WO2022241672A1 - 共聚焦扫描式暗场显微成像方法与装置 - Google Patents

共聚焦扫描式暗场显微成像方法与装置 Download PDF

Info

Publication number
WO2022241672A1
WO2022241672A1 PCT/CN2021/094648 CN2021094648W WO2022241672A1 WO 2022241672 A1 WO2022241672 A1 WO 2022241672A1 CN 2021094648 W CN2021094648 W CN 2021094648W WO 2022241672 A1 WO2022241672 A1 WO 2022241672A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spot
objective lens
modulator
confocal scanning
Prior art date
Application number
PCT/CN2021/094648
Other languages
English (en)
French (fr)
Inventor
匡翠方
邱宇轩
张宇森
刘旭
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2021/094648 priority Critical patent/WO2022241672A1/zh
Publication of WO2022241672A1 publication Critical patent/WO2022241672A1/zh
Priority to US18/512,076 priority patent/US20240085683A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种共聚焦扫描式暗场显微成像方法与装置,将激光器发出的激光光束的相位调制成0-2nπ涡旋相位,其中n>3;将调制后的光束与共聚焦扫描显微镜的物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;使共聚焦扫描显微镜工作,实现暗场显微成像。通过采用共聚焦设计,在探测器前放置一个小孔,小孔所在平面与物面共轭,阻挡了离焦信号进入探测器,提高了成像的信噪比和分辨率,使暗场显微成像具有良好的层析能力。

Description

共聚焦扫描式暗场显微成像方法与装置 技术领域
本发明涉及光学显微成像领域,具体地说,涉及一种共聚焦扫描式暗场显微成像方法与装置。
背景技术
暗场显微镜是一种基于光学丁达尔效应的显微技术。照明光通过装载环形光阑的聚光镜,形成中空环形光锥。因为物镜的数值孔径小于聚光镜的数值孔径,样品的透射光无法通过物镜,只有小角度的散射光被物镜收集。由此形成了暗视野下亮物体的像,提高了成像对比度。在生命科学领域,暗场显微镜用于观察未染色的透明样品;在化学、材料科学领域,使用光谱仪分析暗场显微镜收集的散射光研究材料的散射光谱。
发明内容
本发明提供了一种共聚焦扫描式暗场显微成像方法与装置,本发明与传统的宽场暗场显微镜相比,共聚焦式的设计具有低背景噪声、优秀的层析能力等特点。
本发明的目的是通过以下技术方案来实现的:
本发明一方面提供了一种共聚焦扫描式暗场显微成像方法,该方法包括:
通过调制器将激光器发出的激光光束的相位调制成0-2nπ涡旋相位,其中n>3;
将调制后的光束与共聚焦扫描显微镜的物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
使共聚焦扫描显微镜工作,实现暗场显微成像;
所述共聚焦扫描显微镜的工作过程具体为:控制扫描机构使得空心光斑在样品表面扫描;扫描机构可以为扫描振镜或电控移动样品台;样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光 强度分布;
所述共聚焦扫描显微镜的点扩散函数PSF c(x,y)等于由激光器和调制器构成的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
Figure PCTCN2021094648-appb-000001
对于涡旋光束照明的照明系统,照明系统的点扩散函数为空心光斑,且涡旋光阶数越高,空心光斑的内环半径越大;而成像系统的点扩散函数由物镜的孔阑决定,是实心光斑;对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
进一步地,调制相位的具体方法为:
将激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;当外加电场超过阈值时,液晶分子出现电控双折射效应,因此,液晶空间光调制器只调制一个方向的线偏光;
调节液晶空间光调制器出射平面与扫描显微镜的物镜入瞳共轭;在液晶空间光调制器上加载0-2nπ涡旋相位。
进一步地,在起偏器后设置二分之一波片,激光光束通过起偏器后再通过一个二分之一波片转为P分量的线偏光,使液晶空间光调制器对该偏振光作纯相位调制;
所述P分量的线偏光入射液晶空间光调制器前使用一个D形镜转折光路,以减小入射角,改善液晶空间光调制器的性能。
进一步地,所述液晶空间光调制器使用泽尼克多项式校正像差,从而改善空心光斑的质量。
进一步地,在物镜前设置四分之一波片,将光束用四分之一波片转为圆偏光后入射到物镜,提高用于扫描样品的空心光斑质量。
本发明另一方面提供了一种共聚焦扫描式暗场显微成像装置,该装置包括激光器、调制器、4f系统和扫描成像模块;所述扫描成像模块包括扫描机构、管镜、物镜、透镜、小孔和探测器;
所述激光器发出的激光光束通过调制器将相位调制成0-2nπ涡旋相位,其中n>3;
所述4f系统调节调制器的出射平面与物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
所述扫描机构使得空心光斑在样品表面扫描,样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光强度分布;
所述共聚焦扫描式暗场显微成像装置的点扩散函数PSF c(x,y)等于由激光器、调制器和4f系统构成的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
Figure PCTCN2021094648-appb-000002
对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
进一步地,所述调制器由起偏器和液晶空间光调制器组成;
所述激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;
所述4f系统调节液晶空间光调制器的出射平面与物镜入瞳共轭,所述液晶空间光调制器上加载0-2nπ涡旋相位。
进一步地,所述4f系统由透镜1与透镜2组成,透镜1的前焦面与调制器的出射平面重合,透镜1的后焦面与透镜2的前焦面重合,透镜2的后焦面与物镜入瞳共轭。
进一步地,所述扫描机构为扫描振镜,透镜2的后焦面与两面振镜中心连线的中点重合,所述中点与物镜入瞳共轭。
进一步地,所述扫描机构前设置二分之一波片和偏振分束棱镜,通过二分之一波片将光束转为P光,P光完全透过偏振分束棱镜后作为扫描机构入射光;在物镜前设置四分之一波片,通过四分之一波片将P光转为圆偏光后入射物镜,并将样品的反射光转为S光,反射光被偏振分束棱镜反射后聚焦在小孔上。
进一步地,所述小孔用于消除离焦杂散光,采用针孔或多模光纤实现。
与现有技术相比,本发明具有以下有益的技术效果:本发明采用了共聚焦的设计,在探测器前放置一个小孔,小孔所在平面与物面共轭,阻挡了离焦信号进入探测器。这种设计提高了成像的信噪比和分辨率,使暗场显微成像具有良好的层析能力。
附图说明
图1为本发明实施例提供的共聚焦扫描式暗场显微成像方法实现原理图;
图2为本发明实施例提供的共聚焦扫描式暗场显微成像装置示意图;
图3为产生高阶涡旋光束的相位掩膜示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
如图1所示,本发明提供的一种共聚焦扫描式暗场显微成像方法,包括:
通过调制器将激光器发出的激光光束的相位调制成0-2nπ涡旋相位,其中n>3;
将调制后的光束与共聚焦扫描显微镜的物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
使共聚焦扫描显微镜工作,实现暗场显微成像;
所述共聚焦扫描显微镜的工作过程具体为:控制扫描机构使得空心光斑在样品表面扫描;扫描机构可以为扫描振镜或电控移动样品台;样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光强度分布;
所述共聚焦扫描显微镜的点扩散函数PSF c(x,y)等于由激光器和调制器构成 的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
Figure PCTCN2021094648-appb-000003
对于涡旋光束照明的照明系统,照明系统的点扩散函数为空心光斑,且涡旋光阶数越高,空心光斑的内环半径越大;而成像系统的点扩散函数由物镜的孔阑决定,是实心光斑;对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
进一步地,调制相位的具体方法为:
将激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;当外加电场超过阈值时,液晶分子出现电控双折射效应,因此,液晶空间光调制器只调制一个方向的线偏光;
调节液晶空间光调制器出射平面与扫描显微镜的物镜入瞳共轭;在液晶空间光调制器上加载0-2nπ涡旋相位。
进一步地,在起偏器后设置二分之一波片,激光光束通过起偏器后再通过一个二分之一波片转为P分量的线偏光,使液晶空间光调制器对该偏振光作纯相位调制;
所述P分量的线偏光入射液晶空间光调制器前使用一个D形镜转折光路,以减小入射角,改善液晶空间光调制器的性能。
进一步地,所述液晶空间光调制器使用泽尼克多项式校正像差,从而改善空心光斑的质量。
进一步地,在物镜前设置四分之一波片,将光束用四分之一波片转为圆偏光后入射到物镜,提高用于扫描样品的空心光斑质量。
为实现上述方法,本发明提供的共聚焦扫描式暗场显微成像装置包括:激光器、调制器、4f系统和扫描成像模块;所述扫描成像模块包括扫描机构、管镜、物镜、透镜、小孔和探测器;
所述激光器发出的激光光束通过调制器将相位调制成0-2nπ涡旋相位,其中n>3;
所述4f系统调节调制器的出射平面与物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
所述扫描机构使得空心光斑在样品表面扫描,样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光强度分布;
所述共聚焦扫描式暗场显微成像装置的点扩散函数PSF c(x,y)等于由激光器、调制器和4f系统构成的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
Figure PCTCN2021094648-appb-000004
对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
进一步地,所述调制器由起偏器和液晶空间光调制器组成;
所述激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;
所述4f系统调节液晶空间光调制器的出射平面与物镜入瞳共轭,所述液晶空间光调制器上加载0-2nπ涡旋相位。
进一步地,所述4f系统由透镜1与透镜2组成,透镜1的前焦面与调制器的出射平面重合,透镜1的后焦面与透镜2的前焦面重合,透镜2的后焦面与物镜入瞳共轭。
进一步地,所述扫描机构为扫描振镜,透镜2的后焦面与两面振镜中心连线的中点重合,所述中点与物镜入瞳共轭。
进一步地,所述扫描机构前设置二分之一波片和偏振分束棱镜,通过二分之一波片将光束转为P光,P光完全透过偏振分束棱镜后作为扫描机构的入射光;在物镜前设置四分之一波片,通过四分之一波片将P光转为圆偏光后入射物镜,并将样品的反射光转为S光,反射光被偏振分束棱镜反射后聚焦在小孔上。小孔用于消除离焦杂散光,采用针孔或多模光纤实现。
以下给出本发明的一个具体实现示例,但不限于此。本示例的共聚焦扫描 式暗场显微成像装置结构如图2所示,包括激光发生和准直装置1、第一D形镜2、起偏器3、第一半波片4、液晶空间光调制器5、第一透镜6、第一反射镜7、第二透镜8、第三透镜9、第四透镜10、第二半波片11、偏振分束棱镜12、第二D形镜13、扫描振镜模块14、第二反射镜15、扫描透镜16、管镜17、1/4波片18、物镜19、样品台20、第三反射镜21、第五透镜22和雪崩二极管23。产生高阶涡旋光束的相位掩膜如图3所示。
装置工作时,激光发生和准直装置1经过第一D形镜2,经过起偏器3后成为线偏光,经过第一半波片4成为P光到达液晶空间光调制器5将线偏光调制成高阶涡旋光。液晶空间光调制器5的出射光依次经过第一透镜6与第二透镜8组成的4f系统,第三透镜9与第四透镜10组成的4f系统,经过第二半波片11成为P光透过偏振分束棱镜12,经过第二D形镜13进入扫描振镜模块14,其中两面振镜中心连线的中点与空间光调制器的出射平面共轭。经过第二反射镜15、扫描透镜16、管镜17,被1/4波片18调成圆偏光,经过物镜19,在样品表面扫描。反射光经过物镜19,被1/4波片18调成S光。反射光依次经过管镜17、扫描透镜16、第二反射镜15、扫描振镜模块14、第二D形镜13,在偏振分束棱镜12处被反射,经过第三反射镜21、第五透镜22聚焦在小孔处,小孔后的雪崩二极管23收集光信号。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

  1. 一种共聚焦扫描式暗场显微成像方法,其特征在于,该方法包括:
    通过调制器将激光器发出的激光光束的相位调制成0-2nπ涡旋相位,其中n>3;
    将调制后的光束与共聚焦扫描显微镜的物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
    使共聚焦扫描显微镜工作,实现暗场显微成像;
    所述共聚焦扫描显微镜的工作过程具体为:控制扫描机构使得空心光斑在样品表面扫描;样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光强度分布;
    所述共聚焦扫描显微镜的点扩散函数PSF c(x,y)等于由激光器和调制器构成的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
    Figure PCTCN2021094648-appb-100001
    对于涡旋光束照明的照明系统,照明系统的点扩散函数为空心光斑,且涡旋光阶数越高,空心光斑的内环半径越大;而成像系统的点扩散函数由物镜孔阑决定,是实心光斑;对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
  2. 根据权利要求1所述的一种共聚焦扫描式暗场显微成像方法,其特征在于,调制相位的具体方法为:
    将激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;
    调节液晶空间光调制器出射平面与共聚焦扫描显微镜的物镜入瞳共轭;在液晶空间光调制器上加载0-2nπ涡旋相位。
  3. 根据权利要求2所述的一种共聚焦扫描式暗场显微成像方法,其特征在于,在起偏器后设置二分之一波片,激光光束通过起偏器后再通过一个二分之 一波片转为P分量的线偏光,使液晶空间光调制器对该偏振光作纯相位调制;
    所述P分量的线偏光入射液晶空间光调制器前使用一个D形镜转折光路,以减小入射角,改善液晶空间光调制器的性能。
  4. 根据权利要求2所述的一种共聚焦扫描式暗场显微成像方法,其特征在于,所述液晶空间光调制器使用泽尼克多项式校正像差,从而改善空心光斑的质量。
  5. 根据权利要求1所述的一种共聚焦扫描式暗场显微成像方法,其特征在于,在物镜前设置四分之一波片,将光束用四分之一波片转为圆偏光后入射到物镜,提高用于扫描样品的空心光斑质量。
  6. 一种共聚焦扫描式暗场显微成像装置,其特征在于,该装置包括激光器、调制器、4f系统和扫描成像模块;所述扫描成像模块包括扫描机构、管镜、物镜、透镜、小孔和探测器;
    所述激光器发出的激光光束通过调制器将相位调制成0-2nπ涡旋相位,其中n>3;
    所述4f系统调节调制器的出射平面与物镜入瞳共轭,使得物镜的聚焦光斑为空心光斑,且空心光斑内环半径大于不进行相位调制时的实心光斑半径;
    所述扫描机构使得空心光斑在样品表面扫描,样品的反射光经过透镜聚焦在与物共轭的小孔上,反射光被探测器接收,获得暗场照明下的光强度分布;
    所述共聚焦扫描式暗场显微成像装置的点扩散函数PSF c(x,y)等于由激光器、调制器和4f系统构成的照明系统的点扩散函数PSF e(x,y)和由扫描机构、管镜和物镜构成的成像系统的点扩散函数PSF f(x,y)的乘积与小孔孔阑函数p(x,y)的卷积,公式如下:
    Figure PCTCN2021094648-appb-100002
    对高于3阶的涡旋光照明,空心光斑内环半径大于实心光斑半径,两光斑相互错开,实现了暗场的照明条件。
  7. 根据权利要求6所述的一种共聚焦扫描式暗场显微成像装置,其特征在于,所述调制器由起偏器和液晶空间光调制器组成;
    所述激光器发出的激光光束准直后用起偏器转为P分量的线偏光入射到液晶空间光调制器;
    所述4f系统调节液晶空间光调制器的出射平面与物镜入瞳共轭,所述液晶空间光调制器上加载0-2nπ涡旋相位。
  8. 根据权利要求6所述的一种共聚焦扫描式暗场显微成像装置,其特征在于,所述扫描机构前设置二分之一波片和偏振分束棱镜,通过二分之一波片将光束转为P光,P光完全透过偏振分束棱镜后作为扫描机构的入射光;在物镜前设置四分之一波片,通过四分之一波片将P光转为圆偏光后入射物镜,并将样品的反射光转为S光,反射光被偏振分束棱镜反射后聚焦在小孔上。
PCT/CN2021/094648 2021-05-19 2021-05-19 共聚焦扫描式暗场显微成像方法与装置 WO2022241672A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/094648 WO2022241672A1 (zh) 2021-05-19 2021-05-19 共聚焦扫描式暗场显微成像方法与装置
US18/512,076 US20240085683A1 (en) 2021-05-19 2023-11-17 Confocal scanning dark field microscopy imaging method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094648 WO2022241672A1 (zh) 2021-05-19 2021-05-19 共聚焦扫描式暗场显微成像方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/512,076 Continuation US20240085683A1 (en) 2021-05-19 2023-11-17 Confocal scanning dark field microscopy imaging method and device

Publications (1)

Publication Number Publication Date
WO2022241672A1 true WO2022241672A1 (zh) 2022-11-24

Family

ID=84141049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094648 WO2022241672A1 (zh) 2021-05-19 2021-05-19 共聚焦扫描式暗场显微成像方法与装置

Country Status (2)

Country Link
US (1) US20240085683A1 (zh)
WO (1) WO2022241672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754568A (zh) * 2023-08-22 2023-09-15 合肥工业大学 一种基于暗场成像过焦扫描的层叠缺陷分离方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216601A (zh) * 2007-12-29 2008-07-09 中国科学院西安光学精密机械研究所 使用锥镜实现暗场显微及荧光显微的方法及装置
CN101285764A (zh) * 2008-04-25 2008-10-15 华东师范大学 分子光谱成像仪
US20110276299A1 (en) * 2008-10-31 2011-11-10 Kazunori Nemoto Reference wafer for calibration of dark-field inspection apparatus,method of manufacturing reference wafer for calibration of dark-field inspection apparatus, method of calibrating dark-field inspection apparatus, dark-field inspection apparatus, and a wafer inspection method
CN102289062A (zh) * 2011-09-08 2011-12-21 宁波舜宇仪器有限公司 显微镜变焦照明系统
CN102798735A (zh) * 2012-08-14 2012-11-28 厦门大学 针尖增强暗场显微镜、电化学测试装置和调平系统
CN102830102A (zh) * 2012-08-21 2012-12-19 浙江大学 基于空心聚焦光斑激发的共聚焦显微方法和装置
CN112130309A (zh) * 2020-09-24 2020-12-25 南京理工大学 一种小型化、低成本、多衬度无标记显微成像系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216601A (zh) * 2007-12-29 2008-07-09 中国科学院西安光学精密机械研究所 使用锥镜实现暗场显微及荧光显微的方法及装置
CN101285764A (zh) * 2008-04-25 2008-10-15 华东师范大学 分子光谱成像仪
US20110276299A1 (en) * 2008-10-31 2011-11-10 Kazunori Nemoto Reference wafer for calibration of dark-field inspection apparatus,method of manufacturing reference wafer for calibration of dark-field inspection apparatus, method of calibrating dark-field inspection apparatus, dark-field inspection apparatus, and a wafer inspection method
CN102289062A (zh) * 2011-09-08 2011-12-21 宁波舜宇仪器有限公司 显微镜变焦照明系统
CN102798735A (zh) * 2012-08-14 2012-11-28 厦门大学 针尖增强暗场显微镜、电化学测试装置和调平系统
CN102830102A (zh) * 2012-08-21 2012-12-19 浙江大学 基于空心聚焦光斑激发的共聚焦显微方法和装置
CN112130309A (zh) * 2020-09-24 2020-12-25 南京理工大学 一种小型化、低成本、多衬度无标记显微成像系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754568A (zh) * 2023-08-22 2023-09-15 合肥工业大学 一种基于暗场成像过焦扫描的层叠缺陷分离方法及装置
CN116754568B (zh) * 2023-08-22 2024-01-23 合肥工业大学 一种基于暗场成像过焦扫描的层叠缺陷分离方法及装置

Also Published As

Publication number Publication date
US20240085683A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
CN107941763B (zh) 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
CN105929560B (zh) 一种宽带远场超分辨成像装置
KR101442261B1 (ko) 암시야 및 명시야 조명을 위한 현미경 조명장치 및 어댑터
US9568417B2 (en) Super-resolution microscopy method and device
US9201008B2 (en) Method and system for obtaining an extended-depth-of-field volumetric image using laser scanning imaging
CN109632756B (zh) 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置
US7872799B2 (en) Device for controlling light radiation
CN110118726A (zh) 一种并行探测荧光发射差分显微成像的方法和装置
CN108303421B (zh) 三维高速宽视场层析成像方法及装置
WO2022111602A1 (zh) 基于共路并行荧光辐射差分的超分辨显微成像方法和装置
US20240085683A1 (en) Confocal scanning dark field microscopy imaging method and device
US20090108187A1 (en) Laser scanning microscope
US7463344B2 (en) Arrangement for the optical detection of light radiation which is excited and/or backscattered in a specimen with a double-objective arrangement
US6867915B2 (en) Microscope for reflected-light and transmitted-light microscopy
TWI452335B (zh) 應用共聚焦顯微鏡結構的被測物圖像獲取方法及系統
CN113281891B (zh) 共聚焦扫描式暗场显微成像方法与装置
CN116481983B (zh) 一种基于偏振照明的同轴干涉散射显微成像装置及方法
CN112485232B (zh) 基于一维暗斑分时照明的亚十纳米定位测向方法和装置
US6185035B1 (en) Optical microscope
DK2633357T3 (en) PROCEDURE TO OBSERVE THE EMISSION OF LIGHT FROM A DYNAMIC OPTICAL MICROSCOPY TEST
CN111208634B (zh) 基于频谱合成的超分辨全内反射显微成像装置和方法
CN110261320B (zh) 一种荧光交错差分显微成像的方法和装置
CN111239997A (zh) 一种基于交叉相位调制的快速对焦暗场成像装置及方法
SG182865A1 (en) Flexible spatial-temporal phase modulator for focal modulation microscopy
CN114609050A (zh) 基于多偏振与照明模式的超分辨显微成像方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE