WO2022241786A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2022241786A1
WO2022241786A1 PCT/CN2021/095309 CN2021095309W WO2022241786A1 WO 2022241786 A1 WO2022241786 A1 WO 2022241786A1 CN 2021095309 W CN2021095309 W CN 2021095309W WO 2022241786 A1 WO2022241786 A1 WO 2022241786A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
sub
display
pixel
display panel
Prior art date
Application number
PCT/CN2021/095309
Other languages
English (en)
French (fr)
Inventor
骆欣涛
西泽真人
境川亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180098222.XA priority Critical patent/CN117356187A/zh
Priority to PCT/CN2021/095309 priority patent/WO2022241786A1/zh
Publication of WO2022241786A1 publication Critical patent/WO2022241786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • the present application relates to the field of display technology, in particular to a display panel and a display device.
  • the industry has proposed the under-screen camera technology, as shown in Figure 2, that is, the camera is placed under the screen, and the camera takes pictures and images through the screen.
  • the under-screen camera technology fundamentally realizes the full-screen display effect and greatly improves the consumer experience.
  • the structure and pixel design of the screen will cause additional optical diffraction, which will greatly affect the imaging effect of the camera. Therefore, compared with the original design scheme of avoiding the front camera, the camera effect of the camera under the screen has a certain degree of loss, and the ultimate experience cannot be achieved. Therefore, major screen manufacturers and brand owners in the industry are actively exploring new technical solutions in order to reduce the optical diffraction phenomenon caused by the screen.
  • Embodiments of the present application provide a display panel and a display device, which are used to reduce the diffraction problem of optical imaging of an under-display camera and improve the imaging quality of the under-display camera.
  • the present application provides a display panel.
  • the display area of the display panel is divided into a first display area and a second display area surrounding the first display area.
  • the first display area has a light-transmitting area; the first display area of the display panel
  • the display area includes: a plurality of first pixels arranged in an array, and each first pixel includes at least two sub-pixels with different display colors, and electrode wirings respectively connected to each sub-pixel; Among the plurality of first pixels distributed, at least two first pixels adjacent to each other in the row direction and/or column direction form a repeating optical unit; at least four sub-pixels are included in a repeating optical unit, and the at least four sub-pixels are sequentially ordered from end to end
  • the secondary connection forms a first polygonal structure, and at least four sub-pixels are respectively located at vertices of the first polygonal structure; the electrode traces extend along the direction of the sides constituting the first polygonal structure, and in the first display area
  • the opaque area includes the area
  • the arrangement position of the display pixels in the first display area is optimized, and at least two first pixels adjacent up, down, left, and right are used as a repeating optical unit, and a single pixel is appropriately adjusted in the repeating optical unit.
  • the location of the sub-pixels on the premise that it does not exceed the range of the original first pixel, multiple sub-pixels are located at the vertices of the first polygonal structure, and the design of the electrode wiring is used to make the electrode wiring approximately the same as the first polygonal structure.
  • the extension direction of the sides of the shaped structure is the same, and the area surrounded by at least four sub-pixels and electrode lines is a light-transmitting area, which can realize the optical imaging of the camera under the screen, and the positions of at least four sub-pixels and electrode lines are different. Translucent area.
  • This pixel arrangement design forms a large-area light-transmitting area.
  • the distance between the opaque areas is enlarged in the row and column directions, so that high-order optical diffraction is effectively suppressed, and low-order optical diffraction is effectively suppressed.
  • the diffraction is relatively enhanced, and the energy of the diffracted light is concentrated in the relatively central area, and the diffracted light is isotropic, which significantly improves the imaging effect of the under-screen camera.
  • the multiple sub-pixels are sequentially connected end to end to form a second polygonal structure, and the multiple sub-pixels They are respectively located at the vertices of the second polygonal structure; the electrode traces connected to the plurality of sub-pixels extend along the direction constituting the sides of the second polygonal structure.
  • a first polygonal structure with internal light transmission can also be formed between the four adjacent repeating optical units in the row direction and the column direction, so as to increase the distribution density of the light transmission area.
  • the light-transmitting area further includes an inner area surrounded by a plurality of sub-pixels and electrode traces, so as to increase the proportion of the area occupied by the light-transmitting area of the first display area and improve the optical performance of the under-screen camera. Image brightness.
  • the first polygonal structure has multiple pairs of sides parallel to each other, and a pair of sides extending along the row direction has a column spacing between them, and a pair of sides extending along the column direction There is a row spacing between the sides, and the row spacing in a repeating optical unit is equal to the column spacing, so as to balance the distance between the opaque regions in the row direction and the column direction, so that the high-order optical diffraction in the row direction and the column direction is equal can be effectively inhibited.
  • the row spacing between two adjacent repeating optical units in the row direction is the same; the column spacing between two adjacent repeating optical units in the column direction is the same, so as to balance each repeating optical unit
  • the optical diffraction effect in all directions ensures the uniformity of the imaging effect of the under-screen camera in each area of the first display area.
  • two repeated optical units adjacent in the diagonal direction share a first pixel; the row spacing and column spacing between the two adjacent repeated optical units in the diagonal direction They are all different from each other, so as to destroy the balance of the arrangement of the sub-pixels constituting the octagonal structure in the diagonal direction, so that it can achieve non-long-range order in the diagonal direction, and then realize the optical diffraction of the camera under the screen. Optimize the effect.
  • the electrode wirings respectively connected to at least four sub-pixels are straight lines and parallel to the sides of the first polygonal structure; or, in a repeating optical unit Among them, the electrode traces connected to at least four sub-pixels are straight lines, and have a set inclination angle with the side of the first polygonal structure, and the electrode traces are changed from parallel straight lines at opposite sides to non-parallel straight lines, so that Reduce the strong diffraction phenomenon caused by the long-range ordered structure of the electrode traces in parallel design; or, in a repeating optical unit, the electrode traces connected to at least four sub-pixels are curved lines, and the electrode traces are arranged from the opposite side position The parallel straight lines are changed into non-parallel curves to reduce the strong diffraction phenomenon caused by the long-range ordered structure of the electrode traces in parallel design.
  • the area surrounded by the curved electrode traces and at least four sub-pixels is approximately circular.
  • the curvature of the electrode traces can be further adjusted so that the electrode traces have different curvature designs relative to the central symmetric position of the first polygonal structure, which can further reduce the diffraction effect.
  • the first display area of the display panel may further include: a light-shielding layer covering each sub-pixel and each electrode wiring, and the light-shielding layer has a circular opening in the light-transmitting area.
  • the shape of the light-transmitting region can be modified by using the shading of the light-shielding layer, for example, the light-transmitting region is designed to be circular to further reduce the diffraction effect.
  • the light-shielding layer may be made of a material with certain light transmittance, and the light transmittance of the light-shielding layer may range from 1% to 99%.
  • the sub-pixels covered by the light-shielding layer and the area where the electrode wiring is located are opaque areas, and other light-shielding layers can be considered as semi-transparent areas, which can also reduce the effect of diffraction.
  • the second display area of the display panel includes: a plurality of second pixels arranged in an array.
  • the pixels in the display area are arranged in different ways, and each second pixel includes at least two sub-pixels that display different colors and are arranged along the row direction or the column direction.
  • the sub-pixel includes a light-emitting device and an electrode connected to the light-emitting device, and the electrode wiring is connected to the electrode, so as to load an external driving signal to the electrode to drive the light-emitting device to display a corresponding color.
  • the light emitting device is an organic light emitting diode or a micro light emitting diode.
  • the first pixel adopts an SPR pixel design
  • each first pixel may include two sub-pixels displaying different colors, and four first pixels adjacent to each other in the row direction and the column direction form a
  • the repeating optical unit includes eight sub-pixels in one repeating optical unit, and the eight sub-pixels are sequentially connected end to end to form an octagonal structure, and the eight sub-pixels are respectively located at vertices of the octagonal structure.
  • each first pixel includes two sub-pixels with different display colors, and one of the two adjacent first pixels in the row or column direction first A pixel includes a first display color sub-pixel and a second display color sub-pixel, and another first pixel includes a first display color sub-pixel and a third display color sub-pixel.
  • the proportion of green sub-pixels can be increased when using SPR pixel design, the first display color sub-pixel is green sub-pixel, and the second display color sub-pixel is a red sub-pixel, and the third display color sub-pixel is a blue sub-pixel. In this way, in the row direction and the column direction, the first pixels with blue sub-pixels and green sub-pixels and the first pixels with red sub-pixels and green sub-pixels are alternately arranged.
  • the present application further provides a display device, including: the display panel provided in each implementation manner of the first aspect of the present application, and a camera disposed under the first display area of the display panel.
  • the display panel and display device provided by the present application optimize the arrangement of display pixels in the first display area corresponding to the under-screen camera in the display panel, and use at least two first pixels adjacent up, down, left, and right as a repeating optical unit , the position of a single sub-pixel is properly adjusted in the repeating optical unit. Under the premise that it does not exceed the range of the original first pixel, multiple sub-pixels are located at the vertices of the first polygonal structure.
  • the The electrode wiring is roughly in the same direction as the side of the first polygonal structure, and the area surrounded by at least four sub-pixels and electrode wiring is a light-transmitting area, which can realize optical imaging of the camera under the screen, and at least four sub-pixels
  • the positions where the pixels and electrode lines are located are opaque areas.
  • This pixel arrangement design forms a large-area light-transmitting area.
  • the distance between the opaque areas is enlarged in the row and column directions, so that high-order optical diffraction is effectively suppressed, and low-order optical diffraction is effectively suppressed.
  • the diffraction is relatively enhanced, and the energy of the diffracted light is concentrated in the relatively central area, and the diffracted light is isotropic, which significantly improves the imaging effect of the under-screen camera.
  • Figure 1a is a schematic structural diagram of a mobile phone with a special-shaped screen design
  • Figure 1b is a schematic structural diagram of a mobile phone with a screen punching design
  • Figure 2 is a schematic structural diagram of a mobile phone designed for under-screen cameras
  • FIG. 3 is a schematic top view of a display device provided by an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the present application.
  • FIG. 5 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of optical diffraction simulation formed by conventional pixel arrangement
  • Fig. 7 is a schematic diagram of optical diffraction simulation formed by adopting the pixel arrangement in Fig. 5;
  • FIG. 8 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • Fig. 9a is a schematic diagram of optical diffraction simulation formed by adopting the pixel arrangement in Fig. 5;
  • Fig. 9b is a schematic diagram of optical diffraction simulation formed by adopting the pixel arrangement in Fig. 8;
  • FIG. 10 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 11 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 12 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 13 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 14 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 15 is a partial schematic diagram of pixel arrangement in the first display area of the display panel provided by another embodiment of the present application.
  • FIG. 16 is a partial schematic diagram of pixel arrangement in the second display area of the display panel provided by an embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the display panel and the display device proposed in the embodiments of the present application can be applied to various terminal devices, for example, can be applied to electronic devices with a camera function such as smart phones, tablet computers, and PDAs (personal digital assistant, PDA). It should be noted that the display panels and display devices proposed in the embodiments of the present application are intended to include but not limited to be applied in these and any other suitable types of terminal devices.
  • Sub-pixel rendering is a method of increasing the apparent resolution of the display by rendering pixels to take into account the physical characteristics of the screen type. It takes advantage of the fact that each pixel on a color display is actually composed of separate red, green, and blue or other colored sub-(sub)pixels, thereby removing more detailed aliased text, or increasing the resolution of all image types on a layout , while the layout is designed with sub-pixel rendering.
  • FIG. 3 exemplarily shows a schematic top view structural view of a display device provided by an embodiment of the present application
  • FIG. 4 exemplarily shows a schematic cross-sectional structural view of a display device provided by an embodiment of the present application.
  • the display device in order to realize the full-screen display function, includes: a display panel 01 having a first display area 11 and a second display area 12 surrounding the first display area 11, And a camera 02 disposed under the first display area 11 of the display panel 01 .
  • the first display area 11 occupies a relatively small area in the display area of the display panel 01 and can be called a secondary screen.
  • the secondary screen has a certain light transmission property and can realize imaging by an under-screen camera.
  • the second display area 12 occupies a relatively large area in the display area of the display panel 01 , and may be called a main screen, and has display pixels for realizing conventional display functions.
  • the secondary screen includes a plurality of display pixels that realize conventional display functions, and can realize a display image synchronized with the main screen.
  • the secondary screen (first display area 11) has a completely different display pixel arrangement and wiring design from the existing main screen (second display area 12), which can reduce the high Order diffraction, thereby improving the imaging effect of the camera under the screen.
  • the display pixels arranged in the first display area 11 are called first pixels 21
  • the display pixels arranged in the second display area 12 are called second pixels 22 .
  • the detailed arrangement and wiring design of the first pixels 21 and the second pixels 22 are described in detail in the following display panel provided in this application.
  • the display device generally attaches a circular-polarizing filter 04 (circular-polarizing filters, c-Pol) on the surface of the display panel 01 through the first optical glue 03, so as to reduce the interference of ambient light. reflection.
  • a cover plate 06 is pasted on the circular polarizer through a second optical adhesive 05 to play a protective role.
  • the cover plate 06 may be a glass cover plate, or a resin cover plate, and the material of the cover plate is not limited here.
  • Other components included in the display device are also not described in detail here.
  • FIG. 5 exemplarily shows a partial schematic diagram of pixel arrangement in a first display area of a display panel provided by an embodiment of the present application.
  • the first display area 11 of the display panel 01 includes: a plurality of first pixels 21 arranged in an array (the smallest rectangle framed by a dotted line in FIG. 5 ), each The first pixel 21 includes at least two sub-pixels 211 with different display colors (in FIG. Each sub-pixel 211 is connected to the electrode wire 31 respectively.
  • first pixels 21 arranged in an array at least two first pixels 21 adjacent in the row direction X and/or column direction Y form a repeating optical unit F, for example, adjacent in the row direction X
  • Two first pixels 21 form a repeating optical unit F, or two first pixels 21 adjacent in the column direction Y form a repeating optical unit F, or four adjacent pixels 21 in the row direction X and column direction Y
  • the first pixel 21 constitutes a repeating optical unit F; at least four sub-pixels 211 are included in a repeating optical unit F (a case where eight sub-pixels 211 are included in a repeating optical unit F is illustrated in FIG.
  • the electrode wires 31 extend along the direction constituting the sides of the first polygonal structure, that is, the extending direction of the electrode wires 31 is roughly the same as the sides of the first polygonal structure (it should be noted that the expression “approximately” here It refers to the position where the electrode trace 31 is arranged between two adjacent vertices in the first polygonal structure, and the electrode trace 31 may be consistent with the extending direction of the side in the first polygonal structure, or may have a certain The offset angle, and its shape may not be limited to a straight line, which will be described in detail in subsequent embodiments), the area where the electrode wiring 31 is located and the area where the sub-pixel 211 is located is an opaque area, composed of at least four sub-pixels 211 and electrode lines.
  • FIG. 5 only shows the first pixels 21 in four rows and four columns.
  • the row direction X expressed in this application is also horizontal and refers to the first pixels 21 arranged in an array.
  • the first pixel 21 adjacent to the row direction X can be regarded as the first pixel 21 adjacent to the left and right
  • the column direction Y is also vertically refers to the first pixel 21 arranged in an array.
  • the first pixels 21 adjacent to each other in the column direction Y can be regarded as the first pixels 21 adjacent up and down.
  • the first pixel 21 adopts the SPR pixel design, and each first pixel 21 may include two sub-pixels 211 with different display colors, and the row direction One of the two first pixels 21 adjacent in the X or column direction Y includes a first display color sub-pixel a and a second display color sub-pixel b, and the other first pixel 21 includes a first display color sub-pixel Pixel a and a third display color sub-pixel c.
  • the proportion of green sub-pixels can be increased when using SPR pixel design, that is, sub-pixel a of the first display color can be a green sub-pixel, and sub-pixel b of the second display color can be red
  • the sub-pixel, the third display color sub-pixel c is a blue sub-pixel.
  • the first pixels 21 having blue sub-pixels and green sub-pixels and the first pixels 21 having red sub-pixels and green sub-pixels are alternately arranged.
  • the specific arrangement manner of the sub-pixels 211 of different display colors is only shown as an example, and is not substantially limited.
  • four first pixels 21 adjacent to each other in the row direction and the column direction can form a repeating optical unit F, so that eight sub-pixels are included in a repeating optical unit F 211 , the eight sub-pixels 211 are sequentially connected end to end to form an octagonal structure, and the eight sub-pixels 211 are respectively located at vertices of the octagonal structure.
  • FIG. 5 only illustrates the number of sub-pixels 211 included in one first pixel 21 and the number of first pixels 21 included in one repeating optical unit F.
  • a first pixel 21 may also include three or more sub-pixels 211 displaying different colors, and a repeating optical unit F may also include six or more first pixels 21. This will not be described in detail.
  • each sub-pixel 211 generally includes a light emitting device and an electrode connected to the light emitting device.
  • the electrode is generally located below the light emitting device.
  • the shape of the electrode is generally the same as that of the light emitting device.
  • the electrode can be It is slightly larger than the light emitting device, and may also be slightly smaller than the light emitting device, which is not limited here.
  • the sub-pixel 211 is located in an opaque area.
  • the specific shape of the sub-pixel 211 is finally determined by the shape of the light-emitting device and the electrode.
  • the shape of the sub-pixel 211 can be, for example, square, rectangular, circular, etc. In FIG.
  • the shape of the sub-pixel 211 is a square as an example for example, and no actual limitation is made. Moreover, the shapes of the sub-pixels 211 displaying different colors may be different, and the light-emitting areas of the light-emitting devices may also be different, which will not be described in detail here.
  • the light-emitting device may specifically be an organic light-emitting diode (organic light-emitting diode, OLED) or a micro light-emitting diode (micro light-emitting diode, Micro LED), which is not limited herein.
  • OLED organic light-emitting diode
  • Micro LED micro light-emitting diode
  • the electrode wiring 31 needs to be connected to the electrodes, so as to load an external driving signal to the electrodes to drive the light emitting device to display a corresponding color.
  • the driving manner of the sub-pixel 211 may be active (AM) driving or passive (PM) driving.
  • the driving circuit connected to the electrodes through the electrode traces 31 can be arranged in the first display area 11, for example, under the electrodes, below the electrode traces 31, or in two adjacent areas in the row direction X and column direction Y. Between the repeated optical units F, the driving circuit can also be arranged in the second display area 12 to ensure that the first display area 11 has enough light-transmitting area 111 .
  • the electrodes are directly connected to the external screen driving chip (DDIC) through the electrode wiring 31 , without setting up a driving circuit. Since a corresponding electrode wire 311 needs to be provided for each sub-pixel 211 , in order to save the area where the electrode wire 311 is located and increase the area of the light-transmitting region 111 , the electrode wire 311 can be designed as a stacked multi-layer wire.
  • the working principle of the camera 02 under the first display area 11 provided in this embodiment of the present application is: during the imaging process of the camera under the screen, when the light passes through the opaque area formed by the sub-pixel 211 and the electrode wiring 31, a The optical diffraction phenomenon, the multi-order diffracted light generated will form virtual images such as ghost images, which will have a great impact on the imaging effect.
  • Such high-order diffraction is mainly related to the size and shape of the transparent regions 111 , the distance between the non-transparent regions, the order of the non-transparent regions, and the like.
  • the display pixel arrangement position of the first display area 11 is optimized, and at least two first pixels 21 that are adjacent up, down, left, and right are used as a repeating optical unit F, and in the repeating optical unit F, the appropriate The position of a single sub-pixel 211 is adjusted so that the plurality of sub-pixels 211 are located at vertices of the first polygonal structure on the premise that it does not exceed the range of the original first pixel 21 .
  • the electrode traces 31 can be arranged as straight lines and parallel to the sides of the first polygonal structure, so that at least four sub-pixels 211 and the electrode traces 31 constitute the first Polygonal structure, the interior of the first polygonal structure is the light-transmitting area 111, that is, the light-transmitting area 111 does not include the sub-pixel 211 and the area where the electrode wiring 31 is located, which can realize the optical imaging of the camera under the screen, and at least four The positions where the sub-pixels 211 and the electrode lines 31 are located are opaque areas.
  • This pixel arrangement design forms a larger light-transmitting region 111 inside the first polygonal structure, and at the same time increases the distance between the light-impermeable regions in the row direction X and column direction Y, so that Higher-order optical diffraction is effectively suppressed.
  • the optical diffraction simulation effect corresponding to the pixel arrangement design in Figure 5 is shown in Figure 7.
  • the low-order diffraction is relatively enhanced, and the diffracted light energy is concentrated in the relatively central area, and the diffracted light is isotropic.
  • the imaging effect of the camera under the screen is significantly improved.
  • the two sub-pixels 211 in the first row in FIG. 5 there are a plurality of adjacent sub-pixels 211 in two adjacent repeating optical units F in the row direction X or column direction Y, for example, the two sub-pixels 211 in the first row in FIG. 5
  • the repeated optical unit F has four sub-pixels 211 respectively located in the four first pixels 21, and the two repeated optical units F in the first column of FIG. 5 have four sub-pixels 211 respectively located in the four first pixels 21, these
  • the sub-pixels 211 are sequentially connected end-to-end to form a second polygonal structure.
  • the second polygon is, for example, a quadrangle in FIG.
  • the connected electrode traces 31 extend along the direction constituting the sides of the second polygonal structure, that is, the extending direction of the electrode traces 31 connected to these sub-pixels 211 may be substantially the same as the sides of the second polygonal structure.
  • a first polygonal structure with internal light transmission can also be formed between the four adjacent repeating optical units in the row direction X and column direction Y, that is, the second row and the third row in Fig. 5
  • the eight sub-pixels 211 in the first and third first pixels 21 form an octagonal structure to increase the distribution density of the light-transmitting regions.
  • the area where the electrode lines 31 are located and the area where the sub-pixels 211 are located are opaque areas, and the area surrounded by these sub-pixels 211 and electrode lines 31 is It can also be a light-transmitting region 111 (in FIG. 5 , the dot filling pattern of the second density is used to represent the light-transmitting region 111 surrounded by four sub-pixels 211 and electrode lines 31), so as to increase the light-transmitting region 11 of the first display region.
  • the proportion of the area occupied by the area 111 improves the optical imaging brightness of the camera under the screen.
  • the driving circuit connected to the electrode wiring 31 is arranged in the first display area 11
  • the driving circuit can be arranged on the sub-pixel 211 and the electrode wiring. 31, the area surrounded by these sub-pixels 211 and the electrode wires 31 at this time is an opaque area.
  • the position of a single sub-pixel 211 in the repeating optical unit F is appropriately adjusted so that the first polygonal structure formed by the multiple sub-pixels 211 at the vertices has multiple pairs of parallel pixels.
  • the first polygonal structure in Figure 5 is an octagonal structure, which includes four pairs of parallel sides, and a pair of sides extending along the row direction has a column spacing B between them, and along the column direction There is a row spacing A between the extended pair of sides, and the row spacing A in a repeating optical unit F is equal to the column spacing B, so as to balance the distance between the opaque regions in the row direction X and the column direction Y, so that in the row Both the high-order optical diffraction in the direction X and the column direction Y can be effectively suppressed.
  • the electrode traces 31 are directly arranged at the sides of the octagonal structure.
  • the column spacing B can also be considered as the distance between the electrode traces 31 extending along the row direction X.
  • the spacing, the row spacing A can also be considered as the spacing between the electrode traces 31 extending along the column direction Y.
  • the wiring method of the electrode traces 31 may deviate from the side of the octagonal structure, that is, there will be no electrode traces 31 parallel to each other.
  • the column spacing B The sum row spacing A refers to the spacing between mutually parallel sides of the octagonal structure.
  • the row spacing A between two adjacent repeating optical units F in the row direction X can be set to be the same; the distance between two adjacent repeating optical units F in the column direction Y
  • the column spacing B between them can also be set to be the same, so as to balance the optical diffraction effect of each repeating optical unit F in each direction, and ensure the uniformity of the imaging effect of the under-screen camera in each area in the first display area 11 .
  • FIG. 8 exemplarily shows a partial schematic diagram of pixel arrangement in a first display area in another display panel provided by an embodiment of the present application.
  • two adjacent repeating optical units F in the diagonal direction can share a first pixel 21 (a first pixel 21 shared by a dotted line is used in FIG. 8 two sub-pixels in 211).
  • the arrangement design of the sub-pixels 211 in the first display area 11 can be further adjusted, relative to the center position of the octagonal structure, the positions of the sub-pixels 211 at the vertices are moved inward or outward, so that they are adjacent to each other in the diagonal direction
  • the row spacing A and column spacing B of the two repeating units F change, that is, the row spacing A and A' between two adjacent repeating optical units F in the diagonal direction are different, and the column spacing B and B' are also different.
  • Figure 9a and Figure 9b are the optical diffraction simulation comparison data of the two embodiments of the present application, wherein Figure 9a is the optical diffraction simulation diagram formed by the sub-pixel arrangement corresponding to Figure 5, and the optical diffraction simulation diagram formed by the sub-pixel arrangement corresponding to Figure 9b Diffraction simulation diagram. It can be clearly seen that by changing the relative arrangement position of each sub-pixel 211 in the repeating optical unit F, the optical diffraction effect of the camera under the screen can be further reduced, and the high-order diffraction effect is further suppressed (the position of the dotted line in Fig. 9a and Fig. 9b ) , and the low-order diffraction energy is more concentrated (the position of the solid line), which can more effectively improve the imaging effect of the camera under the screen.
  • the layout of the electrode traces 31 can also be optimally designed.
  • FIG. 10 exemplarily shows a partial schematic diagram of pixel arrangement in a first display area in another display panel provided by an embodiment of the present application.
  • the electrode traces 31 respectively connected to at least four sub-pixels 211 can be straight lines, and have a set distance from the sides of the first polygonal structure. Fixed inclination angle, that is, compared with the wiring method of the electrode traces 31 shown in FIG. Strong diffraction phenomenon caused by long-range ordered structure.
  • FIG. 11 exemplarily shows a partial schematic diagram of pixel arrangement in a first display area in another display panel provided by an embodiment of the present application.
  • the electrode traces 31 respectively connected to at least four sub-pixels 211 are curved lines, that is, compared to the electrode traces 31 shown in FIG.
  • the wiring method can change the electrode traces 31 from parallel straight lines on opposite sides to non-parallel curves, so as to reduce the strong diffraction phenomenon caused by the long-range ordered structure of the electrode traces 31 in parallel design.
  • the area surrounded by the curved electrode traces 31 and at least four sub-pixels 211 can be roughly circular, and is limited by the process.
  • the shape of the formed area is similar to a circle (for example, an ellipse) within the protection scope of the embodiments of the present application.
  • the curvature of the electrode traces 31 can be further adjusted so that the electrode traces 31 have different curvature designs relative to at least the central symmetrical position of the octagonal structure, which can further reduce the diffraction effect.
  • the wiring modes of the electrode lines 31 in the first display area 11 can be combined with each other, for example, electrode lines with parallel linear wiring can be arranged in the partially repeating optical unit F.
  • the other part of the line 31 repeats the electrode lines 31 provided with non-parallel straight lines in the optical unit F, and the other part repeats the electrode lines 31 provided with non-parallel curved lines in the optical unit F.
  • FIG. 12 to FIG. 15 exemplarily show partial schematic diagrams of pixel arrangement in the first display area in another display panel provided by the embodiment of the present application (the electrode traces 31 are not shown in the figures).
  • the first display area 11 of the display panel 01 may further include: a light-shielding layer 112 covering each sub-pixel 211 and each electrode wiring 31 , the light-shielding layer 112 is in the
  • the light-transmitting region 111 has a circular opening, and similar circular openings (eg, elliptical openings) are within the protection scope of the embodiments of the present application due to process limitations.
  • a whole layer of light-shielding layer 112 can be fabricated before making electrode traces 31 , and then the light-shielding layer 112 of light-transmitting region 111 can be etched through a photolithography process to obtain a circular light-shielding region 111 .
  • the shape of the light-transmitting region 111 can be modified by the shielding of the light-shielding layer 112 , for example, the light-transmitting region 111 is designed to be circular to further reduce the diffraction effect.
  • Figures 12 and 14 show that the light-transmitting area 111 only includes the area surrounded by eight sub-pixels 211 and electrode lines 31, and Figures 13 and 15 show that the light-transmitting area 111 also includes four sub-pixels 211 and the situation of the area surrounded by the electrode wiring 31.
  • the light-shielding layer 112 can be made of completely opaque materials. The same is 0, at this time, the areas covered by the pattern of the light-shielding layer 112 are all opaque areas.
  • the light-shielding layer 112 can also be made of a material with a certain light transmittance, so that the light-shielding layer 112 produced has a certain light transmittance, for example
  • the light transmittance of the light shielding layer 112 can range from 1% to 99%.
  • the sub-pixels 211 and electrode traces 31 covered by the light-shielding layer 112 are located in opaque areas, and other light-shielding layers 112 can be considered as semi-transparent areas, which can also reduce the diffraction effect.
  • FIG. 16 exemplarily shows a partial schematic diagram of pixel arrangement in a second display area in a display panel provided by an embodiment of the present application.
  • the second display area 12 of the display panel 01 includes: a plurality of second pixels 22 arranged in an array; Each second pixel 22 also includes two sub-pixels 211 displaying different colors.
  • the arrangement of pixels in the second display area 12 is generally different from the arrangement of pixels in the first display area 11.
  • two sub-pixels 211 in a second pixel 22 can be arranged (as shown in FIG.
  • FIG. 16 is only an example to illustrate the arrangement of pixels in the second display area 12 , and other arrangements of pixels can also be used in the second display area 12 , which will not be described in detail here.
  • the above-mentioned display panel and display device provided in the embodiments of the present application optimize the display pixel arrangement position of the first display area corresponding to the under-screen camera in the display panel, and take at least two first pixels adjacent up, down, left, and right as one Repeating the optical unit, properly adjusting the position of a single sub-pixel in the repeating optical unit, under the premise that it does not exceed the range of the original first pixel, multiple sub-pixels are located at the vertices of the first polygonal structure, matching the electrode wiring
  • the electrode wiring is approximately in the same direction as the side of the first polygonal structure, and the inside of the area surrounded by at least four sub-pixels and electrode wiring is a light-transmitting area, which can realize the optical imaging of the camera under the screen, and
  • the positions where at least four sub-pixels and electrode lines are located are opaque areas.
  • This pixel arrangement design forms a large-area light-transmitting area.
  • the distance between the opaque areas is enlarged in the row and column directions, so that high-order optical diffraction is effectively suppressed, and low-order optical diffraction is effectively suppressed.
  • the diffraction is relatively enhanced, and the energy of the diffracted light is concentrated in the relatively central area, and the diffracted light is isotropic, which significantly improves the imaging effect of the under-screen camera.

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了一种显示面板及显示装置,优化显示面板对应屏下摄像头的第一显示区的显示像素排布位置,将上下左右相邻的至少两个第一像素作为一个重复光学单元,在重复光学单元中适当调整单个子像素的位置,在不超过原有第一像素范围的前提下,多个子像素位于第一多边形结构的顶点,配合电极走线的设计,将电极走线大致与第一多边形结构的边的延伸方向相同,至少四个子像素和电极走线所在位置为不透光区,由至少四个子像素和电极走线围成的区域内部形成面积较大的透光区,在行方向和列方向拉大不透光区之间的距离,有效抑制高阶光学衍射,相对增强低阶衍射,且衍射光能量集中到相对中心的区域,衍射光为各向同性,明显提升屏下摄像头的成像效果。

Description

显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
随着消费电子技术的发展及产品的多元化,增强用户体验成为了消费电子领域的主要目标之一。在追求消费体验的过程中,显示效果越来越多的受到行业的重视。随之而来的,如何增加消费电子产品的屏占比,乃至全面屏设计,成为了行业中热门的话题,各大屏厂、品牌商都在积极探索此领域的相关技术。
而限制全面屏设计的最大技术挑战点在于前置摄像头的处理及设计。现阶段较为成熟的技术方案为参照图1a所示的异形屏幕设计、参照图1b所示的屏幕打孔等,此类设计,可以将屏占比提升至90%以上。但是,此类设计方案仍需要考虑前置摄像头的设计避让,无法做到真正的全面屏体验效果。
区别于此类的前置摄像头避让设计方案,行业内提出了屏下摄像技术,参照图2所示,即将摄像头置于屏幕下方,摄像头通过屏幕进行拍照成像。屏下摄像技术,在根本上实现了全面屏的显示效果,极大的提升了消费者的使用体验。但是,受限于现有技术本身,由于摄像头是透过屏幕进行拍照成像,屏幕的结构及像素设计会造成额外的光学衍射,对摄像头的成像效果造成较大的影响。因此,较原有前置摄像头避让设计方案相比,屏下摄像头的拍照效果有一定程度的损失,无法做到极致的体验。因而,行业内各大屏厂、品牌商都在积极探索新型的技术方案,以期降低因屏幕导致的光学衍射现象。
发明内容
本申请实施例提供了一种显示面板及显示装置,用以降低屏下摄像头光学成像的衍射问题,提升屏下摄像头的成像质量。
第一方面,本申请提供了一种显示面板,显示面板的显示区分为第一显示区和包围第一显示区的第二显示区,第一显示区内具有透光区;显示面板的第一显示区内包括:呈阵列排布的多个第一像素,每个第一像素内包括至少两个显示颜色不同的子像素,以及与各子像素分别连接的电极走线;其中,呈阵列排布的多个第一像素中,行方向和/或列方向相邻的至少两个第一像素构成一个重复光学单元;在一个重复光学单元内包括至少四个子像素,至少四个子像素依次首尾顺次连结形成第一多边形结构,至少四个子像素分别位于第一多边形结构的顶点;电极走线沿着构成第一多边形结构的边的方向延伸,在第一显示区内的不透光区包括电极走线所在区域和子像素所在区域,透光区包括由至少四个子像素和电极走线围成的内部区域。
本申请提供的上述显示面板中,对第一显示区的显示像素排布位置进行了优化,将上下左右相邻的至少两个第一像素作为一个重复光学单元,在重复光学单元中适当调整单个子像素的位置,在使其不超过原有第一像素范围的前提下,多个子像素位于第一多边形结构的顶点,配合电极走线的设计,将电极走线大致与第一多边形结构的边的延伸方向相同,由至少四个子像素和电极走线围成的区域内部为透光区,可以实现屏下摄像头的光学成像, 而至少四个子像素和电极走线所在位置为不透光区。这种像素排布设计,形成了面积较大的透光区,同时,在行方向和列方向拉大了不透光区之间的距离,使得高阶光学衍射得到了有效的抑制,低阶衍射相对增强,且衍射光能量集中到了相对中心的区域,衍射光为各向同性,使得屏下摄像头的成像效果有明显的提升。
在本申请一个可能的实现方式中,在行方向或列方向相邻的两个重复光学单元中具有邻近的多个子像素,多个子像素依次首尾顺序连结形成第二多边形结构,多个子像素分别位于第二多边形结构的顶点;与多个子像素连接的电极走线沿着构成第二多边形结构的边的方向延伸。这样,在行方向和列方向相邻的四个重复光学单元之间还可以构成一个内部透光的第一多边形结构,以提高透光区的分布密度。
在本申请一个可能的实现方式中,透光区还包括由多个子像素和电极走线围成的内部区域,以增加第一显示区的透光区所占面积比例,提高屏下摄像头的光学成像亮度。
在本申请一个可能的实现方式中,第一多边形结构中具有多对相互平行的边,且沿着行方向延伸的一对边之间具有列间距,且沿着列方向延伸的一对边之间具有行间距,在一个重复光学单元中的行间距等于列间距,以在行方向和列方向平衡不透光区之间的距离,使得在行方向和列方向的高阶光学衍射均可以得到有效的抑制。
在本申请一个可能的实现方式中,行方向相邻的两个重复光学单元之间的行间距相同;列方向相邻的两个重复光学单元之间的列间距相同,以平衡各重复光学单元在各个方向的光学衍射效果,保证屏下摄像头在第一显示区内各个区域成像效果的均一性。
在本申请一个可能的实现方式中,在对角线方向相邻的两个重复光学单元共用一个第一像素;在对角线方向相邻的两个重复光学单元之间的行间距和列间距均互不相同,以破坏对角线方向上构成八边形结构的各子像素的排布平衡性,使其在对角线方向上实现非长程有序,进而实现对屏下摄像头光学衍射的优化效果。
在本申请一个可能的实现方式中,在一个重复光学单元中,与至少四个子像素分别连接的电极走线为直线,且平行于第一多边形结构的边;或,在一个重复光学单元中,与至少四个子像素分别连接的电极走线为直线,且与第一多边形结构的边具有设定倾斜角,将电极走线由对边位置的平行直线变为非平行直线,以降低电极走线在平行设计时的长程有序结构导致的强衍射现象;或,在一个重复光学单元中,与至少四个子像素分别连接的电极走线为曲线,将电极走线由对边位置的平行直线变为非平行曲线,以降低电极走线在平行设计时的长程有序结构导致的强衍射现象。
在本申请一个可能的实现方式中,在一个重复光学单元中,为曲线的电极走线与至少四个子像素围成的区域大致为圆形。并且,可以进一步调整电极走线的曲率,使得电极走线相对于第一多边形结构的中心对称位置具有不同的曲率设计,这样可以进一步降低衍射效应。
在本申请一个可能的实现方式中,显示面板的第一显示区内还可以包括:覆盖各子像素以及各电极走线的遮光层,遮光层在透光区具有圆形开口。利用遮光层的遮挡,可以修饰透光区的形状,例如将透光区设计为圆形,进一步降低衍射效应。
在本申请一个可能的实现方式中,遮光层可以采用具有一定透光性的材料制作,该遮光层的光透过率可以在是1%到99%的范围取值。此时,被遮光层覆盖的子像素、电极走线所在区域为不透光区,其他遮光层可以认为是半透光区,也可以起到降低衍射效应的作用。
在本申请一个可能的实现方式中,显示面板的第二显示区内包括:呈阵列排布的多个第二像素,为了实现高分辨率显示,第二显示区的像素排布方式与第一显示区内的像素排布方式不同,每个第二像素内包括至少两个显示颜色不同且沿行方向或列方向排列的子像素。
在本申请一个可能的实现方式中,子像素包括发光器件和与发光器件连接的电极,电极走线与电极连接,以将外部驱动信号加载至电极驱动发光器件显示相应颜色。
在本申请一个可能的实现方式中,发光器件为有机发光二极管或微型发光二极管。
在本申请一个可能的实现方式中,第一像素采用SPR像素设计,每个第一像素内可以包括两个显示颜色不同的子像素,行方向和列方向相邻的四个第一像素构成一个重复光学单元,在一个重复光学单元内包括八个子像素,八个子像素依次首尾顺次连结形成八边形结构,八个子像素分别位于八边形结构的顶点。
在本申请一个可能的实现方式中,为了提高显示分辨率,每个第一像素内包括两个显示颜色不同的子像素,行方向或列方向相邻的两个第一像素中的一个第一像素包括第一显示颜色子像素和第二显示颜色子像素,另一个第一像素包括第一显示颜色子像素和第三显示颜色子像素。
在本申请一个可能的实现方式中,由于人眼对绿色不敏感,因此在采用SPR像素设计时可以增加绿色子像素的比例,第一显示颜色子像素为绿色子像素,第二显示颜色子像素为红色子像素,第三显示颜色子像素为蓝色子像素。这样,在行方向和列方向,具有蓝色子像素和绿色子像素的第一像素与具有红色子像素和绿色子像素的第一像素均交替排列。
第二方面,本申请还提供了一种显示装置,包括:本申请第一方面的各实现施方式提供的显示面板,以及设置于显示面板的第一显示区下方的摄像头。
本申请提供的显示面板和显示装置,对显示面板中对应屏下摄像头的第一显示区的显示像素排布位置进行了优化,将上下左右相邻的至少两个第一像素作为一个重复光学单元,在重复光学单元中适当调整单个子像素的位置,在使其不超过原有第一像素范围的前提下,多个子像素位于第一多边形结构的顶点,配合电极走线的设计,将电极走线大致与第一多边形结构的边的延伸方向相同,由至少四个子像素和电极走线围成的区域内部为透光区,可以实现屏下摄像头的光学成像,而至少四个子像素和电极走线所在位置为不透光区。这种像素排布设计,形成了面积较大的透光区,同时,在行方向和列方向拉大了不透光区之间的距离,使得高阶光学衍射得到了有效的抑制,低阶衍射相对增强,且衍射光能量集中到了相对中心的区域,衍射光为各向同性,使得屏下摄像头的成像效果有明显的提升。
附图说明
图1a为异形屏幕设计的手机结构示意图;
图1b为屏幕打孔设计的手机结构示意图;
图2为屏下摄像设计的手机结构示意图;
图3为本申请一实施例提供的显示装置的俯视结构示意图;
图4为本申请一实施例提供的显示装置的截面结构示意图;
图5为本申请一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图6为常规像素排布形成的光学衍射仿真示意图;
图7为采用图5的像素排布形成的光学衍射仿真示意图;
图8为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图9a为采用图5的像素排布形成的光学衍射仿真示意图;
图9b为采用图8的像素排布形成的光学衍射仿真示意图;
图10为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图11为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图12为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图13为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图14为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图15为本申请另一实施例提供的显示面板中第一显示区内的像素排布的局部示意图;
图16为本申请一实施例提供的显示面板中第二显示区内的像素排布的局部示意图。
附图标记:
01-显示面板;02-摄像头;03-第一光学胶;04-圆偏光片;05-第二光学胶;06-盖板;11-第一显示区;12-第二显示区;21-第一像素;22-第二像素;31-电极走线;111-透光区;112-遮光层;211-子像素;a-第一显示颜色子像素;b-第二显示颜色子像素;c-第三显示颜色子像素;A和A’-行间距;B和B’-列间距;F-重复光学单元;X-行方向;Y-列方向。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
另外,在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
本申请实施例提出的显示面板和显示装置可以应用于各种终端设备中,例如可以应用于智能手机、平板电脑、掌上电脑(personal digital assistant,PDA)等具有摄像功能的电子设备中。应注意,本申请实施例提出的显示面板和显示装置旨在包括但不限于应用在这些和任意其它适合类型的终端设备中。
下面对下述介绍中用到的关键术语进行解释。
屏占比:用于表示屏幕和手机前面板面积的相对比值,计算公式:屏占比=正面屏幕面积/整机面积。
分辨率:是屏幕图像的精密度,是指显示器所能显示的像素有多少。
子(亚)像素渲染(sub-pixel rendering,SPR):是通过渲染像素来考虑屏幕类型的物理特性,以增加显示器的表观分辨率的一种方法。它利用了彩色显示屏上的每个像素实际上由单独的红色、绿色和蓝色或其他彩色子(亚)像素组成,从而消除更详细的锯齿文本,或增加布局上所有图像类型的分辨率,而布局设计为与亚像素渲染。
下面结合附图对本申请提供的显示面板和显示装置进行详细说明。
图3示例性示出了本申请实施例提供的一种显示装置的俯视结构示意图,图4示例性示出了本申请实施例提供的一种显示装置的截面结构示意图。参照图3和图4,在本申请一个实施例中,为了实现全面屏显示功能,显示装置包括:具有第一显示区11和包围第一显示区11的第二显示区12的显示面板01,以及设置于显示面板01的第一显示区11下方的摄像头02。第一显示区11在显示面板01的显示区所占区域较小,可以称为副屏幕,副屏幕具有一定的透光特性,可以实现屏下摄像头成像。第二显示区12在显示面板01的显示区所占区域较大,可以称为主屏幕,具有实现常规显示功能的显示像素。同时,副屏幕包含多个实现常规显示功能的显示像素,可以实现与主屏幕同步的显示画面。
在本申请该实施例中,副屏幕(第一显示区11)具有与现有的主屏幕(第二显示区12)完全不同的显示像素排布和布线设计,可以降低摄像头成像过程中的高阶衍射,从而提升屏下摄像头的成像效果。为了方便描述,将第一显示区11内设置的显示像素称为第一像素21,将第二显示区12内设置的显示像素称为第二像素22。第一像素21和第二像素22的详细排布方式以及布线设计在下述本申请提供的显示面板中进行详细介绍。
参照图4,在本申请该实施例中,显示装置一般会在显示面板01的表面通过第一光学胶03贴附圆偏光片04(circular-polarizing filters,c-Pol),以减少环境光的反射。并且,在圆偏光片上通过第二光学胶05贴附盖板06,起到保护作用。具体盖板06可以是玻璃盖板,也可是树脂盖板,在此不限定盖板的材质。对于显示装置包括的其他部件在此也不作详述。
下面对本申请实施例提供的显示面板的像素排布方式和走线设计进行详细描述。
图5示例性示出了本申请实施例提供的一种显示面板中第一显示区内的像素排布的局部示意图。参照图5,在本申请一个实施例中,显示面板01的第一显示区11内包括:呈阵列排布的多个第一像素21(图5中用虚线框出的最小矩形),每个第一像素21内包括至少两个显示颜色不同的子像素211(在图5中采用不同填充图案表示显示颜色不同的子像素211,采用相同填充图案表示显示颜色相同的子像素211),以及与各子像素211分别连接的电极走线31。其中,呈阵列排布的多个第一像素21中,行方向X和/或列方向Y相邻的至少两个第一像素21构成一个重复光学单元F,例如可以是行方向X相邻的两个第一像素21构成一个重复光学单元F,也可以是列方向Y相邻的两个第一像素21构成一个重复光学单元F,还可以是行方向X和列方向Y相邻的四个第一像素21构成一个重复光学单元F;在一个重复光学单元F内包括至少四个子像素211(在图5中示例出了一个重复光学单元F内包括八个子像素211的情况,且八个子像素211分别用数字1-8标出),至少四个子像素211依次首尾顺次连结可以构成第一多边形结构,且至少四个子像素211分别位于第一多边形结构的顶点。电极走线31沿着构成第一多边形结构的边的方向延伸,即电极走线31的延伸方向大致与第一多边形结构的边相同(值得注意的是,这里表述的“大致”指的是电极走线31设置在第一多边形结构中相邻两个顶点之间的位置,电极走线31可以和第一多边形结构中的边的延伸方向一致,也可以有一定的偏移角度,其形状也可以 不局限于直线,在后续实施例中会详细介绍),电极走线31所在区域和子像素211所在区域为不透光区,由至少四个子像素211和电极走线31围成的区域内部为透光区111(图5中采用第一密度的圆点填充图案表示由八个子像素211和电极走线31围成的透光区111),屏下摄像头可以透过透光区111实现光学成像。
为了方便观看,图5仅是示意出了四行四列第一像素21,值得注意的是,在本申请中表述的行方向X也成水平方向指的是呈阵列排布的第一像素21中一行第一像素21的延伸方向,行方向X相邻的第一像素21可以认为是左右相邻的第一像素21,列方向Y也成竖直方向指的是呈阵列排布的第一像素21中一列第一像素21的延伸方向,列方向Y相邻的第一像素21可以认为是上下相邻的第一像素21。
可继续参照图5,在本申请该实施例中,为了提高显示分辨率,第一像素21采用SPR像素设计,每个第一像素21内可以包括两个显示颜色不同的子像素211,行方向X或列方向Y相邻的两个第一像素21中的一个第一像素21包括第一显示颜色子像素a和第二显示颜色子像素b,另一个第一像素21包括第一显示颜色子像素a和第三显示颜色子像素c。
具体地,由于人眼对绿色不敏感,因此在采用SPR像素设计时可以增加绿色子像素的比例,即第一显示颜色子像素a可以为绿色子像素,第二显示颜色子像素b可以为红色子像素,第三显示颜色子像素c为蓝色子像素。这样,在行方向X和列方向Y,具有蓝色子像素和绿色子像素的第一像素21与具有红色子像素和绿色子像素的第一像素21均交替排列。在图5中仅是举例示出不同显示颜色的子像素211的具体排布方式,不作实质限定。
可继续参照图5,在本申请该实施例中,可以由行方向和列方向相邻的四个第一像素21构成一个重复光学单元F,这样,在一个重复光学单元F内包括八个子像素211,八个子像素211依次首尾顺次连结形成八边形结构,且八个子像素211分别位于八边形结构的顶点。
值得注意的是,图5中仅是举例说明一个第一像素21包含的子像素211个数,以及一个重复光学单元F包含的第一像素21个数。在本申请其他实施例中,一个第一像素21也可以包含三个或更多个显示颜色不同的子像素211,一个重复光学单元F也可以包含六个或者更多个第一像素21,在此不作详述。
可选地,在本申请该实施例中,各子像素211一般包括发光器件和与发光器件连接的电极,电极一般位于发光器件的下方,电极的形状与发光器件的形状一般大致相同,电极可以略大于发光器件,也可以略小于发光器件,在此不做限定。子像素211作为显示像素其所在区域为不透光区,子像素211的具体形状由发光器件和电极的形状最终决定,子像素211的形状例如可以是正方形、长方形、圆形等,本申请的图5中仅是以子像素211的形状为正方形为例进行示例,不做实际限定。并且,显示颜色不同的子像素211的形状可以不同,发光器件的发光面积也可以不同,在此不作详述。
可选地,在本申请该实施例中,发光器件具体可以为有机发光二极管(organic light-emitting diode,OLED)或微型发光二极管(micro light-emitting diode,Micro LED),在此不做限定。
可选地,在本申请该实施例中,电极走线31需要与电极连接,以将外部驱动信号加载至电极驱动发光器件显示相应颜色。子像素211的驱动方式可以采用有源(AM)驱动,也可以采用无源(PM)驱动。在采用AM驱动方式时,通过电极走线31与电极连接的驱动电路可以设置在第一显示区11,例如电极下方,电极走线31下方,或者在行方向X和 列方向Y相邻的两个重复光学单元F之间,驱动电路也可以设置在第二显示区12,以保证第一显示区11具有足够的透光区111。并且,由于驱动电路所在区域为不透光区,因此,在驱动电路设置在第一显示区11时,应该尽量避免驱动电路设置在透光区111,而影响屏下摄像头的光学成像。在采用PM驱动方式时,电极直接通过电极走线31与外接屏幕驱动芯片(DDIC)连接,无需设置驱动电路。由于需要对每个子像素211设置对应的电极走线311,为了节省电极走线311所在区域的面积,以提升透光区111面积,可以将电极走线311做层叠的多层走线设计。
本申请该实施例提供的第一显示区11下方的摄像头02的工作原理为:屏下摄像头成像过程中,由于光在通过由子像素211及电极走线31形成的不透光区时,会形成光学衍射现象,产生的多阶衍射光线会形成鬼影等虚像,对成像效果造成较大的影响。此类高阶衍射主要与透光区111的尺寸和形状、不透光区之间的距离、不透光区的有序性等方面相关。常规的像素排布设计,参照图6中的右下角小图,透光区的面积较小且为方形或长方形,不透光区之间距离较短,不透光区为长程有序状态,因此,在行方向和列方向均会产生非常强烈的多阶衍射光。此种衍射光,对于摄像头的成像具有非常大的影响,导致成像效果劣化。因而需要优化整体的像素设计,减弱这种强烈的高阶光学衍射现象。
本申请该实施例中,对第一显示区11的显示像素排布位置进行了优化,将上下左右相邻的至少两个第一像素21作为一个重复光学单元F,在重复光学单元F中适当调整单个子像素211的位置,在使其不超过原有第一像素21范围的前提下,多个子像素211位于第一多边形结构的顶点。配合电极走线31的设计,参照图5,具体可以将电极走线31设置为直线,且平行于第一多边形结构的边,使由至少四个子像素211和电极走线31构成第一多边形结构,该第一多边形结构的内部为透光区111,即透光区111不包含子像素211和电极走线31所在区域,可以实现屏下摄像头的光学成像,而至少四个子像素211和电极走线31所在位置为不透光区。这种像素排布设计,在第一多边形结构的内部形成了面积较大的透光区111,同时,在行方向X和列方向Y拉大了不透光区之间的距离,使得高阶光学衍射得到了有效的抑制。图5的像素排布设计对应的光学衍射仿真效果参照图7所示,低阶衍射相对增强,且衍射光能量集中到了相对中心的区域,衍射光为各向同性。与图6所示的光学衍射效果相对比,可以明显看到行方向和列方向上的多阶衍射得到了很好的抑制。因而,使得屏下摄像头的成像效果有明显的提升。
可继续参照图5,在本申请该实施例中,在行方向X或列方向Y相邻的两个重复光学单元F中具有邻近的多个子像素211,例如图5第一行中的两个重复光学单元F具有分别位于四个第一像素21的四个子像素211,又如图5第一列中的两个重复光学单元F具有分别位于四个第一像素21的四个子像素211,这些子像素211依次首尾顺序连结可以形成第二多边形结构,第二多边形例如为图5中的四边形,且这些子像素211分别位于第二多边形结构的顶点,与这些子像素211连接的电极走线31沿着构成第二多边形结构的边的方向延伸,即与这些子像素211连接的电极走线31的延伸方向可以大致与第二多边形结构的边相同。这样,在行方向X和列方向Y相邻的四个重复光学单元之间还可以构成一个内部透光的第一多边形结构,即图5中由第二行和第三行的第二个和第三个第一像素21中的八个子像素211构成的八边形结构,以提高透光区的分布密度。
在本申请该实施例中,在第二多边形结构中,电极走线31所在区域和子像素211所在区域为不透光区,而由这些子像素211和电极走线31围成的区域内部也可以为透光区111 (图5中采用第二密度的圆点填充图案表示由四个子像素211和电极走线31围成的透光区111),以增加第一显示区11的透光区111所占面积比例,提高屏下摄像头的光学成像亮度。或者,当子像素211的驱动方式采用有源(AM)驱动,且与电极走线31连接的驱动电路设置在第一显示区11时,驱动电路可以设置在由这些子像素211和电极走线31围成的区域内,则此时由这些子像素211和电极走线31围成的区域内部为不透光区。
可继续参照图5,在本申请该实施例中,适当调整重复光学单元F中单个子像素211的位置,使位于顶点的多个子像素211构成的第一多边形结构中具有多对相互平行的边,例如图5中第一多边形结构为八边形结构,则包括四对相互平行的边,且沿着行方向延伸的一对边之间具有列间距B,且沿着列方向延伸的一对边之间具有行间距A,在一个重复光学单元F中的行间距A等于列间距B,以在行方向X和列方向Y平衡不透光区之间的距离,使得在行方向X和列方向Y的高阶光学衍射均可以得到有效的抑制。
值得注意的是,在图5中直接将电极走线31设置在八边形结构的边所在位置,此时,列间距B也可以认为是沿着行方向X延伸的电极走线31之间的间距,行间距A也可以认为是沿着列方向Y延伸的电极走线31之间的间距。在本申请后续介绍的其他实施例中,电极走线31的布线方式会存在偏离与八边形结构的边的情况,即不会存在相互平行的电极走线31的情况,此时列间距B和行间距A指的就是八边形结构的相互平行的边之间的间距。
可继续参照图5,在本申请该实施例中,行方向X相邻的两个重复光学单元F之间的行间距A可以设置为相同;列方向Y相邻的两个重复光学单元F之间的列间距B也可以设置为相同,以平衡各重复光学单元F在各个方向的光学衍射效果,保证屏下摄像头在第一显示区11内各个区域成像效果的均一性。
图8示例性示出了本申请实施例提供的另一种显示面板中第一显示区内的像素排布的局部示意图。参照图8,在本申请另一个实施例中,在对角线方向相邻的两个重复光学单元F可以共用一个第一像素21(在图8中采用虚线圈出共用的一个第一像素21中的两个子像素211)。可以进一步调整第一显示区11内的子像素211排布设计,相对于八边形结构的中心位置,向内或向外移动位于顶点的各子像素211位置,使得在对角线方向相邻的两个重复单元F的行间距A和列间距B发生变化,即在对角线方向相邻的两个重复光学单元F之间的行间距A和A’不同,列间距B和B’也不同,A≠A’,B≠B’,导致对角线方向上透光区111的尺寸发生变化,破坏对角线方向上构成八边形结构的各子像素211的排布平衡性,使其在对角线方向上实现非长程有序,进而实现对屏下摄像头光学衍射的优化效果。
图9a和图9b分别为本申请两个实施例的光学衍射仿真对比数据,其中图9a为图5对应的子像素排布形成的光学衍射仿真图,图9b对应的子像素排布形成的光学衍射仿真图。可以明显看到,通过改变重复光学单元F中各子像素211的相对排布位置,可以进一步降低屏下摄像头的光学衍射效果,高阶衍射效果被进一步抑制(图9a和图9b中虚线位置),且低阶衍射能量更加集中(实线位置),更有效的提升屏下摄像头的成像效果。
可选地,在本申请提供的显示面板中,在重复光学单元F中除了可以优化像素排布方式,还可以对电极走线31的布线方式进行优化设计。
图10示例性示出了本申请实施例提供的另一种显示面板中第一显示区内的像素排布的局部示意图。参照图10,在本申请另一个实施例中,在一个重复光学单元F中,与至少 四个子像素211分别连接的电极走线31可以为直线,且与第一多边形结构的边具有设定倾斜角,即相对于图5所示的电极走线31的布线方式,可以将电极走线31由对边位置的平行直线变为非平行直线,以降低电极走线31在平行设计时的长程有序结构导致的强衍射现象。
图11示例性示出了本申请实施例提供的另一种显示面板中第一显示区内的像素排布的局部示意图。参照图11,在本申请另一个实施例中,在一个重复光学单元F中,与至少四个子像素211分别连接的电极走线31为曲线,即相对于图5所示的电极走线31的布线方式,可以将电极走线31由对边位置的平行直线变为非平行曲线,以降低电极走线31在平行设计时的长程有序结构导致的强衍射现象。
可继续参照图11,在本申请该实施例中,在一个重复光学单元F中,为曲线的电极走线31与至少四个子像素211围成的区域可以大致为圆形,并且受工艺限制围成的区域的形状类似于圆形(例如椭圆形)均在本申请实施例保护范围内。并且,可以进一步调整电极走线31的曲率,使得电极走线31相对于至少八边形结构的中心对称位置具有不同的曲率设计,这样可以进一步降低衍射效应。
值得注意的是,在本申请实施例提供的显示面板中,第一显示区11内的电极走线31的布线方式可以相互组合,例如可以在部分重复光学单元F中设置平行直线布线的电极走线31,另一部分重复光学单元F中设置非平行直线布线的电极走线31,另一部分重复光学单元F中设置非平行曲线布线的电极走线31。通过将电极走线31的布线方式相互组合,可以降低电极走线31的长程有序结构导致的强衍射现象,进一步降低衍射效应。
图12至图15示例性示出了本申请实施例提供的另一种显示面板中第一显示区内的像素排布的局部示意图(图中未示出电极走线31)。参照图12至图15,在本申请另一个实施例中,显示面板01的第一显示区11内还可以包括:覆盖各子像素211以及各电极走线31的遮光层112,遮光层112在透光区111具有圆形开口,并且受工艺限制类似于圆形开口(例如椭圆形开口)均在本申请实施例保护范围内。具体地,可以在制作电极走线31之前,制作一整层的遮光层112,之后通过光刻工艺将透光区111的遮光层112刻蚀,得到圆形的透光区111。利用遮光层112的遮挡,可以修饰透光区111的形状,例如将透光区111设计为圆形,进一步降低衍射效应。图12和图14示出了透光区111仅包括由八个子像素211和电极走线31围成的区域的情况,图13和图15示出了透光区111还包括由四个子像素211和电极走线31围成的区域的情况。
可继续参照图12和图13,在本申请该实施例中,遮光层112可以采用完全不透光的材料制作,这样制作出的遮光层112的光透过率和子像素211、电极走线31相同均为0,此时,遮光层112的图案所覆盖的区域均为不透光区。
或者,可继续参照图14和图15,在本申请该实施例中,遮光层112也可以采用具有一定透光性的材料制作,这样制作出的遮光层112具有一定的光透过率,例如该遮光层112的光透过率可以在是1%到99%的范围取值。此时,被遮光层112覆盖的子像素211、电极走线31所在区域为不透光区,其他遮光层112可以认为是半透光区,也可以起到降低衍射效应的作用。
图16示例性示出了本申请实施例提供的一种显示面板中第二显示区内的像素排布的局部示意图。参照图16,在本申请一个实施例中,显示面板01的第二显示区12内包括:呈阵列排布的多个第二像素22;为配合第一显示区11采用的SPR像素设计,在每个第二 像素22内也包括两个显示颜色不同的子像素211。为了实现高分辨率显示,第二显示区12的像素排布方式一般与第一显示区11内的像素排布方式不同,例如可以将一个第二像素22内的两个子像素211沿行方向X(如图16所示)或列方向Y排列,并且,电极走线31可以直接沿着行方向X和列方向Y设置为直线,以减少布线设计难度。图16仅是举例说明第二显示区12内的像素排布方式,在第二显示区12内还可以使用其他像素排布方式,在此不作详述。
本申请实施例提供的上述显示面板和显示装置,对显示面板中对应屏下摄像头的第一显示区的显示像素排布位置进行了优化,将上下左右相邻的至少两个第一像素作为一个重复光学单元,在重复光学单元中适当调整单个子像素的位置,在使其不超过原有第一像素范围的前提下,多个子像素位于第一多边形结构的顶点,配合电极走线的设计,将电极走线大致与第一多边形结构的边的延伸方向相同,由至少四个子像素和电极走线围成的区域内部为透光区,可以实现屏下摄像头的光学成像,而至少四个子像素和电极走线所在位置为不透光区。这种像素排布设计,形成了面积较大的透光区,同时,在行方向和列方向拉大了不透光区之间的距离,使得高阶光学衍射得到了有效的抑制,低阶衍射相对增强,且衍射光能量集中到了相对中心的区域,衍射光为各向同性,使得屏下摄像头的成像效果有明显的提升。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种显示面板,其特征在于,所述显示面板的显示区分为第一显示区和包围所述第一显示区的第二显示区,所述第一显示区内具有透光区;所述显示面板的所述第一显示区内包括:
    呈阵列排布的多个第一像素,每个所述第一像素内包括至少两个显示颜色不同的子像素;其中,所述呈阵列排布的多个第一像素中,行方向和/或列方向相邻的至少两个所述第一像素构成一个重复光学单元;在一个所述重复光学单元内包括至少四个子像素,所述至少四个子像素依次首尾顺次连结形成第一多边形结构,所述至少四个子像素分别位于所述第一多边形结构的顶点;
    与各所述子像素分别连接的电极走线,所述电极走线沿着构成所述第一多边形结构的边的方向延伸,在所述第一显示区内的不透光区包括所述电极走线所在区域和所述子像素所在区域,所述透光区包括由所述至少四个子像素和所述电极走线围成的内部区域。
  2. 如权利要求1所述的显示面板,其特征在于,在行方向或列方向相邻的两个所述重复光学单元中具有邻近的多个子像素,所述多个子像素依次首尾顺序连结形成第二多边形结构,所述多个子像素分别位于所述第二多边形结构的顶点;
    与所述多个子像素连接的电极走线沿着构成所述第二多边形结构的边的方向延伸。
  3. 如权利要求2所述的显示面板,其特征在于,所述透光区还包括由所述多个子像素和所述电极走线围成的内部区域。
  4. 如权利要求1-3任一项所述的显示面板,其特征在于,所述第一多边形结构中具有多对相互平行的边,且沿着行方向延伸的一对边之间具有列间距,且沿着列方向延伸的一对边之间具有行间距,在一个所述重复光学单元中的所述行间距等于所述列间距。
  5. 如权利要求4所述的显示面板,其特征在于,行方向相邻的两个所述重复光学单元之间的所述行间距相同;列方向相邻的两个所述重复光学单元之间的所述列间距相同。
  6. 如权利要求5所述的显示面板,其特征在于,在对角线方向相邻的两个所述重复光学单元共用一个所述第一像素;在对角线方向相邻的两个所述重复光学单元之间的所述行间距和所述列间距均互不相同。
  7. 如权利要求1-6任一项所述的显示面板,其特征在于,在一个所述重复光学单元中,与所述至少四个子像素分别连接的电极走线为直线,且平行于所述第一多边形结构的边;或,
    在一个所述重复光学单元中,与所述至少四个子像素分别连接的电极走线为直线,且与所述第一多边形结构的边具有设定倾斜角;或,
    在一个所述重复光学单元中,与所述至少四个子像素分别连接的电极走线为曲线。
  8. 如权利要求7所述的显示面板,其特征在于,在一个所述重复光学单元中,为曲线的电极走线与所述至少四个子像素围成的区域大致为圆形。
  9. 如权利要求1-8任一项所述的显示面板,其特征在于,所述显示面板的所述第一显示区内还包括:遮光层,所述遮光层覆盖各所述子像素和各所述电极走线,所述遮光层在所述透光区具有圆形开口。
  10. 如权利要求9所述的显示面板,其特征在于,所述遮光层的光透过率在1%-99%之间取值。
  11. 如权利要求1-10任一项所述的显示面板,其特征在于,所述显示面板的所述第二显示区内包括:呈阵列排布的多个第二像素,每个所述第二像素内包括至少两个显示颜色不同且沿行方向或列方向排列的子像素。
  12. 如权利要求1-11任一项所述的显示面板,其特征在于,所述子像素包括发光器件和与所述发光器件连接的电极,所述电极走线与所述电极连接。
  13. 如权利要求12所述的显示面板,其特征在于,所述发光器件为有机发光二极管或微型发光二极管。
  14. 如权利要求1-13任一项所述的显示面板,其特征在于,每个所述第一像素内包括两个显示颜色不同的子像素,行方向和列方向相邻的四个所述第一像素构成一个重复光学单元,在一个所述重复光学单元内包括八个子像素,所述八个子像素依次首尾顺次连结形成八边形结构,所述八个子像素分别位于所述八边形结构的顶点。
  15. 如权利要求14所述的显示面板,其特征在于,行方向或列方向相邻的两个所述第一像素中的一个第一像素包括第一显示颜色子像素和第二显示颜色子像素,另一个第一像素包括所述第一显示颜色子像素和第三显示颜色子像素。
  16. 如权利要求15所述的显示面板,其特征在于,所述第一显示颜色子像素为绿色子像素,所述第二显示颜色子像素为红色子像素,所述第三显示颜色子像素为蓝色子像素。
  17. 一种显示装置,其特征在于,包括:如权利要求1-16任一项所述的显示面板,以及设置于所述显示面板的第一显示区下方的摄像头。
PCT/CN2021/095309 2021-05-21 2021-05-21 显示面板及显示装置 WO2022241786A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180098222.XA CN117356187A (zh) 2021-05-21 2021-05-21 显示面板及显示装置
PCT/CN2021/095309 WO2022241786A1 (zh) 2021-05-21 2021-05-21 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/095309 WO2022241786A1 (zh) 2021-05-21 2021-05-21 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2022241786A1 true WO2022241786A1 (zh) 2022-11-24

Family

ID=84140159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095309 WO2022241786A1 (zh) 2021-05-21 2021-05-21 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN117356187A (zh)
WO (1) WO2022241786A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116801659A (zh) * 2023-08-01 2023-09-22 惠科股份有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365819A (zh) * 2019-06-18 2019-10-22 武汉华星光电半导体显示技术有限公司 显示屏及显示装置
CN110634930A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 显示面板和显示装置
CN111129102A (zh) * 2019-12-31 2020-05-08 武汉天马微电子有限公司 一种显示面板及显示装置
CN111162105A (zh) * 2019-12-31 2020-05-15 武汉天马微电子有限公司 一种显示面板及显示装置
CN112134979A (zh) * 2020-09-16 2020-12-25 京东方科技集团股份有限公司 一种用于屏下传感器的显示模组及电子设备
US20210135133A1 (en) * 2019-10-30 2021-05-06 Beijing Xiaomi Mobile Software Co., Ltd. Display component, display, manufacturing methods and electronic device
CN112786645A (zh) * 2019-11-07 2021-05-11 华为技术有限公司 一种显示面板和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365819A (zh) * 2019-06-18 2019-10-22 武汉华星光电半导体显示技术有限公司 显示屏及显示装置
CN110634930A (zh) * 2019-09-27 2019-12-31 京东方科技集团股份有限公司 显示面板和显示装置
US20210135133A1 (en) * 2019-10-30 2021-05-06 Beijing Xiaomi Mobile Software Co., Ltd. Display component, display, manufacturing methods and electronic device
CN112786645A (zh) * 2019-11-07 2021-05-11 华为技术有限公司 一种显示面板和电子设备
CN111129102A (zh) * 2019-12-31 2020-05-08 武汉天马微电子有限公司 一种显示面板及显示装置
CN111162105A (zh) * 2019-12-31 2020-05-15 武汉天马微电子有限公司 一种显示面板及显示装置
CN112134979A (zh) * 2020-09-16 2020-12-25 京东方科技集团股份有限公司 一种用于屏下传感器的显示模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116801659A (zh) * 2023-08-01 2023-09-22 惠科股份有限公司 显示面板及显示装置
CN116801659B (zh) * 2023-08-01 2023-12-22 惠科股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN117356187A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
TWI723799B (zh) 顯示基板、顯示面板及顯示裝置
WO2021098137A1 (zh) 显示基板、显示面板及显示装置
US20210376010A1 (en) Pixel arrangement structure and display panel
TWI763475B (zh) 顯示面板
US10797128B2 (en) Display panel and device
JP2022514274A (ja) 表示基板、表示パネル及び表示装置
US20220028900A1 (en) Transparent display substrates, transparent display panels and display devices
WO2020087859A1 (zh) 显示屏以及显示终端
US11727859B2 (en) Display panel and display device
CN112259584B (zh) 显示基板及其制备方法、显示装置
US11056081B2 (en) Display panel and display device
WO2021082856A1 (zh) 显示装置和电子设备
US20230337494A1 (en) Display panel and display apparatus
WO2022241786A1 (zh) 显示面板及显示装置
US12029091B2 (en) Display panel and display device
CN112365807B (zh) 显示面板及显示装置
CN117222274A (zh) 一种显示基板、显示面板和显示装置
WO2023010902A1 (zh) 显示面板及显示装置
TWI499838B (zh) 顯示裝置
CN221532029U (zh) 像素排列结构及显示面板
CN115349174B (zh) 阵列基板和显示装置
CN219305332U (zh) 透明显示单元、显示面板和显示装置
WO2024020869A1 (zh) 显示面板、显示装置及可穿戴设备
WO2023004574A1 (zh) 显示面板、显示装置及显示驱动方法
WO2023123109A1 (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098222.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940239

Country of ref document: EP

Kind code of ref document: A1