WO2022239626A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2022239626A1
WO2022239626A1 PCT/JP2022/018652 JP2022018652W WO2022239626A1 WO 2022239626 A1 WO2022239626 A1 WO 2022239626A1 JP 2022018652 W JP2022018652 W JP 2022018652W WO 2022239626 A1 WO2022239626 A1 WO 2022239626A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
electrode
switching
semiconductor device
switching circuit
Prior art date
Application number
PCT/JP2022/018652
Other languages
English (en)
French (fr)
Inventor
健一 小野寺
匡司 林口
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023520953A priority Critical patent/JPWO2022239626A1/ja
Priority to CN202280033796.3A priority patent/CN117337490A/zh
Priority to DE112022001871.2T priority patent/DE112022001871T5/de
Publication of WO2022239626A1 publication Critical patent/WO2022239626A1/ja
Priority to US18/469,301 priority patent/US20240007097A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present disclosure relates to semiconductor devices.
  • Patent Literature 1 discloses a power module (semiconductor device) that includes switching elements of either MOSFETs or IGBTs. Such power modules are used, for example, in inverters, and perform power conversion by switching operations of switching elements.
  • the power conversion of the power module is accompanied by power loss such as switching loss and steady-state loss in the switching element. Therefore, in order to improve the power conversion efficiency of the power module, it is required to reduce the power loss.
  • the present disclosure has been conceived in view of the above circumstances, and one of the subjects thereof is to provide a semiconductor device that reduces power loss.
  • the semiconductor device of the present disclosure includes a switching circuit that switches between a conductive state and a cutoff state, and the switching circuit includes a first switching element and a second switching element that are electrically connected in parallel.
  • the first switching element is an IGBT
  • the second switching element is a MOSFET.
  • the threshold voltage of the second switching element is ⁇ 1.0 V or more and +0.4 V with respect to the threshold voltage of the first switching element.
  • the third current value is less than or equal to the rated current of the switching circuit.
  • the first current value is less than the third current value.
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment
  • FIG. FIG. 2 is a diagram showing the resin member in imaginary lines in the plan view of FIG. 3 is a bottom view of the semiconductor device according to the first embodiment
  • FIG. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a diagram illustrating a circuit configuration example of the semiconductor device according to the first embodiment
  • FIG. 6 is a diagram showing threshold voltage characteristics of the second switching element and the first switching element used in the simulation.
  • FIG. 7 is a simulation result showing changes in the drive signal during turn-off.
  • FIG. 8 is a simulation result showing changes in the drive signal at turn-on.
  • FIG. 9 is a perspective view showing a semiconductor device according to a second embodiment; 10 is a perspective view of FIG. 9 with the case and the radiator plate omitted.
  • FIG. 11 is a plan view showing the semiconductor device according to the second embodiment, showing the case with imaginary lines (double-dot chain lines).
  • 12 is an enlarged view of a part of FIG. 11.
  • FIG. 13 is an enlarged view of a part of FIG. 11.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG. 11.
  • FIG. FIG. 15 is a perspective view showing a semiconductor device according to a third embodiment;
  • FIG. 16 is a plan view showing the semiconductor device according to the third embodiment, and is a diagram showing a resin member with an imaginary line (chain double-dashed line).
  • 17 is a cross-sectional view along line XVII-XVII of FIG. 16.
  • FIG. 16 is a plan view showing the semiconductor device according to the third embodiment, and is a diagram showing
  • a certain entity A is formed on a certain entity B
  • a certain entity A is formed on (of) an entity B
  • mean a certain entity A is directly formed in a certain thing B
  • a certain thing A is formed in a certain thing B while another thing is interposed between a certain thing A and a certain thing B” including.
  • ⁇ an entity A is arranged on an entity B'' and ⁇ an entity A is arranged on (of) an entity B'' mean ⁇ an entity A being placed directly on a certain thing B", and "a thing A being placed on a certain thing B with another thing interposed between something A and something B" include.
  • ⁇ an object A is located on (of) an object B'' means ⁇ a certain object A is in contact with an object B, and an object A is located on an object B. Being located on (of)" and "something A is located on (something) B while another thing is interposed between something A and something B including "things”.
  • ⁇ a certain object A overlaps an object B when viewed in a certain direction'' means ⁇ a certain object A overlaps all of an object B'', and ⁇ a certain object A overlaps an object B.'' It includes "overlapping a part of a certain thing B".
  • a semiconductor device A1 includes a switching circuit 1, a resin member 2, a plurality of leads 3, and a plurality of connection members 4.
  • Switching circuit 1 includes a first switching element 11 and a second switching element 12 .
  • the multiple leads 3 include a first lead 31 , a second lead 32 and a third lead 33 .
  • the multiple connection members 4 include multiple first connection members 411 and 412 and a pair of second connection members 421 and 422 .
  • the semiconductor device A1 has, for example, a surface mount type package structure, but it may have a lead insertion type package structure.
  • the semiconductor device A1 is a TO (Transistor Outline) package, but may be another package such as an SOP (Small Outline Package) or a leadless package.
  • the thickness direction of each of the first switching element 11 and the second switching element 12 will be referred to as "thickness direction z".
  • plane view refers to viewing along the thickness direction z.
  • One direction perpendicular to the thickness direction z is called a "first direction x”.
  • the first direction x is, for example, the horizontal direction in the plan view of the semiconductor device A1 (see FIGS. 1 and 2).
  • a direction orthogonal to the thickness direction z and the first direction x is called a "second direction y”.
  • the second direction y is, for example, the vertical direction in the plan view of the semiconductor device A1 (see FIGS. 1 and 2).
  • the switching circuit 1 is an element that exhibits the electrical functions of the semiconductor device A1. As shown in FIG. 5, the switching circuit 1 is controlled by a drive circuit DR installed outside the semiconductor device A1, and switches between a conductive state and a cut-off state. In the present disclosure, the transition period of switching from the conducting state to the interrupting state is called turn-off, and the transition period of switching from the interrupting state to the conducting state is called turn-on. A conduction state from after turn-on to before turn-off is called a steady state.
  • the semiconductor device A1 is used within a range in which the current used does not exceed the rated current of the switching circuit 1 .
  • the working current is the current that flows through the switching circuit 1, and is the current that flows through the switching circuit 1 when the switching circuit 1 is in a steady state.
  • the rated current defines the usage conditions of the semiconductor device A1, and is the maximum current (permissible current) that allows the semiconductor device A1 (switching circuit 1) to be used safely. If the current used exceeds the rated current, the semiconductor device A1 (switching circuit 1) may be damaged or destroyed.
  • the switching circuit 1 includes the first switching element 11 and the second switching element 12 as described above.
  • the first switching element 11 is, for example, an IGBT.
  • the first switching element 11 includes a first semiconductor material.
  • the first semiconductor material is Si (silicon), for example.
  • the first semiconductor material may be SiC (silicon carbide), GaAs (gallium arsenide), GaN (gallium nitride), Ga 2 O 3 (gallium oxide), or the like instead of Si.
  • the first switching element 11 has a rectangular shape in plan view.
  • the first switching element 11, as shown in FIG. 4, has a first element main surface 11a and a first element back surface 11b.
  • the first element main surface 11a and the first element back surface 11b are separated from each other in the thickness direction z.
  • the first element main surface 11a faces one direction (upward) in the thickness direction z, and the first element rear surface 11b faces the other direction (downward) in the thickness direction z.
  • the first switching element 11 has a first electrode 111 , a second electrode 112 and a third electrode 113 .
  • the first electrode 111 is a collector.
  • the second electrode 112 is the emitter.
  • the third electrode 113 is a gate.
  • the first electrode 111 is arranged on the first element back surface 11b, and the second electrode 112 and the third electrode 113 are arranged on the first element main surface 11a. As shown in FIG. 2, the second electrode 112 and the third electrode 113 are spaced apart from each other.
  • a drive signal (gate voltage) is input to the third electrode 113 of the first switching element 11 .
  • the first switching element 11 switches between a conductive state and a cut-off state according to an input drive signal.
  • the operation of switching between the conductive state and the cutoff state is called a switching operation.
  • the conducting state current flows from the first electrode 111 (collector) to the second electrode 112 (emitter), and in the blocking state, this current does not flow.
  • the first switching element 11 is on/off controlled between the first electrode 111 and the second electrode 112 by the drive signal input to the third electrode 113 .
  • the voltage applied between the first electrode 111 and the second electrode 112 is simply referred to as "the voltage of the first switching element 11" or the like.
  • the second switching element 12 is, for example, a MOSFET.
  • the second switching element 12 comprises a second semiconductor material.
  • the second semiconductor material has a wider bandgap than the first semiconductor material, eg SiC.
  • the second semiconductor material may be Si, GaAs, GaN, Ga 2 O 3 or the like instead of SiC.
  • the second switching element 12 has a rectangular shape in plan view. In the example shown in FIG. 2 , the planar view area of the second switching element 12 is smaller than the planar view area of the first switching element 11 . In addition, the relationship of these planar view areas is not limited to the example shown in FIG.
  • the second switching element 12 has a second element main surface 12a and a second element back surface 12b, as shown in FIG.
  • the second element main surface 12a and the second element back surface 12b are separated from each other in the thickness direction z.
  • the second element principal surface 12a faces one direction (upward) in the thickness direction z
  • the second element rear surface 12b faces the other direction (downward) in the thickness direction z.
  • the second element main surface 12a faces the same direction as the first element main surface 11a
  • the second element back surface 12b faces the same direction as the first element back surface 11b.
  • the second switching element 12 has a fourth electrode 121 , a fifth electrode 122 and a sixth electrode 123 .
  • the fourth electrode 121 is the drain.
  • the fifth electrode 122 is the source.
  • the sixth electrode 123 is a gate.
  • the fourth electrode 121 is arranged on the second element back surface 12b, and the fifth electrode 122 and the sixth electrode 123 are arranged on the second element main surface 12a. As shown in FIG. 2, the fifth electrode 122 and the sixth electrode 123 are spaced apart from each other.
  • a drive signal (gate voltage) is input to the sixth electrode 123 of the second switching element 12 .
  • a drive signal input to the sixth electrode 123 is common to the drive signal input to the third electrode 113 .
  • the second switching element 12 switches between a conductive state and a cut-off state (performs a switching operation) according to an input drive signal. In the conducting state, current flows from the fourth electrode 121 (drain) to the fifth electrode 122 (source), and in the blocking state, this current does not flow. That is, the second switching element 12 is on/off-controlled between the fourth electrode 121 and the fifth electrode 122 by the drive signal input to the sixth electrode 123 .
  • the voltage applied between the fourth electrode 121 and the fifth electrode 122 is simply referred to as "the voltage of the second switching element 12".
  • the switching circuit 1 the first electrode 111 (collector) and the fourth electrode 121 (drain) are electrically connected, and the second electrode 112 (emitter) and the fifth electrode 122 are electrically connected by a configuration described in detail later. (source) are electrically connected. Thereby, as shown in FIG. 5, the first switching element 11 and the second switching element 12 are electrically connected in parallel.
  • the switching circuit 1 is conductive when at least one of the first switching element 11 and the second switching element 12 is conductive, and when both the first switching element 11 and the second switching element 12 are disconnected. It becomes a cutoff state. When both the first switching element 11 and the second switching element 12 are conductive, the current input to the switching circuit 1 is distributed to the first switching element 11 and the second switching element 12 .
  • the first switching element 11 and the second switching element 12 have different electrical characteristics, and the semiconductor device A1 employs two elements having the following electrical characteristics. That is, when the current flowing through the switching circuit 1 (more precisely, the current flowing through each switching element) is less than the first current value, the voltage of the second switching element 12 is lower than the voltage of the first switching element 11. , the second switching element 12 has a lower resistance than the first switching element 11 . Further, when the current flowing through the switching circuit 1 is equal to or greater than the second current value and equal to or less than the third current value, the threshold voltage of the second switching element 12 is ⁇ 1.0 V or more with respect to the threshold voltage of the first switching element 11. +0.4 V or less. This range is hereinafter referred to as a "threshold setting range".
  • the threshold voltage of the first switching element 11 is 7 V or more and 7.5 V or less
  • the threshold voltage of the second switching element 12 is , 6 V or more and 7.9 V or less (-1.0 V or more and +0.4 V or less of the threshold voltage of the first switching element 11).
  • Each of the first current value, the second current value and the third current value is smaller than the rated current of the switching circuit 1 .
  • the first current value is smaller than the third current value.
  • the first current value is 1 ⁇ 5 of the rated current of switching circuit 1, for example.
  • the second current value is, for example, the same as the first current value, which is 1 ⁇ 5 of the rated current of switching circuit 1 .
  • the third current value is, for example, 3/5 of the rated current of switching circuit 1 . That is, in the semiconductor device A1, the electrical characteristics of the first switching element 11 and the second switching element 12 are set so as to satisfy the following two points. First, in a current region where the current flowing through the switching circuit 1 is less than 1/5 of the rated current of the semiconductor device A1 (switching circuit 1), the voltage of the second switching element 12 is equal to the voltage of the first switching element 11.
  • the threshold voltage of the second switching element 12 is equal to the threshold voltage of the first switching element 11 in a current range in which the current flowing through the switching circuit 1 is 1/5 or more and 3/5 or less of the rated current of the semiconductor device A1. , is within the threshold setting range (range of -1.0 V or more and +0.4 V or less).
  • the first current value and the second current value are the same, but they do not have to be the same.
  • the current used is set to a value equal to or greater than the first current value.
  • the resin member 2 is a sealing material that protects the switching circuit 1.
  • the resin member 2 covers the switching circuit 1, a portion of each of the plurality of leads 3, and the plurality of connection members 4, respectively.
  • Resin member 2 is made of, for example, an insulating resin material.
  • the insulating resin material is, for example, epoxy resin.
  • the resin member 2 has a resin main surface 21 , a resin back surface 22 , a pair of first resin side surfaces 23 and a pair of second resin side surfaces 24 .
  • the resin main surface 21 and the resin back surface 22 are spaced apart in the thickness direction z, as shown in FIG.
  • the resin main surface 21 faces one direction (upward) in the thickness direction z
  • the resin back surface 22 faces the other direction (downward) in the thickness direction z.
  • the pair of first resin side surfaces 23 and the pair of second resin side surfaces 24 are respectively sandwiched between the resin main surface 21 and the resin rear surface 22 in the thickness direction z and are connected to these.
  • the pair of first resin side surfaces 23 are spaced apart in the first direction x, as shown in FIG.
  • the pair of first resin side surfaces 23 face opposite sides in the first direction x.
  • Part of the second lead 32 and the third lead 33 protrude from one of the pair of first resin side surfaces 23 (for example, the upper first resin side surface 23 in FIG. 1).
  • the pair of second resin side surfaces 24 are spaced apart in the second direction y, and the pair of second resin side surfaces 24 face opposite sides in the second direction y.
  • the plurality of leads 3 support the first switching element 11 and the second switching element 12 and are electrically connected to the first switching element 11 and the second switching element 12 .
  • Each constituent material of the plurality of leads 3 includes, for example, copper (Cu).
  • the constituent materials of the plurality of leads 3 are aluminum, iron (Fe), oxygen-free copper, or alloys thereof (for example, Cu—Sn alloy, Cu—Zr alloy, Cu—Fe alloy, etc.) instead of Cu. may be adopted.
  • Each of the plurality of leads 3 may be plated with nickel (Ni).
  • the multiple leads 3 have the first lead 31, the second lead 32 and the third lead 33 as described above.
  • the first lead 31, the second lead 32 and the third lead 33 are separated from each other.
  • the first lead 31, the second lead 32 and the third lead 33 are formed by appropriately cutting a metal lead frame that has been patterned by etching and punching, for example.
  • the first lead 31 is electrically connected to the first electrode 111 (collector) of the first switching element 11 and the fourth electrode 121 (drain) of the second switching element 12 .
  • First lead 31 includes die pad 311 , extension 312 and protrusion 313 .
  • the die pad 311 is joined with the first switching element 11 and the second switching element 12 .
  • the die pad 311 faces the first element back surface 11 b of the first switching element 11 and the second element back surface 12 b of the second switching element 12 .
  • the die pad 311 is joined to the first electrode 111 (collector) and the fourth electrode 121 (drain) and electrically connected to them.
  • the first electrode 111 and the fourth electrode 121 are electrically connected via the die pad 311 .
  • the die pad 311 is a flat plate-like portion. As shown in FIG. 4, the die pad 311 has a surface facing in the thickness direction z opposite to the surface where the first switching element 11 and the second switching element 12 are bonded (a surface facing downward in the thickness direction z). It is exposed from the resin member 2 .
  • the die pad 311 is an input terminal of the switching circuit 1 and a current input terminal in the semiconductor device A1.
  • the extending portion 312 and the projecting portion 313 are connected to the die pad 311 respectively.
  • the extending portion 312 and the protruding portion 313 are positioned opposite to each other with the die pad 311 interposed therebetween in the second direction y.
  • the extending portion 312 protrudes from the resin member 2 to one side in the second direction y, and the protruding portion 313 protrudes from the resin member 2 to the other side in the second direction y.
  • the projecting portion 313 is positioned between the second lead 32 and the third lead 33 in the first direction x.
  • the second lead 32 is electrically connected to the second electrode 112 (emitter) of the first switching element 11 and the fifth electrode 122 (source) of the second switching element 12 .
  • Second lead 32 includes pad portion 321 and terminal portion 322 .
  • the pad portion 321 is joined to a plurality of first connection members 411 and electrically connected to the second electrode 112 (emitter) of the first switching element 11 via the plurality of first connection members 411 . .
  • the pad portion 321 is connected to the fifth electrode 122 (source) of the second switching element 12 via the plurality of first connection members 412 to which the plurality of first connection members 412 are joined. conduct.
  • the second electrode 112 and the fifth electrode 122 are electrically connected via the plurality of first connection members 411 and 412 and the second lead 32 .
  • the terminal portion 322 is connected to the pad portion 321 as shown in FIG.
  • the terminal portion 322 is electrically connected to the pad portion 321 and exposed from the resin member 2 .
  • the terminal portion 322 protrudes from the resin member 2 to one side in the second direction y.
  • the direction in which the terminal portion 322 protrudes is the side where the protruding portion 313 is positioned with respect to the die pad 311 in the second direction y.
  • the terminal portion 322 is an output terminal of the switching circuit 1 and a current output terminal in the semiconductor device A1.
  • the third lead 33 is electrically connected to the third electrode 113 (gate) of the first switching element 11 and the sixth electrode 123 (gate) of the second switching element 12 .
  • Third lead 33 includes pad portion 331 and terminal portion 332 .
  • the pad portion 331 is connected to the second connection member 421 and electrically connected to the third electrode 113 (gate) of the first switching element 11 via the second connection member 421 .
  • the second connection member 422 is joined to the pad portion 331 and conducts to the sixth electrode 123 (gate) of the second switching element 12 via the second connection member 422.
  • the terminal portion 332 is connected to the pad portion 331 as shown in FIG.
  • the terminal portion 332 is electrically connected to the pad portion 331 and exposed from the resin member 2 .
  • the terminal portion 332 protrudes from the resin member 2 to one side in the second direction y.
  • the direction in which the terminal portion 332 protrudes is the side where the protruding portion 313 is positioned with respect to the die pad 311 in the second direction y.
  • the terminal portion 332 is an input terminal for driving signals in the semiconductor device A1.
  • the terminal portion 332 is connected to a drive circuit DR outside the semiconductor device A1.
  • a drive signal is input from the drive circuit DR to the semiconductor device A1.
  • the semiconductor device A1 has a first lead 31 as a first conductor and a second lead 32 as a second conductor for the switching circuit 1 .
  • Each of the plurality of connecting members 4 conducts between two parts separated from each other.
  • Each of the connecting members 4 is, for example, a bonding wire.
  • the multiple connection members 4 include multiple first connection members 411 and 412 and a pair of second connection members 421 and 422 .
  • Each of the plurality of first connection members 411 is joined to the second electrode 112 of the first switching element 11 and the pad portion 321 of the second lead 32, as shown in FIG. Thereby, the second lead 32 is electrically connected to the second electrode 112 (emitter) through each first connection member 411 .
  • Each of the plurality of first connection members 412 is joined to the fifth electrode 122 of the second switching element 12 and the pad portion 321 of the second lead 32, as shown in FIG. Thereby, the second lead 32 is electrically connected to the fifth electrode 122 (source) through each first connection member 412 .
  • the second connection member 421 is joined to the third electrode 113 of the first switching element 11 and the pad portion 331 of the third lead 33, as shown in FIG. Thereby, the third lead 33 is electrically connected to the third electrode 113 (gate) through the second connection member 421 .
  • the second connection member 422 is joined to the sixth electrode 123 of the second switching element 12 and the pad portion 331 of the third lead 33, as shown in FIG. Thereby, the third lead 33 is electrically connected to the sixth electrode 123 (gate) through the second connection member 422 .
  • the actions and effects of the semiconductor device A1 are as follows.
  • the semiconductor device A1 includes a switching circuit 1.
  • Switching circuit 1 includes a first switching element 11 and a second switching element 12 .
  • the first switching element 11 is an IGBT
  • the second switching element 12 is a MOSFET.
  • MOSFETs and IGBTs exhibit the following electrical characteristics due to differences in physical properties and structures. For example, MOSFETs have faster switching speeds and lower switching losses than IGBTs. A switching loss is a loss that occurs when each switching element is switched (at turn-on or turn-off).
  • an IGBT has a smaller on-resistance than a MOSFET and a smaller steady-state loss than a MOSFET in a large current region.
  • Steady-state loss is loss that occurs when each switching element is in a steady state (conducting state), and is loss due to on-resistance of each switching element. Therefore, in the semiconductor device A1, the first switching element 11 and the second switching element 12 are electrically connected in parallel, and the electrical characteristics of the first switching element 11 and the second switching element 12 are as follows. A relationship that satisfies the following two points. The first point is that the voltage of the second switching element 12 is lower than that of the first switching element 11 when the current flowing through the switching circuit 1 is less than the first current value.
  • the threshold voltage of the second switching element 12 is ⁇ 1.0 V with respect to the threshold voltage of the first switching element 11. It must be within the range of +0.4 V or less (threshold setting range).
  • a large amount of current flows through the second switching element 12 (MOSFET) during switching (turn-on and turn-off) of the switching circuit 1, thereby reducing switching loss.
  • MOSFET second switching element 12
  • IGBT first switching element 11
  • the semiconductor device A1 can reduce both switching loss and stationary loss, and can reduce power loss. That is, the semiconductor device A1 can improve the conversion efficiency.
  • a common drive signal is input to the first switching element 11 and the second switching element 12 in the semiconductor device A1.
  • the drive signal may oscillate. This drive signal oscillation occurs, for example, at turn-on or turn-off, and is a factor in malfunction of IGBTs and MOSFETs. Therefore, in the semiconductor device A1, by setting the electrical characteristics of the first switching element 11 and the second switching element 12 to the above relationship, even when a common driving signal is input, vibration of the driving signal is suppressed. Thus, malfunction of the first switching element 11 and the second switching element 12 (and thus the switching circuit 1) can be suppressed. The suppression of such drive signal vibration was verified by simulation.
  • FIG. 6 shows the threshold voltage characteristics of the three second switching elements 12x, 12y, 12z (MOSFETs) and the threshold voltage characteristic of the first switching element 11 (IGBT).
  • the horizontal axis is the threshold voltage
  • the vertical axis is the current flowing through the switching circuit 1 .
  • the range of 1/5 to 3/5 of the rated current which is an example of the threshold setting range, corresponds to the range of 20 A to 60 A on the vertical axis, where the rated current is 100 A.
  • the time change of the drive voltage was verified when the current flowing through the switching circuit 1 was 40A.
  • the threshold voltage of the second switching element 12x is within the threshold setting range
  • the threshold voltage of the second switching element 12y is below the lower limit of the threshold setting range
  • the second The threshold voltage of the switching element 12z exceeds the upper limit of the threshold setting range.
  • FIG. 7 shows the time change of the drive signal at turn-off.
  • FIG. 8 shows the time change of the drive signal at turn-on.
  • the horizontal axis is time
  • the vertical axis is the voltage value of the drive signal.
  • the upper row shows the results when the second switching element 12x is used
  • the middle row shows the results when the second switching element 12y is used
  • the lower row shows the results when the second switching element 12x is used. This is the result when the element 12z is used.
  • the driving signal oscillates greatly at the time of turn-off. is relatively suppressed.
  • the second switching element 12y when the second switching element 12y is used at the time of turn-on, the oscillation of the drive signal is large. In this case, oscillations in the drive signal are relatively suppressed.
  • the semiconductor device A1 can suppress malfunction of the first switching element 11 and the second switching element 12 (and thus the switching circuit 1). Furthermore, as can be understood from the simulation results of FIGS. 7 and 8, when the second switching element 12x and the second switching element 12z are used, the oscillation of the drive signal at turn-on is suppressed. By setting the threshold voltage of the element 12 to be equal to or higher than the lower limit of the threshold setting range, it is possible to suppress oscillation of the drive signal at the time of turn-on. In addition, when the second switching element 12x and the second switching element 12y are used, the vibration of the drive signal at the time of turn-off is suppressed. By doing so, it is possible to suppress the vibration at the time of turn-off.
  • the second switching element 12x when the current of the switching circuit 1 is within the range of the second current value or more and the third current value or less (20 A or more and 60 A or less), the second switching element 12x
  • the threshold voltage of 12x switches from being lower than the threshold voltage of the first switching element 11 to being higher than the threshold voltage of the first switching element 11 .
  • the magnitude relationship between the threshold voltage of the first switching element 11 and the threshold voltage of the second switching element 12x switches when the current of the switching circuit 1 is around 35A.
  • Such characteristics are such that a large amount of current flows through the second switching element 12 (MOSFET) during switching (turn-on and turn-off) of the switching circuit 1, and a large amount of current flows through the first switching element 12 when the switching circuit 1 is in a steady state. 11 (IGBT) to control a large amount of current.
  • MOSFET second switching element 12
  • IGBT IGBT
  • the first switching element 11 is made of a first semiconductor material
  • the second switching element 12 is made of a second semiconductor material.
  • the second semiconductor material has a wider bandgap than the first semiconductor material.
  • the first semiconductor material is for example Si and the second semiconductor material is for example SiC.
  • SiC has a wider bandgap than Si
  • a switching element using SiC has the advantage of lower power loss than a switching element using Si.
  • switching elements using SiC are more expensive than switching elements using Si. Therefore, in the semiconductor device A1, the first switching element 11 is made of the first semiconductor material (Si), and the second switching element 12 is made of the second semiconductor material (SiC), thereby reducing power loss and increasing costs.
  • the switching element using SiC has a higher switching speed than the switching element using Si. Therefore, forming the second switching element 12 from SiC is effective in suppressing power loss (switching loss) during switching (turn-on and turn-off).
  • the parallel connection of the first switching element 11 and the second switching element 12 may be realized by including the circuit board on which the semiconductor device A1 is mounted.
  • the semiconductor device A1 includes an additional lead
  • the second lead 32 is electrically connected to the second electrode 112 of the first switching element 11
  • the additional lead is electrically connected to the fifth electrode 122 of the second switching element 12. back.
  • the second lead 32 and the additional lead are electrically connected to each other (for example, both leads are connected to a conductive member formed on the circuit board). is considered).
  • the semiconductor device A1 shows an example in which a drive signal is input from the external drive circuit DR.
  • the drive circuit DR that generates the drive signal may be installed inside the resin member 2 (for example, on the first lead 31).
  • the semiconductor device A2 is a case-type module.
  • the semiconductor device A2 includes a first switching circuit 1A, a second switching circuit 1B, an insulating substrate 50, a first power wiring portion 51, a second power wiring portion 52, and a third power wiring portion. 53, a pair of first signal wiring portions 54A, 54B, a pair of second signal wiring portions 55A, 55B, a pair of third signal wiring portions 56, a first power terminal 61, a second power terminal 62, two third power A terminal 63 , a pair of control terminals 64 A and 64 B, a pair of detection terminals 65 A and 65 B, a detection terminal 66 , two detection terminals 67 , a plurality of connection members 4 , a heat sink 70 and a case 71 are provided.
  • the plurality of connection members 4 include a plurality of first connection members 411A, 412A, 411B and 412B, a plurality of second connection members 421A, 422A, 421B and 422B, A plurality of third connection members 431A, 432A, 431B, 432B, a pair of fourth connection members 44A, 44B, a pair of fifth connection members 45A, 45B, and a sixth connection member 46 are included.
  • the radiator plate 70 is, for example, a rectangular flat plate in plan view.
  • Radiator plate 70 is made of a material with high thermal conductivity, such as copper or a copper alloy.
  • the surface of the heat sink 70 may be plated with Ni.
  • a cooling member (for example, a heat sink) is attached to the surface of the radiator plate 70 on the lower side in the thickness direction z, if necessary. As shown in FIG. 14 , the insulating substrate 50 is placed on the heat sink 70 .
  • the case 71 is, for example, a substantially rectangular parallelepiped, as can be understood from FIGS. 9 and 11.
  • the case 71 is made of a synthetic resin having electrical insulation and excellent heat resistance, such as PPS (polyphenylene sulfide).
  • the case 71 has a rectangular shape with approximately the same size as the heat sink 70 in plan view.
  • the case 71 includes a frame portion 72, a top plate 73 and a plurality of terminal blocks 741-744, as shown in FIGS.
  • the frame portion 72 is fixed to the upper surface of the radiator plate 70 in the thickness direction z (see FIG. 14).
  • the top plate 73 is fixed to the frame portion 72 . As shown in FIGS. 9 and 14, the top plate 73 closes the upper opening of the frame portion 72 in the thickness direction z. As shown in FIG. 14, the top plate 73 faces the heat sink 70 that closes the lower side of the frame portion 72 in the thickness direction z.
  • a circuit housing space (a space housing the first switching circuit 1A and the second switching circuit 1B, etc.) is defined inside the case 71 by the top plate 73 , the heat sink 70 , and the frame portion 72 .
  • the two terminal blocks 741 and 742 are arranged on one side of the frame portion 72 in the first direction x and formed integrally with the frame portion 72 .
  • the two terminal blocks 743 and 744 are arranged on the other side of the frame portion 72 in the first direction x and formed integrally with the frame portion 72 .
  • the two terminal blocks 741 and 742 are arranged along the second direction y with respect to one side wall of the frame portion 72 in the first direction x.
  • the terminal block 741 partially covers the first power terminal 61 and has a part of the first power terminal 61 arranged on the surface on the upper side in the thickness direction z.
  • the terminal block 742 partially covers the second power terminal 62 and has a part of the second power terminal 62 arranged on the upper surface in the thickness direction z.
  • the two terminal blocks 743 and 744 are arranged along the second direction y with respect to the side wall of the frame portion 72 on the other side in the first direction x.
  • the terminal block 743 partially covers one of the two third power terminals 63, and a part of the third power terminal 63 is arranged on the surface on the upper side in the thickness direction z.
  • the terminal block 744 covers the other part of the two third power terminals 63, and part of the third power terminal 63 is arranged on the surface on the upper side in the thickness direction z.
  • the first switching circuit 1A includes multiple first switching elements 11 and multiple second switching elements 12 .
  • the first switching element 11 and the second switching element 12 of the first switching circuit 1A are referred to as a first switching element 11A and a second switching element 12A, respectively.
  • the plurality of first switching elements 11A and the plurality of second switching elements 12A are electrically connected in parallel with each other.
  • a common first drive signal is input to each of the plurality of first switching elements 11A and the plurality of second switching elements 12A, and the switching operation is controlled by the input first drive signal.
  • the plurality of first switching elements 11A and the plurality of second switching elements 12A are alternately arranged in the first direction x.
  • the plurality of first switching elements 11A may be arranged on one side in the first direction x with respect to the plurality of second switching elements 12A.
  • the arrangement order of the plurality of first switching elements 11A and the plurality of second switching elements 12A is not particularly limited.
  • the electrical characteristics of the plurality of first switching elements 11A and the electrical characteristics of the plurality of second switching elements 12A have the following relationship.
  • the average voltage across the plurality of second switching elements 12A is lower than the average voltage across the plurality of first switching elements 11A.
  • the average of the threshold voltages of the plurality of second switching elements 12A is the threshold voltage of the plurality of first switching elements 11A. It is within the above threshold setting range (range of -1.0 V to +0.4 V) with respect to the average.
  • the second switching circuit 1B includes multiple first switching elements 11 and multiple second switching elements 12 .
  • the first switching element 11 and the second switching element 12 of the second switching circuit 1B are referred to as a first switching element 11B and a second switching element 12B, respectively.
  • the plurality of first switching elements 11B and the plurality of second switching elements 12B are electrically connected in parallel with each other.
  • a common second drive signal is input to each of the plurality of first switching elements 11B and the plurality of second switching elements 12B, and switching operations are controlled by the input second drive signals.
  • the plurality of first switching elements 11B and the plurality of second switching elements 12B are alternately arranged in the first direction x.
  • the plurality of first switching elements 11B may be arranged on one side in the first direction x with respect to the plurality of second switching elements 12B.
  • the arrangement order of the plurality of first switching elements 11B and the plurality of second switching elements 12B is not particularly limited.
  • the electrical characteristics of the plurality of first switching elements 11B and the electrical characteristics of the plurality of second switching elements 12B have the following relationship.
  • the average voltage across the plurality of second switching elements 12B is lower than the average voltage across the plurality of first switching elements 11B.
  • the average of the threshold voltages of the plurality of second switching elements 12B is the threshold voltage of the plurality of first switching elements 11B. It is within the above threshold setting range (range of -1.0 V to +0.4 V) with respect to the average.
  • the first switching circuit 1A and the second switching circuit 1B are electrically connected in series by a configuration that will be detailed later.
  • the first switching circuit 1A constitutes an upper arm circuit
  • the second switching circuit 1B constitutes a lower arm circuit.
  • the semiconductor device A2 performs power conversion by switching operations of the first switching circuit 1A and the second switching circuit 1B.
  • the semiconductor device A2 includes five first switching elements 11A and 11B and five second switching elements 12A and 12B, respectively. It is changed as appropriate according to the performance required of the device A2. Also, the number of first switching elements 11A and the number of second switching elements 12A may not be the same, and the number of first switching elements 11B and the number of second switching elements 12B may not be the same. .
  • the plurality of connecting members 4 includes a plurality of first connecting members 411A, 412A, 411B, and 412B, a plurality of second connecting members 421A, 422A, 421B, and 422B, and a plurality of third connecting members 431A, 432A, and 431B. , 432B, a pair of fourth connecting members 44A, 44B, a pair of fifth connecting members 45A, 45B, and a sixth connecting member 46.
  • the plurality of first connection members 411A, 412A, 411B, and 412B are, for example, plate-shaped members made of metal (for example, Cu or Cu alloy). Other connecting members are, for example, bonding wires.
  • the plurality of first connection members 411A are respectively joined to the second electrodes 112 of the first switching elements 11A of the first switching circuit 1A and to the third power wiring portion 53. to conduct.
  • the plurality of first connection members 412A are respectively joined to the fifth electrode 122 of each second switching element 12A of the first switching circuit 1A and the third power wiring portion 53 to conduct them.
  • each of the plurality of first connection members 411B is joined to the second electrode 112 of each first switching element 11B of the second switching circuit 1B and the second power wiring section 52. to conduct.
  • Each of the plurality of first connection members 412B is joined to the fifth electrode 122 of each second switching element 12B of the second switching circuit 1B and the second power wiring portion 52 to conduct them.
  • the plurality of second connection members 421A are respectively joined to the third electrodes 113 of the first switching elements 11A of the first switching circuit 1A and the first signal wiring portion 54A. to conduct.
  • the plurality of second connection members 422A are respectively joined to the sixth electrodes 123 of the respective second switching elements 12A of the first switching circuit 1A and the first signal wiring portion 54A to electrically connect them.
  • the plurality of second connection members 421B are respectively joined to the third electrodes 113 of the first switching elements 11B of the second switching circuit 1B and the first signal wiring portion 54B. to conduct.
  • Each of the plurality of second connection members 422B is joined to the sixth electrode 123 of each second switching element 12B of the second switching circuit 1B and the first signal wiring portion 54B to conduct them.
  • the plurality of third connection members 431A are respectively joined to the second electrodes 112 of the first switching elements 11A of the first switching circuit 1A and the second signal wiring portion 55A. to conduct.
  • Each of the plurality of third connection members 432A is joined to the fifth electrode 122 of each second switching element 12A of the first switching circuit 1A and the second signal wiring portion 55A to electrically connect them.
  • the plurality of third connection members 431B are respectively joined to the second electrodes 112 of the first switching elements 11B of the second switching circuit 1B and the second signal wiring portion 55B. to conduct.
  • Each of the plurality of third connection members 432B is joined to the fifth electrode 122 of each second switching element 12B of the second switching circuit 1B and the second signal wiring portion 55B to conduct them.
  • the fourth connection member 44A is joined to the first signal wiring portion 54A and the control terminal 64A to electrically connect them.
  • the fourth connection member 44B is joined to the first signal wiring portion 54B and the control terminal 64B to electrically connect them.
  • the fifth connection member 45A is joined to the second signal wiring portion 55A and the detection terminal 65A to conduct them.
  • the fifth connection member 45B is joined to the second signal wiring portion 55B and the detection terminal 65B to electrically connect them.
  • the sixth connection member 46 is joined to the first power wiring portion 51 and the detection terminal 66 to electrically connect them.
  • the insulating substrate 50 has electrical insulation.
  • a constituent material of the insulating substrate 50 is, for example, ceramics having excellent thermal conductivity. Examples of such ceramics include AlN (aluminum nitride), SiN (silicon nitride), Al 2 O 3 (aluminum oxide), and the like.
  • the insulating substrate 50 is, for example, a rectangular flat plate in plan view, as shown in FIGS. 10 and 11 .
  • the insulating substrate 50 has a substrate main surface 50a and a substrate back surface 50b, as shown in FIG.
  • the substrate main surface 50a and the substrate back surface 50b are separated in the thickness direction z.
  • the substrate principal surface 50a faces upward in the thickness direction z, and the substrate rear surface 50b faces downward in the thickness direction z.
  • a first power wiring portion 51, a second power wiring portion 52, a third power wiring portion 53, a pair of first signal wiring portions 54A and 54B, a pair of second signal wiring portions 55A and 55B, and a pair of third signal wiring portions 56 is arranged on the main surface 50a of the insulating substrate 50, as shown in FIGS. 11 to 14 and the like.
  • a first power wiring portion 51, a second power wiring portion 52, a third power wiring portion 53, a pair of first signal wiring portions 54A and 54B, a pair of second signal wiring portions 55A and 55B, and a pair of third signal wiring portions 56 is, for example, a metal layer.
  • the metal layer is made of Cu or a Cu alloy, for example.
  • the metal layer may consist of aluminum or an aluminum alloy instead of Cu or a Cu alloy.
  • a first power wiring portion 51, a second power wiring portion 52, a third power wiring portion 53, a pair of first signal wiring portions 54A and 54B, a pair of second signal wiring portions 55A and 55B, and a pair of third signal wiring portions 56 are spaced apart from each other.
  • the first power wiring section 51 is equipped with a first switching circuit 1A (a plurality of first switching elements 11A and a plurality of second switching elements 12A).
  • the first power wiring portion 51 is electrically connected to the first electrodes 111 of the plurality of first switching elements 11A and the fourth electrodes 121 of the plurality of second switching elements 12A. Therefore, each first electrode 111 (collector) of the plurality of first switching elements 11A and each fourth electrode 121 (drain) of the plurality of second switching elements 12A are electrically connected via the first power wiring portion 51. connected to
  • the second power wiring portion 52 has a plurality of first connecting members 411B and a plurality of first connecting members 412B joined to each other.
  • the second power wiring portion 52 is electrically connected to the second electrodes 112 of the plurality of first switching elements 11B via the first connecting members 411B.
  • the second power wiring portion 52 is electrically connected to each fifth electrode 122 of the plurality of second switching elements 12B via each first connection member 412B. Therefore, the second electrodes 112 (emitters) of the plurality of first switching elements 11B and the fifth electrodes 122 (sources) of the plurality of second switching elements 12B are connected to the plurality of first connection members 411B, 412B and the second electrodes 112B. They are electrically connected via the power wiring section 52 .
  • the third power wiring section 53 is equipped with a second switching circuit 1B (a plurality of first switching elements 11B and a plurality of second switching elements 12B).
  • the third power wiring portion 53 is electrically connected to the first electrodes 111 of the plurality of first switching elements 11B and the fourth electrodes 121 of the plurality of second switching elements 12B. Therefore, the first electrodes 111 (collectors) of the plurality of first switching elements 11B and the fourth electrodes 121 (drain) of the plurality of second switching elements 12B are electrically connected via the third power wiring portion 53. Connected. As shown in FIGS.
  • the third power wiring portion 53 has a plurality of first connection members 411A and a plurality of first connection members 412A joined to each other.
  • the third power wiring portion 53 is electrically connected to the second electrodes 112 of the plurality of first switching elements 11A through the first connection members 411A.
  • the third power wiring portion 53 is electrically connected to each fifth electrode 122 of the plurality of second switching elements 12A via each first connection member 412A. Therefore, the second electrodes 112 (emitters) of the plurality of first switching elements 11A and the fifth electrodes 122 (sources) of the plurality of second switching elements 12A are connected to the plurality of first connecting members 411A, 412A and the third connecting members 411A and 412A. They are electrically connected via the power wiring portion 53 .
  • the semiconductor device A2 includes a first power wiring portion 51 as a first conductor and a third power wiring portion 53 as a second conductor for the first switching circuit 1A.
  • the semiconductor device A1 also includes a third power wiring portion 53 as a first conductor and a second power wiring portion 52 as a second conductor for the second switching circuit 1B.
  • the first signal wiring portion 54A is joined with a plurality of second connection members 421A and a plurality of second connection members 422A.
  • the first signal wiring portion 54A is electrically connected to each third electrode 113 (gate) of the plurality of first switching elements 11A via each second connection member 421A.
  • the first signal wiring portion 54A is electrically connected to the sixth electrodes 123 (gates) of the plurality of second switching elements 12A via the second connecting members 422A.
  • the first signal wiring portion 54A transmits a first drive signal that controls the switching operation of the first switching circuit 1A (switching operation of the first switching element 11A and switching operation of the second switching element 12A).
  • the first signal wiring portion 54B is joined with a plurality of second connection members 421B and a plurality of second connection members 422B.
  • the first signal wiring portion 54B is electrically connected to each third electrode 113 (gate) of the plurality of first switching elements 11B via each second connection member 421B.
  • the first signal wiring portion 54B is electrically connected to each sixth electrode 123 (gate) of the plurality of second switching elements 12B via each second connection member 422B.
  • the first signal wiring portion 54B transmits a second drive signal that controls the switching operation of the second switching circuit 1B (switching operation of the first switching element 11B and switching operation of the second switching element 12B).
  • the second signal wiring portion 55A is joined with a plurality of third connection members 431A and a plurality of third connection members 432A.
  • the second signal wiring portion 55A is electrically connected to the second electrodes 112 (emitters) of the plurality of first switching elements 11A through the third connecting members 431A.
  • the second signal wiring portion 55A is electrically connected to each fifth electrode 122 (source) of the plurality of second switching elements 12A via each third connection member 432A.
  • the second signal wiring portion 55A transmits a first detection signal indicating the conductive state of the first switching circuit 1A.
  • the voltage of the second electrode 112 of each first switching element 11A and the voltage of the fifth electrode 122 of each second switching element 12A are applied to the second signal wiring portion 55A.
  • the second signal wiring portion 55B is joined with a plurality of third connection members 431B and a plurality of third connection members 432B.
  • the second signal wiring portion 55B is electrically connected to each second electrode 112 (emitter) of the plurality of first switching elements 11B via each third connection member 431B.
  • the second signal wiring portion 55B is electrically connected to each fifth electrode 122 (source) of the plurality of second switching elements 12B via each third connection member 432B.
  • the second signal wiring portion 55B transmits a second detection signal indicating the conductive state of the second switching circuit 1B.
  • the voltage of the second electrode 112 of each first switching element 11B and the voltage of the fifth electrode 122 of each second switching element 12B are applied to the second signal wiring portion 55B.
  • the pair of third signal wiring portions 56 are not connected to anything, but are connected to, for example, a thermistor in a configuration different from that of the semiconductor device A2.
  • the thermistor is arranged across the pair of third signal wiring portions 56 .
  • the first power terminal 61, the second power terminal 62, the two third power terminals 63, the pair of control terminals 64A and 64B, the pair of detection terminals 65A and 65B, the detection terminal 66 and the pair of detection terminals 67 are each partially are exposed from the case 71 .
  • the first power terminal 61, the second power terminal 62, the two third power terminals 63, the pair of control terminals 64A, 64B, the pair of detection terminals 65A, 65B, the detection terminal 66 and the pair of detection terminals 67 are each made of copper or Made of copper alloy.
  • the first power terminal 61 is joined to the first power wiring portion 51 inside the case 71 as shown in FIGS.
  • the first power terminal 61 is electrically connected to the first electrode 111 of the first switching element 11A and the fourth electrode 121 of the second switching element 12A through the first power wiring portion 51 .
  • the second power terminal 62 is joined to the second power wiring portion 52 inside the case 71 as shown in FIGS.
  • the second power terminal 62 is electrically connected to the second electrode 112 of the first switching element 11B and the fifth electrode 122 of the second switching element 12B through the second power wiring portion 52 .
  • Each of the two third power terminals 63 is joined to the third power wiring portion 53 inside the case 71 as shown in FIGS. 11 and 13 .
  • the two third power terminals 63 are connected to the second electrode 112 of the first switching element 11A, the fifth electrode 122 of the second switching element 12A, and the first electrode 122 of the first switching element 11B via the third power wiring portion 53, respectively.
  • the electrode 111 and the fourth electrode 121 of the second switching element 12B are electrically connected.
  • the first power terminal 61 and the second power terminal 62 are connected to a power supply and applied with a power supply voltage (for example, DC voltage).
  • a power supply voltage for example, DC voltage
  • the first power terminal 61 is the positive pole (P terminal) and the second power terminal 62 is the negative pole (N terminal).
  • the first power terminal 61 and the second power terminal 62 are spaced apart from each other and arranged along the second direction y.
  • the two third power terminals 63 output voltages (for example, AC voltages) that are power-converted by the respective switching operations of the first switching circuit 1A and the second switching circuit 1B.
  • Each of the two third power terminals 63 is a power output terminal (OUT terminal).
  • the two third power terminals 63 are spaced apart from each other and arranged along the second direction y.
  • a first power terminal 61 and a second power terminal 62 are arranged on one side of the insulating substrate 50 in the first direction x, and two third power terminals 63 are arranged on the other side of the insulating substrate 50 .
  • Only one of the two third power terminals 63 may be provided in a configuration different from that of the semiconductor device A2.
  • the third power terminal 63 may be arranged at the center in the second direction y of the side wall on one side of the frame portion 72 in the first direction x.
  • the fourth connection member 44A is joined to the control terminal 64A, as shown in FIG.
  • the control terminal 64A is electrically connected to the first signal wiring portion 54A via the fourth connection member 44A.
  • the control terminal 64A is electrically connected to each of the third electrodes 113 of the plurality of first switching elements 11A and each of the sixth electrodes 123 of the plurality of second switching elements 12A.
  • the control terminal 64A is an input terminal for the first drive signal.
  • the fourth connection member 44B is joined to the control terminal 64B, as shown in FIG.
  • the control terminal 64B is electrically connected to the first signal wiring portion 54B via the fourth connection member 44B.
  • the control terminal 64B is electrically connected to each of the third electrodes 113 of the plurality of first switching elements 11B and each of the sixth electrodes 123 of the plurality of second switching elements 12B.
  • the control terminal 64B is an input terminal for the second drive signal.
  • the detection terminal 65A is joined to the fifth connection member 45A.
  • the detection terminal 65A is electrically connected to the second signal wiring portion 55A via the fifth connection member 45A.
  • the detection terminal 65A is electrically connected to each of the second electrodes 112 of the plurality of first switching elements 11A and to each of the fifth electrodes 122 of the plurality of second switching elements 12A.
  • the detection terminal 65A is an output terminal for the first detection signal.
  • the detection terminal 65B is joined to the fifth connection member 45B.
  • the detection terminal 65B is electrically connected to the second signal wiring portion 55B via the fifth connection member 45B.
  • the detection terminal 65B is electrically connected to each of the second electrodes 112 of the plurality of first switching elements 11B and to each of the fifth electrodes 122 of the plurality of second switching elements 12B.
  • the detection terminal 65B is an output terminal for the second detection signal.
  • the detection terminal 66 is joined to the sixth connection member 46 as shown in FIG.
  • the detection terminal 66 is electrically connected to the first power wiring portion 51 via the sixth connection member 46 .
  • the detection terminal 66 is electrically connected to each of the first electrodes 111 of the plurality of first switching elements 11A and to each of the fourth electrodes 121 of the plurality of second switching elements 12A.
  • a detection terminal 66 is an output terminal for a third detection signal.
  • the third detection signal is a signal for detecting the voltage applied to the first power wiring section 51 .
  • the pair of detection terminals 67 serve as terminals for detecting the temperature inside the case 71 when a thermistor is connected to the pair of third signal wiring portions 56 . Since the thermistor is not connected to the pair of third signal wiring portions 56 in the semiconductor device A2, the pair of detection terminals 67 are non-connect terminals.
  • the semiconductor device A2 when the current flowing through the first switching circuit 1A is less than the first current value, the average voltage across the plurality of second switching elements 12A is higher than the average voltage across the plurality of first switching elements 11A. low. Furthermore, when the current flowing through the first switching circuit 1A is greater than or equal to the second current value and less than or equal to the third current value, the average of the threshold voltages of the plurality of second switching elements 12A is the threshold voltage of the plurality of first switching elements 11A. It is within the above threshold setting range (range of -1.0 V to +0.4 V) with respect to the average. According to this configuration, the semiconductor device A2 can reduce power loss in the first switching circuit 1A in the same manner as the switching circuit 1 of the semiconductor device A1.
  • the semiconductor device A2 can suppress oscillation of the first drive signal even when the plurality of first switching elements 11A and the plurality of second switching elements 12A are switched by the common first drive signal. That is, the semiconductor device A2 can suppress malfunction of the plurality of first switching elements 11A and the plurality of second switching elements 12A. This also applies to the second switching circuit 1B. That is, the semiconductor device A2 can reduce power loss in the second switching circuit 1B. Furthermore, even when the plurality of first switching elements 11B and the plurality of second switching elements 12B are switched by the common second drive signal, the semiconductor device A2 can suppress oscillation of the second drive signal. Malfunctions of the plurality of first switching elements 11 and the plurality of second switching elements 12 can be suppressed.
  • the semiconductor device A3 is, for example, an IPM (Intelligent Power Module), and includes a drive circuit DR that outputs drive signals to the plurality of first switching elements 11 and the plurality of second switching elements 12 .
  • IPM Intelligent Power Module
  • the semiconductor device A3 includes a first switching circuit 1A, a second switching circuit 1B, a drive circuit DR, a resin member 2, a plurality of leads 3, a plurality of connection members 4, an insulating substrate 50, A wiring portion 59 and a plurality of passive elements 8 are provided.
  • the plurality of leads 3 as shown in FIG. 35.
  • the plurality of connecting members 4, as shown in FIG. 16, includes a plurality of first connecting members 41A, 41B and a plurality of second connecting members 421A, 422A, 421B, 422B.
  • the first switching circuit 1A includes one first switching element 11A and one second switching element 12A.
  • the electrical characteristics of the first switching element 11A and the second switching element 12A have the following relationships.
  • the voltage of the second switching element 12A is lower than the voltage of the first switching element 11A.
  • the threshold voltage of the second switching element 12A is higher than the threshold voltage of the first switching element 11A. It is within the range (range of -1.0 V or more and +0.4 V or less).
  • the second switching circuit 1B includes one first switching element 11B and one second switching element 12B.
  • the electrical characteristics of the first switching element 11B and the second switching element 12B have the following relationships.
  • the voltage of the second switching element 12B is lower than the voltage of the first switching element 11B.
  • the threshold voltage of the second switching element 12B is higher than the threshold voltage of the first switching element 11B. It is within the range (range of -1.0 V or more and +0.4 V or less).
  • the drive circuit DR controls the switching operation of the first switching circuit 1A (the switching operations of the first switching element 11A and the second switching element 12A), while controlling the switching operation of the second switching circuit 1B (the switching operations of the first switching element 11B and the switching element 12A). each switching operation of the second switching element 12B).
  • the drive circuit DR is arranged on the substrate main surface 50a. As shown in FIG. 16, the drive circuit DR is configured by, for example, an SOP (Small Outline Package) type package, and includes a resin package and a plurality of connection terminals.
  • SOP Small Outline Package
  • the package type of the drive circuit DR is not limited to the SOP type, and includes, for example, a QFP (Quad Flat Package) type, an SOJ (Small Outline J-lead Package) type, a QFN (Quad Flatpack No Lead) type, an SON (Small-Outline No Lead) type or the like.
  • the drive circuit DR includes a drive element 13.
  • the drive element 13 is covered with a resin package.
  • the drive element 13 generates a first drive signal and a second drive signal.
  • the driving element 13 is electrically connected to a plurality of connection terminals, and the plurality of connection terminals are connected to respective pad portions 591 (to be described later) via a conductive bonding material (for example, solder, metal paste, or sintered metal) (not shown). It is conductively joined to the wiring portion 59).
  • the drive element 13 is electrically connected to the third electrode 113 of the first switching element 11A through the wiring portion 59 and the second connection member 421A, and is electrically connected to the second switching element 113 through the wiring portion 59 and the second connection member 422A.
  • the drive element 13 inputs a common first drive signal to the third electrode 113 of the first switching element 11A and the sixth electrode 123 of the second switching element 12A.
  • the drive element 13 is electrically connected to the third electrode 113 of the first switching element 11B via the wiring portion 59 and the second connection member 421B, and is electrically connected to the third electrode 113 via the wiring portion 59 and the second connection member 422B. 2 conductive to the sixth electrode 123 of the switching element 12B.
  • the drive element 13 inputs a common second drive signal to the third electrode 113 of the first switching element 11B and the sixth electrode 123 of the second switching element 12B.
  • the driving element 13 may not be covered with a resin package.
  • the insulating substrate 50 of the semiconductor device A3 is flat like the insulating substrate 50 of the semiconductor device A2, and is made of ceramics, for example.
  • the insulating substrate 50 of the semiconductor device A3 is preferably made of a material having a higher thermal conductivity than the resin member 2, for example.
  • the insulating substrate 50 of the semiconductor device A3 includes a first switching circuit 1A, a second switching circuit 1B, a drive circuit DR, two first leads 31A and 31B, two second leads 32A and 32B, a plurality of passive elements 8, and the like. is installed.
  • a wiring portion 59 is formed on the main surface 50a of the substrate.
  • the substrate back surface 50 b is exposed from the resin member 2 (resin back surface 22 ), for example, but the substrate back surface 50 b may be covered with the resin member 2 .
  • the wiring portion 59 is formed on the main surface 50a of the substrate, as shown in FIGS.
  • Wiring portion 59 is made of a conductive material, and the constituent material of wiring portion 59 is, for example, silver or a silver alloy. Instead of silver or a silver alloy, copper or a copper alloy, gold or a gold alloy, or the like may be used as a constituent material of the wiring portion 59 .
  • the wiring portion 59 is formed by printing a paste material containing the above constituent materials and then firing the paste material. The method of forming the wiring portion 59 is not limited to this, and can be changed as appropriate according to the constituent materials used.
  • the wiring portion 59 is a conduction path to the drive circuit DR.
  • a control signal for controlling the first switching circuit 1A and the second switching circuit 1B flows through the wiring portion 59 .
  • the control signal includes a first drive signal, a second drive signal, a first detection signal, a second detection signal, and the like.
  • the wiring part 59 transmits the operating power of the drive circuit DR.
  • the wiring section 59 includes a plurality of pad sections 591 and a plurality of connection wirings 592, as shown in FIG.
  • the planar shape of each of the plurality of pad portions 591 is not particularly limited, but is, for example, a rectangular shape.
  • the plan view shape of each pad portion 591 may be circular, elliptical, or polygonal.
  • the plurality of pad portions 591 are separated from each other.
  • the plurality of pad portions 591 are portions to which other components are appropriately joined.
  • the plurality of pad portions 591 include the drive circuit DR, the plurality of passive elements 8, the plurality of fourth leads 34, the plurality of fifth leads 35, and the plurality of second connection members 421A, 422A, 421B, 422B. is joined.
  • a plurality of connection wirings 592 connect between a plurality of pad portions 591 .
  • the arrangement and shape of the plurality of pad portions 591 and the plurality of connection wirings 592 are not limited to the illustrated example.
  • Each of the plurality of passive elements 8 is arranged on the main surface 50a of the insulating substrate 50, as shown in FIG. Each passive element 8 is joined to each pad portion 591 (wiring portion 59 ) and electrically connected to the wiring portion 59 .
  • the multiple passive elements 8 are, for example, resistors, capacitors, coils, diodes, and the like.
  • the multiple passive elements 8 include, for example, multiple thermistors 8a and multiple resistors 8b.
  • Each of the plurality of thermistors 8 a is arranged across two pad portions 591 of the wiring portion 59 . Each thermistor 8a is electrically connected to these two pad portions 591. As shown in FIG. Each pad portion 591 is electrically connected to two fifth leads 35 via a connection wiring 592 . Each thermistor 8a outputs a current corresponding to the ambient temperature when a voltage is applied between the two fifth leads 35. As shown in FIG.
  • a plurality of resistors 8 b are arranged across two pad portions 591 of the wiring portion 59 . Each resistor 8b is electrically connected to these two pad portions 591. As shown in FIG. Of the two pad portions 591 to which each resistor 8b is joined, one pad portion 591 is electrically connected to the drive circuit DR (drive element 13), and the other pad portion 591 is connected to each of the second connection members 421A and 422A. , 421B, 422B to either the third electrode 113 of each first switching element 11A, 11B or the sixth electrode 123 of each second switching element 12A, 12B.
  • Each resistor 8b is, for example, a gate resistor. Unlike the illustrated example, the plurality of passive elements 8 may not include any of the respective resistors 8b.
  • the plurality of leads 3 includes two first leads 31A and 31B, two second leads 32A and 32B, a plurality of fourth leads 34 and a plurality of fifth leads 35.
  • the two first leads 31A, 31B, the two second leads 32A, 32B, the plurality of fourth leads 34 and the plurality of fifth leads 35 are separated from each other.
  • the two first leads 31A and 31B are supported by the resin member 2 and the insulating substrate 50 respectively.
  • Each of the two first leads 31A, 31B includes a die pad 311 and a terminal portion 314, as shown in FIG.
  • the die pad 311 and the terminal portion 314 are connected to each of the first leads 31A and 31B.
  • the die pad 311 is covered with the resin member 2 in each of the first leads 31A and 31B.
  • the die pad 311 is arranged on the substrate main surface 50a of the insulating substrate 50 and overlaps the insulating substrate 50 in plan view.
  • the die pad 311 has, for example, a rectangular shape in plan view.
  • the die pad 311 is bonded to the substrate main surface 50a with a bonding material (not shown).
  • a metal layer may be provided on the substrate main surface 50a to which the die pad 311 is bonded. By using the same material as the wiring part 59 for the metal layer, the metal layer can be collectively formed together with the formation of the wiring part 59 .
  • the first switching element 11A and the second switching element 12A of the first switching circuit 1A are mounted on the die pad 311 of the first lead 31A.
  • the die pad 311 of the first lead 31A is electrically connected to the first electrode 111 of the first switching element 11A and the fourth electrode 121 of the second switching element 12A. Therefore, the first electrode 111 (collector) of the first switching element 11A and the fourth electrode 121 (drain) of the second switching element 12A are electrically connected through the die pad 311 of the first lead 31A.
  • the first switching element 11B and the second switching element 12B of the second switching circuit 1B are mounted on the die pad 311 of the first lead 31B.
  • the die pad 311 of the first lead 31B is electrically connected to the first electrode 111 of the first switching element 11B and the fourth electrode 121 of the second switching element 12B. Therefore, the first electrode 111 (collector) of the first switching element 11B and the fourth electrode 121 (drain) of the second switching element 12B are electrically connected through the die pad 311 of the first lead 31B.
  • the terminal portion 314 is exposed from the resin member 2 in each of the first leads 31A and 31B.
  • the terminal portion 314 is bent upward in the thickness direction z.
  • the terminal portion 314 is an external terminal of the semiconductor device A3.
  • the two second leads 32A, 32B are supported by the resin member 2 respectively.
  • Each of the two second leads 32A, 32B includes a pad portion 321 and a terminal portion 322. As shown in FIG. The pad portion 321 and the terminal portion 322 are connected to each of the second leads 32A and 32B.
  • the pad portion 321 of each of the second leads 32A and 32B is covered with the resin member 2.
  • the pad section 321 does not overlap the insulating substrate 50 in plan view.
  • a plurality of first connecting members 41A are joined to the pad portion 321 of the second lead 32A.
  • the pad portion 321 of the second lead 32A is electrically connected to the second electrode 112 (emitter) of the first switching element 11A and the fifth electrode 122 (source) of the second switching element 12A through each first connecting member 41A.
  • a plurality of first connecting members 41B are joined to the pad portion 321 of the second lead 32B.
  • the pad portion 321 of the second lead 32B is electrically connected to the second electrode 112 (emitter) of the first switching element 11B and the fifth electrode 122 (source) of the second switching element 12B through each first connecting member 41B. .
  • the terminal portion 322 is exposed from the resin member 2 in each of the second leads 32A and 32B.
  • the terminal portion 322 is bent upward in the thickness direction z.
  • the terminal portion 322 is an external terminal of the semiconductor device A3.
  • the second lead 32A and the first lead 31B are, for example, physically separated and electrically connected on the circuit board on which the semiconductor device A3 is mounted. Different from this example, the second lead 32A and the first lead 31B may be electrically connected inside the resin member 2 .
  • the semiconductor device A3 has a first lead 31A as a first conductor and a second lead 32A as a second conductor for the first switching circuit 1A.
  • the semiconductor device A3 also includes a first lead 31B as a first conductor and a second lead 32B as a second conductor for the second switching circuit 1B.
  • Each fourth lead 34 includes a pad portion 341 and a terminal portion 342, as shown in FIG. In each fourth lead 34, the pad portion 341 and the terminal portion 342 are connected.
  • Each pad portion 341 is covered with the resin member 2 .
  • Each pad portion 341 is arranged on the substrate main surface 50a of the insulating substrate 50 and overlaps the insulating substrate 50 in plan view.
  • Each pad portion 341 is bonded to one of the plurality of pad portions 591 by a conductive bonding material (not shown).
  • the pad portion 591 to which the pad portion 341 is joined is electrically connected to the driving circuit DR (driving element 13 ) via one of the plurality of connection wirings 592 .
  • Each terminal portion 342 is exposed from the resin member 2 . Each terminal portion 342 is bent upward in the thickness direction z. Each terminal portion 342 is an external terminal of the semiconductor device A3. Each terminal portion 342 is an input terminal for various control signals to the drive circuit DR, an output terminal for control signals from the drive circuit DR, or an input terminal for operating power of the drive circuit DR.
  • the plurality of fifth leads 35 are respectively supported by the resin member 2 and supported by the insulating substrate 50 . Each fifth lead 35 conducts to each thermistor 8a. In this embodiment, two fifth leads 35 are provided for each of the two thermistors 8a. That is, the semiconductor device A3 has three fifth leads 35 . Each fifth lead 35 includes a pad portion 351 and a terminal portion 352, as shown in FIG. In each fifth lead 35, the pad portion 351 and the terminal portion 352 are electrically connected.
  • Each pad portion 351 is covered with the resin member 2 .
  • Each pad portion 351 is arranged on the substrate main surface 50a of the insulating substrate 50 and overlaps the insulating substrate 50 in plan view.
  • Each pad portion 351 is bonded to one of the plurality of pad portions 591 by a conductive bonding material (not shown).
  • the pad portion 591 to which the pad portion 351 is joined is electrically connected to one of the two thermistors 8a through one of the plurality of connection wirings 592. As shown in FIG. Therefore, each pad portion 351 is electrically connected to each thermistor 8a through the wiring portion 59. As shown in FIG.
  • Each terminal portion 352 is exposed from the resin member 2 . Each terminal portion 352 is bent upward in the thickness direction z. Each terminal portion 352 overlaps each terminal portion 342 when viewed in the first direction x. Each terminal portion 352 is an external terminal of the semiconductor device A3. Each terminal portion 352 is a temperature detection terminal.
  • the plurality of first connection members 41A are respectively joined to the second electrode 112 of the first switching element 11A, the fifth electrode 122 of the second switching element 12A and the pad portion 321 of the second lead 32A.
  • the second electrode 112 (emitter) of the first switching element 11A and the fifth electrode 122 (source) of the second switching element 12A are electrically connected through each first connection member 41A.
  • the plurality of first connection members 41B are respectively joined to the second electrode 112 of the first switching element 11B, the fifth electrode 122 of the second switching element 12B and the pad portion 321 of the second lead 32B.
  • the second electrode 112 (emitter) of the first switching element 11B and the fifth electrode 122 (source) of the second switching element 12B are electrically connected through each first connecting member 41B.
  • the second connection member 421A is joined to either the third electrode 113 of the first switching element 11A or the plurality of pad portions 591.
  • the second connection member 422A is joined to the sixth electrode 123 of the second switching element 12A and the pad portion 591 to which the second connection member 421A is joined.
  • the pad portion 591 to which the two second connection members 421A and 422A are joined is electrically connected to the drive circuit DR (drive element 13) via the connection wiring 592 and the resistor 8b.
  • the second connection member 421B is joined to either the third electrode 113 of the first switching element 11B or the plurality of pad portions 591.
  • the second connection member 422B is joined to the sixth electrode 123 of the second switching element 12B and the pad portion 591 to which the second connection member 421B is joined.
  • the pad portion 591 to which the two second connection members 421B and 422B are joined is electrically connected to the drive circuit DR (drive element 13) via the connection wiring 592 and the resistor 8b.
  • the first switching circuit 1A is configured similarly to the switching circuit 1 of the semiconductor device A1. Thereby, the semiconductor device A3 can suppress power loss in the first switching circuit 1A. Furthermore, the semiconductor device A3 can suppress oscillation of the first drive signal even when the first switching element 11A and the second switching element 12A are switched by the common first drive signal. That is, the semiconductor device A2 can suppress malfunction of the first switching element 11A and the second switching element 12A. This also applies to the second switching circuit 1B. That is, the semiconductor device A3 can suppress power loss in the second switching circuit 1B. Furthermore, the semiconductor device A3 can suppress vibration of the second drive signal even when the first switching element 11B and the second switching element 12B are switched by the common second drive signal. That is, the semiconductor device A3 can suppress malfunction of the first switching element 11B and the second switching element 12B.
  • the semiconductor device A3 includes one first switching circuit 1A and one second switching circuit 1B is shown.
  • a semiconductor device different from this example may include three each of the first switching circuits 1A and the second switching circuits 1B.
  • Such a semiconductor device is configured, for example, as a three-phase inverter that drives a three-phase motor.
  • the semiconductor device according to the present disclosure is not limited to the above-described embodiments.
  • the specific configuration of each part of the semiconductor device of the present disclosure can be changed in various ways.
  • the present disclosure includes the embodiments set forth in the Appendix below. Appendix 1.
  • the switching circuit includes a first switching element and a second switching element electrically connected in parallel;
  • the first switching element is an IGBT, the second switching element is a MOSFET, when the current flowing through the switching circuit is less than the first current value, the voltage of the second switching element is lower than that of the first switching element;
  • the threshold voltage of the second switching element is ⁇ 1.0 V or more and +0.4 V with respect to the threshold voltage of the first switching element.
  • the third current value is equal to or less than the rated current of the switching circuit;
  • the semiconductor device wherein the first current value is less than the third current value.
  • the first switching element comprises a first semiconductor material, The semiconductor device according to appendix 1, wherein the second switching element includes a second semiconductor material having a wider bandgap than the first semiconductor material.
  • Appendix 3. the first semiconductor material is Si, The semiconductor device according to appendix 2, wherein the second semiconductor material is SiC.
  • Appendix 4. 3. The semiconductor device according to any one of appendices 1 to 3, wherein the first current value is 1 ⁇ 5 of the rated current. Appendix 5.
  • the first switching element has a first electrode, a second electrode, and a third electrode, and is on/off controlled between the first electrode and the second electrode by the drive signal input to the third electrode;
  • the second switching element has a fourth electrode, a fifth electrode, and a sixth electrode, and the drive signal input to the sixth electrode controls ON/OFF between the fourth electrode and the fifth electrode, the first electrode and the fourth electrode are electrically connected,
  • the semiconductor device according to appendix 8 wherein the second electrode and the fifth electrode are electrically connected.
  • Appendix 10. 10 The semiconductor device according to appendix 9, further comprising a drive circuit that inputs the drive signal to each of the third electrode and the sixth electrode. Appendix 11.
  • the first switching element has a first element main surface and a first element back surface that are spaced apart in the thickness direction of the first switching element,
  • the first electrode is arranged on the back surface of the first element
  • the semiconductor device according to appendix 9 or appendix 10 wherein the second electrode and the third electrode are arranged on the main surface of the first element.
  • the second switching element has a second element main surface and a second element back surface that are spaced apart in the thickness direction of the second switching element, the fourth electrode is arranged on the main surface of the second element, 12.
  • Appendix 13
  • the thickness direction of the first switching element and the thickness direction of the second switching element are the same direction, 13.
  • Appendix 14. a first conductor on which the first switching element and the second switching element are mounted and which faces the back surface of the first element and the back surface of the second element, respectively; a second conductor spaced apart from the first conductor; is further equipped with The first conductor is joined to the first electrode and the fourth electrode, 14.
  • Appendix 15. the switching circuit includes a first switching circuit and a second switching circuit; 15.
  • each of said first switching circuit and said second switching circuit includes said first switching element and said second switching element.
  • A1, A2, A3 semiconductor device 1: switching circuit 1A: first switching circuit 1B: second switching circuit 11, 11A, 11B: first switching element 11a: first element main surface 11b: first element rear surface 111: second 1 electrode 112: second electrode 113: third electrode 12, 12A, 12B: second switching element 12a: second element main surface 12b: second element back surface 121: fourth electrode 122: fifth electrode 123: sixth electrode 13: Drive element 2: Resin member 21: Resin main surface 22: Resin back surface 23: First resin side surface 24: Second resin side surface 3: Leads 31, 31A, 31B: First lead 311: Die pad 312: Extension part 313 : projecting portion 314: terminal portion 32, 32A, 32B: second lead 321: pad portion 322: terminal portion 33: third lead 331: pad portion 332: terminal portion 34: fourth lead 341: pad portion 342: terminal portion 35: fifth lead 351: pad portion 352: terminal portion 4: connection members 411, 412: first connection members 411A, 411B,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Conversion In General (AREA)

Abstract

半導体装置は、導通状態と遮断状態とが切り替わるスイッチング回路を備える。前記スイッチング回路は、電気的に並列に接続された第1スイッチング素子および第2スイッチング素子を含む。前記第1スイッチング素子はIGBTであり、前記第2スイッチング素子はMOSFETである。前記スイッチング回路に流れる電流が第1電流値未満であるとき、前記第2スイッチング素子は、前記第1スイッチング素子よりも電圧が低い。前記スイッチング回路の電流が第2電流値以上第3電流値以下であるとき、前記第2スイッチング素子の閾値電圧は、前記第1スイッチング素子の閾値電圧に対して、-1.0V以上+0.4V以下の範囲内である。前記第3電流値は、前記スイッチング回路の定格電流以下である。前記第1電流値は、前記第3電流値未満である。

Description

半導体装置
 本開示は、半導体装置に関する。
 従来、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor)などのスイッチング素子を備える半導体装置が知られている。たとえば、特許文献1には、MOSFETまたはIGBTのいずれかのスイッチング素子を備えるパワーモジュール(半導体装置)が開示されている。このようなパワーモジュールは、たとえばインバータに用いられており、スイッチング素子のスイッチング動作により、電力変換を行う。
特開2018-174252号公報
 上記パワーモジュールの電力変換には、スイッチング素子におけるスイッチング損失および定常損失などの電力損失が伴う。そのため、パワーモジュールの電力変換効率の向上には、電力損失の低減が求められる。
 本開示は、上記事情に鑑みて考え出されたものであり、電力損失の低減を図った半導体装置を提供することを一の課題とする。
 本開示の半導体装置は、導通状態と遮断状態とが切り替わるスイッチング回路を備えており、前記スイッチング回路は、電気的に並列に接続された第1スイッチング素子および第2スイッチング素子を含む。前記第1スイッチング素子は、IGBTであり、前記第2スイッチング素子は、MOSFETである。前記スイッチング回路に流れる電流が第1電流値未満であるとき、前記第2スイッチング素子は、前記第1スイッチング素子よりも電圧が低い。前記スイッチング回路の電流が第2電流値以上第3電流値以下であるとき、前記第2スイッチング素子の閾値電圧は、前記第1スイッチング素子の閾値電圧に対して、-1.0V以上+0.4V以下の範囲内である。前記第3電流値は、前記スイッチング回路の定格電流以下である。前記第1電流値は、前記第3電流値未満である。
 本開示の上記構成によれば、半導体装置において、電力損失を低減させることができる。
図1は、第1実施形態にかかる半導体装置を示す平面図である。 図2は、図1の平面図において、樹脂部材を想像線で示した図である。 図3は、第1実施形態にかかる半導体装置を示す底面図である。 図4は、図2のIV-IV線に沿う断面図である。 図5は、第1実施形態にかかる半導体装置の回路構成例を示す図である。 図6は、シミュレーションで用いた第2スイッチング素子および第1スイッチング素子の閾値電圧特性を示す図である。 図7は、ターンオフ時の駆動信号の変化を示したシミュレーション結果である。 図8は、ターンオン時の駆動信号の変化を示したシミュレーション結果である。 図9は、第2実施形態にかかる半導体装置を示す斜視図である。 図10は、図9の斜視図において、ケースおよび放熱板を省略した図である。 図11は、第2実施形態にかかる半導体装置を示す平面図であって、ケースを想像線(二点鎖線)で示した図である。 図12は、図11の一部を拡大した図である。 図13は、図11の一部を拡大した図である。 図14は、図11のXIV-XIV線に沿う断面図である。 図15は、第3実施形態にかかる半導体装置を示す斜視図である。 図16は、第3実施形態にかかる半導体装置を示す平面図であって、樹脂部材を想像線(二点鎖線)で示した図である。 図17は、図16のXVII-XVII線に沿う断面図である。
 本開示の半導体装置の好ましい実施の形態について、図面を参照して、以下に説明する。以下では、同一あるいは類似の構成要素には同じ符号を付して、重複する説明を省略する。本開示における「第1」、「第2」、「第3」等の用語は、単にラベルとして用いたものであり、必ずしもそれらの対象物に順列を付することを意図していない。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B(の)上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B(の)上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B(の)上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B(の)上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B(の)上に位置していること」を含む。また、「ある方向に見てある物Aがある物Bに重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。
 図1~図5は、第1実施形態にかかる半導体装置A1を示している。半導体装置A1は、スイッチング回路1、樹脂部材2、複数のリード3および複数の接続部材4を備えている。スイッチング回路1は、第1スイッチング素子11および第2スイッチング素子12を含む。複数のリード3は、第1リード31、第2リード32および第3リード33を含む。複数の接続部材4は、複数の第1接続部材411,412および一対の第2接続部材421,422を含む。
 図1~図4に示す例では、半導体装置A1は、たとえば表面実装型のパッケージ構造であるが、リード挿通型のパッケージ構造であってもよい。半導体装置A1は、TO(Transistor Outline)パッケージであるが、SOP(Small Outline Package)、リードレスパッケージなどの他のパッケージであってもよい。
 説明の便宜上、第1スイッチング素子11および第2スイッチング素子12の各々の厚さ方向を「厚さ方向z」という。以下の説明において、「平面視」とは、厚さ方向zに沿って見たときをいう。厚さ方向zに対して直交する1つの方向を「第1方向x」という。第1方向xは、たとえば、半導体装置A1の平面図(図1および図2参照)における左右方向である。厚さ方向zおよび第1方向xに直交する方向を「第2方向y」という。第2方向yは、たとえば、半導体装置A1の平面図(図1および図2参照)における上下方向である。
 スイッチング回路1は、半導体装置A1の電気的機能を発揮する要素である。スイッチング回路1は、図5に示すように、半導体装置A1の外部に設置される駆動回路DRによって制御され、導通状態と遮断状態とが切り替わる。本開示において、導通状態から遮断状態に切り替わる過渡期をターンオフ、遮断状態から導通状態に切り替わる過渡期をターンオンという。また、ターンオン後からターンオフ前までの導通状態を、定常状態という。半導体装置A1は、使用電流がスイッチング回路1の定格電流を超えない範囲で使用される。使用電流とは、スイッチング回路1に流す電流であって、スイッチング回路1が定常状態のときにスイッチング回路1に流れる電流である。定格電流とは、半導体装置A1の使用条件を規定するものであり、半導体装置A1(スイッチング回路1)を安全に使用できる最大電流(許容電流)である。使用電流が定格電流を超える場合には、半導体装置A1(スイッチング回路1)に故障または破壊が生じうる。
 スイッチング回路1は、上述の通り、第1スイッチング素子11および第2スイッチング素子12を含む。
 第1スイッチング素子11は、たとえばIGBTである。第1スイッチング素子11は、第1半導体材料を含んで構成される。当該第1半導体材料は、たとえばSi(シリコン)である。第1半導体材料は、Siではなく、SiC(シリコンカーバイド)、GaAs(ヒ化ガリウム)、GaN(窒化ガリウム)、あるいは、Ga23(酸化ガリウム)などでもよい。第1スイッチング素子11は、平面視矩形状である。
 第1スイッチング素子11は、図4に示すように、第1素子主面11aおよび第1素子裏面11bを有する。第1素子主面11aおよび第1素子裏面11bは、厚さ方向zにおいて互いに離間する。第1素子主面11aは、厚さ方向zの一方(上方)を向き、第1素子裏面11bは、厚さ方向zの他方(下方)を向く。
 第1スイッチング素子11は、第1電極111、第2電極112および第3電極113を有する。第1電極111は、コレクタである。第2電極112は、エミッタである。第3電極113は、ゲートである。第1電極111は、第1素子裏面11bに配置され、第2電極112および第3電極113は、第1素子主面11aに配置されている。図2に示すように、第2電極112および第3電極113は、互いに離間する。
 第1スイッチング素子11は、第3電極113に駆動信号(ゲート電圧)が入力される。第1スイッチング素子11は、入力される駆動信号に応じて導通状態と遮断状態とが切り替わる。この導通状態と遮断状態とが切り替わる動作をスイッチング動作という。導通状態では、第1電極111(コレクタ)から第2電極112(エミッタ)に電流が流れ、遮断状態ではこの電流が流れない。つまり、第1スイッチング素子11は、第3電極113に入力される駆動信号によって、第1電極111および第2電極112間がオンオフ制御される。以下では、第1電極111および第2電極112間に印加される電圧のことを簡略に「第1スイッチング素子11の電圧」などという。
 第2スイッチング素子12は、たとえばMOSFETである。第2スイッチング素子12は、第2半導体材料を含んで構成される。当該第2半導体材料は、第1半導体材料よりもバンドギャップが広く、たとえばSiCである。第2半導体材料は、SiCではなく、Si、GaAs、GaN、あるいは、Ga23などでもよい。第2スイッチング素子12は、平面視矩形状である。図2に示す例では、第2スイッチング素子12の平面視面積は、第1スイッチング素子11の平面視面積よりも小さい。なお、これらの平面視面積の関係は、図2に示す例に限定されない。
 第2スイッチング素子12は、図4に示すように、第2素子主面12aおよび第2素子裏面12bを有する。第2素子主面12aおよび第2素子裏面12bは、厚さ方向zにおいて互いに離間する。第2素子主面12aは、厚さ方向zの一方(上方)を向き、第2素子裏面12bは、厚さ方向zの他方(下方)を向く。第2素子主面12aは、第1素子主面11aと同じ方向を向き、第2素子裏面12bは、第1素子裏面11bと同じ方向を向く。
 第2スイッチング素子12は、第4電極121、第5電極122および第6電極123を有する。第4電極121は、ドレインである。第5電極122は、ソースである。第6電極123はゲートである。第4電極121は、第2素子裏面12bに配置され、第5電極122および第6電極123は、第2素子主面12aに配置されている。図2に示すように、第5電極122および第6電極123は、互いに離間する。
 第2スイッチング素子12は、第6電極123に駆動信号(ゲート電圧)が入力される。第6電極123に入力される駆動信号は、第3電極113に入力される駆動信号と共通である。第2スイッチング素子12は、入力される駆動信号に応じて導通状態と遮断状態とが切り替わる(スイッチング動作する)。導通状態では、第4電極121(ドレイン)から第5電極122(ソース)に電流が流れ、遮断状態ではこの電流が流れない。つまり、第2スイッチング素子12は、第6電極123に入力される駆動信号によって、第4電極121および第5電極122間がオンオフ制御される。以下では、第4電極121および第5電極122間に印加される電圧のことを簡略に「第2スイッチング素子12の電圧」などという。
 スイッチング回路1では、後に詳述される構成によって、第1電極111(コレクタ)と第4電極121(ドレイン)とが電気的に接続され、且つ、第2電極112(エミッタ)と第5電極122(ソース)とが電気的に接続される。これにより、図5に示すように、第1スイッチング素子11と第2スイッチング素子12とが、電気的に並列に接続される。スイッチング回路1は、第1スイッチング素子11および第2スイッチング素子12の少なくとも一方が導通状態であるときに導通状態となり、第1スイッチング素子11および第2スイッチング素子12の両方が遮断状態であるときに遮断状態となる。第1スイッチング素子11および第2スイッチング素子12の両方が導通状態であるとき、スイッチング回路1に入力される電流は、第1スイッチング素子11および第2スイッチング素子12に分配される。
 第1スイッチング素子11と第2スイッチング素子12とは、互いに電気的特性が異なっており、半導体装置A1では、次に示す電気的特性がある2つの素子が採用される。すなわち、スイッチング回路1に流れる電流(より正確には各スイッチング素子に流れる電流)が、第1電流値未満であるとき、第2スイッチング素子12の電圧は、第1スイッチング素子11の電圧よりも低く、第2スイッチング素子12は第1スイッチング素子11よりも低抵抗である。また、スイッチング回路1に流れる電流が第2電流値以上第3電流値以下であるとき、第2スイッチング素子12の閾値電圧は、第1スイッチング素子11の閾値電圧に対して、-1.0V以上+0.4V以下の範囲内である。以下では、この範囲を「閾値設定範囲」という。スイッチング回路1に流れる電流が第2電流値以上第3電流値以下のとき、たとえば、第1スイッチング素子11の閾値電圧は、7V以上7.5V以下であり、第2スイッチング素子12の閾値電圧は、6V以上7.9V以下(第1スイッチング素子11の閾値電圧の-1.0V以上+0.4V以下)である。第1電流値、第2電流値および第3電流値はそれぞれ、スイッチング回路1の定格電流よりも小さい。また、第1電流値は、第3電流値より小さい。半導体装置A1では、第1電流値は、たとえばスイッチング回路1の定格電流の1/5である。第2電流値は、たとえば第1電流値と同じであり、スイッチング回路1の定格電流の1/5である。第3電流値は、たとえばスイッチング回路1の定格電流の3/5である。つまり、半導体装置A1では、第1スイッチング素子11と第2スイッチング素子12との各電気的特性が次の2点を満たすように設定されている。1点目は、スイッチング回路1に流れる電流が半導体装置A1(スイッチング回路1)の定格電流の1/5未満の電流域においては、第2スイッチング素子12の電圧が、第1スイッチング素子11の電圧よりも大きい。2点目は、スイッチング回路1に流れる電流が半導体装置A1の定格電流の1/5以上3/5以下の電流域において、第2スイッチング素子12の閾値電圧が、第1スイッチング素子11の閾値電圧に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。なお、上述した例では、第1電流値と第2電流値とが同じであるが、これらは同じでなくてもよい。半導体装置A1では、上記使用電流を第1電流値以上の値としている。
 樹脂部材2は、スイッチング回路1を保護する封止材である。樹脂部材2は、スイッチング回路1、複数のリード3の各々の一部、および、複数の接続部材4をそれぞれ覆う。樹脂部材2は、たとえば絶縁性樹脂材料により構成される。当該絶縁性樹脂材料は、たとえばエポキシ樹脂である。樹脂部材2は、樹脂主面21、樹脂裏面22、一対の第1樹脂側面23および一対の第2樹脂側面24を有する。
 樹脂主面21および樹脂裏面22は、図4に示すように、厚さ方向zに離間する。樹脂主面21は、厚さ方向zの一方(上方)を向き、樹脂裏面22は、厚さ方向zの他方(下方)を向く。一対の第1樹脂側面23および一対の第2樹脂側面24はそれぞれ、厚さ方向zにおいて、樹脂主面21および樹脂裏面22に挟まれ、これらに繋がる。一対の第1樹脂側面23は、図1に示すように、第1方向xに離間する。一対の第1樹脂側面23は、第1方向xにおいて互いに反対側を向く。一対の第1樹脂側面23の一方(たとえば図1における上側の第1樹脂側面23)から、第2リード32および第3リード33の一部が突き出ている。一対の第2樹脂側面24は、図1に示すように、第2方向yに離間する、一対の第2樹脂側面24は、第2方向yにおいて互いに反対側を向く。
 複数のリード3は、第1スイッチング素子11および第2スイッチング素子12を支持するとともに、第1スイッチング素子11および第2スイッチング素子12に導通する。複数のリード3の各構成材料は、たとえば銅(Cu)を含む。複数のリード3の各構成材料は、Cuの代わりに、アルミニウム、鉄(Fe)、無酸素銅、またはこれらの合金(たとえば、Cu-Sn合金、Cu-Zr合金、Cu-Fe合金等)が採用されてもよい。複数のリード3のそれぞれには、ニッケル(Ni)めっきが施されていてもよい。複数のリード3は、上述の通り、第1リード31、第2リード32および第3リード33を有する。第1リード31、第2リード32および第3リード33は、互いに離間する。第1リード31、第2リード32および第3リード33は、たとえばエッチングおよび打ち抜き等のパターンニングが施された金属製のリードフレームを適宜切断することにより形成される。
 第1リード31は、第1スイッチング素子11の第1電極111(コレクタ)および第2スイッチング素子12の第4電極121(ドレイン)に導通する。第1リード31は、ダイパッド311、延出部312および突出部313を含む。
 ダイパッド311は、第1スイッチング素子11および第2スイッチング素子12が接合される。ダイパッド311は、第1スイッチング素子11の第1素子裏面11bおよび第2スイッチング素子12の第2素子裏面12bに対向する。ダイパッド311は、第1電極111(コレクタ)および第4電極121(ドレイン)が接合され、これらに導通する。第1電極111と第4電極121とはダイパッド311を介して電気的に接続される。ダイパッド311は、平坦な板状部分である。図4に示すように、ダイパッド311は、厚さ方向zにおいて第1スイッチング素子11および第2スイッチング素子12が接合された面と反対側を向く面(厚さ方向zの下方を向く面)が樹脂部材2から露出する。ダイパッド311は、スイッチング回路1の入力端であり、半導体装置A1における電流入力端子である。
 延出部312および突出部313はそれぞれ、ダイパッド311に繋がる。延出部312および突出部313は、第2方向yにおいて、ダイパッド311を挟んで互いに反対側に位置する。延出部312は、樹脂部材2から第2方向yの一方側に突き出ており、突出部313は、樹脂部材2から第2方向yの他方側に突き出ている。突出部313は、第1方向xにおいて、第2リード32と第3リード33との間に位置する。
 第2リード32は、第1スイッチング素子11の第2電極112(エミッタ)および第2スイッチング素子12の第5電極122(ソース)に導通する。第2リード32は、パッド部321および端子部322を含む。
 パッド部321は、図2に示すように、複数の第1接続部材411が接合され、複数の第1接続部材411を介して、第1スイッチング素子11の第2電極112(エミッタ)に導通する。また、パッド部321は、図2に示すように、複数の第1接続部材412が接合され、複数の第1接続部材412を介して、第2スイッチング素子12の第5電極122(ソース)に導通する。第2電極112と第5電極122とは、複数の第1接続部材411,412および第2リード32を介して電気的に接続される。
 端子部322は、図2に示すように、パッド部321に繋がる。端子部322は、パッド部321に導通し、樹脂部材2から露出する。端子部322は、樹脂部材2から第2方向yの一方側に突き出る。端子部322が突き出る方向は、第2方向yにおいて、ダイパッド311に対して突出部313が位置する側である。端子部322は、スイッチング回路1の出力端であり、半導体装置A1における電流出力端子である。
 第3リード33は、第1スイッチング素子11の第3電極113(ゲート)および第2スイッチング素子12の第6電極123(ゲート)に導通する。第3リード33は、パッド部331および端子部332を含む。
 パッド部331は、図2に示すように、第2接続部材421が接合され、第2接続部材421を介して、第1スイッチング素子11の第3電極113(ゲート)に導通する。また、パッド部331は、図2に示すように、第2接続部材422が接合され、第2接続部材422を介して、第2スイッチング素子12の第6電極123(ゲート)に導通する。
 端子部332は、図2に示すように、パッド部331に繋がる。端子部332は、パッド部331に導通し、樹脂部材2から露出する。端子部332は、樹脂部材2から第2方向yの一方側に突き出る。端子部332が突き出る方向は、第2方向yにおいて、ダイパッド311に対して突出部313が位置する側である。端子部332は、半導体装置A1における駆動信号の入力端子である。端子部332は、半導体装置A1外部の駆動回路DRに接続される。駆動信号は、駆動回路DRから半導体装置A1に入力される。
 半導体装置A1は、スイッチング回路1に対して、第1導電体としての第1リード31を備え、第2導電体としての第2リード32を備える。
 複数の接続部材4はそれぞれ、互いに離間する2つの部位間を導通させる。複数の接続部材4はそれぞれ、たとえばボンディングワイヤである。複数の接続部材4は、複数の第1接続部材411,412および一対の第2接続部材421,422を含む。
 複数の第1接続部材411はそれぞれ、図2に示すように、第1スイッチング素子11の第2電極112と第2リード32のパッド部321とに接合される。これにより、第2リード32は、各第1接続部材411を介して、第2電極112(エミッタ)に導通する。複数の第1接続部材412はそれぞれ、図2に示すように、第2スイッチング素子12の第5電極122と第2リード32のパッド部321とに接合される。これにより、第2リード32は、各第1接続部材412を介して、第5電極122(ソース)に導通する。
 第2接続部材421は、図2に示すように、第1スイッチング素子11の第3電極113と第3リード33のパッド部331とに接合される。これにより、第3リード33は、第2接続部材421を介して、第3電極113(ゲート)に導通する。第2接続部材422は、図2に示すように、第2スイッチング素子12の第6電極123と第3リード33のパッド部331とに接合される。これにより、第3リード33は、第2接続部材422を介して、第6電極123(ゲート)に導通する。
 半導体装置A1の作用および効果は、次の通りである。
 半導体装置A1は、スイッチング回路1を備える。スイッチング回路1は、第1スイッチング素子11および第2スイッチング素子12を含む。第1スイッチング素子11は、IGBTであり、第2スイッチング素子12は、MOSFETである。一般的に、MOSFETとIGBTとは、物性および構造の違いにより、次のような電気的特性を示すことが知られている。たとえば、MOSFETは、IGBTよりもスイッチング速度が速く、IGBTよりもスイッチング損失が小さい。スイッチング損失は、各スイッチング素子のスイッチング時(ターンオン時またはターンオフ時)に生じる損失である。一方、IGBTは、大電流域において、MOSFETよりもオン抵抗が小さく、MOSFETよりも定常損失が小さい。定常損失は、各スイッチング素子の定常状態(導通状態)時に生じる損失であり、各スイッチング素子のオン抵抗による損失である。そこで、半導体装置A1では、第1スイッチング素子11および第2スイッチング素子12を、互いに電気的に並列に接続し、且つ、第1スイッチング素子11および第2スイッチング素子12の各電気的特性を、次の2点を満たす関係にした。1点目は、スイッチング回路1に流れる電流が第1電流値未満であるとき、第2スイッチング素子12は、第1スイッチング素子11よりも電圧が低いことである。2点目は、スイッチング回路1の電流が第2電流値以上第3電流値以下であるとき、第2スイッチング素子12の閾値電圧は、第1スイッチング素子11の閾値電圧に対して-1.0V以上+0.4V以下の範囲(閾値設定範囲)内であることである。この構成をとることで、スイッチング回路1のスイッチング時(ターンオンおよびターンオフ)では、第2スイッチング素子12(MOSFET)に多くの電流が流れるようになり、スイッチング損失を低減できる。また、スイッチング回路1が定常状態の時では、第1スイッチング素子11(IGBT)に多くの電流が流れるようになり、定常損失を低減できる。したがって、半導体装置A1は、スイッチング損失および定常損失の双方を低減し、電力損失を低減できる。つまり、半導体装置A1は、変換効率を向上させることが可能となる。
 半導体装置A1では、第1スイッチング素子11および第2スイッチング素子12に共通の駆動信号が入力される。上述の通り、IGBTとMOSFETとは、電気的特性が異なるため、共通の駆動信号で並列動作させた場合、当該駆動信号に振動が生じることがある。この駆動信号の振動は、たとえばターンオン時またはターンオフ時に発生し、IGBTおよびMOSFETの誤動作の要因である。そこで、半導体装置A1では、第1スイッチング素子11と第2スイッチング素子12の各電気的特性を上記関係にすることで、共通の駆動信号を入力する場合であっても、駆動信号の振動が抑制され、第1スイッチング素子11および第2スイッチング素子12(延いてはスイッチング回路1)の誤動作を抑制できる。このような駆動信号の振動の抑制について、シミュレーションにより検証した。
 シミュレーションでは、閾値電圧特性が異なる3つの第2スイッチング素子12(MOSFET)を用いて、ターンオフ時の駆動信号の時間変化、および、ターンオン時の駆動信号の時間変化をそれぞれ示した。説明の便宜上、3つの第2スイッチング素子12を、第2スイッチング素子12x、第2スイッチング素子12y、第2スイッチング素子12zとする。3つの第2スイッチング素子12x,12y,12z(MOSFET)の各閾値電圧特性、および、第1スイッチング素子11(IGBT)の閾値電圧特性を、図6に示す。図6において、横軸は閾値電圧であり、縦軸はスイッチング回路1に流れる電流である。図6において、上記閾値設定範囲の例である定格電流の1/5以上3/5以下の範囲は、定格電流を100Aとすると、縦軸の20A以上60A以下の範囲に相当する。シミュレーションでは、スイッチング回路1に流れる電流が40Aであるときの駆動電圧の時間変化を検証した。当該電流が40Aであるとき、第2スイッチング素子12xの閾値電圧は、上記閾値設定範囲内であり、第2スイッチング素子12yの閾値電圧は、上記閾値設定範囲の下限値を下回っており、第2スイッチング素子12zの閾値電圧は、上記閾値設定範囲の上限値を上回っている。
 図7および図8は、上記シミュレーション条件におけるシミュレーション結果である。図7は、ターンオフ時の駆動信号の時間変化を示している。図8は、ターンオン時の駆動信号の時間変化を示している。図7および図8の各図において、横軸は時間であり、縦軸は駆動信号の電圧値である。図7および図8の各図において、上段は、第2スイッチング素子12xを用いた場合の結果であり、中段は、第2スイッチング素子12yを用いた場合の結果であり、下段は、第2スイッチング素子12zを用いた場合の結果である。
 図7に示すように、ターンオフ時においては、第2スイッチング素子12zを用いた場合、駆動信号の振動が大きく、これに対して、第2スイッチング素子12xおよび12yを用いた場合、駆動信号の振動が相対的に抑えられている。一方、図8に示すように、ターンオン時においては、第2スイッチング素子12yを用いた場合、駆動信号の振動が大きく、これに対して、第2スイッチング素子12xおよび第2スイッチング素子12zを用いた場合、駆動信号の振動が相対的に抑えられている。これらのシミュレーション結果から、第2スイッチング素子12の閾値電圧が、第1スイッチング素子11の閾値電圧に対して上記閾値設定範囲内であれば、駆動信号の振動が抑制されることが分かる。したがって、半導体装置A1は、電気的特性が異なる2つの第1スイッチング素子11と第2スイッチング素子12とを、共通の駆動信号でスイッチング動作させる場合であっても、第2スイッチング素子12の閾値電圧を、第1スイッチング素子11の閾値電圧に対する上記閾値設定範囲内にすれば、駆動信号の振動を抑制できる。これにより、半導体装置A1は、第1スイッチング素子11および第2スイッチング素子12(延いてはスイッチング回路1)の誤動作を抑制することができる。さらに、図7および図8のシミュレーション結果から理解されるように、第2スイッチング素子12xおよび第2スイッチング素子12zを用いたときにターンオン時の駆動信号の振動が抑制されることから、第2スイッチング素子12の閾値電圧を上記閾値設定範囲の下限値以上にすることで、ターンオン時の駆動信号の振動を抑制できる。また、第2スイッチング素子12xおよび第2スイッチング素子12yを用いたときにターンオフ時の駆動信号の振動が抑制されることから、第2スイッチング素子12の閾値電圧を上記閾値設定範囲の上限値以下にすることで、ターンオフ時の振動を抑制できる。
 また、図6から理解されるように、第2スイッチング素子12xでは、スイッチング回路1の電流が第2電流値以上第3電流値以下(20A以上60A以下)の範囲内において、当該第2スイッチング素子12xの閾値電圧が、第1スイッチング素子11の閾値電圧よりも小さい状態から、第1スイッチング素子11の閾値電圧よりも大きい状態に切り替わっている。図6に示す例では、スイッチング回路1の電流がおよそ35A付近で、第1スイッチング素子11の閾値電圧と第2スイッチング素子12xの閾値電圧との大小関係が切り替わっている。このような特性は、スイッチング回路1のスイッチング時(ターンオンおよびターンオフ)では、第2スイッチング素子12(MOSFET)に多くの電流を流し、また、スイッチング回路1が定常状態の時では、第1スイッチング素子11(IGBT)に多くの電流を流す制御に有効である。
 半導体装置A1では、第1スイッチング素子11は、第1半導体材料により構成され、第2スイッチング素子12は、第2半導体材料により構成されている。第2半導体材料は、第1半導体材料よりもバンドギャップが広い。第1半導体材料は、たとえばSiであり、第2半導体材料は、たとえばSiCである。SiCはSiよりもバンドギャップが広く、SiCを用いたスイッチング素子は、Siを用いたスイッチング素子よりもたとえば電力損失が小さいといった利点がある。一方で、SiCを用いたスイッチング素子は、Siを用いたスイッチング素子よりも高価である。そこで、半導体装置A1では、第1スイッチング素子11を第1半導体材料(Si)により構成し、第2スイッチング素子12を第2半導体材料(SiC)により構成することで、電力損失の低減とコスト増大の抑制とを両立させることができる。また、SiCを用いたスイッチング素子は、Siを用いたスイッチング素子よりも、スイッチング速度が高速である。そこで、第2スイッチング素子12をSiCにより構成することで、スイッチング時(ターンオンおよびターンオフ)における電力損失(スイッチング損失)を抑制する上で有効である。
 第1実施形態では、半導体装置A1自体において、第1スイッチング素子11と第2スイッチング素子12とが電気的に並列に接続された例を示した。この例とは異なり、第1スイッチング素子11と第2スイッチング素子12との並列接続が、半導体装置A1を実装する回路基板も含めて実現される構成でもよい。たとえば、半導体装置A1が、追加のリードを含み、第2リード32を第1スイッチング素子11の第2電極112に導通させ、追加のリードを第2スイッチング素子12の第5電極122に導通させておく。そして、このような半導体装置A1を所定の回路基板に実装することにより、第2リード32と追加のリードとが互いに導通する(たとえば、回路基板上に形成された導電部材に双方のリードが接続される)ような構成が考えられる。
 第1実施形態では、図5に示すように、半導体装置A1は、外部の駆動回路DRから駆動信号が入力される例を示した。この例とは異なり、駆動信号を生成する駆動回路DRが樹脂部材2の内部(たとえば第1リード31上)に設置されていてもよい。
 図9~図14は、第2実施形態に半導体装置A2を示している。同図に示すように、半導体装置A2は、ケースタイプのモジュールである。
 図9~図14に示すように、半導体装置A2は、第1スイッチング回路1A、第2スイッチング回路1B、絶縁基板50、第1電力配線部51、第2電力配線部52、第3電力配線部53、一対の第1信号配線部54A,54B、一対の第2信号配線部55A,55B、一対の第3信号配線部56、第1電力端子61、第2電力端子62、2つの第3電力端子63、一対の制御端子64A,64B、一対の検出端子65A,65B,検出端子66、2つの検出端子67、複数の接続部材4、放熱板70およびケース71を備える。半導体装置A2において、複数の接続部材4は、図11~図13に示すように、複数の第1接続部材411A,412A,411B,412B、複数の第2接続部材421A,422A,421B,422B、複数の第3接続部材431A,432A,431B,432B、一対の第4接続部材44A,44B、一対の第5接続部材45A,45B、および、第6接続部材46を含む。
 放熱板70は、たとえば平面視矩形状の平板である。放熱板70は、熱伝導率の高い材料で構成されており、たとえば、銅または銅合金からなる。放熱板70の表面にNiめっきが施されていてもよい。放熱板70の厚さ方向z下方側の表面には、必要に応じて、冷却部材(たとえばヒートシンク)が取り付けられる。図14に示すように、絶縁基板50は、当該放熱板70上に載置されている。
 ケース71は、図9および図11から理解されるように、たとえば実質的に直方体である。ケース71は、電気絶縁性を有し、かつ耐熱性に優れた合成樹脂から構成されており、たとえばPPS(ポリフェニレンサルファイド)により構成される。ケース71は、平面視において放熱板70とおよそ同じ大きさの矩形状である。ケース71は、図9、図11および図14に示すように、枠部72、天板73および複数の端子台741~744を含む。
 枠部72は、放熱板70の厚さ方向z上方の表面に固定される(図14参照)。天板73は、枠部72に固定される。天板73は、図9および図14に示すように、枠部72の厚さ方向z上方側の開口を閉鎖する。天板73は、図14に示すように、枠部72の厚さ方向z下方側を閉鎖する放熱板70と対向している。天板73、放熱板70および枠部72によって、回路収容空間(第1スイッチング回路1Aおよび第2スイッチング回路1Bなどを収容する空間)がケース71の内部に区画されている。
 2つの端子台741,742は、枠部72よりも第1方向xの一方側に配置され、枠部72と一体的に形成されている。2つの端子台743,744は、枠部72よりも第1方向xの他方側に配置され、枠部72と一体的に形成されている。2つの端子台741,742は、枠部72の第1方向xの一方側の側壁に対して、第2方向yに沿って配置されている。端子台741は、第1電力端子61の一部を覆っており、且つ、厚さ方向z上方側の表面に第1電力端子61の一部が配置されている。端子台742は、第2電力端子62の一部を覆っており、且つ、厚さ方向z上方側の表面に第2電力端子62の一部が配置されている。2つの端子台743,744は、枠部72の第1方向xの他方側の側壁に対して、第2方向yに沿って配置されている。端子台743は、2つの第3電力端子63の一方の一部を覆っており、且つ、厚さ方向z上方側の表面にこの第3電力端子63の一部が配置されている。端子台744は、2つの第3電力端子63の他方の一部を覆っており、且つ、厚さ方向z上方側の表面に、この第3電力端子63の一部が配置されている。
 第1スイッチング回路1Aは、複数の第1スイッチング素子11および複数の第2スイッチング素子12を含む。理解の便宜上、第1スイッチング回路1Aの第1スイッチング素子11および第2スイッチング素子12をそれぞれ、第1スイッチング素子11Aおよび第2スイッチング素子12Aとする。複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12Aは、互いに電気的に並列に接続されている。複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12Aにはそれぞれ、共通の第1駆動信号が入力され、入力される第1駆動信号によってスイッチング動作が制御される。図11に示す例では、複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12Aは、第1方向xに交互に配列されている。この例と異なり、複数の第1スイッチング素子11Aが、複数の第2スイッチング素子12Aに対して、第1方向xの一方側に配列されていてもよい。複数の第1スイッチング素子11Aと複数の第2スイッチング素子12Aとの配列順は特に限定されない。
 第1スイッチング回路1Aにおいて、複数の第1スイッチング素子11Aの電気的特性と、複数の第2スイッチング素子12Aの電気的特性とは、次の関係がある。第1スイッチング回路1Aに流れる電流が、第1電流値未満であるとき、複数の第2スイッチング素子12Aの電圧の平均が、複数の第1スイッチング素子11Aの電圧の平均よりも低い。また、第1スイッチング回路1Aに流れる電流が第2電流値以上第3電流値以下であるとき、複数の第2スイッチング素子12Aの閾値電圧の平均が、複数の第1スイッチング素子11Aの閾値電圧の平均に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。
 第2スイッチング回路1Bは、複数の第1スイッチング素子11および複数の第2スイッチング素子12を含む。理解の便宜上、第2スイッチング回路1Bの第1スイッチング素子11および第2スイッチング素子12をそれぞれ、第1スイッチング素子11Bおよび第2スイッチング素子12Bとする。複数の第1スイッチング素子11Bおよび複数の第2スイッチング素子12Bは、互いに電気的に並列に接続されている。複数の第1スイッチング素子11Bおよび複数の第2スイッチング素子12Bにはそれぞれ、共通の第2駆動信号が入力され、入力される第2駆動信号によってスイッチング動作が制御される。図11に示す例では、複数の第1スイッチング素子11Bおよび複数の第2スイッチング素子12Bは、第1方向xに交互に配列されている。この例と異なり、複数の第1スイッチング素子11Bが、複数の第2スイッチング素子12Bに対して、第1方向xの一方側に配列されていてもよい。複数の第1スイッチング素子11Bと複数の第2スイッチング素子12Bとの配列順は特に限定されない。
 第2スイッチング回路1Bにおいて、複数の第1スイッチング素子11Bの電気的特性と、複数の第2スイッチング素子12Bの電気的特性とは、次の関係がある。第2スイッチング回路1Bに流れる電流が、第1電流値未満であるとき、複数の第2スイッチング素子12Bの電圧の平均が、複数の第1スイッチング素子11Bの電圧の平均よりも低い。また、第2スイッチング回路1Bに流れる電流が第2電流値以上第3電流値以下であるとき、複数の第2スイッチング素子12Bの閾値電圧の平均が、複数の第1スイッチング素子11Bの閾値電圧の平均に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。
 第1スイッチング回路1Aと第2スイッチング回路1Bとは、後に詳述される構成により、電気的に直列に接続されている。第1スイッチング回路1Aは、上アーム回路を構成し、第2スイッチング回路1Bは、下アーム回路を構成する。半導体装置A2は、第1スイッチング回路1Aと第2スイッチング回路1Bとの各スイッチング動作によって、電力変換を行う。図示された例では、半導体装置A2は、第1スイッチング素子11A,11Bおよび第2スイッチング素子12A,12Bをそれぞれ、5個ずつ備えているが、これらの数は、本構成に限定されず、半導体装置A2に要求される性能に応じて適宜変更される。また、第1スイッチング素子11Aの数と第2スイッチング素子12Aの数とは同じでなくてもよく、第1スイッチング素子11Bの数と第2スイッチング素子12Bの数とは、同じでなくてもよい。
 複数の接続部材4は、上述の通り、複数の第1接続部材411A,412A,411B,412B、複数の第2接続部材421A,422A,421B,422B、複数の第3接続部材431A,432A,431B,432B、一対の第4接続部材44A,44B、一対の第5接続部材45A,45B、および、第6接続部材46を含む。半導体装置A2では、複数の第1接続部材411A,412A,411B,412Bは、たとえば、金属製(たとえばCuまたはCu合金)の板状部材である。他の接続部材は、たとえば、ボンディングワイヤである。
 図11~図13に示すように、複数の第1接続部材411Aはそれぞれ、第1スイッチング回路1Aの各第1スイッチング素子11Aの第2電極112と第3電力配線部53とに接合され、これらを導通させる。複数の第1接続部材412Aはそれぞれ、第1スイッチング回路1Aの各第2スイッチング素子12Aの第5電極122と第3電力配線部53とに接合され、これらを導通させる。
 図11~図13に示すように、複数の第1接続部材411Bはそれぞれ、第2スイッチング回路1Bの各第1スイッチング素子11Bの第2電極112と第2電力配線部52とに接合され、これらを導通させる。複数の第1接続部材412Bはそれぞれ、第2スイッチング回路1Bの各第2スイッチング素子12Bの第5電極122と第2電力配線部52とに接合され、これらを導通させる。
 図11~図13に示すように、複数の第2接続部材421Aはそれぞれ、第1スイッチング回路1Aの各第1スイッチング素子11Aの第3電極113と第1信号配線部54Aとに接合され、これらを導通させる。複数の第2接続部材422Aはそれぞれ、第1スイッチング回路1Aの各第2スイッチング素子12Aの第6電極123と第1信号配線部54Aとに接合され、これらを導通させる。
 図11~図13に示すように、複数の第2接続部材421Bはそれぞれ、第2スイッチング回路1Bの各第1スイッチング素子11Bの第3電極113と第1信号配線部54Bとに接合され、これらを導通させる。複数の第2接続部材422Bはそれぞれ、第2スイッチング回路1Bの各第2スイッチング素子12Bの第6電極123と第1信号配線部54Bとに接合され、これらを導通させる。
 図11~図13に示すように、複数の第3接続部材431Aはそれぞれ、第1スイッチング回路1Aの各第1スイッチング素子11Aの第2電極112と第2信号配線部55Aとに接合され、これらを導通させる。複数の第3接続部材432Aはそれぞれ、第1スイッチング回路1Aの各第2スイッチング素子12Aの第5電極122と第2信号配線部55Aとに接合され、これらを導通させる。
 図11~図13に示すように、複数の第3接続部材431Bはそれぞれ、第2スイッチング回路1Bの各第1スイッチング素子11Bの第2電極112と第2信号配線部55Bとに接合され、これらを導通させる。複数の第3接続部材432Bはそれぞれ、第2スイッチング回路1Bの各第2スイッチング素子12Bの第5電極122と第2信号配線部55Bとに接合され、これらを導通させる。
 図11~図13に示すように、第4接続部材44Aは、第1信号配線部54Aと制御端子64Aとに接合され、これらを導通させる。第4接続部材44Bは、第1信号配線部54Bと制御端子64Bとに接合され、これらを導通させる。
 図11~図13に示すように、第5接続部材45Aは、第2信号配線部55Aと検出端子65Aとに接合され、これらを導通させる。第5接続部材45Bは、第2信号配線部55Bと検出端子65Bとに接合され、これらを導通させる。
 図11~図13に示すように、第6接続部材46は、第1電力配線部51と検出端子66とに接合され、これらを導通させる。
 絶縁基板50は、電気絶縁性を有する。絶縁基板50の構成材料は、たとえば熱伝導性に優れたセラミックスである。このようなセラミックスとしては、たとえばAlN(窒化アルミニウム)、SiN(窒化ケイ素)、Al23(酸化アルミニウム)などが用いられる。絶縁基板50は、図10および図11に示すように、たとえば、平面視矩形状の平板である。
 絶縁基板50は、図14に示すように、基板主面50aおよび基板裏面50bを有する。基板主面50aと基板裏面50bとは、厚さ方向zに離間している。基板主面50aは、厚さ方向z上方を向き、基板裏面50bは、厚さ方向z下方を向く。
 第1電力配線部51、第2電力配線部52、第3電力配線部53、一対の第1信号配線部54A,54B、一対の第2信号配線部55A,55Bおよび一対の第3信号配線部56は、図11~図14などに示すように、絶縁基板50の基板主面50aに配置されている。第1電力配線部51、第2電力配線部52、第3電力配線部53、一対の第1信号配線部54A,54B、一対の第2信号配線部55A,55Bおよび一対の第3信号配線部56は、たとえば金属層である。当該金属層は、たとえばCuまたはCu合金により構成されている。当該金属層は、CuまたはCu合金の代わりに、アルミニウムまたはアルミニウム合金により構成されていてもよい。第1電力配線部51、第2電力配線部52、第3電力配線部53、一対の第1信号配線部54A,54B、一対の第2信号配線部55A,55Bおよび一対の第3信号配線部56は、互いに離間する。
 第1電力配線部51は、図11~図13に示すように、第1スイッチング回路1A(複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12A)が搭載される。第1電力配線部51は、複数の第1スイッチング素子11Aの各第1電極111および複数の第2スイッチング素子12Aの各第4電極121に導通する。よって、複数の第1スイッチング素子11Aの各第1電極111(コレクタ)と複数の第2スイッチング素子12Aの各第4電極121(ドレイン)とは、第1電力配線部51を介して、電気的に接続される。
 第2電力配線部52は、図11~図13に示すように、複数の第1接続部材411Bおよび複数の第1接続部材412Bがそれぞれ接合されている。第2電力配線部52は、各第1接続部材411Bを介して、複数の第1スイッチング素子11Bの各第2電極112に導通する。また、第2電力配線部52は、各第1接続部材412Bを介して、複数の第2スイッチング素子12Bの各第5電極122に導通する。よって、複数の第1スイッチング素子11Bの各第2電極112(エミッタ)と複数の第2スイッチング素子12Bの各第5電極122(ソース)とは、複数の第1接続部材411B,412Bおよび第2電力配線部52を介して、電気的に接続される。
 第3電力配線部53は、図11~図13に示すように、第2スイッチング回路1B(複数の第1スイッチング素子11Bおよび複数の第2スイッチング素子12B)が搭載される。第3電力配線部53は、複数の第1スイッチング素子11Bの各第1電極111および複数の第2スイッチング素子12Bの各第4電極121に導通する。よって、複数の第1スイッチング素子11Bの各第1電極111(コレクタ)と複数の第2スイッチング素子12Bの第4電極121(ドレイン)とは、第3電力配線部53を介して、電気的に接続される。第3電力配線部53は、図11~図13に示すように、複数の第1接続部材411Aおよび複数の第1接続部材412Aがそれぞれ接合されている。第3電力配線部53は、各第1接続部材411Aを介して、複数の第1スイッチング素子11Aの各第2電極112に導通する。また、第3電力配線部53は、各第1接続部材412Aを介して、複数の第2スイッチング素子12Aの各第5電極122に導通する。よって、複数の第1スイッチング素子11Aの各第2電極112(エミッタ)と複数の第2スイッチング素子12Aの各第5電極122(ソース)とは、複数の第1接続部材411A,412Aおよび第3電力配線部53を介して、電気的に接続される。
 半導体装置A2は、第1スイッチング回路1Aに対して、第1導電体としての第1電力配線部51を備え、第2導電体としての第3電力配線部53を備える。また、半導体装置A1は、第2スイッチング回路1Bに対して、第1導電体としての第3電力配線部53を備え、第2導電体としての第2電力配線部52を備える。
 第1信号配線部54Aは、図11~図13に示すように、複数の第2接続部材421Aおよび複数の第2接続部材422Aがそれぞれ接合される。第1信号配線部54Aは、各第2接続部材421Aを介して、複数の第1スイッチング素子11Aの各第3電極113(ゲート)に導通する。また、第1信号配線部54Aは、各第2接続部材422Aを介して、複数の第2スイッチング素子12Aの各第6電極123(ゲート)に導通する。第1信号配線部54Aは、第1スイッチング回路1Aのスイッチング動作(第1スイッチング素子11Aのスイッチング動作および第2スイッチング素子12Aのスイッチング動作)を制御する第1駆動信号を伝送する。
 第1信号配線部54Bは、図11~図13に示すように、複数の第2接続部材421Bおよび複数の第2接続部材422Bがそれぞれ接合される。第1信号配線部54Bは、各第2接続部材421Bを介して、複数の第1スイッチング素子11Bの各第3電極113(ゲート)に導通する。また、第1信号配線部54Bは、各第2接続部材422Bを介して、複数の第2スイッチング素子12Bの各第6電極123(ゲート)に導通する。第1信号配線部54Bは、第2スイッチング回路1Bのスイッチング動作(第1スイッチング素子11Bのスイッチング動作および第2スイッチング素子12Bのスイッチング動作)を制御する第2駆動信号を伝送する。
 第2信号配線部55Aは、図11~図13に示すように、複数の第3接続部材431Aおよび複数の第3接続部材432Aがそれぞれ接合される。第2信号配線部55Aは、各第3接続部材431Aを介して、複数の第1スイッチング素子11Aの各第2電極112(エミッタ)に導通する。また、第2信号配線部55Aは、各第3接続部材432Aを介して、複数の第2スイッチング素子12Aの各第5電極122(ソース)に導通する。第2信号配線部55Aは、第1スイッチング回路1Aの導通状態を示す第1検出信号を伝送する。第2信号配線部55Aには、各第1スイッチング素子11Aの第2電極112および各第2スイッチング素子12Aの第5電極122の電圧が印加される。
 第2信号配線部55Bは、図11~図13に示すように、複数の第3接続部材431Bおよび複数の第3接続部材432Bがそれぞれ接合される。第2信号配線部55Bは、各第3接続部材431Bを介して、複数の第1スイッチング素子11Bの各第2電極112(エミッタ)に導通する。また、第2信号配線部55Bは、各第3接続部材432Bを介して、複数の第2スイッチング素子12Bの各第5電極122(ソース)に導通する。第2信号配線部55Bは、第2スイッチング回路1Bの導通状態を示す第2検出信号を伝送する。第2信号配線部55Bには、各第1スイッチング素子11Bの第2電極112および各第2スイッチング素子12Bの第5電極122の電圧が印加される。
 図10~図12に示す例では、一対の第3信号配線部56はそれぞれ、何も接続されていないが、半導体装置A2と異なる構成において、たとえばサーミスタが接続される。当該サーミスタは、一対の第3信号配線部56に跨って配置される。
 第1電力端子61、第2電力端子62、2つの第3電力端子63、一対の制御端子64A,64B、一対の検出端子65A,65B,検出端子66および一対の検出端子67はそれぞれ、一部がケース71から露出する。第1電力端子61、第2電力端子62、2つの第3電力端子63、一対の制御端子64A,64B、一対の検出端子65A,65B,検出端子66および一対の検出端子67はそれぞれ、銅または銅合金からなる。
 第1電力端子61は、図11および図12に示すように、ケース71の内部において、第1電力配線部51に接合されている。第1電力端子61は、第1電力配線部51を介して、第1スイッチング素子11Aの第1電極111および第2スイッチング素子12Aの第4電極121に導通する。
 第2電力端子62は、図11および図12に示すようにケース71の内部において、第2電力配線部52に接合されている。第2電力端子62は、第2電力配線部52を介して、第1スイッチング素子11Bの第2電極112および第2スイッチング素子12Bの第5電極122に導通する。
 2つの第3電力端子63はそれぞれ、図11および図13に示すように、ケース71の内部において、第3電力配線部53に接合されている。2つの第3電力端子63はそれぞれ、第3電力配線部53を介して、第1スイッチング素子11Aの第2電極112、第2スイッチング素子12Aの第5電極122、第1スイッチング素子11Bの第1電極111、および、第2スイッチング素子12Bの第4電極121に導通する。
 半導体装置A2において、第1電力端子61および第2電力端子62は、電源に接続され、電源電圧(たとえば直流電圧)が印加される。たとえば、第1電力端子61は正極(P端子)であり、第2電力端子62は負極(N端子)である。第1電力端子61および第2電力端子62は、互いに離間し、第2方向yに沿って配置されている。2つの第3電力端子63は、第1スイッチング回路1Aおよび第2スイッチング回路1Bの各スイッチング動作によって電力変換された電圧(たとえば交流電圧)を出力する。2つの第3電力端子63はそれぞれ、電力出力端子(OUT端子)である。2つの第3電力端子63は、互いに離間し、第2方向yに沿って配置されている。第1方向xにおいて、絶縁基板50の一方側に、第1電力端子61および第2電力端子62が配置され、絶縁基板50の他方側に、2つの第3電力端子63が配置されている。半導体装置A2と異なる構成において、2つの第3電力端子63のいずれか一方のみを備えていてもよい。この場合、この第3電力端子63は、枠部72の第1方向xの一方側の側壁のうち第2方向yの中央に配置されていてもよい。
 制御端子64Aは、図13に示すように、第4接続部材44Aが接合される。制御端子64Aは、第4接続部材44Aを介して、第1信号配線部54Aに導通する。これにより、制御端子64Aは、複数の第1スイッチング素子11Aの第3電極113のそれぞれおよび複数の第2スイッチング素子12Aの第6電極123のそれぞれに導通する。制御端子64Aは、第1駆動信号の入力端子である。
 制御端子64Bは、図12に示すように、第4接続部材44Bが接合される。制御端子64Bは、第4接続部材44Bを介して、第1信号配線部54Bに導通する。これにより、制御端子64Bは、複数の第1スイッチング素子11Bの第3電極113のそれぞれおよび複数の第2スイッチング素子12Bの第6電極123のそれぞれに導通する。制御端子64Bは、第2駆動信号の入力端子である。
 検出端子65Aは、図13に示すように、第5接続部材45Aが接合される。検出端子65Aは、第5接続部材45Aを介して、第2信号配線部55Aに導通する。これにより、検出端子65Aは、複数の第1スイッチング素子11Aの第2電極112のそれぞれおよび複数の第2スイッチング素子12Aの第5電極122のそれぞれに導通する。検出端子65Aは、第1検出信号の出力端子である。
 検出端子65Bは、図12に示すように、第5接続部材45Bが接合される。検出端子65Bは、第5接続部材45Bを介して、第2信号配線部55Bに導通する。これにより、検出端子65Bは、複数の第1スイッチング素子11Bの第2電極112のそれぞれおよび複数の第2スイッチング素子12Bの第5電極122のそれぞれに導通する。検出端子65Bは、第2検出信号の出力端子である。
 検出端子66は、図13に示すように、第6接続部材46が接合される。検出端子66は、第6接続部材46を介して、第1電力配線部51に導通する。これにより、検出端子66は、複数の第1スイッチング素子11Aの第1電極111のそれぞれおよび複数の第2スイッチング素子12Aの第4電極121のそれぞれに導通する。検出端子66は、第3検出信号の出力端子である。第3検出信号は、第1電力配線部51に印加される電圧を検出するための信号である。
 一対の検出端子67は、一対の第3信号配線部56にサーミスタが接続された場合には、ケース71内部の温度を検出するための端子となる。半導体装置A2では、一対の第3信号配線部56にサーミスタが接続されていないため、一対の検出端子67はそれぞれ、ノンコネクト端子である。
 半導体装置A2では、第1スイッチング回路1Aに流れる電流が、第1電流値未満であるとき、複数の第2スイッチング素子12Aの電圧の平均が、複数の第1スイッチング素子11Aの電圧の平均よりも低い。さらに、第1スイッチング回路1Aに流れる電流が第2電流値以上第3電流値以下であるとき、複数の第2スイッチング素子12Aの閾値電圧の平均が、複数の第1スイッチング素子11Aの閾値電圧の平均に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。この構成によると、半導体装置A2は、第1スイッチング回路1Aにおいて、半導体装置A1のスイッチング回路1と同様に、電力損失を低減することができる。さらに、半導体装置A2は、複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12Aを共通の第1駆動信号でスイッチング動作させる場合であっても、第1駆動信号の振動を抑制できる。つまり、半導体装置A2は、複数の第1スイッチング素子11Aおよび複数の第2スイッチング素子12Aの誤動作を抑制できる。このことは、第2スイッチング回路1Bにおいても同様である。つまり、半導体装置A2は、第2スイッチング回路1Bにおいて、電力損失を低減することができる。さらに、半導体装置A2は、複数の第1スイッチング素子11Bおよび複数の第2スイッチング素子12Bを共通の第2駆動信号でスイッチング動作させる場合であっても、第2駆動信号の振動を抑制できるので、複数の第1スイッチング素子11および複数の第2スイッチング素子12の誤動作を抑制できる。
 図15~図17は、第3実施形態に半導体装置A3を示している。半導体装置A3は、たとえばIPM(Intelligent Power Module)であり、複数の第1スイッチング素子11および複数の第2スイッチング素子12に駆動信号を出力する駆動回路DRを備える。
 半導体装置A3は、図15~図17に示すように、第1スイッチング回路1A、第2スイッチング回路1B、駆動回路DR、樹脂部材2、複数のリード3、複数の接続部材4、絶縁基板50、配線部59、および、複数の受動素子8を備える。半導体装置A3において、複数のリード3は、図15に示すように、一対の第1リード31A,31B、一対の第2リード32A,32B、複数の第4リード34、および、複数の第5リード35を含む。複数の接続部材4は、図16に示すように、複数の第1接続部材41A,41B、および、複数の第2接続部材421A,422A,421B,422Bを含む。
 半導体装置A3では、第1スイッチング回路1Aは、第1スイッチング素子11Aおよび第2スイッチング素子12Aをそれぞれ1つずつ含む。第1スイッチング素子11Aおよび第2スイッチング素子12Aの各電気的特性は、次に示す関係である。第1スイッチング回路1Aに流れる電流が第1電流値未満であるとき、第2スイッチング素子12Aの電圧が、第1スイッチング素子11Aの電圧よりも低い。また、第1スイッチング回路1Aに流れる電流が第2電流値以上第3電流値以下であるとき、第2スイッチング素子12Aの閾値電圧が、第1スイッチング素子11Aの閾値電圧に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。
 同様に、半導体装置A3では、第2スイッチング回路1Bは、第1スイッチング素子11Bおよび第2スイッチング素子12Bをそれぞれ1つずつ含む。第1スイッチング素子11Bおよび第2スイッチング素子12Bの各電気的特性は、次に示す関係である。第2スイッチング回路1Bに流れる電流が第1電流値未満であるとき、第2スイッチング素子12Bの電圧が、第1スイッチング素子11Bの電圧よりも低い。また、第2スイッチング回路1Bに流れる電流が第2電流値以上第3電流値以下であるとき、第2スイッチング素子12Bの閾値電圧が、第1スイッチング素子11Bの閾値電圧に対して、上記閾値設定範囲(-1.0V以上+0.4V以下の範囲)内である。
 駆動回路DRは、第1スイッチング回路1Aのスイッチング動作(第1スイッチング素子11Aおよび第2スイッチング素子12Aの各スイッチング動作)を制御しつつ、第2スイッチング回路1Bのスイッチング動作(第1スイッチング素子11Bおよび第2スイッチング素子12Bの各スイッチング動作)を制御する。駆動回路DRは、基板主面50a上に配置されている。図16に示すように、駆動回路DRは、たとえば、SOP(Small Outline Package)タイプのパッケージで構成されており、樹脂パッケージおよび複数の接続端子を備える。駆動回路DRのパッケージタイプは、SOPタイプに限定されず、例えばQFP(Quad Flat Package)タイプ、SOJ(Small Outline J-lead Package)タイプ、QFN(Quad Flatpack No Lead)タイプ、SON(Small-Outline No Lead)タイプなどであってもよい。
 駆動回路DRは、駆動素子13を備えている。駆動素子13は、樹脂パッケージに覆われている。駆動素子13は、第1駆動信号および第2駆動信号を生成する。駆動素子13は、複数の接続端子に導通しており、複数の接続端子が、図示しない導電性接合材(たとえばはんだ、金属ペーストあるいは焼結金属など)を介して、後述の各パッド部591(配線部59)に導通接合されている。駆動素子13は、配線部59および第2接続部材421Aを介して、第1スイッチング素子11Aの第3電極113に導通するとともに、配線部59および第2接続部材422Aを介して、第2スイッチング素子12Aの第6電極123に導通する。駆動素子13は、第1スイッチング素子11Aの第3電極113および第2スイッチング素子12Aの第6電極123に、共通の第1駆動信号を入力する。同様に、駆動素子13は、配線部59および第2接続部材421Bを介して、第1スイッチング素子11Bの第3電極113に導通するとともに、配線部59および第2接続部材422Bを介して、第2スイッチング素子12Bの第6電極123に導通する。駆動素子13は、第1スイッチング素子11Bの第3電極113および第2スイッチング素子12Bの第6電極123に、共通の第2駆動信号を入力する。図16に示す例と異なり、駆動素子13は、樹脂パッケージで覆われていなくてもよい。
 半導体装置A3の絶縁基板50は、半導体装置A2の絶縁基板50と同様に、平板状であり、たとえばセラミックスにより構成される。半導体装置A3の絶縁基板50は、たとえば樹脂部材2よりも熱伝導率が高い材料が好ましい。半導体装置A3の絶縁基板50には、第1スイッチング回路1A、第2スイッチング回路1B、駆動回路DR、2つの第1リード31A,31B、2つの第2リード32A,32Bおよび複数の受動素子8などが搭載されている。基板主面50aには、配線部59が形成されている。基板裏面50bは、たとえば樹脂部材2(樹脂裏面22)から露出するが、基板裏面50bは、樹脂部材2に覆われていてもよい。
 配線部59は、図16および図17に示すように、基板主面50a上に形成されている。配線部59は、導電性材料からなる、配線部59の構成材料は、たとえば銀または銀合金などが採用される。配線部59の構成材料は、銀または銀合金の代わりに、銅または銅合金、もしくは、金または金合金などを採用してもよい。配線部59は、上記構成材料を含むペースト材を印刷した後、当該ペースト材を焼成することにより形成される。配線部59の形成方法は、これに限定されず、用いる構成材料に応じて適宜変更されうる。配線部59は、駆動回路DRへの導通経路である。配線部59は、第1スイッチング回路1Aおよび第2スイッチング回路1Bを制御するための制御信号が流れる。制御信号は、第1駆動信号、第2駆動信号、第1検出信号および第2検出信号などを含む。また、配線部59は、駆動回路DRの動作電力を伝送する。
 配線部59は、図16に示すように、複数のパッド部591および複数の接続配線592を含む。複数のパッド部591の各平面視形状は、特に限定されないが、たとえば矩形状である。各パッド部591の平面視形状は、円形状、楕円状、あるいは、多角形状などであってもよい。複数のパッド部591は、互いに離間している。複数のパッド部591は、他の構成部品が適宜接合される部分である。半導体装置A3では、複数のパッド部591には、駆動回路DR、複数の受動素子8、複数の第4リード34、複数の第5リード35および複数の第2接続部材421A,422A,421B,422Bが接合されている。複数の接続配線592は、複数のパッド部591間を接続する。配線部59において、複数のパッド部591および複数の接続配線592の各配置および各形状は、図示された例に限定されない。
 複数の受動素子8はそれぞれ、図16に示すように、絶縁基板50の基板主面50a上に配置されている。各受動素子8は、各パッド部591(配線部59)に接合され、配線部59に導通する。複数の受動素子8は、たとえば、抵抗器、コンデンサ、コイル、ダイオードなどである。複数の受動素子8には、たとえば複数のサーミスタ8aおよび複数の抵抗器8bなどが含まれている。
 複数のサーミスタ8aはそれぞれ、配線部59の2つのパッド部591に跨って配置されている。各サーミスタ8aは、この2つのパッド部591に導通接合されている。各パッド部591はそれぞれが、接続配線592を介して、2つの第5リード35に導通する。各サーミスタ8aは、当該2つの第5リード35の間に電圧が印加されることで、周囲の温度に応じた電流を出力する。
 複数の抵抗器8bはそれぞれ、配線部59の2つのパッド部591に跨って配置されている。各抵抗器8bは、この2つのパッド部591に導通接合されている。各抵抗器8bが接合された2つのパッド部591のうち、一方のパッド部591は、駆動回路DR(駆動素子13)に導通し、他方のパッド部591は、各第2接続部材421A,422A,421B,422Bを介して、各第1スイッチング素子11A,11Bの第3電極113または各第2スイッチング素子12A,12Bの第6電極123のいずれかに導通する。各抵抗器8bは、たとえばゲート抵抗である。図示された例と異なり、複数の受動素子8は、各抵抗器8bをいずれも含んでいなくてもよい。
 半導体装置A3では、複数のリード3は、2つの第1リード31A,31B、2つの第2リード32A,32B、複数の第4リード34および複数の第5リード35を含む。2つの第1リード31A,31B、2つの第2リード32A,32B、複数の第4リード34および複数の第5リード35はそれぞれ、互いに離間する。
 2つの第1リード31A,31Bはそれぞれ、樹脂部材2に支持されるとともに、絶縁基板50に支持される。2つの第1リード31A,31Bはそれぞれ、図16に示すように、ダイパッド311および端子部314を含む。各第1リード31A,31Bにおいて、ダイパッド311と端子部314とは繋がっている。
 各第1リード31A,31Bにおいて、ダイパッド311は、樹脂部材2に覆われている。ダイパッド311は、絶縁基板50の基板主面50a上に配置されており、平面視において、絶縁基板50に重なる。ダイパッド311は、たとえば平面視矩形状である。ダイパッド311は、図示しない接合材によって、基板主面50aに接合されている。ダイパッド311と絶縁基板50との接合強度を高めるために、ダイパッド311が接合される基板主面50a上に金属層を設けてもよい。当該金属層は、配線部59と同じ材料にすることで、配線部59の形成とともに、当該金属層も一括して形成できる。
 第1リード31Aのダイパッド311には、第1スイッチング回路1Aの第1スイッチング素子11Aおよび第2スイッチング素子12Aが搭載されている。第1リード31Aのダイパッド311は、第1スイッチング素子11Aの第1電極111と第2スイッチング素子12Aの第4電極121とに導通する。よって、第1スイッチング素子11Aの第1電極111(コレクタ)と第2スイッチング素子12Aの第4電極121(ドレイン)とは、第1リード31Aのダイパッド311を介して導通する。
 第1リード31Bのダイパッド311には、第2スイッチング回路1Bの第1スイッチング素子11Bおよび第2スイッチング素子12Bが搭載されている。第1リード31Bのダイパッド311は、第1スイッチング素子11Bの第1電極111と第2スイッチング素子12Bの第4電極121とに導通する。よって、第1スイッチング素子11Bの第1電極111(コレクタ)と第2スイッチング素子12Bの第4電極121(ドレイン)とは、第1リード31Bのダイパッド311を介して導通する。
 各第1リード31A,31Bにおいて、端子部314は、樹脂部材2から露出する。端子部314は、厚さ方向z上方に屈曲している。端子部314は、半導体装置A3の外部端子である。
 2つの第2リード32A,32Bはそれぞれ、樹脂部材2に支持される。2つの第2リード32A,32Bはそれぞれ、パッド部321および端子部322を含む。各第2リード32A,32Bにおいて、パッド部321と端子部322とは繋がっている。
 各第2リード32A,32Bにおいて、パッド部321は、樹脂部材2に覆われている。パッド部321は、平面視において、絶縁基板50に重ならない。第2リード32Aのパッド部321には、複数の第1接続部材41Aが接合される。第2リード32Aのパッド部321は、各第1接続部材41Aを介して、第1スイッチング素子11Aの第2電極112(エミッタ)および第2スイッチング素子12Aの第5電極122(ソース)に導通する。第2リード32Bのパッド部321には、複数の第1接続部材41Bが接合される。第2リード32Bのパッド部321は、各第1接続部材41Bを介して、第1スイッチング素子11Bの第2電極112(エミッタ)および第2スイッチング素子12Bの第5電極122(ソース)に導通する。
 各第2リード32A,32Bにおいて、端子部322は、樹脂部材2から露出する。端子部322は、厚さ方向z上方に屈曲している。端子部322は、半導体装置A3の外部端子である。
 半導体装置A3では、第2リード32Aと第1リード31Bとは、たとえば、物理的に離間し、半導体装置A3を実装する回路基板において、電気的に接続される。この例とは異なり、第2リード32Aと第1リード31Bとは、樹脂部材2の内方において、電気的に接続されていてもよい。
 半導体装置A3は、第1スイッチング回路1Aに対して、第1導電体としての第1リード31Aを備え、第2導電体としての第2リード32Aを備える。また、半導体装置A3は、第2スイッチング回路1Bに対して、第1導電体としての第1リード31Bを備え、第2導電体としての第2リード32Bを備える。
 複数の第4リード34は、樹脂部材2に支持されるとともに、絶縁基板50により支持される。各第4リード34は、図16に示すように、パッド部341および端子部342を含む。各第4リード34において、パッド部341と端子部342とは繋がっている。
 各パッド部341は、樹脂部材2に覆われている。各パッド部341は、絶縁基板50の基板主面50a上に配置されており、平面視において、絶縁基板50に重なる。各パッド部341は、図示しない導電性接合材により、複数のパッド部591のいずれかに接合されている。パッド部341が接合されたパッド部591は、複数の接続配線592のいずれかを介して、駆動回路DR(駆動素子13)に導通する。
 各端子部342は、樹脂部材2から露出する。各端子部342は、厚さ方向z上方に屈曲している。各端子部342は、半導体装置A3の外部端子である。各端子部342は、駆動回路DRへの各種制御信号の入力端子または駆動回路DRからの制御信号の出力端子、もしくは、駆動回路DRの動作電力の入力端子である。
 複数の第5リード35はそれぞれ、樹脂部材2に支持されるとともに、絶縁基板50に支持される。各第5リード35は、各サーミスタ8aに導通する。本実施形態では、2つのサーミスタ8aのそれぞれに対して、2つの第5リード35が設けられている。つまり、半導体装置A3は、3つの第5リード35を備えている。各第5リード35は、図16に示すように、パッド部351および端子部352を含む。各第5リード35において、パッド部351と端子部352とは導通する。
 各パッド部351は、樹脂部材2に覆われている。各パッド部351は、絶縁基板50の基板主面50a上に配置されており、平面視において絶縁基板50に重なる。各パッド部351は、図示しない導電性接合材により、複数のパッド部591のいずれかに接合されている。パッド部351が接合されたパッド部591は、複数の接続配線592のいずれかを介して、2つのサーミスタ8aのいずれかに導通する。よって、各パッド部351は、配線部59を介して、各サーミスタ8aに導通する。
 各端子部352は、樹脂部材2から露出する。各端子部352は、厚さ方向z上方に屈曲している。各端子部352は、第1方向xに見て、各端子部342に重なる。各端子部352は、半導体装置A3の外部端子である。各端子部352は、温度検出端子である。
 複数の第1接続部材41Aはそれぞれ、第1スイッチング素子11Aの第2電極112、第2スイッチング素子12Aの第5電極122および第2リード32Aのパッド部321に接合されている。第1スイッチング素子11Aの第2電極112(エミッタ)と第2スイッチング素子12Aの第5電極122(ソース)とは、各第1接続部材41Aを介して導通する。
 複数の第1接続部材41Bはそれぞれ、第1スイッチング素子11Bの第2電極112、第2スイッチング素子12Bの第5電極122および第2リード32Bのパッド部321に接合されている。第1スイッチング素子11Bの第2電極112(エミッタ)と第2スイッチング素子12Bの第5電極122(ソース)とは、各第1接続部材41Bを介して導通する。
 第2接続部材421Aは、第1スイッチング素子11Aの第3電極113と複数のパッド部591のいずれかとに接合される。第2接続部材422Aは、第2スイッチング素子12Aの第6電極123と、第2接続部材421Aが接合されたパッド部591とに接合される。2つの第2接続部材421A,422Aが接合されたパッド部591は、接続配線592および抵抗器8bを介して、駆動回路DR(駆動素子13)に導通する。
 第2接続部材421Bは、第1スイッチング素子11Bの第3電極113と複数のパッド部591のいずれかとに接合される。第2接続部材422Bは、第2スイッチング素子12Bの第6電極123と、第2接続部材421Bが接合されたパッド部591とに接合される。2つの第2接続部材421B,422Bが接合されたパッド部591は、接続配線592および抵抗器8bを介して、駆動回路DR(駆動素子13)に導通する。
 半導体装置A3では、第1スイッチング回路1Aは、半導体装置A1のスイッチング回路1と同様に構成される。これにより、半導体装置A3は、第1スイッチング回路1Aにおける電力損失を抑制できる。さらに、半導体装置A3は、第1スイッチング素子11Aおよび第2スイッチング素子12Aを共通の第1駆動信号でスイッチング動作させる場合であっても、第1駆動信号の振動を抑制できる。つまり、半導体装置A2は、第1スイッチング素子11Aおよび第2スイッチング素子12Aの誤動作を抑制できる。このことは、第2スイッチング回路1Bにおいても同様である。つまり、半導体装置A3は、第2スイッチング回路1Bにおける電力損失を抑制できる。さらに、半導体装置A3は、第1スイッチング素子11Bおよび第2スイッチング素子12Bを共通の第2駆動信号でスイッチング動作させる場合であっても、第2駆動信号の振動を抑制できる。つまり、半導体装置A3は、第1スイッチング素子11Bおよび第2スイッチング素子12Bの誤動作を抑制できる。
 第3実施形態では、半導体装置A3は、第1スイッチング回路1Aおよび第2スイッチング回路1Bをそれぞれ1つずつ備えた例を示した。この例とは異なる半導体装置において、第1スイッチング回路1Aおよび第2スイッチング回路1Bをそれぞれ3つずつ備えていてもよい。このような半導体装置は、たとえば三相モータを駆動する三相インバータとして構成される。
 本開示にかかる半導体装置は、上記した実施形態に限定されるものではない。本開示の半導体装置の各部の具体的な構成は、種々に設計変更自在である。たとえば、本開示は、以下の付記に記載した実施形態を含む。
 付記1.
 導通状態と遮断状態とが切り替わるスイッチング回路を備えており、
 前記スイッチング回路は、電気的に並列に接続された第1スイッチング素子および第2スイッチング素子を含み、
 前記第1スイッチング素子は、IGBTであり、
 前記第2スイッチング素子は、MOSFETであり、
 前記スイッチング回路に流れる電流が第1電流値未満であるとき、前記第2スイッチング素子は、前記第1スイッチング素子よりも電圧が低く、
 前記スイッチング回路の電流が第2電流値以上第3電流値以下であるとき、前記第2スイッチング素子の閾値電圧は、前記第1スイッチング素子の閾値電圧に対して、-1.0V以上+0.4V以下の範囲内であり、
 前記第3電流値は、前記スイッチング回路の定格電流以下であり、
 前記第1電流値は、前記第3電流値未満である、半導体装置。
 付記2.
 前記第1スイッチング素子は、第1半導体材料を含んで構成され、
 前記第2スイッチング素子は、前記第1半導体材料よりもバンドギャップが広い第2半導体材料を含んで構成される、付記1に記載の半導体装置。
 付記3.
 前記第1半導体材料は、Siであり、
 前記第2半導体材料は、SiCである、付記2に記載の半導体装置。
 付記4.
 前記第1電流値は、前記定格電流の1/5である、付記1ないし付記3のいずれかに記載の半導体装置。
 付記5.
 前記第2電流値は、前記第1電流値と同じである、付記1ないし付記4のいずれかに記載の半導体装置。
 付記6.
 前記第2電流値は、前記定格電流の1/5であり、
 前記第3電流値は、前記定格電流の3/5である、付記5に記載の半導体装置。
 付記7.
 前記スイッチング回路が導通状態のとき、前記スイッチング回路に流れる電流は、前記第1電流値以上である、付記1ないし付記6のいずれかに記載の半導体装置。
 付記8.
 前記第1スイッチング素子と前記第2スイッチング素子とは、共通の駆動信号によりスイッチング動作が制御される、付記1ないし付記7のいずれかに記載の半導体装置。
 付記9.
 前記第1スイッチング素子は、第1電極、第2電極および第3電極を有し、前記第3電極に入力される前記駆動信号により、前記第1電極および前記第2電極間がオンオフ制御され、
 前記第2スイッチング素子は、第4電極、第5電極および第6電極を有し、前記第6電極に入力される前記駆動信号により、前記第4電極および前記第5電極間がオンオフ制御され、
 前記第1電極と前記第4電極とは、電気的に接続され、
 前記第2電極と前記第5電極とは、電気的に接続される、付記8に記載の半導体装置。
 付記10.
 前記駆動信号を前記第3電極および前記第6電極の各々に入力する駆動回路をさらに備える、付記9に記載の半導体装置。
 付記11.
 前記第1スイッチング素子は、前記第1スイッチング素子の厚さ方向に離間する第1素子主面および第1素子裏面を有し、
 前記第1電極は、前記第1素子裏面に配置され、
 前記第2電極および前記第3電極は、前記第1素子主面に配置される、付記9または付記10に記載の半導体装置。
 付記12.
 前記第2スイッチング素子は、前記第2スイッチング素子の厚さ方向に離間する第2素子主面および第2素子裏面を有し、
 前記第4電極は、前記第2素子主面に配置され、
 前記第5電極および前記第6電極は、前記第2素子裏面に配置される、付記11に記載の半導体装置。
 付記13.
 前記第1スイッチング素子の厚さ方向と前記第2スイッチング素子の厚さ方向とは、同じ方向であり、
 前記第1素子主面と前記第2素子主面とは、同じ方向を向く、付記12に記載の半導体装置。
 付記14.
 前記第1スイッチング素子および前記第2スイッチング素子が搭載され、且つ、前記第1素子裏面および前記第2素子裏面のそれぞれに対向する第1導電体と、
 前記第1導電体から離間する第2導電体と、
をさらに備えており、
 前記第1導電体は、前記第1電極および前記第4電極が接合され、
 前記第2導電体は、前記第2電極および前記第5電極に電気的に接続される、付記13に記載の半導体装置。
 付記15.
 前記スイッチング回路は、第1スイッチング回路および第2スイッチング回路を含み、
 前記第1スイッチング回路および前記第2スイッチング回路の各々は、前記第1スイッチング素子および前記第2スイッチング素子を含む、付記1ないし付記14のいずれかに記載の半導体装置。
 付記16.
 前記第1スイッチング回路と前記第2スイッチング回路とは、電気的に直列に接続される、付記15に記載の半導体装置。
A1,A2,A3:半導体装置   1:スイッチング回路
1A:第1スイッチング回路   1B:第2スイッチング回路
11,11A,11B:第1スイッチング素子
11a:第1素子主面   11b:第1素子裏面
111:第1電極   112:第2電極
113:第3電極
12,12A,12B:第2スイッチング素子
12a:第2素子主面   12b:第2素子裏面
121:第4電極   122:第5電極
123:第6電極   13:駆動素子
2:樹脂部材   21:樹脂主面
22:樹脂裏面   23:第1樹脂側面
24:第2樹脂側面   3:リード
31,31A,31B:第1リード   311:ダイパッド
312:延出部   313:突出部
314:端子部   32,32A,32B:第2リード
321:パッド部   322:端子部
33:第3リード   331:パッド部
332:端子部   34:第4リード
341:パッド部   342:端子部
35:第5リード   351:パッド部
352:端子部   4:接続部材
411,412:第1接続部材
411A,411B,412A,412B:第1接続部材
41A,41B:第1接続部材
421,422:第2接続部材
421A,421B,422A,422B:第2接続部材
431A,431B,432A,432B:第3接続部材
44A,44B:第4接続部材
45A,45B:第5接続部材
46:第6接続部材   50:絶縁基板
50a:基板主面   50b:基板裏面
51:第1電力配線部   52:第2電力配線部
53:第3電力配線部   54A,54B:第1信号配線部
55A,55B:第2信号配線部   56:第3信号配線部
59:配線部   591:パッド部
592:接続配線   61:第1電力端子
62:第2電力端子   63:第3電力端子
64A,64B:制御端子   65A,65B:検出端子
66:検出端子   67:検出端子
70:放熱板   71:ケース
72:枠部   73:天板
741~744:端子台   8:受動素子
8a:サーミスタ   8b:抵抗器   DR:駆動回路

Claims (16)

  1.  導通状態と遮断状態とが切り替わるスイッチング回路を備えており、
     前記スイッチング回路は、電気的に並列に接続された第1スイッチング素子および第2スイッチング素子を含み、
     前記第1スイッチング素子は、IGBTであり、
     前記第2スイッチング素子は、MOSFETであり、
     前記スイッチング回路に流れる電流が第1電流値未満であるとき、前記第2スイッチング素子は、前記第1スイッチング素子よりも電圧が低く、
     前記スイッチング回路の電流が第2電流値以上第3電流値以下であるとき、前記第2スイッチング素子の閾値電圧は、前記第1スイッチング素子の閾値電圧に対して、-1.0V以上+0.4V以下の範囲内であり、
     前記第3電流値は、前記スイッチング回路の定格電流以下であり、
     前記第1電流値は、前記第3電流値未満である、半導体装置。
  2.  前記第1スイッチング素子は、第1半導体材料を含んで構成され、
     前記第2スイッチング素子は、前記第1半導体材料よりもバンドギャップが広い第2半導体材料を含んで構成される、請求項1に記載の半導体装置。
  3.  前記第1半導体材料は、Siであり、
     前記第2半導体材料は、SiCである、請求項2に記載の半導体装置。
  4.  前記第1電流値は、前記定格電流の1/5である、請求項1ないし請求項3のいずれか一項に記載の半導体装置。
  5.  前記第2電流値は、前記第1電流値と同じである、請求項1ないし請求項4のいずれか一項に記載の半導体装置。
  6.  前記第2電流値は、前記定格電流の1/5であり、
     前記第3電流値は、前記定格電流の3/5である、請求項5に記載の半導体装置。
  7.  前記スイッチング回路が導通状態のとき、前記スイッチング回路に流れる電流は、前記第1電流値以上である、請求項1ないし請求項6のいずれか一項に記載の半導体装置。
  8.  前記第1スイッチング素子と前記第2スイッチング素子とは、共通の駆動信号によりスイッチング動作が制御される、請求項1ないし請求項7のいずれか一項に記載の半導体装置。
  9.  前記第1スイッチング素子は、第1電極、第2電極および第3電極を有し、前記第3電極に入力される前記駆動信号により、前記第1電極および前記第2電極間がオンオフ制御され、
     前記第2スイッチング素子は、第4電極、第5電極および第6電極を有し、前記第6電極に入力される前記駆動信号により、前記第4電極および前記第5電極間がオンオフ制御され、
     前記第1電極と前記第4電極とは、電気的に接続され、
     前記第2電極と前記第5電極とは、電気的に接続される、請求項8に記載の半導体装置。
  10.  前記駆動信号を前記第3電極および前記第6電極の各々に入力する駆動回路をさらに備える、請求項9に記載の半導体装置。
  11.  前記第1スイッチング素子は、前記第1スイッチング素子の厚さ方向に離間する第1素子主面および第1素子裏面を有し、
     前記第1電極は、前記第1素子裏面に配置され、
     前記第2電極および前記第3電極は、前記第1素子主面に配置される、請求項9または請求項10に記載の半導体装置。
  12.  前記第2スイッチング素子は、前記第2スイッチング素子の厚さ方向に離間する第2素子主面および第2素子裏面を有し、
     前記第4電極は、前記第2素子主面に配置され、
     前記第5電極および前記第6電極は、前記第2素子裏面に配置される、請求項11に記載の半導体装置。
  13.  前記第1スイッチング素子の厚さ方向と前記第2スイッチング素子の厚さ方向とは、同じ方向であり、
     前記第1素子主面と前記第2素子主面とは、同じ方向を向く、請求項12に記載の半導体装置。
  14.  前記第1スイッチング素子および前記第2スイッチング素子が搭載され、且つ、前記第1素子裏面および前記第2素子裏面のそれぞれに対向する第1導電体と、
     前記第1導電体から離間する第2導電体と、
    をさらに備えており、
     前記第1導電体は、前記第1電極および前記第4電極が接合され、
     前記第2導電体は、前記第2電極および前記第5電極に電気的に接続される、請求項13に記載の半導体装置。
  15.  前記スイッチング回路は、第1スイッチング回路および第2スイッチング回路を含み、
     前記第1スイッチング回路および前記第2スイッチング回路の各々は、前記第1スイッチング素子および前記第2スイッチング素子を含む、請求項1ないし請求項14のいずれか一項に記載の半導体装置。
  16.  前記第1スイッチング回路と前記第2スイッチング回路とは、電気的に直列に接続される、請求項15に記載の半導体装置。
PCT/JP2022/018652 2021-05-10 2022-04-25 半導体装置 WO2022239626A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023520953A JPWO2022239626A1 (ja) 2021-05-10 2022-04-25
CN202280033796.3A CN117337490A (zh) 2021-05-10 2022-04-25 半导体装置
DE112022001871.2T DE112022001871T5 (de) 2021-05-10 2022-04-25 Halbleiterbauelement
US18/469,301 US20240007097A1 (en) 2021-05-10 2023-09-18 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079550 2021-05-10
JP2021079550 2021-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/469,301 Continuation US20240007097A1 (en) 2021-05-10 2023-09-18 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2022239626A1 true WO2022239626A1 (ja) 2022-11-17

Family

ID=84029547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018652 WO2022239626A1 (ja) 2021-05-10 2022-04-25 半導体装置

Country Status (5)

Country Link
US (1) US20240007097A1 (ja)
JP (1) JPWO2022239626A1 (ja)
CN (1) CN117337490A (ja)
DE (1) DE112022001871T5 (ja)
WO (1) WO2022239626A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354156A (ja) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd 半導体スイッチング装置
JP2015149508A (ja) * 2015-05-11 2015-08-20 三菱電機株式会社 電力用半導体装置
JP2020088445A (ja) * 2018-11-16 2020-06-04 東芝インフラシステムズ株式会社 半導体スイッチ回路、インバータ回路、および、チョッパ回路
JP2020108225A (ja) * 2018-12-26 2020-07-09 株式会社デンソー スイッチの駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354156A (ja) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd 半導体スイッチング装置
JP2015149508A (ja) * 2015-05-11 2015-08-20 三菱電機株式会社 電力用半導体装置
JP2020088445A (ja) * 2018-11-16 2020-06-04 東芝インフラシステムズ株式会社 半導体スイッチ回路、インバータ回路、および、チョッパ回路
JP2020108225A (ja) * 2018-12-26 2020-07-09 株式会社デンソー スイッチの駆動装置

Also Published As

Publication number Publication date
JPWO2022239626A1 (ja) 2022-11-17
CN117337490A (zh) 2024-01-02
DE112022001871T5 (de) 2024-02-01
US20240007097A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
CN108735692B (zh) 半导体装置
US11456244B2 (en) Semiconductor device
JP2012175070A (ja) 半導体パッケージ
US20230178461A1 (en) Semiconductor device
CN111599796B (zh) 半导体模块、及使用该半导体模块的电力变换装置
US20230109471A1 (en) Electronic device
JPWO2020059285A1 (ja) 半導体装置
US20230121777A1 (en) Electronic device
JP2021141222A (ja) 半導体モジュール
JP2018088531A (ja) 半導体モジュール
JP7428017B2 (ja) 半導体モジュール
JP2017107937A (ja) 電力用半導体装置
CN116134716A (zh) 开关部件
JP7428019B2 (ja) 半導体モジュール
US20230282622A1 (en) Semiconductor device
WO2022239626A1 (ja) 半導体装置
CN116072624A (zh) 半导体装置
US20230335413A1 (en) Semiconductor device
US11967545B2 (en) Semiconductor device
JP7278439B1 (ja) 半導体装置及びそれを用いた電力変換装置
JP7491043B2 (ja) 半導体モジュール
WO2023053823A1 (ja) 半導体装置
US20240178194A1 (en) Semiconductor module
CN218975436U (zh) 半导体装置和电子设备
US20240088796A1 (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520953

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280033796.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001871

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807329

Country of ref document: EP

Kind code of ref document: A1