WO2022240117A1 - 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체 - Google Patents

항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체 Download PDF

Info

Publication number
WO2022240117A1
WO2022240117A1 PCT/KR2022/006614 KR2022006614W WO2022240117A1 WO 2022240117 A1 WO2022240117 A1 WO 2022240117A1 KR 2022006614 W KR2022006614 W KR 2022006614W WO 2022240117 A1 WO2022240117 A1 WO 2022240117A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
fusion protein
recombinant fusion
binding domain
recombinant
Prior art date
Application number
PCT/KR2022/006614
Other languages
English (en)
French (fr)
Inventor
임광석
홍유동
Original Assignee
강원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220056802A external-priority patent/KR20220152951A/ko
Application filed by 강원대학교 산학협력단 filed Critical 강원대학교 산학협력단
Publication of WO2022240117A1 publication Critical patent/WO2022240117A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes

Definitions

  • the present invention provides an antibody-binding recombinant fusion protein and an antibody-drug conjugate using the same.
  • Antibody-drug conjugate (ADC) technology is a target-oriented technology that can selectively kill or inhibit the growth or division of cancer cells.
  • ADCs function by targeting cancer cells with antibodies and then releasing toxic substances (i.e., drugs) from the cells to cause cell death.
  • ADC technology increases the efficacy of therapeutic antibodies and reduces the risk of side effects because ADC technology allows drugs to be specifically targeted to specific targets.
  • antibody-linker-small molecule drug The basic structure of an antibody-drug conjugate is "antibody-linker-small molecule drug", and the linker ideally allows the drug to exert an effect on the target cell after the drug reaches the target cell, for example, after being separated from the antibody. to be.
  • Linkers also serve a functional role in linking antibodies and drugs.
  • the efficacy and toxicity of antibody-drug conjugates depend in part on the stability of the linker, and thus the linker plays an important role in drug safety.
  • An object of the present invention is to provide a recombinant fusion protein comprising a secretory peptide, an albumin binding domain and an antibody binding domain.
  • Another object of the present invention is to provide a nucleic acid molecule encoding the recombinant fusion protein.
  • Another object of the present invention is to provide a recombinant expression vector containing the nucleic acid molecule.
  • Another object of the present invention is to provide a recombinant cell transformed with the recombinant expression vector.
  • Another object of the present invention is to culture the recombinant cells to express the recombinant fusion protein; and recovering the expressed recombinant fusion protein.
  • Another object of the present invention is to provide an antibody-drug conjugate comprising a recombinant fusion protein.
  • the present invention provides a recombinant fusion protein comprising a secretory peptide, an albumin binding domain and an antibody binding domain.
  • the present invention provides a nucleic acid molecule encoding the recombinant fusion protein.
  • the present invention provides a recombinant expression vector containing the nucleic acid molecule.
  • the present invention provides a recombinant cell transformed with the recombinant vector.
  • the present invention comprises culturing the recombinant cells to express the recombinant fusion protein; and recovering the expressed recombinant fusion protein.
  • the present invention provides an antibody-drug conjugate comprising a recombinant fusion protein.
  • the present invention relates to an antibody-linked recombinant fusion protein and an antibody-drug conjugate using the same. While existing linker technology for producing antibody-drug conjugates is based on chemical bonding, antibody-drug conjugates can be prepared without chemical bonding. In addition, since it contains an albumin-binding domain, it can be comprehensively applied to albumin-based nanocarriers including Abraxane, making it an antibody-drug conjugate (ADC) platform technology that can be applied to albumin nanoparticles for delivering various drugs. can be utilized
  • CA-ED CA645-ED
  • FIG. 2 is a diagram showing the structure of GA123-B12 (hereinafter referred to as GA-B) recombinant fusion protein of the present invention.
  • ADC antibody-drug conjugate
  • FIG. 4 shows the results of SDS-PAGE and Western blot analysis of the expression of the recombinant fusion protein of the present invention.
  • FIG. 5 shows the results of FACS analysis of FITC-BSA in which an ADC complex was formed by the recombinant fusion protein CA-ED of the present invention.
  • FIG. 6 shows the results of FACS analysis of FITC-BSA in which an ADC complex was formed by the recombinant fusion protein GA-B of the present invention.
  • the present invention provides a recombinant fusion protein comprising a secretory peptide, an albumin binding domain and an antibody binding domain.
  • the albumin binding domain is CA645 having an amino acid sequence represented by SEQ ID NO: 1, and the antibody binding domain may be ED having an amino acid sequence represented by SEQ ID NO: 2.
  • the albumin binding domain may be GA123 having an amino acid sequence represented by SEQ ID NO: 3, and the antibody binding domain may be B12 having an amino acid sequence represented by SEQ ID NO: 4.
  • the recombinant fusion protein may further include an IgG kappa chain.
  • the recombinant fusion protein may further include a promoter.
  • the recombinant fusion protein may further include a histidine tag.
  • the recombinant fusion protein may have an amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 6.
  • the present invention also provides nucleic acid molecules encoding the recombinant fusion proteins.
  • the present invention provides a recombinant expression vector containing the nucleic acid molecule.
  • vector means a self-replicating DNA molecule used to transfer clonal genes.
  • expression vector refers to a recombinant DNA molecule containing a desired coding sequence and an appropriate nucleic acid sequence essential for expressing the operably linked coating sequence in a specific host organism.
  • Expression vectors may preferably include one or more selectable markers.
  • the marker is a nucleic acid sequence having a characteristic that can be selected by a conventional chemical method, and includes all genes capable of distinguishing transformed cells from non-transformed cells.
  • antibiotic resistance genes such as ampicillin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol. can be selected appropriately.
  • the present invention provides a recombinant cell transformed with the recombinant expression vector.
  • the recombinant cell may be HEK293E, but is not limited thereto.
  • the present invention comprises culturing the recombinant cells to express the recombinant fusion protein; and recovering the expressed recombinant fusion protein.
  • the present invention provides an antibody-drug conjugate comprising the recombinant fusion protein.
  • the antibody-binding domain of the recombinant fusion protein binds to an antibody, and the albumin-binding domain can bind to albumin.
  • the antibody may be selected from the group consisting of monoclonal antibodies, bispecific antibodies, chimeric antibodies, human antibodies and humanized antibodies, but is not limited thereto.
  • the antibody is a cancer-specific antigen, cell surface receptor protein, cell surface protein, transmembrane protein, signaling protein, cell survival regulator, cell proliferation regulator, molecule associated with tissue development or differentiation, lymphokine, cytokine, cell It may have binding ability and specificity to molecules related to cycle regulation, molecules related to angiogenesis, or molecules related to angiogenesis. Not limited to this.
  • the antibody may be selected from the group consisting of anti-HER2 antibody, anti-EGFR antibody, anti-CD19 antibody, anti-CD33 antibody, anti-mesothelin and anti-CD20, but is not limited thereto.
  • the drug may be an albumin-binding nanoparticle obtained by binding a drug selected from the group consisting of paclitaxel, gemcitabine, cisplatin, emtansine, and fludarabine to albumin, but is not limited thereto.
  • pcDNA3.1 expression vector (Thermo Fisher, USA) was prepared by subcloning the CA-ED and GA-B domains. Cloning was performed by requesting Cosmogenetech. Genes can be introduced into 293 cells by mixing 50 ⁇ g DNA and 1.5x10 8 cells (expi 293 cell) / 50ml medium as standard in a 250ml Erlenmeyer flask, and mixing 50 ⁇ g DNA with 160 ⁇ l of the agent of the ExpiFectamin TM 293 transfection Kit. The complex was prepared according to the manufacturer's instructions. The complex was treated in 1.5x10 8 cells (expi 293 cells) and cultured for 18 to 20 hours.
  • enhancers 1 and 2 of the kit were added and cultured for an additional 5 days. After the incubation was completed, cells were separated from the medium by spin-down (1st 1300rpm , 5min, 4°C, 2nd 4000rpm, 20min, 4°C). Since the protein is in the medium, the medium was collected, filtered using a 500ml Nalgene bottle top filter (0.2 ⁇ m), and stored in a refrigerator until purification.
  • the recombinant fusion protein prepared in Example 1 was purified. 5 ml Heath-Tag Colum (Bio-Scale TM Mini Profinity TM IMAC Cartridges) was connected to the pump. Distilled water (25ml), wash buffer (25ml), medium, and elution buffer (5ml) were used in the order, and the flow rate was 2ml/min. The concentration of imidazole was 5 mM in wash buffer and 250 mM in elution buffer. The eluted protein was dialyzed and the elution buffer was changed to PBS. Dialysis was carried out for another 3 hours by replacing with fresh PBS overnight.
  • 5 ml Heath-Tag Colum Bio-Scale TM Mini Profinity TM IMAC Cartridges
  • Precast protein gel (Mini-Protean TGX, 12%) sold by Bio-Rad was used.
  • Purified protein was prepared according to Experimental Example 2, and sample loading was prepared by mixing Bio-Rad's 2x Laemmli sample buffer and Melcaptoethanol at a ratio of 95:5. The buffer and protein were mixed at a ratio of 1:1 and put into the wells of the precast protein gel. After running at 80-120V for about 1-2 hours, the gel was taken out and washed in distilled water. Then, Bio Safe Comasi Stain sold by Bio-Rad was added and dyeing was performed for 30 to 60 minutes. Distilled water was added to the stained gel and washing was repeated three times. Afterwards, the gel was photographed with the gel-dog to obtain a picture.
  • Precast protein gel (Mini-Protean TGX, 12%) sold by Bio-Rad was used.
  • Purified protein was prepared according to Experimental Example 2, and sample loading was prepared by mixing Bio-Rad's 2x Laemmli sample buffer and Melcaptoethanol at a ratio of 95:5. The buffer and protein were mixed at a ratio of 1:1 and put into the wells of the precast protein gel. After that, it was run for about 1 to 2 hours at 80 to 120 V, and then the gel was taken out and washed in distilled water. Then, Bio-Rad's Trans-Blot Turbo Transfer Pack (BR170-4156) was prepared and sandwiches were made according to the manufacturer's instructions.
  • BR170-4156 Trans-Blot Turbo Transfer Pack
  • the sandwich was put into a trans-blot turbo blotting system and run for 7 minutes. At this time, the running time was varied according to the number of gels and the like.
  • the membrane was placed in 5% steamed milk (made of TBS) and mixed at 4°C for 1 hour. Thereafter, the steam milk was discarded, TTBS (0.05% tween 20 in TBS) was added, and washing was performed at 4° C. for 10 minutes three times.
  • the primary antibody (6x his tag antibody, Invitrogen) was reacted at room temperature for 1 hour and 30 minutes, followed by washing with TTBS three times for 5 minutes each.
  • the secondary antibody (HRP conjugate, Invitrogen) was reacted at room temperature for 1 hour, and after the reaction, washing was performed with TTBS three times for 5 minutes each. Then, Opti-4CN of Biorad was treated on the membrane according to the manufacturer's instructions and allowed to coagulate without exposure to light for 10 minutes. This membrane was photographed with Bio-Rad to obtain data.
  • Drug-bound albumin and the antibody-binding recombinant protein (CA-ED, GA-B) prepared in Example 2 were reacted at a molar ratio of 1:2 for 30 minutes at RT. Then, the reactants were further reacted with Trastuzumab and Nivolumab at a molar ratio of 8:1 for 1 h at RT.
  • HER2-positive SK-BR-3 and HER2-negative MDA-MB-231 were respectively seeded in 2x10 5 cells in a 6-well plate and cultured in RPMI1640 medium for one day (37°C, CO 2 5%). After replacing the medium, a sample based on 4 ⁇ g of FITC-BSA was added. The cells were cultured for 4 hours at 37° C. and 5% CO 2 , and then the culture medium was discarded and washed three times with PBS. 500 ⁇ l of 0.05% trypsin-EDTA was added per well and waited for 2 minutes until the cells fell off. Thereafter, 500 ⁇ l of the medium was collected, and centrifugation was performed at 1500 rpm for 3 minutes. After the first separation, the supernatant was discarded, washed with PBS, and centrifuged again. After the second separation, the supernatant was discarded again and fixed with 4% paraformaldehyde.
  • FIG. 5a it was confirmed that CA-ED increased intracellular uptake and fluorescence intensity in HER2-positive SK-BR-3 and decreased in HER2-negative MDA-MB-231.
  • FIG. 5b it was confirmed that GA-B increased intracellular uptake and fluorescence intensity in HER2-positive SK-BR-3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체에 관한 것으로, 상기 재조합 융합 단백질은 분비 펩타이드(Secretoty peptide), 알부민 결합 도메인(Albumin binding domain) 및 항체 결합 도메인(Antibody binding domain)으로 구성되고, 화학적 결합 없이 항체-약물 접합체를 제작할 수 있을 뿐만 아니라, 알부민 결합 도메인을 포함하므로 아브락산(Abraxane)을 포함한 알부민 기반 나노전달체에 포괄적으로 적용이 가능하므로 다양한 약물을 전달하기 위한 알부민 나노입자 등에 적용이 가능한 ADC 플랫폼 기술로 활용될 수 있다.

Description

항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체
본 발명은 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체를 제공한다.
항체-약물 접합체(Antibody-drug conjugate, ADC) 기술은 암세포의 성장 또는 분열을 선택적으로 사멸시키거나 성장을 저해할 수 있는, 표적-지향 기술이다. 일반적으로 ADC는 항체를 사용하여 암세포를 표적화한 다음, 세포에서 독성 물질(즉, 약물)을 방출시켜 세포 사멸을 유발함으로써 기능한다. ADC 기술은 약물이 특정 표적으로 특이적으로 표적화되도록 허용하기 때문에 ADC 기술은 치료 항체의 효능을 증가시키고 부작용의 위험을 감소시킨다.
이러한 접근법은 미국 FDA 승인 의약품인 애드 세트리스(Adcetris)(브툭시맙 도틴)를 이용한 Hodgkin 림프종 치료, 및 미국 FDA 승인 의약품인 카드실라 (Kadcyla)(아도-트라스투주맙 엠탄신)을 이용한 HER-2 양성 유방암 치료에서 유망한 활성을 보여왔다. 지난 20년 동안 학계와 제약 산업 모두는 ADC에 시간과 돈을 투자해 왔다. 50개 이상의 ADC가 임상 시험 중이며, 제약 업계의 기대는 향후 몇 년 내에 또 다른 8-10개의 ADC 약물이 시장에서 승인될 수 있다는 것이다.
항체-약물 접합체의 기본 구조는 "항체-링커-저분자 약물"이며, 링커는 약물이 표적세포에 도달한 후, 예를 들어 항체로부터 분리된 후에 약물이 표적 세포에 대한 효과를 나타내도록 하는 것이 이상적이다. 링커는 또한 항체와 약물을 연결하는 기능적 역할을 한다. 따라서 항체-약물 접합체의 효능 및 독성은 부분적으로는 링커의 안정성에 의존하며, 따라서 링커는 약물 안전성(drug safety)에 중요한 역할을 한다.
현재 승인받은 링커의 수는 제한적이며 ADC에 적용하는데 어려움이 많다. 따라서 ADC 개발을 위한 적합한 링커의 개발이 요구되고 있는 실정이다.
본 발명의 목적은 분비 펩타이드(Secretoty peptide), 알부민 결합 도메인(Albumin binding domain) 및 항체 결합 도메인(Antibody binding domain)을 포함하는 재조합 융합 단백질을 제공하는 데에 있다.
본 발명의 또 다른 목적은 상기 재조합 융합 단백질을 암호화하는 핵산 분자를 제공하는 데에 있다.
본 발명의 또 다른 목적은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공하는 데에 있다.
본 발명의 또 다른 목적은 상기 재조합 발현 벡터로 형질전환된 재조합 세포를 제공하는 데에 있다.
본 발명의 또 다른 목적은 상기 재조합 세포를 배양하여 상기 재조합 융합 단백질을 발현시키는 단계; 및 상기 발현된 재조합 융합 단백질을 회수하는 단계를 포함하는 재조합 융합 단백질 생산방법을 제공하는 데에 있다.
본 발명의 또 다른 목적은 재조합 융합 단백질을 포함하는 항체-약물 접합체를 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 분비 펩타이드(Secretoty peptide), 알부민 결합 도메인(Albumin binding domain) 및 항체 결합 도메인(Antibody binding domain)을 포함하는 재조합 융합 단백질을 제공한다.
또한, 본 발명은 상기 재조합 융합 단백질을 암호화하는 핵산 분자를 제공한다.
또한, 본 발명은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공한다.
또한, 본 발명은 상기 재조합 벡터로 형질전환된 재조합 세포를 제공한다.
또한, 본 발명은 상기 재조합 세포를 배양하여 상기 재조합 융합 단백질을 발현시키는 단계; 및 상기 발현된 재조합 융합 단백질을 회수하는 단계를 포함하는 재조합 융합 단백질 생산방법을 제공한다.
또한, 본 발명은 재조합 융합 단백질을 포함하는 항체-약물 접합체를 제공한다.
본 발명은 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체에 관한 것으로서, 기존 항체-약물 접합체를 제작하기 위한 링커 기술은 화학적 결합을 기반으로 하고 있는데 반해 화학적 결합 없이 항체-약물 접합체를 제작할 수 있을 뿐만 아니라, 알부민 결합 도메인을 포함하므로 아브락산(Abraxane)을 포함한 알부민 기반 나노전달체에 포괄적으로 적용이 가능하므로 다양한 약물을 전달하기 위한 알부민 나노입자 등에 적용이 가능한 항체-약물 접합체(ADC) 플랫폼 기술로 활용될 수 있다.
도 1은 본 발명의 CA645-ED(이하 CA-ED라 함) 재조합 융합 단백질 구조를 나타내는 그림이다.
도 2는 본 발명의 GA123-B12(이하 GA-B라 함) 재조합 융합 단백질 구조를 나타내는 그림이다.
도 3은 본 발명의 재조합 융합 단백질을 항체 및 알부민과 결합하여 항체-약물 접합체(이하 ADC라 함)를 제조하는 개념도를 나타내는 그림이다.
도 4는 본 발명의 재조합 융합 단백질 발현에 대한 SDS-PAGE 및 Western blot 분석 결과를 나타낸 것이다.
도 5는 본 발명의 재조합 융합 단백질 CA-ED에 의해 ADC 복합체가 형성된 FITC-BSA의 FACS 분석결과를 나타낸 것이다.
도 6은 본 발명의 재조합 융합 단백질 GA-B에 의해 ADC 복합체가 형성된 FITC-BSA의 FACS 분석결과를 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다.
기존 항체-약물 접합체는 항체와 약물에 링커를 연결하는데 링커를 만드는 과정이 복잡한 문제점이 있어, 본 발명자들은 생산단가를 낮추고 효율성과 경제성을 증가시키기 위해 연구 노력한 결과, 링커를 별도로 제작하여 사용 전 항체와 약물을 조합하여 ADC를 만든 뒤 사용하는 새로운 개념의 플랫폼을 발명하여 본 발명을 완성하였다.
본 발명은 분비 펩타이드(Secretoty peptide), 알부민 결합 도메인(Albumin binding domain) 및 항체 결합 도메인(Antibody binding domain)을 포함하는 재조합 융합 단백질을 제공한다.
상기 알부인 결합 도메인은 서열번호 1로 표시되는 아미노산 서열을 갖는 CA645이고, 항체 결합 도메인은 서열번호 2로 표시되는 아미노산 서열을 갖는 ED일 수 있다.
상기 알부인 결합 도메인은 서열번호 3으로 표시되는 아미노산 서열을 갖는 GA123이고, 항체 결합 도메인은 서열번호 4로 표시되는 아미노산을 갖는 B12일 수 있다.
상기 재조합 융합 단백질은 IgG 카파 서열(IgG kappa chain)을 더 포함할 수 있다.
상기 재조합 융합 단백질은 프로모터를 더 포함할 수 있다.
상기 재조합 융합 단백질은 히스티딘 태그를 더 포함할 수 있다.
상기 재조합 융합 단백질은 서열번호 5 또는 서열번호 6으로 표시되는 아미노산 서열을 갖을 수 있다.
또한, 본 발명은 재조합 융합 단백질을 암호화하는 핵산 분자를 제공한다.
또한, 본 발명은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공한다.
본 발명에 있어서, “벡터”는 클론유전자를 운반하는데 사용되는 스스로 복제되는 DNA 분자를 의미한다.
본 발명에 있어서, “발현 벡터”는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능한게 연결된 코팅 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다.
그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.
또한, 본 발명은 상기 재조합 발현 벡터로 형질전환된 재조합 세포를 제공한다.
상기 재조합 세포는 HEK293E일 수 있으나, 이에 한정되지 않는다.
또한, 본 발명은 상기 재조합 세포를 배양하여 상기 재조합 융합 단백질을 발현시키는 단계; 및 상기 발현된 재조합 융합 단백질을 회수하는 단계를 포함하는 재조합 융합 단백질 생산방법을 제공한다.
또한, 본 발명은 상기 재조합 융합 단백질을 포함하는 항체-약물 접합체를 제공한다.
상기 재조합 융합 단백질의 항체 결합 도메인이 항체와 결합하며, 알부민 결합 도메인이 알부민과 결합할 수 있다.
상기 항체는 모노클로날 항체, 이중특이적 항체, 키메릭 항체, 인간 항체 및 인간화 항체로 이루어진 군에서 선택될 수 있으나, 이에 한정되지 않는다.
상기 항체는 암 특이 항원, 세포 표면 수용체 단백질, 세포 표면 단백질, 막횡단 단백질, 신호전달 단백질, 세포생존 조절인자, 세포 증식 조절인자, 조직 발달 또는 분화와 연관된 분자, 림포카인, 사이토카인, 세포 주기 조절에 관련된 분자, 혈관형성에 관련된 분자, 또는 혈관신생에 관련된 분자에 대한 결합능과 특이성을 가질 수 있으나. 이에 한정되지 않는다.
상기 항체는 항-HER2 항체, 항-EGFR 항체, 항-CD19 항체, 항-CD33 항체, 항-메소텔린(mesothelin) 및 항-CD20로 이루어진 군에서 선택될 수 있으나, 이에 한정되지 않는다.
상기 약물은 파클리탁셀, 젬시타빈, 시스플라틴, 엠탄신 및 플루다라빈으로 이루어진 군에서 선택된 약물을 알부민에 결합시킨 알부민 결합 나노입자일 수 있으나 이에 한정되지 않는다.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 다만 하기의 실시예 등은 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예 등에 한정되는 것은 아니다. 본 발명의 실시예 등은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실험예 1> 재조합 융합 단백질 발현
재조합 융합 단백질 발현을 위해 pcDNA3.1 발현 벡터(Thermo fisher, U.S.A) 에 CA-ED와 GA-B 도메인을 서브 클로닝하여 준비하였다. 클로닝은 코스모진텍에 의뢰하여 진행하였다. 250ml 삼각 플라스크에 50μg DNA와 1.5x108 셀(expi 293 cell) / 50ml 배지 기준으로 하고, 50μg DNA를 트랜스펙션 키트(ExpiFectaminTM 293 transfection Kit)의 에이전트 160μl를 섞어서 유전자를 293세포에 도입할 수 있는 콤플렉스를 제조사의 지침에 따라 만들었다. 상기 콤플렉스를 1.5x108 셀(expi 293 cell)에 처리하고 18~20시간 동안 배양하였다. 다음 날 키트의 인핸서 1, 2를 넣어주고 5일간 추가로 배양을 하였다. 배양이 끝난 후 스핀다운(1st 1300rpm, 5min, 4℃, 2nd 4000rpm, 20min, 4℃)을 진행하여 세포와 배지를 분리하였다. 단백질은 배지에 있기 때문에 이 배지를 모아서 500ml 날진 버틀 톱 필터(0.2μm)를 이용해 거르고 정제 전까지 냉장보관하였다.
<실험예 2> 재조합 융합 단백질 정제
상기 실시예 1에서 제조된 재조합 융합 단백질을 정제하였다. 5ml 히스-태그 콜럼(Bio-ScaleTM Mini ProfinityTM IMAC Cartridges)을 펌프에 연결하였다. 증류수(25ml), 세척 완충액(25ml), 중간, 용출 완충액(5ml) 순으로 진행하였으며 유량(flow rate)은 2ml/분으로 진행하였다. 이미다졸 농도는 세척 완충액 5mM, 용출 완충액 250mM 이었다. 용출된 단백질을 투석을 진행하여 용출 완충액을 PBS로 바꿔 주었다. 투석은 밤샘 후 새로운 PBS로 교체하여 3시간 동안 더 진행하였다.
<실험예 3> SDS-PAGE 확인
바이오 라드에서 판매하는 프리캐스트 프로테인 젤(Mini-Protean TGX, 12%)을 사용하였다. 실험예 2에 따라 정제한 단백질을 준비하고 바이오 라드의 2x 램리 샘플 완충액과 멜캡토에탄올을 95:5로 섞어서 샘플 로딩을 준비하였다. 상기 완충액과 단백질을 1:1로 섞고 프리캐스트 프로테인 젤의 웰에 넣어주었다. 이후 80~120V에서 약 1~2시간 정도 러닝하고 그 후 젤을 잘 꺼내서 증류수에서 세척을 진행하였다. 이후 바이오 라드에서 판매하는 바이오 세이프 코마시 스테인를 넣고 30~60분 동안 염색을 진행하였다. 염색된 젤을 증류수를 넣고 세척을 3회 반복하였다. 이후 젤을 젤-독으로 촬영하여 사진을 얻었다.
<실험예 4> Western blot 분석
바이오 라드에서 판매하는 프리캐스트 프로테인 젤(Mini-Protean TGX, 12%)을 사용하였다. 실험예 2에 따라 정제한 단백질을 준비하고 바이오-라드의 2x 램리 샘플 완충액과 멜캡토에탄올을 95:5로 섞어서 샘플 로딩을 준비하였다. 상기 완충액과 단백질을 1:1로 섞고 프리캐스트 프로테인 젤의 웰에 넣어주었다. 이 후 80~120V에서 약 1~2시간 정도 러닝하고 그 후 젤을 잘 꺼내서 증류수에서 세척을 진행하였다. 이후 바이오 라드의 트랜스-블롯 터보 트랜스퍼 팩(BR170-4156)을 준비하여 제조사의 지침에 따라 샌드위치를 만들었다. 상기 샌드위치를 트랜스 블롯 터보 블롯팅 시스템에 넣고 7분 동안 러닝을 하였다. 이때, 러닝 시간은 젤 개수 등에 따라 변동되었다. 트랜스퍼가 끝나면 멤브레인을 5% 스팀 밀크(TBS로 제작)에 넣고 4℃에서 1시간 동안 넣고 섞었다. 이후 상기 스팀 밀크를 버리고 TTBS(0.05% tween 20 in TBS)를 넣고 4℃에서 10분씩 3회 세척을 진행하였다. 1차 항체(6x his tag antibody, Invitrogen)를 상온에서 1시간 30분 동안 반응시키고 반응 후 TTBS로 5분씩 3회 세척을 진행하였다. 2차 항체(HRP conjugate, Invitrogen)을 상온에서 1시간 동안 반응시키고 반응 후 TTBS로 5분씩 3회 세척을 진행하였다. 이후 바이오라드의 옵티-4CN을 제조사 지침에 따라 멤브레인에 처리하고 10분동안 빛에 노출하지 않고 응시켰다. 이 멤브레인을 바이오라드의 캐미독(Bio-Rad)으로 촬영하여 데이터를 얻었다.
<실험예 5> 재조합 융합 단백질을 이용한 ADC 샘플 제조
약물을 결합한 알부민과 상기 실시예 2에서 제조한 항체 결합 재조합 단백질(CA-ED,GA-B)을 각각 1:2 의 몰비로 RT에서 30분 반응하였다. 그 후 상기 반응물들을 트라스투주맙 및 니볼루맙과 각각 몰 비율 8:1로 RT에서 1h 추가로 반응하였다.
<실험예 6> FACS(Fluorescence activated cell sorter) 분석
HER2 양성인 SK-BR-3와 HER2 음성인 MDA-MB-231를 6웰 플레이트에 각각 2x 105 셀을 시딩하고 RPMI1640배지에서 하루동안 배양(37℃, CO2 5%)하였다. 배지를 교체한 뒤 FITC-BSA 4μg을 기준으로 한 샘플을 추가로 넣어주었다. 37℃, CO2 5% 조건에서 4시간 동안 배양시키고 배양 후 배지를 버리고 PBS로 3회 세척하였다. 웰당 0.05% 트립신-EDTA를 500μl 넣고 셀이 떨어질 때까지 2분 기다렸다. 이후 배지를 500μl 넣고 모두 수거한 뒤 1500rpm에서 3분간 원심분리를 진행하였다. 1차 분리 후 상등액을 버리고 PBS로 세척한 뒤 다시 원심분리를 진행하였다. 2차 분리 후 다시 상등액을 버리고 4% 파라포름알데히드로 고정시켰다.
<실시예 1> CA-ED 단백질과 GA-B 단백질의 발현 확인
실험예에서 합성 및 정제된 재조합 융합 단백질 CA-ED와 GA-B이 제대로 발현되었는지 확인하기 위해 SDS-PAGE와 Western blot 분석을 진행하였다.
그 결과, 도 4에 따르면, 좌측 SDS-PAGE 결과에서 단백질 마커의 74.5 kDa와 비슷한 크기의 밴드가 확인되었고, 우측 Western blot 결과에서도 같은 크기의 밴드가 확인되어 CA-ED가 잘 발현되었음을 확인할 수 있었다. 또한 좌측 SDS-PAGE 결과에서 단백질 마커의 74.9kDa와 비슷한 크기의 밴드가 확인되었으며 우측 Western blot 결과에서도 비슷한 크기의 밴드가 확인되어 GA-B이 잘 발현되었음을 확인할 수 있었다.
<실시예 2> ADC의 세포 내 흡수 효과 확인
실험예 5에서 준비한 ADC 샘플의 항암효과를 확인하기 위해서, CA-ED에 의해 ADC 복합체가 형성된 FITC-BSA의 FACS 분석결과를 확인했다. 이때, 항체는 HER2 양성을 타겟으로 하기 위해 트라스투주맙(Trastuzumab)을 사용하였다.
그 결과, 도면 5a에 따르면, CA-ED에 의해 HER2 양성인 SK-BR-3에서 세포내 흡수 및 형광 강도가 증가하였으며 HER2 음성인 MDA-MB-231에서는 감소하였음을 확인하였다. 또한, 도면 5b에 따르면, GA-B에 의해 HER2 양성인 SK-BR-3에서 세포내 흡수 및 형광 강도가 증가하였음을 확인하였다.
또한, GA-B에 의해 ADC 복합체가 형성된 FITC-BSA의 FACS 분석결과를 확인했다. 이때, 항체는 HER2 양성을 타겟으로 하는 트라스투주맙과 타겟으로 하지 않는 니볼루맙(Nivolumab)을 사용하였다.
그 결과, 도 6a에 따르면, HER2 양성인 SK-BR-3에서는 트라스투주맙이 연결된 복합체는 세포내 흡수가 증가하였고 니볼루맙이 연결된 복합체는 감소하였음을 확인하였다. 또한, 도면 6b에 따르면, HER2 음성인 MDA-MB-231에서는 트라스투주맙과 니볼루맙 모두 표적이 불가능하여 세포내 흡수가 감소하였음을 확인하였다.
이러한 결과는 CA-ED와 GA-B 모두 항체에 FITC-BSA를 잘 결합하고 표적 세포내에 흡수됨을 알 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (17)

  1. 분비 펩타이드(Secretoty peptide), 알부민 결합 도메인(Albumin binding domain) 및 항체 결합 도메인(Antibody binding domain)을 포함하는 재조합 융합 단백질.
  2. 제 1항에 있어서, 상기 알부인 결합 도메인은 서열번호 1로 표시되는 아미노산 서열을 갖는 CA645이고, 항체 결합 도메인은 서열번호 2로 표시되는 아미노산 서열을 갖는 ED인 것을 특징으로 하는 재조합 융합 단백질.
  3. 제 1항에 있어서, 상기 알부인 결합 도메인은 서열번호 3으로 표시되는 아미노산 서열을 갖는 GA123이고, 항체 결합 도메인은 서열번호 4로 표시되는 아미노산을 갖는 B12인 것을 특징으로 하는 재조합 융합 단백질.
  4. 제 3항에 있어서, 상기 재조합 융합 단백질은 IgG 카파 서열(IgG kappa chain)을 더 포함하는 것을 특징으로 하는 재조합 융합 단백질.
  5. 제 2항 또는 제 3항에 있어서, 상기 재조합 융합 단백질은 프로모터를 더 포함하는 것을 특징으로 하는 재조합 융합 단백질.
  6. 제 2항 또는 제 3항에 있어서, 상기 재조합 융합 단백질은 히스티딘 태그를 더 포함하는 것을 특징으로 하는 재조합 융합 단백질.
  7. 제 2항 또는 제 3항에 있어서, 상기 재조합 융합 단백질은 서열번호 5 또는 서열번호 6으로 표시되는 아미노산 서열을 갖는 것을 특징으로 하는 재조합 융합 단백질.
  8. 제 1항 내지 제 7항 중 어느 한 항의 재조합 융합 단백질을 암호화하는 핵산 분자.
  9. 제 8항 핵산 분자를 포함하는 재조합 발현 벡터.
  10. 제 9항의 재조합 발현 벡터로 형질전환된 재조합 세포.
  11. 제 10항의 재조합 세포를 배양하여 제 1항 내지 제 7항 중 어느 한 항에 따른 재조합 융합 단백질을 발현시키는 단계; 및 상기 발현된 재조합 융합 단백질을 회수하는 단계를 포함하는, 제 1항 내지 제 7항 중 어느 한 항에 따른 재조합 융합 단백질 생산방법.
  12. 제 1항 내지 제7항 중 어느 한 항의 재조합 융합 단백질을 포함하는 항체-약물 접합체.
  13. 제 12항에 있어서, 상기 재조합 융합 단백질의 항체 결합 도메인이 항체와 결합하며, 알부민 결합 도메인이 알부민과 결합하는 것을 특징으로 하는 항체-약물 접합체.
  14. 제 13항에 있어서, 상기 항체는 모노클로날 항체, 이중특이적 항체, 키메릭 항체, 인간 항체 및 인간화 항체로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 항체-약물 접합체.
  15. 제 14항에 있어서, 상기 항체는 암 특이 항원, 세포 표면 수용체 단백질, 세포 표면 단백질, 막횡단 단백질, 신호전달 단백질, 세포생존 조절인자, 세포 증식 조절인자, 조직 발달 또는 분화와 연관된 분자, 림포카인, 사이토카인, 세포 주기 조절에 관련된 분자, 혈관형성에 관련된 분자, 또는 혈관신생에 관련된 분자에 대한 결합능과 특이성을 가지는 것을 특징으로 하는 항체-약물 접합체.
  16. 제 15항에 있어서, 상기 항체는 항-HER2 항체, 항-EGFR 항체, 항-CD19 항체, 항-CD33 항체, 항-메소텔린(mesothelin) 및 항-CD20로 이루어진 군에서 선택된 것을 특징으로 하는 항체-약물 접합체.
  17. 제 15항에 있어서, 상기 약물은 파클리탁셀, 젬시타빈, 시스플라틴, 엠탄신 및 플루다라빈로 이루어진 군에서 선택된 약물을 알부민에 결합시킨 알부민 결합 나노입자인 것을 특징으로 하는 항체-약물 접합체.
PCT/KR2022/006614 2021-05-10 2022-05-10 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체 WO2022240117A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210059904 2021-05-10
KR10-2021-0059904 2021-05-10
KR10-2022-0056802 2022-05-09
KR1020220056802A KR20220152951A (ko) 2021-05-10 2022-05-09 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체

Publications (1)

Publication Number Publication Date
WO2022240117A1 true WO2022240117A1 (ko) 2022-11-17

Family

ID=84029338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006614 WO2022240117A1 (ko) 2021-05-10 2022-05-10 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체

Country Status (1)

Country Link
WO (1) WO2022240117A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036395A (ko) * 2015-09-24 2017-04-03 울산과학기술원 면역화학적 분석에서 표적 특이적 신호증폭을 담당하는 범용성 재조합 2차 항체 유사체

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036395A (ko) * 2015-09-24 2017-04-03 울산과학기술원 면역화학적 분석에서 표적 특이적 신호증폭을 담당하는 범용성 재조합 2차 항체 유사체

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BJORCK, L. ; KASTERN, W. ; LINDAHL, G. ; WIDEBACK, K.: "Streptococcal protein G, expressed by streptococci or by Escherichia coli, has separate binding sites for human albumin and IgG", MOLECULAR IMMUNOLOGY, vol. 24, no. 10, 1 October 1987 (1987-10-01), GB , pages 1113 - 1122, XP023795360, ISSN: 0161-5890, DOI: 10.1016/0161-5890(87)90080-0 *
JOHAN NILVEBRANT, SOPHIA HOBER: "The albumin-binding domain as a scaffold for protein engineering", COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, vol. 6, no. 7, 1 March 2013 (2013-03-01), pages 1 - 8, XP055093332, DOI: 10.5936/csbj.201303009 *
NYGREN P.-A., ET AL.: "ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G.", JOURNAL OF MOLECULAR RECOGNITION., HEYDEN & SON LTD, vol. 01., no. 02., 1 April 1988 (1988-04-01), GB , pages 69 - 74., XP000615265, ISSN: 0952-3499, DOI: 10.1002/jmr.300010204 *
SHENG WEIJIN, GENG JIN, LI LIANG, SHANG YUE, JIANG MIN, ZHEN YONGSU: "An albumin‑binding domain and targeting peptide‑based recombinant protein and its enediyne‑integrated analogue exhibit directional delivery and potent inhibitory activity on pancreatic cancer with K‑ras mutation", ONCOLOGY, vol. 43, 15 January 2020 (2020-01-15), pages 851 - 863, XP093004047, ISSN: 1021-335X, DOI: 10.3892/or.2020.7468 *
SINIBALDI EDOARDO, ARGIOLAS ALFREDO, PULEO GIAN LUIGI, MAZZOLAI BARBARA: "Another Lesson from Plants: The Forward Osmosis-Based Actuator", PLOS ONE, vol. 9, no. 7, 14 July 2014 (2014-07-14), US , XP002807071, ISSN: 1932-6203 *

Similar Documents

Publication Publication Date Title
CN109200291B (zh) 一种靶向于egfr的抗体偶联药物及其制备方法和其用途
CN106146663B (zh) 非天然氨基酸标记的新型抗体-药物偶联物及其制备
SK160391A3 (en) Recombinant proteine joining complex viral antigen hiv-1
WO2014056333A9 (zh) 免疫受体调节剂偶联体及其制备方法和应用、制备其的偶联前体以及合成偶联前体的化合物
CN109021114B (zh) 联合两种单链抗体的双特异性嵌合抗原受体及表达载体
WO2022240117A1 (ko) 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체
CN110885376A (zh) 抗cd47/cd20双特异性抗体及其用途
CN101497666B (zh) 一种双特异性寡肽-力达霉素强化融合蛋白Ec-LDP-Hr-AE
EP4326759A1 (en) Chimeric antigen receptor (car)-t cells
JP2021065219A (ja) Hla−g特異的キメラ抗原受容体、核酸、hla−g特異的キメラ抗原受容体発現プラスミド、hla−g特異的キメラ抗原受容体発現細胞及び癌治療用の医薬組成物
CN110475857B (zh) 表达抗-可替宁嵌合抗原受体的天然杀伤细胞
JPH05509079A (ja) ヒト癌遺伝子erbB―2を過剰発現している細胞の増殖を阻害する増殖因子
CN102532269A (zh) γδT淋巴细胞中δ1链互补决定域3的优势序列及其TCR受体转染细胞与应用
CN108264550A (zh) 一种识别源自于prame抗原短肽的tcr
KR20220152951A (ko) 항체 결합 재조합 융합 단백질 및 이를 이용한 항체-약물 접합체
Waldmann The interleukin-2 receptor on malignant cells: A target for diagnosis and therapy
AU2022262282A1 (en) Chimeric antigen receptor (car)-t cells
Wels et al. Intervention in receptor tyrosine kinase-mediated pathways: recombinant antibody fusion proteins targeted to ErbB2
WO2022220433A1 (ko) Programmed death-ligand 1(pd-l1)에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도
WO2024143785A1 (ko) 엘라스틴 유사 폴리펩타이드 기반 재조합 단백질 제작 및 이의 동물세포 발현 플랫폼
CN116063569B (zh) Epha2嵌合抗原受体及其用途
WO2022215919A1 (ko) Cd47에 특이적으로 결합하는 키메릭 항원 수용체 및 이의 용도
WO2023058978A1 (ko) Cd138을 인식하는 재조합 단백질 및 이를 유효성분으로 포함하는 암의 치료용 약학적 조성물
WO2023075176A1 (ko) Cadm1을 인식하는 재조합 단백질 및 이를 유효성분으로 포함하는 암의 치료용 약학적 조성물
CN116162167A (zh) 一种人表皮生长因子受体2和整合素的双靶向的结合蛋白及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807765

Country of ref document: EP

Kind code of ref document: A1