part.
  • busbar (or bus) 10 branch line 12 is connected to busbar 10
  • branch line 12 is used to connect the load
  • the end of the branch line 12 away from the bus bar 10 is used to connect the load, wherein the load can be connected by means of setting electrical connection terminals
  • the two ends of the bus bar 10 that is, the first end and the second end are respectively used to connect the first power supply device 30 and the second power supply device 32, wherein the two ends can be connected to the first power supply device 30 and the second power supply device 32 by means of electrical connection terminals
  • the bus bar 10 is used to connect one end of the first power supply device 30, that is, the first end , a first circuit protection module 20 is connected in
  • the first power supply device 30 is an energy storage device, such as a battery, where the battery is used to provide a working voltage, such as 12V, 24V, or 36V, etc., so it is also called a low-voltage battery.
  • the first power supply device 30 may also be a power generating device that provides working voltage, that is, a low-voltage power supply.
  • the second power supply device 32 may be an generator (EM) or a power battery, and the high voltage output by the generator (EM) or the power battery is converted into a working voltage and then input to the bus bar 10 .
  • EM generator
  • the high voltage output by vehicle generators and power batteries is mostly between 200-750V, and the high voltage is used to drive the driving motor of the vehicle, the electric compressor of the air conditioner, etc.
  • Most of the circuits in the vehicle, such as various control circuits have an operating voltage of low voltage, usually lower than 48V. Therefore, it is necessary to convert the high voltage into a low voltage through voltage conversion and then provide it to the bus 10.
  • the voltage conversion can be DC-DC ( DC-DC) conversion module is realized.
  • one end of the bus bar 10 is used to connect to the second power supply device 32 , that is, the second end, and the second circuit protection module 22 is connected in series.
  • each busbar 10 can be connected with a branch line 12, wherein, each busbar 10 is connected in series with the The first circuit protection module 20, and the first circuit protection module 20 is located at one end of the bus 10 for connecting to the first power supply device 30, that is, at the end of the bus 10 to the side combiner node.
  • each busbar 10 is also connected in series with the second circuit protection module 22, and the second circuit protection module 22 is located on the busbar 10 for One end connected to the second power supply device 32 is the end located on the bus 10 to the side combiner node.
  • the two power receiving ports of the load can be connected to the branch lines 12 of the two busbars 10 respectively, so as to connect one busbar
  • the load can still be powered by another bus 10 when 10 is offline.
  • it can also be connected to the branch line 12 of the same bus 10 of the double bus 10 .
  • the branch line 12 is provided with a fourth circuit protection module 24 connected in series in the branch line 12 .
  • At least one of the branch lines 12 is connected with a sub-branch line 14, and the sub-branch line 14 can be connected to the branch line 12 away from the end of the busbar 10, and the end of the sub branch line 14 away from the branch line 12 is used to connect the load, which can be connected to the load in the form of an electrical connection terminal.
  • the sub-branch 14 is provided with a third circuit protection module 26 connected in series in the sub-branch 14 .
  • the branch line 12 can be connected, and the fourth circuit protection module 24 can adopt high security-level modules.
  • the sub-branch 14 can be connected, and the third circuit protection in the sub-branch 14
  • the security level of the module 26 is lower than that of the fourth circuit protection module 24 .
  • the branch line 12 already has the fourth circuit protection module 24, while the sub-branch line 14 has the third circuit protection module 26, forming a two-stage protection circuit with different safety levels.
  • the safety level of the circuit protection module here can be the response time of the circuit protection module to faults. The higher the safety level, the shorter the response time.
  • the fourth circuit protection module 24 can respond to faults in milliseconds, while the third circuit protection Module 26 may have a relatively long response time to faults, such as a second-level response time.
  • the first circuit protection module 20 is configured to: when one of the circuits on both sides of the first circuit protection module 20 is electrically faulty, the first circuit protection module 20 is configured to make the electrical The circuit on the faulty side is in a non-conductive state to the circuit on the other side. In some embodiments, the first circuit protection module 20 is specifically configured to: when the battery side circuit of the first circuit protection module 20 is electrically faulty, the first circuit protection module 20 is in the state of making the The battery side circuit is in a non-conductive state to the bus side circuit.
  • the first circuit protection module 20 is further specifically configured: when the state of the battery in the battery side circuit of the first circuit protection module 20 is abnormal, the first circuit protection module 20 It is in a non-conductive state from the battery-side circuit to the bus-side circuit. In some embodiments, the first circuit protection module 20 is specifically configured to: when the bus-side circuit of the first circuit protection module 20 is electrically faulty, the first circuit protection module 20 is in the state of making the The circuit on the bus side is in a non-conductive state to the circuit on the battery side.
  • the first circuit protection module on the first busbar among the two busbars is also specifically configured to: when the second busbar side circuit has an electrical failure , and when the first circuit protection module on the second bus is in the conduction state from the second bus side circuit to the battery side circuit, the first circuit on the first bus The protection module is in a non-conductive state from the battery side circuit to the first bus side circuit, and the first circuit protection modules of the two busbars can be configured as above.
  • the first circuit protection module 20 is in a state where the bus-side circuit and the battery-side circuit are in a non-conductive state, which is called the first disconnection state, and the first disconnection state includes : One-way disconnection (i.e. non-conduction state) from the side of the bus bar 10 to the side of the first power supply device (battery) 30, optionally, the side of the first power supply device (battery) 30 to the side of the bus bar 10 One-way conduction on the side;
  • One-way disconnection i.e. non-conduction state
  • the first circuit protection module 20 is in a non-conductive state from the battery side circuit to the bus side circuit, which is called the second disconnection state, and the second disconnection state includes: the first power supply device (battery) 30 side to the bus bar 10 side one-way disconnection (that is, non-conduction state), and optionally, the bus bar 10 side to the first power supply device (battery) 30 side one-way conduction.
  • the second circuit protection module 22 is configured to:
  • the first circuit protection module When one side of the circuits on both sides of the second circuit protection module is electrically faulty, the first circuit protection module is in a state where the circuit on the side of the electrical fault is in a non-conductive state to the circuit on the other side.
  • the second circuit protection module is specifically configured to: when the circuit on the second power supply device side of the second circuit protection module is electrically faulty, the second circuit protection module is in the The circuit on the side of the second power supply device is in a non-conductive state to the circuit on the side of the bus bar. In some embodiments, the second circuit protection module is specifically configured to: when the bus side of the second circuit protection module is electrically faulty, the second circuit protection module is in the state of causing the bus side circuit to The circuit on the side of the second power supply device is in a non-conductive state.
  • the second circuit protection module on the first busbar among the two busbars is further specifically configured to: when the second busbar side circuit When an electrical fault occurs, and the second circuit protection module on the second bus is in the state of making the circuit on the side of the second bus and the circuit on the side of the second power supply device conduct, the circuit on the first bus The second circuit protection module is in a non-conductive state from the second power supply device side circuit to the first bus side circuit.
  • the second circuit protection module is in a state where the circuit on the busbar side and the circuit on the side of the second power supply device are in a non-conductive state, which is called the third disconnection state.
  • the third disconnection The state includes: a one-way disconnection (that is, a non-conductive state) from the side of the bus bar 10 to the side of the second power supply device 32, optionally, a one-way disconnection from the side of the second power supply device 32 to the side of the bus bar 10 Pass;
  • the fourth disconnection state includes: the second power supply device 32 One-way disconnection (that is, non-conduction state) from the bus bar 10 side to the bus bar 10 side, and optionally, one-way conduction from the bus bar 10 side to the second power supply device 32 side.
  • the fourth circuit protection module 24 is used for disconnecting the fourth circuit protection module 24 when an overcurrent fault occurs at the end side current of the load connected to the branch line, or the combined side current of the sub branch line 14 connected. state, that is, disconnect the connected load end or the connected sub-branch 14 combined circuit.
  • the third circuit protection module 26 is used to make the module in a disconnection state when an overcurrent fault occurs at the end side of the connected load, that is, disconnect the circuit of the connected load.
  • an active overcurrent protection circuit or a passive overcurrent protection circuit may be adopted.
  • a battery detection module (refer to the symbol 7 in the figure) for detecting the battery state is also included, which is used to detect the abnormal state of the battery, through the first A circuit protection module keeps the battery and the bus in a disconnected state.
  • the battery detection module can be used to detect the voltage, current and internal fault of the low-voltage battery, calculate the remaining power and the life of the low-voltage battery, and so on.
  • the detection result can be provided to the battery detection module,
  • the detection of the battery detection module is realized.
  • the self-detection module inside the battery may include a low-voltage battery temperature, voltage, and current sensor or detection circuit, and a low-voltage battery internal fault detection circuit.
  • the battery detection module when the battery detection module detects a battery fault or the low-voltage battery has reached the end of its life, it executes a corresponding fault handling strategy, which will be described later with reference to FIG. 4d , and will not be described here.
  • a control module is also included, configured to receive detections from the first circuit protection module 20 , the second circuit protection module 22 , the fourth circuit protection module 24 , and the third circuit protection module 26 As a result, according to the detection results, the corresponding strategy is executed according to the corresponding preset execution logic, so that the circuit connected to the corresponding circuit protection module is disconnected, such as trying to restore the process, driving-related strategies: prohibit opening intelligent driving, restrict intelligent driving, safety Takeover/parking, degraded mode, alarm, assisted parking (manual safety parking strategy), etc., wherein the control module can upload the detection result to the vehicle control module through the communication port, such as an electronic control module (Electronic Control Unit, ECU), The driving-related strategies are executed by a vehicle control module.
  • ECU Electronic Control Unit
  • control module can communicate with the outside through the communication port, so that the information in the control module can be configured, such as the configuration of parameters such as load overcurrent safety limit, overvoltage limit, undervoltage limit, and overcurrent limit of each circuit protection module. .
  • each circuit protection module is current or voltage according to the electrical signal to be detected, which may include a voltage or/and current sensor, an actuator, wherein the actuator may be a controllable switch, such as a controllable circuit breaker, Thyristor circuit breakers, thyristor switches, etc., are controlled by the control module, and may also be self-controlled switches, which are directly controlled according to the results of the voltage and/or current sensors in the circuit protection module.
  • the voltage or/and current sensor and actuator of the circuit protection module can be integrated into one component, or it can be a circuit composed of several discrete components.
  • Figure 2a-1, Figure 2b, and Figure 2c-1 show a schematic diagram of an embodiment of the first circuit protection module and the second circuit protection module, which are composed of two switches connected in series, and the two switches are connected in parallel diodes, and form a connection state in which the anodes of the two diodes face each other.
  • the two diodes can also be in a state where the cathodes are facing each other.
  • the corresponding two first circuit protection modules may be independent devices, or two independent modules integrated into one device.
  • the corresponding two second circuit protection modules may be independent devices, or two independent modules integrated into one device.
  • FIGS. 2a-1 to 2c-4 will further introduce the embodiments of the present application with the first to third specific implementation manners shown in FIGS. 2a-1 to 2c-4.
  • the third specific embodiment shown in FIG. 2c-1 is introduced first, and then the second and first specific embodiment shown in FIG. 2b, FIG. 2a-1 to FIG. 2a-2 are introduced sequentially.
  • Figure 2c-1 shows the third specific implementation of the power distribution device, while referring to the system architecture of the power distribution device of an embodiment shown in Figure 3 for introduction, as shown in Figure 2c-1, the specific implementation Among them, the power distribution device includes a first circuit protection module on the battery terminal side on a dual busbar, and the first circuit protection module includes a bidirectional switch (i.e., an actuator), which is a first switch 1 and a second switch 2, and diodes are connected in parallel respectively, And a connection state in which the anodes of the two diodes face each other is formed.
  • the first switch 1 is used for the over-undervoltage/over-current fault protection of the distribution line
  • the second switch 2 is used for the over-current fault protection of the low-voltage battery terminal side.
  • the first switch 1 in the first circuit protection module of the bus can be used to quickly cut off the faulty circuit to ensure that the low-voltage battery 9 is connected to the other bus.
  • Normal power supply of the circuit load when a short circuit or overcurrent fault is detected on one side of the battery 9 (for example, through the self-detection module 8 of the internal fault of the battery, and the detection result is provided to the battery detection module 7), it can be disconnected at the same time
  • the second switch 2 in the two busbars can quickly cut off the fault on the side of the battery 9 to ensure the normal operation of the power distribution system on the two busbars.
  • the first A circuit protection module may not include the relevant circuit of the second switch 2, that is, it is considered that the battery failure will not affect the bus, so the relevant circuit of the second switch 2 is not provided.
  • the fourth circuit protection module on the branch line is an overcurrent protection circuit 4
  • the third circuit protection module on the sub-branch is an over-current protection circuit 3
  • the circuit protection modules on the branch line and the sub-branch form two Level low-voltage power distribution overcurrent protection system.
  • the load connected to the branch line can be a safe load, and a fourth circuit protection module with high safety and high cost is configured.
  • the load connected to the branch line can be a conventional load, and a fourth circuit protection module can be shared, and each conventional load is equipped with a fourth circuit protection module.
  • the safe load refers to a load that has higher safety requirements than ordinary loads.
  • the safety of the fourth circuit protection module is higher, for example, the fault response time (such as the disconnection time in case of fault) is faster, and the fault threshold response accuracy is higher.
  • the faulty load circuit When a safe load overcurrent fault is detected, the faulty load circuit will be disconnected quickly through the connected overcurrent protection circuit 4; when a normal load overcurrent fault is detected, the connected overcurrent protection circuit 3 will be disconnected Faulty load circuit; when an overcurrent fault is detected in the combined circuit of the entire conventional load, the conventional load distribution circuit is quickly disconnected through the overcurrent protection circuit 4 of the safe load.
  • the second circuit protection module includes a bidirectional switch (that is, an actuator), which is a third switch 5 and a fourth switch 6, and diodes are respectively connected in parallel to form a connection state in which the anodes of the two diodes face each other.
  • the third switch 5 is used for over-undervoltage/over-current fault protection of the circuit on the bus
  • the fourth switch 6 is used for over-under-voltage/over-current fault protection of the DC-DC/generator end side 10 (that is, the second power supply device side).
  • the fault circuit can be cut off quickly through the third switch 5 in the second circuit protection module of the bus.
  • the fault circuit is quickly cut off through the fourth switch 6.
  • two third switches 5 can be canceled as shown in Figure 2c-3, or only one third switch 5 can be reserved as shown in Figure 2c-4 , when an overcurrent fault of one of the two buses is detected, the faulty distribution line can be shut off and isolated through the first switch 1 on the same bus and the fourth switch 6 on the other bus, so that the faulty bus It does not affect the other busbar and battery.
  • Figure 2b shows the second specific embodiment of the power distribution device.
  • the sub-branch part is canceled, that is, the secondary conventional overcurrent protection circuit of the conventional load is cancelled, All loads use the fourth circuit protection module.
  • the second specific implementation of the power distribution device shown in Figure 2b can meet the low-voltage power supply requirements for fail-operational operation (Fail-Operational) required by the ASIL D level of the dual-circuit power distribution system.
  • Fig. 2b may not include the relevant circuit of the second switch 2, and corresponding to the schemes in Fig. 2c-3 and Fig. 2c-4, Fig. 2b may also cancel the first Three switches 5, or only one third switch 5 is reserved as shown in Fig. 2c-4, which will not be repeated here.
  • Figure 2a-1 shows the first specific implementation of the power distribution device. Compared with the second specific implementation shown in Figure 2b, it is a single bus, and the redundant bus is cancelled, which can meet the power distribution composed of a single bus. The low-voltage power supply requirements for the device to operate under ASIL B level failure (Fail-Operational). Moreover, in some specific implementations, when it is a single bus power distribution device, as shown in Figure 2a-2, the first switch 1 may not be set in the first circuit protection module, and the third switch 1 may not be set in the second circuit protection module. Switch 5, that is, when the bus fails, it is enough to directly execute the alarm and deal with the failure accordingly. In this circuit, the first switch 1 and the third switch 5 are not used to limit the influence of the bus failure on the second power supply device and the battery.
  • the circuits of the first switch 1 and the second switch 2 of the two busbars can be in a circuit module that remains independent from each other, and also But two separate circuit modules.
  • the circuits of the third switch 5 and the fourth switch 6 of the two busbars can be in one independent circuit module or two separate circuit modules.
  • the second switch 2 may not be provided in the first circuit protection module (refer to FIG. 2c-2).
  • the third switch 5 may not be set in the second circuit protection module (refer to Fig.
  • circuits involved in the above-mentioned partial switches can be shared, for example, the circuit of the first switch 1 and the second switch 2 to detect the current, and another example, the circuit of the third switch 5 and the fourth switch 6 to detect the current, etc.
  • the possible faults include one of the following: low-voltage battery undervoltage; low-voltage battery side overcurrent/short-circuit fault; low-voltage battery side output voltage intermittent Continuous, discontinuous, or even open circuit; the life of the low-voltage battery expires; the capacity of the battery decays; the battery cannot be charged; the temperature of the battery is too high.
  • the fault information can be detected by the above-mentioned battery detection module, and part of the fault information can also be provided to the battery detection module by the self-detection module of the battery, and the electrical signal (such as voltage, current) output from the low-voltage battery to the power distribution device can be It is detected by the current and voltage sensors in the first protection circuit.
  • the electrical signal such as voltage, current
  • the second power supply device connected to the above-mentioned power distribution device can be a power battery (that is, a high-voltage battery) or a circuit composed of a generator and DC-DC
  • the possible faults include one of the following: DC-DC or generator End-side fault: DC-DC or generator output voltage overvoltage or undervoltage; DC-DC or generator end-side circuit has overcurrent fault or short-circuit fault; DC-DC or generator output voltage is intermittent, intermittent continuous, or even disconnected.
  • the electrical signal (such as voltage and current) output to the power distribution device via DC-DC can be detected by the current and voltage sensors in the second protection circuit; the electrical signal between the power battery or the generator and the DC-DC can be detected by The sensors installed between the circuits perform detection; when the power battery and generator have self-detection modules, they can also provide their own status information.
  • the faults related to the load circuit connected to the power distribution device include one of the following: load circuit (corresponding branch line or sub-branch line) overcurrent or short circuit; load circuit (corresponding branch line or sub-branch line) power supply is discontinuous, intermittent , or even open circuit; the sub-branch combined circuit (corresponding to the branch) is over-current or short-circuited.
  • load circuit corresponding branch line or sub-branch line
  • load circuit corresponding branch line or sub-branch line
  • the sub-branch combined circuit corresponding to the branch
  • the current sensor in the fourth protection circuit when they are faults on the corresponding sub-branch line, they can be detected by the current sensor in the fourth protection circuit.
  • the busbar failure in the power distribution device includes one of the following: busbar short circuit, leakage or open circuit.
  • the fault can be detected by current and voltage sensors in the first protection circuit or the second protection circuit.
  • control module can have include one of the following: by collecting the collected voltage or current provided by each protection circuit and the status of the protection circuit (whether it is in a disconnected state) information, real-time monitoring of each line (including busbars, branch lines, or Sub-branch) current and voltage conditions, once an overcurrent or over/undervoltage fault is found, control the corresponding protection circuit to disconnect the faulty circuit according to the pre-measurement, so as to disconnect the first power supply device, the second power supply device, or the corresponding load.
  • control module adopts dual control modules (control module A and control module B shown in Figure 3), and real-time monitoring of faults and states is also carried out between the dual control modules (for example, monitoring is realized by heartbeat) , if it is found that the other party has unresolved failures (such as running away, restarting, etc.), then execute the preset control module failure handling strategy.
  • the control module also transmits the obtained power distribution device fault and status, load information, etc. to the relevant ECU through a communication bus, such as the CAN bus, and supports the control of the load overcurrent in the control module through the CAN bus.
  • Configure parameters such as safety limit, overvoltage limit, undervoltage limit, and overcurrent limit in the protection circuit.
  • Fig. 4a is a flow chart of DC-DC end-side fault control corresponding to a specific embodiment of the present application, which can be applied to Fig. 2a-1, Fig. 2a-2, Fig. 2b, Fig. 2c-1, and Fig. 2c-2 the embodiment.
  • the control logic on the power distribution device side is: for each bus , control the fourth switch 6 of the second circuit protection module to turn off, so that the DC-DC end side does not supply power to the bus, and when the fourth switch 6 cannot be turned off, then control the fourth switch of the first circuit protection module on the same bus
  • a switch 1 is turned off to disconnect the one-way power transmission from the DC-DC end to the battery side or another bus bar through the bus bar, so as to protect the battery or the other bus bar from being affected by DC-DC terminal side faults.
  • the second switch 2 of the first circuit protection module on the same bus can be controlled to be closed, so that the battery supplies power to the bus normally.
  • the fault is reported to execute the control logic of the vehicle, mainly implementing the failure strategy of the second power supply device.
  • the embodiment of the present application does not limit the specific strategy content, and the required strategy may be pre-configured.
  • the failure strategy due to the failure of the second power supply device, currently only the power supply of the low-voltage battery, the limitation of the power of the low-voltage battery, and the limitation of the power supply time can all be used as the basis for formulating the failure strategy.
  • An example of the failure strategy is shown in Figure 5a.
  • the execution strategy in this example includes: judging that when each load is under the condition of safe power limit, execute the vehicle's safe power limit strategy, that is, because the DC-DC terminal side fault, only the battery supplies power to the bus, then limit the power of each load connected to the bus; if it is not under the condition of safe power limit, then further judge whether it is in the state of intelligent driving, if so, trigger manual takeover, and can Give parking suggestions, or implement an auxiliary safe parking mode, so that the vehicle can park on the side of the road without affecting other vehicles, pedestrians, etc., or enter the downgrade mode of intelligent driving (such as downgrading from L4 level to L3 or L2 level), If you are not in the state of intelligent driving, you can prohibit the opening of intelligent driving, or implement the attached power limit strategy, or implement the manual driving mode, and give parking suggestions.
  • Fig. 4b is a flow chart of load circuit fault control of a branch line corresponding to a specific embodiment of the present application, which can be applied to the embodiments shown in Fig. 2a-1 and Fig. 2b.
  • the electrical load fault here can be load overcurrent, etc.
  • the control logic on the power distribution device side is:
  • the fourth circuit protection module such as the overcurrent protection circuit 4
  • disconnect the faulty load and give a fault alarm and when it is judged that the overcurrent protection circuit 4 cannot disconnect the faulty circuit, through the first circuit protection module on the same bus
  • the first switch 1 is disconnected from the third switch 5 in the second circuit protection module to realize the one-way power transmission of the isolated fault load towards the battery side, the one-way power transmission of the isolated fault load towards the DC/DC end side, and the isolation of the fault load
  • the failure strategy of one branch line of the vehicle can be implemented.
  • the vehicle's one-way power distribution failure strategy is executed.
  • the embodiment of the present application does not limit the specific strategy content, and the required strategy may be pre-configured. For example, due to the failure of one branch line, it is necessary to consider whether the load on the branch line will affect the automatic driving. For example, when some dual-bus power supply loads happen to be connected to one branch line and fail, the two-way power supply becomes one-way power supply. It is necessary to consider that the load power is limited, which can be used as the basis for formulating the failure strategy.
  • Figure 5b shows an example of implementing a failure strategy for one branch line, including: judging whether the fault affects intelligent driving, if so, executing manual driving mode, with a driver taking over, otherwise further judging whether intelligent driving is enabled, If it is already in the state of intelligent driving, it will trigger manual takeover, and can give parking suggestions, or execute the assisted safe parking mode, or enter the degraded mode of intelligent driving, etc.
  • Execute the power limit mode of the load connected to the branch line here refers to the load connected to the dual bus).
  • the embodiment of the present application does not limit the specific strategy content, and the required strategy may be pre-configured. For example, due to the failure of one bus power distribution, it is necessary to consider whether each load on the bus will affect the automatic driving. For example, for some loads powered by dual buses, the dual power supply becomes one power supply, and the load power needs to be considered. Subject to limitations, these can be used as the basis for formulating the failure strategy.
  • the implemented one-way power distribution failure strategy may include judging whether the load of the failed bus affects the intelligent driving, and when it is affected, executes the manual takeover mode, or enters the degraded mode of the intelligent driving, or the connected load (here refers to connecting the two-way bus load), power limit mode, etc.
  • Fig. 4c is a flow chart of two-stage load circuit fault control corresponding to a specific implementation manner of the present application, which can be applied to the embodiments shown in Fig. 2c-1 to Fig. 2c-4.
  • Two levels correspond to the structure with sub-branches on the branch.
  • the main difference from Figure 4b is that when the load on the sub-branch fails, such as overcurrent, the control logic on the side of the power distribution device is: load failure alarm, and disconnect the corresponding third circuit protection module, such as overcurrent protection If the circuit 3 cannot be disconnected through the overcurrent protection circuit 3, control the fourth circuit protection module on the branch line where the sub-branch line is located, such as the over-current protection circuit 4, disconnect the branch line, and at this time, a branch line failure strategy can be implemented.
  • the sub-branch line loads the main circuit, that is, if the branch line where the sub-branch line is located is over-current, it will control the fourth circuit protection module on the branch line where the sub-branch line is located, such as the over-current protection circuit 4, and disconnect the branch line.
  • a branch line failure strategy can be implemented .
  • control logics and vehicle control logics refer to the example shown in FIG. 4b , which will not be repeated here.
  • Fig. 4d is a low-voltage battery side fault control flow chart corresponding to a specific embodiment of the present application, which can be applied to the embodiments shown in Fig. 2a-1, Fig. 2b, Fig. 2c-1 to Fig. 2c-4.
  • the battery side fault here is such as the electrical fault of the battery side circuit, the abnormal state of the battery, or the overtemperature fault of the battery
  • the control logic of the power distribution device side is: it is judged as recoverable
  • the second switch 2 of the first circuit protection module is controlled to be in the off state, and after the battery failure meets the recovery condition, the second switch 2 is in the closed state.
  • the embodiment of the present application does not limit the specific strategy content, and the required strategy can be pre-configured.
  • the above-mentioned factors to be considered in the one-way power distribution failure strategy and the factors to be considered in the low-voltage battery failure strategy can be considered to formulate vehicle control strategies, such as Implement the degraded mode of intelligent driving, or implement the manual takeover mode, etc.
  • Fig. 4e is a flow chart of bus fault control of a single power distribution circuit corresponding to a specific embodiment of the present application, which can be applied to the embodiments shown in Fig. 2b, Fig. 2c-1, and Fig. 2c-2.
  • control logic on the power distribution device side is: control the first switch 1 of the first circuit protection module on the faulty bus, and the third switch 5 of the second circuit protection module to turn off Open, realize the one-way power transmission of the isolated fault bus towards the battery side, the one-way power transmission of the isolated fault bus towards the DC/DC end side, and the one-way power transmission of the isolated fault load bus towards the other bus side, avoiding the impact of the fault bus on the battery side, DC/DC terminal side and another busbar, and implement the failure strategy of one power distribution (that is, one busbar) of the vehicle; if the first switch 1 cannot be disconnected, a fault alarm will be issued, and the other busbar will be controlled The second switch 2 of the first circuit protection module is turned off to avoid affecting the other busbar.
  • the power supply of the other busbar is only supplied by the DC/DC terminal side, and the low-voltage battery of the vehicle and one-way power distribution (that is, one-way busbar ) failure strategy; if the third switch 5 cannot be disconnected, a fault alarm will be issued, and the fourth switch 6 of the second circuit protection module on the other bus is controlled to be disconnected to avoid affecting the other bus.
  • the power supply of the first bus is only powered by the battery, and the failure strategy of the second power supply device of the vehicle and one power distribution (that is, one bus) is implemented.
  • the embodiment of the present application does not limit the specific strategy content, and the required strategy can be pre-configured.
  • the factors to be considered in the strategy are used to formulate the control strategy of the vehicle, such as implementing the degraded mode of intelligent driving, or implementing the manual takeover mode, etc.
  • corresponding control strategies can be formulated by referring to the above-mentioned failure strategy of the second power supply device and one power distribution failure strategy.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及电动车下的新能源汽车技术领域,尤其是指一种配电装置,包括:母线,母线包括第一端和第二端;母线的第一端和第二端之间连接有支线,支线用于连接负载;母线的第一端用于连接电池,第二端用于连接第二供电装置;母线的第一端串联有第一电路保护模块;第一电路保护模块被配置为:当第一电路保护模块两侧电路中的一侧电路电气故障时,第一电路保护模块处于使电气故障侧电路到另一侧电路为不导通状态。还相应的提供了安装该配电装置的车辆及基于该配电装置的故障处理方法。本申请技术方案可实现低成本下、低压电源系统的配电能满足故障下运行的高可用高安全要求。

Description

配电装置、车辆及故障处理方法 技术领域
本申请涉及电动车下的新能源汽车技术领域,也涉及电池管理技术领域,特别是指配电装置、具有该配电装置的车辆及基于该配电装置的故障处理方法。
背景技术
近年来,随着智能驾驶技术的迅猛发展,智能驾驶汽车也快速的进入千家万户,汽车也从原来的纯人工驾驶模式、逐步发展到辅助驾或自动驾驶模式,其中自动驾驶的自动化程度的级别包括L1驾驶辅助、L2部分自动化、L3有条件的自动化、L4高度自动化、L5完全自动化。
其中,在上述L1、L2级别,不允许驾驶员脱手驾驶,L2+以上级别允许驾驶员脱手驾驶,L3级别以上,允许驾驶员脱手脱眼驾驶,甚至驾驶员无需关注车辆的驾驶情况。由上可以看出,随着自动驾驶级别的发展,对整车系统的设计提出了新的挑战与要求,不仅限于满足故障状态下的安全性,还需要满足故障状态下的可运行性,即后述的故障下运行(Fail-Operational)。
例如,电子转向/制动系统,不仅要满足智能驾驶条件下的电子转向/制动的高安全性,还要满足故障下运行的高安全和高可用要求,避免电子转向/制动助力丧失导致人工转向/制动力需求过大、不能及时转向或刹停导致车辆失去控制。
又如,自动驾驶系统运行时,当车辆在自动驾驶条件下,由于驾驶员不能像人驾模式下及时操纵车辆,为保证行车安全,自动驾驶系统/高级辅助驾驶系统(Automated Driving system/Advanced driver-assistance systems,ADS/ADAS)需满足故障下运行的高安全和高可用要求,避免因智能驾驶系统失效导致车辆失去控制。
再如,随着车辆的重量(例如车身重量、动力电池的重量)逐渐变大,以及未来线控转向和线控制动技术的逐渐应用,冗余线控/转向制动技术的发展也需要满足故障下运行的高安全和高可用要求,避免因线控/转向系统失效导致车辆横向失控。
另一方面,为满足如上述列举的“故障运行”的高可用高安全要求,为上述供电的车辆的低压电源系统(如12V供电系统、24V供电系统等)同样要满足故障下运行的高可用高安全要求。因此,在该高可用高安全要求下,如何去实现低压电源系统的配电,是本申请所要解决的技术为问题。
发明内容
鉴于现有技术的以上问题,本申请提供一种配电装置、具有该配电装置的车辆及基于该配电装置的故障处理方法,以实现低成本下、低压电源系统的配电能满足故障下运行的高可用高安全要求。
为达到上述目的,本申请第一方面提供了一种配电装置,母线,母线包括第一端和第二端;母线的第一端和第二端之间设有支线,支线用于连接负载;
母线的第一端用于连接电池,第二端用于连接第二供电装置;
母线的第一端串联有第一电路保护模块;
第一电路保护模块被配置为:当第一电路保护模块两侧电路中的一侧电路电气故障时,第一电路保护模块处于使电气故障侧电路到另一侧电路为不导通状态。
由上,本申请配电装置应用时,通过增加第一电路保护模块,采用了一个电池的配置,实现了第一电路保护模块的一侧电路电气故障,如过/欠压、或过流等故障时,将故障侧到另一侧为不导通状态,避免故障侧电路另一侧的影响,实现支持故障下运行的要求。另一方面,由于采用了单电池,也降低了低压电源系统的整体成本。
作为第一方面的一种可能的实现方式,第一电路保护模块具体被配置为:当第一电路保护模块的电池侧电路电气故障时,第一电路保护模块处于使电池侧电路到母线侧电路为不导通状态。
由上,通过第一电路保护模块的该配置,可以实现当第一电路保护模块连接电池的一侧电路电气故障,如该侧电路过/欠压、或过流等故障时,通过第一电路保护模块的电池侧向母线侧的不导通状态,避免电池侧电路对母线的影响,此时可通过第二供电装置进行供电,实现支持故障下运行的要求。
作为第一方面的一种可能的实现方式,第一电路保护模块具体被配置为:当第一电路保护模块的电池侧电路中的电池状态异常时,第一电路保护模块处于使电池侧电路到母线侧电路为不导通状态。
由上,通过该配置,在配电装置接入一个电池的前提下,还可以在电池状态异常时,使得母线与电池之间为断路状态,可以避免电池侧故障对母线影响,满足了故障下运行的安全性要求。这里的电池状态异常包括电池的低压或欠压、电池的过流/短路、电池输出电压时断时续、不连续、甚至断路、电池寿命到期或容量衰减、充不上电、温度偏高等异常情况。
作为第一方面的一种可能的实现方式,第一电路保护模块具体被配置为:当第一电路保护模块的母线侧电路电气故障时,第一电路保护模块处于使母线侧电路到电池侧电路为不导通状态。
由上,通过该配置,在配电装置接入一个电池的前提下,还可以在母线侧电气故障时,如过/欠压、过流或漏电等故障,使得母线与电池之间为断路状态,可以避免母线故障对电池的影响,满足了故障下运行的安全性要求。
作为第一方面的一种可能的实现方式,母线为并联的两路母线,每路母线的第一端串联有第一电路保护模块;两路母线上的第一电路保护模块具体被配置为:当两路母线上的第一电路保护模块电池侧电路电气故障或电池状态异常时,两路母线上的第一电路保护模块处于使电池侧电路到母线侧电路为不导通状态。
由上,采用了双母线结构,进一步实现了供电的冗余,进一步满足故障运行的高安全供电要求。并且每路母线分别设置第一电路保护模块,可实现电池侧电气故障时,不影响两母线侧电路,满足故障运行的高安全供电要求。
作为第一方面的一种可能的实现方式,两路母线中的第一路母线上的第一电路保护模块还具体被配置为:当第二路母线侧电路电气故障时,且第二路母线上的第一电路保护模块处于使第二路母线侧电路到电池侧电路为导通状态时,第一路母线上的第 一电路保护模块处于使电池侧电路到第一路母线侧电路为不导通状态。
由上,每路母线分别设置第一电路保护模块,通过上述方案,可实现一路母线故障时不影响另一路母线,满足故障运行的高安全供电要求。
作为第一方面的一种可能的实现方式,至少之一的支线上连接有子支线,子支线用于连接负载。
由上,通过支线上设置子支线的方式,可以将部分普通负载连接到子支线上。
作为第一方面的一种可能的实现方式,子支线上设置有串联在子支线中的第三电路保护模块;
第三电路保护模块被配置为:当子支线连接负载侧电气故障时,第三电路保护模块处于使子支线为断路的状态。
由上,通过子支线的第三电路保护模块,实现子支线连接负载侧电气故障时,如过流、短路等故障时,可以断开该子支线的供电,避免故障子支线所连接负载侧对母线的影响。
作为第一方面的一种可能的实现方式,支线上设置有串联在支线中的第四电路保护模块;
对于连接负载的支线,其上设置的第四电路保护模块被配置为:当支线连接负载侧电气故障时,第四电路保护模块处于使支线为断路的状态,或
对于连接子支线的支线,其上设置的第四电路保护模块被配置为:当支线连接子支线合路侧电气故障时,第四电路保护模块处于使支线为断路的状态。
由上,通过支线上的第四电路保护模块,实现了支线连接负载、或连接子支线合路侧电气故障,如过流、短路等故障时,可以断开该支线的供电,避免故障支线所连接负载或子支线对母线的影响。
作为第一方面的一种可能的实现方式,第四电路保护模块对电气故障的响应时间短于第三电路保护模块对电气故障的响应时间。
由上,通过第四电路保护模块(如高安全负载过流保护电路)与第三电路保护电路模块(如常规负载过流保护电路)的不同安全级别,实现了“高安全负载”与“低安全负载”的分类控制与管理,可实现对配电系统的成本的控制,可不必全部使用高安全级别、高成本的第四电路保护模块。
作为第一方面的一种可能的实现方式,母线的第二端串联有第二电路保护模块;第二电路保护模块被配置为:当第二电路保护模块两侧电路中的一侧电路电气故障时,第一电路保护模块处于使电气故障侧电路到另一侧电路为不导通状态;
电气故障包括以下至少一种:过电流故障、过电压故障、欠电压故障。
由上,本申请配电装置应用时,通过增加第二电路保护模块,实现了第一电路保护模块的一侧电路电气故障,如过/欠压、或过流等故障时,将故障侧到另一侧为不导通状态,避免故障侧电路另一侧的影响,实现支持故障下运行的要求。
作为第一方面的一种可能的实现方式,第二电路保护模块具体被配置为:当第二电路保护模块的第二供电装置侧电路电气故障时,第二电路保护模块处于使第二供电装置侧电路到母线侧电路为不导通状态。
由上,通过第二电路保护模块具体该配置,可以实现第二供电装置端侧电路电气 故障,如过/欠压、或过流等故障时,通过不导通状态,避免第二供电装置端侧电路对母线的影响,此时可通过电池进行供电,实现支持故障下运行的要求。
作为第一方面的一种可能的实现方式,第二电路保护模块具体被配置为:当第二电路保护模块的母线侧电气故障时,第二电路保护模块处于使母线侧电路到第二供电装置侧电路为不导通状态。
由上,通过该配置,还可以在母线侧电气故障时,如过/欠压、过流或漏电等故障,使得母线与第二供电装置之间为断路状态,可以避免母线故障对第二供电装置的影响,满足了故障下运行的安全性要求。
作为第一方面的一种可能的实现方式,母线为并联的两路母线,每路母线用于连接第二供电装置的一端串联有第二电路保护模块;两路母线上的第二电路保护模块具体被配置为:当两路母线上的第二电路保护模块的第二供电装置侧电路电气故障时,两路母线上的第二电路保护模块处于使第二供电装置侧电路到母线侧电路为不导通状态。
由上,采用了双母线结构,实现了供电的冗余,进一步满足故障运行的高安全供电要求。并且每路母线分别设置第二电路保护模块,可实现第二供电侧电气故障时,不影响两母线侧电路,满足故障运行的高安全供电要求。
作为第一方面的一种可能的实现方式,两路母线中的第一路母线上的第二电路保护模块还具体被配置为:当两路母线中的第二路母线侧电路电气故障时,且第二路母线上的第二电路保护模块处于使第二路母线侧电路到第二供电装置侧电路为导通状态时,第一路母线上的第二电路保护模块处于使第二供电装置侧电路到第一路母线侧电路为不导通状态。
由上,每路母线分别设置第二电路保护模块,通过上述配置方案,可实现一路母线故障时不影响另一路母线,满足故障运行的高安全供电要求。
作为第一方面的一种可能的实现方式,还包括控制模块,用于接收各电气故障的信息和/或电池状态的信息,并控制至少之一的电路保护模块为闭路或断路状态。
由上,可以通过控制模块,实现对电池侧、第二供电装置侧电气故障、各支线或子支线侧电气故障、母线侧电气故障、进行实时监控与管理,以便于实现负载故障管理、快速故障定位,以及故障处理。
作为第一方面的一种可能的实现方式,当母线为并联的两路母线时,控制模块为相互通信的两个控制模块;
其中之一控制模块所接收的各电气故障的信息、所控制的电路保护模块对应于一路母线、或该母线所连接的支线、或该支线所连接的子支线;
另一控制模块所接收的各电气故障的信息、所控制的电路保护模块对应于另一路母线、或该母线所连接的支线、或该支线所连接的子支线。
由上,通过两个控制模块可以实现控制的冗余,另外,采用上述方式控制模块分别对应一母线,可以实现风险的分散控制,提高安全性。
本申请第二方面提供了一种车辆,包括上述第一方面的配电装置。
由上,上述第一方面的配电装置可以应用于车辆中,以支持车辆的配电系统的故障下运行。
本申请第三方面提供了一种故障处理方法,应用于配电装置,配电装置包括母线,母线包括第一端和第二端;母线的第一端连接电池;母线的第一端串联第一电路保护模块;
故障处理方法包括:当检测到第一电路保护模块两侧电路中的一侧电气故障时,使第一电路保护模块处于第一状态,第一状态包括使第一电路保护模块处于使电气故障侧电路到另一侧电路为不导通状态。
由上,第一电路保护模块设置于母线的第一端与电池之间,通过该第一电路保护模块,可使电气故障侧电路到另一侧电路为不导通状态,可实现车辆的故障下运行。
作为第三方面的一种可能的实现方式,母线的第二端连接第二供电装置,母线的第二端串联第二电路保护模块;故障处理方法具体包括:
当检测到第一故障时,使第一电路保护模块为第二断路状态;
并在第一电路保护模块无法为第二断路状态时,使第一电路保护模块所在母线的第二电路保护模块为第三断路状态;
第一故障包括以下至少一种:电池侧电路电气故障、电池状态异常、电池过温故障;
第二断路状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为不导通状态;
第三断路状态包括:第二电路保护模块处于使其母线侧电路到第二供电装置侧电路为不导通状态。
由上,当电池侧电路电气故障时、或电池状态异常时,可以通过第一电路保护模块为第二断路状态避免电池侧电路故障对母线的影响。并且当第一电路保护模块无法为第二断路状态时,通过使对应的第二电路保护模块为第三断路状态,可以避免电池侧电路故障通过母线对第二供电装置侧的影响,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,还包括:第一电路保护模块为第二断路状态时,执行第一失效策略,第一失效策略包括车辆的低压电池失效策略;或
第一电路保护模块所在母线的第二电路保护模块为第三断路状态时,执行第二失效策略,第二失效策略包括车辆的低压电池和一路配电失效策略。
由上,对应故障时第一、二电路保护模块的不同状态,使用不同的车辆的故障下的策略,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,还包括:使第一电路保护模块为第二断路状态后,当检测到第一故障恢复后,使第一电路保护模块为第一导通状态;
第一导通状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为导通状态。
由上通过故障可恢复,进一步增加了安全性。
作为第三方面的一种可能的实现方式,母线的第二端连接第二供电装置,母线的第二端串联第二电路保护模块;故障处理方法具体包括:
当检测到第二供电装置侧电路电气故障时,使第二电路保护模块为第四断路状态;
并在第二电路保护模块无法为第四断路状态时,使第二电路保护模块所在母线的第一电路保护模块为第一断路状态;
第一断路状态包括:第一电路保护模块处于使其母线侧电路到电池侧电路为不导通状态;
第四断路状态包括:第二电路保护模块处于使其第二供电装置侧电路到母线侧电路为不导通状态。
由上,当第二供电装置侧电路电气故障时,可以通过第二电路保护模块为第四断路状态避免第二供电装置侧电路故障对母线的影响。并且当第二电路保护模块无法为第四断路状态时,通过使对应的第一电路保护模块为第二断路状态,可以避免第二供电装置侧电路故障通过母线对电池侧的影响,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,还包括:第二电路保护模块为第四断路状态时,执行第三失效策略,第三失效策略包括车辆的第二供电装置失效策略;或
使第二电路保护模块所在母线的第一电路保护模块为第一断路状态时;执行第四失效策略,第四失效策略包括车辆的第二供电装置和一路配电失效策略。
由上,对应故障时第一、二电路保护模块的不同状态,使用不同的车辆的故障下的策略,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,使第二电路保护模块为第四断路状态后,还包括:
使第二电路保护模块所在母线的第一电路保护模块为第一导通状态;第一导通状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为导通状态。
由上,通过上述方式实现了第二供电装置侧故障时,电池侧的供电,实现了故障下运行,提高了运行的安全性。
作为第三方面的一种可能的实现方式,母线的第二端连接第二供电装置,母线的第二端串联第二电路保护模块;母线的第一端和第二端之间设有支线,支线上串联有第四电路保护模块;故障处理方法具体包括:
当检测到第二故障时,使第四电路保护模块为断路状态;
并在第四电路保护模块无法为断路状态时,使设置第四电路保护模块的支线所在母线上的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态;
第二故障包括以下至少一种:支线连接负载侧电气故障、支线连接子支线合路侧电气故障。
由上,当支线连接负载侧或子支线合路侧电气故障时,使第四电路保护模块为断路状态避免负载或子支线故障对母线的影响。并且当第四电路保护模块无法为断路状态时,通过使对应的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态,可以避免故障通过母线对电池侧、第二供电装置侧的影响,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,还包括:
第四电路保护模块为断路状态时,执行第五失效策略,第五失效策略包括一路支线失效策略;或
当支线所在母线上的第一电路保护模块为第一断路状态、所在母线上的第二电路保护模块为第三断路状态时,执行第六失效策略,第六失效策略包括车辆的一路配电失效策略。
由上,对应不同故障时,使用不同的车辆的故障下的策略,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,母线的第二端连接第二供电装置,母线的第二端串联第二电路保护模块;
母线的第一端和第二端之间设有支线,支线上串联有第四电路保护模块,支线上设有子支线,子支线串联有第三电路保护模块;
故障处理方法具体包括:
当检测到子支线连接负载侧电气故障时,使第三电路保护模块为断路状态;
并在第三电路保护模块无法为断路状态时,使子支线所在支线的第四电路保护模块为断路状态;
并在第四电路保护模块无法为断路状态时,使支线所在母线上的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态。
由上,当子支线侧电气故障时,使第三电路保护模块为断路状态避免子支线故障对母线的影响。并且,在该第三电路保护模块无法断开时,使第四电路保护模块为断路状态避免子支线故障对母线的影响。并且当第四电路保护模块无法为断路状态时,通过使对应的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态,可以避免故障通过母线对电池侧、第二供电装置侧的影响,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,还包括:
第四电路保护模块为断路状态时,执行第五失效策略,第五失效策略包括一路支线失效策略;或
支线所在母线上的第一电路保护模块为第一断路状态、所在母线上的第二电路保护模块为第三断路状态时,执行第六失效策略,第六失效策略包括车辆的一路配电失效策略。
由上对应故障时第一、二、三、四电路保护模块的不同状态,使用不同的车辆的故障下的策略,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,母线的第二端连接第二供电装置,母线的第二端串联第二电路保护模块;故障处理方法具体包括:
当检测到一路母线故障时,使故障母线上的第一电路保护模块为第一断路状态、故障母线上第二电路保护模块为第三断路状态;
并在第一电路保护模块无法为第一断路状态时,使另一路母线上的第一电路保护模块为第二断路状态,或,并在第二电路保护模块无法为第三断路状态时,使另一路母线上的第二电路保护模块为第四断路状态。
由上,当一路母线侧电气故障时,使故障的母线上的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态,可以避免故障母线对电池侧、第二供电装置侧、另一母线的影响,提高了故障下运行的可靠性、安全性。
并且,在第一电路保护模块无法为第一断路状态时,使另一路母线上的第一电路保护模块为第二断路状态,可以避免故障母线对另一母线的影响,提高了故障下运行的可靠性、安全性。
并且,在第二电路保护模块无法为第三断路状态时,使另一路母线上的第二电路保护模块为第四断路状态,可以避免故障母线对另一母线的影响,提高了故障下运行的可靠性、安全性。
作为第三方面的一种可能的实现方式,当第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态时,执行车辆的一路配电失效策略;或
第一电路保护模块无法为第一断路状态、另一路母线上的第一电路保护模块为第二断路状态时,执行车辆的低压电池和一路配电失效策略;或
第二电路保护模块无法为第三断路状态、另一路母线上的第二电路保护模块为第四断路状态时,执行车辆的第二供电装置和一路配电失效策略。
由上,对应一路母线故障时第一、二电路保护模块的不同状态,使用不同的车辆的故障下的策略,提高了故障下运行的可靠性、安全性。
本申请第四方面提供了一种可读存储介质,可读存储介质存储有程序或指令,程序或指令被执行时实现上述第三方面任一的故障处理方法。
综上可以看出,本申请的提供的技术方案的实施例中,通过增加第一电路保护模块,可支持在单电池的条件下即可实现支持故障下运行,较大地降低了配电系统的整体成本。具体的,采用单母线结构时,实现了配电系统第二供电装置侧故障、电池侧故障、负载侧故障的准确快速检测与安全隔离,单路低压配电系统可满足ASIL B级别的故障下运行的高安全供电要求。
另一方面,当采用双母线结构的配电装置的配电系统,可实现了第二供电装置侧供电故障、两路供电线路故障、负载侧故障、电池侧故障的准确快速检测与安全隔离,采用双母线结构的配电装置的配电系统可满足ASIL D级别的故障运行的高安全供电要求。
另一方面,通过第四电路保护模块(如高安全负载过流保护电路)与第三电路保护电路模块(如常规负载过流保护电路),实现了高安全负载与低安全负载的分类控制与管理,可降低配电系统的成本。
另一方面,通过控制模块对各故障的实时监控与管理,实现了故障管理、故障定位,以及故障处理,以满足故障运行的高安全要求。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本申请的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1为本申请配电装置的一实施例结构示意图;
图2a-1为本申请配电装置的第一具体实施方式的第一结构示意图;
图2a-2为本申请配电装置的第一具体实施方式的第二结构示意图;
图2b为本申请配电装置的第二具体实施方式的第一结构示意图;
图2c-1为本申请配电装置的第三具体实施方式的第一结构示意图;
图2c-2为本申请配电装置的第三具体实施方式的第二结构示意图;
图2c-3为本申请配电装置的第三具体实施方式的第三结构示意图;
图2c-4为本申请配电装置的第三具体实施方式的第四结构示意图;
图3为本申请配电装置的实施例的系统架构的示意图;
图4a为本申请一具体实施方式对应的DC-DC端侧故障控制的流程图;
图4b为本申请一具体实施方式对应的负载电路故障控制流程图;
图4c为本申请一种具体实施方式对应的两级负载电路故障控制流程图;
图4d为本申请一种具体实施方式对应的低压电池侧故障控制流程图;
图4e为本申请一具体实施方式对应的单路配电电路母线故障控制流程图;
图5a为本申请一种具体实施方式对应的执行第二供电装置失效策略的流程图;
图5b为本申请一种具体实施方式对应的执行一路支线失效策略的流程图。
具体实施方式
说明书和权利要求书中的词语“第一、第二、第三等”或模块A、模块B、模块C等类似用语,仅用于区别类似的对象,不代表针对对象的特定排序,可以理解地,在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
在以下的描述中,所涉及的表示步骤的标号,如S110、S120……等,并不表示一定会按此步骤执行,在允许的情况下可以互换前后步骤的顺序,或同时执行。
说明书和权利要求书中使用的术语“包括”不应解释为限制于其后列出的内容;它不排除其它的元件或步骤。因此,其应当诠释为指定所提到的所述特征、整体、步骤或部件的存在,但并不排除存在或添加一个或更多其它特征、整体、步骤或部件及其组群。因此,表述“包括装置A和B的设备”不应局限为仅由部件A和B组成的设备。
本说明书中提到的“一个实施例”或“实施例”意味着与该实施例结合描述的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在本说明书各处出现的用语“在一个实施例中”或“在实施例中”并不一定都指同一实施例,但可以指同一实施例。此外,在一个或多个实施例中,能够以任何适当的方式组合各特定特征、结构或特性,如从本公开对本领域的普通技术人员显而易见的那样。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。另外,本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
一种车辆的配电系统,是采用双蓄电池的低压配电系统,该配电系统使用两个蓄电池及两个电池检测模块,来实现对冗余负载的独立供电,其中电池检测模块采用了智能电池传感器(Intelligent battery sensor,IBS)。由于采用了个蓄电池及两个电池检测模块,可以满足高安全高可用性运行的要求,但另一方面,也导致了该配电系统结构 过于冗余,导致其成本相对较高。
本申请实施例提供了一种改进的配电装置,该配电装置采用了一个配电盒,并且可以在配置电池的接入时,配置为接入一个电池的情况下也能达到高安全高可用性的要求,极大降低了配电系统的整体成本。当应用于车辆时,可以实现对车辆的智能驾驶系统、线控电子转向控制系统、线控电子制动控制系统、较重车辆底盘电子助力系统等高安全系统,提供支持供电故障下运行的高安全高可用的低压供电,以确保在发生电源相关故障时,能够支持驾驶员安全接管驾驶系统、安全操作转向、制动,提高行车安全。
本申请实施例的配电装置可以应用于交通工具,如智能车辆(Smart/Intelligent Car)、纯电动车辆(Pure EV/Battery EV)、混合动力车辆(Hybrid Electric Vehicle/HEV)、增程式电动车辆(Range Extended EV/REEV)、插电式混合动力车辆(Plug-in HEV/PHEV)、新能源车辆(New Energy Vehicle)、飞行设备(如飞机)等。
下面参见图1,对本申请实施例提供的一种配电装置进行介绍,图1的配电装置内具有实线部分与虚线部分,虚线部分表示可选部分。首先介绍图1所示的实线部分,也可同时参见图2a-1或2a-2所示,包括:母线(或称总线)10,母线10上连接有支线12,支线12用于连接负载,具体的,支线12远离母线10的一端用于连接负载,其中,可以采用设置电连接端子的方式连接负载;母线10两端,即第一端和第二端分别用于连接第一供电装置30与第二供电装置32,其中两端可以采用电连接端子的方式连接第一供电装置30与第二供电装置32;所述母线10用于连接第一供电装置30的一端,即第一端,串联有第一电路保护模块20。
在一些实施例中,第一供电装置30为储能设备,例如可以为电池,其中该电池用于提供工作电压,例如12V电压,24V、或36V等电压等等,因此也称为低压电池。在另一些实施例中,该第一供电装置30也可以为提供工作电压,即提供低压电源的一发电装置。
在一些实施例中,第二供电装置32可以为发电机(EM)或动力电池,发电机(EM)或动力电池输出的高电压经电压变换为工作电压后输入母线10。这里以应用于车辆进行说明,车辆发电机和动力电池输出的高压多在200-750V之间,高压用于驱动车辆的驱动电机、空调的电动压缩机等。而车辆内的大部分电路,如各类控制电路,其工作电压为低压,通常低于48V,因此需通过电压变换将高压转换为低压再提供给母线10,该电压转换可以采用直流-直流(DC-DC)转换模块实现。
在一些实施例中,所述母线10用于连接第二供电装置32的一端,即第二端,串联有第二电路保护模块22。
在一些实施例中,可同时参见图1示出的实线部分与虚线部分,或参见图2b、图2c-1至图2c-4所示,所述母线10可以为并联的两路母线10,并联的母线10的两端合路后分别用于连接第一供电装置30与第二供电装置32,在每路母线10上均可连接有支线12,其中,每路母线10串联有所述第一电路保护模块20,且第一电路保护模块20位于该路母线10上的用于连接第一供电装置30的一端,即位于该母线10上 到该侧合路节点的一端。在一些实施例中,所述母线10为并联的两路母线10时,每路母线10还串联有所述第二电路保护模块22,且第二电路保护模块22位于该母线10上的用于连接第二供电装置32的一端,即位于该母线10上到该侧合路节点的一端。
在一些实施例中,所述母线10为并联的双母线10时,对于需双供电的负载,该负载的两路受电端口可以分别接到两路母线10的支线12上,以在一路母线10离线时该负载仍可以由另一路母线10供电。另一些实施例中也可以接到双母线10的同一路母线10的支线12上。
在一些实施例中,如图1所示,也可参见如图2a-1至图3所示,所述支线12上设置有串联在支线12中的第四电路保护模块24。
在一些实施例中,如图1所示,如图2c-1至图2c-4、图3所示,至少之一的所述支线12上连接有子支线14,子支线14可以连接在支线12远离母线10的一端,所述子支线14远离支线12的一端用于连接负载,可以采用电连接端子的方式连接负载。在一些实施例中,所述子支线14上设置有串联在子支线14中的第三电路保护模块26。
在一些实施例中,如图2a-1至图2b,对于一些安全性要求相对较高的负载,或相对低一些的负载,均可以接入支线12,其中第四电路保护模块24可以采用高安全级别的模块。
在一些实施例中,如图2c-1至图2c-4、图3所示,对于一些安全性要求相对低一些的负载,可以接入子支线14,并且子支线14中的第三电路保护模块26的安全级别低于第四电路保护模块24。在这种情况下,如前所述支线12上已经具有第四电路保护模块24,而子支线14上则具有第三电路保护模块26,构成了不同安全级别的两级保护电路。这里的电路保护模块的安全级别可以是电路保护模块对故障的响应时间,安全级别越高,响应时间越短,例如第四电路保护模块24可以是对故障毫秒级别响应时间,而第三电路保护模块26可以是对故障响应时间相对长些,如秒级别响应时间。
在一些实施例中,第一电路保护模块20被配置为:当所述第一电路保护模块20两侧电路中的一侧电路电气故障时,所述第一电路保护模块20处于使所述电气故障侧电路到另一侧电路为不导通状态。在一些实施例中,所述第一电路保护模块20具体被配置为:当所述第一电路保护模块20的所述电池侧电路电气故障时,所述第一电路保护模块20处于使所述电池侧电路到所述母线侧电路为不导通状态。在一些实施例中,所述第一电路保护模块20还具体被配置为:当所述第一电路保护模块20的所述电池侧电路中的电池状态异常时,所述第一电路保护模块20处于使所述电池侧电路到所述母线侧电路为不导通状态。在一些实施例中,所述第一电路保护模块20具体被配置为:当所述第一电路保护模块20的所述母线侧电路电气故障时,所述第一电路保护模块20处于使所述母线侧电路到所述电池侧电路为不导通状态。在一些实施例中,为并联的双路母线时,所述两路母线中的第一路母线上的所述第一电路保护模块还具体被配置为:当第二路母线侧电路电气故障时,且所述第二路母线上的第一电路保护模块处于使所述第二路母线侧电路到所述电池侧电路为导通状态时,所述第一路母线上的所述第一电路保护模块处于使所述电池侧电路到所述第一路母线侧电路为不导通状态,并且,两路母线的所述第一电路保护模块均可以如上配置。
为了描述方便,本申请实施例中,将第一电路保护模块20处于使所述母线侧电路到所述电池侧电路为不导通状态,称为第一断路状态,所述第一断路状态包括:所述母线10侧到所述第一供电装置(电池)30侧的单向断路(即不导通状态),可选的,所述第一供电装置(电池)30侧到所述母线10侧的单向导通;
将第一电路保护模块20处于使所述电池侧电路到所述母线侧电路为不导通状态,称为第二断路状态,所述第二断路状态包括:所述第一供电装置(电池)30侧到所述母线10侧的单向断路(即不导通状态),可选的,所述母线10侧到所述第一供电装置(电池)30侧的单向导通。
在一些实施例中,第二电路保护模块22被配置为:
当所述第二电路保护模块两侧电路中的一侧电路电气故障时,所述第一电路保护模块处于使所述电气故障侧电路到另一侧电路为不导通状态。
在一些实施例中,所述第二电路保护模块具体被配置为:当所述第二电路保护模块的所述第二供电装置侧电路电气故障时,所述第二电路保护模块处于使所述第二供电装置侧电路到所述母线侧电路为不导通状态。在一些实施例中,所述第二电路保护模块具体被配置为:当所述第二电路保护模块的所述母线侧电气故障时,所述第二电路保护模块处于使所述母线侧电路到所述第二供电装置侧电路为不导通状态。在一些实施例中,所述母线为并联的两路母线时,所述两路母线中的第一路母线上的所述第二电路保护模块还具体被配置为:当第二路母线侧电路电气故障时,且所述第二路母线上的第二电路保护模块处于使所述第二路母线侧电路到所述第二供电装置侧电路为导通状态时,所述第一路母线上的所述第二电路保护模块处于使所述第二供电装置侧电路到所述第一路母线侧电路为不导通状态。
为了描述方便,本申请实施例中,将第二电路保护模块处于使所述母线侧电路到所述第二供电装置侧电路为不导通状态,称为第三断路状态,所述第三断路状态包括:所述母线10侧到所述第二供电装置32侧的单向断路(即不导通状态),可选的,所述第二供电装置32侧到所述母线10侧的单向导通;
将第二电路保护模块处于使所述第二供电装置侧电路到所述母线侧电路为不导通状态,称为第四断路状态,所述第四断路状态包括:所述第二供电装置32侧到所述母线10侧的单向断路(即不导通状态),可选的,所述母线10侧到所述第二供电装置32侧的单向导通。
在一些实施例中,第四电路保护模块24用于当支线所连接负载端侧电流,或所连接子支线14的合路侧电流,出现过流故障时,该第四电路保护模块24处于断路状态,即断开所连接负载端或所连接子支线14合路的电路。
在一些实施例中,第三电路保护模块26用于当所连接负载端侧出现过流故障时,使该模块处于断路状态,即断开所连接负载的电路。在一些实施例中,可采取主动过流保护电路、也可采取被动过流保护电路。
在一些实施例中,如2a-1至图3所示,还包括检测所述电池状态的电池检测模块(参见图中标号⑦所示),用于检测到电池状态异常时,通过所述第一电路保护模块使所述电池与母线之间为断路状态。在一些实施例中,该电池检测模块可用于检测低压电池电压、电流、内部故障,计算剩余电量及低压电池寿命等。
在一些实施例中,当电池内部具有自检测模块(参见图中标号⑧所示),该自检测模块检测低压电池电压、电流、内部故障时,可以将所述检测结果提供给电池检测模块,实现电池检测模块的所述检测。其中电池内部的自检测模块可以包括低压电池温度、电压、电流传感器或检测电路、以及低压电池内部故障检测电路。
在一些实施例中,当电池检测模块检测到电池故障或低压电池到寿,则执行相应故障处理策略,具体将在后文参见图4d进行说明,暂不赘述。
在一些实施例中,如图3所示,还包括控制模块,用于接收上述第一电路保护模块20、第二电路保护模块22、第四电路保护模块24、第三电路保护模块26的检测结果,并根据检测结果,根据对应的预设的执行逻辑执行相应的策略,使相应的电路保护模块所接电路断路、如尝试恢复流程、驾驶相关策略:禁开启智能驾驶、限制智能驾驶、安全接管/停车、降级模式、告警、辅助停车(人工安全停车策略)等,其中可以是控制模块通过通信端口将所述检测结果上传到车辆控制模块,如电子控制模块(Electronic Control Unit,ECU),由车辆控制模块执行所述驾驶相关策略。其中,控制模块可以通过通信端口与外部通讯,实现控制模块内的信息可以被配置,例如负载过流安全限制、各电路保护模块的过压限制、欠压限制、过流限值等参数的配置。
在一些实施例中,各电路保护模块根据所要检测的电信号是电流或电压,其可包括电压或/和电流传感器、执行器,其中执行器可以是可控的开关,如可控断路器、可控硅断路器、可控硅开关等,以接收控制模块的控制,也可以是自控的开关,直接根据电路保护模块内的电压和/或电流传感器的结果进行控制。电路保护模块的电压或/和电流传感器、执行器,可以集成到一个元器件中,也可以是分立的几个元器件构成的电路。如图2a-1、图2b、图2c-1示出了第一电路保护模块、第二电路保护模块的一个实施例的原理图,由串联的2个开关构成,且该两个开关分别并联二极管,且形成两个所述二极管阳极相对的连接状态。在其他的实施例中,两个二极管也可以为阴极相对的状态。在一些实施例中,当为双路母线时,对应的两个第一电路保护模块可以是独立的器件,也可以是集成到一个器件里的两个独立的模块。在一些实施例中,当为双路母线时,对应的两个第二电路保护模块可以是独立的器件,也可以是集成到一个器件里的两个独立的模块。
下面以图2a-1至图2c-4示出的第一到第三具体实施方式,对本申请实施例进一步进行介绍。为了描述方便,首先介绍图2c-1示出的第三具体实施方式、然后再依次介绍图2b、图2a-1至图2a-2示出的第二、第一具体实施方式。
如图2c-1示出了配电装置的第三具体实施方式,同时参照图3示出的一实施例的配电装置的系统架构进行介绍,如图2c-1所示,该具体实施方式中,配电装置包括双路母线上的电池端侧第一电路保护模块,第一电路保护模块包括双向开关(即执行器),为第一开关①和第二开关②,并分别并联二极管,且形成两个所述二极管阳极相对的连接状态。第一开关①用于配电线路过欠压/过流故障保护,第二开关②用于低压电池端侧过流故障保护。当检测到一路母线上电路出现过/欠压故障或过流故障时,可通过该路母线的第一电路保护模块中的第一开关①,快速切断故障电路,保证低压电池⑨对另一母线电路负载的正常供电;当检测出电池⑨一侧(例如通过电池内部故 障的自检测模块⑧检测,并将检测结果提供给电池检测模块⑦)出现短路或过流故障时,可通过同时断开两路母线中的第二开关②,快速切断电池⑨侧故障,保证两路母线上的配电系统正常工作。在一些实施方式中,如图2c-2所示,当低压电池⑨故障不会导致低压电池电压较大跌落,若质量控制可将过流故障或短路故障控制在一个很低的水平,则第一电路保护模块中可不包含第二开关②的相关电路,即认为电池故障不会对影响母线,故不设置该第二开关②的相关电路。
第三具体实施方式中,支线上的第四电路保护模块为过流保护电路④,子支线上的第三电路保护模块为过流保护电路③,支线与子支线上的电路保护模块,形成两级低压配电过流保护系统。支线连接的负载可以是安全负载,配置一个高安全性高成本的第四电路保护模块,子支线连接的负载可以是常规负载,可共用一个第四电路保护模块,同时每个常规负载配备一个第三电路保护模块。这里安全负载指比普通负载对安全性要求高的负载。第四电路保护模块相比第三电路保护模块的安全性更高,例如故障响应时间(如故障时的断开时间)更快、故障阈值响应精度更高等。
当检测到安全负载过流故障时,将通过所连接的过流保护电路④,快速断开故障负载电路;当某个常规负载过流故障时,通过所连接的过流保护电路③,断开故障负载电路;当检测到整个常规负载电路合路出现过流故障时,通过安全负载的过流保护电路④,快速断开该常规负载配电线路。
第二电路保护模块包括双向开关(即执行器),为第三开关⑤和第四开关⑥,并分别并联二极管,且形成两个所述二极管阳极相对的连接状态。第三开关⑤用于母线上电路过欠压/过流故障保护,第四开关⑥用于DC-DC/发电机端侧⑩(即第二供电装置侧)过欠压/过流故障保护。当检测到一路母线上电路出现过/欠压故障或过流故障时,可通过该路母线的第二电路保护模块中的第三开关⑤快速切断故障电路。当检测到第二供电装置侧过欠压/过流,如DC-DC、或发电机故障时,通过第四开关⑥快速切断故障电路。此外,在某些情况下,如无需DC/DC⑩侧供电时,如图2c-3所示可取消两路的第三开关⑤,或如图2c-4所示只保留一路的第三开关⑤,当检测到两路母线中的一路母线过流故障时,可通过同母线上的第一开关①和另一母线上的第四开关⑥来关断和隔离故障的配电线路,使故障母线不影响另一路母线和电池。
如图2b示出了配电装置的第二具体实施方式,相对图2c-1示出的第三具体实施方式,取消了子支线部分,即取消了常规负载的二级常规过流保护电路,所有负载均使用第四电路保护模块,图2b示出的配电装置的第二具体实施方式,可满足双路配电系统ASIL D级别要求的故障下运行(Fail-Operational)的低压供电需求。同理对应图2c-2的方案,图2b中也可不包含第二开关②的相关电路,以及同理对应图2c-3和图2c-4的方案,图2b中也可取消两路的第三开关⑤,或如图2c-4所示只保留一路的第三开关⑤,对此不再赘述。
如图2a-1示出了配电装置的第一具体实施方式,相对图2b示出的第二具体实施方式,为单路母线,取消了冗余母线,可满足单路母线构成的配电装置在ASIL B级别的故障下运行(Fail-Operational)的低压供电需求。并且,在一些具体实施方式中,当为单路母线配电装置时,如图2a-2所示,第一电路保护模块中可不设置第一开关①,第二电路保护模块中可不设置第三开关⑤,即母线故障时,直接执行告警及对故障进 行相应处理流程即可,而在此电路中不使用第一开关①和第三开关⑤限制母线故障对第二供电装置和电池的影响。
在上述配电装置的第二、三具体实施方式中,在电路的具体实现时,两路母线的第一开关①与第二开关②的电路,可在一个保持相互独立的电路模块中,也可是两个单独的电路模块。两路母线的第三开关⑤与第四开关⑥的电路,可在一个保持相互独立的电路模块中,也可是两个单独的电路模块。另外,当若低压电池侧不存在过流故障,则第一电路保护模块中可不设置第二开关②(可参见图2c-2)。另外,在某些情况下,第二电路保护模块中可不设置第三开关⑤(可参见图2c-3),或者两路母线上的两个第二电路保护模块的仅其中之一设置有第三开关⑤(可参见图2c-4),将不会影响冗余供电安全的达成、当检测到一路母线过流故障时,对应DC-DC侧可通过另一母线的第四开关⑥来关断和隔离故障的配电线路。
另外,上述部分开关涉及的电路可共用,例如第一开关①与第二开关②的电路检测电流的电路,又如,第三开关⑤和第四开关⑥检测电流的电路等。
上述具体实施方式可以是应用于配备高级智能驾驶系统的车辆,例如图3所示的为本申请配电装置的实施例的系统架构应用于车辆时,作为车辆的配电装置的一具体实施方式的示意图,图中虚线箭头表示的是信号流。
其中,上述配电装置所连接的第一供电装置为低压电池时,其可能出现的故障包括以下之一:低压电池欠压;低压电池侧过流/短路故障;低压电池侧输出电压时断时续、不连续、甚至断路;低压电池寿命到期;蓄电池容量衰减;蓄电池充不上电;蓄电池温度偏高。其中,这些故障信息可以由上述电池检测模块检测到,部分故障信息也可以是由电池的自检测模块提供给电池检测模块,低压电池的输出到配电装置的电信号(如电压、电流)可以由第一保护电路内的电流、电压传感器检测。
其中,上述配电装置所连接的第二供电装置可以为动力电池(即高压电池)或发电机与DC-DC构成的电路时,其可能出现的故障包括以下之一:DC-DC或发电机端侧故障:DC-DC或发电机输出电压过压或欠压;DC-DC或发电机端侧电路出现过流故障或短路故障;DC-DC或发电机端输出电压时断时续、不连续、甚至断路。其中,经DC-DC输出到配电装置的电信号(如电压、电流)可以由第二保护电路内的电流、电压传感器检测;动力电池或发电机到DC-DC之间的电信号可以由设置在该段电路之间的传感器进行检测;动力电池和发电机具有自检测模块时,也可提供各自的状态信息。
其中,上述配电装置所连接的负载电路相关的故障包括以下之一:负载电路(对应支线或子支线)过流或短路;负载电路(对应支线或子支线)供电不连续,时断时续、甚至断路;子支线合路电路(对应支线)过流或短路。这些故障为对应支线上的故障时,可以由第三保护电路内的电流传感器检测,为对应子支线上的故障时,可以由第四保护电路内的电流传感器检测。
其中,上述配电装置内的母线故障包括以下之一:母线短路、漏电或断路。该故障可以由第一保护电路或第二保护电路内的电流、电压传感器检测。
其中,控制模块可具有的功能包括以下之一:通过采集各保护电路提供的所采集 的电压或电流及保护电路状态(是否处于断开状态)信息,实时监控各线路(包括母线、支线、或子支线)的电流、电压情况、一旦发现过流或过/欠压故障,则根据预先的测量控制相应保护电路断开故障的电路,以断开第一供电装置、第二供电装置、或相应负载。本具体实施方式中,控制模块采用了双控制模块(如图3中示出的控制模块A、控制模块B),双控制模块之间也进行故障与状态的实时监控(例如通过心跳实现监控),若发现对方出现无可处理的故障(如跑飞、重启等),则执行预先设置的控制模块故障处理策略。本具体实施方式中,控制模块还通过通信总线,如CAN总线,将所获得的配电装置故障与状态、负载信息等传递给相关ECU,同时支持对通过CAN总线对控制模块中的负载过流安全限值、保护电路中过压限值、欠压限值、过流限值等参数进行配置。
其中,对应图2a-1至2c-4所示的具体实施方式中,如图3所示,上述故障信息可以上报给控制模块,由控制模块根据预设控制逻辑进行相应的控制和故障处置,可参见图4a-图4e所示,示出了几种控制逻辑的实施例,其中的虚线框内的内容为主要的控制逻辑。下面进行介绍:
图4a为本申请一种具体实施方式对应的DC-DC端侧故障控制的流程图,可应用于图2a-1、图2a-2、图2b、图2c-1、图2c-2示出的实施例。可以看出,当检测到第二供电装置侧电路电气故障时,例如DC-DC端侧过压或欠压,或者过流、断路故障等,配电装置侧的控制逻辑为:针对每路母线,控制第二电路保护模块的第四开关⑥断开,使DC-DC端侧不向母线供电,并且在第四开关⑥无法断开时,则控制同母线上的第一电路保护模块的第一开关①断开,以断开由DC-DC端通过该母线向电池侧或另一母线的单向电传输,保护电池或另一侧母线不受DC-DC端侧故障影响。当在第四开关⑥正常断开后则可以控制同母线上的第一电路保护模块的第二开关②为闭合状态,以使电池向该母线正常供电。
另一方面,将故障上报,以执行车辆的控制逻辑,主要执行第二供电装置失效策略。
其中,关于所执行的第二供电装置失效策略,本申请实施例中并不进行限制具体策略内容,可以预先配置所需要的策略。例如由于第二供电装置的失效,使得当前仅低压电池的供电,低压电池的功率的限制、供电时长的限制,都可以作为制定该失效策略的依据。这里给出了图5a示出了该失效策略的一个例子,该例中的执行的策略包括:判断当各负载处于安全功率限制条件下,执行车辆的安全功率限制策略,即由于DC-DC端侧故障,仅由电池侧向母线供电,则限制母线所连接的各个负载的功率;当未处于安全功率限制条件下,则进一步判断是否已经处于智能驾驶状态,若是,则触发人工接管,并可给出停车建议,或执行辅助安全停车模式,使车辆在不影响其他车辆、行人等情况下靠向路边停车,或进入智能驾驶的降级模式(如从L4级别降到L3或L2级别),若尚未处于智能驾驶状态,则可禁止开启智能驾驶,或执行附在功率限制策略,或执行人工驾驶模式,并可给出停车建议。
图4b为本申请一种具体实施方式对应的支线的负载电路故障控制流程图,可应用于图2a-1、图2b示出的实施例。可以看出,当支线上故障,如支线连接负载侧电 气故障、所述支线连接子支线合路侧电气故障,这里的电气负载故障可以为负载过流等,配电装置侧的控制逻辑为:通过第四电路保护模块,如过流保护电路④,断开故障负载,并故障告警,并且在判断过流保护电路④无法断开故障电路情况下,通过同一母线上的第一电路保护模块的第一开关①与第二电路保护模块中的第三开关⑤断开,实现隔离故障负载朝向电池侧的单向电传输、隔离故障负载朝向DC/DC端侧的单向电传输、隔离故障负载朝向另一母线侧的单向电传输,避免故障母线影响电池侧、DC/DC端侧和另一母线,并且执行单路母线(当为图2b对应的两路母线时)配电处理策略。
另一方面,该故障上报,对于控制过流保护电路④断开的情况,可以执行车辆的一路支线失效策略,当同一母线上的第一电路保护模块的第一开关①与第二电路保护模块中的第三开关⑤断开是,执行车辆的一路配电失效策略。
其中,关于所执行的一路支线失效策略,本申请实施例中并不进行限制具体策略内容,可以预先配置所需要的策略。例如由于一路支线的失效,需要考虑该支线上的负载是否对自动驾驶产生影响,又如,某些双母线供电的负载,恰好所连接的一路支线失效时,其双路供电变为一路供电,则需要考虑该负载功率受到限制,这些都可以作为制定该失效策略的依据。这里,图5b示出了执行一路支线失效策略的一个例子,包括:判断所述故障是否影响智能驾驶,若影响,则执行人工驾驶模式,有驾驶员接管,否则进一步判断是否开启了智能驾驶,若已经处于智能驾驶状态,则触发人工接管,并可给出停车建议,或执行辅助安全停车模式,或进入智能驾驶的降级模式等,若尚未处于智能驾驶状态,则可以禁止开启智能驾驶,或执行支线所连接的负载(这里指连接双路母线的负载)的功率限制模式。
其中,关于所执行的一路配电失效策略,本申请实施例中并不进行限制具体策略内容,可以预先配置所需要的策略。例如由于一路母线配电的失效,需要考虑该母线上的各个负载是否对自动驾驶产生影响,又如,某些双母线供电的负载,其双路供电变为一路供电,则需要考虑该负载功率受到限制,这些都可以作为制定该失效策略的依据。例如,所执行的一路配电失效策略可以包括判断失效母线的负载是否影响智能驾驶,并在影响时执行人工接管模式,或进入智能驾驶的降级模式,或所连接的负载(这里指连接双路母线的负载)的功率限制模式等等。
图4c为本申请一种具体实施方式对应的两级负载电路故障控制流程图,可应用于图2c-1至图2c-4示出的实施例。两级对应支线上有子支线的结构。其与图4b的主要区别在于,当子支线上的负载故障,如过流时,配电装置侧的控制逻辑为:负载故障告警,并断开对应的第三电路保护模块,如过流保护电路③,若无法通过过流保护电路③断开,则控制该子支线所在支线上的第四电路保护模块,如过流保护电路④,断开该支线,此时可以执行一路支线失效策略。若子支线负载总路,即子支线所在支线如过流时则控制该子支线所在支线上的第四电路保护模块,如过流保护电路④,断开该支线,此时可以执行一路支线失效策略。其他控制逻辑、车辆的控制逻辑可参见图4b示出的例子,不再赘述。
图4d为本申请一种具体实施方式对应的低压电池侧故障控制流程图,可应用于图2a-1、图2b、图2c-1至图2c-4示出的实施例。可以看出,当判断电池侧故障后, 这里的电池侧故障例如电池侧电路电气故障、所述电池状态异常、或所述电池过温故障,配电装置侧的控制逻辑为:判断为可恢复故障时,则控制第一电路保护模块的第二开关②为断开状态,并在电池故障满足恢复条件后,使第二开关②为闭合状态。当为不可恢复故障时,则执行车辆的低压电池失效策略,同时若非断路故障,则控制第一电路保护模块的第二开关②为断开状态,并且在检测到第二开关②无法断开时,控制同母线侧的第二电路保护模块中的第三开关⑤断开,以断开由电池侧通过该母线向DC-DC端侧或另一母线的单向电传输,保护DC-DC端或另一侧母线不受电池故障影响,并执行车辆的低压电池和一路配电(即一路母线)失效策略。
其中,关于所执行的车辆的低压电池和一路配电失效策略,本申请实施例中并不进行限制具体策略内容,可以预先配置所需要的策略。例如由于一路母线配电的失效,又由于低压电池的失效,因此可以考虑上述关于一路配电失效策略要考虑的因素、同时考虑低压电池失效策略要考虑的因素,来制定车辆的控制策略,例如执行智能驾驶的降级模式、或执行人工接管模式等。
图4e为本申请一种具体实施方式对应的单路配电电路母线故障控制流程图,可应用于图2b、图2c-1、图2c-2示出的实施例。可以看出,当双母线中的一路故障时,配电装置侧的控制逻辑为:控制故障母线上的第一电路保护模块的第一开关①、第二电路保护模块中的第三开关⑤断开,实现隔离故障母线朝向电池侧的单向电传输、隔离故障母线朝向DC/DC端侧的单向电传输、隔离故障负载母线朝向另一母线侧的单向电传输,避免故障母线影响电池侧、DC/DC端侧和另一母线,并执行车辆的一路配电(即一路母线)失效策略;若当所述第一开关①无法断开时,故障告警,且则控制另一母线上的第一电路保护模块的第二开关②断开,避免影响另一母线,此时另一母线的供电仅由DC/DC端侧供电,并执行车辆的低压电池和一路配电(即一路母线)失效策略;若当所述第三开关⑤无法断开时,故障告警,且则控制另一母线上的第二电路保护模块的第四开关⑥断开,避免影响另一母线,此时另一母线的供电仅由电池供电,并执行车辆的第二供电装置和一路配电(即一路母线)失效策略。
其中,关于所执行的车辆的低压电池失效策略、车辆的第二供电装置和一路配电失效策略,本申请实施例中并不进行限制具体策略内容,可以预先配置所需要的策略。例如,考虑低压电池失效,策略要考虑的因素,来制定车辆的控制策略,例如执行智能驾驶的降级模式、或执行人工接管模式等。
又如,制定车辆的第二供电装置和一路配电失效策略时,可同时参考上述第二供电装置失效策略、一路配电失效策略来制定相应的控制策略。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现,例如图4a-图4e所对应的各个实施例,均可以由程序或指令与电子硬件的结合来实现。例如一个例子可以是,由车辆的控制单元,存储相应的程序和或指令,来实现所述的各个实施例中的流程或各流程中的部分步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,均属于本申请保护范畴。

Claims (32)

  1. 一种配电装置,其特征在于,包括:母线,所述母线包括第一端和第二端;所述母线的所述第一端和所述第二端之间设有支线,所述支线用于连接负载;
    所述母线的所述第一端用于连接电池,所述第二端用于连接第二供电装置;
    所述母线的所述第一端串联有第一电路保护模块;
    所述第一电路保护模块被配置为:当所述第一电路保护模块两侧电路中的一侧电路电气故障时,所述第一电路保护模块处于使所述电气故障侧电路到另一侧电路为不导通状态。
  2. 根据权利要求1所述的装置,其特征在于,所述第一电路保护模块具体被配置为:当所述第一电路保护模块的所述电池侧电路电气故障时,所述第一电路保护模块处于使所述电池侧电路到所述母线侧电路为不导通状态。
  3. 根据权利要求1所述的装置,其特征在于,所述第一电路保护模块具体被配置为:当所述第一电路保护模块的所述电池侧电路中的电池状态异常时,所述第一电路保护模块处于使所述电池侧电路到所述母线侧电路为不导通状态。
  4. 根据权利要求1所述的装置,其特征在于,所述第一电路保护模块具体被配置为:当所述第一电路保护模块的所述母线侧电路电气故障时,所述第一电路保护模块处于使所述母线侧电路到所述电池侧电路为不导通状态。
  5. 根据权利要求1-4任一所述的装置,其特征在于,所述母线为并联的两路母线,每路所述母线的所述第一端串联有所述第一电路保护模块;
    所述两路母线上的所述第一电路保护模块具体被配置为:当所述两路母线上的所述第一电路保护模块电池侧电路电气故障或所述电池状态异常时,所述两路母线上的所述第一电路保护模块处于使所述电池侧电路到所述母线侧电路为不导通状态。
  6. 根据权利要求5所述的装置,其特征在于,所述两路母线中的第一路母线上的所述第一电路保护模块还具体被配置为:当第二路母线侧电路电气故障时,且所述第二路母线上的第一电路保护模块处于使所述第二路母线侧电路到所述电池侧电路为导通状态时,所述第一路母线上的所述第一电路保护模块处于使所述电池侧电路到所述第一路母线侧电路为不导通状态。
  7. 根据权利要求1-6任一所述的装置,其特征在于,至少之一的所述支线上设有子支线,所述子支线用于连接所述负载。
  8. 根据权利要求7所述的装置,其特征在于,所述子支线上设置有串联在子支线中的第三电路保护模块;
    所述第三电路保护模块被配置为:当所述子支线连接负载侧电气故障时,所述第三电路保护模块处于使所述子支线为断路状态。
  9. 根据权利要求7或8所述的装置,其特征在于,所述支线上设置有串联在支线中的第四电路保护模块;
    对于连接负载的所述支线,其上设置的所述第四电路保护模块被配置为:当所述支线连接负载侧电气故障时,所述第四电路保护模块处于使所述支线为断路状态,或
    对于连接子支线的所述支线,其上设置的所述第四电路保护模块被配置为:当所述支线连接子支线合路侧电气故障时,所述第四电路保护模块处于使所述支线为断路 状态。
  10. 根据权利要求9所述的装置,其特征在于,所述第四电路保护模块对电气故障的响应时间短于所述第三电路保护模块对电气故障的响应时间。
  11. 根据权利要求1-10任一所述的装置,其特征在于,所述母线的所述第二端串联有第二电路保护模块;
    所述第二电路保护模块被配置为:当所述第二电路保护模块两侧电路中的一侧电路电气故障时,所述第一电路保护模块处于使所述电气故障侧电路到另一侧电路为不导通状态;
    所述电气故障包括以下至少一种:过电流故障、过电压故障、欠电压故障。
  12. 根据权利要求11所述的装置,其特征在于,所述第二电路保护模块具体被配置为:当所述第二电路保护模块的所述第二供电装置侧电路电气故障时,所述第二电路保护模块处于使所述第二供电装置侧电路到所述母线侧电路为不导通状态。
  13. 根据权利要求11所述的装置,其特征在于,所述第二电路保护模块具体被配置为:当所述第二电路保护模块的所述母线侧电气故障时,所述第二电路保护模块处于使所述母线侧电路到所述第二供电装置侧电路为不导通状态。
  14. 根据权利要求11-13任一所述的装置,其特征在于,所述母线为并联的两路母线,每路母线用于连接所述第二供电装置的一端串联有所述第二电路保护模块;所述两路母线上的所述第二电路保护模块具体被配置为:当所述两路母线上的所述第二电路保护模块的第二供电装置侧电路电气故障时,所述两路母线上的所述第二电路保护模块处于使所述第二供电装置侧电路到所述母线侧电路为不导通状态。
  15. 根据权利要求14所述的装置,其特征在于,所述两路母线中的第一路母线上的所述第二电路保护模块还具体被配置为:当所述两路母线中的第二路母线侧电路电气故障时,且所述第二路母线上的第二电路保护模块处于使所述第二路母线侧电路到所述第二供电装置侧电路为导通状态时,所述第一路母线上的所述第二电路保护模块处于使所述第二供电装置侧电路到所述第一路母线侧电路为不导通状态。
  16. 根据权利要求1-15任一所述的装置,其特征在于,还包括控制模块,用于接收所述电气故障的信息和/或所述电池状态异常的信息,根据所述信息控制至少之一的所述电路保护模块根据所述电路保护模块的配置使所述电路保护模块处于所述不导通状态。
  17. 根据权利要求16所述的装置,其特征在于,当所述母线为并联的两路母线时,所述控制模块为相互通信的两个控制模块;
    所述两个控制模块中的第一控制模块所接收的各所述电气故障的信息、所控制的所述电路保护模块对应于两路母线中的第一路母线、或该第一路母线所连接的支线、或该支线所连接的子支线;
    第二控制模块所接收的各所述电气故障的信息、所控制的所述电路保护模块对应于第二路母线、或该第二路母线所连接的支线、或该支线所连接的子支线。
  18. 一种车辆,其特征在于,包括权利要求1-17任一所述的配电装置。
  19. 一种故障处理方法,其特征在于,应用于配电装置,所述配电装置包括母线,所述母线包括第一端和第二端;所述母线的所述第一端连接电池;所述母线的所述第一端串联第一电路保护模块;
    所述方法包括:当检测到所述第一电路保护模块两侧电路中的一侧电气故障时,使所述第一电路保护模块处于第一状态,所述第一状态包括使所述第一电路保护模块处于使所述电气故障侧电路到另一侧电路为不导通状态。
  20. 根据权利要求19所述的故障处理方法,其特征在于,所述母线的所述第二端连接第二供电装置,所述母线的所述第二端串联第二电路保护模块;所述方法具体包括:
    当检测到第一故障时,使所述第一电路保护模块为第二断路状态;
    并在所述第一电路保护模块无法为第二断路状态时,使所述第一电路保护模块所在母线的第二电路保护模块为第三断路状态;
    所述第一故障包括以下至少一种:电池侧电路电气故障、所述电池状态异常、所述电池过温故障;
    所述第二断路状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为不导通状态;
    所述第三断路状态包括:第二电路保护模块处于使其母线侧电路到所述第二供电装置侧电路为不导通状态。
  21. 根据权利要求20所述的故障处理方法,其特征在于,还包括:
    所述第一电路保护模块为第二断路状态时,执行第一失效策略,所述第一失效策略包括车辆的低压电池失效策略;或
    所述第一电路保护模块所在母线的第二电路保护模块为第三断路状态时,执行第二失效策略,所述第二失效策略包括车辆的低压电池和一路配电失效策略。
  22. 根据权利要求20所述的故障处理方法,其特征在于,还包括:
    所述使第一电路保护模块为第二断路状态后,当检测到所述第一故障恢复后,使所述第一电路保护模块为第一导通状态;
    所述第一导通状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为导通状态。
  23. 根据权利要求19所述的故障处理方法,其特征在于,所述母线的所述第二端连接第二供电装置,所述母线的所述第二端串联第二电路保护模块;所述方法具体包括:
    当检测到所述第二供电装置侧电路电气故障时,使所述第二电路保护模块为第四断路状态;
    并在所述第二电路保护模块无法为第四断路状态时,使所述第二电路保护模块所在母线的第一电路保护模块为第一断路状态;
    所述第一断路状态包括:第一电路保护模块处于使其母线侧电路到电池侧电路为不导通状态;
    所述第四断路状态包括:第二电路保护模块处于使其第二供电装置侧电路到所述母线侧电路为不导通状态。
  24. 根据权利要求23所述的故障处理方法,其特征在于,还包括:
    所述第二电路保护模块为第四断路状态时,执行第三失效策略,所述第三失效策略包括车辆的第二供电装置失效策略;或
    所述使所述第二电路保护模块所在母线的第一电路保护模块为第一断路状态时;执行第四失效策略,所述第四失效策略包括车辆的第二供电装置和一路配电失效策略。
  25. 根据权利要求23所述的故障处理方法,其特征在于,所述使所述第二电路保护模块为第四断路状态后,还包括:
    使所述第二电路保护模块所在母线的第一电路保护模块为第一导通状态;
    所述第一导通状态包括:第一电路保护模块处于使其电池侧电路到母线侧电路为导通状态。
  26. 根据权利要求19所述的故障处理方法,其特征在于,所述母线的所述第二端连接第二供电装置,所述母线的所述第二端串联第二电路保护模块;所述母线的所述第一端和所述第二端之间设有支线,所述支线上串联有第四电路保护模块;
    所述方法具体包括:
    当检测到第二故障时,使所述第四电路保护模块为断路状态;
    并在所述第四电路保护模块无法为断路状态时,使设置所述第四电路保护模块的支线所在母线上的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态;
    所述第二故障包括以下至少一种:所述支线连接负载侧电气故障、所述支线连接子支线合路侧电气故障。
  27. 根据权利要求26所述的故障处理方法,其特征在于,还包括:
    所述第四电路保护模块为断路状态时,执行第五失效策略,所述第五失效策略包括一路支线失效策略;或
    当所述支线所在母线上的第一电路保护模块为第一断路状态、所在母线上的第二电路保护模块为第三断路状态时,执行第六失效策略,所述第六失效策略包括车辆的一路配电失效策略。
  28. 根据权利要求19所述的故障处理方法,所述母线的所述第二端连接第二供电装置,所述母线的所述第二端串联第二电路保护模块;其特征在于,
    所述母线的所述第一端和所述第二端之间设有支线,所述支线上串联有第四电路保护模块,所述支线上设有子支线,所述子支线串联有第三电路保护模块;
    所述方法具体包括:
    当检测到所述子支线连接负载侧电气故障时,使所述第三电路保护模块为断路状态;
    并在所述第三电路保护模块无法为断路状态时,使所述子支线所在支线的第四电路保护模块为断路状态;
    并在所述第四电路保护模块无法为断路状态时,使所述支线所在母线上的第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态。
  29. 根据权利要求28所述的故障处理方法,其特征在于,还包括:
    所述第四电路保护模块为断路状态时,执行第五失效策略,所述第五失效策略包 括一路支线失效策略;或
    所述支线所在母线上的第一电路保护模块为第一断路状态、所在母线上的第二电路保护模块为第三断路状态时,执行第六失效策略,所述第六失效策略包括车辆的一路配电失效策略。
  30. 根据权利要求19所述的故障处理方法,其特征在于,所述母线的所述第二端连接第二供电装置,所述母线的所述第二端串联第二电路保护模块;所述方法具体包括:
    当检测到一路母线故障时,使所述故障母线上的第一电路保护模块为第一断路状态、所述故障母线上第二电路保护模块为第三断路状态;
    并在所述第一电路保护模块无法为第一断路状态时,使另一路母线上的第一电路保护模块为第二断路状态,或,并在所述第二电路保护模块无法为第三断路状态时,使另一路母线上的第二电路保护模块为第四断路状态。
  31. 根据权利要求30所述的故障处理方法,其特征在于:
    当第一电路保护模块为第一断路状态、第二电路保护模块为第三断路状态时,执行车辆的一路配电失效策略;或
    所述第一电路保护模块无法为第一断路状态、另一路母线上的第一电路保护模块为第二断路状态时,执行车辆的低压电池和一路配电失效策略;或
    所述第二电路保护模块无法为第三断路状态、另一路母线上的第二电路保护模块为第四断路状态时,执行车辆的第二供电装置和一路配电失效策略。
  32. 一种可读存储介质,其特征在于,所述可读存储介质存储有程序或指令,所述程序或指令被执行时实现如权利要求19-31任一所述的方法。
PCT/CN2021/095352 2021-05-21 2021-05-21 配电装置、车辆及故障处理方法 WO2022241800A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/095352 WO2022241800A1 (zh) 2021-05-21 2021-05-21 配电装置、车辆及故障处理方法
EP21940253.4A EP4335681A1 (en) 2021-05-21 2021-05-21 Power distribution device, vehicle, and fault processing method
CN202180006258.0A CN115697753A (zh) 2021-05-21 2021-05-21 配电装置、车辆及故障处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/095352 WO2022241800A1 (zh) 2021-05-21 2021-05-21 配电装置、车辆及故障处理方法

Publications (1)

Publication Number Publication Date
WO2022241800A1 true WO2022241800A1 (zh) 2022-11-24

Family

ID=84140146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095352 WO2022241800A1 (zh) 2021-05-21 2021-05-21 配电装置、车辆及故障处理方法

Country Status (3)

Country Link
EP (1) EP4335681A1 (zh)
CN (1) CN115697753A (zh)
WO (1) WO2022241800A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229327A (zh) * 2011-04-27 2011-11-02 北京启明精华新技术有限公司 汽车供电系统
CN105826915A (zh) * 2015-01-23 2016-08-03 通用电气公司 直流电力系统
CN109693625A (zh) * 2017-10-24 2019-04-30 上汽通用汽车有限公司 汽车备用供电模块和包含其的汽车供电系统
CN109923746A (zh) * 2016-11-10 2019-06-21 Abb瑞士股份有限公司 分隔成不同保护区的dc电力系统
CN209381806U (zh) * 2018-11-01 2019-09-13 惠州比亚迪电子有限公司 车辆配电系统和车辆
CN211468190U (zh) * 2019-10-25 2020-09-11 吉林北斗航天汽车研究院有限公司 一种用于新能源汽车的多功能控制器及新能源汽车
WO2020217007A1 (fr) * 2019-04-25 2020-10-29 Safran Helicopter Engines Réseau d'alimentation en énergie électrique pour aéronef

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229327A (zh) * 2011-04-27 2011-11-02 北京启明精华新技术有限公司 汽车供电系统
CN105826915A (zh) * 2015-01-23 2016-08-03 通用电气公司 直流电力系统
CN109923746A (zh) * 2016-11-10 2019-06-21 Abb瑞士股份有限公司 分隔成不同保护区的dc电力系统
CN109693625A (zh) * 2017-10-24 2019-04-30 上汽通用汽车有限公司 汽车备用供电模块和包含其的汽车供电系统
CN209381806U (zh) * 2018-11-01 2019-09-13 惠州比亚迪电子有限公司 车辆配电系统和车辆
WO2020217007A1 (fr) * 2019-04-25 2020-10-29 Safran Helicopter Engines Réseau d'alimentation en énergie électrique pour aéronef
CN211468190U (zh) * 2019-10-25 2020-09-11 吉林北斗航天汽车研究院有限公司 一种用于新能源汽车的多功能控制器及新能源汽车

Also Published As

Publication number Publication date
CN115697753A (zh) 2023-02-03
EP4335681A1 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
CN111204222A (zh) 冗余电池管理系统、冗余管理方法、上下电管理方法
US10938233B2 (en) Battery storage system and on-board electrical system for supplying power in a fault-tolerant manner to safety-relevant loads in a vehicle
CN202480896U (zh) 一种汽车动力电池系统的安全冗余装置
CN114103838A (zh) 用于自主车辆的电力控制设备和方法
CN113291156B (zh) 一种纯电动汽车的高压配电系统
CN112751408A (zh) 一种供电电路及供电方法
CN112018750A (zh) 一种车载双电源供电系统
CN114475483A (zh) 基于功能安全整车低压电源冗余回路、控制方法及车辆
CN214450872U (zh) 冗余制动系统、自动驾驶系统及车辆
WO2022241800A1 (zh) 配电装置、车辆及故障处理方法
WO2022026263A1 (en) Independent high voltage interlocking loop systems
CN217022419U (zh) 自动驾驶车辆冗余架构和自动驾驶车辆
CN209492395U (zh) 新能源商用车用低压配电控制系统
CN106627156A (zh) 一种高压信息采集控制器
EP4035922B1 (en) On-board distributed power supply system and on-board power supply control method and apparatus
CN216904359U (zh) 一种智能驾驶电源管理系统和车辆
CN112803546A (zh) 储能分闸保护系统及方法
CN220314925U (zh) 低压供电系统和车辆
WO2024065766A1 (zh) 供电电路及其控制方法、电子设备、车辆
CN205871947U (zh) 电动汽车控制器及电动汽车
CN205417198U (zh) 一种混合动力汽车高压互锁控制电路
CN218514145U (zh) 一种低压电源网络智能配电系统
CN220934855U (zh) 电网供电电路、智能电器盒、电网供电系统及汽车
CN217396456U (zh) 车辆供电系统
CN218102956U (zh) 电源控制器、低压电源电路及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940253

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021940253

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021940253

Country of ref document: EP

Effective date: 20231206

NENP Non-entry into the national phase

Ref country code: DE