WO2022239560A1 - 水中空気浮力発電システム - Google Patents

水中空気浮力発電システム Download PDF

Info

Publication number
WO2022239560A1
WO2022239560A1 PCT/JP2022/015857 JP2022015857W WO2022239560A1 WO 2022239560 A1 WO2022239560 A1 WO 2022239560A1 JP 2022015857 W JP2022015857 W JP 2022015857W WO 2022239560 A1 WO2022239560 A1 WO 2022239560A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
pipe
air
water
compressed air
Prior art date
Application number
PCT/JP2022/015857
Other languages
English (en)
French (fr)
Inventor
進 猿谷
Original Assignee
進 猿谷
猿谷 侑花
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 進 猿谷, 猿谷 侑花 filed Critical 進 猿谷
Publication of WO2022239560A1 publication Critical patent/WO2022239560A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a power generation system that utilizes the buoyancy of underwater air.
  • Hydraulic induction power generation systems based on air buoyancy are conventionally known, in which compressed air stored in an air tank is sent to the lower end of a pipe placed in the sea and a generator is driven by the compressed air blown up from the upper end of the pipe (for example, patent documents 1).
  • compressed air stored in an air tank is sent to the lower end of a pipe placed in the sea and a generator is driven by the compressed air blown up from the upper end of the pipe
  • patent documents 1 for example, patent documents 1
  • air bubbles are generated in the pipe, and the water flow generated inside the pipe is used to rotate the shaft inside the pipe, which is connected to the upper end of the shaft that protrudes from the upper end of the pipe.
  • Power generation using the buoyancy of bubbles that generate power by rotating the input shaft of the machine is known (see Patent Document 2, for example).
  • the energy of the compressed air blown up from here is used to drive the generator.
  • the configuration for driving the generator has the problem that only one generator can be driven for one pipe, and the energy of the compressed air in the pipe cannot be effectively utilized. If it is possible to attach the rotating body of the power generation device to an appropriate position of the power generation pipe placed in the water or on the ground, the upward force of the compressed air in the power generation pipe can be effectively utilized by increasing the number of power generation devices.
  • the present invention has an air compressor 8 driven by the output of a power generator using natural energy, and a pipeline for water flow.
  • a power generation pipe 16 a compressed air storage tank 10 connected to an air compressor 8, and a compressed air supply pipe connected to the compressed air storage tank 10 via an air pressure adjustment means, and a power generation pipe from the compressed air supply pipe Compressed air is sent into the lower end of the power generation pipe 16 to generate bubbles in the power generation pipe 16, and the energy of the bubbles pushes up the water in the power generation pipe 16, inducing water pressure to rotate the rotating body 36.
  • a plurality of rotating bodies 36 of the power generating device are arranged in the pipeline of the power generating pipe 16, and a shaft 38 fixed to the center of the rotating body 36 and rotating in conjunction with the rotation of the rotating body 36 is used for power generation.
  • a plurality of power generating devices are arranged perpendicular to the axial direction of the pipeline of the pipe 16, attached to the pipe wall of the power generating pipe 16, and the generator 50 of the power generating device and the shaft 38 of the rotating body 36 are connected.
  • the rotating body 36 is rotated by rising energy due to the buoyancy of air bubbles in the power generation pipe 16 to drive a plurality of power generators attached to the power generation pipe 16.
  • an air mass intermittent release means for intermittently releasing the air mass at once is arranged at the lower end of the power generation pipe 16, and one side of the air mass intermittent release means is opened.
  • An air mass ejector 112 made of a cylinder and rotatably supported in the power generation pipe 16, a motor 114 for rotating the air mass ejector 112, and compressed air facing the air mass ejector 112.
  • the air ejected from the air nozzle 116 is collected inside the air mass ejector 112 to form a compressed air mass, and the air mass ejector 112 is divided into half. It is characterized in that it is rotated and discharged into the power generation pipe 16 all at once.
  • the present invention is characterized in that spiral fins 24 are provided on the inner wall surface of the pipe wall of the power generation pipe 16 so as to increase the rising speed of air bubbles in the pipe line of the power generation pipe 16 .
  • the power generator is provided with a speed increasing mechanism for speeding up the rotation of the shaft 38 of the rotating body 36 and transmitting the speed to the generator 50 .
  • the power generation pipe 16 is fixed inside a frame body 70, a connection part 72 connected to a compressed air supply part 76 installed on land is provided on the upper part of the frame body 70, and the connection A compressed air supply pipe 56 is connected to the portion 72 , and the frame body 70 is arranged in the artificial pool 68 .
  • a plurality of the power generation pipes 16 are provided in parallel, the shafts 38 of the rotors 36 installed in the power generation pipes 16 facing each other are connected to each other, and the plurality of rotors 36 are connected to each other. It is characterized in that the rotational force of the shaft 38 is transmitted to the generator 50 .
  • the rotating body 36 is rotatably disposed in a casing 84 having a peripheral wall 84a and both side walls 84b, 84b, and the shaft 38 of the rotating body 36 is disposed between the side walls 84b, 84b of the casing 84.
  • the casing 84 is attached to the pipe wall of the power generation pipe 16, a part of the rotating body 36 in the casing 84 is arranged in the flow passage of the power generation pipe 16, and the peripheral wall 84a of the casing is provided with an opening communicating with the flow path of the power generation pipe 16, and the power generation device is connected to the shaft 38 of the rotating body 36 supported by the casing 84.
  • the present invention floats and arranges the floating facility 2 in the sea or lake, arranges the power generation pipe 16 in the water leaving the upper end portion, attaches the power generation pipe 16 to the floating facility 2, and uses the floating facility.
  • each device such as a power generator using natural energy, an air compressor 8, a compressed air storage tank 10, and a compressed air supply pipe is provided.
  • the present invention installs the water tank conduit 94 containing water on the ground, the power generation pipe 16 and the compressed air storage tank 10 on the ground, and the upper end and the lower end of the power generation pipe 16 for the water tank.
  • the water tank conduit 94 is connected to the upper and lower ends of the conduit 94 so that the water flows in one direction through the water tank conduit 94 and the power generation pipe 16 .
  • the moving body 134 is connected to the piston rod 136 of the reciprocating motion drive device 128, the moving body 134 is provided with a through hole 138, and the through hole 138 is inserted into the through hole 138 by hydraulic pressure. and a reciprocating motion driving device 128 reciprocatingly drives the moving body 134 to generate a water flow in one direction in the water tank conduit 94. do.
  • the present invention installs the water tank conduit 94 containing water on the ground, the power generation pipe 16 and the compressed air storage tank 10 on the ground, and the upper end and the lower end of the power generation pipe 16 for the water tank.
  • a plurality of cylinders 174A and 174B are arranged in the water tank conduit 94 so that water flows in one direction in the water tank conduit 94 and in the power generation pipe 16 by connecting to the upper and lower ends of the conduit 94. Then, the upper portions of the cylinders 174A and 174B and the upper portion of the power generation pipe 16 are communicated so that water flows in one direction in the cylinders 174A and 174B and in the power generation pipe 16.
  • a movable body 134 is disposed on the bodies 174A and 174B so as to be slidable in the axial direction of each cylindrical body 174A and 174B.
  • a plurality of power generators can be installed in the pipeline of the power generation pipe through which water flows, and electric power can be efficiently extracted from the power generation pipe.
  • the power generation pipe on the ground, maintenance of each part of the compressed air power generator attached to the power generation pipe can be easily performed.
  • FIG. 4 is an explanatory diagram showing another embodiment of the system; It is an explanatory view showing other embodiments of the present invention.
  • FIG. 4 is an explanatory diagram showing another embodiment of the system; FIG. 4 is an explanatory diagram showing another embodiment of the system; FIG. 4 is an explanatory diagram showing another embodiment of the system; FIG. 4 is an explanatory diagram showing another embodiment of the system; It is an explanatory view showing other embodiments of the present invention.
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system; It is an explanatory view showing other embodiments of the present invention.
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 4 is an explanatory diagram showing another embodiment of the system;
  • FIG. 10 is a cross-sectional explanatory view taken along the line BB showing another embodiment of the present system;
  • FIG. 1 shows an embodiment of a configuration in which the power generation pipe of this power generation system is suspended in the sea.
  • Numeral 2 is a floating facility that floats on the water surface 3 of a deep sea or lake.
  • a plurality of buoyant bodies 4 consisting of air-filled bladders are arranged, and the buoyant force of the buoyant bodies 4 exposes and floats on the water surface. is doing.
  • the floating facility 2 is attached to the seabed 74 by ropes 5 .
  • the floating facility 2 is equipped with a wind power generator 6, a compressor 8 driven by the output of the wind power generator 6, an output device 9 for power transmission, a controller (not shown) for controlling various devices, and the like. .
  • a compressed air filling tank 10 is arranged inside each of the plurality of buoyant bodies 4 , and each tank 10 is connected to a tank pipe 14 connected to an output portion of the compressor 8 via an air pressure regulating valve 12 .
  • Reference numeral 16 denotes a power generation pipe, and in this embodiment, a pipe having a total length of approximately 100 meters and an outer diameter of approximately 2 meters is used.
  • the upper portion of the power generation pipe 16 is suspended from the floating facility 2 by means of a fixture 18 such as a rope.
  • the main body of the power generation pipe 16 is composed of a plurality of partial pipes 16a (see FIG. 2), and the pipes 16a are connected via flanges to form one power generation pipe 16. As shown in FIG. In the general view of FIG. 1, the flange connecting the partial pipes 16a is omitted, and a single power generation pipe 16 is shown.
  • Each partial pipe 16 a is provided with a water flow intake pipe 20 , each pipe 20 is inclined downward with respect to the main body of the power generation pipe 16 , and one end of each pipe 20 extends into the pipeline of the power generation pipe 16 . It communicates via a check valve (not shown), and the other end is open underwater.
  • Each other end of the water intake pipe 20 is attached with a dust intrusion prevention member 22 such as a net for preventing intrusion of dust in the water.
  • a spiral fin 24 protrudes from the inside of the power generation pipe 16 as shown in FIG.
  • a pipe group 26 made up of a plurality of thin pipes is arranged in the pipeline of the power generation pipe 16 for finely dividing air bubbles 28 (see FIG. 6) in the power generation pipe 16, and this thin pipe group 26 and the spiral
  • the fins 24 are shaped to increase the rising speed of the air bubbles 28 in the power generation pipe 16 .
  • a lid (not shown) is arranged for each water flow intake pipe 20 on the power generation pipe 16 . The lid is configured to be controlled by a solenoid 32 in a direction to open and close the pipeline of the power generation pipe 16 .
  • the controller opens the check valve, drives the lid to close the conduit (hollow part) of the power generation pipe 16 directly above the pipe 20, and closes the water flow intake pipe 20. Dust adhering to the dust entry blocking member 22 is removed by backflowing the water flow inside.
  • a rotating body 36 consisting of an impeller constituting one of the parts of a power generating device (power generating turbine) 34 (see FIG. 3) is arranged every 10 meters. 2
  • a shaft 38 extending in the direction perpendicular to the paper surface is fixed.
  • a shaft 38 of the rotating body 36 is rotatably supported by a side wall of a water pressure equalizing air chamber 40 integrally formed on a side portion of the power generating pipe 16 .
  • the shaft 38 of the rotating body 36 is arranged in a direction perpendicular to the axial direction of the power generation pipe 16 .
  • about half of the circumference of the rotating body 36 is arranged inside the power generation pipe 16 , and the other half is arranged inside the water pressure equalizing air chamber 40 .
  • the water pressure equalizing air chamber 40 consists of a hexahedral box body as shown in FIG. , communicates with the inside of the power generation pipe 16 through an opening 42 formed in the peripheral wall of the power generation pipe 16 .
  • a clutch 44 , a transmission 46 , a flywheel 48 and a generator 50 are arranged in the hydraulic equalization air chamber 40 .
  • a power generation device (power generation turbine) 34 is configured in the water pressure equalizing air chamber 40 by the rotating body 36 , the clutch 44 , the transmission 46 , the flywheel 48 , and the power generator 50 .
  • a drain pipe 52 is provided at the bottom of the air chamber 40 .
  • a large water pressure equalizing air chamber 54 consisting of a pentagonal box is attached to the power generation pipe 16 so as to surround the air chamber 40 .
  • the bottom of the large hydraulic equalization air chamber 54 is open.
  • the air chambers 40 and 54 and the power generation device 34 constitute a power generation section 37 .
  • FIG. 1 the configuration of the power generation unit 37 is omitted.
  • reference numeral 56 denotes a compressed air supply pipe provided for each tank 10, one end of which is connected to the corresponding tank 10 via an air pressure adjustment means comprising an air pressure adjustment valve 58, and the other end of which is connected to It is loosely inserted into the lower end of the power generation pipe 16 and fixed to the inner wall of the power generation pipe 16 by a fixture (not shown).
  • An air release adjustment valve 59 whose opening and closing is controlled by a controller (not shown) is attached near the lower end of the compressed air supply pipe 56 so that an appropriate amount of compressed air is supplied to the power generation pipe 16 at intervals of several seconds. It is
  • a gap is formed between the outer peripheral surface of the other end of the compressed air supply pipe 56 and the inner peripheral surface of the lower end of the power generation pipe 16, and water flows into the power generation pipe 16 through this gap. 16 is filled with water.
  • the compressed air supply pipe 56 is branched and connected to the water pressure equalization air chamber 40 and the large water pressure equalization air chamber 54 via an air pressure regulating valve 58, as shown in FIG.
  • a dust entry prevention member 22 is attached to the lower open end of the power generation pipe 16 .
  • the air chamber 40 is provided with a water pressure balance cover 35 that covers the upper portion of the rotor 36 .
  • the computer controls the air release adjustment valve 59 and intermittently feeds compressed air from the tank 10 to the lower end of the power generation pipe 16, the compressed air becomes bubbles and vertically flows into the power generation pipe 16. Energy that rises in the pipeline is generated, and this energy rotates the rotating body 36 of each power generation unit 37, causing the power generator 50 to generate power.
  • the water pressure equalization air chamber 40 of the power generation unit 37 is formed by compressed air supplied from the air pressure regulating valve 58, and water does not enter the room from the opening 42 of the power generation pipe 16. , the rotating body 36 of the power generating device 34 in the room is not subjected to water pressure, and the rotating body 36 can be efficiently rotated.
  • the flywheel 48 , the transmission 46 , the clutch 44 , etc. convert the intermittent air energy into stable high-speed rotation of the shaft 38 and input the rotation to the generator 50 .
  • each generator 50 is supplied to the output device 9 and output from there to the outside.
  • the wind power generator 6, the compressor 8, the air pressure regulating valves 12 and 58, the power generating device 34, the output device 9, the solenoid 32, and the regulating valve 59, which constitute this system, are controllers (illustrated omitted). The controller and each device are electrically connected via electrical wiring (not shown).
  • the method of storing compressed air in the compression tank 10 is not particularly limited to a configuration in which the compressor is driven by the electric power of the wind power generator, and the compressed air is stored by using the output of a power generator using various natural energies. You can also make Moreover, the power generation pipe 16 is not limited to the method of using a single power generation pipe, and a pipe bundling method in which a plurality of power generation pipes are bundled may be adopted. Moreover, this system is not limited to the method of suspending the power generation pipe using the floating facility 2. As shown in FIG. 74 may be fixed to the bottom of the water. The configuration of the power generation pipe 16 in FIG. 6 is the same as the configuration of the power generation pipe 16 shown in FIG.
  • the large water pressure equalization air chamber 54 has a space formed therein by compressed air supplied through the air pressure regulating valve 58 , and the drain in the water pressure equalization air chamber 40 is discharged from the pipe 52 into this space.
  • FIG. 9 shows another embodiment of the power generator installed on the power generation pipe 16.
  • Reference numeral 16a denotes a partial pipe that is connected via a plurality of flanges to form the power generation pipe 16, and a casing body with an open bottom is fixed to the pipe wall of the enlarged portion 16b.
  • An air chamber 64 is provided inside the casing body 63 , and the generator 34 is attached to the inner wall surface of the casing body 63 .
  • a rotating body 36 composed of an impeller of a power generator 34 is rotatably arranged, and a shaft 38 of the rotating body 36 is rotatably supported by the tube wall of the bulging portion 16b. 38 is connected to the input shaft of the generator 50 of the generator 34 .
  • the shaft 38 of the rotating body 36 is arranged in a direction perpendicular to the axial direction of the power generation pipe 16 .
  • a group of narrow pipes (not shown) and a waterproof motor 67 that accelerates the water flow in the power generation pipe by rotating the screw are arranged, and spiral fins 24 are formed on the inner wall.
  • the power generation device 34 and the air chamber 64 constitute a power generation section 66 .
  • Compressed air is supplied to the air chamber 64 from a compressed air supply pipe 56 via an air pressure regulating valve 58 , and this compressed air prevents water from entering the air chamber 64 .
  • FIG. 7 shows an embodiment in which the present system is installed in an artificial pool (artificial pond for power generation) 68 equipped with water supply and drainage facilities.
  • the artificial pool 68 has a depth of 10m to 20m in this embodiment.
  • the power generation pipe 16 is previously held and fixed inside the rectangular parallelepiped frame body 70 by means of fixtures.
  • the frame body 70 is provided with hooks 74 for transportation by a crane.
  • the framework body 70 is set to dimensions suitable for arranging one or more in the artificial pool 68, and includes a plurality of vertical columns 70a made of metal pipes and a plurality of horizontal columns 70a made of metal pipes. 70b and reinforcing columns 70c made of metal pipes intersecting between the upper and lower horizontal columns 70b.
  • the framework 70 to which the power generation pipe 16 and the compressed air supply pipe 56 are attached is placed in a drained artificial pool 68 using a crane, and the power generation system is inspected. After inspection, the artificial pool 68 is supplied with water.
  • a connection part 72 consisting of a plug socket for compressed air supply, electricity, meter, etc. is provided at the top of the frame body 70, and the compressed air supply is connected to the compressed air tank 4 via the connection part 72. Compressed air is supplied to the lower end of the power generation pipe 16 through the pipe 56 .
  • An air release adjustment valve 59 is attached to the compressed air supply pipe 56 .
  • a connection part 72 consisting of a plug socket is connected to a compressed air supply part 76 consisting of a wind power generator 16, a compressor 8 and a compressed air tank 10 placed on land, and an output part 9 for power transmission via cords and pipes. is doing.
  • the compressed air supply pipe 56 is connected to the compressed air tank 10 of the compressed air supply section 76 via the plug outlet of the connection section 72 .
  • the connecting portion 72, the output portion 9, the compressed air supply portion 76, various air pressure regulating valves 58, etc. are configured to be controlled by a controller 33 comprising a computer. Wiring between the controller 33 and various electronic devices of the power generation system is omitted from the drawing. In FIG.
  • the configuration of the power generation section 37 installed in the power generation pipe 16 is the same as the configuration shown in FIG. 1, and these configurations are omitted from the illustration. Also, the connection structure between the compressed air supply pipe 56 and the lower end of the power generation pipe 16 is the same as the connection structure between the compressed air supply pipe 56 and the lower end of the power generation pipe 16 shown in FIG. .
  • the reason why the power generation pipe 16 is placed in the artificial pool 68 on land is that anyone can easily go to the power generation facility unlike the sea, and the transportation, installation work, and maintenance of the main body and equipment of the system can be easily performed. is. The deeper the pool 68 is, the more power generating units 37 can be installed. Further, by making the planar shape of the pool 64 rectangular, a plurality of frame bodies 70 of this system can be arranged in parallel in the artificial pool 68 .
  • FIG. 8 shows an embodiment in which the power generation pipe 16 is bent in a zigzag shape and arranged on the frame body 70 and the power generation portion 37 and the power generation portion 66 are provided in the power generation pipe 16 .
  • the power generation pipe 16 can be bent in various shapes other than the zigzag shape, and is not particularly limited to the zigzag shape.
  • the configurations of the power generation section 37 and the power generation section 66 are the same as those shown in FIGS. 4 and 10, and are omitted from the drawings.
  • FIG. 11 shows an embodiment of a power generation section 66 in which the power generation device 34 is provided with a speed increasing mechanism for increasing the rotation speed of the shaft 38 of the rotor 36 .
  • a shaft body 38a is rotatably supported by the casing 63, and the shaft body 38 and the shaft body 38a of the rotating body 36 are connected via a speed increasing mechanism consisting of a large-diameter gear G1 and a small-diameter gear G2 meshing with the large-diameter gear G1.
  • a clutch 44, a transmission 46, and a flywheel 48a are attached to the shaft 38a, and through these, the rotation of the shaft 38a is input to the generator 50 arranged in the air chamber 64.
  • a flywheel 48 a is attached to the shaft 38 .
  • the speed-increasing mechanism can adopt various configurations other than the mesh transmission configuration of a plurality of gears, and is not particularly limited to the configuration shown in FIG.
  • FIG. A skeleton frame 70 is arranged and fixed to the artificial pool 68 .
  • the framework 70 is composed of a plurality of vertical pillars 70a made of metal pipes, a plurality of horizontal pillars 70b made of metal pipes, and metal pipes intersecting between the upper and lower horizontal pillars. These are connected to each other to form a vertically long rectangular parallelepiped.
  • a plurality of power generation pipes 16 are supported by the frame body 70, and the upper end of each power generation pipe 16 protrudes from the water surface.
  • the skeleton frame 70 is provided at its top with a connecting portion 72 consisting of plug outlets for supplying compressed air, electricity, meters, and the like. Compressed air is supplied to the lower end of each power generation pipe 16 via a nozzle 81 from a compressed air supply pipe 80 connected to the compressed air tank 10 via a connection portion 72 and a pressure regulator 78.
  • the compressed air supply pipe 80 is provided with an air release adjustment valve 59 for intermittently or continuously supplying compressed air to the lower end of the power generation pipe 16 .
  • a connection part 72 consisting of a plug socket includes a wind power generator 6 having a windmill 6' placed on the ground, a compressor 8, a compressed air tank 10, a compressed air supply part consisting of an air pressure adjustment means 78, and an output part for power transmission ( (illustration omitted) via cords and pipes.
  • the compressed air supply pipe 80 is connected to the compressed air tank 10 via the plug socket portion of the connecting portion 72 .
  • the connection section 72, the output section, the compressed air supply section, etc. are configured to be controlled by a controller (not shown) comprising a computer. Wiring between the controller and various devices of the power generation system is omitted from the drawing.
  • FIG. 13 shows the configuration of the power generation unit 82.
  • FIG. A casing 84 that holds the rotating body 36 of the power generation turbine is composed of a ring strip-shaped peripheral wall 84a and disk-shaped side walls 84b, 84b. rotatably arranged.
  • the rotating body 36 is composed of a hub and blades attached around it, and a shaft 38 is fixed to the hub through the center of the hub of the rotating body 36 .
  • the shaft 38 is arranged to extend in a direction perpendicular to the axial direction of the power generation pipe 16 (perpendicular to the paper surface), and the shaft 38 is rotatably supported at the center of both side walls 84b, 84b of the casing 84. .
  • a plurality of casings 84 are attached to the pipe wall of each power generation pipe 16 .
  • a portion of the rotating body 36 in each casing 84 is arranged in the flow path of the power generation pipe 16 .
  • Openings 86 and 88 for water flow are formed in a portion of the peripheral wall 84a of the casing 84, which is arranged inside the power generation pipe 16.
  • a casing 84 fixed to the pipe wall of the power generation pipe 16 communicates with the flow path of the power generation pipe 16 through the openings 86 and 88 of the peripheral wall 84a.
  • the casing of the power generating section 82 is fixedly arranged, and the input shaft 90 is rotatably supported by the casing.
  • Both ends of the input shaft 90 are connected to the shaft bodies 38, 38 of the rotating bodies 36, 36 in the casings 84, 84 adjacent in parallel.
  • the input shaft 90 is connected to the input shaft of the generator 50 via a belt transmission mechanism, flywheel, and clutch.
  • reference numeral 91 denotes a clutch device, which couples shafts 36 of adjacent rotating bodies 36 so as to be detachable and controllable.
  • the rotation of the shafts 38 of the six rotating bodies 36 arranged in parallel is input to the input shaft (input portion) of the generator 50 of one power generation portion 82 .
  • the number of rotating bodies 3 connected in this system can be arbitrarily selected, and is not particularly limited to the configuration of the embodiment shown in FIG.
  • a generator 50 may be provided for each shaft 38 of each rotor 36 and the shaft 38 of each rotor 36 may be connected to the input shaft of the generator 50 .
  • the compressed air becomes bubbles and generates energy that rises in the conduit of each power generation pipe 16.
  • the rotating body 36 of the power generation unit 82 rotates, and the generator 50 to which the shafts 38 of the multiple rotating bodies 36 are connected generates power. As a result, the rotational energy input to the generator 50 increases, and the output of the generator 50 can be increased. Compressed air is intermittently supplied to the lower end of the power generation pipe 16 at the start of power generation, and then switched to continuous normal air supply.
  • FIG. A water tank conduit 94 having a length of 10 meters or more and a power generation pipe 16 are arranged vertically on the ground 92, and are held by a structure (not shown) erected on the ground.
  • One or a plurality of power generation pipes 16 are arranged parallel to the conduit 94 .
  • the upper end of each power generation pipe 16 is disposed within a box-shaped mounting body 96 , and the interior of the mounting body 96 is connected to a water tank conduit 94 via a pipe 98 .
  • An opening/closing valve 100 is provided on the pipe 98 .
  • each power generation pipe 16 Inside the upper end of each power generation pipe 16, a screw 102 is arranged to generate an upward flow of water in the pipe 16, and the screw 102 is configured to be driven by a screw driving portion 104 attached to the mounting body 96.
  • Each mounting body 96 is provided with a pipe 106 for releasing air.
  • the upper end of the conduit 94 is provided with a water supply port 108 with an opening/closing valve, and the lower end is provided with a drainage drain port 110 with an opening/closing valve.
  • the lower end of the conduit 94 is connected to the enlarged lower end portion of the power generation pipe 16 via an on-off valve 101 .
  • a bulging portion is formed at the lower end of each power generation pipe 16, and cylindrical air mass ejectors 112, 112 are arranged in the inside thereof in a state of being turned 180 degrees from each other.
  • Each air parcel ejector 112 , 112 is connected to the output shaft of a motor 114 .
  • Two air nozzles 116 and one air nozzle 117 are arranged at the lower end swelling portion of the power generation pipe 16, and the air nozzles 116, 116 face directly below the corresponding air mass emitters 112, 112, respectively.
  • the air nozzles 116 and 117 are connected to one end of an air pipe 120 through an air discharge switching valve 118, and the other end of the air pipe 120 is connected to the compressed air tank 10 through an air pressure adjusting means 122.
  • the air nozzle 116, the air mass ejector 112 and the motor 114 constitute an intermittent air mass ejecting means.
  • a water removal drain valve 111 is provided at the bottom expanded portion of the power generation pipe 16 .
  • the compressed air tank 10 is connected via a pipe to a compressor 8 installed on the ground 92 and is configured to be supplied with compressed air from the compressor 8 .
  • a wind power generator 6 equipped with a windmill 6 ′ using natural energy is installed on the ground, and is configured to drive a compressor 8 .
  • a plurality of power generation units 124 are attached to the pipe wall of each power generation pipe 16 .
  • Reference numeral 84 denotes a casing that holds the rotating body 36 of the power generation turbine.
  • the casing 84 has a ring-shaped peripheral wall 84a and disk-shaped side walls 84b, and the rotating body 36 having an impeller therein is rotatably arranged. It is The casing 84 has the same structure as the casing 84 shown in FIG.
  • a shaft 38 at the center of the rotating body 36 is rotatably supported by both side walls 84b of the casing 84.
  • the casing 84 is integrally attached to the pipe wall of the power generation pipe 16 .
  • a portion of the rotating body 36 in each casing 84 is arranged in the flow path of the power generation pipe 16 .
  • Openings 86 and 88 are formed in a portion of the peripheral wall 84 a of the casing 84 that is arranged inside the power generation pipe 16 .
  • a casing 84 fixed to the pipe wall of the power generation pipe 16 communicates with the flow path of the power generation pipe 16 through the openings 86 and 88 of the peripheral wall 84a.
  • a support is attached to the side of each casing 84 and the generator 50 is attached to the support.
  • An input portion of the generator 50 is connected to the shaft 38 of the rotating body 36 via the flywheel 48 , the clutch 44 and the belt-type power transmission mechanism 126 .
  • reference numeral 93 denotes a level meter
  • reference numeral 95 denotes an air vent.
  • FIG. 17 shows an explanatory view of the configuration of the water gun type reciprocating motion driving device 128 for water flow acceleration installed in the conduit 94.
  • a cylinder 130 is fixedly disposed within the upper portion of conduit 94 and a piston 132 is disposed within cylinder 130 .
  • a movable body 134 is slidably disposed within the conduit 94 and is connected to a piston 132 via a piston rod 136 .
  • a water flow hole 138 is provided in the moving body 134 .
  • the water flow hole 138 is automatically opened and closed by a spring-equipped opening/closing cover 142 pivotally supported by a shaft 140 on the moving body 134 .
  • the opening/closing lid 142 contacts the lower surface of the moving body 134 by spring force and is urged in the direction to close the through hole 138 .
  • a tubular piston cover 143 is attached to the conduit 94, and the upper portion of the piston rod 136 is fitted therein so as to be vertically movable.
  • a piston switch 144 for detecting the highest position of the piston rod 136 is provided at the upper end of the piston cover 143 .
  • the upper and lower ends of the cylinder 130 are connected to air intake pipes 146 and 148 which are connected to the output portion of the compressed air tank 10 via an air switching valve 150 and a pipe 152 .
  • Air discharge ports 154 and 156 are provided at upper and lower ends of the cylinder 130.
  • the air discharge port 154 is connected to an air discharge pipe 160 through a control valve 158, and the air discharge port 156 is connected to a control valve 159. It is connected to the lower end of the air discharge pipe 160 via the air discharge pipe 160 .
  • An air discharge port 162 and a water supply port 108 are provided at the upper end of the conduit 94 .
  • a piston switch 145 for detecting the lowest position of the piston 132 is provided at the lower end of the cylinder 130 .
  • the air switching valve, the regulating valve, and other electronic devices described above are configured to be controlled by a computer.
  • the reciprocating motion drive 128 shown in FIG. 17 is omitted from FIGS. 15 and 16 to avoid complicating the drawings.
  • Compressed air is filled in the compressed air tank 10 by a compressor 8 driven by the output power of the wind power generator 6 .
  • the water tank conduit 94 and the power generation pipe 16 are filled with water through the water supply port 108 .
  • compressed air is discharged from the air nozzle 116 to the lower end of the power generation pipe 16 .
  • the air mass discharger 112 has an opening 112a on one side, and after collecting the air discharged from the nozzle 116, it is rotated halfway by the motor 114, and the air mass in the cylinder is pushed upward from the opening 112a at once. discharge.
  • This operation is continuously performed at intervals of several seconds, and the air masses are emitted at once from the air mass ejector 112 at intervals of several seconds.
  • a mass of compressed air is intermittently fed to the lower end of the power generation pipe, the compressed air becomes bubbles and generates energy that rises vertically in the power generation pipe 16 .
  • Rotating body 36 rotates, and generator 50 generates power.
  • the piston 132 moves up and down due to the air pressure, and the moving body 134 moves up and down in the conduit 94, pressurizing the water in the conduit 94 downward, and the inside of the conduit 94 and the power generation pipe 16. Circulate the water inside.
  • the water flow circulates between the power generation pipe 16 and the conduit 94 due to the vertical movement of the moving body 134, thereby accelerating the water flow in the power generation pipe 16, thereby increasing the rotational force of the rotor 36 and enhancing the power generation effect.
  • the supply and discharge of air into the cylinder 130 are controlled by a switching valve 50 and regulating valves 158 and 159 .
  • the switching valve 150 connects the pipe 152 and the pipe 146, the regulating valve 158 is closed, and the regulating valve 159 is opened.
  • the descent of the piston 132 stops when the switch 145 is turned on, and the air supply from the pipe 146 stops.
  • the switching valve 150 is activated, the pipe 152 and the pipe 148 are connected, the pipe 146 is blocked, the valve 159 is closed, and the piston 132 is raised.
  • the regulating valve 158 is opened and the air inside the cylinder 130 is discharged from the pipe 160 .
  • the reciprocating motion driving device 128 may set the driving time by a timer, and repeat driving and stopping at predetermined time intervals.
  • FIG. 18 shows another embodiment of a water gun type reciprocating device 128 for water flow acceleration installed in conduit 94 .
  • reference numeral 94 is a conduit for water tank
  • two cylindrical bodies 174A and 174B are arranged inside the conduit 94 and are connected to each other at their sides.
  • the cylindrical bodies 174A and 174B communicate internally with each other through a hole 176 in the intermediate portion.
  • Each cylinder 174A, 174B communicates with the power generation pipes 16, 16 via pipes 98, 98, respectively.
  • a cylinder 130 is fixedly arranged inside the upper portion of each cylinder 174A, 174B, and a piston 132 is arranged in each cylinder 130. As shown in FIG.
  • a disk-shaped moving body 134 is slidably arranged in each of the cylindrical bodies 174A and 174B, and a water flow hole 138 is provided in the moving body 134 .
  • the water flow hole 138 is automatically opened and closed by a spring-equipped opening/closing cover 142 pivotally supported by a shaft 140 on the moving body 134 .
  • the opening/closing lid 142 contacts the lower surface of the moving body 134 by spring force and is urged in the direction to close the through hole 138 .
  • a tubular piston cover 143 is attached to the top wall of the cylindrical bodies 174A and 174B, and the upper portion of the piston rod 136 is fitted therein so as to be vertically movable.
  • a piston switch 144 for detecting the highest position of the piston rod 136 is provided at the upper end of the piston cover 143 .
  • the upper and lower ends of the cylinder 130 are connected to air intake pipes 146 and 148 which are connected to the output portion of the compressed air tank 10 via an air switching valve 150 and a pipe 152 .
  • Air discharge ports 154 and 156 are provided at the upper end of the cylinder 130.
  • the air discharge port 154 is connected to an air discharge pipe 160 via a regulating valve 158, and the air discharge port 156 is connected to a regulating valve 159. It is connected to the lower end of the air discharge pipe 160 via the air discharge pipe 160 .
  • An air discharge port 162 that communicates with the outside is provided in the top wall of the cylinders 174A and 174B.
  • a piston switch 145 for detecting the lowest position of the piston 132 is provided at the lower end of the cylinder 130 .
  • Disc-shaped cover plates 170 are arranged at the lower end open portions of the cylinders 174A and 174B, respectively, and the cover plate 170 is pivotally supported by a shaft 180 at the lower ends of the cylinders 174A and 174B.
  • the cover plate 170 is urged in a direction to close the lower end openings of the cylinders 174A and 174B by a spring force in contact with the lower surfaces of the edges around the lower end openings of the cylinders 174A and 174B.
  • the air switch valve, the control valve, and other electronic devices described above are configured to be controlled by a computer.
  • compressed air is discharged from the air nozzle 116 to the lower end of the power generation pipe 16, the rotor 36 rotates, and the power generator 50 generates power.
  • the piston 132 is driven up and down by air pressure within the cylinders 174A and 174B.
  • the piston 132 in the cylindrical body 174A and the piston 132 in the cylindrical body 174B are driven and controlled in directions opposite to each other.
  • lid plate 170 When moving body 134 in cylinders 174A and 174B descends, lid plate 170 opens the lower end openings of cylinders 174A and 174B, and when moving body 134 in cylinders 174A and 174B ascends, cover plate 170 opens the lid. The plate 170 automatically closes the bottom openings of the cylinders 174A and 174B.
  • the other rises and returns, and when one rises and returns, the other descends and the water in the conduit 94 is always lowered without stopping. is controlled to pressurize to This control is performed by switching valve 150 and adjusting valves 158 and 159 .
  • the switch 144 When the moving body 134 in the cylinders 174A and 174B reaches the highest position, the switch 144 is turned ON, and at the same time, the moving body 134 in the other cylinder 174B reaches the lowest position and the switch 145 is turned ON. controlled by When the switch 144 is turned on, the movable body 134 starts downward movement, and when the switch 145 is turned on, the movable body 134 is controlled to start upward movement.
  • the water flow acceleration reciprocating device 128 is incorporated in each, but the number of cylinders is not particularly limited to two. do not have. Also, the lid 170 may not be provided.
  • the reciprocating motion driving device 128 may set the driving time by a timer, and repeat driving and stopping at predetermined time intervals.
  • the air mass ejectors 112, 112 are provided near the lower end of the power generation pipe 16, but this configuration is not provided, and only an air nozzle is used to blow compressed air to the lower end of the power generation pipe 16. may be configured to supply.
  • the water supply port 108 provided on the top wall of the conduit 94 is omitted in order to avoid complicating the drawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

自然エネルギーを利用して作った圧縮空気を用いて、水を入れた発電用パイプから効率良く電力を得ることができる水中空気浮力利用の発電システムを提供する。発電システムは、自然エネルギーを利用した発電機の出力により駆動されるエアーコンプレッサーと、エアーコンプレツサーに接続する圧縮空気貯蔵タンクと、水の入った発電用パイプと、圧縮空気貯蔵タンクに気圧弁を介して連結する圧縮空気供給パイプとを備えている。発電用パイプの管路に流体発電タービン装置の回転体が複数個配置され、各回転体の軸体が発電用パイプの管壁に、発電用パイプの管路の軸方向に対して直角方向に取り付けられている。各回転体の軸体には発電機が接続されている。圧縮空気供給パイプから発電用パイプの下端内部に圧縮空気を送り込み、気泡のエネルギーにより発電用パイプ内の水を押し上げ、水圧を誘導して回転体を回転させ発電する。

Description

水中空気浮力発電システム
 本発明は、水中空気の浮力を利用した発電システムに関する。
 海中に配置したパイプの下端にエアータンクに貯蔵した圧縮空気を送り、パイプの上端から吹き上げられる圧縮空気によって発電機を駆動する空気浮力による水圧誘導力発電システムが従来知られている(例えば特許文献1参照)。また、高水圧の下の水中で、管の中に気泡を発生させ、管内に発生する水流を利用して、管内のシャフトを回転させ、この管の上端から突出するシャフトの上端に連結した発電機の入力軸を回転させて発電を行う気泡の浮力を利用した発電が知られている(例えば特許文献2参照)。
実用新案登録第3107214号公報 特開2004-183637号公報
 水中に配置されるパイプの上端で、ここから吹き上げられる圧縮空気のエネルギーを利用して発電機を駆動する構成や、パイプの上端から突出する回転シャフトの上端に発電機の入力軸を連結して発電機を駆動する構成は、1つのパイプに対して1個の発電装置しか駆動できず、パイプ内の圧縮空気のエネルギーを有効に活用できないという問題点がある。水中や地上に配置される発電用のパイプの適所に発電装置の回転体を取り付けるようにできれば、発電装置の数を増加させることによって、発電用パイプ内の圧縮空気の上昇力を有効活用できる。
 本発明は、水中や地上に配置される発電パイプの管路の適所に発電装置の回転体を複数個取り付けることができるようにして上記問題点を解決することを目的とする。
 上記目的を達成するため本発明は、自然エネルギーを利用した発電機の出力により駆動されるエアーコンプレッサー8と、水流用の管路を有し、該管路に発電装置の回転体36を配置した発電用パイプ16と、エアーコンプレッサー8に接続する圧縮空気貯蔵タンク10と、圧縮空気貯蔵タンク10に気圧調整手段を介して連結する圧縮空気供給パイプとを備え、前記圧縮空気供給パイプから発電用パイプ16の下端内部に圧縮空気を送り込み、発電パイプ16内に気泡を発生させ、気泡のエネルギーにより発電用パイプ16内の水を押し上げ、水圧を誘導して前記回転体36を回転させる発電システムであって、前記発電用パイプ16の管路に、発電装置の回転体36を複数配置し、該回転体36の中心に固定され該回転体36の回転と連動して回転する軸体38を発電用パイプ16の管路の軸方向に対して直角に配置し、前記発電用パイプ16の管壁に、発電装置を複数個取り付け、該発電装置の発電機50と回転体36の軸体38とを接続し、回転体36を発電用パイプ16内の気泡の浮力による上昇エネルギーにより回転させ、発電用パイプ16に取り付けた複数の発電装置を駆動するようにしたことを特徴とする。
 また本発明は、前記発電用パイプ16の下端に、空気の塊を断続的に一挙に放出するための空気塊断続的放出手段を配置し、該空気塊断続的放出手段を、一方が開口する筒体から成る、発電用パイプ16内に回転可能に軸支された空気塊放出体112と、該空気塊放出体112を回転駆動するモータ114と、前記空気塊放出体112に対向する圧縮エアー噴出用のエアーノズル116とで構成し、前記エアーノズル116から噴出するエアーを、前記空気塊放出体112の内部に溜めて圧縮された空気塊とし、この空気塊を空気塊放出体112を半回転させて、発電用パイプ16内に一挙に放出するようにしたことを特徴とする。
 また本発明は、前記発電用パイプ16の管壁の内壁面に螺旋状にフィン24を設け、発電用パイプ16の管路内の気泡の上昇スピードを速めるようにしたことを特徴とする。
 また本発明は、前記発電装置に、回転体36の軸体38の回転を増速して発電機50に伝達する増速機構を設けたことを特徴とする。
 また本発明は、前記発電用パイプ16を骨組枠体70の内側に固定し、該骨組枠体70の上部に、陸上に設置した圧縮エアー供給部76に接続する接続部72を設け、該接続部72に圧縮空気供給パイプ56を接続し、骨組枠体70を人工プール68に配置したことを特徴とする。
 また本発明は、前記発電用パイプ16を、複数本並列に設け、対向する発電用パイプ16に設置された各回転体36の軸体38を互いに連結し、複数の回転体36の互いに連結した軸体38の回転力を発電機50に伝達するようにしたことを特徴とする。
 また本発明は、前記回転体36を、周壁84aと両側壁84b,84bを備えたケーシング84に回転自在に配置し、該回転体36の軸体38を前記ケーシング84の両側壁84b,84b間に回転自在に支承し、前記ケーシング84を前記発電用パイプ16の管壁に取り付け、ケーシング84内の回転体36の一部を前記発電用パイプ16の流通路に配置し、前記ケーシングの周壁84aに発電用パイプ16の流通路に連通する開口部を設け、前記ケーシング84に支承された前記回転体36の軸体38に発電装置を連結したことを特徴とする。
 また本発明は、海や湖に水上浮上施設2を浮上配置し、前記発電用パイプ16を上端部を残して水中に配置し、該発電用パイプ16を水上浮上施設2に取り付け、水上浮上施設2に、前記自然エネルギーを利用した発電機、エアーコンプレッサー8、圧縮空気貯蔵タンク10、圧縮空気供給パイプの各機器を配備したことを特徴とする。
 また本発明は、水を入れた水タンク用導管94を地上に設置し、発電用パイプ16と、圧縮エアー貯蔵タンク10とを地上に設置し、発電用パイプ16の上端と下端を水タンク用導管94の上端と下端に連結し、水タンク用導管94内と発電用パイプ16内を一方向に水が流れるように成し、前記水タンク用導管94に移動体134を水タンク用導管94の軸方向にスライド自在に配置し、該移動体134を往復運動駆動装置128のピストンロッド136に連結し、前記移動体134に通孔138を設け、該通孔138に該通孔138を水圧により自動的に開閉する開閉蓋142を配置し、前記往復運動駆動装置128によって前記移動体134を往復駆動し、水タンク用導管94内に一方向に水流を発生させるようにしたことを特徴とする。
 また本発明は、水を入れた水タンク用導管94を地上に設置し、発電用パイプ16と、圧縮エアー貯蔵タンク10とを地上に設置し、発電用パイプ16の上端と下端を水タンク用導管94の上端と下端に連結し、水タンク用導管94内と発電用パイプ16内を一方向に水が流れるように成し、前記水タンク用導管94に複数の筒体174A,174Bを配置し、各筒体174A,174Bの上部と発電用パイプ16の上部とを連通し、各筒体174A,174B内と発電用パイプ16内を一方向に水が流れるように成し、前記各筒体174A,174Bに移動体134を各筒体174A,174Bの軸方向にスライド自在に配置し、該移動体134を往復運動駆動装置128のピストンロッド136に連結し、前記移動体134に通孔138を設け、該通孔138に該通孔138を水圧により自動的に、開閉する開閉蓋142を配置し、前記往復運動駆動装置128によって前記移動体134を往復駆動し、水タンク用導管94内に一方向に水流を発生させるようにしたことを特徴とするものである。
 本発明は、水が流れる発電パイプの管路に複数の発電装置を設けることができ、発電パイプから効率良く電力を取り出すことができる。また、発電パイプを地上に設置する構成とすることで、発電パイプに取り付けた圧縮エアー発電装置の各部品のメンテナンスを容易に行うことができる。
本システムの全体説明図である。 本発明の説明図である。 本発明の説明図である。 本発明のA-A線断面説明図である。 本発明の説明図である。 本発明の説明図である。 本発明の説明図である。 本システムの他の実施形態を示す説明図である。 本発明の他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本発明の他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示す説明図である。 本システムの他の実施形態を示すB-B線断面説明図である。
 以下に本発明の構成を添付した図面を参照して詳細に説明する。
 図1は、本発電システムの発電パイプを海中に吊り下げた構成の実施形態を示している。2は水深の深い海や湖の水面3に浮上配置した水上浮上施設であり、空気の詰まった浮き袋から成る浮力体4が複数個配置され、該浮力体4の浮力により水面に露出して浮上している。水上浮上施設2は、ロープ5により海底74に取り付けられる。
 水上浮上施設2には、風力発電機6と、該風力発電機6の出力により駆動されるコンプレッサー8、送電用の出力装置9、各種機器を制御するコントローラ(図示省略)等が設備されている。複数の浮力体4の各内部には圧縮空気充填用タンク10が配置され、各タンク10は、気圧調整弁12を介してコンプレッサー8の出力部に接続するタンク用パイプ14に連結している。16は発電用パイプであり、本実施形態では全長が略100メートル、外径が略2メートルのパイプを用いている。
発電用パイプ16の上部は、ロープ等の取付具18によって、水上浮上施設2に吊持されている。発電用パイプ16の本体は、複数本の部分パイプ16a(図2参照)により構成され、各パイプ16aはフランジを介して連結し、1本の発電用パイプ16を構成している。図1の全体図では、部分パイプ16aを接続するフランジは図示省略され、1本の発電用パイプ16として図示されている。各部分パイプ16aには、水流取入パイプ20が設けられ、各パイプ20は、発電用パイプ16の本体に対して下向きに傾斜し、各パイプ20の一端は、発電パイプ16の管路内に逆止弁(図示省略)を介して連通し、他端は、水中に開口している。水流取入パイプ20の各他端には、水中のゴミの侵入を阻止するためのネットなどのゴミ侵入阻止部材22が取り付けられている。
 発電パイプ16の内側には、図5に示すように螺旋状にフィン24が突設されている。また、発電用パイプ16の管路には、発電用パイプ16内の気泡28(図6参照)を細かくするための細い複数のパイプから成るパイプ群26が配置され、この細いパイプ群26と螺旋状のフィン24とで、発電用パイプ16内の気泡28の上昇スピードを高めるようにしている。発電用パイプ16には、水流取入パイプ20ごとに、蓋(図示省略)が配置されている。蓋は、ソレノイド32により、発電用パイプ16の管路を開閉する方向に制御されるように構成されている。水流取入パイプ20がゴミで詰まったとき、コントローラは逆止弁を開放し、蓋を駆動してパイプ20の直上の発電用パイプ16の管路(中空部)を閉じ、水流取入パイプ20内の水流を逆流させることでゴミ侵入阻止部材22に付着したゴミを除去する。
 発電用パイプ16には、10メートルごとに発電装置(発電タービン)34(図3参照)の部品の一つを構成する羽根車から成る回転体36が配置され、回転体36の中心には図2に示すように、紙面垂直方向に伸びる軸体38が固定されている。回転体36の軸体38は、発電用パイプ16の側部に一体的に形成された水圧均等空気室40の側壁に回転自在に軸支されている。回転体36の軸体38は、発電用パイプ16の軸方向に対して直角な方向に配置されている。回転体36は、図4に示すように、全周の約半分の部分が発電パイプ16の中に配置され、他の約半分の部分が水圧均等空気室40内に配置されている。
水圧均等空気室40は、図4に示すように六面体のボックス体からなり、前壁40aが発電用パイプ16の周壁に固定され、発電用パイプ16の内部と、水圧均等空気室40の内部は、発電用パイプ16の周壁に形成された開口部42を通じて、発電用パイプ16の内部と連通している。水圧均等空気室40には、クラッチ44、変速機46、フライホイル48、発電機50が配備されている。回転体36、クラッチ44、変速機46、フライホイル48、発電機50の機構により、水圧均等空気室40内に発電装置(発電タービン)34が構成されている。空気室40の底部には、ドレン排水用のパイプ52が設けられている。
発電用パイプ16には、前記空気室40を囲んで、五面体のボックスからなる大型水圧均等空気室54が取り付けられている。大型水圧均等空気室54の底部は開放されている。上記空気室40,54、発電装置34は、発電部37を構成する。図1において、発電部37の構成は図示省略されている。
 図1中、56は、各タンク10毎に設けられた圧縮空気供給パイプであり、一方が気圧調整弁58から成る気圧調整手段を介して、対応するタンク10に接続し、他方の端部が発電用パイプ16の下端部に遊嵌状態で挿入され、該発電用パイプ16の内壁に取り付け具(図示省略)により固定されている。圧縮空気供給パイプ56の下端近傍にはコントローラ(図示省略)によって開閉が制御される空気放出調整弁59が取り付けられ、圧縮空気が数秒ごとの間隔で適量が発電パイプ16に供給されるように構成されている。
圧縮空気供給パイプ56の他方の端部の外周面と発電用パイプ16の下端内周面との間に隙間が形成され、この隙間から、発電用パイプ16内に水が流入し、発電用パイプ16内は水が充満する。圧縮空気供給パイプ56は、分岐され、気圧調整弁58を介して、図2に示すように、水圧均等空気室40と、大型水圧均等空気室54に接続している。発電用パイプ16の下端開放部には、ゴミ侵入防止部材22が取り付けられている。空気室40には、回転体36の上部を覆う水圧バランスカバー35が設けられている。これにより、回転体36の回転によって水圧と空気圧のバランスがくずれ、発電パイプ16内の水が、空気室40内に流入するのを防止している。
 上記した構成において、コンピュータにより空気放出調整弁59を制御し、タンク10から発電用パイプ16の下端に、圧縮空気を断続的に送り込むと、圧縮空気は気泡となって垂直に発電用パイプ16の管路内を上昇するエネルギーが発生し、このエネルギーによって各発電部37の回転体36が回転し、発電機50が発電する。発電部37の水圧均等空気室40は、気圧調整弁58から供給された圧縮空気によって、室内に圧縮空気室が形成され、室内に発電用パイプ16の開口部42から水が浸入することはなく、室内の発電装置34の回転体36に対して水圧がかかることがなく、回転体36を効率よく回転させることができる。フライホイル48や、変速機46やクラッチ44等は、断続的な空気エネルギーを安定した軸体38の高速回転とし、該回転を発電機50に入力する。
発電用パイプ16内を気泡28が上昇すると、発電用パイプ16内の水も上昇し、気泡28の上昇エネルギーを高め、このとき水流取入パイプ20から水を発電用パイプ16内に吸いこみ、気泡28の上昇エネルギーを高める作用をする。各発電機50の出力電力は、出力装置9に供給されここから外部に電力が出力される。本システムを構成する風力発電機6、コンプレッサー8、気圧調整弁12,58、発電装置34、出力装置9、ソレノイド32、調整弁59の各機器は、操作部を備えたコンピュータから成るコントローラ(図示省略)によって制御される。コントローラと各機器とは、図示省略した電気配線を介して電気的に接続している。
 圧縮タンク10に圧縮空気を貯蔵する方式は、風力発電機の電力により、コンプレッサーを駆動する構成に特に限定されるものではなく、各種の自然エネルギーを利用した発電機の出力を利用して圧縮空気を作るようにしても良い。また発電用パイプ16は、単体で用いる方法に限定されるものではなく、複数本の発電パイプを束ねたパイプ束ね方式を採用しても良い。また本システムは水上浮上施設2を用いた発電パイプ吊り下げ方式に限定されるものでなく、発電パイプ16を図6に示すように金属棒などの取付具60を介して海や湖等の水底74に固定する水底固定式としても良い。図6の発電パイプ16の構成は、図1に示す発電パイプ16の構成と同一であり、圧縮空気供給パイプ56等は図示省略してある。大型水圧均等空気室54は、気圧調整弁58を介して供給される圧縮空気により、内部に空間が形成され、この空間に、水圧均等空気室40内のドレンがパイプ52から排出される。
 図9は、発電パイプ16に装置される発電装置の他の実施形態を示している。
 16aは、複数フランジを介して結合して発電用パイプ16を構成する部分パイプであり、膨大部16bの管壁に、底部が解放されたケーシング体が固定されている。該ケーシング体63の内部には空気室64が設けられ、ケーシング体63の内部壁面に、発電装置34が取り付けられている。膨大部16bの内部には、発電装置34の羽根車から成る回転体36が回転自在に配置され、回転体36の軸体38が膨大部16bの管壁に回転自在に支承され、該軸体38は、発電装置34の発電機50の入力軸に接続している。回転体36の軸体38は、発電用パイプ16の軸方向に対して直角な方向に配置されている。
部分パイプ16aには、管路に細いパイプ群(図示省略)と、スクリューの回転で発電パイプ内の水流を加速させる防水型のモータ67とが配置され、内壁に螺旋状のフィン24が形成されている。発電装置34、空気室64は発電部66を構成する。空気室64には、気圧調整弁58を介して、圧縮空気供給パイプ56から圧縮空気が供給され、この圧縮空気によって空気室64の内部への水の侵入が阻止される。
 発電部66の構成を用いて図1に示す発電システムを構築することが可能である。発電部37の代わりに発電部66を用いた発電システムは、回転体36を100%水中で回転させるので水の抵抗が多くあり、回転は遅いが発電用パイプ16内の空気上昇エネルギーを無駄なく吸収することができる。
図7は、本システムを給排水設備を備えた人工プール(発電用人工池)68に設置した実施形態を示している。人工プール68は本実施形態では深さ10m~20m規模となっている。工場で予め発電用パイプ16が、取付具により、直方体形状の骨組枠体70の内側に保持固定されている。骨組枠体70にはクレーンで搬送するためのフック74が設けられている。
骨組枠体70は、人工プール68に1個又は複数個配置するのに適した寸法に設定され、金属製パイプから成る複数の縦型柱体70aと、金属製パイプから成る複数の横型柱体70bと、上下の横型柱体70b間に交差して配置された金属製パイプから成る補強柱体70cから構成され、これらは互いに結合されて縦長の直方体形状を構成している。発電用パイプ16、圧縮空気供給パイプ56が取り付けられた骨組枠体70は、クレーンを用いて水を抜いた状態の人工プール68内に配置され、発電システムの点検が行われる。点検後、人工プール68に水が供給される。骨組枠体70には最上部に、圧縮空気供給用、電気用、計器用等のプラグコンセントから成る接続部72が設けられ、接続部72を介して、圧縮エアータンク4に接続する圧縮空気供給パイプ56により発電用パイプ16の下端に圧縮空気が供給される。圧縮空気供給パイプ56には、空気放出調整弁59が取り付けられている。
プラグコンセントから成る接続部72は、陸上に配置された風力発電機16、コンプレッサ8,圧縮エアータンク10から成る圧縮エアー供給部76と、送電用の出力部9にコード及びパイプを介して、接続している。圧縮空気供給パイプ56は、接続部72のプラグコンセントを介して、圧縮エアー供給部76の圧縮エアータンク10に連結している。接続部72,出力部9,圧縮エアー供給部76、各種気圧調整弁58等は、コンピュータから成るコントローラ33によって制御されるように構成されている。コントローラ33と本発電システムの各種電子機器との配線は図示省略している。図7において、発電用パイプ16に設置された発電部37の構成は、図1に示す構成と同一であり、これらの構成は図示省略した。また、圧縮空気供給パイプ56と発電用パイプ16の下端との結合構成も図1に示す、圧縮空気供給パイプ56と発電用パイプ16の下端との結合構成と同一であり、その説明を省略する。
発電用パイプ16を陸上の人口プール68に配置した理由は、海上などと違い誰でも簡単に発電施設に行くことができ、システムの本体や設備等の運搬及び設置工事とメンテナンスが簡単にできるためである。プール68の深さは深ければ深いほど発電部37を多く設置できる。またプール64の平面形状を長方形にすることで、本システムの骨組枠体70を人工プール68に複数並列して配置することができる。
 図8は、骨組枠体70に発電パイプ16をジグザグ状に屈曲して配置し、発電パイプ16に発電部37と発電部66を設けた実施形態を示している。発電パイプ16はジグザグ状以外に、各種の屈曲状態とすることができジグザグ状に特に限定されるものではない。発電部37と発電部66の構成は、図4と図10に示す構成と同一であり、図示省略してある。
 図11は、発電装置34に、回転体36の軸体38の回転数を増大させるための増速機構を設けた発電部66の実施形態を示している。ケーシング63に、軸体38aを、回転自在に支持し、回転体36の軸体38と軸体38aとを、大径な歯車G1とこれに噛み合う小径な歯車G2からなる増速機構を介して連結する。軸体38aには、クラッチ44、変速機46、フライホイル48aが取り付けられ、これらを介して、軸体38aの回転が、空気室64に配置された発電機50に入力されるように構成されている。軸体38にはフライホイル48aが取り付けられている。なお、上記増速機構は、複数の歯車の噛み合い伝達構成以外に種々の構成を採用することが出来、図11の構成に特に限定されるものではない。
 次に、本発明の他の実施形態を図12乃至図14を参照して説明する。
 人工プール68に骨組枠体70が配置固定されている。骨組枠体70は、金属パイプから成る複数の縦型柱体70aと、金属製パイプから成る複数の横型柱体70bと、上下の横型柱体間に交差して配置された金属製パイプから成る補強柱体70cとから構成され、これらは互いに結合されて縦長の直方体形状を構成している。骨組枠体70には、複数本の発電用パイプ16が支持され、各発電用パイプ16の上端は、水面から突出配置されている。骨組枠体70には、最上部に圧縮空気供給用、電気用、計器用等のプラグコンセントから成る接続部72が設けられている。接続部72、圧力調整装置78を介して圧縮エアータンク10に接続する圧縮空気供給パイプ80により、ノズル81を介して、各発電用パイプ16の下端に圧縮空気が供給されるように構成されている。
圧縮空気供給パイプ80には、圧縮空気を断続的あるいは連続的に発電用パイプ16の下端に供給するための空気放出調整弁59が設けられている。プラグコンセントから成る接続部72は、地上に配置された風車6’を有する風力発電機6、コンプレッサー8、圧縮エアータンク10、気圧調整手段78から成る圧縮エアー供給部と、送電用の出力部(図示省略)にコード及びパイプを介して接続している。圧縮空気供給パイプ80は、接続部72のプラグコンセント部を介して、圧縮エアータンク10に連結している。接続部72、出力部、圧縮エアー供給部等は、コンピュータから成るコントローラ(図示省略)によって制御されるように構成されている。コントローラと本発電システムの各種機器との配線は図示省略している。
 図13は、発電部82の構成を示している。発電タービンの回転体36を保持するケーシング84は、リング帯板状の周壁84aと、円盤状の両側壁84b,84bとから成り、このケーシング84に、インペラ(羽根)を備えた回転体36が回転自在に配置されている。回転体36は、ハブとその周囲に取り付けられた羽根から成り、回転体36のハブの中心を貫通して軸体38がハブに固定されている。軸体38は、発電パイプ16の軸方向に対して直角方向(紙面垂直方向)に伸びて配置され、軸体38は、ケーシング84の両側壁84b,84bの中心に回転自在に支承されている。ケーシング84は、各発電用パイプ16の管壁に複数取り付けられている。各ケーシング84内の回転体36の一部は、発電用パイプ16の流通路に配置される。ケーシング84の周壁84aの、発電パイプ16の内部に配置される部分には、水流用の開口部86,88が形成されている。発電用パイプ16の管壁に固定されたケーシング84は、周壁84aの開口部86,88を通じて、ケーシング内部の回転体収納空間が、発電用パイプ16の流通路に連通している。並列に配置された一対のケーシング84,84間には、発電部82のケーシングが固定配置され、該ケーシングに入力軸90が回転自在に支承されている。入力軸90の両端には、並列状に隣接するケーシング84,84内の回転体36,36の軸体38,38が連結している。入力軸90は、ベルト伝達機構、フライホイル、クラッチを介して発電機50の入力軸に連結している。図14中、符号91はクラッチ装置であり、隣接する回転体36の軸体36を脱着制御可能に結合している。
本実施形態では、並列状の6個の回転体36の軸体38の回転が1個の発電部82の発電機50の入力軸(入力部)に入力されるように構成されている。本システムで連結される回転体3の数は任意に選択することができ、図14に示す実施形態の構成に特に限定されるものではない。各回転体36の軸体38毎に発電機50を設け、各回転体36の軸体38を発電機50の入力軸に接続するようにしても良い。
 上記した構成において、各発電用パイプ16の下端に圧縮空気を断続的に送り込むと、圧縮空気は気泡となって各発電用パイプ16の管路内を上昇するエネルギーが発生し、このエネルギーによって各発電部82の回転体36が回転し、複数の回転体36の軸体38が連結された発電機50が発電する。これにより発電機50に入力される回転エネルギーが増大し、発電機50の出力を増大させることができる。発電用パイプ16の下端には、発電スタート時に圧縮空気が断続的に供給され、その後、連続的な通常のエアー供給に切り替わるように構成されている。
 次に、図15乃至図17を参照して本発明の他の実施形態について説明する。
 地上92に長さ10メートル以上の水タンク用導管94と、発電用パイプ16が地面に対して垂直に配置され、これらは地上に立設された建造物(図示省略)によって保持されている。発電用パイプ16は、1本又は複数本が導管94に平行に配置されている。各発電パイプ16の上端は、箱状の取付体96内に配置され、取付体96の内部はパイプ98を介して水タンク用導管94に連結している。パイプ98には、開閉バルブ100が設けられている。各発電用パイプ16の上端内部には、パイプ16内に上昇水流を生じさせるスクリュー102が配置され、該スクリュー102は、取付体96に取り付けられたスクリユー駆動部104によって駆動されるように構成されている。各取付体96にはエアー抜き用のパイプ106が設けられている。導管94の上端には開閉バルブの付いた給水口108が設けられ、下端には開閉バルブの付いた水抜きドレン排水口110が設けられている。導管94の下端は開閉バルブ101を介して発電用パイプ16の下端膨大部に連結している。各発電用パイプ16の下端には膨大部が形成され、その内部に円筒形の空気塊放出体112,112が互いに180度向きを変えた状態で配置されている。
各空気塊放出体112,112は、モータ114の出力軸に連結している。発電用パイプ16の下端膨大部には、2本のエアーノズル116と1本のエアーノズル117が配置され、エアーノズル116,116はそれぞれ対応する空気塊放出体112,112の直下に対向している。エアーノズル116,117は、空気吐出切替用のバルブ118を介して、エアーパイプ120の一端に連結し、エアーパイプ120の他端は、気圧調整手段122を介して圧縮エアータンク10に連結している。前記エアーノズル116、空気塊放出体112、モータ114は、空気塊断続的放出手段を構成している。発電用パイプ16の下端膨大部には、水抜きドレンバルブ111が設けられている。
圧縮エアータンク10は、地上92に設置されたコンプレッサー8にパイプを介して連結し、コンプレッサー8から圧縮空気が供給されるように構成されている。地上には自然エネルギーを利用した風車6’を備えた風力発電機6が設置され、コンプレッサー8を駆動するように構成されている。各発電用パイプ16の管壁には複数個の発電部124が取り付けられている。84は、発電タービンの回転体36を保持するケーシングであり、該ケーシング84は、リング状の周壁84aと、円盤状の両側壁84bを備え、内部にインペラを有する回転体36が回転自在に配置されている。ケーシング84は図13に示すケーシング84と同一の構成である。
回転体36の中心の軸体38は、ケーシング84の両側壁84bに回転自在に支承されている。ケーシング84は、発電用パイプ16の管壁に一体的に取り付けられている。各ケーシング84内の回転体36の一部は、発電用パイプ16の流通路に配置されている。ケーシング84の周壁84aの発電用パイプ16の内部に配置される部分には開口部86,88が形成されている。発電用パイプ16の管壁に固定されたケーシング84は、周壁84aの開口部86,88を通じてケーシング内部の回転体収納空間が、発電用パイプ16の流通路に連通している。各ケーシング84の側面には支持体が取り付けられ、該支持体に発電機50が取り付けられている。発電機50の入力部は、フライホイル48、クラッチ44,ベルト式動力伝達機構126を介して回転体36の軸体38に接続している。図中、符号93はレベル計、符号95はエアー抜きを示している。
 図17は、導管94に装置された水鉄砲型水流加速用往復運動駆動装置128の構成説明図を示している。
 導管94上部の内部にシリンダー130が固定配置され、シリンダー130内にピストン132が配置されている。導管94内に移動体134がスライド自在に配置され、該移動体134はピストンロッド136を介して、ピストン132に連結している。移動体134には、水流通孔138が設けられている。該水流通孔138は、移動体134に揺動自在に軸140支されたバネ付きの開閉蓋142によって、自動的に開閉するように構成されている。開閉蓋142は、バネ力によって移動体134の下面に当接し、通孔138を閉じる方向に付勢されている。導管94には、管状のピストンカバー143が取り付けられ、これにピストンロッド136の上部が昇降自在に嵌挿配置されている。
ピストンカバー143の上端部には、ピストンロッド136の最上昇位置を検出するためのピストンスイッチ144が設けられている。シリンダー130の上下端部には、圧縮エアータンク10の出力部に空気切替弁150とパイプ152を介して連結する空気取り入れパイプ146,148が連結している。また、シリンダー130の上下端部には、空気排出口154,156が設けられ、空気排出口154は、調整弁158を介して空気排出パイプ160に連結し、空気排出口156は調整弁159を介して空気排出パイプ160の下端に連結している。導管94の上端には、空気排出口162と、給水口108((図示省略))が設けられている。シリンダー130の下端には、ピストン132の最下降位置を検出するピストンスイッチ145が設けられている。
 本実施形態において、上記した空気切替弁、調整弁その他の電子機器は、コンピュータによって制御されるように構成されている。図17に示す往復運動駆動装置128は、図15,16では、図面の複雑化を避けるため図示省略されている。
 次に本実施形態の動作について説明する。
 圧縮エアータンク10内には、風力発電機6の出力電力により駆動されるコンプレッサ8により圧縮エアーが充填されている。また水タンク用導管94内及び発電用パイプ16内は、給水口108を通じて水が供給され、充満した状態となっている。
上記したシステムの状態において、発電用パイプ16の下端にエアーノズル116から圧縮空気を吐出する。空気塊放出体112は、一方側に開口部112a有し、ノズル116から吐出される空気を溜めた後、モーター114によって半回転することで一挙に円筒内の空気塊を開口部112aから上方に放出する。この動作を数秒間隔で連続的に行い、数秒間隔で空気塊放出体112から空気塊が一挙に放出される。発電用パイプの下端に圧縮空気の塊が断続的に送り込まれると、圧縮空気は気泡となって垂直に発電用パイプ16の管路内を上昇するエネルギーが発生し、このエネルギーによって各発電部124の回転体36が回転し、発電機50が発電する。一方、導管94内で、空圧によりピストン132が上下動し、移動体134が、導管94内を上下動して、導管94内の水を下方に加圧し、導管94内と発電用パイプ16内の水を循環させる。
この移動体134の昇降運動による発電用パイプ16と導管94間の水流の循環により、発電用パイプ16の水流が加速され、これにより回転体36の回転力が増大し、発電効果が高まる。シリンダー130内へのエアーの供給と排出は、切換え弁50と調整弁158,159によって制御される。ピストン132をエアーによって押し下げるときは、切替弁150はパイプ152とパイプ146を連通させ、調整弁158は閉じ、調整弁159は開く。ピストン132の下降はスイッチ145オンで停止し、パイプ146からのエアー供給は停止する。次に切替弁150が働いて、パイプ152とパイプ148が連通し、パイプ146は遮断され、弁159が閉じ、ピストン132は上昇する。このとき、調整弁158は開き、シリンダー130内のエアーは、パイプ160から排出される。ロッド136の上端がスイッチ144をオンとすると、パイプ148からのエアーの供給が停止し、ピストン132の上昇が停止する。
移動体134が下降するとき、水圧で蓋142は、ばねの弾力に抗して閉じ、上昇するときは、ばね力で元の状態に自動的に復帰し、水流通孔138を開く。発電スタート時から所定時間経過すると、圧縮エアーの間欠供給は停止し、通常の、エアーノズル117からのエアーの吐出に切り替わる。尚、発電動作中、空気排出パイプ160から排出されるエアーは、別個に設けた空気供給パイプを通じて発電用パイプ16の下端に供給されるように構成してもよい。なお、往復運動駆動装置128は、駆動時間をタイマーにより設定し、駆動と停止を所定時間ごとに繰り返すようにしても良い。
 図18は、導管94に装置される水鉄砲型水流加速用往復運動装置128の他の実施形態を示している。
 図18中、符号94は水タンク用導管であり、導管94の内部に2本の筒体174A,174Bが配置され、互いに側部が連結している。各筒体174A,174Bは、中間部が穴176を介して、互いに内部が連通している。各筒体174A,174Bは、パイプ98,98を介して発電用パイプ16,16に連通している。各筒体174A,174Bの上部の内部にシリンダー130が固定配置され、各シリンダー130内にピストン132が配置されている。各筒体174A,174B内に円盤状の移動体134がスライド自在に配置され、該移動体134には、水流通孔138が設けられている。該水流通孔138は、移動体134に揺動自在に軸140支されたバネ付きの開閉蓋142によって、自動的に開閉するように構成されている。開閉蓋142は、バネ力によって移動体134の下面に当接し、通孔138を閉じる方向に付勢されている。筒体174A,174Bの天壁には、管状のピストンカバー143が取り付けられ、これにピストンロッド136の上部が昇降自在に嵌挿配置されている。
ピストンカバー143の上端部には、ピストンロッド136の最上昇位置を検出するためのピストンスイッチ144が設けられている。シリンダー130の上下端部には、圧縮エアータンク10の出力部に空気切替弁150とパイプ152を介して連結する、空気取り入れパイプ146,148が連結している。また、シリンダー130の上端部には、空気排出口154,156が設けられ、空気排出口154は、調整弁158を介して空気排出パイプ160に連結し、空気排出口156は、調整弁159を介して空気排出パイプ160の下端に連結している。筒体174A,174Bの上端天壁には、外部と連通する空気排出口162が設けられている。シリンダー130の下端にはピストン132の最下降位置を検出するピストンスイッチ145が設けられている。筒体174A,174Bの下端開放部には、それぞれ円盤状の蓋板170が配置され、蓋板170は、筒体174A,174Bの下端に揺動自在に軸180支されている。蓋板170は、バネ力によって、筒体174A,174Bの下端開放部の周囲の縁部の下面に当接し、筒体174A,174Bの下端開放部を閉じる方向に付勢されている。
 本実施形態において、上記した空気切切弁、調整弁その他の電子機器は、コンピュータによって制御されるように構成されている。
 上記した構成において、発電用パイプ16の下端にエアーノズル116から圧縮空気が吐出され、回転体36が回転し発電機50が発電する。発電動作中、筒体174A,174B内で、空圧によりピストン132が上下方向に駆動される。筒体174A内のピストン132と筒体174B内のピストン132は互いに逆方向に駆動制御される。筒体174A,174B内の移動体134が下降するときは、蓋板170は、筒体174A,174Bの下端開放部を開き、筒体174A,174B内の移動体134が上昇するときは、蓋板170は、筒体174A,174Bの下端開放部を自動的に閉じる。筒体174A,174B内の移動体134は、一方が下降するときは、他方が上昇復帰し、一方が上昇復帰するときは、他方が下降して導管94内の水を休止することなく常に下方に加圧するように制御される。この制御は、切替弁150と調整弁158,159によって行われる。筒体174A,174B内の移動体134が最上昇位置に到達すると、スイッチ144がONとなり、同時に他方の筒体174B内の移動体134が最下降位置に到達し、スイッチ145がONとなるように制御される。スイッチ144がONとなると移動体134は、下降運動をスタートし、スイッチ145がONとなると、移動体134は上昇運動をスタートするように制御される。
 本実施形態では、導管94内に2本の筒体174A,174Bを配置し、それぞれに水流加速用往復運動装置128を内蔵させているが、特に筒体数は2本に限定されるものではない。また、蓋170は特に設けなくてもよい。なお、往復運動駆動装置128は、駆動時間をタイマーにより設定し、駆動と停止を所定時間ごとに繰り返すようにしても良い。また、本実施形態では発電用パイプ16の下端近傍に空気塊放出体112,112を設けた構成としたが、この構成を設けないで、エアーノズルのみで、発電用パイプ16の下端に圧縮エアーを供給する構成としても良い。なお、図18中、導管94の天壁に装備された給水口108は、図面の複雑化を避けるため図示省略されている。
2    水上浮上施設
4    浮力体
5    ロープ
6    風力発電機
8    コンプレッサー
9    出力装置
10   タンク
12   気圧調整弁
14   パイプ
16   発電用パイプ
16a  部分パイプ
18   取付具
20   水流取入パイプ
22   ゴミ侵入阻止部材
24   フィン
26   パイプ群
28   気泡
32   ソレノイド
34   発電装置(発電タービン)
33   コントローラ
36   回転体
37   発電部
38   軸体
40   水圧均等空気室
40a  前壁
42   開口部
44   クラッチ
46   変速機
48   フライホイル
50   発電機
52   パイプ
54   大型水圧均等空気室
56   圧縮空気供給パイプ
58   気圧調整弁(気圧調整手段)
59   空気放出調整弁
60   取付具
64   空気室
66   発電部
67   モータ
68   人工プール
70   骨組枠体
72   接続部
74   フック
76   水底
78   気圧調整手段
80   圧縮空気供給パイプ
82   発電部
84   ケーシング
86   開口部
88   開口部
90   入力軸
92   地上
94   水タンク用導管
96   取付体
98   パイプ
100  バルブ
102  スクリュー
104  スクリュー駆動部
106  パイプ
108  給水口
110  排水口
111  水抜きドレンバルブ
112  空気塊放出体
114  モータ
116  エアーノズル
117  エアーノズル
118  バルブ
120  エアーパイプ
122  気圧調整手段
124  発電部
126  ベルト式動力伝達機構
128  往復運動駆動装置
130  シリンダー
132  ピストン
134  移動体
136  ピストンロッド
138  水流通孔
140  軸
142  開閉蓋
143  ピストンカバー
144  スイッチ
145  スイッチ
146  空気取り入れパイプ
148  空気取り入れパイプ
150  空気切替弁
152  パイプ
154  空気排出口
156  空気排出口
158  調整弁
159  調整弁
160  空気排出パイプ
162  空気排出口
164  水
170  蓋板
174A 筒体
174B 筒体
176  穴
180  軸

Claims (10)

  1.  自然エネルギーを利用した発電機の出力により駆動されるエアーコンプレッサー8と、水流用の管路を有し、該管路に発電装置の回転体36を配置した発電用パイプ16と、エアーコンプレッサー8に接続する圧縮空気貯蔵タンク10と、圧縮空気貯蔵タンク10に気圧調整手段を介して連結する圧縮空気供給パイプとを備え、前記圧縮空気供給パイプから発電用パイプ16の下端内部に圧縮空気を送り込み、発電パイプ16内に気泡を発生させ、気泡のエネルギーにより発電用パイプ16内の水を押し上げ、水圧を誘導して前記回転体36を回転させる発電システムであって、前記発電用パイプ16の管路に、発電装置の回転体36を複数配置し、該回転体36の中心に固定され該回転体36の回転と連動して回転する軸体38を発電用パイプ16の管路の軸方向に対して直角に配置し、前記発電用パイプ16の管壁に、発電装置を複数個取り付け、該発電装置の発電機50と回転体36の軸体38とを接続し、回転体36を発電用パイプ16内の気泡の浮力による上昇エネルギーにより回転させ、発電用パイプ16に取り付けた複数の発電装置を駆動するようにしたことを特徴とする水中空気浮力発電システム。
  2.  前記発電用パイプ16の下端に、空気の塊を断続的に一挙に放出するための空気塊断続的放出手段を配置し、該空気塊断続的放出手段を、一方が開口する筒体から成る、発電用パイプ16内に回転可能に軸支された空気塊放出体112と、該空気塊放出体112を回転駆動するモータ114と、前記空気塊放出体112に対向する圧縮エアー噴出用のエアーノズル116とで構成し、前記エアーノズル116から噴出するエアーを、前記空気塊放出体112の内部に溜めて圧縮された空気塊とし、この空気塊を空気塊放出体112を半回転させて、発電用パイプ16内に一挙に放出するようにしたことを特徴とする請求項1に記載の水中空気浮力発電システム。
  3.  前記発電用パイプ16の管壁の内壁面に螺旋状にフィン24を設け、発電用パイプ16の管路内の気泡の上昇スピードを速めるようにしたことを特徴とする請求項2に記載の水中空気浮力発電システム。
  4.  前記発電用パイプ16に取り付けた発電装置に、回転体36の軸体38の回転を増速して発電機50に伝達する増速機構を設けたことを特徴とする請求項2に記載の水中空気浮力発電システム。
  5.  前記発電用パイプ16を骨組枠体70の内側に固定し、該骨組枠体70の上部に、陸上に設置した圧縮エアー供給部76に接続する接続部72を設け、該接続部72に圧縮空気供給パイプ56を接続し、骨組枠体70を人工プール68に配置したことを特徴とする請求項2に記載の水中空気浮力発電システム。
  6.  前記発電用パイプ16を、複数本並列に設け、対向する発電用パイプ16に設置された各回転体36の軸体38を互いに連結し、複数の回転体36の互いに連結した軸体38の回転力を発電機50に伝達するようにしたことを特徴とする請求項2に記載の水中空気浮力発電システム。
  7.  前記回転体36を、周壁84aと両側壁84b,84bを備えたケーシング84に回転自在に配置し、該回転体36の軸体38を前記ケーシング84の両側壁84b,84b間に回転自在に支承し、前記ケーシング84を前記発電用パイプ16の管壁に取り付け、ケーシング84内の回転体36の一部を前記発電用パイプ16の流通路に配置し、前記ケーシングの周壁84aに発電用パイプ16の流通路に連通する開口部を設け、前記ケーシング84に支承された前記回転体36の軸体38に発電装置を連結した特徴とする請求項1に記載の水中空気浮力発電システム。
  8.  海や湖に水上浮上施設2を浮上配置し、前記発電用パイプ16を上端部を残して水中に配置し、該発電用パイプ16を水上浮上施設2に取り付け、水上浮上施設2に、自然エネルギーを利用した発電機、エアーコンプレッサー8、圧縮空気貯蔵タンク10、圧縮空気供給パイプの各機器を配備したことを特徴とする請求項2に記載の水中空気浮力発電システム。
  9.  水を入れた水タンク用導管94を地上に設置し、発電用パイプ16と、圧縮エアー貯蔵タンク10とを地上に設置し、発電用パイプ16の上端と下端を水タンク用導管94の上端と下端に連結し、水タンク用導管94内と発電用パイプ16内を一方向に水が流れるように成し、前記水タンク用導管94に移動体134を水タンク用導管94の軸方向にスライド自在に配置し、該移動体134を往復運動駆動装置128のピストンロッド136に連結し、前記移動体134に通孔138を設け、該通孔138に該通孔138を水圧により自動的に開閉する開閉蓋142を配置し、前記往復運動駆動装置128によって前記移動体134を往復駆動し、水タンク用導管94内に一方向に水流を発生させるようにしたことを特徴とする請求項1に記載の水中空気浮力発電システム。
  10.  水を入れた水タンク用導管94を地上に設置し、発電用パイプ16と、圧縮エアー貯蔵タンク10とを地上に設置し、発電用パイプ16の上端と下端を水タンク用導管94の上端と下端に連結し、水タンク用導管94内と発電用パイプ16内を一方向に水が流れるように成し、前記水タンク用導管94に複数の筒体174A,174Bを配置し、各筒体174A,174Bの上部と発電用パイプ16の上部とを連通し、各筒体174A,174B内と発電用パイプ16内を一方向に水が流れるように成し、前記各筒体174A,174Bに移動体134を各筒体174A,174Bの軸方向にスライド自在に配置し、該移動体134を往復運動駆動装置128のピストンロッド136に連結し、前記移動体134に通孔138を設け、該通孔138に該通孔138を水圧により自動的に、開閉する開閉蓋142を配置し、前記往復運動駆動装置128によって前記移動体134を往復駆動し、水タンク用導管94内に一方向に水流を発生させるようにしたことを特徴とする請求項1に記載の水中空気浮力発電システム。
PCT/JP2022/015857 2021-05-14 2022-03-30 水中空気浮力発電システム WO2022239560A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021082171 2021-05-14
JP2021-082171 2021-05-14
JP2021-199193 2021-12-08
JP2021199193A JP7072341B1 (ja) 2021-05-14 2021-12-08 水中空気浮力発電システム

Publications (1)

Publication Number Publication Date
WO2022239560A1 true WO2022239560A1 (ja) 2022-11-17

Family

ID=81654314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015857 WO2022239560A1 (ja) 2021-05-14 2022-03-30 水中空気浮力発電システム

Country Status (2)

Country Link
JP (1) JP7072341B1 (ja)
WO (1) WO2022239560A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183637A (ja) * 2002-12-01 2004-07-02 Masahiko Takahashi 高水圧下で発生させた気泡の浮力を利用した発電装置
JP2011001946A (ja) * 2009-06-22 2011-01-06 Hisao Omomo 浮力を利用した動力システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183637A (ja) * 2002-12-01 2004-07-02 Masahiko Takahashi 高水圧下で発生させた気泡の浮力を利用した発電装置
JP2011001946A (ja) * 2009-06-22 2011-01-06 Hisao Omomo 浮力を利用した動力システム

Also Published As

Publication number Publication date
JP2022176047A (ja) 2022-11-25
JP7072341B1 (ja) 2022-05-20

Similar Documents

Publication Publication Date Title
US6803670B2 (en) Method and apparatus for generating energy
US7915750B1 (en) Methods and apparatus for generating electrical energy with a submerged tank
US8024927B1 (en) System for buoyancy power generation
US4981015A (en) Buoyancy engines
JP2006029277A (ja) 発電装置
AU2008338258B2 (en) Hydrodynamic energy generation system
TWI772307B (zh) 自流體擷取能量之裝置及其方法
US4805406A (en) Air activated liquid displacement motor
US10641236B2 (en) Submersible hydroelectric generator apparatus and a method of evacuating water from such an apparatus
US20100059999A1 (en) Sea Floor Pump Tailrace Hydraulic Generation System
KR101212302B1 (ko) 파력 발전 장치 및 방법
DE102005041899A1 (de) Krafterzeugungsanlage
CN110573726A (zh) 泵发电机
WO2022239560A1 (ja) 水中空気浮力発電システム
JP2010121609A (ja) 2重円筒型の波浪発電装置
US11199174B2 (en) Generator
JP3233115U (ja) 水中空気浮力発電システム
CN205331068U (zh) 提升流体压强或高度的装置
JP2019501334A (ja) 浮力発電装置
WO2021040569A1 (ru) Генератор энергии
KR20110054931A (ko) 파력 발전
JP2022175608A (ja) 水中空気浮力発電システム
TWI619882B (zh) 水壓式儲能及發電系統
CN111315979A (zh) 转矩生成装置
WO2016016668A1 (en) Conversion from gravitational force to electrical power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807264

Country of ref document: EP

Kind code of ref document: A1