WO2022239554A1 - Resin composition for underfill, and electronic component device and production method therefor - Google Patents

Resin composition for underfill, and electronic component device and production method therefor Download PDF

Info

Publication number
WO2022239554A1
WO2022239554A1 PCT/JP2022/015660 JP2022015660W WO2022239554A1 WO 2022239554 A1 WO2022239554 A1 WO 2022239554A1 JP 2022015660 W JP2022015660 W JP 2022015660W WO 2022239554 A1 WO2022239554 A1 WO 2022239554A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone compound
mass
underfill material
electronic component
modified silicone
Prior art date
Application number
PCT/JP2022/015660
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 古池
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202280034304.2A priority Critical patent/CN117337486A/en
Priority to JP2023520913A priority patent/JPWO2022239554A1/ja
Publication of WO2022239554A1 publication Critical patent/WO2022239554A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an underfill resin composition, an electronic component device, and a method for manufacturing the same.
  • resins have been mainly used as encapsulants for encapsulating semiconductor elements such as transistors and ICs (Integrated Circuits) from the standpoint of productivity and cost.
  • epoxy resins are widely used because of their excellent balance of properties required for encapsulants, such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to insert products. ing.
  • an electronic component device in which a semiconductor element is directly bump-connected on a wiring substrate (hereinafter also simply referred to as “substrate”) whose substrate is ceramic, glass/epoxy resin, glass/imide resin, polyimide film, etc.
  • a sealing material called an underfill material is used to fill the gap between the bump-connected semiconductor element and the wiring board.
  • a resin composition used as an underfill material plays an important role in protecting electronic parts from temperature, humidity and mechanical external force.
  • a liquid encapsulating resin composition containing an epoxy resin, a liquid aromatic amine, a filler, and a liquid silicone compound having a carboxy group or an amino group is disclosed in order to improve bleeding defects (for example, Patent Document 1).
  • An object of the present disclosure is to provide an underfill resin composition in which the occurrence of bleeding is suppressed, an electronic component device using this underfill resin composition, and a method for manufacturing the same.
  • An underfill resin composition containing an epoxy resin, a curing agent, an inorganic filler, and a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
  • a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
  • the content of the silicone compound is 0.0001% by mass to 1% by mass relative to the total amount of the underfill resin composition.
  • the silicone compound comprises a polyglycerin-modified silicone compound.
  • ⁇ 4> The underfill resin according to any one of ⁇ 1> to ⁇ 3>, wherein when the silicone compound contains a polyester-modified silicone compound, the polyester-modified silicone compound contains a polyether-polyester-modified silicone compound.
  • Composition. ⁇ 5> The underfill resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the curing agent contains an amine-based curing agent.
  • An electronic component device comprising: ⁇ 7> The underfilling according to any one of ⁇ 1> to ⁇ 5>, wherein a substrate having a circuit layer and an electronic component disposed on the substrate and electrically connected to the circuit layer are combined.
  • a method for manufacturing an electronic component device comprising a step of sealing using a resin composition.
  • an underfill resin composition that suppresses the occurrence of bleeding, an electronic component device using this underfill resin composition, and a method for manufacturing the same are provided.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • Particles corresponding to each component in the present disclosure may include a plurality of types.
  • the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
  • the underfill resin composition of the present disclosure includes an epoxy resin, a curing agent, an inorganic filler, and a silicone compound including at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
  • the underfill resin composition of the present disclosure (hereinafter also referred to as “underfill material”) is at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound (hereinafter also referred to as "specific modified silicone compound”). Contains silicone compounds containing This suppresses the occurrence of bleeding. The reason for this is presumed as follows. When an underfill material is filled in a gap between an electronic component such as a semiconductor element and a wiring board, polar groups such as hydroxyl groups and ester groups contained in a specific modified silicone compound are adsorbed onto the wiring board. Therefore, the wetting and spreading of the preceding liquid film is suppressed, and the occurrence of bleeding is suppressed.
  • the underfill material is preferably liquid at room temperature.
  • "normal temperature” means 25 ° C.
  • “liquid” means a substance that exhibits fluidity and viscosity and has a viscosity that is a measure of viscosity of 0.0001 Pa s to 100 Pa s. .
  • “liquid” means being in a liquid state.
  • viscosity is defined as a value obtained by multiplying a measured value obtained by rotating an EHD rotational viscometer at 25°C for 1 minute at a predetermined number of revolutions by a predetermined conversion factor.
  • the above measured values are obtained for a liquid maintained at 25 ⁇ 1° C. using an EHD rotational viscometer equipped with a cone rotor having a cone angle of 3° and a cone radius of 14 mm.
  • the number of rotations and the conversion factor differ depending on the viscosity of the liquid to be measured. Specifically, the viscosity of the liquid to be measured is roughly estimated in advance, and the rotational speed and the conversion factor are determined according to the estimated value.
  • the rotation speed is 10 times per minute, the conversion factor is 0.5, and the estimated viscosity is 1 . If the viscosity is 25 Pa s or more and less than 2.5 Pa s, the rotation speed is 5 times per minute, and the conversion factor is 1. If the estimated viscosity value is 2.5 Pa s or more and less than 6.25 Pa s, the rotation speed is 2.5 times per minute and the conversion factor is 2. When the estimated value of the viscosity is 6.25 Pa ⁇ s or more and less than 12.5 Pa ⁇ s, the rotation speed is 1 time per minute and the conversion factor is 5.
  • the viscosity of the underfill material is not particularly limited. Above all, from the viewpoint of high fluidity, the viscosity of the underfill material at 25° C. is preferably 0.1 Pa ⁇ s to 100.0 Pa ⁇ s, more preferably 0.1 Pa ⁇ s to 50.0 Pa ⁇ s. More preferably, it is 0.1 Pa ⁇ s to 30.0 Pa ⁇ s.
  • the viscosity of the underfill material at 110° C. can be mentioned. .
  • the viscosity of the underfill material at 110° C. is preferably 0.20 Pa ⁇ s or less, more preferably 0.15 Pa ⁇ s or less.
  • the viscosity of the underfill material at 110° C. is measured by a rheometer AR2000 (manufactured by TA Instruments, aluminum cone 40 mm, shear rate 32.5/sec).
  • the underfill material has a thixotropic index [ (Viscosity at 2.5 revolutions/minute)/(Viscosity at 10 revolutions/minute)] is preferably 0.5 to 1.5, more preferably 0.8 to 1.2.
  • the viscosity and thixotropic index of the underfill material can be set within desired ranges by appropriately selecting the composition of the epoxy resin, the content of the inorganic filler, and the like.
  • the underfill material of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler, and a silicone compound containing a specific modified silicone compound, and may contain other components as necessary.
  • the underfill material of the present disclosure contains epoxy resin.
  • the type of epoxy resin is not particularly limited, and can be selected from those commonly used as materials for underfill materials.
  • An epoxy resin may be used individually by 1 type, or may use 2 or more types together.
  • epoxy resins include phenol novolac epoxy resins, novolac epoxy resins such as cresol novolac epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, N,N-diglycidylaniline, N , N-diglycidyltoluidine, diaminodiphenylmethane-type glycidylamine, aromatic glycidylamine-type epoxy resins such as aminophenol-type glycidylamine, phenol aralkyl-type epoxy resins having at least one of a phenylene skeleton or a biphenylene skeleton, phenylene skeletons or biphenylene skeletons Aralkyl-type epoxy resins such as naphthol aralkyl-type epoxy resins having at least one, hydroquinone-type epoxy resins, biphenyl-type epoxy resins, stilbene-type epoxy resins, triphenolmethane-type epoxy resins, triphenolpropane-type epoxy resins,
  • epoxy resins may include bisphenol-type epoxy resins, aromatic glycidylamine-type epoxy resins, and naphthalene-type epoxy resins.
  • epoxy resins containing a structure in which a glycidyl structure or a glycidylamine structure is bonded to an aromatic ring are preferable from the viewpoint of improving heat resistance, mechanical properties, and moisture resistance.
  • the epoxy resin it is preferable to select the epoxy resin so that the entire epoxy resin is liquid at room temperature. That is, when only one kind of epoxy resin is included, it is preferable that the epoxy resin is liquid at room temperature. In the case of a combination of two or more epoxy resins, all of the two or more epoxy resins may be liquid at room temperature, and a part of the epoxy resin may be solid at room temperature, and the two or more epoxy resins are mixed. The combination may sometimes be liquid at room temperature. When an epoxy resin that is solid at room temperature is used as the epoxy resin, the content of the solid epoxy resin is preferably 20% by mass or less relative to the entire epoxy resin from the viewpoint of fluidity.
  • the epoxy resins may be mixed in advance and then mixed with the other components, or the epoxy resins may be mixed with the other components without being mixed with each other.
  • the content of the epoxy resin in the underfill material is not particularly limited, and is preferably 5% to 60% by mass, more preferably 5% to 50% by mass, based on the entire underfill material.
  • the content of the epoxy resin is within the above range, the reactivity during curing, the heat resistance and mechanical strength after curing, and the fluidity during sealing tend to be excellent.
  • the epoxy resin preferably contains a bisphenol-type epoxy resin and an aromatic glycidylamine-type epoxy resin.
  • the total content of the bisphenol-type epoxy resin and the aromatic glycidylamine-type epoxy resin is preferably, for example, 20% by mass or more relative to the total epoxy resin. , more preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 80% by mass or more.
  • the total content of the bisphenol-type epoxy resin and the aromatic glycidylamine-type epoxy resin may be, for example, 90% by mass or less based on the total epoxy resin.
  • bisphenol-type epoxy resin Aromatic glycidylamine-type epoxy is preferably 20:80 to 95:5, and 40:60 to 90:10, from the viewpoint of heat resistance, adhesiveness and fluidity. is more preferred, and 60:40 to 80:20 is even more preferred.
  • the epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited, and is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq.
  • the epoxy equivalent of the epoxy resin shall be the value measured by the method according to JIS K 7236:2009.
  • the purity of the epoxy resin is high.
  • the amount of hydrolyzable chlorine is as small as possible because it is related to the corrosion of aluminum wiring on elements such as ICs. From the viewpoint of obtaining an underfill material with excellent moisture resistance, it is preferably, for example, 500 ppm or less.
  • the amount of hydrolyzable chlorine is obtained by dissolving 1 g of the sample epoxy resin in 30 mL of dioxane, adding 5 mL of 1 mol / L-KOH (potassium hydroxide) methanol solution and refluxing for 30 minutes, and then by potentiometric titration. The obtained value is used as a scale.
  • the underfill material of the present disclosure contains a curing agent.
  • the type of curing agent is not particularly limited, and can be selected from those commonly used as materials for underfill materials. Curing agents may be used alone or in combination of two or more. Examples of curing agents include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and the like. Among these, an amine-based curing agent is preferable as the curing agent.
  • amine-based curing agent there are no particular restrictions on the amine-based curing agent, and for example, two or more of one or more selected from the group consisting of primary amino groups and secondary amino groups (hereinafter also simply referred to as "amino groups") per molecule.
  • a compound containing the amino group is preferable, a compound having 2 to 4 amino groups in one molecule is more preferable, and a compound having two amino groups in one molecule (diamine compound) is more preferable.
  • the curing agent is selected so that the entire curing agent is liquid at room temperature. That is, when only one type of curing agent is included, the curing agent is preferably liquid at room temperature. In the case of a combination of two or more curing agents, all of the two or more curing agents may be liquid at room temperature, and a portion of the curing agents may be solid at room temperature, and the two or more curing agents are mixed. It may be a combination that becomes a liquid at normal temperature when it is mixed. When a curing agent that is solid at room temperature is used as the curing agent, the content of the solid curing agent is preferably 20% by mass or less based on the total curing agent from the viewpoint of fluidity.
  • the compound having an amino group is preferably a compound having an aromatic ring (aromatic amine compound), more preferably an aromatic amine compound that is liquid at room temperature, is liquid at room temperature, and contains More preferably, it is an aromatic amine compound having two amino groups.
  • diethyltoluenediamines such as 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine
  • 1,3,5-triethyl- triethyldiaminobenzene such as 2,6
  • diaminodiphenylmethane and diethyltoluenediamine are preferable from the viewpoint of storage stability.
  • the total content is, for example, preferably 50% by mass or more, more preferably 70% by mass or more, relative to the total curing agent. , more preferably 80% by mass or more.
  • the upper limit of the total content is not particularly limited, and may be, for example, 100% by mass or less with respect to the entire curing agent.
  • the content is preferably 50% by mass or more, preferably 70% by mass or more, based on the total curing agent, from the viewpoint of sufficiently exhibiting its performance. It is more preferable that the content is 80% by mass or more.
  • the upper limit of the content is not particularly limited, and may be 100% by mass or less with respect to the entire curing agent.
  • the active hydrogen equivalent of the curing agent is not particularly limited. From the viewpoint of further suppressing the occurrence of bleeding, for example, it is preferably 10 g/mol to 200 g/mol, more preferably 20 g/mol to 100 g/mol, and 30 g/mol to 70 g/mol. More preferred.
  • the active hydrogen equivalent of the curing agent is a value calculated based on the amine value measured according to JIS K7237:1995.
  • the equivalent ratio of the epoxy resin to the curing agent in the underfill material is preferably, for example, 0.7 to 1.6, more preferably 0.8 to 1, from the viewpoint of suppressing each unreacted amount. 0.4 is more preferred, and 0.9 to 1.2 is even more preferred.
  • the underfill material of the present disclosure contains an inorganic filler.
  • the type of inorganic filler is not particularly limited. Specifically, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide. , beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay, and mica. Inorganic fillers having a flame retardant effect may also be used.
  • Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate. Among them, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity.
  • An inorganic filler may be used individually by 1 type, or may use 2 or more types together. Examples of the state of the inorganic filler include powders, beads obtained by spheroidizing powders, fibers, and the like.
  • the content of the inorganic filler in the underfill material is not particularly limited, but from the viewpoint of the thermal expansion coefficient of the cured product and the fluidity of the underfill material, it should be 40% by mass to 70% by mass with respect to the entire underfill material. is preferred, and 50% by mass to 65% by mass is more preferred.
  • the inorganic filler may contain silica particles.
  • the average particle size of the silica particles is preferably 0.2 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 3 ⁇ m, and more preferably 0.3 ⁇ m to 1 ⁇ m, from the viewpoint of the fluidity and filling properties of the underfill material. more preferably 0.4 ⁇ m to 0.8 ⁇ m.
  • the inorganic filler may contain large silica particles with a larger average particle size and small silica particles with a smaller average particle size.
  • the preferred range of the average particle size of the large silica particles is the same as the preferred range of the average particle size of the silica particles described above.
  • the average particle size of the small-diameter silica particles is preferably 7 nm to 100 nm, more preferably 9 nm to 75 nm.
  • the average particle size of the small-diameter silica particles is 7 nm or more, the viscosity of the underfill material is less likely to increase, and fluidity tends to be less likely to deteriorate.
  • the average particle size of the small-diameter silica particles is 100 nm or less, the viscosity of the underfill material tends to be reduced.
  • the proportion of silica particles or large-sized silica particles in the inorganic filler may be 70% by mass or more, or may be 75% by mass or more.
  • the proportion of silica particles or large-diameter silica particles in the inorganic filler is not particularly limited as long as it is 100% by mass or less, and may be 99.7% by mass or less, or 99.5% by mass or less.
  • the proportion of small-diameter silica particles in the inorganic filler may be 0% by mass, 0.5% by mass or more, or 10% by mass or more. Moreover, the ratio of the small-diameter silica particles in the inorganic filler may be 30% by mass or less, or may be 25% by mass or less.
  • the average particle size of the inorganic filler can be measured by the following method.
  • a solvent for example, pure water
  • a surfactant of 1% to 8% by weight in the range of 1% to 5% by weight of the inorganic filler to be measured.
  • About 3 mL of the dispersion liquid is injected into the measurement cell and measured at 25°C.
  • a laser diffraction particle size distribution meter (LA920, manufactured by Horiba, Ltd.) is used as a measuring device to measure the volume-based particle size distribution.
  • the average particle diameter is obtained as the particle diameter (D50%) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
  • the inorganic filler is imaged using an electron microscope or the like, the particle size of each particle is measured, and the particle size of 100 arbitrarily selected particles. may be used as the average particle size of the inorganic filler.
  • the measurement sample is a cured product, for example, the ash content obtained as a residue after treating the cured product at a high temperature of 800° C. or higher in a muffle furnace or the like can be measured by the above method.
  • the ratio of the average particle size of the small-sized silica particles to the average particle size of the large-sized silica particles is preferably 7-120, more preferably 10-110, even more preferably 20-100.
  • the method for determining the ratio of small-diameter silica particles and large-diameter silica particles in the inorganic filler is not particularly limited.
  • the volume-based particle size distribution (frequency distribution) of the inorganic filler is obtained, and both are divided between the peak corresponding to the small-diameter silica particles and the peak corresponding to the large-diameter silica particles.
  • the ratio of the small-diameter silica particles and the large-diameter silica particles can be obtained.
  • the composition of the underfill material When the composition of the underfill material is known, it is possible to obtain the ratio of the small-diameter silica particles and the large-diameter silica particles in the inorganic filler from the composition of the underfill material. Note that the calculation method is not limited to the above method.
  • the underfill material of the present disclosure contains a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound (specific modified silicone compound).
  • the type of specific modified silicone compound is not particularly limited, and one type may be used alone, or two or more types may be used in combination.
  • one polyglycerin-modified silicone compound or polyester-modified silicone compound may be used alone or two or more may be used in combination, and one or more polyglycerin-modified silicone compounds and one or more polyester-modified silicone compounds may be combined.
  • "silicone compound” means a compound having a main chain formed by siloxane bonds.
  • the silicone compound and the specific modified silicone compound are preferably liquid silicone compounds at 25°C.
  • polyglycerin-modified and polyester-modified silicone compounds are classified as polyglycerin-modified silicone compounds.
  • the content of the silicone compound in the underfill material is preferably 0.0001% by mass to 1% by mass with respect to the entire underfill material from the viewpoint of suitably suppressing the occurrence of bleeding, and further electronic parts such as semiconductor elements. From the viewpoint of the filling speed of the underfill material into the gap between the wiring board and the wiring board, it is more preferably 0.001% by mass to 0.25% by mass, and 0.005% by mass to 0.15% by mass. is more preferred.
  • the silicone compound may contain only one of the polyglycerin-modified silicone compound and the polyester-modified silicone compound, or may contain both of them.
  • the silicone compound preferably contains a polyglycerin-modified silicone compound.
  • the polyglycerin-modified silicone compound is not particularly limited as long as it is a silicone compound having a plurality of structural units derived from glycerin. More preferably, it is a polydimethylsiloxane derivative having a plurality of constitutional units derived from glycerin in at least one of the main chain and the side chain.
  • the polyglycerin-modified silicone compound may be an alkyl-modified polydimethylsiloxane derivative or a non-alkyl-modified polydimethylsiloxane derivative. From the viewpoint of suitably suppressing the occurrence of bleeding, the polyglycerin-modified silicone compound is preferably a polydimethylsiloxane derivative that is not alkyl-modified.
  • the polyester-modified silicone compound preferably contains a polyether-polyester-modified silicone compound.
  • Polyether-polyester modified silicone compounds include, for example, silicone compounds having structural units derived from ester groups and alkylene glycol in at least one of the main chain and side chains.
  • Alkylene glycols include, for example, ethylene glycol, polypropylene glycol, and combinations thereof.
  • the polyester-modified silicone compound may be a polydimethylsiloxane derivative that has undergone modification other than polyester modification (eg, ether modification), or may be a polydimethylsiloxane derivative that has not undergone modification other than polyester modification.
  • the specific modified silicone compound may be a compound represented by the following general formula (1).
  • each R 1 independently represents an organic group having a plurality of constitutional units derived from a hydrocarbon group or glycerin, or an organic group having a plurality of ester groups.
  • the compound represented by general formula (1) is a polyglycerin-modified silicone compound, at least one of R 1 is an organic group having a plurality of constitutional units derived from glycerin.
  • the compound represented by general formula (1) is a polyester-modified silicone compound, at least one of R 1 is an organic group having a plurality of ester groups.
  • l is 0-100.
  • the hydrocarbon group represented by R 1 includes aliphatic hydrocarbon groups such as alkyl groups and alkenyl groups.
  • the number of carbon atoms in the aliphatic hydrocarbon group is not particularly limited, and from the viewpoint of availability, for example, it is preferably 1 to 10, more preferably 1 to 5, and 1 to 3. More preferred.
  • Alkyl groups can be straight, cyclic, or branched.
  • a vinyl group, an allyl group, etc. are mentioned as an alkenyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable, from the viewpoint of availability.
  • part of R 1 may be an alkyl group other than a methyl group, the remaining R 1 may be a methyl group, or all of the R 1 may be a methyl group.
  • the structural unit derived from glycerin may be, for example, a structural unit represented by the following formula (2).
  • the polyglycerin-modified silicone compound may have a structure in which a plurality of constitutional units represented by formula (2) are bonded.
  • silicone compound having a plurality of structural units derived from glycerin include a compound containing a structure represented by the following formula (3) and a compound containing a structure represented by the following formula (4).
  • formula (3) n means a number of 2 or more.
  • the weight average molecular weight of the specific modified silicone compound is preferably from 300 to 10,000, more preferably from 500 to 8,000, and even more preferably from 1,000 to 6,000.
  • the weight average molecular weight is a value determined by conversion using a standard polystyrene calibration curve using gel permeation chromatography.
  • the viscosity of the specific modified silicone compound preferably the viscosity of the polyglycerin-modified silicone at 25° C.
  • the viscosity of a specific modified silicone compound means kinematic viscosity at 25°C. Viscosity in the present disclosure is a value of kinematic viscosity measured using a capillary viscometer by a method conforming to JIS K7367-1:2002.
  • the silicone compound may or may not contain a silicone compound other than the specific modified silicone compound.
  • the silicone compound other than the specific modified silicone compound may be an unmodified silicone compound or a modified silicone compound.
  • Modified silicone compounds include polyether-modified silicone compounds, carboxy-modified silicone compounds, amino-modified silicone compounds, and the like.
  • the content of the specific modified silicone compound contained in the silicone compound may be 70% by mass to 100% by mass, 80% by mass to 100% by mass, or 90% by mass with respect to the entire silicone compound. % to 100% by mass.
  • the underfill material of the present disclosure may contain a coupling agent.
  • the coupling agent serves to strengthen the adhesiveness between the resin component and the inorganic filler in the underfill material, or between the resin component and the constituent members of the electronic component device.
  • the coupling agent is not particularly limited, and can be selected from those commonly used as components of underfill materials.
  • silane compounds such as aminosilanes, epoxysilanes, mercaptosilanes, alkylsilanes, ureidosilanes, and vinylsilanes having one or more selected from the group consisting of a primary amino group, a secondary amino group and a tertiary amino group.
  • titanium-based compounds, aluminum chelates, and aluminum/zirconium-based compounds are preferred, and epoxysilane is more preferred.
  • the underfill material contains a coupling agent
  • its content is not particularly limited.
  • the total amount of the underfill material is 0 It is preferably 0.05% to 10% by mass, more preferably 0.2% to 5% by mass, even more preferably 0.4% to 1% by mass.
  • the underfill material requires curing accelerators, ion trapping agents, antioxidants, organic solvents, release agents, colorants, rubber particles, leveling agents, antifoaming agents, etc. may be included depending on
  • the underfill material of the present disclosure may contain a curing accelerator.
  • the type of curing accelerator is not particularly limited, and known curing accelerators can be used. Specifically, 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutylamino-1,8- Cycloamidine compounds such as diaza-bicyclo[5.4.0]undecene-7; cycloamidine compounds such as maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, and 2,3-dimethyl quinone compounds such as benzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone; Compound
  • the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to the total amount of the epoxy resin and the curing agent.
  • the underfill material of the present disclosure may contain ion trapping agents.
  • the ion trapping agent that can be used in the present disclosure is not particularly limited as long as it is an ion trapping agent commonly used in underfill materials used for manufacturing electronic component devices.
  • Examples of ion trapping agents include compounds represented by the following general formula (VI-1) or the following general formula (VI-2).
  • the ion trap agent is available as a commercial product.
  • a compound represented by general formula (VI-1) for example, "DHT-4A” (manufactured by Kyowa Chemical Industry Co., Ltd., trade name) is commercially available.
  • a compound represented by the general formula (VI-2) for example, "IXE500” (manufactured by Toagosei Co., Ltd., trade name) is available as a commercial product.
  • ion trapping agents other than those described above include hydrated oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like.
  • An ion trap agent may be used individually by 1 type, or may use 2 or more types together.
  • the content of the ion trapping agent is preferably 1 part by mass or more with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving sufficient moisture resistance reliability. From the viewpoint of sufficiently exhibiting the effects of the other components, the content of the ion trapping agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin, and is 1 to 10 parts by mass. is more preferable, and 2 parts by mass to 5 parts by mass is even more preferable.
  • the average particle size of the ion trap agent is preferably 0.1 ⁇ m to 3.0 ⁇ m, and the maximum particle size is preferably 10 ⁇ m or less.
  • the average particle size of the ion trapping agent can be measured in the same manner as the inorganic filler.
  • the underfill material of the present disclosure may also contain an antioxidant.
  • an antioxidant A conventionally well-known thing can be used as an antioxidant.
  • phenolic compound antioxidants include 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis-(4-methyl-6-t-butylphenol), 3,9-bis[2-[3-(3-t-butyl -4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane, 4,4′-butylidenebis-(6- t-butyl-3-methylphenol), 4,4'-thiobis(6-t-butyl-3-methylphenol), tetrakis[methylene-3-(3,5-di-t-butyl-4
  • Organic sulfur compound antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and pentaerythrityl.
  • Amine compound antioxidants include N,N'-diallyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, octylated diphenylamine, 2,4-bis-(n- octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine and the like.
  • dicyclohexylamine is commercially available under the trade name of D-CHA-T manufactured by Shin Nippon Rika Co., Ltd., and its derivatives include dicyclohexylamine ammonium nitrite, N, N -di(3-methyl-cyclohexyl)amine, N,N-di(2-methoxy-cyclohexyl)amine, N,N-di(4-bromo-cyclohexyl)amine and the like.
  • Phosphorus compound-based antioxidants include trisnonylphenyl phosphite, triphenylphosphite, bis[3,5-di-t-butyl-4-hydroxybenzyl(ethoxy)phosphinate]calcium, tris(2,4-di -t-butylphenyl)phosphite, 2-[[2,4,8,10-tetrakis(1,1-dimethylether)dibenzo[d,f][1,3,2]dioxaphosphepin- 6-yl]oxy]-N,N-bis[2- ⁇ [2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphos phepin-6-yl]oxy ⁇ -ethyl]ethanamine, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra
  • antioxidants may be used alone, or two or more types may be used in combination.
  • Specific examples of antioxidants include compounds containing at least one of a phosphorus atom, a sulfur atom and an amine in the same molecule in addition to a phenolic hydroxy group.
  • the content of the antioxidant is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 10% by mass, based on the total epoxy resin. 5% by mass.
  • the underfill material of the present disclosure can be blended with an organic solvent as necessary to reduce the viscosity.
  • an organic solvent in particular, when using at least one of a solid epoxy resin and a solid curing agent, it is preferable to blend an organic solvent in order to obtain a liquid resin composition.
  • the organic solvent is not particularly limited, and alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether, Glycol ether solvents such as propylene glycol methyl ether, dipropylene glycol methyl ether, propylene glycol ethyl ether, and propylene glycol methyl ether acetate, lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone, dimethylacetamide, dimethyl Amide solvents such as formamide, aromatic solvents such as toluene and xylene, etc.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol
  • ketone solvents such as acetone and
  • an organic solvent having a boiling point of 170° C. or higher is preferable from the viewpoint of avoiding bubble formation due to rapid volatilization when curing the underfill material.
  • the content of volatile matter including organic solvents and the like is not particularly limited as long as it does not form air bubbles when the underfill material is cured, and is preferably 5% by mass or less with respect to the entire underfill material. It is more preferably 1% by mass or less, and even more preferably 0.1% by mass or less.
  • the lower limit of the content of volatile matter including organic solvents and the like is not particularly limited as long as it is 0% by mass or more.
  • the volatile content of the underfill material is calculated based on the weight difference before and after heating the underfill material at 180° C. for 30 minutes.
  • the underfill material of the present disclosure may contain a release agent.
  • the type of release agent is not particularly limited, and known release agents can be used. Specific examples include higher fatty acids, carnauba wax and polyethylene wax.
  • the release agent may be used alone or in combination of two or more.
  • the content of the release agent is preferably 10% by mass or less with respect to the total amount of the epoxy resin and the curing agent. , 0.5% by mass or more.
  • the underfill material of the present disclosure may contain colorants such as dyes and carbon black.
  • the colorants may be used singly or in combination of two or more.
  • the conductive particles When conductive particles such as carbon black are used as the colorant, the conductive particles preferably contain 1% by mass or less of particles having a particle diameter of 10 ⁇ m or more.
  • the content of the conductive particles is preferably 3% by mass or less with respect to the total amount of the epoxy resin and the curing agent, and is 0.01% to 1% by mass. is more preferable.
  • the underfill material may contain rubber particles from the viewpoint of low thermal expansion of the cured product.
  • One type of rubber particles may be used alone, or two or more types may be used in combination.
  • suitable rubber particles include rubber particles of styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), urethane rubber (UR), acrylic rubber (AR), and the like.
  • SBR styrene-butadiene rubber
  • NBR nitrile-butadiene rubber
  • BR butadiene rubber
  • UR urethane rubber
  • AR acrylic rubber
  • suitable rubber particles include silicone rubber particles.
  • silicone rubber particles include silicone rubber particles obtained by cross-linking linear polyorganosiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane; surfaces of the silicone rubber particles coated with silicone resin; emulsion polymerization; and core-shell polymer particles containing a core of solid silicone particles obtained by the above method and a shell of an organic polymer such as an acrylic resin.
  • the shape of these silicone rubber particles may be amorphous or spherical, and in order to keep the viscosity of the underfill material low, it is preferable to use spherical silicone rubber particles.
  • Silicone rubber particles are commercially available from Dow Corning Toray Silicone Co., Ltd., Shin-Etsu Chemical Co., Ltd., and the like.
  • the average particle size of the rubber particles is preferably fine in order to uniformly modify the underfill material.
  • the average particle size of the rubber particles is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, more preferably in the range of 0.1 ⁇ m to 5 ⁇ m.
  • the average particle size of the rubber particles is 0.05 ⁇ m or more, the dispersibility in the underfill material tends to be further improved.
  • the volume average particle diameter of the rubber particles is 10 ⁇ m or less, the effect of reducing stress tends to be further improved, the permeability and fluidity of the underfill material into fine gaps are improved, and voids and unfilling are reduced. It tends to be difficult to invite.
  • the average particle size of rubber particles is measured using the same method as for inorganic fillers.
  • the rubber particle content is preferably 3% to 30% by mass, more preferably 5% to 28% by mass, based on the total epoxy resin. It is more preferably 10% by mass to 25% by mass.
  • the underfill material can be applied, for example, to a semiconductor device on which electronic components to be described later are mounted. Further, in recent years, along with the speeding up of semiconductor devices, there are cases where an interlayer insulating film with a low dielectric constant is formed in semiconductor devices. This interlayer insulating film has a weak mechanical strength and is easily destroyed by external stress, so failures are likely to occur. Since this tendency becomes more conspicuous as the size of the semiconductor element increases, there is a demand for reducing the stress caused by the underfill material.
  • a flip chip connection type electronic component device mounted with a semiconductor element having a size of 2 mm or more on the long side and having an interlayer insulating film with a dielectric constant of 3.0 or less can also provide excellent reliability.
  • the underfill material is, for example, an epoxy resin, a curing agent, an inorganic filler, a specific silicone compound, and other components that are used as necessary, all together or separately, while being subjected to heat treatment as necessary, and stirred and melted. , mixing, dispersing, or the like.
  • Equipment for mixing, stirring, dispersing, etc. of these components is not particularly limited, and includes a laikai machine equipped with a stirring device, a heating device, etc., a three-roll mill, a ball mill, a planetary mixer, a bead mill, and the like. mentioned.
  • the underfill material can be obtained by mixing and kneading the above components using these devices, and defoaming as necessary.
  • silica particles a mixture in which silica particles are mixed in advance with an epoxy resin may be used for the purpose of improving the dispersibility of the particles.
  • An electronic component device of the present disclosure includes a substrate having a circuit layer, an electronic component disposed on the substrate and electrically connected to the circuit layer, and a book disposed in a gap between the substrate and the electronic component. and a cured product of the disclosed underfill material.
  • the electronic component device of the present disclosure can be obtained by sealing an electronic component with the underfill material of the present disclosure. By sealing the electronic component with the underfill material, the electronic component device of the present disclosure has excellent reliability.
  • an electronic component device in which a semiconductor element is flip-chip bonded to wiring formed on a rigid wiring board, a flexible wiring board, or glass by bump connection is one of the targets to which the underfill material of the present disclosure can be applied.
  • Specific examples include electronic component devices such as flip chip BGA (Ball Grid Array), LGA (Land Grid Array), and COF (Chip On Film).
  • the underfill material of the present disclosure is useful as an underfill material for flip chips that require high reliability.
  • the underfill material of the present disclosure is particularly preferably applied, not only the conventional lead-containing solder used as the bump material for connecting the wiring board and the semiconductor element, but also Sn—Ag—Cu A case of lead-free solder such as a system is also included.
  • the underfill material of the present disclosure tends to be able to maintain good reliability even for a flip chip in which bump connections are made using lead-free solder, which is physically more fragile than conventional lead solder.
  • a chip scale package such as a wafer level CSP (Chip Size Package) is mounted on a substrate, there is a tendency that reliability can be improved by applying the underfill material of the present disclosure.
  • a method of manufacturing an electronic component device includes sealing a substrate having a circuit layer and an electronic component disposed on the substrate and electrically connected to the circuit layer using the underfill material according to the present disclosure. It has a step of stopping. There is no particular limitation on the process of sealing a substrate having a circuit layer and an electronic component using the underfill material of the present disclosure. For example, after connecting an electronic component and a substrate having a circuit layer, an underfill material is applied to the gap between the electronic component and the substrate using capillary action, and then the underfill material undergoes a curing reaction.
  • the underfill material of the present disclosure is applied to the surface of at least one of the substrate having the circuit layer and the electronic component first, and the electronic component is connected to the substrate by thermocompression, the electronic component and the substrate are connected and underfilled.
  • a pre-coating method in which the curing reaction of the filler material and the curing reaction of the filler material are performed together can be mentioned.
  • Methods for applying the underfill material include a casting method, a dispensing method, a printing method, and the like.
  • the curing conditions for the underfill material are not particularly limited, and for example, it is preferable to heat at 80°C to 165°C for 1 minute to 150 minutes.
  • underfill material The components shown in Tables 1 and 2 were blended in the amounts (parts by mass) shown in Tables 1 and 2, kneaded and dispersed using a three-roll mill and a vacuum crusher, and the underfills of Examples and Comparative Examples were obtained. material was prepared. Details of each material shown in Table 1 are as follows. A blank (-) in Table 1 indicates that it is not blended.
  • Epoxy resin 1 Liquid bifunctional epoxy resin with an epoxy equivalent of 160 g/mol obtained by epoxidizing bisphenol F
  • Epoxy resin 2 Trifunctional liquid epoxy resin with an epoxy equivalent of 95 g/mol obtained by epoxidizing aminophenol
  • Epoxy Resin 3 Liquid bifunctional epoxy resin with an epoxy equivalent of 143 g/mol obtained by epoxidizing naphthalene
  • Curing agent 1 Diethyltoluenediamine with an active hydrogen equivalent of 45 g/mol
  • Curing agent 2 Diethyldiamino with an active hydrogen equivalent of 63 g/mol
  • Inorganic filler spherical fused silica with an average particle size of 0.5 ⁇ m
  • Coloring agent carbon black Silicone compound 1: KF-6100 (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25° C.: 40,000 mm 2 /s , modified with polyglycerin)
  • test electronic component devices for testing were produced, and bleeding evaluation and filling speed evaluation were performed. The results are shown in Tables 1 and 2.
  • the specifications of the test electronic component device are as follows. In the test electronic component device, 20 mg of the underfill material was applied to the gap between the substrate and the semiconductor element by a dispensing method under the condition of 110 ° C., and then cured in the air at 150 ° C. for 2 hours to fill the gap. It was produced by sealing.
  • Exudation (bleed) length on substrate The vicinity of the portion in contact with the fillet in the substrate of the electronic component device after sealing is observed with a laser microscope (manufactured by Keyence Corporation, Digital microscope VHX-500 (trade name)), and the length of the underfill material exuding (bleed) was measured. It can be determined that the shorter the length of bleeding (bleed), the more suppressed the occurrence of bleeding. Based on the measurement result of the bleed length in Comparative Example 5, the bleed length in Examples and Comparative Examples was obtained. That is, the bleeding ( ⁇ m) in Example or Comparative Example/bleeding ( ⁇ m) in Comparative Example 5 were obtained. Bleed judgment criteria are as follows.
  • -criterion- A Bleed ( ⁇ m) in Example or Comparative Example/Bleed ( ⁇ m) in Comparative Example 5 is less than 1.00.
  • B Bleed ( ⁇ m) in Example or Comparative Example/Bleed ( ⁇ m) in Comparative Example 5 is 1.00.
  • C Bleed ( ⁇ m) in Example or Comparative Example/Bleed ( ⁇ m) in Comparative Example 5 is greater than 1.00.

Abstract

A resin composition for underfills which comprises an epoxy resin, a hardener, an inorganic filler, and one or more silicone compounds including a polyglycerin-modified silicone compound and/or a polyester-modified silicone compound.

Description

アンダーフィル用樹脂組成物並びに電子部品装置及びその製造方法RESIN COMPOSITION FOR UNDERFILL, ELECTRONIC COMPONENT DEVICE, AND MANUFACTURING METHOD THEREOF
 本発明は、アンダーフィル用樹脂組成物並びに電子部品装置及びその製造方法に関する。 The present invention relates to an underfill resin composition, an electronic component device, and a method for manufacturing the same.
 従来から、トランジスタ、IC(Integrated Circuit)等の半導体素子を封止するための封止材としては、生産性、コスト等の面から樹脂が主に用いられている。その中でも、作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の封止材に要求される諸特性のバランスに優れているエポキシ樹脂が広く使用されている。 Conventionally, resins have been mainly used as encapsulants for encapsulating semiconductor elements such as transistors and ICs (Integrated Circuits) from the standpoint of productivity and cost. Among them, epoxy resins are widely used because of their excellent balance of properties required for encapsulants, such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to insert products. ing.
 近年、半導体素子を封止した電子部品装置の小型化及び薄型化に伴い、ベアチップを直接配線基板上に実装する、いわゆるベアチップ実装が主流となっている。このベアチップ実装による電子部品装置としては、COB(Chip on Board)、COG(Chip on Glass)、TCP(Tape Carrier Package)等が挙げられる。これらの電子部品装置においては、液状の樹脂組成物が封止材として広く使用されている。
 また、半導体素子を、セラミック、ガラス/エポキシ樹脂、ガラス/イミド樹脂、ポリイミドフィルム等を基板とする配線基板(以下、単に「基板」とも称する。)上に直接バンプ接続してなる電子部品装置(フリップチップ)では、バンプ接続した半導体素子と配線基板との間隙(ギャップ)に充填するためのアンダーフィル材と称される封止材が使用されている。
 アンダーフィル材として使用される樹脂組成物は、電子部品を温湿度及び機械的な外力から保護する重要な役割を果たしている。
2. Description of the Related Art In recent years, with the miniaturization and thinning of electronic component devices in which semiconductor elements are encapsulated, so-called bare chip mounting, in which bare chips are directly mounted on wiring boards, has become mainstream. Examples of electronic component devices based on bare chip mounting include COB (Chip on Board), COG (Chip on Glass), TCP (Tape Carrier Package), and the like. Liquid resin compositions are widely used as sealing materials in these electronic component devices.
In addition, an electronic component device (hereinafter referred to simply as "substrate") in which a semiconductor element is directly bump-connected on a wiring substrate (hereinafter also simply referred to as "substrate") whose substrate is ceramic, glass/epoxy resin, glass/imide resin, polyimide film, etc. In the flip chip), a sealing material called an underfill material is used to fill the gap between the bump-connected semiconductor element and the wiring board.
A resin composition used as an underfill material plays an important role in protecting electronic parts from temperature, humidity and mechanical external force.
 近年、情報技術の発展に伴って、電子機器のさらなる小型化、高集積度化及び多機能化が進展しており、多ピン化によるバンプの小径化、狭ピッチ化及び狭ギャップ化が進んでいる。さらに、電子機器の小型化により、基板上に配置された接続端子と半導体素子との間隔が従来に比べ狭くなっている。このため、アンダーフィル材で封止された半導体素子のフィレット部において基板への樹脂成分の滲み出し(以下、「ブリード」とも称する。)が生じると、その滲み出しによって配線が汚染される場合がある。 In recent years, with the development of information technology, electronic devices are becoming smaller, more highly integrated, and more functional. there is Furthermore, due to the miniaturization of electronic equipment, the distance between the connection terminal arranged on the substrate and the semiconductor element has become narrower than before. Therefore, if the resin component seeps into the substrate at the fillet portion of the semiconductor element sealed with the underfill material (hereinafter also referred to as “bleed”), the wiring may be contaminated by the seepage. be.
 ここで、ブリード不良を改善するために、エポキシ樹脂、液状芳香族アミン、フィラー、及びカルボキシ基又はアミノ基を有する液状シリコーン化合物を含む液状封止樹脂組成物が開示されている(例えば、特許文献1参照。)。 Here, a liquid encapsulating resin composition containing an epoxy resin, a liquid aromatic amine, a filler, and a liquid silicone compound having a carboxy group or an amino group is disclosed in order to improve bleeding defects (for example, Patent Document 1).
特開2006-219575号公報JP 2006-219575 A
 特許文献1に記載されている液状封止樹脂組成物では、カルボキシ基及びアミノ基を含まないシリコーン化合物を使用した場合には、ブリードの抑制を図ることができないことが記載されている。そこで、特許文献1に記載されている液状封止樹脂組成物以外にも樹脂成分のブリードを抑制する方法が求められている。 In the liquid encapsulating resin composition described in Patent Document 1, it is described that bleeding cannot be suppressed when a silicone compound that does not contain a carboxy group or an amino group is used. Therefore, a method for suppressing the bleeding of resin components other than the liquid encapsulating resin composition described in Patent Document 1 is desired.
 本開示は、ブリードの発生が抑制されるアンダーフィル用樹脂組成物並びにこのアンダーフィル用樹脂組成物を用いた電子部品装置及びその製造方法を提供することを目的とする。 An object of the present disclosure is to provide an underfill resin composition in which the occurrence of bleeding is suppressed, an electronic component device using this underfill resin composition, and a method for manufacturing the same.
 前記課題を達成するための具体的手段は以下の通りである。
<1> エポキシ樹脂と、硬化剤と、無機充填材と、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方を含むシリコーン化合物と、を含むアンダーフィル用樹脂組成物。
<2> 前記シリコーン化合物の含有率は、アンダーフィル用樹脂組成物全量に対して0.0001質量%~1質量%である<1>に記載のアンダーフィル用樹脂組成物。
<3> 前記シリコーン化合物は、ポリグリセリン変性シリコーン化合物を含む<1>又は<2>に記載のアンダーフィル用樹脂組成物。
<4> 前記シリコーン化合物がポリエステル変性シリコーン化合物を含む場合、前記ポリエステル変性シリコーン化合物は、ポリエーテル-ポリエステル変性シリコーン化合物を含む<1>~<3>のいずれか1つに記載のアンダーフィル用樹脂組成物。
<5> 前記硬化剤が、アミン系硬化剤を含む<1>~<4>のいずれか1つに記載のアンダーフィル用樹脂組成物。
<6> 回路層を有する基板と、
 前記基板上に配置され、前記回路層と電気的に接続された電子部品と、
 前記基板と前記電子部品との間隙に配置された<1>~<5>のいずれか1つに記載のアンダーフィル用樹脂組成物の硬化物と、
を備える電子部品装置。
<7> 回路層を有する基板と、前記基板上に配置され、前記回路層と電気的に接続された電子部品とを、<1>~<5>のいずれか1つに記載のアンダーフィル用樹脂組成物を用いて封止する工程を有する電子部品装置の製造方法。
Specific means for achieving the above object are as follows.
<1> An underfill resin composition containing an epoxy resin, a curing agent, an inorganic filler, and a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
<2> The underfill resin composition according to <1>, wherein the content of the silicone compound is 0.0001% by mass to 1% by mass relative to the total amount of the underfill resin composition.
<3> The underfill resin composition according to <1> or <2>, wherein the silicone compound comprises a polyglycerin-modified silicone compound.
<4> The underfill resin according to any one of <1> to <3>, wherein when the silicone compound contains a polyester-modified silicone compound, the polyester-modified silicone compound contains a polyether-polyester-modified silicone compound. Composition.
<5> The underfill resin composition according to any one of <1> to <4>, wherein the curing agent contains an amine-based curing agent.
<6> A substrate having a circuit layer;
an electronic component disposed on the substrate and electrically connected to the circuit layer;
a cured product of the underfill resin composition according to any one of <1> to <5> disposed in the gap between the substrate and the electronic component;
An electronic component device comprising:
<7> The underfilling according to any one of <1> to <5>, wherein a substrate having a circuit layer and an electronic component disposed on the substrate and electrically connected to the circuit layer are combined. A method for manufacturing an electronic component device, comprising a step of sealing using a resin composition.
 本開示によれば、ブリードの発生が抑制されるアンダーフィル用樹脂組成物並びにこのアンダーフィル用樹脂組成物を用いた電子部品装置及びその製造方法が提供される。 According to the present disclosure, an underfill resin composition that suppresses the occurrence of bleeding, an electronic component device using this underfill resin composition, and a method for manufacturing the same are provided.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
DETAILED DESCRIPTION OF THE INVENTION Embodiments for carrying out the present invention will be described in detail below. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the present invention.
In the present disclosure, the term "process" includes a process that is independent of other processes, and even if the purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the numerical ranges described step by step in the present disclosure, the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step. . Moreover, in the numerical ranges described in the present disclosure, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
Particles corresponding to each component in the present disclosure may include a plurality of types. When multiple types of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
In the present disclosure, the term “layer” or “film” refers to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present, and only a part of the region. It also includes the case where it is formed.
<アンダーフィル用樹脂組成物>
 本開示のアンダーフィル用樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材と、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方を含むシリコーン化合物と、を含む。
<Resin composition for underfill>
The underfill resin composition of the present disclosure includes an epoxy resin, a curing agent, an inorganic filler, and a silicone compound including at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
 本開示のアンダーフィル用樹脂組成物(以下、「アンダーフィル材」とも称する。)は、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方(以下、「特定の変性シリコーン化合物」とも称する。)を含むシリコーン化合物を含む。これにより、ブリードの発生が抑制される。この理由は以下のように推測される。半導体素子等の電子部品と配線基板との間隙にアンダーフィル材を充填する際、特定の変性シリコーン化合物に含まれるヒドロキシ基、エステル基等の極性基が配線基板上に吸着する。そのため、先行液膜の濡れ広がりが抑制されてブリードの発生が抑制される。 The underfill resin composition of the present disclosure (hereinafter also referred to as "underfill material") is at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound (hereinafter also referred to as "specific modified silicone compound"). Contains silicone compounds containing This suppresses the occurrence of bleeding. The reason for this is presumed as follows. When an underfill material is filled in a gap between an electronic component such as a semiconductor element and a wiring board, polar groups such as hydroxyl groups and ester groups contained in a specific modified silicone compound are adsorbed onto the wiring board. Therefore, the wetting and spreading of the preceding liquid film is suppressed, and the occurrence of bleeding is suppressed.
 アンダーフィル材は、常温で液体であることが好ましい。本開示において「常温」とは25℃を意味し、「液体」とは流動性と粘性を示し、かつ粘性を示す尺度である粘度が0.0001Pa・s~100Pa・sである物質を意味する。また、「液状」とは液体の状態であることを意味する。 The underfill material is preferably liquid at room temperature. In the present disclosure, "normal temperature" means 25 ° C., and "liquid" means a substance that exhibits fluidity and viscosity and has a viscosity that is a measure of viscosity of 0.0001 Pa s to 100 Pa s. . In addition, "liquid" means being in a liquid state.
 本開示において、粘度は、EHD型回転粘度計を25℃で1分間、所定の回転数で回転させた際の測定値に、所定の換算係数を乗じた値と定義する。上記測定値は、25±1℃に保たれた液体について、コーン角度3゜、コーン半径14mmのコーンロータを装着したEHD型回転粘度計を用いて得られる。回転数及び換算係数は、測定対象の液体の粘度によって異なる。具体的には、測定対象の液体の粘度を予め大まかに推定し、推定値に応じて回転数及び換算係数を決定する。 In the present disclosure, viscosity is defined as a value obtained by multiplying a measured value obtained by rotating an EHD rotational viscometer at 25°C for 1 minute at a predetermined number of revolutions by a predetermined conversion factor. The above measured values are obtained for a liquid maintained at 25±1° C. using an EHD rotational viscometer equipped with a cone rotor having a cone angle of 3° and a cone radius of 14 mm. The number of rotations and the conversion factor differ depending on the viscosity of the liquid to be measured. Specifically, the viscosity of the liquid to be measured is roughly estimated in advance, and the rotational speed and the conversion factor are determined according to the estimated value.
 粘度の測定において、測定対象の液体の粘度の推定値が0Pa・s以上1.25Pa・s未満の場合は回転数を10回毎分、換算係数を0.5とし、粘度の推定値が1.25Pa・s以上2.5Pa・s未満の場合は回転数を5回毎分、換算係数を1とし、粘度の推定値が2.5Pa・s以上6.25Pa・s未満の場合は回転数を2.5回毎分、換算係数を2とし、粘度の推定値が6.25Pa・s以上12.5Pa・s未満の場合は回転数を1回毎分、換算係数を5とする。 In the viscosity measurement, if the estimated value of the viscosity of the liquid to be measured is 0 Pa s or more and less than 1.25 Pa s, the rotation speed is 10 times per minute, the conversion factor is 0.5, and the estimated viscosity is 1 .If the viscosity is 25 Pa s or more and less than 2.5 Pa s, the rotation speed is 5 times per minute, and the conversion factor is 1. If the estimated viscosity value is 2.5 Pa s or more and less than 6.25 Pa s, the rotation speed is 2.5 times per minute and the conversion factor is 2. When the estimated value of the viscosity is 6.25 Pa·s or more and less than 12.5 Pa·s, the rotation speed is 1 time per minute and the conversion factor is 5.
 アンダーフィル材の粘度は特に制限されない。中でも高流動性の観点から、アンダーフィル材の25℃における粘度は、0.1Pa・s~100.0Pa・sであることが好ましく、0.1Pa・s~50.0Pa・sであることがより好ましく、0.1Pa・s~30.0Pa・sであることがさらに好ましい。 The viscosity of the underfill material is not particularly limited. Above all, from the viewpoint of high fluidity, the viscosity of the underfill material at 25° C. is preferably 0.1 Pa·s to 100.0 Pa·s, more preferably 0.1 Pa·s to 50.0 Pa·s. More preferably, it is 0.1 Pa·s to 30.0 Pa·s.
 また、100℃~120℃付近で数十μm~数百μmの狭ギャップ間にアンダーフィル材を充填する際の充填のしやすさの指標として、110℃でのアンダーフィル材の粘度が挙げられる。110℃でのアンダーフィル材の粘度は、0.20Pa・s以下であることが好ましく、0.15Pa・s以下であることがより好ましい。なお、110℃でのアンダーフィル材の粘度は、レオメーターAR2000(TAインストルメント製、アルミコーン40mm、せん断速度32.5/sec)により測定される。 In addition, as an indicator of the ease of filling the underfill material in a narrow gap of several tens of μm to several hundred μm at around 100° C. to 120° C., the viscosity of the underfill material at 110° C. can be mentioned. . The viscosity of the underfill material at 110° C. is preferably 0.20 Pa·s or less, more preferably 0.15 Pa·s or less. The viscosity of the underfill material at 110° C. is measured by a rheometer AR2000 (manufactured by TA Instruments, aluminum cone 40 mm, shear rate 32.5/sec).
 また、アンダーフィル材は、E型粘度計を用いて25℃で測定される回転数が2.5回転/分における粘度と回転数が10回転/分における粘度との比である揺変指数[(2.5回転/分における粘度)/(10回転/分における粘度)]が、0.5~1.5であることが好ましく、0.8~1.2であることがより好ましい。揺変指数が上記範囲であるとフィレット形成性がより向上する。なお、アンダーフィル材の粘度及び揺変指数は、エポキシ樹脂の組成、無機充填材の含有率等を適宜選択することで所望の範囲とすることができる。 In addition, the underfill material has a thixotropic index [ (Viscosity at 2.5 revolutions/minute)/(Viscosity at 10 revolutions/minute)] is preferably 0.5 to 1.5, more preferably 0.8 to 1.2. When the thixotropic index is within the above range, the fillet formability is further improved. The viscosity and thixotropic index of the underfill material can be set within desired ranges by appropriately selecting the composition of the epoxy resin, the content of the inorganic filler, and the like.
 本開示のアンダーフィル材は、エポキシ樹脂と、硬化剤と、無機充填材と、特定の変性シリコーン化合物を含むシリコーン化合物と、を含み、必要に応じてその他の成分を含有してもよい。 The underfill material of the present disclosure contains an epoxy resin, a curing agent, an inorganic filler, and a silicone compound containing a specific modified silicone compound, and may contain other components as necessary.
(エポキシ樹脂)
 本開示のアンダーフィル材は、エポキシ樹脂を含有する。
 エポキシ樹脂の種類は特に制限されず、アンダーフィル材の材料として一般に使用されているものから選択できる。エポキシ樹脂は、1種を単独で用いても2種以上を併用してもよい。
(Epoxy resin)
The underfill material of the present disclosure contains epoxy resin.
The type of epoxy resin is not particularly limited, and can be selected from those commonly used as materials for underfill materials. An epoxy resin may be used individually by 1 type, or may use 2 or more types together.
 エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミン等の芳香族グリシジルアミン型エポキシ樹脂、フェニレン骨格又はビフェニレン骨格の少なくとも一方を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格又はビフェニレン骨格の少なくとも一方を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイド等の脂環式エポキシ樹脂、アルキレングリコールジグリシジルエーテル、ポリ(アルキレングリコール)ジグリシジルエーテル、アルケニレングリコールジグリシジルエーテル等の分子内にエポキシ基を2つ有する二官能脂肪族エポキシ化合物などが挙げられる。例えば、エポキシ樹脂は、ビスフェノール型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂及びナフタレン型エポキシ樹脂を含んでいてもよい。 Examples of epoxy resins include phenol novolac epoxy resins, novolac epoxy resins such as cresol novolac epoxy resins, bisphenol A epoxy resins, bisphenol F epoxy resins, N,N-diglycidylaniline, N , N-diglycidyltoluidine, diaminodiphenylmethane-type glycidylamine, aromatic glycidylamine-type epoxy resins such as aminophenol-type glycidylamine, phenol aralkyl-type epoxy resins having at least one of a phenylene skeleton or a biphenylene skeleton, phenylene skeletons or biphenylene skeletons Aralkyl-type epoxy resins such as naphthol aralkyl-type epoxy resins having at least one, hydroquinone-type epoxy resins, biphenyl-type epoxy resins, stilbene-type epoxy resins, triphenolmethane-type epoxy resins, triphenolpropane-type epoxy resins, alkyl-modified triphenolmethane type epoxy resins, triazine nucleus-containing epoxy resins, dicyclopentadiene-modified phenol type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, vinylcyclohexene dioxide, dicyclopentadiene oxide, alicyclic diepoxy-adipate, etc. bifunctional aliphatic epoxy compounds having two epoxy groups in the molecule, such as epoxy resins, alkylene glycol diglycidyl ether, poly(alkylene glycol) diglycidyl ether, alkenylene glycol diglycidyl ether, and the like. For example, epoxy resins may include bisphenol-type epoxy resins, aromatic glycidylamine-type epoxy resins, and naphthalene-type epoxy resins.
 上記エポキシ樹脂の中でも、芳香族環にグリシジル構造又はグリシジルアミン構造が結合した構造を含むエポキシ樹脂は、耐熱性、機械特性及び耐湿性向上の観点から好ましい。 Among the above epoxy resins, epoxy resins containing a structure in which a glycidyl structure or a glycidylamine structure is bonded to an aromatic ring are preferable from the viewpoint of improving heat resistance, mechanical properties, and moisture resistance.
 アンダーフィル材を常温で液体にする観点からは、エポキシ樹脂全体として常温で液体となるようにエポキシ樹脂を選択することが好ましい。すなわち、1種のエポキシ樹脂のみを含む場合、そのエポキシ樹脂が常温で液体であることが好ましい。2種以上のエポキシ樹脂の組み合わせである場合、2種以上のエポキシ樹脂がすべて常温で液状であってもよく、一部が常温で固形のエポキシ樹脂であり、2種以上のエポキシ樹脂を混合したときに常温で液体となるような組み合わせであってもよい。
 エポキシ樹脂として常温で固形のエポキシ樹脂を使用する場合、固形のエポキシ樹脂の含有率は、流動性の観点から、エポキシ樹脂全体に対して20質量%以下であることが好ましい。
From the viewpoint of making the underfill material liquid at room temperature, it is preferable to select the epoxy resin so that the entire epoxy resin is liquid at room temperature. That is, when only one kind of epoxy resin is included, it is preferable that the epoxy resin is liquid at room temperature. In the case of a combination of two or more epoxy resins, all of the two or more epoxy resins may be liquid at room temperature, and a part of the epoxy resin may be solid at room temperature, and the two or more epoxy resins are mixed. The combination may sometimes be liquid at room temperature.
When an epoxy resin that is solid at room temperature is used as the epoxy resin, the content of the solid epoxy resin is preferably 20% by mass or less relative to the entire epoxy resin from the viewpoint of fluidity.
 2種以上のエポキシ樹脂を用いる場合、あらかじめエポキシ樹脂同士を混合してから他の成分と混合してもよく、エポキシ樹脂同士を混合せずに他の成分と混合してもよい。 When two or more types of epoxy resins are used, the epoxy resins may be mixed in advance and then mixed with the other components, or the epoxy resins may be mixed with the other components without being mixed with each other.
 エポキシ樹脂のアンダーフィル材における含有率は特に限定されず、アンダーフィル材全体に対して5質量%~60質量%であることが好ましく、5質量%~50質量%であることがより好ましい。エポキシ樹脂の含有率が前記範囲内であると、硬化時の反応性、硬化後の耐熱性及び機械的強度、並びに封止時の流動性に優れる傾向にある。 The content of the epoxy resin in the underfill material is not particularly limited, and is preferably 5% to 60% by mass, more preferably 5% to 50% by mass, based on the entire underfill material. When the content of the epoxy resin is within the above range, the reactivity during curing, the heat resistance and mechanical strength after curing, and the fluidity during sealing tend to be excellent.
 エポキシ樹脂は、ビスフェノール型エポキシ樹脂と、芳香族グリシジルアミン型エポキシ樹脂とを含むことが好ましい。これらのエポキシ樹脂の性能を充分に発揮する観点からは、ビスフェノール型エポキシ樹脂及び芳香族グリシジルアミン型エポキシ樹脂の合計含有率は、例えば、エポキシ樹脂全体に対して20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましい。ビスフェノール型エポキシ樹脂及び芳香族グリシジルアミン型エポキシ樹脂の合計含有率は、例えば、エポキシ樹脂全体に対して90質量%以下であってもよい。 The epoxy resin preferably contains a bisphenol-type epoxy resin and an aromatic glycidylamine-type epoxy resin. From the viewpoint of fully exhibiting the performance of these epoxy resins, the total content of the bisphenol-type epoxy resin and the aromatic glycidylamine-type epoxy resin is preferably, for example, 20% by mass or more relative to the total epoxy resin. , more preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 80% by mass or more. The total content of the bisphenol-type epoxy resin and the aromatic glycidylamine-type epoxy resin may be, for example, 90% by mass or less based on the total epoxy resin.
 エポキシ樹脂としてビスフェノール型エポキシ樹脂と芳香族グリシジルアミン型エポキシとを併用する場合、その質量比(ビスフェノール型エポキシ樹脂:芳香族グリシジルアミン型エポキシ)は、特に制限はない。ビスフェノール型エポキシ樹脂:芳香族グリシジルアミン型エポキシは、耐熱性、接着性及び流動性の観点から、例えば、20:80~95:5であることが好ましく、40:60~90:10であることがより好ましく、60:40~80:20であることがさらに好ましい。 When a bisphenol-type epoxy resin and an aromatic glycidylamine-type epoxy are used together as epoxy resins, there is no particular restriction on the mass ratio (bisphenol-type epoxy resin: aromatic glycidylamine-type epoxy). Bisphenol-type epoxy resin: Aromatic glycidylamine-type epoxy is preferably 20:80 to 95:5, and 40:60 to 90:10, from the viewpoint of heat resistance, adhesiveness and fluidity. is more preferred, and 60:40 to 80:20 is even more preferred.
 エポキシ樹脂のエポキシ当量(分子量/エポキシ基数)は、特に制限されず、例えば、100g/eq~1000g/eqであることが好ましく、150g/eq~500g/eqであることがより好ましい。 The epoxy equivalent (molecular weight/number of epoxy groups) of the epoxy resin is not particularly limited, and is preferably 100 g/eq to 1000 g/eq, more preferably 150 g/eq to 500 g/eq.
 エポキシ樹脂のエポキシ当量は、JIS K 7236:2009に準じた方法で測定される値とする。 The epoxy equivalent of the epoxy resin shall be the value measured by the method according to JIS K 7236:2009.
 エポキシ樹脂の純度は、高いことが好ましい。具体的には、特に加水分解性塩素量は、IC等の素子上のアルミニウム配線の腐食に係わるため少ない方が好ましい。耐湿性に優れるアンダーフィル材を得る観点からは、例えば、500ppm以下であることが好ましい。 It is preferable that the purity of the epoxy resin is high. Specifically, it is preferable that the amount of hydrolyzable chlorine is as small as possible because it is related to the corrosion of aluminum wiring on elements such as ICs. From the viewpoint of obtaining an underfill material with excellent moisture resistance, it is preferably, for example, 500 ppm or less.
 ここで、加水分解性塩素量とは、試料のエポキシ樹脂1gをジオキサン30mLに溶解し、1mol/L-KOH(水酸化カリウム)メタノール溶液5mLを添加して30分間還流させた後、電位差滴定により求めた値を尺度としたものである。 Here, the amount of hydrolyzable chlorine is obtained by dissolving 1 g of the sample epoxy resin in 30 mL of dioxane, adding 5 mL of 1 mol / L-KOH (potassium hydroxide) methanol solution and refluxing for 30 minutes, and then by potentiometric titration. The obtained value is used as a scale.
(硬化剤)
 本開示のアンダーフィル材は、硬化剤を含有する。
 硬化剤の種類は特に制限されず、アンダーフィル材の材料として一般に使用されているものから選択できる。硬化剤は、1種を単独で用いても2種以上を併用してもよい。硬化剤としては、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤等が挙げられる。これらの中でも、硬化剤としては、アミン系硬化剤が好ましい。
(curing agent)
The underfill material of the present disclosure contains a curing agent.
The type of curing agent is not particularly limited, and can be selected from those commonly used as materials for underfill materials. Curing agents may be used alone or in combination of two or more. Examples of curing agents include amine-based curing agents, phenol-based curing agents, acid anhydride-based curing agents, and the like. Among these, an amine-based curing agent is preferable as the curing agent.
 アミン系硬化剤は特に制限はなく、例えば、1分子中に1級アミノ基及び2級アミノ基からなる群から選ばれる1種以上(以下、単に「アミノ基」とも称する。)を2個以上含む化合物が好ましく、1分子中にアミノ基を2個~4個有する化合物であることがより好ましく、1分子中にアミノ基を2個有する化合物(ジアミン化合物)であることがさらに好ましい。 There are no particular restrictions on the amine-based curing agent, and for example, two or more of one or more selected from the group consisting of primary amino groups and secondary amino groups (hereinafter also simply referred to as "amino groups") per molecule. A compound containing the amino group is preferable, a compound having 2 to 4 amino groups in one molecule is more preferable, and a compound having two amino groups in one molecule (diamine compound) is more preferable.
 アンダーフィル材を常温で液体にする観点からは、硬化剤全体として常温で液体となるように硬化剤を選択することが好ましい。すなわち、1種の硬化剤のみを含む場合は、その硬化剤が常温で液体であることが好ましい。2種以上の硬化剤の組み合わせである場合は、2種以上の硬化剤がすべて常温で液状であってもよく、一部が常温で固形の硬化剤であり、2種以上の硬化剤を混合したときに常温で液体となるような組み合わせであってもよい。
 硬化剤として常温で固形の硬化剤を使用する場合、固形の硬化剤の含有率は、流動性の観点から、硬化剤全体に対して20質量%以下であることが好ましい。
From the viewpoint of making the underfill material liquid at room temperature, it is preferable to select the curing agent so that the entire curing agent is liquid at room temperature. That is, when only one type of curing agent is included, the curing agent is preferably liquid at room temperature. In the case of a combination of two or more curing agents, all of the two or more curing agents may be liquid at room temperature, and a portion of the curing agents may be solid at room temperature, and the two or more curing agents are mixed. It may be a combination that becomes a liquid at normal temperature when it is mixed.
When a curing agent that is solid at room temperature is used as the curing agent, the content of the solid curing agent is preferably 20% by mass or less based on the total curing agent from the viewpoint of fluidity.
 アミノ基を有する化合物は、芳香環を有する化合物(芳香族アミン化合物)であることが好ましく、常温で液状の芳香族アミン化合物であることがより好ましく、常温で液状であり、かつ1分子中にアミノ基を2個有する芳香族アミン化合物であることがより好ましい。 The compound having an amino group is preferably a compound having an aromatic ring (aromatic amine compound), more preferably an aromatic amine compound that is liquid at room temperature, is liquid at room temperature, and contains More preferably, it is an aromatic amine compound having two amino groups.
 常温で液状の芳香族アミン化合物としては、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン等のジエチルトルエンジアミン、1,3,5-トリエチル-2,6-ジアミノベンゼン等のトリエチルジアミノベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,5,3’,5’-テトラメチル-4,4’-ジアミノジフェニルメタン等のジアミノジフェニルメタンなどが挙げられる。 Examples of aromatic amine compounds that are liquid at room temperature include diethyltoluenediamines such as 3,5-diethyltoluene-2,4-diamine and 3,5-diethyltoluene-2,6-diamine, 1,3,5-triethyl- triethyldiaminobenzene such as 2,6-diaminobenzene; diamino such as 3,3′-diethyl-4,4′-diaminodiphenylmethane and 3,5,3′,5′-tetramethyl-4,4′-diaminodiphenylmethane; diphenylmethane and the like.
 上記化合物の中でも、保存安定性の観点からは、例えば、ジアミノジフェニルメタン及びジエチルトルエンジアミンが好ましい。硬化剤としてジアミノジフェニルメタン及びジエチルトルエンジアミンの少なくとも一方を用いる場合、その合計含有率は、例えば、硬化剤全体に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。上記合計含有率の上限は特に限定されず、例えば、硬化剤全体に対して100質量%以下であればよい。 Among the above compounds, for example, diaminodiphenylmethane and diethyltoluenediamine are preferable from the viewpoint of storage stability. When at least one of diaminodiphenylmethane and diethyltoluenediamine is used as the curing agent, the total content is, for example, preferably 50% by mass or more, more preferably 70% by mass or more, relative to the total curing agent. , more preferably 80% by mass or more. The upper limit of the total content is not particularly limited, and may be, for example, 100% by mass or less with respect to the entire curing agent.
 硬化剤として常温で液状の芳香族アミン化合物を用いる場合、その性能を充分に発揮する観点から、その含有率は硬化剤全体に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。上記含有率の上限は特に限定されず、硬化剤全体に対して100質量%以下であればよい。 When an aromatic amine compound that is liquid at room temperature is used as the curing agent, the content is preferably 50% by mass or more, preferably 70% by mass or more, based on the total curing agent, from the viewpoint of sufficiently exhibiting its performance. It is more preferable that the content is 80% by mass or more. The upper limit of the content is not particularly limited, and may be 100% by mass or less with respect to the entire curing agent.
 硬化剤として芳香族アミン化合物を用いる場合、硬化剤の活性水素当量は、特に制限されない。ブリードの発生をより抑制する観点から、例えば、10g/mol~200g/molであることが好ましく、20g/mol~100g/molであることがより好ましく、30g/mol~70g/molであることがさらに好ましい。 When using an aromatic amine compound as a curing agent, the active hydrogen equivalent of the curing agent is not particularly limited. From the viewpoint of further suppressing the occurrence of bleeding, for example, it is preferably 10 g/mol to 200 g/mol, more preferably 20 g/mol to 100 g/mol, and 30 g/mol to 70 g/mol. More preferred.
 硬化剤の活性水素当量は、JIS K7237:1995に準拠して測定されたアミン価に基づいて算出された値をいう。 The active hydrogen equivalent of the curing agent is a value calculated based on the amine value measured according to JIS K7237:1995.
 アンダーフィル材におけるエポキシ樹脂と硬化剤との当量比(エポキシ樹脂のエポキシ基のモル数/硬化剤の活性水素のモル数)は、特に制限はない。エポキシ樹脂のエポキシ基のモル数/硬化剤の活性水素のモル数は、それぞれの未反応分を少なく抑える観点から、例えば、0.7~1.6であることが好ましく、0.8~1.4であることがより好ましく、0.9~1.2であることがさらに好ましい。 There is no particular restriction on the equivalent ratio of the epoxy resin to the curing agent in the underfill material (the number of moles of epoxy groups in the epoxy resin/the number of moles of active hydrogen in the curing agent). The number of moles of epoxy groups in the epoxy resin/the number of moles of active hydrogen in the curing agent is preferably, for example, 0.7 to 1.6, more preferably 0.8 to 1, from the viewpoint of suppressing each unreacted amount. 0.4 is more preferred, and 0.9 to 1.2 is even more preferred.
(無機充填材)
 本開示のアンダーフィル材は、無機充填材を含有する。
 無機充填材の種類は、特に制限されない。具体的には、溶融シリカ、結晶シリカ、ガラス、アルミナ、炭酸カルシウム、ケイ酸ジルコニウム、ケイ酸カルシウム、窒化珪素、窒化アルミニウム、窒化ホウ素、酸化マグネシウム、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、マイカ等の無機材料が挙げられる。難燃効果を有する無機充填材を用いてもよい。難燃効果を有する無機充填材としては、水酸化アルミニウム、水酸化マグネシウム、マグネシウムと亜鉛の複合水酸化物等の複合金属水酸化物、硼酸亜鉛などが挙げられる。中でも、線膨張係数低減の観点からは溶融シリカが好ましく、高熱伝導性の観点からはアルミナが好ましい。無機充填材は1種を単独で用いても2種以上を併用してもよい。無機充填材の状態としては粉未、粉末を球形化したビーズ、繊維等が挙げられる。
(Inorganic filler)
The underfill material of the present disclosure contains an inorganic filler.
The type of inorganic filler is not particularly limited. Specifically, fused silica, crystalline silica, glass, alumina, calcium carbonate, zirconium silicate, calcium silicate, silicon nitride, aluminum nitride, boron nitride, magnesium oxide, calcium silicate, calcium carbonate, potassium titanate, silicon carbide. , beryllia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, talc, clay, and mica. Inorganic fillers having a flame retardant effect may also be used. Inorganic fillers having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, composite metal hydroxides such as composite hydroxides of magnesium and zinc, and zinc borate. Among them, fused silica is preferable from the viewpoint of reducing the coefficient of linear expansion, and alumina is preferable from the viewpoint of high thermal conductivity. An inorganic filler may be used individually by 1 type, or may use 2 or more types together. Examples of the state of the inorganic filler include powders, beads obtained by spheroidizing powders, fibers, and the like.
 無機充填材のアンダーフィル材における含有率は特に限定されず、硬化物の熱膨張係数及びアンダーフィル材の流動性の観点から、アンダーフィル材全体に対して40質量%~70質量%であることが好ましく、50質量%~65質量%であることがより好ましい。 The content of the inorganic filler in the underfill material is not particularly limited, but from the viewpoint of the thermal expansion coefficient of the cured product and the fluidity of the underfill material, it should be 40% by mass to 70% by mass with respect to the entire underfill material. is preferred, and 50% by mass to 65% by mass is more preferred.
 無機充填材は、シリカ粒子を含んでいてもよい。シリカ粒子の平均粒子径は、アンダーフィル材の流動性及び充填性の観点から、0.2μm~5μmであることが好ましく、0.2μm~3μmであることがより好ましく、0.3μm~1μmであることがさらに好ましく、0.4μm~0.8μmであることが特に好ましい。 The inorganic filler may contain silica particles. The average particle size of the silica particles is preferably 0.2 μm to 5 μm, more preferably 0.2 μm to 3 μm, and more preferably 0.3 μm to 1 μm, from the viewpoint of the fluidity and filling properties of the underfill material. more preferably 0.4 μm to 0.8 μm.
 無機充填材は、平均粒子径がより大きい大径シリカ粒子と、平均粒子径がより小さい小径シリカ粒子と、を含んでいてもよい。大径シリカ粒子の平均粒子径の好ましい範囲は、前述のシリカ粒子の平均粒子径の好ましい範囲と同様である。 The inorganic filler may contain large silica particles with a larger average particle size and small silica particles with a smaller average particle size. The preferred range of the average particle size of the large silica particles is the same as the preferred range of the average particle size of the silica particles described above.
 小径シリカ粒子の平均粒子径は、7nm~100nmであることが好ましく、9nm~75nmであることがより好ましい。小径シリカ粒子の平均粒子径が7nm以上であると、アンダーフィル材の粘度が増大しにくく、流動性の悪化が生じにくい傾向にある。小径シリカ粒子の平均粒子径が100nm以下であると、アンダーフィル材の粘度を低くすることができる傾向にある。 The average particle size of the small-diameter silica particles is preferably 7 nm to 100 nm, more preferably 9 nm to 75 nm. When the average particle size of the small-diameter silica particles is 7 nm or more, the viscosity of the underfill material is less likely to increase, and fluidity tends to be less likely to deteriorate. When the average particle size of the small-diameter silica particles is 100 nm or less, the viscosity of the underfill material tends to be reduced.
 無機充填材に占めるシリカ粒子又は大径シリカ粒子の割合は、70質量%以上であってもよく、75質量%以上であってもよい。また、無機充填材に占めるシリカ粒子又は大径シリカ粒子の割合は、100質量%以下であれば特に限定されず、99.7質量%以下であってもよく、99.5質量%以下であってもよい。 The proportion of silica particles or large-sized silica particles in the inorganic filler may be 70% by mass or more, or may be 75% by mass or more. In addition, the proportion of silica particles or large-diameter silica particles in the inorganic filler is not particularly limited as long as it is 100% by mass or less, and may be 99.7% by mass or less, or 99.5% by mass or less. may
 無機充填材に占める小径シリカ粒子の割合は、0質量%であってもよく、0.5質量%以上であってもよく、10質量%以上であってもよい。また、無機充填材に占める小径シリカ粒子の割合は、30質量%以下であってもよく、25質量%以下であってもよい。 The proportion of small-diameter silica particles in the inorganic filler may be 0% by mass, 0.5% by mass or more, or 10% by mass or more. Moreover, the ratio of the small-diameter silica particles in the inorganic filler may be 30% by mass or less, or may be 25% by mass or less.
 無機充填材の平均粒子径は、以下の方法により測定することができる。
 平均粒子径が20nm以上の無機充填材について測定する場合、溶媒(例えば、純水)に、測定対象の無機充填材を1質量%~5質量%の範囲内で界面活性剤1質量%~8質量%とともに添加し、110Wの超音波洗浄機で30秒~5分間振動し、無機充填材を分散する。分散液の約3mL程度を測定用セルに注入して25℃で測定する。測定装置は、レーザー回折式粒度分布計(株式会社堀場製作所製、LA920)を用い、体積基準の粒度分布を測定する。平均粒子径は、体積基準の粒度分布において小径側からの累積が50%となるときの粒子径(D50%)として求められる。
 平均粒子径が20nm未満の無機充填材について測定する場合、電子顕微鏡等を用いて無機充填材を画像化し、粒子1つ1つの粒子径を測定し、任意に選択した100個の粒子の粒子径の算術平均にて得られる粒子径を無機充填材の平均粒子径としてもよい。
 測定試料が硬化物である場合は、例えば、マッフル炉等で800℃以上の高温で硬化物を処理した後に残渣として得られる灰分を上記の方法で測定することができる。
The average particle size of the inorganic filler can be measured by the following method.
When measuring an inorganic filler having an average particle size of 20 nm or more, a solvent (for example, pure water) is added with a surfactant of 1% to 8% by weight in the range of 1% to 5% by weight of the inorganic filler to be measured. % by mass and vibrated for 30 seconds to 5 minutes in a 110 W ultrasonic cleaner to disperse the inorganic filler. About 3 mL of the dispersion liquid is injected into the measurement cell and measured at 25°C. A laser diffraction particle size distribution meter (LA920, manufactured by Horiba, Ltd.) is used as a measuring device to measure the volume-based particle size distribution. The average particle diameter is obtained as the particle diameter (D50%) when the accumulation from the small diameter side is 50% in the volume-based particle size distribution.
When measuring an inorganic filler having an average particle size of less than 20 nm, the inorganic filler is imaged using an electron microscope or the like, the particle size of each particle is measured, and the particle size of 100 arbitrarily selected particles. may be used as the average particle size of the inorganic filler.
When the measurement sample is a cured product, for example, the ash content obtained as a residue after treating the cured product at a high temperature of 800° C. or higher in a muffle furnace or the like can be measured by the above method.
 無機充填材として大径シリカ粒子及び小径シリカ粒子を用いる場合、小径シリカ粒子の平均粒子径と大径シリカ粒子の平均粒子径との比(大径シリカ粒子の平均粒子径/小径シリカ粒子の平均粒子径)は、7~120であることが好ましく、10~110であることがより好ましく、20~100であることがさらに好ましい。 When using large-sized silica particles and small-sized silica particles as the inorganic filler, the ratio of the average particle size of the small-sized silica particles to the average particle size of the large-sized silica particles (average particle size of large-sized silica particles / average of small-sized silica particles The particle diameter) is preferably 7-120, more preferably 10-110, even more preferably 20-100.
 無機充填材として大径シリカ粒子を用いる場合、無機充填材に占める小径シリカ粒子及び大径シリカ粒子の割合を求める方法は、特に限定されない。例えば、無機充填材の体積基準の粒度分布(頻度分布)を求め、小径シリカ粒子に相当するピークと大径シリカ粒子に相当するピークとの谷間で両者を切り分け、切り分けられた各範囲に含まれる粒子の体積を、無機充填材の総和の体積で除することにより、小径シリカ粒子及び大径シリカ粒子の割合を求めることができる。アンダーフィル材の組成が明らかな場合には、アンダーフィル材の組成から無機充填材に占める小径シリカ粒子及び大径シリカ粒子の割合を求めることができる。なお、算出方法は、上記方法に限定されない。 When large-diameter silica particles are used as the inorganic filler, the method for determining the ratio of small-diameter silica particles and large-diameter silica particles in the inorganic filler is not particularly limited. For example, the volume-based particle size distribution (frequency distribution) of the inorganic filler is obtained, and both are divided between the peak corresponding to the small-diameter silica particles and the peak corresponding to the large-diameter silica particles. By dividing the volume of the particles by the total volume of the inorganic filler, the ratio of the small-diameter silica particles and the large-diameter silica particles can be obtained. When the composition of the underfill material is known, it is possible to obtain the ratio of the small-diameter silica particles and the large-diameter silica particles in the inorganic filler from the composition of the underfill material. Note that the calculation method is not limited to the above method.
(シリコーン化合物)
 本開示のアンダーフィル材は、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方(特定の変性シリコーン化合物)を含むシリコーン化合物を含有する。
 特定の変性シリコーン化合物の種類は特に制限されず、1種を単独で用いても、2種以上を併用してもよい。例えば、ポリグリセリン変性シリコーン化合物又はポリエステル変性シリコーン化合物を1種単独で用いても、2種以上併用してもよく、1種以上のポリグリセリン変性シリコーン化合物及び1種以上のポリエステル変性シリコーン化合物を組み合わせてもよい。
 本開示において「シリコーン化合物」とは、シロキサン結合で形成される主鎖を有する化合物を意味する。
 シリコーン化合物及び特定の変性シリコーン化合物は、25℃において液状のシリコーン化合物であることが好ましい。
 なお、本開示において、ポリグリセリン変性及びポリエステル変性されたシリコーン化合物は、ポリグリセリン変性シリコーン化合物に分類する。
(silicone compound)
The underfill material of the present disclosure contains a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound (specific modified silicone compound).
The type of specific modified silicone compound is not particularly limited, and one type may be used alone, or two or more types may be used in combination. For example, one polyglycerin-modified silicone compound or polyester-modified silicone compound may be used alone or two or more may be used in combination, and one or more polyglycerin-modified silicone compounds and one or more polyester-modified silicone compounds may be combined. may
In the present disclosure, "silicone compound" means a compound having a main chain formed by siloxane bonds.
The silicone compound and the specific modified silicone compound are preferably liquid silicone compounds at 25°C.
In the present disclosure, polyglycerin-modified and polyester-modified silicone compounds are classified as polyglycerin-modified silicone compounds.
 シリコーン化合物のアンダーフィル材における含有率は、ブリード発生を好適に抑制する観点から、アンダーフィル材全体に対して0.0001質量%~1質量%であることが好ましく、さらに半導体素子等の電子部品と配線基板との間隙へのアンダーフィル材の充填速度の観点から、0.001質量%~0.25質量%であることがより好ましく、0.005質量%~0.15質量%であることがさらに好ましい。 The content of the silicone compound in the underfill material is preferably 0.0001% by mass to 1% by mass with respect to the entire underfill material from the viewpoint of suitably suppressing the occurrence of bleeding, and further electronic parts such as semiconductor elements. From the viewpoint of the filling speed of the underfill material into the gap between the wiring board and the wiring board, it is more preferably 0.001% by mass to 0.25% by mass, and 0.005% by mass to 0.15% by mass. is more preferred.
 シリコーン化合物は、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の一方のみを含んでいてもよく、これらの両方を含んでいてもよい。シリコーン化合物は、ポリグリセリン変性シリコーン化合物を含むことが好ましい。 The silicone compound may contain only one of the polyglycerin-modified silicone compound and the polyester-modified silicone compound, or may contain both of them. The silicone compound preferably contains a polyglycerin-modified silicone compound.
 ポリグリセリン変性シリコーン化合物は、グリセリンに由来する構成単位を複数有するシリコーン化合物であれば特に限定されず、主鎖及び側鎖の少なくとも一方にグリセリンに由来する構成単位を複数有するシリコーン化合物であることが好ましく、主鎖及び側鎖の少なくとも一方にグリセリンに由来する構成単位を複数有するポリジメチルシロキサン誘導体であることがより好ましい。 The polyglycerin-modified silicone compound is not particularly limited as long as it is a silicone compound having a plurality of structural units derived from glycerin. More preferably, it is a polydimethylsiloxane derivative having a plurality of constitutional units derived from glycerin in at least one of the main chain and the side chain.
 ポリグリセリン変性シリコーン化合物は、アルキル変性されたポリジメチルシロキサン誘導体であってもよく、アルキル変性されていないポリジメチルシロキサン誘導体であってもよい。ブリード発生を好適に抑制する観点から、ポリグリセリン変性シリコーン化合物は、アルキル変性されていないポリジメチルシロキサン誘導体であることが好ましい。 The polyglycerin-modified silicone compound may be an alkyl-modified polydimethylsiloxane derivative or a non-alkyl-modified polydimethylsiloxane derivative. From the viewpoint of suitably suppressing the occurrence of bleeding, the polyglycerin-modified silicone compound is preferably a polydimethylsiloxane derivative that is not alkyl-modified.
 ポリエステル変性シリコーン化合物は、エステル基(-C(=O)-O-)を複数有するシリコーン化合物であれば特に限定されず、主鎖及び側鎖の少なくとも一方にエステル基を複数有するシリコーン化合物であることが好ましく、主鎖及び側鎖の少なくとも一方にエステル基を複数有するポリジメチルシロキサン誘導体であることがより好ましい。 The polyester-modified silicone compound is not particularly limited as long as it is a silicone compound having a plurality of ester groups (-C(=O)-O-), and is a silicone compound having a plurality of ester groups in at least one of the main chain and the side chain. More preferably, it is a polydimethylsiloxane derivative having a plurality of ester groups in at least one of its main chain and side chains.
 シリコーン化合物がポリエステル変性シリコーン化合物を含む場合、ポリエステル変性シリコーン化合物は、ポリエーテル-ポリエステル変性シリコーン化合物を含むことが好ましい。ポリエーテル-ポリエステル変性シリコーン化合物としては、例えば、主鎖及び側鎖の少なくとも一方にエステル基及びアルキレングリコールに由来する構成単位を有するシリコーン化合物が挙げられる。アルキレングリコールとしては、例えば、エチレングリコール、ポリプロピレングリコール及びこれらの組み合わせが挙げられる。 When the silicone compound contains a polyester-modified silicone compound, the polyester-modified silicone compound preferably contains a polyether-polyester-modified silicone compound. Polyether-polyester modified silicone compounds include, for example, silicone compounds having structural units derived from ester groups and alkylene glycol in at least one of the main chain and side chains. Alkylene glycols include, for example, ethylene glycol, polypropylene glycol, and combinations thereof.
 ポリエステル変性シリコーン化合物は、ポリエステル変性以外の変性(例えば、エーテル変性)がされたポリジメチルシロキサン誘導体であってもよく、ポリエステル変性以外の変性がされていないポリジメチルシロキサン誘導体であってもよい。 The polyester-modified silicone compound may be a polydimethylsiloxane derivative that has undergone modification other than polyester modification (eg, ether modification), or may be a polydimethylsiloxane derivative that has not undergone modification other than polyester modification.
 特定の変性シリコーン化合物としては、下記一般式(1)で表される化合物であってもよい。 The specific modified silicone compound may be a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rは、それぞれ独立に炭化水素基、グリセリンに由来する構成単位を複数有する有機基又はエステル基を複数有する有機基を表す。
 一般式(1)で表される化合物がポリグリセリン変性シリコーン化合物である場合、Rの少なくとも1つがグリセリンに由来する構成単位を複数有する有機基である。
 一般式(1)で表される化合物がポリエステル変性シリコーン化合物である場合、Rの少なくとも1つがエステル基を複数有する有機基である。
 lは、0~100である。
In general formula (1), each R 1 independently represents an organic group having a plurality of constitutional units derived from a hydrocarbon group or glycerin, or an organic group having a plurality of ester groups.
When the compound represented by general formula (1) is a polyglycerin-modified silicone compound, at least one of R 1 is an organic group having a plurality of constitutional units derived from glycerin.
When the compound represented by general formula (1) is a polyester-modified silicone compound, at least one of R 1 is an organic group having a plurality of ester groups.
l is 0-100.
 一般式(1)において、Rで表される炭化水素基としては、アルキル基、アルケニル基等の脂肪族炭化水素基が挙げられる。脂肪族炭化水素基の炭素数は特に制限されず、入手容易性の観点からは、例えば、1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましい。アルキル基は直鎖状であっても、環状であっても、分岐状であってもよい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、ビニル基、アリル基等が挙げられる。これらの中でも、入手容易性の観点からは、メチル基又はエチル基が好ましく、メチル基がより好ましい。
 また、Rの一部がメチル基以外のアルキル基であり、残りのRがメチル基であってもよく、全てのRがメチル基であってもよい。
In general formula (1), the hydrocarbon group represented by R 1 includes aliphatic hydrocarbon groups such as alkyl groups and alkenyl groups. The number of carbon atoms in the aliphatic hydrocarbon group is not particularly limited, and from the viewpoint of availability, for example, it is preferably 1 to 10, more preferably 1 to 5, and 1 to 3. More preferred. Alkyl groups can be straight, cyclic, or branched. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclohexyl and the like. A vinyl group, an allyl group, etc. are mentioned as an alkenyl group. Among these, a methyl group or an ethyl group is preferable, and a methyl group is more preferable, from the viewpoint of availability.
Also, part of R 1 may be an alkyl group other than a methyl group, the remaining R 1 may be a methyl group, or all of the R 1 may be a methyl group.
 グリセリンに由来する構成単位としては、例えば、以下の式(2)で表される構成単位であってもよい。ポリグリセリン変性シリコーン化合物は、式(2)で表される構成単位が複数結合した構造を有していてもよい。 The structural unit derived from glycerin may be, for example, a structural unit represented by the following formula (2). The polyglycerin-modified silicone compound may have a structure in which a plurality of constitutional units represented by formula (2) are bonded.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 グリセリンに由来する構成単位を複数有するシリコーン化合物の具体例としては、以下の式(3)で表される構成を含む化合物及び式(4)で表される構成を含む化合物が挙げられる。式(3)中、nは2以上の数を意味する。
Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004
Specific examples of the silicone compound having a plurality of structural units derived from glycerin include a compound containing a structure represented by the following formula (3) and a compound containing a structure represented by the following formula (4). In formula (3), n means a number of 2 or more.
Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004
 特定の変性シリコーン化合物の重量平均分子量は、特に制限されない。ブリードの発生をより抑制する観点からは、例えば、300~10000であることが好ましく、500~8000であることがより好ましく、1000~6000であることがさらに好ましい。
 本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて、標準ポリスチレンの検量線を使用して換算することによって決定した値である。
There are no particular restrictions on the weight average molecular weight of the specific modified silicone compound. From the viewpoint of further suppressing the occurrence of bleeding, for example, it is preferably from 300 to 10,000, more preferably from 500 to 8,000, and even more preferably from 1,000 to 6,000.
In the present disclosure, the weight average molecular weight is a value determined by conversion using a standard polystyrene calibration curve using gel permeation chromatography.
 特定の変性シリコーン化合物の粘度、好ましくは、ポリグリセリン変性シリコーンの25℃での粘度は、特に限定されず、例えば、500mm/s~50,000mm/sであることが好ましく、1000mm/s~10,000mm/sであることがより好ましく、2000mm/s~5,000mm/sであることがさらに好ましい。
 特定の変性シリコーン化合物の粘度は、25℃における動粘度を意味する。本開示における粘度は、JIS K7367-1:2002に準拠した方法により、キャピラリー粘度計を用いて測定される動粘度の値である。
The viscosity of the specific modified silicone compound, preferably the viscosity of the polyglycerin-modified silicone at 25° C., is not particularly limited, and is preferably, for example, 500 mm 2 /s to 50,000 mm 2 /s, preferably 1000 mm 2 /s. s to 10,000 mm 2 /s, more preferably 2000 mm 2 /s to 5,000 mm 2 /s.
The viscosity of a specific modified silicone compound means kinematic viscosity at 25°C. Viscosity in the present disclosure is a value of kinematic viscosity measured using a capillary viscometer by a method conforming to JIS K7367-1:2002.
 特定の変性シリコーン化合物は、市販品を用いてもよい。市販品としては、信越化学工業株式会社製である商品名KF-6100、KF-6104、KF-6105、KF-6106等、ビックケミー・ジャパン株式会社製である商品名BYK-370、BYK-375等、花王株式会社製である商品名ソフケアGS-G等が挙げられる。 Commercially available products may be used as the specific modified silicone compound. Commercial products include KF-6100, KF-6104, KF-6105, KF-6106, etc. manufactured by Shin-Etsu Chemical Co., Ltd., BYK-370, BYK-375, etc. manufactured by BYK-Chemie Japan Co., Ltd. and Softcare GS-G manufactured by Kao Corporation.
 シリコーン化合物は、特定の変性シリコーン化合物以外のシリコーン化合物を含んでいてもよく、含んでいなくてもよい。
 特定の変性シリコーン化合物以外のシリコーン化合物は、変性されていないシリコーン化合物であってもよく、変性されたシリコーン化合物であってもよい。変性されたシリコーン化合物としては、ポリエーテル変性シリコーン化合物、カルボキシ変性シリコーン化合物、アミノ変性シリコーン化合物等が挙げられる。
The silicone compound may or may not contain a silicone compound other than the specific modified silicone compound.
The silicone compound other than the specific modified silicone compound may be an unmodified silicone compound or a modified silicone compound. Modified silicone compounds include polyether-modified silicone compounds, carboxy-modified silicone compounds, amino-modified silicone compounds, and the like.
 シリコーン化合物に含まれる特定の変性シリコーン化合物の含有率は、シリコーン化合物全体に対して、70質量%~100質量%であってもよく、80質量%~100質量%であってもよく、90質量%~100質量%であってもよい。 The content of the specific modified silicone compound contained in the silicone compound may be 70% by mass to 100% by mass, 80% by mass to 100% by mass, or 90% by mass with respect to the entire silicone compound. % to 100% by mass.
(カップリング剤)
 本開示のアンダーフィル材は、カップリング剤を含有してもよい。
 カップリング剤は、アンダーフィル材中の樹脂成分と無機充填材又は樹脂成分と電子部品装置の構成部材との間の接着性を強固にする役割を果たす。カップリング剤は特に制限されず、アンダーフィル材の成分として一般に使用されているものから選択できる。具体的には、1級アミノ基、2級アミノ基及び3級アミノ基からなる群から選ばれる1種以上を有するアミノシラン、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物などが挙げられる。これらの中でも、充填性の観点からは、シラン系化合物が好ましく、エポキシシランがより好ましい。
(coupling agent)
The underfill material of the present disclosure may contain a coupling agent.
The coupling agent serves to strengthen the adhesiveness between the resin component and the inorganic filler in the underfill material, or between the resin component and the constituent members of the electronic component device. The coupling agent is not particularly limited, and can be selected from those commonly used as components of underfill materials. Specifically, silane compounds such as aminosilanes, epoxysilanes, mercaptosilanes, alkylsilanes, ureidosilanes, and vinylsilanes having one or more selected from the group consisting of a primary amino group, a secondary amino group and a tertiary amino group. , titanium-based compounds, aluminum chelates, and aluminum/zirconium-based compounds. Among these, from the viewpoint of filling properties, silane compounds are preferred, and epoxysilane is more preferred.
 アンダーフィル材がカップリング剤を含有する場合、その含有率は、特に制限されない。樹脂成分と無機充填材との界面接着及び樹脂成分と電子部品装置の構成部材との界面接着を強固にする観点、並びに充填性を向上させる観点からは、例えば、アンダーフィル材全体に対して0.05質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがより好ましく、0.4質量%~1質量%であることがさらに好ましい。 When the underfill material contains a coupling agent, its content is not particularly limited. From the viewpoint of strengthening the interfacial adhesion between the resin component and the inorganic filler and the interfacial adhesion between the resin component and the constituent members of the electronic component device, and from the viewpoint of improving the filling property, for example, the total amount of the underfill material is 0 It is preferably 0.05% to 10% by mass, more preferably 0.2% to 5% by mass, even more preferably 0.4% to 1% by mass.
(その他の成分)
 アンダーフィル材は、上記した成分以外のその他の添加剤として、硬化促進剤、イオントラップ剤、酸化防止剤、有機溶剤、離型剤、着色剤、ゴム粒子、レベリング剤、消泡剤などを必要に応じて含んでいてもよい。
(other ingredients)
In addition to the above ingredients, the underfill material requires curing accelerators, ion trapping agents, antioxidants, organic solvents, release agents, colorants, rubber particles, leveling agents, antifoaming agents, etc. may be included depending on
-硬化促進剤-
 本開示のアンダーフィル材は、硬化促進剤を含有してもよい。硬化促進剤の種類は特に制限されず、公知の硬化促進剤を使用することができる。
 具体的には、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、1,5-ジアザ-ビシクロ[4.3.0]ノネン、5,6-ジブチルアミノ-1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物;3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物;イミダゾール化合物の誘導体;トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2-エチル-4-メチルイミダゾールテトラフェニルボレート、N-メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩;テトラフェニルボロン塩の誘導体;トリフェニルホスホニウム-トリフェニルボラン、N-メチルモルホリンテトラフェニルホスホニウム-テトラフェニルボレート等のホスフィン化合物とテトラフェニルボロン塩との付加物などが挙げられる。硬化促進剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
- Curing accelerator -
The underfill material of the present disclosure may contain a curing accelerator. The type of curing accelerator is not particularly limited, and known curing accelerators can be used.
Specifically, 1,8-diaza-bicyclo[5.4.0]undecene-7, 1,5-diaza-bicyclo[4.3.0]nonene, 5,6-dibutylamino-1,8- Cycloamidine compounds such as diaza-bicyclo[5.4.0]undecene-7; cycloamidine compounds such as maleic anhydride, 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, and 2,3-dimethyl quinone compounds such as benzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone; Compounds having intramolecular polarization obtained by adding compounds having π bonds such as phenylmethane and phenolic resins; tertiary amine compounds such as benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris(dimethylaminomethyl)phenol; Derivatives of tertiary amine compounds; imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole; derivatives of imidazole compounds; tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris(4- organic phosphine compounds such as methylphenyl)phosphine, diphenylphosphine, and phenylphosphine; intramolecular polarization obtained by adding a compound having a π bond such as maleic anhydride, the above quinone compound, diazophenylmethane, and phenolic resin to an organic phosphine compound; Phosphorus compounds having; tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate; derivatives of tetraphenylboron salts adducts of phosphine compounds such as triphenylphosphonium-triphenylborane, N-methylmorpholine tetraphenylphosphonium-tetraphenylborate, and tetraphenylboron salts; A hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
 アンダーフィル材が硬化促進剤を含有する場合、硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、0.1質量%~8質量%であることが好ましい。 When the underfill material contains a curing accelerator, the content of the curing accelerator is preferably 0.1% by mass to 8% by mass with respect to the total amount of the epoxy resin and the curing agent.
-イオントラップ剤-
 本開示のアンダーフィル材は、イオントラップ剤を含有してもよい。
 本開示において使用可能なイオントラップ剤は、電子部品装置の製造用途に用いられるアンダーフィル材において、一般的に使用されているイオントラップ剤であれば特に制限されるものではない。イオントラップ剤としては、例えば、下記一般式(VI-1)又は下記一般式(VI-2)で表される化合物が挙げられる。
-Ion trap agent-
The underfill material of the present disclosure may contain ion trapping agents.
The ion trapping agent that can be used in the present disclosure is not particularly limited as long as it is an ion trapping agent commonly used in underfill materials used for manufacturing electronic component devices. Examples of ion trapping agents include compounds represented by the following general formula (VI-1) or the following general formula (VI-2).
Mg1-aAl(OH)(COa/2・uHO (VI-1)
(一般式(VI-1)中、aは0<a≦0.5であり、uは正数である。)
BiO(OH)(NO (VI-2)
(一般式(VI-2)中、bは0.9≦b≦1.1、cは0.6≦c≦0.8、dは0.2≦d≦0.4である。)
Mg 1-a Al a (OH) 2 (CO 3 ) a/2 ·uH 2 O (VI-1)
(In general formula (VI-1), a is 0 < a ≤ 0.5, and u is a positive number.)
BiO b (OH) c (NO 3 ) d (VI-2)
(In general formula (VI-2), b is 0.9 ≤ b ≤ 1.1, c is 0.6 ≤ c ≤ 0.8, and d is 0.2 ≤ d ≤ 0.4.)
 イオントラップ剤は、市販品として入手可能である。一般式(VI-1)で表される化合物としては、例えば、「DHT-4A」(協和化学工業株式会社製、商品名)が市販品として入手可能である。また、一般式(VI-2)で表される化合物としては、例えば、「IXE500」(東亞合成株式会社製、商品名)が市販品として入手可能である。 The ion trap agent is available as a commercial product. As a compound represented by general formula (VI-1), for example, "DHT-4A" (manufactured by Kyowa Chemical Industry Co., Ltd., trade name) is commercially available. As a compound represented by the general formula (VI-2), for example, "IXE500" (manufactured by Toagosei Co., Ltd., trade name) is available as a commercial product.
 また、上記以外のイオントラップ剤として、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物などが挙げられる。
 イオントラップ剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
In addition, ion trapping agents other than those described above include hydrated oxides of elements selected from magnesium, aluminum, titanium, zirconium, antimony, and the like.
An ion trap agent may be used individually by 1 type, or may use 2 or more types together.
 アンダーフィル材がイオントラップ剤を含有する場合、イオントラップ剤の含有量は、充分な耐湿信頼性を実現する観点からは、エポキシ樹脂100質量部に対して1質量部以上であることが好ましい。他の成分の効果を充分に発揮する観点からは、イオントラップ剤の含有量は、エポキシ樹脂100質量部に対して15質量部以下であることが好ましく、1質量部~10質量部であることがより好ましく、2質量部~5質量部であることがさらに好ましい。 When the underfill material contains an ion trapping agent, the content of the ion trapping agent is preferably 1 part by mass or more with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving sufficient moisture resistance reliability. From the viewpoint of sufficiently exhibiting the effects of the other components, the content of the ion trapping agent is preferably 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin, and is 1 to 10 parts by mass. is more preferable, and 2 parts by mass to 5 parts by mass is even more preferable.
 また、イオントラップ剤の平均粒子径は0.1μm~3.0μmであることが好ましく、最大粒子径は10μm以下であることが好ましい。イオントラップ剤の平均粒子径は、無機充填材の場合と同様にして測定することができる。 In addition, the average particle size of the ion trap agent is preferably 0.1 μm to 3.0 μm, and the maximum particle size is preferably 10 μm or less. The average particle size of the ion trapping agent can be measured in the same manner as the inorganic filler.
-酸化防止剤-
 本開示のアンダーフィル材は、酸化防止剤を含んでもよい。酸化防止剤としては従来公知のものを用いることができる。
 フェノール化合物系酸化防止剤としては、フェノール核のオルト位に少なくとも1つのアルキル基を有する化合物として、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオンアミド]、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、4,6-ビス(ドデシルチオメチル)-o-クレゾール、ビス[3,5-ジ-t-ブチル-4-ヒドロキシベンジル(エトキシ)ホスフィナート]カルシウム、2,4-ビス(オクチルチオメチル)-6-メチルフェノール、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1,3,2]ジオキサホスフェピン、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチル-4-エチルフェノール、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、トリエチレングリコール-ビス[3-(3-t-ブチル―4-ヒドロキシ-5-メチルフェニル)プロピオネート]、トリス(3,5-ジ-t-ブチル-4ヒドロキシベンジル)イソシアヌレート、ジエチル[〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル]ホスホネート、2,5,7,8-テトラメチル-2-(4’,8’,12’-トリメチルトリデシル)クロマン-6-オール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン等が挙げられる。
 有機硫黄化合物系酸化防止剤としては、ジラウリル―3,3’-チオジプロピオネート、ジミリスチル―3,3’-チオジプロピオネート、ジステアリル―3,3’-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジトリデシル―3,3’-チオジプロピオネート、2-メルカプトベンズイミダゾール、4,4’-チオビス(6-t-ブチル-3-メチルフェノール)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,6-ビス(ドデシルチオメチル)-o-クレゾール、2,4-ビス(オクチルチオメチル)-6-メチルフェノール、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン等が挙げられる。
 アミン化合物系酸化防止剤としては、N,N’-ジアリル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル―p-フェニレンジアミン、オクチル化ジフェニルアミン、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン等が挙げられる。
 アミン化合物系酸化防止剤のうち、ジシクロヘキシルアミンとしては、新日本理化株式会社製商品名D-CHA-T等が市販品として入手可能であり、その誘導体としては亜硝酸ジシクロヘキシルアミンアンモニウム、N,N-ジ(3-メチル-シクロヘキシル)アミン、N,N-ジ(2-メトキシ-シクロヘキシル)アミン、N,N-ジ(4-ブロモ-シクロヘキシル)アミン等が挙げられる。
 リン化合物系酸化防止剤としては、トリスノニルフェニルフォスファイト、トリフェニルフォスファイト、ビス[3,5-ジ-t-ブチル-4-ヒドロキシベンジル(エトキシ)ホスフィナート]カルシウム、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-[〔2,4,8,10-テトラキス(1,1-ジメチルエ-テル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル〕オキシ]-N,N-ビス[2-{〔2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル〕オキシ}-エチル]エタナミン、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンズ[d,f][1,3,2]ジオキサホスフェピン、ジエチル[〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル]ホスホネート等が挙げられる。
 酸化防止剤は、1種類を単独で使用しても、2種類以上を併用してもよい。なお、酸化防止剤の具体例としてフェノール性ヒドロキシ基に加え、リン原子、硫黄原子及びアミンのいずれかを少なくとも1つ同一分子中に含む化合物が存在するが、これらの化合物は重複して挙げる場合がある。
-Antioxidant-
The underfill material of the present disclosure may also contain an antioxidant. A conventionally well-known thing can be used as an antioxidant.
Examples of phenolic compound antioxidants include 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis-(4-methyl-6-t-butylphenol), 3,9-bis[2-[3-(3-t-butyl -4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane, 4,4′-butylidenebis-(6- t-butyl-3-methylphenol), 4,4'-thiobis(6-t-butyl-3-methylphenol), tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl ) propionate]methane, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionamide], isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4, 6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 4,6-bis(dodecylthiomethyl)-o-cresol, bis[3,5-di-t-butyl-4- Hydroxybenzyl(ethoxy)phosphinate]calcium, 2,4-bis(octylthiomethyl)-6-methylphenol, 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxy phenyl)propionate], 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t-butyldibenz[d,f][1, 3,2]dioxaphosphepine, 2-t-butyl-6-(3-t-butyl-2-hydroxy-5-methylbenzyl)-4-methylphenylacrylate, 2-[1-(2-hydroxy -3,5-di-t-pentylphenyl)ethyl]-4,6-di-t-pentylphenyl acrylate, 2,2′-methylenebis-(4-ethyl-6-t-butylphenol), 2,6- Di-t-butyl-4-ethylphenol, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butyl tane, triethylene glycol-bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate], tris(3,5-di-t-butyl-4hydroxybenzyl)isocyanurate, diethyl[ [3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]phosphonate, 2,5,7,8-tetramethyl-2-(4′,8′,12′-trimethyltridecyl ) chroman-6-ol, 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine and the like.
Organic sulfur compound antioxidants include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and pentaerythrityl. tetrakis(3-laurylthiopropionate), ditridecyl-3,3'-thiodipropionate, 2-mercaptobenzimidazole, 4,4'-thiobis(6-t-butyl-3-methylphenol), 2, 2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 4,6-bis(dodecylthiomethyl)-o-cresol, 2,4-bis(octyl) thiomethyl)-6-methylphenol, 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine and the like. .
Amine compound antioxidants include N,N'-diallyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, octylated diphenylamine, 2,4-bis-(n- octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine and the like.
Among amine compound-based antioxidants, dicyclohexylamine is commercially available under the trade name of D-CHA-T manufactured by Shin Nippon Rika Co., Ltd., and its derivatives include dicyclohexylamine ammonium nitrite, N, N -di(3-methyl-cyclohexyl)amine, N,N-di(2-methoxy-cyclohexyl)amine, N,N-di(4-bromo-cyclohexyl)amine and the like.
Phosphorus compound-based antioxidants include trisnonylphenyl phosphite, triphenylphosphite, bis[3,5-di-t-butyl-4-hydroxybenzyl(ethoxy)phosphinate]calcium, tris(2,4-di -t-butylphenyl)phosphite, 2-[[2,4,8,10-tetrakis(1,1-dimethylether)dibenzo[d,f][1,3,2]dioxaphosphepin- 6-yl]oxy]-N,N-bis[2-{[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphos phepin-6-yl]oxy}-ethyl]ethanamine, 6-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8,10-tetra-t- Butyldibenz[d,f][1,3,2]dioxaphosphepine, diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]phosphonate and the like.
One type of antioxidant may be used alone, or two or more types may be used in combination. Specific examples of antioxidants include compounds containing at least one of a phosphorus atom, a sulfur atom and an amine in the same molecule in addition to a phenolic hydroxy group. There is
 アンダーフィル材が酸化防止剤を含有する場合、酸化防止剤の含有率は、エポキシ樹脂全体に対して0.1質量%~10質量%であることが好ましく、より好ましくは0.5質量%~5質量%である。 When the underfill material contains an antioxidant, the content of the antioxidant is preferably 0.1% by mass to 10% by mass, more preferably 0.5% by mass to 10% by mass, based on the total epoxy resin. 5% by mass.
-有機溶剤-
 本開示のアンダーフィル材には、低粘度化のために必要に応じて有機溶剤を配合することができる。特に、固体のエポキシ樹脂及び固体の硬化剤の少なくとも一方を用いる場合には、液状の樹脂組成物を得るために、有機溶剤を配合することが好ましい。
 有機溶剤としては、特に制限はなく、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、エチレングリコールエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルアセテート等のグリコールエーテル系溶剤、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等のラクトン系溶剤、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶剤、トルエン、キシレン等の芳香族系溶剤などが挙げられ、1種類を単独で使用しても、2種類以上を併用してもよい。これらの中では、アンダーフィル材を硬化する際の急激な揮発による気泡形成を避ける観点からは沸点が170℃以上の有機溶剤が好ましい。
-Organic solvent-
The underfill material of the present disclosure can be blended with an organic solvent as necessary to reduce the viscosity. In particular, when using at least one of a solid epoxy resin and a solid curing agent, it is preferable to blend an organic solvent in order to obtain a liquid resin composition.
The organic solvent is not particularly limited, and alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol and butyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, ethylene glycol ethyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether, Glycol ether solvents such as propylene glycol methyl ether, dipropylene glycol methyl ether, propylene glycol ethyl ether, and propylene glycol methyl ether acetate, lactone solvents such as γ-butyrolactone, δ-valerolactone, and ε-caprolactone, dimethylacetamide, dimethyl Amide solvents such as formamide, aromatic solvents such as toluene and xylene, etc. may be mentioned, and one type may be used alone, or two or more types may be used in combination. Among these, an organic solvent having a boiling point of 170° C. or higher is preferable from the viewpoint of avoiding bubble formation due to rapid volatilization when curing the underfill material.
 有機溶剤等を含む揮発分の含有率は、アンダーフィル材を硬化する際に気泡を形成しない程度であれば特に制限はなく、アンダーフィル材全体に対して5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。有機溶剤等を含む揮発分の含有率の下限は、0質量%以上であれば特に限定されない。
 本開示において、アンダーフィル材の揮発分は、アンダーフィル材を180℃にて30分の条件で加熱し、加熱前後の重量差に基づいて算出される。
The content of volatile matter including organic solvents and the like is not particularly limited as long as it does not form air bubbles when the underfill material is cured, and is preferably 5% by mass or less with respect to the entire underfill material. It is more preferably 1% by mass or less, and even more preferably 0.1% by mass or less. The lower limit of the content of volatile matter including organic solvents and the like is not particularly limited as long as it is 0% by mass or more.
In the present disclosure, the volatile content of the underfill material is calculated based on the weight difference before and after heating the underfill material at 180° C. for 30 minutes.
-離型剤-
 本開示のアンダーフィル材は、離型剤を含有してもよい。離型剤の種類は特に制限されず、公知の離型剤を使用することができる。具体的には、例えば、高級脂肪酸、カルナバワックス及びポリエチレン系ワックスが挙げられる。離型剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
 アンダーフィル材が離型剤を含有する場合、離型剤の含有率は、エポキシ樹脂と硬化剤の合計量に対して、10質量%以下であることが好ましく、その効果を発揮させる観点からは、0.5質量%以上であることが好ましい。
-Release agent-
The underfill material of the present disclosure may contain a release agent. The type of release agent is not particularly limited, and known release agents can be used. Specific examples include higher fatty acids, carnauba wax and polyethylene wax. The release agent may be used alone or in combination of two or more.
When the underfill material contains a release agent, the content of the release agent is preferably 10% by mass or less with respect to the total amount of the epoxy resin and the curing agent. , 0.5% by mass or more.
-着色剤-
 本開示のアンダーフィル材は、染料、カーボンブラック等の着色剤を含有してもよい。着色剤は、1種類を単独で使用しても、2種類以上を併用してもよい。
-coloring agent-
The underfill material of the present disclosure may contain colorants such as dyes and carbon black. The colorants may be used singly or in combination of two or more.
 着色剤としてカーボンブラック等の導電性粒子を用いる場合、導電性粒子は、粒子径10μm以上の粒子の含有率が1質量%以下であることが好ましい。
 アンダーフィル材が導電性粒子を含有する場合、導電性粒子の含有率は、エポキシ樹脂と硬化剤の合計量に対して3質量%以下であることが好ましく、0.01質量%~1質量%であることがより好ましい。
When conductive particles such as carbon black are used as the colorant, the conductive particles preferably contain 1% by mass or less of particles having a particle diameter of 10 μm or more.
When the underfill material contains conductive particles, the content of the conductive particles is preferably 3% by mass or less with respect to the total amount of the epoxy resin and the curing agent, and is 0.01% to 1% by mass. is more preferable.
-ゴム粒子-
 アンダーフィル材は、硬化物の低熱膨張化の観点から、ゴム粒子を含有してもよい。ゴム粒子は、1種類を単独で使用しても、2種類以上を併用してもよい。
 好適なゴム粒子の例としては、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、ウレタンゴム(UR)、アクリルゴム(AR)等のゴム粒子が挙げられる。中でも、耐熱性及び耐湿性の観点からは、アクリルゴムを含むゴム粒子が好ましく、コアシェル型アクリルゴム粒子がより好ましい。
-Rubber Particles-
The underfill material may contain rubber particles from the viewpoint of low thermal expansion of the cured product. One type of rubber particles may be used alone, or two or more types may be used in combination.
Examples of suitable rubber particles include rubber particles of styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butadiene rubber (BR), urethane rubber (UR), acrylic rubber (AR), and the like. Among them, from the viewpoint of heat resistance and moisture resistance, rubber particles containing acrylic rubber are preferable, and core-shell type acrylic rubber particles are more preferable.
 また、好適なゴム粒子の他の例としては、シリコーンゴム粒子が挙げられる。
 シリコーンゴム粒子としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等の直鎖状のポリオルガノシロキサンを架橋したシリコーンゴム粒子;該シリコーンゴム粒子の表面をシリコーンレジンで被覆したもの、乳化重合等で得られる固形シリコーン粒子のコアとアクリル樹脂等の有機重合体のシェルを含むコア-シェル重合体粒子などが挙げられる。これらのシリコーンゴム粒子の形状は無定形であっても球形であってもよく、アンダーフィル材の粘度を低く抑えるためには、球形のシリコーンゴム粒子を用いることが好ましい。
 シリコーンゴム粒子は、東レ・ダウコーニング・シリコーン株式会社、信越化学工業株式会社等から市販品が入手可能である。
Other examples of suitable rubber particles include silicone rubber particles.
Examples of silicone rubber particles include silicone rubber particles obtained by cross-linking linear polyorganosiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane; surfaces of the silicone rubber particles coated with silicone resin; emulsion polymerization; and core-shell polymer particles containing a core of solid silicone particles obtained by the above method and a shell of an organic polymer such as an acrylic resin. The shape of these silicone rubber particles may be amorphous or spherical, and in order to keep the viscosity of the underfill material low, it is preferable to use spherical silicone rubber particles.
Silicone rubber particles are commercially available from Dow Corning Toray Silicone Co., Ltd., Shin-Etsu Chemical Co., Ltd., and the like.
 アンダーフィル材がゴム粒子を含む場合、ゴム粒子の平均粒子径は、アンダーフィル材を均一性高く変性するためには微細であることが好ましい。ゴム粒子の平均粒子径としては0.05μm~10μmの範囲であることが好ましく、0.1μm~5μmの範囲であることがさらに好ましい。ゴム粒子の平均粒子径が0.05μm以上であるとアンダーフィル材への分散性がより向上する傾向がある。ゴム粒子の体積平均粒子径が10μm以下であると、低応力化改善効果がより向上する傾向があり、アンダーフィル材としての微細間隙への浸透性及び流動性が向上し、ボイド及び未充填を招き難くなる傾向がある。
 ゴム粒子の平均粒子径は、無機充填材と同様の方法を用いて測定される。
 アンダーフィル材がゴム粒子を含む場合、ゴム粒子の含有率は、エポキシ樹脂全体に対して3質量%~30質量%であることが好ましく、5質量%~28質量%であることがより好ましく、10質量%~25質量%であることがさらに好ましい。
When the underfill material contains rubber particles, the average particle size of the rubber particles is preferably fine in order to uniformly modify the underfill material. The average particle size of the rubber particles is preferably in the range of 0.05 μm to 10 μm, more preferably in the range of 0.1 μm to 5 μm. When the average particle size of the rubber particles is 0.05 μm or more, the dispersibility in the underfill material tends to be further improved. When the volume average particle diameter of the rubber particles is 10 μm or less, the effect of reducing stress tends to be further improved, the permeability and fluidity of the underfill material into fine gaps are improved, and voids and unfilling are reduced. It tends to be difficult to invite.
The average particle size of rubber particles is measured using the same method as for inorganic fillers.
When the underfill material contains rubber particles, the rubber particle content is preferably 3% to 30% by mass, more preferably 5% to 28% by mass, based on the total epoxy resin. It is more preferably 10% by mass to 25% by mass.
<アンダーフィル材の用途>
 アンダーフィル材は、例えば、後述する電子部品を搭載した半導体装置に適用することができる。
 また、近年、半導体素子の高速化に伴い、低誘電率の層間絶縁膜が半導体素子に形成される場合がある。この層間絶縁膜は機械強度が弱く、外部からの応力で破壊されやすいため、故障が発生しやすい。この傾向は半導体素子が大きくなる程顕著になるため、アンダーフィル材に起因して発生する応力の低減が求められている。
 本開示のアンダーフィル材によると、半導体素子のサイズが長い方の辺で2mm以上であり、誘電率が3.0以下の層間絶縁膜を有する半導体素子を搭載するフリップチップ接続形式の電子部品装置に対しても、優れた信頼性を提供できる。
 また、電子部品を構成する配線基板と半導体素子とのバンプ接続面の距離が200μm以下であるフリップチップ接続に対しても良好な流動性及び充填性を示し、耐湿性、耐熱衝撃性等の信頼性にも優れた電子部品装置を提供することができる。
<Usage of underfill material>
The underfill material can be applied, for example, to a semiconductor device on which electronic components to be described later are mounted.
Further, in recent years, along with the speeding up of semiconductor devices, there are cases where an interlayer insulating film with a low dielectric constant is formed in semiconductor devices. This interlayer insulating film has a weak mechanical strength and is easily destroyed by external stress, so failures are likely to occur. Since this tendency becomes more conspicuous as the size of the semiconductor element increases, there is a demand for reducing the stress caused by the underfill material.
According to the underfill material of the present disclosure, a flip chip connection type electronic component device mounted with a semiconductor element having a size of 2 mm or more on the long side and having an interlayer insulating film with a dielectric constant of 3.0 or less can also provide excellent reliability.
In addition, it exhibits good fluidity and fillability even for flip-chip connection where the distance between the bump connection surface between the wiring board constituting the electronic component and the semiconductor element is 200 μm or less, and the reliability of moisture resistance, thermal shock resistance, etc. It is possible to provide an electronic component device that is also excellent in terms of performance.
<アンダーフィル材の作製方法>
 アンダーフィル材は、例えば、エポキシ樹脂、硬化剤、無機充填材及び特定のシリコーン化合物並びに必要に応じて用いられるその他の成分を一括して又は別々に、必要により加熱処理を加えながら、撹拌、溶融、混合、分散等させることにより得ることができる。これらの成分の混合、撹拌、分散等のための装置としては、特に限定されるものではなく、撹拌装置、加熱装置等を備えたライカイ機、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミルなどが挙げられる。これらの装置を用いて上記成分を混合し、混練し、必要に応じて脱泡することによってアンダーフィル材を得ることができる。
 シリカ粒子としては、粒子の分散性の向上を目的として、予めシリカ粒子がエポキシ樹脂に混合した混合物を用いてもよい。
<Method for preparing underfill material>
The underfill material is, for example, an epoxy resin, a curing agent, an inorganic filler, a specific silicone compound, and other components that are used as necessary, all together or separately, while being subjected to heat treatment as necessary, and stirred and melted. , mixing, dispersing, or the like. Equipment for mixing, stirring, dispersing, etc. of these components is not particularly limited, and includes a laikai machine equipped with a stirring device, a heating device, etc., a three-roll mill, a ball mill, a planetary mixer, a bead mill, and the like. mentioned. The underfill material can be obtained by mixing and kneading the above components using these devices, and defoaming as necessary.
As the silica particles, a mixture in which silica particles are mixed in advance with an epoxy resin may be used for the purpose of improving the dispersibility of the particles.
<電子部品装置>
 本開示の電子部品装置は、回路層を有する基板と、前記基板上に配置され、前記回路層と電気的に接続された電子部品と、前記基板と前記電子部品との間隙に配置された本開示のアンダーフィル材の硬化物と、を備える。本開示の電子部品装置は、本開示のアンダーフィル材により電子部品を封止して得ることができる。電子部品がアンダーフィル材によって封止されることで、本開示の電子部品装置は、信頼性に優れる。
<Electronic parts equipment>
An electronic component device of the present disclosure includes a substrate having a circuit layer, an electronic component disposed on the substrate and electrically connected to the circuit layer, and a book disposed in a gap between the substrate and the electronic component. and a cured product of the disclosed underfill material. The electronic component device of the present disclosure can be obtained by sealing an electronic component with the underfill material of the present disclosure. By sealing the electronic component with the underfill material, the electronic component device of the present disclosure has excellent reliability.
 電子部品装置としては、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、ガラス、シリコンウエハ等の回路層を有する基板に、半導体素子、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などの電子部品を搭載し、必要な部分を本開示のアンダーフィル材で封止して得られる電子部品装置が挙げられる。
 特に、リジッド配線板、フレキシブル配線板又はガラス上に形成した配線に、半導体素子をバンプ接続によりフリップチップボンディングした電子部品装置が、本開示のアンダーフィル材を適応しうる対象の1つとして挙げられる。具体的な例としては、フリップチップBGA(Ball Grid Array)、LGA(Land Grid Array)、COF(Chip On Film)等の電子部品装置が挙げられる。
As electronic component devices, semiconductor elements, transistors, diodes, active elements such as thyristors, capacitors, etc. , resistors, resistor arrays, coils, and passive elements such as switches are mounted, and electronic component devices obtained by sealing necessary portions with the underfill material of the present disclosure can be mentioned.
In particular, an electronic component device in which a semiconductor element is flip-chip bonded to wiring formed on a rigid wiring board, a flexible wiring board, or glass by bump connection is one of the targets to which the underfill material of the present disclosure can be applied. . Specific examples include electronic component devices such as flip chip BGA (Ball Grid Array), LGA (Land Grid Array), and COF (Chip On Film).
 本開示のアンダーフィル材は、高い信頼性が求められるフリップチップ用のアンダーフィル材として有用である。本開示のアンダーフィル材が特に好適に適用されるフリップチップの分野としては、配線基板と半導体素子とを接続するバンプ材質が、従来の鉛含有はんだである場合のみならず、Sn-Ag-Cu系等の鉛フリーはんだである場合も挙げられる。従来の鉛はんだと比較して物性的に脆い鉛フリーはんだを用いてバンプ接続をしたフリップチップに対しても、本開示のアンダーフィル材は良好な信頼性を維持できる傾向にある。また、ウエハーレベルCSP(Chip Size Package)等のチップスケールパッケージを基板に実装する際にも本開示のアンダーフィル材を適用することで、信頼性の向上を図ることができる傾向にある。 The underfill material of the present disclosure is useful as an underfill material for flip chips that require high reliability. In the field of flip chips to which the underfill material of the present disclosure is particularly preferably applied, not only the conventional lead-containing solder used as the bump material for connecting the wiring board and the semiconductor element, but also Sn—Ag—Cu A case of lead-free solder such as a system is also included. The underfill material of the present disclosure tends to be able to maintain good reliability even for a flip chip in which bump connections are made using lead-free solder, which is physically more fragile than conventional lead solder. Also, when a chip scale package such as a wafer level CSP (Chip Size Package) is mounted on a substrate, there is a tendency that reliability can be improved by applying the underfill material of the present disclosure.
<電子部品装置の製造方法>
 本開示の電子部品装置の製造方法は、回路層を有する基板と、前記基板上に配置され、前記回路層と電気的に接続された電子部品とを、本開示のアンダーフィル材を用いて封止する工程を有する。
 本開示のアンダーフィル材を用いて回路層を有する基板と電子部品とを封止する工程に特に限定はない。例えば、電子部品と回路層を有する基板とを接続した後に、電子部品と基板とのギャップに毛細管現象を利用してアンダーフィル材を付与し、次いでアンダーフィル材の硬化反応を行う後入れ方式、並びに、先に回路層を有する基板及び電子部品の少なくとも一方の表面に本開示のアンダーフィル材を付与し、熱圧着して電子部品を基板に接続する際に、電子部品及び基板の接続とアンダーフィル材の硬化反応とを一括して行う先塗布方式が挙げられる。
 アンダーフィル材の付与方法としては、注型方式、ディスペンス方式、印刷方式等が挙げられる。
<Method for manufacturing electronic component device>
A method of manufacturing an electronic component device according to the present disclosure includes sealing a substrate having a circuit layer and an electronic component disposed on the substrate and electrically connected to the circuit layer using the underfill material according to the present disclosure. It has a step of stopping.
There is no particular limitation on the process of sealing a substrate having a circuit layer and an electronic component using the underfill material of the present disclosure. For example, after connecting an electronic component and a substrate having a circuit layer, an underfill material is applied to the gap between the electronic component and the substrate using capillary action, and then the underfill material undergoes a curing reaction. Also, when the underfill material of the present disclosure is applied to the surface of at least one of the substrate having the circuit layer and the electronic component first, and the electronic component is connected to the substrate by thermocompression, the electronic component and the substrate are connected and underfilled. A pre-coating method in which the curing reaction of the filler material and the curing reaction of the filler material are performed together can be mentioned.
Methods for applying the underfill material include a casting method, a dispensing method, a printing method, and the like.
 アンダーフィル材の硬化条件は特に限定されず、例えば、80℃~165℃で、1分間~150分間加熱することが好ましい。 The curing conditions for the underfill material are not particularly limited, and for example, it is preferable to heat at 80°C to 165°C for 1 minute to 150 minutes.
 以下に、本発明を実施例に基づいて説明するが、本発明は下記実施例に限定されるものではない。 The present invention will be described below based on examples, but the present invention is not limited to the following examples.
[アンダーフィル材の調製]
 表1及び表2に示す各成分を表1及び表2に示す量(質量部)で配合し、三本ロール及び真空らい潰機にて混練し分散して、実施例及び比較例のアンダーフィル材を調製した。表1に示す各材料の詳細は、下記のとおりである。表1中の空欄(-)は未配合であることを示す。
[Preparation of underfill material]
The components shown in Tables 1 and 2 were blended in the amounts (parts by mass) shown in Tables 1 and 2, kneaded and dispersed using a three-roll mill and a vacuum crusher, and the underfills of Examples and Comparative Examples were obtained. material was prepared. Details of each material shown in Table 1 are as follows. A blank (-) in Table 1 indicates that it is not blended.
・エポキシ樹脂1:ビスフェノールFをエポキシ化して得られるエポキシ当量160g/molの液状2官能エポキシ樹脂
・エポキシ樹脂2:アミノフェノールをエポキシ化して得られるエポキシ当量95g/molの3官能液状エポキシ樹脂
・エポキシ樹脂3:ナフタレンをエポキシ化して得られるエポキシ当量143g/mоlの液状2官能エポキシ樹脂
・硬化剤1:活性水素当量45g/molのジエチルトルエンジアミン
・硬化剤2:活性水素当量63g/molのジエチルジアミノジフェニルメタン
・無機充填材:平均粒子径0.5μmの球状溶融シリカ
・着色剤:カーボンブラック
・シリコーン化合物1:KF-6100(信越化学工業株式会社製、25℃での粘度:40,000mm/s、ポリグリセリン変性)
・シリコーン化合物2:KF-6104(信越化学工業株式会社製、25℃での粘度:4,000mm/s、ポリグリセリン変性)
・シリコーン化合物3:KF-6105(信越化学工業株式会社製、25℃での粘度:4,000mm/s、ポリグリセリン変性及びアルキル変性)
・シリコーン化合物4:KF-6106(信越化学工業株式会社製、25℃での粘度:3,500mm/s、ポリグリセリン変性)
・シリコーン化合物5:BYK-370(ビックケミー・ジャパン株式会社製、40℃での動粘度:約1mm/s、ポリエステル変性)
・シリコーン化合物6:BYK-375(ビックケミー・ジャパン株式会社製、ポリエーテル-ポリエステル変性)
・シリコーン化合物7:BYK-302(ビックケミー・ジャパン株式会社製、ヒドロキシ基未含有)
・シリコーン化合物8:BYK-326(ビックケミー・ジャパン株式会社製、ヒドロキシ基未含有)
・シリコーン化合物9:BYK-333(ビックケミー・ジャパン株式会社製、ヒドロキシ基未含有)
・シリコーン化合物10:BYK-349(ビックケミー・ジャパン株式会社製、ヒドロキシ基未含有)
Epoxy resin 1: Liquid bifunctional epoxy resin with an epoxy equivalent of 160 g/mol obtained by epoxidizing bisphenol F Epoxy resin 2: Trifunctional liquid epoxy resin with an epoxy equivalent of 95 g/mol obtained by epoxidizing aminophenol Epoxy Resin 3: Liquid bifunctional epoxy resin with an epoxy equivalent of 143 g/mol obtained by epoxidizing naphthalene Curing agent 1: Diethyltoluenediamine with an active hydrogen equivalent of 45 g/mol Curing agent 2: Diethyldiamino with an active hydrogen equivalent of 63 g/mol Diphenylmethane Inorganic filler: spherical fused silica with an average particle size of 0.5 μm Coloring agent: carbon black Silicone compound 1: KF-6100 (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25° C.: 40,000 mm 2 /s , modified with polyglycerin)
・Silicone compound 2: KF-6104 (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C.: 4,000 mm 2 / s, modified with polyglycerin)
・Silicone compound 3: KF-6105 (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C.: 4,000 mm 2 / s, polyglycerin-modified and alkyl-modified)
・ Silicone compound 4: KF-6106 (manufactured by Shin-Etsu Chemical Co., Ltd., viscosity at 25 ° C.: 3,500 mm 2 / s, modified with polyglycerin)
・ Silicone compound 5: BYK-370 (manufactured by BYK-Chemie Japan Co., Ltd., kinematic viscosity at 40 ° C.: about 1 mm / s, polyester modification)
・ Silicone compound 6: BYK-375 (manufactured by BYK-Chemie Japan Co., Ltd., polyether-polyester modified)
・ Silicone compound 7: BYK-302 (manufactured by BYK-Chemie Japan Co., Ltd., containing no hydroxy group)
・ Silicone compound 8: BYK-326 (manufactured by BYK-Chemie Japan Co., Ltd., containing no hydroxy group)
・ Silicone compound 9: BYK-333 (manufactured by BYK-Chemie Japan Co., Ltd., containing no hydroxy group)
・ Silicone compound 10: BYK-349 (manufactured by BYK-Chemie Japan Co., Ltd., containing no hydroxy group)
[評価]
 実施例及び比較例で調製したアンダーフィル材を用いて試験用の電子部品装置を作製し、ブリードの評価及び充填速度の評価を行った。結果を表1及び表2に示す。
 試験用の電子部品装置の仕様は、以下のとおりである。試験用の電子部品装置は、アンダーフィル材20mgを、110℃の条件下でディスペンス方式により基板と半導体素子との間隙に塗布した後、150℃で2時間、空気中で硬化することで間隙を封止して作製した。
[evaluation]
Using the underfill materials prepared in Examples and Comparative Examples, electronic component devices for testing were produced, and bleeding evaluation and filling speed evaluation were performed. The results are shown in Tables 1 and 2.
The specifications of the test electronic component device are as follows. In the test electronic component device, 20 mg of the underfill material was applied to the gap between the substrate and the semiconductor element by a dispensing method under the condition of 110 ° C., and then cured in the air at 150 ° C. for 2 hours to fill the gap. It was produced by sealing.
・半導体素子のサイズ:10mm×10mm×0.4mm厚
・基板のサイズ:35mm×35mm×1mm厚
・基板(コア)の種類:E-679FG(G)(昭和電工マテリアルズ株式会社製、商品名)
・ソルダーレジストの種類:SR-7300G(昭和電工マテリアルズ株式会社製、商品名)
・基板と半導体素子とのギャップ:50μm
・ Size of semiconductor element: 10 mm × 10 mm × 0.4 mm thickness ・ Size of substrate: 35 mm × 35 mm × 1 mm thickness ・ Type of substrate (core): E-679FG (G) (manufactured by Showa Denko Materials Co., Ltd., product name )
・ Type of solder resist: SR-7300G (manufactured by Showa Denko Materials Co., Ltd., trade name)
・Gap between substrate and semiconductor element: 50 μm
(1)基板上の滲み出し(ブリード)の長さ(ブリードの評価)
 封止後の電子部品装置の基板におけるフィレットと接する部分近傍をレーザー顕微鏡(株式会社キーエンス製、Digital microscope VHX-500(商品名))で観察し、アンダーフィル材の滲み出し(ブリード)の長さを測定した。滲み出し(ブリード、Bleed)の長さが短いほど、ブリードの発生が抑制されていると判断できる。
 比較例5におけるブリードの長さの測定結果を基準として、実施例及び比較例におけるブリードの長さを求めた。つまり、実施例又は比較例におけるブリード(μm)/比較例5におけるブリード(μm)をそれぞれ求めた。ブリードの判定基準は以下の通りである。
-判定基準-
A:実施例又は比較例におけるブリード(μm)/比較例5におけるブリード(μm)が1.00未満である。
B:実施例又は比較例におけるブリード(μm)/比較例5におけるブリード(μm)が1.00である。
C:実施例又は比較例におけるブリード(μm)/比較例5におけるブリード(μm)が1.00よりも大きい。
(1) Exudation (bleed) length on substrate (bleed evaluation)
The vicinity of the portion in contact with the fillet in the substrate of the electronic component device after sealing is observed with a laser microscope (manufactured by Keyence Corporation, Digital microscope VHX-500 (trade name)), and the length of the underfill material exuding (bleed) was measured. It can be determined that the shorter the length of bleeding (bleed), the more suppressed the occurrence of bleeding.
Based on the measurement result of the bleed length in Comparative Example 5, the bleed length in Examples and Comparative Examples was obtained. That is, the bleeding (μm) in Example or Comparative Example/bleeding (μm) in Comparative Example 5 were obtained. Bleed judgment criteria are as follows.
-criterion-
A: Bleed (μm) in Example or Comparative Example/Bleed (μm) in Comparative Example 5 is less than 1.00.
B: Bleed (μm) in Example or Comparative Example/Bleed (μm) in Comparative Example 5 is 1.00.
C: Bleed (μm) in Example or Comparative Example/Bleed (μm) in Comparative Example 5 is greater than 1.00.
(2)フローテスト(充填速度の評価)
 アンダーフィル材1mgを、110℃の条件下でディスペンス方式により支持部材(ガラス基板)と、電子部品の代用として使用するカバーガラスとの間の空隙に注入し、空隙がアンダーフィル材で完全に充填されるまでの時間(秒)を計測した。
 評価用サンプルの仕様は以下のとおりである。上記のようにして得られた充填速度について、比較例5での値を基準値1.0としたときの各実施例での相対値を表2に示す。
(2) Flow test (evaluation of filling speed)
1 mg of the underfill material is injected into the gap between the support member (glass substrate) and the cover glass used as a substitute for electronic parts by a dispensing method under the condition of 110 ° C., and the gap is completely filled with the underfill material. We measured the time (seconds) until the
The specifications of the evaluation sample are as follows. Table 2 shows the relative values of the filling speed obtained as described above in each example when the value in Comparative Example 5 is taken as a reference value of 1.0.
[評価用サンプルの仕様]
・ガラス基板のサイズ:76mm×26mmマイクロスライドガラス(松浪硝子工業株
式会社製)
・カバーガラスのサイズ:20mm×20mm(松浪硝子工業株式会社製)
・基板と半導体素子との間のギャップ:25μm
[Specifications of evaluation samples]
・ Size of glass substrate: 76 mm × 26 mm micro slide glass (manufactured by Matsunami Glass Industry Co., Ltd.)
・ Size of cover glass: 20 mm × 20 mm (manufactured by Matsunami Glass Industry Co., Ltd.)
・Gap between substrate and semiconductor element: 25 μm
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、ヒドロキシ基を含まないシリコーン化合物(例えば、ポリエーテル変性シリコーン化合物)を用いた比較例1~4では、シリコーン化合物を用いていない比較例5よりもブリードの評価が悪化した。
 一方、表1及び表2に示すように、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方を含むシリコーン化合物を所定量用いた実施例1~11では、シリコーン化合物を用いていない比較例5よりもブリードの評価が良好であった。
As shown in Table 1, in Comparative Examples 1 to 4 using a silicone compound that does not contain a hydroxy group (for example, a polyether-modified silicone compound), the bleeding evaluation was worse than in Comparative Example 5 that did not use a silicone compound. .
On the other hand, as shown in Tables 1 and 2, in Examples 1 to 11 in which a predetermined amount of a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound was used, Comparative Example 5 in which no silicone compound was used Bleed evaluation was better than
 2021年5月12日に出願された日本国特許出願2021-081207号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-081207 filed on May 12, 2021 is incorporated herein by reference in its entirety.
All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.

Claims (7)

  1.  エポキシ樹脂と、硬化剤と、無機充填材と、ポリグリセリン変性シリコーン化合物及びポリエステル変性シリコーン化合物の少なくとも一方を含むシリコーン化合物と、を含むアンダーフィル用樹脂組成物。 An underfill resin composition containing an epoxy resin, a curing agent, an inorganic filler, and a silicone compound containing at least one of a polyglycerin-modified silicone compound and a polyester-modified silicone compound.
  2.  前記シリコーン化合物の含有率は、アンダーフィル用樹脂組成物全量に対して0.0001質量%~1質量%である請求項1に記載のアンダーフィル用樹脂組成物。 The underfill resin composition according to claim 1, wherein the content of the silicone compound is 0.0001% by mass to 1% by mass with respect to the total amount of the underfill resin composition.
  3.  前記シリコーン化合物は、ポリグリセリン変性シリコーン化合物を含む請求項1又は請求項2に記載のアンダーフィル用樹脂組成物。 The underfill resin composition according to claim 1 or 2, wherein the silicone compound contains a polyglycerin-modified silicone compound.
  4.  前記シリコーン化合物がポリエステル変性シリコーン化合物を含む場合、前記ポリエステル変性シリコーン化合物は、ポリエーテル-ポリエステル変性シリコーン化合物を含む請求項1~請求項3のいずれか1項に記載のアンダーフィル用樹脂組成物。 The underfill resin composition according to any one of claims 1 to 3, wherein when the silicone compound contains a polyester-modified silicone compound, the polyester-modified silicone compound contains a polyether-polyester-modified silicone compound.
  5.  前記硬化剤が、アミン系硬化剤を含む請求項1~請求項4のいずれか1項に記載のアンダーフィル用樹脂組成物。 The underfill resin composition according to any one of claims 1 to 4, wherein the curing agent contains an amine-based curing agent.
  6.  回路層を有する基板と、
     前記基板上に配置され、前記回路層と電気的に接続された電子部品と、
     前記基板と前記電子部品との間隙に配置された請求項1~請求項5のいずれか1項に記載のアンダーフィル用樹脂組成物の硬化物と、
    を備える電子部品装置。
    a substrate having a circuit layer;
    an electronic component disposed on the substrate and electrically connected to the circuit layer;
    A cured product of the underfill resin composition according to any one of claims 1 to 5, which is arranged in the gap between the substrate and the electronic component;
    An electronic component device comprising:
  7.  回路層を有する基板と、前記基板上に配置され、前記回路層と電気的に接続された電子部品とを、請求項1~請求項5のいずれか1項に記載のアンダーフィル用樹脂組成物を用いて封止する工程を有する電子部品装置の製造方法。 The underfill resin composition according to any one of claims 1 to 5, wherein a substrate having a circuit layer and an electronic component disposed on the substrate and electrically connected to the circuit layer are combined. A method of manufacturing an electronic component device, comprising a step of sealing using
PCT/JP2022/015660 2021-05-12 2022-03-29 Resin composition for underfill, and electronic component device and production method therefor WO2022239554A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280034304.2A CN117337486A (en) 2021-05-12 2022-03-29 Underfill resin composition, electronic component device, and method for manufacturing electronic component device
JP2023520913A JPWO2022239554A1 (en) 2021-05-12 2022-03-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021081207 2021-05-12
JP2021-081207 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239554A1 true WO2022239554A1 (en) 2022-11-17

Family

ID=84028232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015660 WO2022239554A1 (en) 2021-05-12 2022-03-29 Resin composition for underfill, and electronic component device and production method therefor

Country Status (4)

Country Link
JP (1) JPWO2022239554A1 (en)
CN (1) CN117337486A (en)
TW (1) TW202243913A (en)
WO (1) WO2022239554A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024041A (en) * 2007-07-17 2009-02-05 Sekisui Chem Co Ltd Photosemiconductor encapsulating agent and photosemiconductor device
JP2019135311A (en) * 2019-05-13 2019-08-15 日立化成株式会社 Liquid resin composition for electronic component, and electronic component apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024041A (en) * 2007-07-17 2009-02-05 Sekisui Chem Co Ltd Photosemiconductor encapsulating agent and photosemiconductor device
JP2019135311A (en) * 2019-05-13 2019-08-15 日立化成株式会社 Liquid resin composition for electronic component, and electronic component apparatus

Also Published As

Publication number Publication date
CN117337486A (en) 2024-01-02
JPWO2022239554A1 (en) 2022-11-17
TW202243913A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
TWI383019B (en) A liquid resin composition for sealing an electronic component, and an electronic component device using the same
KR101506769B1 (en) Liquid resin compositions for electronic components and processes for preparing the same, and electronic component devices
JP6656792B2 (en) Liquid resin composition for electronic component and electronic component device
CN108192293B (en) Liquid resin composition for electronic component and electronic component device
JP2022133311A (en) Underfill material, electronic component device and method for producing electronic component device
JP6816426B2 (en) Underfill material and electronic component equipment using it
JP6286959B2 (en) Epoxy resin composition, electronic component device, and method of manufacturing electronic component device
JP6825643B2 (en) Liquid resin composition for electronic parts and electronic parts equipment
JP7216878B2 (en) RESIN COMPOSITION FOR UNDERFILL, ELECTRONIC COMPONENT DEVICE, AND MANUFACTURING METHOD THEREOF
JP7000698B2 (en) Resin composition for underfill, manufacturing method of semiconductor device and semiconductor device
WO2019176859A1 (en) Epoxy resin composition and electronic component device
WO2022239554A1 (en) Resin composition for underfill, and electronic component device and production method therefor
JP7103401B2 (en) Underfill material and electronic component equipment using it
CN116751438A (en) Epoxy resin composition and electronic component device
JP2021009936A (en) Resin composition for underfill, and electronic component device and method for manufacturing the same
JP2021009935A (en) Resin composition for underfill, and electronic component device and method for manufacturing the same
WO2022239553A1 (en) Underfill resin composition, electronic component device, and manufacturing method for same
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2021174939A (en) Resin composition for underfill and production method thereof, method for manufacturing semiconductor device, and semiconductor device
JP7455017B2 (en) Underfill material, electronic component device, and method for manufacturing electronic component device
JP2017028050A (en) Underfill material and electronic component device using the same
JP7404620B2 (en) Liquid resin composition, electronic component device, and manufacturing method thereof
JP2020066697A (en) Liquid resin composition and electronic component device and method for producing the same
JP6686433B2 (en) Underfill resin composition, electronic component device, and method for manufacturing electronic component device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520913

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE