WO2022239527A1 - 電池および電池の製造方法 - Google Patents

電池および電池の製造方法 Download PDF

Info

Publication number
WO2022239527A1
WO2022239527A1 PCT/JP2022/014299 JP2022014299W WO2022239527A1 WO 2022239527 A1 WO2022239527 A1 WO 2022239527A1 JP 2022014299 W JP2022014299 W JP 2022014299W WO 2022239527 A1 WO2022239527 A1 WO 2022239527A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
counter electrode
electrode
battery
battery cells
Prior art date
Application number
PCT/JP2022/014299
Other languages
English (en)
French (fr)
Inventor
和義 本田
英一 古賀
浩一 平野
覚 河瀬
一裕 森岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023520901A priority Critical patent/JPWO2022239527A1/ja
Priority to CN202280032118.5A priority patent/CN117280516A/zh
Priority to EP22807232.8A priority patent/EP4340091A1/en
Publication of WO2022239527A1 publication Critical patent/WO2022239527A1/ja
Priority to US18/499,015 priority patent/US20240063431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery and a method of manufacturing a battery.
  • the present disclosure provides a high-performance battery and a manufacturing method thereof.
  • a battery according to an aspect of the present disclosure has a plurality of battery cells each including an electrode layer, a counter electrode layer, and a solid electrolyte layer positioned between the electrode layer and the counter electrode layer, and the plurality of A power generation element in which battery cells are electrically connected in parallel and stacked, an intermediate layer positioned between two adjacent battery cells, and a first insulating member covering the electrode layer on a first side surface of the power generation element. and a first terminal electrode covering the first side surface and the first insulating member and electrically connected to the counter electrode layer.
  • a method for manufacturing a battery according to an aspect of the present disclosure includes preparing a plurality of battery cells each including an electrode layer, a counter electrode layer, and a solid electrolyte layer positioned between the electrode layer and the counter electrode layer.
  • the plurality of battery cells are arranged in order such that the order of arrangement of the electrode layer, the counter electrode layer, and the solid electrolyte layer is alternated, and an intermediate layer is arranged between two adjacent battery cells.
  • a second step of forming a stacked laminate a third step of covering the electrode layer with an insulating member on one side of the laminate; electrically connecting the one side and the insulating member to the counter electrode layer; and a fourth step of covering with the terminal electrodes.
  • FIG. 1 is a cross-sectional view showing a cross-sectional structure of a battery according to Embodiment 1.
  • FIG. 2 is a top view of the power generation element of the battery according to Embodiment 1.
  • FIG. 3A is a cross-sectional view of an example of a battery cell included in the power generation element according to Embodiment 1.
  • FIG. 3B is a cross-sectional view of an example of a battery cell included in the power generation element according to Embodiment 1.
  • FIG. 3C is a cross-sectional view of an example of a battery cell included in the power generation element according to Embodiment 1.
  • FIG. 4 is a cross-sectional view of the power generation element and the intermediate layer according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a cross-sectional structure of a battery according to Embodiment 1.
  • FIG. 2 is a top view of the power generation element of the battery according to Embodiment 1.
  • FIG. 3A is
  • FIG. 5 is a side view showing the positional relationship between the first side surface of the power generation element according to Embodiment 1 and the insulating layer provided on the first side surface.
  • FIG. 6 is a side view showing the positional relationship between the second side surface of the power generation element according to Embodiment 1 and the insulating layer provided on the second side surface.
  • FIG. 7 is a cross-sectional view showing a cross-sectional structure of a battery according to Embodiment 2.
  • FIG. 8A is a plan view showing an example of an intermediate layer according to Embodiment 2.
  • FIG. 8B is a plan view showing another example of the intermediate layer according to Embodiment 2.
  • FIG. 9 is a cross-sectional view showing an example of a cross-sectional structure of a battery according to Embodiment 3.
  • FIG. 10 is a cross-sectional view showing another example of the cross-sectional configuration of the battery according to Embodiment 3.
  • FIG. 11 is a cross-sectional view showing a cross-sectional configuration of a battery according to Embodiment 4.
  • FIG. 12 is a cross-sectional view showing a cross-sectional structure of a battery according to a modification.
  • FIG. 13 is a flow chart showing an example of a method for manufacturing a battery according to the embodiment or modification.
  • a battery according to an aspect of the present disclosure has a plurality of battery cells each including an electrode layer, a counter electrode layer, and a solid electrolyte layer positioned between the electrode layer and the counter electrode layer, and the plurality of A power generation element in which battery cells are electrically connected in parallel and stacked, an intermediate layer positioned between two adjacent battery cells, and a first insulating member covering the electrode layer on a first side surface of the power generation element. and a first terminal electrode covering the first side surface and the first insulating member and electrically connected to the counter electrode layer.
  • the first insulating member covers the electrode layer on the first side surface, it is possible to suppress the occurrence of a short circuit between the counter electrode layer and the electrode layer via the first terminal electrode. Also, for example, by electrically connecting all the battery cells in parallel, it is possible to suppress overcharge or overdischarge of a specific battery cell due to variations in the capacity of each battery cell. Since the reliability of the battery can be improved in this manner, a high-performance battery can be realized. Further, for example, by arranging the intermediate layer, the intermediate layer can have a predetermined function.
  • the intermediate layer is in contact with the counter electrode layer of each of the two adjacent battery cells, and recedes from the two counter electrode layers with which the intermediate layer is in contact on the first side surface, A portion of the first terminal electrode may be in contact with the main surface of each of the two counter electrode layers with which the intermediate layer is in contact.
  • the intermediate layer is recessed from the two counter electrode layers, so that the ends of the opposing main surfaces of the two counter electrode layers are exposed without being covered by the intermediate layer. Part of the first terminal electrode enters the exposed portion, making it difficult for the first terminal electrode that has entered to detach. Therefore, the reliability of the battery can be improved. Moreover, since the contact area between the first terminal electrode and the counter electrode layer is increased, the connection resistance between the first terminal electrode and the counter electrode layer is reduced. Therefore, the large current characteristics of the battery can be improved. For example, rapid charging of batteries is possible.
  • a gap may be provided between the intermediate layer and the first terminal electrode.
  • the gap is provided, it is possible to reduce the stress when the battery expands and contracts due to charge and discharge, and the impact force applied to the battery at the time of impact. Further, when the gap reaches the outer surface of the battery, the heat dissipation or cooling performance of the battery can be improved by flowing air or a cooling medium in the gap.
  • the intermediate layer is in contact with the electrode layer of each of the two adjacent battery cells, and recedes from the two electrode layers with which the intermediate layer is in contact on the first side surface, A portion of the first insulating member may be in contact with the main surface of each of the two electrode layers with which the intermediate layer is in contact.
  • the intermediate layer is set back from the two electrode layers, the ends of the main surfaces facing each other of the two electrode layers are exposed without being covered by the intermediate layer. Part of the first insulating member enters the exposed portion, making it difficult for the first insulating member that has entered to come off. Therefore, the reliability of the battery can be improved.
  • a gap may be provided between the intermediate layer and the first insulating member.
  • the gap is provided, it is possible to reduce the stress when the battery expands and contracts due to charge and discharge, and the impact force applied to the battery at the time of impact. Further, when the gap reaches the outer surface of the battery, the heat dissipation or cooling performance of the battery can be improved by flowing air or a cooling medium in the gap.
  • planar view shape of the intermediate layer may be a stripe shape or a lattice shape.
  • the gap can be used to reduce the stress during expansion and contraction of the battery due to charge and discharge, and the impact force applied to the battery during impact. be able to. Further, when the gap reaches the outer surface of the battery, the heat dissipation or cooling performance of the battery can be improved by flowing air or a cooling medium in the gap.
  • the intermediate layer may have adhesiveness.
  • the physical connection between two adjacent battery cells can be firmly performed, so the reliability of the battery can be improved.
  • the intermediate layer may have conductivity.
  • the electrical connection between the two adjacent battery cells can be firmly established, so the increase in connection resistance can be suppressed, and the heat generation of the battery can be suppressed.
  • the first insulating member may cover at least part of the solid electrolyte layer on the first side surface.
  • the electrode layer is not covered with the first insulating member even when there is variation in the size of the first insulating member. Exposure can be suppressed. Further, since the solid electrolyte layer is generally made of a powdery material, its end face has very fine unevenness. Therefore, the adhesion strength of the first insulating member is improved, and the insulation reliability is improved. In this way, the reliability of the battery can be further enhanced.
  • the first insulating member may cover from the electrode layer to a part of the counter electrode layer along the stacking direction of the power generating element on the first side surface.
  • the counter electrode active material layer is also generally formed of a powdery material, very fine irregularities are present on the end surface thereof. Therefore, the adhesion strength of the first insulating member is further improved, and the insulation reliability is improved. Therefore, the reliability of the battery can be further improved.
  • the first insulating member covers the electrode layer of each of the plurality of battery cells on the first side surface, and the first terminal electrode covers the counter electrode layer of each of the plurality of battery cells. They may be electrically connected.
  • the first terminal electrode can be used for parallel connection of multiple battery cells. Since the first terminal electrode can be brought into close contact with the first side surface and the first insulating member, the volume of the portion involved in parallel connection can be reduced. Therefore, the energy density of the battery can be increased.
  • the first insulating member may have a stripe shape in plan view of the first side surface.
  • the end face of the electrode layer exposed in stripes on the first side surface can be covered with the first insulation member in stripes.
  • a second insulating member covering the counter electrode layer, covering the second side surface and the second insulating member, and the electrode layer and a second terminal electrode electrically connected to.
  • the second insulating member covers the counter electrode layer on the second side surface, it is possible to suppress the occurrence of a short circuit between the electrode layer and the counter electrode layer via the second terminal electrode. Since the reliability of the battery can be improved in this manner, a high-performance battery can be realized.
  • the intermediate layer is in contact with the counter electrode layer of each of the two adjacent battery cells or the electrode layer of each of the two adjacent battery cells, and on the second side, the The intermediate layer may recede from the two counter electrode layers with which the intermediate layer is in contact or from the two electrode layers with which the intermediate layer is in contact.
  • the intermediate layer recedes at both ends thereof, so that the ends of the facing main surfaces of the two electrode layers or the two counter electrode layers are exposed without being covered by the intermediate layer.
  • Part of the second terminal electrode or the second insulating member enters the exposed portion, making it difficult for the member that has entered to come off. Therefore, the reliability of the battery can be improved.
  • each of the electrode layer and the counter electrode layer may have a current collector.
  • each of the plurality of battery cells can have the same configuration as each other. Therefore, it is possible to suppress the occurrence of variations in the capacity of each battery cell, and improve the accuracy of the battery capacity.
  • only one of the electrode layer and the counter electrode layer may have a current collector.
  • the number of current collectors can be reduced compared to the case where each battery cell has a current collector. Therefore, the volume of the battery can be reduced, and the energy density can be increased.
  • the thickness of the current collector may be 20 ⁇ m or less.
  • the first insulating member may contain resin.
  • the battery according to one aspect of the present disclosure may further include a sealing member that exposes at least part of the first terminal electrode and seals the power generation element.
  • the power generation element can be protected from outside air and water, so the reliability of the battery can be further improved.
  • a method for manufacturing a battery prepares a plurality of battery cells each including an electrode layer, a counter electrode layer, and a solid electrolyte layer positioned between the electrode layer and the counter electrode layer. and the plurality of battery cells while arranging an intermediate layer between two adjacent battery cells so that the order of arrangement of the electrode layer, the counter electrode layer and the solid electrolyte layer is alternately changed.
  • a second step of forming a laminate in which the are laminated in order a third step of covering the electrode layer with an insulating member on one side of the laminate; and electrically connecting the one side and the insulating member to the counter electrode layer and a fourth step of covering with a terminal electrode connected to the
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the x-axis and the y-axis respectively correspond to the directions parallel to the first side of the rectangle and the second side orthogonal to the first side when the power generating element of the battery has a rectangular plan view shape.
  • the z-axis coincides with the stacking direction of the plurality of battery cells included in the power generation element.
  • the "stacking direction” corresponds to the direction normal to the main surfaces of the current collector and the active material layer.
  • planar view refers to a view from a direction perpendicular to the main surface of the power generation element, unless otherwise specified. It should be noted that when “plan view of a certain surface” is described, such as “plan view of the first side surface”, it means when the “certain surface” is viewed from the front.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the stacking structure. It is used as a term defined by a relative positional relationship. Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between them, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other. In the following description, the negative side of the z-axis is called “lower” or “lower”, and the positive side of the z-axis is called “upper” or “upper”.
  • ordinal numbers such as “first” and “second” do not mean the number or order of constituent elements unless otherwise specified. It is used for the purpose of distinguishing elements.
  • Embodiment 1 The configuration of the battery according to Embodiment 1 will be described below.
  • FIG. 1 is a cross-sectional view showing the cross-sectional structure of a battery 1 according to this embodiment.
  • battery 1 includes power generating element 10 , electrode insulating layer 21 , counter electrode insulating layer 22 , counter electrode terminal 31 , electrode terminal 32 , and intermediate layer 40 .
  • the battery 1 is, for example, an all-solid battery.
  • FIG. 2 is a top view of power generation element 10 of battery 1 according to the present embodiment. 1 shows a cross section taken along line II of FIG.
  • the plan view shape of the power generation element 10 is, for example, rectangular as shown in FIG. That is, the shape of the power generation element 10 is a flat rectangular parallelepiped.
  • flat means that the thickness (that is, the length in the z-axis direction) is shorter than each side (that is, each length in the x-axis direction and the y-axis direction) or the maximum width of the main surface.
  • the plan view shape of the power generation element 10 may be a square, a hexagon, an octagon, or another polygon, or may be a circle, an ellipse, or the like. Note that in cross-sectional views such as FIG. 1 , the thickness of each layer is exaggerated in order to facilitate understanding of the layer structure of the power generation element 10 .
  • the power generation element 10 includes four side surfaces 11, 12, 13 and 14 and two main surfaces 15 and 16, as shown in FIGS. In this embodiment, both main surfaces 15 and 16 are flat surfaces.
  • the side 11 is an example of the first side.
  • Side 12 is an example of a second side.
  • Sides 11 and 12 face away from each other and are parallel to each other.
  • Sides 11 and 12 are sides including the short sides of main surface 15 respectively.
  • the side surfaces 13 and 14 face each other and are parallel to each other. Sides 13 and 14 are sides including the long sides of main surface 15 respectively.
  • the main surfaces 15 and 16 face each other and are parallel to each other.
  • the main surface 15 is the top surface of the power generation element 10 .
  • the main surface 16 is the bottom surface of the power generation element 10 .
  • the power generation element 10 has multiple battery cells 100 .
  • the battery cell 100 is a battery with a minimum configuration and is also called a unit cell.
  • a plurality of battery cells 100 are electrically connected in parallel and stacked. In this embodiment, all the battery cells 100 included in the power generation element 10 are electrically connected in parallel.
  • the number of battery cells 100 included in the power generation element 10 is six, but the number is not limited to this.
  • the number of battery cells 100 included in the power generation element 10 may be an even number such as two or four, or an odd number such as three or five.
  • Each of the plurality of battery cells 100 includes an electrode layer 110, a counter electrode layer 120, and a solid electrolyte layer 130.
  • the electrode layer 110 has an electrode current collector 111 and an electrode active material layer 112 .
  • the counter electrode layer 120 has a counter electrode current collector 121 and a counter electrode active material layer 122 .
  • an electrode current collector 111, an electrode active material layer 112, a solid electrolyte layer 130, a counter electrode active material layer 122 and a counter electrode current collector 121 are laminated in this order along the z-axis. .
  • the electrode layer 110 is one of the positive electrode layer and the negative electrode layer of the battery cell 100 .
  • the counter electrode layer 120 is the other of the positive electrode layer and the negative electrode layer of the battery cell 100 .
  • the electrode layer 110 is a negative electrode layer and the counter electrode layer 120 is a positive electrode layer.
  • the configurations of the plurality of battery cells 100 are substantially the same. In two battery cells 100 adjacent to each other, the order of arrangement of each layer constituting the battery cell 100 is reversed. That is, the plurality of battery cells 100 are stacked side by side along the z-axis while the order of the layers constituting the battery cells 100 alternates. A plurality of battery cells 100 are stacked with an intermediate layer 40 sandwiched between two adjacent battery cells 100 . In the present embodiment, since the number of battery cells 100 is an even number, the bottom layer and the top layer of power generation element 10 are current collectors of the same polarity.
  • FIG. 3A is a cross-sectional view of battery cell 100 included in power generation element 10 according to the present embodiment.
  • the electrode current collector 111 and the counter electrode current collector 121 are conductive foil-shaped, plate-shaped, or mesh-shaped members, respectively. Each of the electrode current collector 111 and the counter electrode current collector 121 may be, for example, a conductive thin film. As materials for forming the electrode current collector 111 and the counter electrode current collector 121, for example, metals such as stainless steel (SUS), aluminum (Al), copper (Cu), and nickel (Ni) can be used. The electrode current collector 111 and the counter electrode current collector 121 may be formed using different materials.
  • each of the electrode current collector 111 and the counter electrode current collector 121 is, for example, 5 ⁇ m or more and 100 ⁇ m or less, but is not limited to this.
  • the thickness of each of electrode current collector 111 and counter electrode current collector 121 may be 20 ⁇ m or less.
  • the thickness of the current collector is kept small even if the number of parallel connections is increased, contributing to an improvement in energy density. .
  • the number of current collectors also increases. Therefore, reducing the thickness of the current collectors is useful for suppressing an increase in the thickness of the power generation element 10 .
  • An electrode active material layer 112 is in contact with the main surface of the electrode current collector 111 .
  • the electrode current collector 111 may include a current collector layer, which is a layer containing a conductive material and provided in a portion in contact with the electrode active material layer 112 .
  • a counter electrode active material layer 122 is in contact with the main surface of the counter electrode current collector 121 .
  • the counter electrode current collector 121 may include a current collector layer, which is a layer containing a conductive material and provided in a portion in contact with the counter electrode active material layer 122 .
  • the electrode active material layer 112 is arranged on the main surface of the electrode current collector 111 on the counter electrode layer 120 side.
  • the electrode active material layer 112 contains, for example, a negative electrode active material as an electrode material.
  • the electrode active material layer 112 is arranged to face the counter electrode active material layer 122 .
  • a negative electrode active material such as graphite or metallic lithium can be used.
  • Various materials capable of extracting and inserting ions such as lithium (Li) or magnesium (Mg) may be used as materials of the negative electrode active material.
  • a solid electrolyte such as an inorganic solid electrolyte may be used.
  • an inorganic solid electrolyte for example, a sulfide solid electrolyte or an oxide solid electrolyte can be used.
  • a sulfide solid electrolyte for example, a mixture of lithium sulfide (Li 2 S) and phosphorus pentasulfide (P 2 S 5 ) can be used.
  • a conductive material such as acetylene black or a binding binder such as polyvinylidene fluoride may be used.
  • the electrode active material layer 112 is produced by coating the main surface of the electrode current collector 111 with a paste-like paint in which the material contained in the electrode active material layer 112 is kneaded together with a solvent and drying it.
  • the electrode layer 110 also referred to as an electrode plate
  • the thickness of the electrode active material layer 112 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the counter electrode active material layer 122 is arranged on the main surface of the counter electrode current collector 121 on the electrode layer 110 side.
  • the counter electrode active material layer 122 is a layer containing a positive electrode material such as an active material.
  • the positive electrode material is the material that constitutes the counter electrode of the negative electrode material.
  • the counter electrode active material layer 122 contains, for example, a positive electrode active material.
  • Examples of the positive electrode active material contained in the counter electrode active material layer 122 include lithium cobaltate composite oxide (LCO), lithium nickelate composite oxide (LNO), lithium manganate composite oxide (LMO), and lithium-manganese.
  • LCO lithium cobaltate composite oxide
  • LNO lithium nickelate composite oxide
  • LMO lithium manganate composite oxide
  • LNMCO lithium-manganese
  • LMNO nickel composite oxide
  • LMCO lithium-manganese-cobalt composite oxide
  • LNCO lithium-nickel-cobalt composite oxide
  • LNMCO lithium-nickel-manganese-cobalt composite oxide
  • Various materials capable of withdrawing and inserting ions such as Li or Mg can be used as the material of the positive electrode active material.
  • a solid electrolyte such as an inorganic solid electrolyte may be used.
  • a sulfide solid electrolyte, an oxide solid electrolyte, or the like can be used.
  • a sulfide solid electrolyte for example, a mixture of Li2S and P2S5 can be used.
  • the surface of the positive electrode active material may be coated with a solid electrolyte.
  • a conductive material such as acetylene black or a binding binder such as polyvinylidene fluoride may be used.
  • the counter electrode active material layer 122 is produced by applying a paste-like paint in which the material contained in the counter electrode active material layer 122 is kneaded together with a solvent onto the main surface of the counter electrode current collector 121 and drying it.
  • the counter electrode layer 120 also referred to as a counter electrode plate
  • the thickness of the counter electrode active material layer 122 is, for example, 5 ⁇ m or more and 300 ⁇ m or less, but is not limited thereto.
  • the solid electrolyte layer 130 is arranged between the electrode active material layer 112 and the counter electrode active material layer 122 . Solid electrolyte layer 130 is in contact with each of electrode active material layer 112 and counter electrode active material layer 122 .
  • Solid electrolyte layer 130 is a layer containing an electrolyte material. As the electrolyte material, generally known battery electrolytes can be used. The thickness of solid electrolyte layer 130 may be 5 ⁇ m or more and 300 ⁇ m or less, or may be 5 ⁇ m or more and 100 ⁇ m or less.
  • Solid electrolyte layer 130 contains a solid electrolyte.
  • a solid electrolyte such as an inorganic solid electrolyte can be used.
  • an inorganic solid electrolyte a sulfide solid electrolyte, an oxide solid electrolyte, or the like can be used.
  • a sulfide solid electrolyte for example, a mixture of Li2S and P2S5 can be used.
  • the solid electrolyte layer 130 may contain a binding binder such as polyvinylidene fluoride.
  • the electrode active material layer 112, the counter electrode active material layer 122, and the solid electrolyte layer 130 are maintained in the form of parallel plates. As a result, it is possible to suppress the occurrence of cracks or collapse due to bending. Note that the electrode active material layer 112, the counter electrode active material layer 122, and the solid electrolyte layer 130 may be combined and smoothly curved.
  • the end surface of the counter electrode current collector 121 on the side surface 11 side and the end surface of the electrode layer 110 on the side surface 11 side coincide when viewed from the z-axis direction.
  • the end surface of the counter electrode current collector 121 on the side surface 11 side and the end surface of the electrode current collector 111 on the side surface 11 side match when viewed from the z-axis direction. The same applies to the end surfaces of the counter electrode current collector 121 and the electrode current collector 111 on the side surface 12 side.
  • electrode current collector 111 electrode active material layer 112, solid electrolyte layer 130, counter electrode active material layer 122, and counter electrode current collector 121 have the same shape and size. , the contours of each match. That is, the shape of the battery cell 100 is a flat rectangular parallelepiped shape.
  • the battery cell 100 includes two current collectors, the electrode current collector 111 and the counter electrode current collector 121, one of the current collectors may not be included. That is, the battery cell 100 may have only one current collector.
  • the battery cell 100 including two current collectors as shown in FIG. 3A may be referred to as a battery cell 100A in order to distinguish it from a battery cell having one current collector.
  • a battery cell 100B shown in FIG. 3B has a configuration in which the counter electrode current collector 121 is removed from the battery cell 100A shown in FIG. 3A.
  • the counter electrode layer 120B of the battery cell 100B consists of the counter electrode active material layer 122 only.
  • a battery cell 100C shown in FIG. 3C has a configuration in which the electrode current collector 111 is removed from the battery cell 100A shown in FIG. 3A. That is, the electrode layer 110C of the battery cell 100C consists of the electrode active material layer 112 only.
  • FIG. 3B or FIG. 3C A stacking example using the battery cells shown in FIG. 3B or FIG. 3C will be described in another embodiment.
  • the power generation element 10 As described above, in the power generation element 10 according to the present embodiment, all the battery cells 100 are connected in parallel, and no battery cells connected in series are included. Therefore, when the battery 1 is charged and discharged, non-uniform charging and discharging due to variations in the capacity of the battery cells 100 are less likely to occur. Therefore, the possibility that some of the plurality of battery cells 100 are overcharged or overdischarged can be greatly reduced, and the reliability of the battery 1 can be improved.
  • the intermediate layer 40 is positioned between two adjacent battery cells 100 .
  • the intermediate layer 40 is provided to form a gap of a predetermined width between two adjacent battery cells 100 .
  • FIG. 4 is a cross-sectional view showing the power generation element 10 and the intermediate layer 40 according to this embodiment.
  • battery 1 comprises multiple intermediate layers 40 .
  • the plurality of intermediate layers 40 are provided one layer each between two adjacent battery cells 100 .
  • the multiple intermediate layers 40 include an intermediate layer 41 in contact with the electrode layer 110 of each battery cell 100 and an intermediate layer 42 in contact with the counter electrode layer 120 of each battery cell 100 .
  • the intermediate layer 41 is in contact with the electrode layer 110 of each of two adjacent battery cells 100 .
  • the intermediate layer 41 is receded from the two electrode layers 110 with which the intermediate layer 41 is in contact.
  • the end surface 41a of the intermediate layer 41 on the side surface 11 side is located inside the power generation element 10 relative to the end surface 111a of the electrode current collector 111 on the side surface 11 side.
  • the term “inside” refers to a direction toward the center of the power generation element 10 in a plan view, and corresponds to, for example, the positive direction of the x-axis when the side surface 11 is used as a reference.
  • the intermediate layer 41 is recessed, the edge of the main surface of the electrode layer 110 on the side surface 11 side is exposed without being covered by the intermediate layer 41 . That is, a gap is formed at the ends of the two electrode layers 110 facing each other on the side surface 11 side.
  • the intermediate layer 41 is also receded from the two electrode layers 110 facing each other on the side surface 12 .
  • the end surface 41 b of the intermediate layer 41 on the side surface 12 side is located inside the power generating element 10 relative to the end surface 111 b of the electrode current collector 111 on the side surface 12 side.
  • the end portion of the main surface of the electrode layer 110 on the side surface 12 side is exposed without being covered with the intermediate layer 41 .
  • gaps are also formed at the ends of the two electrode layers 110 facing each other on the side surface 12 side.
  • the length of intermediate layer 41 in the x-axis direction is shorter than the length of electrode current collector 111 in the x-axis direction, that is, the distance between end surfaces 111a and 111b.
  • the intermediate layer 42 is in contact with the counter electrode layer 120 of each of the two adjacent battery cells 100 .
  • the intermediate layer 42 is recessed from the two counter electrode layers 120 with which the intermediate layer 42 contacts.
  • the end surface 42a of the intermediate layer 42 on the side surface 11 side is located inside the power generation element 10 relative to the end surface 121a of the counter electrode current collector 121 on the side surface 12 side. .
  • the recessed intermediate layer 42 exposes the end of the main surface of the counter electrode layer 120 on the side of the side surface 11 without being covered by the intermediate layer 42 . That is, a gap is formed at the ends of the two counter electrode layers 120 facing each other on the side of the side surface 11 .
  • the intermediate layer 42 is also receded from the two opposing counter electrode layers 120 on the side surface 12 as well.
  • the end surface 42 b of the intermediate layer 42 on the side surface 12 side is located inside the power generation element 10 relative to the end surface 121 b of the counter electrode current collector 121 on the side surface 12 side.
  • the end portion of the main surface of the counter electrode layer 120 on the side surface 12 side is exposed without being covered with the intermediate layer 42 .
  • gaps are also formed at the ends of the two counter electrode layers 120 facing each other on the side surface 12 side.
  • the length of intermediate layer 42 in the x-axis direction is shorter than the length of counter electrode current collector 121 in the x-axis direction, that is, the distance between end surfaces 121a and 121b.
  • intermediate layers 41 and 42 will be described as the intermediate layer 40 when it is not necessary to distinguish between the intermediate layers 41 and 42, such as in the description of matters common to the intermediate layers 41 and 42.
  • the intermediate layer 40 has adhesiveness, for example. Further, the intermediate layer 40 has conductivity. Specifically, the intermediate layer 40 is formed using a conductive adhesive.
  • the thickness of the intermediate layer 40 is, for example, shorter than the thickness of both the electrode current collector 111 and the counter electrode current collector 121 . 1 and 4, the thickness of the intermediate layer 40 is exaggerated in order to make the gaps between the battery cells 100 formed by the intermediate layer 40 easier to understand.
  • the thickness of the intermediate layer 40 is several micrometers or more and several tens of micrometers or less.
  • the intermediate layer 40 may be thicker than at least one of the electrode current collector 111 and the counter electrode current collector 121 as illustrated.
  • the amount of retreat of the intermediate layer 40 is, for example, 0.1 mm or more, but is not particularly limited. In addition, the retreat amount is represented by, for example, the distance along the x-axis direction between the end surface 41a and the end surface 111a.
  • the intermediate layer 40 may be recessed on at least one of the side surfaces 13 and 14 as well.
  • the intermediate layer 40 may be smaller than the battery cell 100 in plan view, and the entire intermediate layer 40 may be arranged inside the outer shape of the battery cell 100 .
  • the electrode insulating layer 21 is an example of a first insulating member, and covers the electrode layer 110 on the side surface 11 as shown in FIG. Specifically, the electrode insulating layer 21 completely covers the electrode current collector 111 and the electrode active material layer 112 on the side surface 11 .
  • FIG. 5 is a side view showing the positional relationship between the side surface 11 of the power generating element 10 and the electrode insulating layer 21 provided on the side surface 11 according to this embodiment.
  • the end face of each layer appearing on the side surface 11 is shaded in the same manner as the layers shown in the cross section of FIG. 1 .
  • the intermediate layer 40 is not shaded because it is located in the back. These also apply to FIG. 6, which will be described later.
  • FIG. 5 is a side view of the power generation element 10, and is a plan view of the side surface 11 viewed from the front.
  • (b) of FIG. 5 shows the side surface 11 of (a) of FIG. 5 and the electrode insulating layer 21 provided on the side surface 11 . That is, FIG. 5B is a side view of the battery 1 of FIG. 1 viewed from the negative side of the x-axis through the counter electrode terminal 31 .
  • the electrode insulating layer 21 covers the electrode layer 110 of each of the plurality of battery cells 100 on the side surface 11 .
  • the electrode insulating layer 21 does not cover at least part of the counter electrode layer 120 of each of the plurality of battery cells 100 . Therefore, the electrode insulating layer 21 has a striped shape in plan view of the side surface 11 .
  • the electrode insulating layer 21 continuously covers the electrode layers 110 of the two adjacent battery cells 100 .
  • the electrode insulating layer 21 extends from at least a portion of one solid electrolyte layer 130 of two adjacent battery cells 100 to at least a portion of the other solid electrolyte layer 130 of two adjacent battery cells 100. are continuously covered.
  • the electrode insulating layer 21 also covers the end surface of the intermediate layer 41 on the side surface 11 side.
  • the electrode insulating layer 21 covers at least part of the solid electrolyte layer 130 on the side surface 11 . Specifically, when the side surface 11 is viewed in plan, the contour of the electrode insulating layer 21 overlaps the solid electrolyte layer 130 . As a result, even if the width (the length in the z-axis direction) varies due to manufacturing variations in the electrode insulating layer 21, the possibility of exposing the electrode layer 110 is reduced. Therefore, short-circuiting between the electrode layer 110 and the counter electrode layer 120 via the counter electrode terminal 31 formed to cover the electrode insulating layer 21 can be suppressed. Further, the end surface of the solid electrolyte layer 130 made of a powdery material has very fine unevenness. For this reason, the electrode insulating layer 21 enters into the irregularities, thereby improving the adhesion strength of the electrode insulating layer 21 and improving the insulation reliability.
  • electrode insulating layer 21 may cover all of solid electrolyte layer 130 on side surface 11 . Specifically, the contour of the electrode insulating layer 21 may overlap the boundary between the solid electrolyte layer 130 and the counter electrode active material layer 122 . It should be noted that it is not essential that the electrode insulating layer 21 partially cover the solid electrolyte layer 130 . For example, the contour of the electrode insulating layer 21 may overlap the boundary between the solid electrolyte layer 130 and the electrode active material layer 112 .
  • the extension 21a which is a part of the electrode insulating layer 21, enters the gap formed by the recession of the intermediate layer 41. As shown in FIG. The extending portion 21a is in contact with the main surfaces of the two electrode current collectors 111 facing each other, and the adhesion of the electrode insulating layer 21 is improved. In other words, since the electrode insulating layer 21 is less likely to come off, the reliability of the battery can be improved.
  • a gap 51 is provided between the extension portion 21a and the intermediate layer 41.
  • the void 51 is, for example, a closed space. Since the gap 51 is provided, the stress when the battery 1 expands and contracts due to charge/discharge and the impact force applied to the battery 1 at the time of impact can be reduced. Moreover, the void 51 may reach the outer surface of the battery 1 . In this case, the heat dissipation or cooling performance of battery 1 can be improved by causing air or a cooling medium to flow in void 51 .
  • gap 51 is not an essential component of the battery 1 and may not be provided. That is, the extension portion 21a and the intermediate layer 41 may be in close contact with each other.
  • the electrode insulating layer 21 is provided separately for each electrode layer 110 in FIG. 5(b), the present invention is not limited to this.
  • the electrode insulating layer 21 may be provided along the z-axis direction at the end of the side surface 11 in the y-axis direction, in addition to the stripe-shaped portion.
  • the shape of the electrode insulating layer 21 may be a ladder shape in a plan view of the side surface 11 .
  • the electrode insulating layer 21 may partially cover the counter electrode current collector 121 .
  • the electrode current collectors 111 are respectively the uppermost layer and the lowermost layer.
  • the electrode insulating layer 21 is the main layer of the electrode current collector 111 positioned on each of the uppermost and lowermost layers. It covers part of the surface.
  • the electrode insulating layer 21 is strong against an external force in the z-axis direction, and detachment is suppressed.
  • the counter electrode terminal 31 wraps around the main surface 15 or 16 of the power generation element 10, it can be prevented from coming into contact with the electrode current collector 111 and causing a short circuit.
  • the reliability of battery 1 can be enhanced.
  • the counter electrode insulating layer 22 is an example of a second insulating member, and covers the counter electrode layer 120 on the side surface 12 as shown in FIG. Specifically, counter electrode insulating layer 22 completely covers counter electrode current collector 121 and counter electrode active material layer 122 on side surface 12 .
  • FIG. 6 is a side view showing the positional relationship between the side surface 12 of the power generation element 10 and the counter electrode insulating layer 22 provided on the side surface 12 according to the present embodiment.
  • FIG. 6(a) is a side view of the power generation element 10, and is a plan view of the side 12 viewed from the front.
  • (b) of FIG. 6 shows the side surface 12 of (a) of FIG. 6 and the counter electrode insulating layer 22 provided on the side surface 12 .
  • FIG. 6B is a side view of the battery 1 of FIG. 1 viewed from the positive side of the x-axis with the electrode terminal 32 being seen through.
  • the counter electrode insulating layer 22 covers the counter electrode layer 120 of each of the plurality of battery cells 100 on the side surface 12 .
  • the counter electrode insulating layer 22 does not cover at least part of each electrode layer 110 of the plurality of battery cells 100 . Therefore, the counter electrode insulating layer 22 has a striped shape in plan view of the side surface 12 .
  • the counter electrode insulating layer 22 continuously covers the counter electrode layers 120 of the two adjacent battery cells 100 .
  • the counter electrode insulating layer 22 extends from at least a portion of one solid electrolyte layer 130 of two adjacent battery cells 100 to at least a portion of the other solid electrolyte layer 130 of two adjacent battery cells 100. are continuously covered. That is, the counter electrode insulating layer 22 covers the end surface of the intermediate layer 42 on the side surface 12 side.
  • the counter electrode insulating layer 22 covers at least part of the solid electrolyte layer 130 on the side surface 12 .
  • the outline of the counter electrode insulating layer 22 overlaps the solid electrolyte layer 130 when the side surface 12 is viewed in plan.
  • the width the length in the z-axis direction
  • the possibility of exposing the counter electrode layer 120 is reduced. Therefore, short circuit between the counter electrode layer 120 and the electrode layer 110 via the electrode terminal 32 formed to cover the counter electrode insulating layer 22 can be suppressed.
  • the counter electrode insulating layer 22 enters the unevenness of the end surface of the solid electrolyte layer 130, the adhesion strength of the counter electrode insulating layer 22 is improved, and the insulation reliability is improved.
  • the counter electrode insulating layer 22 may cover the entire solid electrolyte layer 130 on the side surface 12 .
  • the contour of the counter electrode insulating layer 22 may overlap the boundary between the solid electrolyte layer 130 and the electrode active material layer 112 .
  • the contour of the counter electrode insulating layer 22 may overlap the boundary between the solid electrolyte layer 130 and the counter electrode active material layer 122 .
  • the extended portion 22a which is part of the counter electrode insulating layer 22, enters the gap formed by the recession of the intermediate layer .
  • the extending portion 22a is in contact with the main surfaces of the two counter electrode current collectors 121 facing each other, and the adhesion of the counter electrode insulating layer 22 is improved. In other words, since the counter electrode insulating layer 22 is less likely to detach, the reliability of the battery can be improved.
  • a gap 52 is provided between the extension portion 22a and the intermediate layer 42.
  • the void 52 is, for example, a closed space.
  • the void 52 may reach the outer surface of the battery 1 .
  • gap 52 is not an essential component of the battery 1 and may not be provided. That is, the extension portion 22a and the intermediate layer 42 may be in close contact with each other.
  • the counter electrode insulating layer 22 is provided separately for each counter electrode layer 120 in FIG. 6(b), the present invention is not limited to this.
  • the counter electrode insulating layer 22 may be provided along the z-axis direction at the end of the side surface 12 in the y-axis direction, in addition to the stripe-shaped portion.
  • the shape of the counter electrode insulating layer 22 may be a ladder shape in a plan view of the side surface 12 .
  • the counter electrode insulating layer 22 may partially cover the electrode current collector 111 .
  • the electrode insulating layer 21 and the counter electrode insulating layer 22 are each formed using an electrically insulating insulating material.
  • the electrode insulating layer 21 and the counter electrode insulating layer 22 each contain resin.
  • the resin is, for example, an epoxy resin, but is not limited to this.
  • An inorganic material may be used as the insulating material. Usable insulating materials are selected based on various properties such as flexibility, gas barrier properties, impact resistance, and heat resistance.
  • the electrode insulating layer 21 and the counter electrode insulating layer 22 are formed using the same material, but may be formed using different materials.
  • the counter electrode terminal 31 is an example of a first terminal electrode, which covers the side surface 11 and the electrode insulating layer 21 and is electrically connected to the counter electrode layer 120 as shown in FIG. Specifically, the counter electrode terminal 31 covers the electrode insulating layer 21 and the portion of the side surface 11 that is not covered with the electrode insulating layer 21 .
  • the end surfaces of the counter electrode current collector 121 and the counter electrode active material layer 122 are exposed on the portion of the side surface 11 not covered with the electrode insulating layer 21 . Therefore, the counter electrode terminal 31 is in contact with the end surfaces of the counter electrode current collector 121 and the counter electrode active material layer 122 and is electrically connected to the counter electrode layer 120 . Since the counter electrode active material layer 122 is made of a powdery material, it has very fine irregularities like the solid electrolyte layer 130 . By inserting the counter electrode terminal 31 into the unevenness of the end surface of the counter electrode active material layer 122, the adhesion strength of the counter electrode terminal 31 is improved, and the reliability of electrical connection is improved.
  • the extending portion 31a which is a part of the counter electrode terminal 31, enters the gap formed by the recession of the intermediate layer 42. Since the extending portion 31a is in contact with the main surfaces of the two counter electrode current collectors 121 facing each other, the adhesion of the counter electrode terminal 31 is improved. In other words, since the counter electrode terminal 31 becomes difficult to detach, the reliability of the battery can be improved.
  • the contact area between the counter electrode terminal 31 and each of the two counter electrode current collectors 121 is increased. Therefore, the connection resistance between the counter electrode terminal 31 and the counter electrode current collector 121 is reduced, so that the large current characteristics of the battery 1 can be improved. For example, rapid charging of the battery 1 is possible.
  • a gap 53 is provided between the extension portion 31a and the intermediate layer 42.
  • the void 53 is, for example, a closed space.
  • the void 53 may reach the outer surface of the battery 1 .
  • gap 53 is not an essential component of the battery 1 and may not be provided. That is, the extension portion 31a and the intermediate layer 42 may be in close contact with each other.
  • the counter electrode terminal 31 is electrically connected to the counter electrode layer 120 of each of the plurality of battery cells 100 .
  • the counter electrode terminal 31 has a part of the function of electrically connecting the battery cells 100 in parallel.
  • the counter electrode terminal 31 collectively covers substantially the entire side surface 11 .
  • the counter electrode terminal 31 functions as the positive electrode of the battery 1 .
  • the electrode terminal 32 is an example of a second terminal electrode, which covers the side surface 12 and the counter electrode insulating layer 22 and is electrically connected to the electrode layer 110 as shown in FIG. Specifically, the electrode terminal 32 covers the counter electrode insulating layer 22 and the portion of the side surface 12 that is not covered with the counter electrode insulating layer 22 .
  • electrode terminal 32 is in contact with the end surfaces of electrode current collector 111 and electrode active material layer 112 and is electrically connected to electrode layer 110 . Since the electrode active material layer 112 is made of a powdery material, it has very fine irregularities like the solid electrolyte layer 130 . Since the electrode terminal 32 enters the unevenness of the end surface of the electrode active material layer 112, the adhesion strength of the electrode terminal 32 is improved, and the reliability of electrical connection is improved.
  • the extending portion 32a which is a part of the electrode terminal 32, enters the gap formed by the recession of the intermediate layer 41. Since the extending portion 32a is in contact with the main surfaces of the two electrode current collectors 111 facing each other, the adhesion of the electrode terminal 32 is improved. In other words, since the electrode terminal 32 is less likely to come off, the reliability of the battery can be improved.
  • the contact area between the electrode terminal 32 and each of the two electrode current collectors 111 is increased. Therefore, the connection resistance between the electrode terminal 32 and the electrode current collector 111 is reduced, so that the large current characteristics of the battery 1 can be improved. For example, rapid charging of the battery 1 is possible.
  • a gap 54 is provided between the extension portion 32a and the intermediate layer 41.
  • the void 54 is, for example, a closed space.
  • the void 54 may reach the outer surface of the battery 1 .
  • gap 54 is not an essential component of the battery 1 and may not be provided. That is, the extension portion 32a and the intermediate layer 41 may be in close contact with each other.
  • the electrode terminal 32 is electrically connected to the electrode layer 110 of each of the plurality of battery cells 100 .
  • the electrode terminals 32 have a part of the function of electrically connecting the battery cells 100 in parallel.
  • the electrode terminals 32 collectively cover substantially the entire side surface 12 . Since the electrode layer 110 is the negative electrode in the present embodiment, the electrode terminal 32 functions as the negative electrode of the battery 1 .
  • the electrode current collectors 111 are respectively the uppermost layer and the lowermost layer. As shown in FIG. 1, in the vicinity of each of the upper and lower ends of the side surfaces 12, the electrode terminals 32 cover part of the principal surfaces of the electrode current collectors 111 located on the top and bottom layers, respectively. . As a result, the electrode terminal 32 is strong against an external force in the z-axis direction, and detachment is suppressed. In addition, since the contact area between the electrode terminal 32 and the electrode current collector 111 is increased, the connection resistance between the electrode terminal 32 and the electrode current collector 111 is reduced, and large current characteristics can be improved. For example, rapid charging of the battery 1 becomes possible.
  • the counter electrode terminal 31 and the electrode terminal 32 are formed using a conductive resin material or the like. Alternatively, the counter electrode terminal 31 and the electrode terminal 32 may be formed using a metal material such as solder. Conductive materials that can be used are selected based on various properties such as flexibility, gas barrier properties, impact resistance, heat resistance, and solder wettability. The counter electrode terminal 31 and the electrode terminal 32 are made of the same material, but may be made of different materials.
  • the counter electrode terminal 31 and the electrode terminal 32 not only function as the positive electrode or the negative electrode of the battery 1, but also have the function of connecting the plurality of battery cells 100 in parallel.
  • the counter electrode terminal 31 and the electrode terminal 32 are formed so as to closely cover the side surfaces 11 and 12 of the power generation element 10, respectively, so that their volumes can be reduced. That is, since the volume of the terminal electrode is smaller than that of the conventionally used current collecting tab electrode, the energy density per unit volume of the battery 1 can be improved.
  • the contact between the terminal and the insulating layer can be improved by partly entering the terminal or the insulating layer into the gap formed by the recession of the intermediate layer 40 .
  • the contact area between the terminal and the current collector increases, and the connection resistance between them decreases. Therefore, the large current characteristics of the battery 1 can be improved.
  • the battery according to Embodiment 2 differs from the battery according to Embodiment 1 in the planar view shape of the intermediate layer.
  • the following description focuses on the differences from the first embodiment, and omits or simplifies the description of the common points.
  • FIG. 7 is a cross-sectional view showing the cross-sectional structure of the battery 201 according to this embodiment.
  • battery 201 comprises intermediate layer 240 instead of intermediate layer 40 compared to battery 1 shown in FIG.
  • the intermediate layer 240 differs from the intermediate layer 40 in plan view shape.
  • the intermediate layer 240 is discretely provided in a plurality of regions in plan view.
  • FIG. 8A is a plan view showing an example of the intermediate layer 240 according to this embodiment.
  • the planar view shape of the intermediate layer 240A shown in FIG. 8A is striped.
  • intermediate layer 240A has a stripe shape extending in a direction parallel to side surfaces 11 and 12 .
  • Gap 241 in intermediate layer 240A reaches side surfaces 13 and 14 . Accordingly, as in the case of the gap 51, the heat dissipation or cooling performance of the battery 201 can be improved by causing air or a cooling medium to flow in the gap 241.
  • the gap 241 can reduce the stress when the battery 201 expands and contracts due to charging and discharging, and the impact force applied to the battery 1 at the time of impact.
  • the gap 241 may reach only one of the side surfaces 13 and 14 or may not reach either of the side surfaces 13 and 14. That is, the gap 241 may be a slit extending in the y-axis direction and passing through the intermediate layer 240A in the z-axis direction.
  • the number of gaps 241, the direction in which they extend, the width and the interval (the length in the x-axis direction) are not particularly limited.
  • the interval of the gap 241 is the width of the stripes of the intermediate layer 240A.
  • FIG. 8B is a plan view showing another example of the intermediate layer 240 according to this embodiment.
  • the plan view shape of the intermediate layer 240B shown in FIG. 8B is a lattice shape.
  • the intermediate layer 240B is provided with a gap 242 extending along the x-axis direction as well as a gap 241 extending along the y-axis direction. Since the volume of the gaps between the battery cells 100 increases, the effect of alleviating stress or impact force can be enhanced.
  • intermediate layer 240 may further have a gap extending in a direction different from both gaps 241 and 242 .
  • gaps 241 and 242 penetrate in the z-axis direction so as to separate the intermediate layer 240 into a plurality of regions, but this is not the only option.
  • intermediate layer 240 may be formed using a porous material.
  • the battery according to Embodiment 3 differs from the battery according to Embodiment 1 in the number of current collectors included in the battery cell.
  • the following description focuses on the differences from the first embodiment, and omits or simplifies the description of the common points.
  • FIG. 9 is a cross-sectional view showing the cross-sectional structure of the battery 301 according to this embodiment.
  • battery 301 includes, instead of power generating element 10, power generating element 310 including a plurality of battery cells 100B.
  • a plurality of battery cells 100B does not include a counter electrode current collector 121, as shown in FIG. 3B.
  • the energy density of the battery 301 can be increased.
  • the power generation element 310 may include a plurality of battery cells 100C instead of the battery cells 100B.
  • power generation element 310 may be formed by a combination of different types of battery cells.
  • FIG. 10 is a cross-sectional view showing the cross-sectional structure of battery 401 according to the present embodiment.
  • battery 401 includes, instead of power generating element 10, power generating element 410 including a plurality of battery cells 100A and 100C.
  • all of the plurality of battery cells included in the power generation element may be battery cells 100B or 100C each having a single current collector.
  • at least one of the plurality of battery cells included in the power generation element is a battery cell 100B or 100C with one current collector, and the remaining battery cells are battery cells 100A with two current collectors. good. In either case, the capacity density of the battery can be increased.
  • the gaps 51, 52, 53 and 54 are not provided in the present embodiment. That is, the intermediate layer 41 is in contact with each of the extended portion 21a of the electrode insulating layer 21 and the extended portion 32a of the electrode terminal 32 .
  • the intermediate layer 42 is in contact with each of the extended portion 22a of the counter electrode insulating layer 22 and the extended portion 31a of the counter electrode terminal 31 .
  • the intermediate layers 41 and 42 are larger in plan view than when the void 51 or the like is provided. That is, the intermediate layer 41 or 42 covers a wide range of the counter electrode active material layer 122 or the electrode active material layer 112 . As a result, collapse of the active material layer can be suppressed, and the strength of the battery 301 or 401 can be increased.
  • the battery according to Embodiment 4 differs from the battery according to Embodiment 1 in that it further includes a sealing member.
  • a sealing member In the following, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 11 is a cross-sectional view showing the cross-sectional configuration of battery 501 according to the present embodiment.
  • battery 501 includes a sealing member 560 in addition to the configuration of battery 1 according to Embodiment 1.
  • FIG. 11 is a cross-sectional view showing the cross-sectional configuration of battery 501 according to the present embodiment.
  • battery 501 includes a sealing member 560 in addition to the configuration of battery 1 according to Embodiment 1.
  • FIG. 11 is a cross-sectional view showing the cross-sectional configuration of battery 501 according to the present embodiment.
  • battery 501 includes a sealing member 560 in addition to the configuration of battery 1 according to Embodiment 1.
  • FIG. 11 is a cross-sectional view showing the cross-sectional configuration of battery 501 according to the present embodiment.
  • the sealing member 560 exposes at least part of each of the counter electrode terminal 31 and the electrode terminal 32 and seals the power generation element 10 .
  • the sealing member 560 is provided, for example, so that the power generating element 10, the electrode insulating layer 21 and the counter electrode insulating layer 22 are not exposed.
  • the sealing member 560 is formed using, for example, an electrically insulating insulating material.
  • a generally known battery sealing member material such as a sealing agent can be used.
  • a resin material can be used as the insulating material.
  • the insulating material may be a material that is insulating and does not have ionic conductivity.
  • the insulating material may be at least one of epoxy resin, acrylic resin, polyimide resin, and silsesquioxane.
  • sealing member 560 may include a plurality of different insulating materials.
  • sealing member 560 may have a multilayer structure. Each layer of the multilayer structure may be formed using different materials and have different properties.
  • the sealing member 560 may contain a particulate metal oxide material.
  • metal oxide materials silicon oxide, aluminum oxide, titanium oxide, zinc oxide, cerium oxide, iron oxide, tungsten oxide, zirconium oxide, calcium oxide, zeolite, glass, and the like can be used.
  • the sealing member 560 may be formed using a resin material in which a plurality of particles made of a metal oxide material are dispersed.
  • the particle size of the metal oxide material should be equal to or smaller than the space between the electrode current collector 111 and the counter electrode current collector 121 .
  • the particle shape of the metal oxide material is, for example, spherical, ellipsoidal, or rod-like, but is not limited thereto.
  • the reliability of the battery 501 can be improved in various aspects such as mechanical strength, short-circuit prevention, and moisture resistance.
  • the range of the insulating layer covering the side surface is different compared to each embodiment.
  • differences from each embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 12 is a cross-sectional view showing the cross-sectional configuration of a battery 601 according to a modification.
  • battery 601 includes electrode insulating layer 621 and counter electrode insulating layer 622 instead of electrode insulating layer 21 and counter electrode insulating layer 22 , as compared with battery 1 according to the first embodiment.
  • the electrode insulating layer 621 covers not only the electrode layer 110 but also the solid electrolyte layer 130 and part of the counter electrode layer 120 on the side surface 11, as shown in FIG. In other words, the electrode insulating layer 621 covers from the electrode layer 110 to part of the counter electrode layer 120 . Specifically, the electrode insulating layer 621 partially covers the counter electrode active material layer 122 . In this modification, the electrode insulating layer 621 extends from at least part of the counter electrode active material layer 122 of one of the two adjacent battery cells 100 to at least part of the other counter electrode active material layer 122 of the two adjacent battery cells 100. It covers continuously up to the part.
  • the electrode insulating layer 621 completely covers the intermediate layer 41 , the two electrode layers 110 located on both sides of the intermediate layer 41 , and the two solid electrolyte layers 130 .
  • the contour of the electrode insulating layer 621 overlaps the counter electrode active material layer 122 .
  • the width (the length in the z-axis direction) fluctuates due to manufacturing variations in the electrode insulating layer 621, the possibility of exposing the electrode layer 110 is extremely low. Therefore, short-circuiting between the electrode layer 110 and the counter electrode layer 120 via the counter electrode terminal 31 can be suppressed.
  • the electrode insulating layer 621 enters the unevenness of the end face of the counter electrode active material layer 122, the adhesion strength of the electrode insulating layer 621 is improved, and the insulation reliability is improved.
  • the electrode insulating layer 621 may cover the entire counter electrode active material layer 122 on the side surface 11 . Specifically, the contour of the electrode insulating layer 621 may overlap the boundary between the counter electrode active material layer 122 and the counter electrode current collector 121 .
  • the counter electrode insulating layer 622 also has the same configuration on the side surface 12 . Specifically, on side surface 12 , counter electrode insulating layer 622 covers not only counter electrode layer 120 but also solid electrolyte layer 130 and part of electrode layer 110 . That is, the counter electrode insulating layer 622 covers from the counter electrode layer 120 to part of the electrode layer 110 . Specifically, the counter electrode insulating layer 622 partially covers the electrode active material layer 112 . In this modification, the counter electrode insulating layer 622 extends from at least a portion of one electrode active material layer 112 of two adjacent battery cells 100 to at least a portion of the other electrode active material layer 112 of two adjacent battery cells 100. It covers continuously up to the part.
  • the counter electrode insulating layer 622 completely covers the intermediate layer 42 , the two counter electrode layers 120 located on both sides of the intermediate layer 42 , and the two solid electrolyte layers 130 .
  • the outline of the counter electrode insulating layer 622 overlaps the electrode active material layer 112 when the side surface 12 is viewed in plan.
  • the width (the length in the z-axis direction) fluctuates due to variations in manufacturing of the counter electrode insulating layer 622, the possibility of exposing the counter electrode layer 120 is extremely low. Therefore, short-circuiting between the counter electrode layer 120 and the electrode layer 110 via the electrode terminal 32 can be suppressed.
  • the counter electrode insulating layer 622 enters the irregularities of the end surface of the electrode active material layer 112, the adhesion strength of the counter electrode insulating layer 622 is improved, and the insulation reliability is improved.
  • the counter electrode insulating layer 622 may cover the entire electrode active material layer 112 on the side surface 12 . Specifically, the contour of the counter electrode insulating layer 622 may overlap the boundary between the electrode active material layer 112 and the electrode current collector 111 .
  • FIG. 12 shows a modification of the battery 1 according to Embodiment 1
  • the electrode insulating layer 621 and the counter electrode insulating layer 622 may be applied to the batteries according to each embodiment described above. In either case, similarly to the battery 601, the possibility of short circuit between the electrode layer 110 and the counter electrode layer 120 can be sufficiently reduced, so that the reliability of the battery can be enhanced.
  • FIG. 13 is a flow chart showing an example of a method for manufacturing a battery according to each embodiment or modification.
  • a plurality of battery cells are prepared (S10, first step).
  • the prepared battery cells are, for example, the battery cells 100A, 100B and 100C shown in FIGS. 3A to 3C.
  • the intermediate layer 40 is arranged on the main surface of the battery cell 100 (S20).
  • the intermediate layer 40 is arranged on one main surface of the electrode current collector 111 and the counter electrode current collector 121 of the battery cell 100 .
  • the disposed intermediate layer 40 is, for example, a conductive adhesive before curing.
  • the placement of the intermediate layer 40 is performed by an inkjet method, a spray method, a screen printing method, a gravure printing method, or the like.
  • stack a plurality of battery cells 100 (S30, second step). Specifically, the electrode layers 110, the counter electrode layers 120, and the solid electrolyte layers 130 are arranged alternately, and the intermediate layers 40 are arranged between two adjacent battery cells 100, and the plurality of battery cells are arranged. 100 are laminated in order to form a laminate. After forming the laminate, the intermediate layer 40 is cured, if necessary.
  • the side surface of the power generation element 10 may be flattened.
  • the power generating element 10 having flat side surfaces can be formed.
  • the cutting process is performed by, for example, a knife, laser or jet.
  • an insulating layer is formed on the side surface of the power generation element 10 (S40, third step). Specifically, the electrode insulating layer 21 covering the electrode layer 110 is formed on the side surface 11 . Also, a counter electrode insulating layer 22 covering the counter electrode layer 120 is formed on the side surface 12 .
  • the electrode insulating layer 21 and the counter electrode insulating layer 22 are formed, for example, by coating and curing a fluid resin material. Coating is performed by an inkjet method, a spray method, a screen printing method, a gravure printing method, or the like. Curing is performed by drying, heating, light irradiation, or the like, depending on the resin material used. By using a resin material having fluidity, part of the resin material enters the gaps between the current collectors formed by the intermediate layer 40 . Thereby, the extension portion 21a of the electrode insulating layer 21 and the extension portion 22a of the counter electrode insulating layer 22 can be formed.
  • a tape or the like is applied to a region where the insulating layer should not be formed so that the end surface of the counter electrode current collector 121 and the end surface of the electrode current collector 111 are not insulated.
  • a treatment for forming the protective member may be performed by masking or resist treatment with .
  • an extraction terminal is formed on the side surface of the power generating element 10 (S50, fourth step). Specifically, a counter electrode terminal 31 that electrically connects the plurality of counter electrode layers 120 is formed on the side surface 11 . Electrode terminals 32 for electrically connecting the electrode layers 110 are formed on the side surface 12 .
  • the counter electrode terminal 31 is formed by applying a conductive resin so as to cover the electrode insulating layer 21 and the portion of the side surface 11 not covered by the electrode insulating layer 21 and curing the resin.
  • the electrode terminal 32 is arranged by applying a conductive resin so as to cover the counter electrode insulating layer 22 and the portion of the side surface 12 not covered with the counter electrode insulating layer 22 and curing the resin.
  • the counter electrode terminal 31 and the electrode terminal 32 may be formed by, for example, printing, plating, vapor deposition, sputtering, welding, soldering, joining, or other methods. At this time, part of the conductive material enters the gap between the current collectors formed by the intermediate layer 40 . Thereby, the extension part 31a of the counter electrode terminal 31 and the extension part 32a of the electrode terminal 32 can be formed.
  • the battery 1 shown in FIG. 1 can be manufactured.
  • a step of pressing the plurality of battery cells 100 prepared in step S10 in the stacking direction may be performed individually or after stacking the plurality of battery cells.
  • a sealing member 560 shown in FIG. 11 may be formed.
  • the sealing member 560 is formed, for example, by coating and curing a resin material having fluidity. Coating is performed by an inkjet method, a spray method, a screen printing method, a gravure printing method, or the like. Curing is performed by drying, heating, light irradiation, or the like, depending on the resin material used.
  • terminal electrodes may be provided on each of the side surfaces 13 and 14 . That is, the side surface 13 may be an example of the first side surface, and the side surface 14 may be an example of the second side surface. Terminal electrodes may be provided on each of one of side surfaces 11 and 12 and one of side surfaces 13 and 14 . That is, the terminal electrodes may be provided along two adjacent sides of the main surface 15 .
  • each of two adjacent sides may be provided with a terminal electrode connected to the counter electrode layer, and each of the remaining two adjacent sides may be provided with a terminal electrode connected to the electrode layer.
  • two opposing sides may be provided with a terminal electrode connected to the counter electrode layer, and each of the remaining two opposing sides may be provided with a terminal electrode connected to the electrode layer.
  • the intermediate layer 40 may not have adhesiveness.
  • the intermediate layer 40 may simply function as a spacer for arranging the two battery cells 100 with a predetermined distance therebetween without having the function of bonding the two adjacent battery cells 100 together.
  • the intermediate layer 40 does not have to be conductive.
  • the intermediate layer 40 is arranged between all of the two battery cells 100 has been shown, but even if there is an intermediate layer 40 between the battery cells 100 where the intermediate layer 40 is not arranged, good. That is, the two battery cells 100 may be in contact with each other's electrode layers 110 or counter electrode layers 120 .
  • an external electrode may be formed on the outermost surface of each of the electrode terminal and the counter electrode terminal by a method such as plating, printing, or soldering.
  • each battery has both the counter electrode terminal 31 and the electrode terminal 32, but may have only one. That is, one of the positive electrode and the negative electrode of the battery may be taken out by a tab electrode.
  • the present disclosure can be used, for example, as batteries for electronic equipment, electric appliance devices, electric vehicles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

電池(1)は、電極層(110)、対極層(120)、および、電極層(110)と対極層(120)との間に位置する固体電解質層(130)、をそれぞれが含む複数の電池セル(100)を有し、複数の電池セル(100)が電気的に並列接続されて積層された発電要素(10)と、隣り合う2つの電池セル(100)間に位置する中間層(40)と、発電要素(10)の側面(11)において、電極層(110)を覆う電極絶縁層(21)と、側面(11)および電極絶縁層(21)を覆い、対極層(120)と電気的に接続された対極端子(31)と、を備える。

Description

電池および電池の製造方法
 本開示は、電池および電池の製造方法に関する。
 従来、直列接続された複数の電池セル同士を並列に接続した電池が知られている(例えば、特許文献1および2を参照)。
特開2013-120717号公報 特開2008-198492号公報
 従来の電池に対して、電池特性のさらなる向上が求められている。
 そこで、本開示は、高性能な電池およびその製造方法を提供する。
 本開示の一態様に係る電池は、電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを有し、前記複数の電池セルが電気的に並列接続されて積層された発電要素と、隣り合う2つの電池セル間に位置する中間層と、前記発電要素の第一側面において、前記電極層を覆う第一絶縁部材と、前記第一側面および前記第一絶縁部材を覆い、前記対極層と電気的に接続された第一端子電極と、を備える。
 本開示の一態様に係る電池の製造方法は、電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを準備する第一ステップと、前記電極層、前記対極層および前記固体電解質層の並び順が交互に入れ替わるように、かつ、隣り合う2つの電池セル間に中間層を配置しながら、前記複数の電池セルを順に積層した積層体を形成する第二ステップと、前記積層体の一側面において、前記電極層を絶縁部材で覆う第三ステップと、前記一側面および前記絶縁部材を、前記対極層と電気的に接続された端子電極で覆う第四ステップと、を含む。
 本開示によれば、高性能な電池およびその製造方法を提供することができる。
図1は、実施の形態1に係る電池の断面構成を示す断面図である。 図2は、実施の形態1に係る電池の発電要素の上面図である。 図3Aは、実施の形態1に係る発電要素に含まれる電池セルの一例の断面図である。 図3Bは、実施の形態1に係る発電要素に含まれる電池セルの一例の断面図である。 図3Cは、実施の形態1に係る発電要素に含まれる電池セルの一例の断面図である。 図4は、実施の形態1に係る発電要素および中間層の断面図である。 図5は、実施の形態1に係る発電要素の第一側面と当該第一側面に設けられた絶縁層との位置関係を示す側面図である。 図6は、実施の形態1に係る発電要素の第二側面と当該第二側面に設けられた絶縁層との位置関係を示す側面図である。 図7は、実施の形態2に係る電池の断面構成を示す断面図である。 図8Aは、実施の形態2に係る中間層の一例を示す平面図である。 図8Bは、実施の形態2に係る中間層の別の一例を示す平面図である。 図9は、実施の形態3に係る電池の断面構成の一例を示す断面図である。 図10は、実施の形態3に係る電池の断面構成の別の一例を示す断面図である。 図11は、実施の形態4に係る電池の断面構成を示す断面図である。 図12は、変形例に係る電池の断面構成を示す断面図である。 図13は、実施の形態または変形例に係る電池の製造方法の一例を示すフローチャートである。
 (本開示の概要)
 本開示の一態様に係る電池は、電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを有し、前記複数の電池セルが電気的に並列接続されて積層された発電要素と、隣り合う2つの電池セル間に位置する中間層と、前記発電要素の第一側面において、前記電極層を覆う第一絶縁部材と、前記第一側面および前記第一絶縁部材を覆い、前記対極層と電気的に接続された第一端子電極と、を備える。
 これにより、高性能な電池を実現することができる。例えば、第一側面において第一絶縁部材が電極層を覆うので、第一端子電極を介した対極層と電極層との短絡の発生を抑制することができる。また、例えば、全ての電池セルを電気的に並列接続することにより、各電池セルの容量ばらつきに起因して特定の電池セルが過充電または過放電を起こすのを抑制することができる。このように、電池の信頼性を高めることができるので、高性能な電池を実現することができる。また、例えば、中間層が配置されていることで、中間層に所定の機能を持たすこともできる。
 また、例えば、前記中間層は、前記隣り合う2つの電池セルの各々の前記対極層に接しており、前記第一側面において、前記中間層が接する2つの前記対極層よりも後退しており、前記第一端子電極の一部は、前記中間層が接する2つの前記対極層の各々の主面に接していてもよい。
 これにより、中間層が2つの対極層より後退しているので、2つの対極層の向かい合う主面の端部が中間層に覆われずに露出する。露出した部分に第一端子電極の一部が入り込むことにより、入り込んだ第一端子電極が脱離しにくくなる。このため、電池の信頼性を高めることができる。また、第一端子電極と対極層との接触面積が大きくなるので、第一端子電極と対極層との接続抵抗が小さくなる。このため、電池の大電流特性を向上させることができる。例えば、電池の急速充電が可能である。
 また、例えば、前記隣り合う2つの電池セル間において、前記中間層と前記第一端子電極との間に空隙が設けられていてもよい。
 これにより、空隙が設けられているので、充放電に伴う電池の膨張収縮時の応力、および、衝撃時に電池に加わる衝撃力を緩和することができる。また、空隙が電池の外側面にまで達している場合、空隙内に空気または冷却媒体などを流動させることにより、電池の放熱性または冷却性能を向上させることができる。
 また、例えば、前記中間層は、前記隣り合う2つの電池セルの各々の前記電極層に接しており、前記第一側面において、前記中間層が接する2つの前記電極層よりも後退しており、前記第一絶縁部材の一部は、前記中間層が接する2つの前記電極層の各々の主面に接していてもよい。
 これにより、中間層が2つの電極層より後退しているので、2つの電極層の向かい合う主面の端部が中間層に覆われずに露出する。露出した部分に第一絶縁部材の一部が入り込むことにより、入り込んだ第一絶縁部材が脱離しにくくなる。このため、電池の信頼性を高めることができる。
 また、例えば、前記隣り合う2つの電池セル間において、前記中間層と前記第一絶縁部材との間に空隙が設けられていてもよい。
 これにより、空隙が設けられているので、充放電に伴う電池の膨張収縮時の応力、および、衝撃時に電池に加わる衝撃力を緩和することができる。また、空隙が電池の外側面にまで達している場合、空隙内に空気または冷却媒体などを流動させることにより、電池の放熱性または冷却性能を向上させることができる。
 また、例えば、前記中間層の平面視形状は、ストライプ状または格子状であってもよい。
 これにより、隣り合う2つの電池セル間に隙間を形成することができるので、当該隙間を利用して充放電に伴う電池の膨張収縮時の応力、および、衝撃時に電池に加わる衝撃力を緩和することができる。また、隙間が電池の外側面にまで達している場合、隙間内に空気または冷却媒体などを流動させることにより、電池の放熱性または冷却性能を向上させることができる。
 また、例えば、前記中間層は、接着性を有してもよい。
 これにより、隣り合う2つの電池セルの物理的な接続を強固に行うことができるので、電池の信頼性を高めることができる。
 また、例えば、前記中間層は、導電性を有してもよい。
 これにより、隣り合う2つの電池セル間の電気的な接続を強固に行うことができるので、接続抵抗の増大を抑制し、電池の発熱を抑制することができる。
 また、例えば、前記第一絶縁部材は、前記第一側面において、前記固体電解質層の少なくとも一部を覆ってもよい。
 これにより、固体電解質層の一部まで覆うように第一絶縁部材を形成することで、第一絶縁部材の大きさのばらつきがあった場合でも、電極層が第一絶縁部材に覆われずに露出することを抑制することができる。また、固体電解質層は一般的に粉体状の材料で形成されているので、その端面には、非常に微細な凹凸が存在する。このため、第一絶縁部材の密着強度が向上し、絶縁信頼性が向上する。このように、電池の信頼性を更に高めることができる。
 また、例えば、前記第一絶縁部材は、前記第一側面において、前記発電要素の積層方向に沿って前記電極層から前記対極層の一部までを覆ってもよい。
 これにより、対極層の一部まで覆うことにより、電極層が第一絶縁部材に覆われずに露出することを充分に抑制することができる。また、例えば、対極活物質層も一般的に粉体状の材料で形成されているので、その端面には、非常に微細な凹凸が存在する。このため、第一絶縁部材の密着強度が更に向上し、絶縁信頼性が向上する。このため、電池の信頼性をより一層高めることができる。
 また、例えば、前記第一絶縁部材は、前記第一側面において、前記複数の電池セルの各々の前記電極層を覆い、前記第一端子電極は、前記複数の電池セルの各々の前記対極層と電気的に接続されていてもよい。
 これにより、複数の電池セルの並列接続に第一端子電極を利用することができる。第一端子電極は、第一側面および第一絶縁部材に密着させることができるので、並列接続に関わる部分の体積を小さくすることができる。このため、電池のエネルギー密度を高めることができる。
 また、例えば、前記第一絶縁部材は、前記第一側面の平面視において、ストライプ形状を有してもよい。
 これにより、第一側面にストライプ状に露出する電極層の端面をストライプ状の第一絶縁部材によって覆うことができる。
 また、例えば、本開示の一態様に係る電池は、前記発電要素の第二側面において、前記対極層を覆う第二絶縁部材と、前記第二側面および前記第二絶縁部材を覆い、前記電極層と電気的に接続された第二端子電極と、をさらに備えてもよい。
 これにより、より高性能な電池を実現することができる。具体的には、第二側面において第二絶縁部材が対極層を覆うので、第二端子電極を介した電極層と対極層との短絡の発生を抑制することができる。このように、電池の信頼性を高めることができるので、高性能な電池を実現することができる。
 また、例えば、前記中間層は、前記隣り合う2つの電池セルの各々の前記対極層、または、前記隣り合う2つの電池セルの各々の前記電極層に接しており、前記第二側面において、前記中間層は、前記中間層が接する2つの前記対極層よりも、または、前記中間層が接する2つの前記電極層よりも後退していてもよい。
 これにより、中間層がその両端で後退しているので、2つの電極層または2つの対極層の向かい合う主面の端部が中間層に覆われずに露出する。露出した部分に第二端子電極または第二絶縁部材の一部が入り込むことにより、入り込んだ部材が脱離しにくくなる。このため、電池の信頼性を高めることができる。
 また、例えば、前記複数の電池セルの各々において、前記電極層および前記対極層の各々は、集電体を有してもよい。
 これにより、例えば、複数の電池セルの各々を互いに同じ構成にすることができる。このため、各電池セルの容量ばらつきの発生を抑制することができ、電池容量の精度を良くすることができる。
 また、例えば、前記複数の電池セルの少なくとも1つは、前記電極層および前記対極層の一方のみが集電体を有してもよい。
 これにより、電池セルの各々が集電体を有する場合に比べて、集電体の枚数を減らすことができる。このため、電池の体積を小さくすることができ、エネルギー密度を高めることができる。
 また、例えば、前記集電体の厚みは、20μm以下であってもよい。
 これにより、エネルギー密度の向上、出力密度の向上、および、材料コストの低減などを実現することができる。
 また、例えば、前記第一絶縁部材は、樹脂を含んでもよい。
 これにより、電池の耐衝撃性を高めることができる。また、電池の温度変化によって、または、充放電時の膨張収縮によって電池に加わる応力を緩和することができる。
 また、例えば、本開示の一態様に係る電池は、前記第一端子電極の少なくとも一部を露出させ、前記発電要素を封止する封止部材をさらに備えてもよい。
 これにより、外気および水などから発電要素を保護することができるので、電池の信頼性を更に高めることができる。
 また、本開示の一態様に係る電池の製造方法は、電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを準備する第一ステップと、前記電極層、前記対極層および前記固体電解質層の並び順が交互に入れ替わるように、かつ、隣り合う2つの電池セル間に中間層を配置しながら、前記複数の電池セルを順に積層した積層体を形成する第二ステップと、前記積層体の一側面において、前記電極層を絶縁部材で覆う第三ステップと、前記一側面および前記絶縁部材を、前記対極層と電気的に接続された端子電極で覆う第四ステップと、を含む。
 これにより、上述した高性能な電池を製造することができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行または直交などの要素間の関係性を示す用語、および、矩形または直方体などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書および図面において、x軸、y軸およびz軸は、三次元直交座標系の三軸を示している。x軸およびy軸はそれぞれ、電池の発電要素の平面視形状が矩形である場合に、当該矩形の第一辺、および、当該第一辺に直交する第二辺に平行な方向に一致する。z軸は、発電要素に含まれる複数の電池セルの積層方向に一致する。
 また、本明細書において、「積層方向」は、集電体および活物質層の主面法線方向に一致する。また、本明細書において、「平面視」とは、単独で使用される場合など特に断りのない限り、発電要素の主面に対して垂直な方向から見たときのことをいう。なお、「第一側面の平面視」などのように、「ある面の平面視」と記載されている場合は、当該「ある面」を正面から見たときのことをいう。
 また、本明細書において、「上方」および「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」および「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。以下の説明では、z軸の負側を「下方」または「下側」とし、z軸の正側を「上方」または「上側」とする。
 また、本明細書において、「第一」、「第二」などの序数詞は、特に断りのない限り、構成要素の数または順序を意味するものではなく、同種の構成要素の混同を避け、構成要素を区別する目的で用いられている。
 (実施の形態1)
 以下では、実施の形態1に係る電池の構成について説明する。
 図1は、本実施の形態に係る電池1の断面構成を示す断面図である。図1に示されるように、電池1は、発電要素10と、電極絶縁層21と、対極絶縁層22と、対極端子31と、電極端子32と、中間層40と、を備える。電池1は、例えば全固体電池である。
 [1.発電要素]
 まず、発電要素10の具体的な構成について、図1および図2を用いて説明する。図2は、本実施の形態に係る電池1の発電要素10の上面図である。なお、図1は、図2のI-I線における断面を表している。
 発電要素10の平面視形状は、例えば、図2に示されるように矩形である。つまり、発電要素10の形状は、扁平な直方体である。ここで、扁平とは、厚み(すなわち、z軸方向の長さ)が主面の各辺(すなわち、x軸方向およびy軸方向の各々の長さ)または最大幅より短いことを意味する。発電要素10の平面視形状は、正方形、六角形または八角形などの他の多角形であってもよく、円形または楕円形などであってもよい。なお、図1などの断面図では、発電要素10の層構造を分かりやすくするため、各層の厚みを誇張して図示している。
 発電要素10は、図1および図2に示されるように、4つの側面11、12、13および14と、2つの主面15および16と、を含む。本実施の形態では、主面15および16はいずれも、平坦面である。
 側面11は、第一側面の一例である。側面12は、第二側面の一例である。側面11および12は、互いに背向しており、かつ、互いに平行である。側面11および12はそれぞれ、主面15の短辺を含む側面である。
 側面13および14は、互いに背向しており、かつ、互いに平行である。側面13および14はそれぞれ、主面15の長辺を含む側面である。
 主面15および16は、互いに背向しており、かつ、互いに平行である。主面15は、発電要素10の最上面である。主面16は、発電要素10の最下面である。
 図1に示されるように、発電要素10は、複数の電池セル100を有する。電池セル100は、最小構成の電池であり、単位セルとも称される。複数の電池セル100は、電気的に並列接続されて積層されている。本実施の形態では、発電要素10が有する全ての電池セル100が電気的に並列接続されている。図1に示される例では、発電要素10が有する電池セル100の個数が6個であるが、これに限らない。例えば、発電要素10が有する電池セル100の個数は、2個または4個などの偶数個であってもよく、3個または5個などの奇数個であってもよい。
 複数の電池セル100の各々は、電極層110と、対極層120と、固体電解質層130と、を含む。電極層110は、電極集電体111と、電極活物質層112と、を有する。対極層120は、対極集電体121と、対極活物質層122と、を有する。複数の電池セル100の各々では、電極集電体111、電極活物質層112、固体電解質層130、対極活物質層122および対極集電体121がこの順でz軸に沿って積層されている。
 なお、電極層110は、電池セル100の正極層および負極層の一方である。対極層120は、電池セル100の正極層および負極層の他方である。以下では、電極層110が負極層であり、対極層120が正極層である場合を一例として説明する。
 複数の電池セル100の構成は、互いに実質的に同一である。隣り合う2つの電池セル100では、電池セル100を構成する各層の並び順が逆になっている。つまり、電池セル100を構成する各層の並び順が交互に入れ替わりながら、複数の電池セル100は、z軸に沿って並んで積層されている。複数の電池セル100は、隣り合う2つの電池セル100間に中間層40を挟んで積層されている。本実施の形態では、電池セル100の個数が偶数個であるので、発電要素10の最下層および最上層がそれぞれ、同極性の集電体になる。
 以下では、図3Aを用いて、電池セル100の各層の説明を行う。図3Aは、本実施の形態に係る発電要素10に含まれる電池セル100の断面図である。
 電極集電体111と対極集電体121とはそれぞれ、導電性を有する箔状、板状または網目状の部材である。電極集電体111と対極集電体121とはそれぞれ、例えば、導電性を有する薄膜であってもよい。電極集電体111と対極集電体121とを構成する材料としては、例えば、ステンレス(SUS)、アルミニウム(Al)、銅(Cu)、ニッケル(Ni)などの金属が用いられうる。電極集電体111と対極集電体121とは、異なる材料を用いて形成されていてもよい。
 電極集電体111および対極集電体121の各々の厚みは、例えば5μm以上100μm以下であるが、これに限らない。電極集電体111および対極集電体121の各々の厚みは、20μm以下であってもよい。集電体の厚みが20μm以下になることにより、エネルギー密度の向上、出力密度の向上、および、材料コストの低減などを実現することができる。本実施の形態では、単一の電池セル100が並列接続されて積層されているので、並列接続数を増やしても発電要素10の厚さを小さく保つことができ、エネルギー密度の向上に寄与する。並列接続数が増えると、集電体の枚数も増えるので、集電体の厚みを小さくすることは、発電要素10の厚みの増大の抑制により有用である。
 電極集電体111の主面には、電極活物質層112が接触している。なお、電極集電体111は、電極活物質層112に接する部分に設けられた、導電性材料を含む層である集電体層を含んでもよい。対極集電体121の主面には、対極活物質層122が接触している。なお、対極集電体121は、対極活物質層122に接する部分に設けられた、導電性材料を含む層である集電体層を含んでもよい。
 電極活物質層112は、電極集電体111の、対極層120側の主面に配置されている。電極活物質層112は、例えば、電極材料として負極活物質を含む。電極活物質層112は、対極活物質層122に対向して配置されている。
 電極活物質層112に含有される負極活物質としては、例えば、グラファイト、金属リチウムなどの負極活物質が用いられうる。負極活物質の材料としては、リチウム(Li)またはマグネシウム(Mg)などのイオンを離脱および挿入することができる各種材料が用いられうる。
 また、電極活物質層112の含有材料としては、例えば、無機系固体電解質などの固体電解質が用いられてもよい。無機系固体電解質としては、例えば、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、硫化リチウム(LiS)および五硫化二リン(P)の混合物が用いられうる。また、電極活物質層112の含有材料としては、例えばアセチレンブラックなどの導電材、または、例えばポリフッ化ビニリデンなどの結着用バインダーなどが用いられてもよい。
 電極活物質層112の含有材料を溶媒と共に練り込んだペースト状の塗料を、電極集電体111の主面上に塗工し乾燥させることにより、電極活物質層112が作製される。電極活物質層112の密度を高めるために、乾燥後に、電極活物質層112および電極集電体111を含む電極層110(電極板とも称される)をプレスしておいてもよい。電極活物質層112の厚みは、例えば5μm以上300μm以下であるが、これに限らない。
 対極活物質層122は、対極集電体121の、電極層110側の主面に配置されている。対極活物質層122は、例えば活物質などの正極材料を含む層である。正極材料は、負極材料の対極を構成する材料である。対極活物質層122は、例えば、正極活物質を含む。
 対極活物質層122に含有される正極活物質としては、例えば、コバルト酸リチウム複合酸化物(LCO)、ニッケル酸リチウム複合酸化物(LNO)、マンガン酸リチウム複合酸化物(LMO)、リチウム-マンガン-ニッケル複合酸化物(LMNO)、リチウム-マンガン-コバルト複合酸化物(LMCO)、リチウム-ニッケル-コバルト複合酸化物(LNCO)、リチウム-ニッケル-マンガン-コバルト複合酸化物(LNMCO)などの正極活物質が用いられうる。正極活物質の材料としては、LiまたはMgなどのイオンを離脱および挿入することができる各種材料が用いられうる。
 また、対極活物質層122の含有材料としては、例えば、無機系固体電解質などの固体電解質が用いられてもよい。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、LiSおよびPの混合物が用いられうる。正極活物質の表面は、固体電解質でコートされていてもよい。また、対極活物質層122の含有材料としては、例えばアセチレンブラックなどの導電材、または、例えばポリフッ化ビニリデンなどの結着用バインダーなどが用いられてもよい。
 対極活物質層122の含有材料を溶媒と共に練り込んだペースト状の塗料を、対極集電体121の主面上に塗工し乾燥させることにより、対極活物質層122が作製される。対極活物質層122の密度を高めるために、乾燥後に、対極活物質層122および対極集電体121を含む対極層120(対極板とも称される)をプレスしておいてもよい。対極活物質層122の厚みは、例えば5μm以上300μm以下であるが、これに限らない。
 固体電解質層130は、電極活物質層112と対極活物質層122との間に配置される。固体電解質層130は、電極活物質層112と対極活物質層122との各々に接する。固体電解質層130は、電解質材料を含む層である。電解質材料としては、一般に公知の電池用の電解質が用いられうる。固体電解質層130の厚みは、5μm以上300μm以下であってもよく、または、5μm以上100μm以下であってもよい。
 固体電解質層130は、固体電解質を含んでいる。固体電解質としては、例えば、無機系固体電解質などの固体電解質が用いられうる。無機系固体電解質としては、硫化物固体電解質または酸化物固体電解質などが用いられうる。硫化物固体電解質としては、例えば、LiSおよびPの混合物が用いられうる。なお、固体電解質層130は、電解質材料に加えて、例えばポリフッ化ビニリデンなどの結着用バインダーなどを含有してもよい。
 本実施の形態では、電極活物質層112、対極活物質層122、固体電解質層130は平行平板状に維持されている。これにより、湾曲による割れまたは崩落の発生を抑制することができる。なお、電極活物質層112、対極活物質層122、固体電解質層130を合わせて滑らかに湾曲させてもよい。
 また、本実施の形態では、対極集電体121の側面11側の端面と電極層110の側面11側の端面とは、z軸方向から見た場合に一致している。具体的には、対極集電体121の側面11側の端面と電極集電体111の側面11側の端面とは、z軸方向から見た場合に一致している。対極集電体121および電極集電体111の各々の側面12側の端面においても同様である。
 より具体的には、電池セル100では、電極集電体111、電極活物質層112、固体電解質層130、対極活物質層122および対極集電体121の各々の形状および大きさが同じであり、各々の輪郭が一致している。つまり、電池セル100の形状は、扁平な直方体状の平板形状である。
 なお、電池セル100は、電極集電体111および対極集電体121の2枚の集電体を含んでいるが、一方の集電体を含んでいなくてもよい。つまり、電池セル100は、1枚のみの集電体を有してもよい。以下では、集電体が1枚の電池セルと区別するため、図3Aに示されるように2つの集電体を含む電池セル100を電池セル100Aとして説明する場合がある。
 図3Bに示される電池セル100Bは、図3Aに示される電池セル100Aから対極集電体121を除いた構成を有する。つまり、電池セル100Bの対極層120Bは、対極活物質層122のみからなる。
 図3Cに示される電池セル100Cは、図3Aに示される電池セル100Aから電極集電体111を除いた構成を有する。つまり、電池セル100Cの電極層110Cは、電極活物質層112のみからなる。
 図3Bまたは図3Cに示される電池セルを用いた積層例については、他の実施の形態で説明する。
 以上のように、本実施の形態に係る発電要素10では、全ての電池セル100が並列接続されており、直列接続された電池セルが含まれていない。このため、電池1の充放電時に、電池セル100の容量ばらつきなどに起因する充放電状態の不均一が発生しにくくなる。このため、複数の電池セル100の一部が過充電または過放電になるおそれを大幅に小さくすることができ、電池1の信頼性を高めることができる。
 [2.中間層]
 次に、中間層40について説明する。
 中間層40は、隣り合う2つの電池セル100の間に位置している。中間層40は、隣り合う2つの電池セル100間に所定幅の隙間を形成するために設けられている。
 図4は、本実施の形態に係る発電要素10および中間層40を示す断面図である。図4に示されるように、電池1は、複数の中間層40を備える。複数の中間層40は、隣り合う2つの電池セル100間毎に1層ずつ設けられている。複数の中間層40は、各電池セル100の電極層110に接する中間層41と、各電池セル100の対極層120に接する中間層42と、を含んでいる。
 中間層41は、隣り合う2つの電池セル100の各々の電極層110に接している。側面11において、中間層41は、中間層41が接する2つの電極層110よりも後退している。具体的には、図4に示されるように、中間層41の側面11側の端面41aは、電極集電体111の側面11側の端面111aよりも、発電要素10の内側に位置している。なお、「内側」とは、平面視において発電要素10の中心に向かう方向であり、例えば、側面11を基準にした場合、x軸の正方向に相当する。
 中間層41が後退していることで、電極層110の主面の側面11側の端部が中間層41に覆われずに露出している。つまり、向かい合う2つの電極層110の側面11側の端部には隙間が形成される。
 本実施の形態では、中間層41は、側面12においても、向かい合う2つの電極層110よりも後退している。中間層41の側面12側の端面41bは、電極集電体111の側面12側の端面111bよりも、発電要素10の内側に位置している。これにより、電極層110の主面の側面12側の端部が中間層41に覆われずに露出している。つまり、向かい合う2つの電極層110の側面12側の端部にも隙間が形成される。中間層41のx軸方向の長さ、すなわち、端面41aおよび41b間の距離は、電極集電体111のx軸方向の長さ、すなわち、端面111aおよび111b間の距離よりも短い。
 中間層42は、隣り合う2つの電池セル100の各々の対極層120に接している。側面11において、中間層42は、中間層42が接する2つの対極層120よりも後退している。具体的には、図4に示されるように、中間層42の側面11側の端面42aは、対極集電体121の側面12側の端面121aよりも、発電要素10の内側に位置している。
 中間層41の場合と同様に、中間層42が後退していることで、対極層120の主面の側面11側の端部が中間層42に覆われずに露出している。つまり、向かい合う2つの対極層120の側面11側の端部には隙間が形成される。
 本実施の形態では、中間層42は、側面12においても、向かい合う2つの対極層120よりも後退している。中間層42の側面12側の端面42bは、対極集電体121の側面12側の端面121bよりも、発電要素10の内側に位置している。これにより、対極層120の主面の側面12側の端部が中間層42に覆われずに露出している。つまり、向かい合う2つの対極層120の側面12側の端部にも隙間が形成される。中間層42のx軸方向の長さ、すなわち、端面42aおよび42b間の距離は、対極集電体121のx軸方向の長さ、すなわち、端面121aおよび121b間の距離よりも短い。
 以下では、中間層41および42に共通する事項についての説明など、中間層41および42の区別が必要でない場合は、中間層40として説明を行う。
 中間層40は、例えば、接着性を有する。また、中間層40は、導電性を有する。具体的には、中間層40は、導電性接着材を用いて形成されている。
 中間層40の厚みは、例えば、電極集電体111および対極集電体121のいずれの厚みよりも短い。なお、図1および図4などの各断面図では、中間層40によって形成される電池セル100間の隙間を分かりやすくするため、中間層40の厚みを誇張して図示している。例えば、中間層40の厚みは、数μm以上、数十μm以下である。なお、図示された通りに中間層40は、電極集電体111および対極集電体121の少なくとも一方よりも厚くてもよい。中間層40の後退量は、例えば0.1mm以上であるが、特に限定されない。なお、後退量は、例えば、端面41aと端面111aとの間のx軸方向に沿った距離で表される。
 ここでは、側面11および12について示したが、側面13および14の少なくとも一方においても中間層40が後退していてもよい。例えば、中間層40は、平面視において、電池セル100よりも小さく、中間層40の全体が電池セル100の外形の内側に配置されていてもよい。
 [3.絶縁層]
 次に、電極絶縁層21および対極絶縁層22について説明する。
 電極絶縁層21は、第一絶縁部材の一例であり、図1に示されるように、側面11において電極層110を覆っている。具体的には、電極絶縁層21は、側面11において電極集電体111および電極活物質層112を完全に覆っている。
 図5は、本実施の形態に係る発電要素10の側面11と側面11に設けられた電極絶縁層21との位置関係を示す側面図である。なお、図5では、側面11に表れる各層の端面に対して、図1の断面に示される各層の網掛けと同じ網掛けを付している。中間層40については、奥に位置しているので網掛けを付していない。これらは、後述する図6についても同様である。
 図5の(a)は、発電要素10の側面図であり、側面11を正面から見た平面図である。図5の(b)は、図5の(a)の側面11と側面11に設けられた電極絶縁層21とを示している。つまり、図5の(b)は、対極端子31を透視して図1の電池1をx軸の負側から見たときの側面図である。
 図5の(b)に示されるように、電極絶縁層21は、側面11において、複数の電池セル100の各々の電極層110を覆っている。電極絶縁層21は、複数の電池セル100の各々の対極層120の少なくとも一部を覆っていない。このため、電極絶縁層21は、側面11の平面視において、ストライプ形状を有する。
 このとき、電極絶縁層21は、隣り合う2つの電池セル100の電極層110を連続的に覆っている。具体的には、電極絶縁層21は、隣り合う2つの電池セル100の一方の固体電解質層130の少なくとも一部から、隣り合う2つの電池セル100の他方の固体電解質層130の少なくとも一部までを連続的に覆っている。つまり、電極絶縁層21は、中間層41の側面11側の端面も覆っている。
 このように、電極絶縁層21は、側面11において、固体電解質層130の少なくとも一部を覆っている。具体的には、側面11を平面視した場合に、電極絶縁層21の輪郭は、固体電解質層130に重なっている。これにより、電極絶縁層21の製造ばらつきによって幅(z軸方向の長さ)が変動したとしても、電極層110を露出させるおそれが低くなる。このため、電極絶縁層21を覆うように形成される対極端子31を介して電極層110と対極層120とが短絡するのを抑制することができる。また、粉体状の材料で形成されている固体電解質層130の端面は、非常に微細な凹凸が存在する。このため、電極絶縁層21が当該凹凸に入り込むことで、電極絶縁層21の密着強度が向上し、絶縁信頼性が向上する。
 本実施の形態では、電極絶縁層21は、側面11において、固体電解質層130の全てを覆っていてもよい。具体的には、電極絶縁層21の輪郭は、固体電解質層130と対極活物質層122との境界に重なっていてもよい。なお、電極絶縁層21は、固体電解質層130の一部を覆うことは必須ではない。例えば、電極絶縁層21の輪郭は、固体電解質層130と電極活物質層112との境界に重なっていてもよい。
 また、図1に示されるように、電極絶縁層21の一部である延在部21aは、中間層41が後退することによって形成された隙間に入り込んでいる。延在部21aは、向かい合う2つの電極集電体111の各々の主面に接触しており、電極絶縁層21の密着性が向上する。つまり、電極絶縁層21が脱離しにくくなるので、電池の信頼性を高めることができる。
 本実施の形態では、図1に示されるように、延在部21aと中間層41との間には、空隙51が設けられている。空隙51は、例えば、密閉された空間である。空隙51が設けられているので、充放電に伴う電池1の膨張収縮時の応力、および、衝撃時に電池1に加わる衝撃力を緩和することができる。また、空隙51は、電池1の外側面にまで達していてもよい。この場合、空隙51内に空気または冷却媒体などを流動させることにより、電池1の放熱性または冷却性能を向上させることができる。
 なお、空隙51は、電池1に必須の構成ではなく、設けられていなくてもよい。つまり、延在部21aと中間層41とが密着していてもよい。
 図5の(b)では、電極絶縁層21が電極層110毎に分離して設けられているが、これに限らない。例えば、電極絶縁層21は、ストライプ形状の部分に加えて、側面11のy軸方向における端部において、z軸方向に沿って設けられていてもよい。つまり、電極絶縁層21の形状は、側面11の平面視において、はしご形状であってもよい。このように、電極絶縁層21は、対極集電体121の一部を覆っていてもよい。
 また、本実施の形態に係る発電要素10では、最上層および最下層がそれぞれ電極集電体111である。図1および図5の(b)に示されるように、側面11の上端および下端の各々の近傍では、電極絶縁層21は、最上層および最下層の各々に位置する電極集電体111の主面の一部を覆っている。これにより、電極絶縁層21は、z軸方向からの外力などに強く、脱離が抑制される。また、対極端子31が発電要素10の主面15または16に回り込んだ場合も、電極集電体111に接触し、短絡を発生させないようにすることができる。このように、電池1の信頼性を高めることができる。
 対極絶縁層22は、第二絶縁部材の一例であり、図1に示されるように、側面12において対極層120を覆っている。具体的には、対極絶縁層22は、側面12において対極集電体121および対極活物質層122を完全に覆っている。
 図6は、本実施の形態に係る発電要素10の側面12と側面12に設けられた対極絶縁層22との位置関係を示す側面図である。図6の(a)は、発電要素10の側面図であり、側面12を正面から見た平面図である。図6の(b)は、図6の(a)の側面12と側面12に設けられた対極絶縁層22とを示している。つまり、図6の(b)は、電極端子32を透視して図1の電池1をx軸の正側から見たときの側面図である。
 図6の(b)に示されるように、対極絶縁層22は、側面12において、複数の電池セル100の各々の対極層120を覆っている。対極絶縁層22は、複数の電池セル100の各々の電極層110の少なくとも一部を覆っていない。このため、対極絶縁層22は、側面12の平面視において、ストライプ形状を有する。
 このとき、対極絶縁層22は、隣り合う2つの電池セル100の対極層120を連続的に覆っている。具体的には、対極絶縁層22は、隣り合う2つの電池セル100の一方の固体電解質層130の少なくとも一部から、隣り合う2つの電池セル100の他方の固体電解質層130の少なくとも一部までを連続的に覆っている。つまり、対極絶縁層22は、中間層42の側面12側の端面を覆っている。
 このように、対極絶縁層22は、側面12において、固体電解質層130の少なくとも一部を覆っている。具体的には、側面12を平面視した場合に、対極絶縁層22の輪郭は、固体電解質層130に重なっている。これにより、対極絶縁層22の製造ばらつきによって幅(z軸方向の長さ)が変動したとしても、対極層120を露出させるおそれが低くなる。このため、対極絶縁層22を覆うように形成される電極端子32を介して対極層120と電極層110とが短絡するのを抑制することができる。また、対極絶縁層22が固体電解質層130の端面の凹凸に入り込むことで、対極絶縁層22の密着強度が向上し、絶縁信頼性が向上する。
 本実施の形態では、対極絶縁層22は、側面12において、固体電解質層130の全てを覆っていてもよい。具体的には、対極絶縁層22の輪郭は、固体電解質層130と電極活物質層112との境界に重なっていてもよい。なお、対極絶縁層22は、固体電解質層130の一部を覆うことは必須ではない。例えば、対極絶縁層22の輪郭は、固体電解質層130と対極活物質層122との境界に重なっていてもよい。
 また、図1に示されるように、対極絶縁層22の一部である延在部22aは、中間層42が後退することによって形成された隙間に入り込んでいる。延在部22aは、向かい合う2つの対極集電体121の各々の主面に接触しており、対極絶縁層22の密着性が向上する。つまり、対極絶縁層22が脱離しにくくなるので、電池の信頼性を高めることができる。
 本実施の形態では、図1に示されるように、延在部22aと中間層42との間には、空隙52が設けられている。空隙52は、例えば、密閉された空間である。空隙52は、電池1の外側面にまで達していてもよい。空隙52が設けられていることにより、空隙51と同様の作用効果が得られる。
 なお、空隙52は、電池1に必須の構成ではなく、設けられていなくてもよい。つまり、延在部22aと中間層42とが密着していてもよい。
 図6の(b)では、対極絶縁層22が対極層120毎に分離して設けられているが、これに限らない。例えば、対極絶縁層22は、ストライプ形状の部分に加えて、側面12のy軸方向における端部において、z軸方向に沿って設けられていてもよい。つまり、対極絶縁層22の形状は、側面12の平面視において、はしご形状であってもよい。このように、対極絶縁層22は、電極集電体111の一部を覆っていてもよい。
 電極絶縁層21および対極絶縁層22はそれぞれ、電気的に絶縁性を有する絶縁材料を用いて形成されている。例えば、電極絶縁層21および対極絶縁層22はそれぞれ、樹脂を含む。樹脂は、例えばエポキシ系の樹脂であるが、これに限定されない。なお、絶縁材料として無機材料が用いられてもよい。使用可能な絶縁材料としては、柔軟性、ガスバリア性、耐衝撃性、耐熱性などの様々な特性を基に選定される。電極絶縁層21および対極絶縁層22は、互いに同じ材料を用いて形成されるが、異なる材料を用いて形成されてもよい。
 [4.端子]
 次に、対極端子31および電極端子32について説明する。
 対極端子31は、第一端子電極の一例であり、図1に示されるように、側面11および電極絶縁層21を覆い、対極層120と電気的に接続されている。具体的には、対極端子31は、電極絶縁層21と、側面11のうち電極絶縁層21に覆われていない部分とを覆っている。
 側面11のうち電極絶縁層21に覆われていない部分には、図5の(b)に示されるように、対極集電体121および対極活物質層122の各々の端面が露出している。このため、対極端子31は、対極集電体121および対極活物質層122の各々の端面に接触し、対極層120と電気的に接続される。対極活物質層122は、粉体状の材料で形成されているので、固体電解質層130と同様に、非常に微細な凹凸が存在する。対極端子31が対極活物質層122の端面の凹凸に入り込むことで、対極端子31の密着強度が向上し、電気的な接続の信頼性が向上する。
 対極端子31の一部である延在部31aは、中間層42が後退することによって形成された隙間に入り込んでいる。延在部31aは、向かい合う2つの対極集電体121の各々の主面に接触しているので、対極端子31の密着性が向上する。つまり、対極端子31が脱離しにくくなるので、電池の信頼性を高めることができる。
 また、対極端子31と2つの対極集電体121の各々との接触面積が大きくなる。このため、対極端子31と対極集電体121との接続抵抗が小さくなるので、電池1の大電流特性を向上させることができる。例えば、電池1の急速充電が可能である。
 本実施の形態では、図1に示されるように、延在部31aと中間層42との間には、空隙53が設けられている。空隙53は、例えば、密閉された空間である。空隙53は、電池1の外側面にまで達していてもよい。空隙53が設けられていることにより、空隙51と同様の作用効果が得られる。
 なお、空隙53は、電池1に必須の構成ではなく、設けられていなくてもよい。つまり、延在部31aと中間層42とが密着していてもよい。
 対極端子31は、複数の電池セル100の各々の対極層120と電気的に接続されている。つまり、対極端子31は、各電池セル100を電気的に並列接続する機能の一部を担っている。図1に示されるように、対極端子31は、側面11のほぼ全体を一括して覆っている。本実施の形態では、対極層120が正極であるので、対極端子31は、電池1の正極取り出し電極として機能する。
 電極端子32は、第二端子電極の一例であり、図1に示されるように、側面12および対極絶縁層22を覆い、電極層110と電気的に接続されている。具体的には、電極端子32は、対極絶縁層22と、側面12のうち対極絶縁層22に覆われていない部分とを覆っている。
 側面12のうち対極絶縁層22に覆われていない部分には、図6の(b)に示されるように、電極集電体111および電極活物質層112の各々の端面が露出している。このため、電極端子32は、電極集電体111および電極活物質層112の各々の端面に接触し、電極層110と電気的に接続される。電極活物質層112は、粉体状の材料で形成されているので、固体電解質層130と同様に、非常に微細な凹凸が存在する。電極端子32が電極活物質層112の端面の凹凸に入り込むことで、電極端子32の密着強度が向上し、電気的な接続の信頼性が向上する。
 電極端子32の一部である延在部32aは、中間層41が後退することによって形成された隙間に入り込んでいる。延在部32aは、向かい合う2つの電極集電体111の各々の主面に接触しているので、電極端子32の密着性が向上する。つまり、電極端子32が脱離しにくくなるので、電池の信頼性を高めることができる。
 また、電極端子32と2つの電極集電体111の各々との接触面積が大きくなる。このため、電極端子32と電極集電体111との接続抵抗が小さくなるので、電池1の大電流特性を向上させることができる。例えば、電池1の急速充電が可能である。
 本実施の形態では、図1に示されるように、延在部32aと中間層41との間には、空隙54が設けられている。空隙54は、例えば、密閉された空間である。空隙54は、電池1の外側面にまで達していてもよい。空隙54が設けられていることにより、空隙51と同様の作用効果が得られる。
 なお、空隙54は、電池1に必須の構成ではなく、設けられていなくてもよい。つまり、延在部32aと中間層41とが密着していてもよい。
 電極端子32は、複数の電池セル100の各々の電極層110と電気的に接続されている。つまり、電極端子32は、各電池セル100を電気的に並列接続する機能の一部を担っている。図1に示されるように、電極端子32は、側面12のほぼ全体を一括して覆っている。本実施の形態では、電極層110が負極であるので、電極端子32は、電池1の負極取り出し電極として機能する。
 本実施の形態に係る発電要素10では、最上層および最下層がそれぞれ電極集電体111である。図1に示されるように、側面12の上端および下端の各々の近傍では、電極端子32は、最上層および最下層の各々に位置する電極集電体111の主面の一部を覆っている。これにより、電極端子32は、z軸方向からの外力などに強く、脱離が抑制される。また、電極端子32と電極集電体111との接触面積が大きくなるので、電極端子32と電極集電体111との接続抵抗が小さくなり、大電流特性を向上させることができる。例えば、電池1の急速充電が可能になる。
 対極端子31および電極端子32は、導電性を有する樹脂材料などを用いて形成されている。あるいは、対極端子31および電極端子32は、半田などの金属材料を用いて形成されていてもよい。使用可能な導電性の材料としては、柔軟性、ガスバリア性、耐衝撃性、耐熱性、半田濡れ性などの様々な特性を基に選定される。対極端子31および電極端子32は、互いに同じ材料を用いて形成されるが、異なる材料を用いて形成されてもよい。
 以上のように、対極端子31および電極端子32はそれぞれ、電池1の正極取り出し電極または負極取り出し電極としても機能するだけでなく、複数の電池セル100の並列接続の機能を担う。図1に示されるように、対極端子31および電極端子32はそれぞれ、発電要素10の側面11および12を密着して覆うように形成されるので、これらの体積を小さくすることができる。つまり、従来用いられていた集電用のタブ電極に比べて、端子電極の体積が小さくなるので、電池1の体積あたりのエネルギー密度を向上させることができる。
 また、中間層40が後退することによって形成された隙間に、端子または絶縁層の一部が入り込むことによって、端子または絶縁層の密着性を高めることができる。また、当該隙間に端子の一部が入り込むことによって、端子と集電体との接触面積が大きくなり、これらの接続抵抗が小さくなる。よって、電池1の大電流特性を向上させることができる。
 (実施の形態2)
 続いて、実施の形態2について説明する。
 実施の形態2に係る電池では、実施の形態1に係る電池と比較して、中間層の平面視形状が相違する。以下では、実施の形態1との相違点を中心に説明を行い、共通点の説明を省略または簡略化する。
 図7は、本実施の形態に係る電池201の断面構成を示す断面図である。図7に示されるように、電池201は、図1に示される電池1と比較して、中間層40の代わりに中間層240を備える。
 中間層240は、平面視形状が中間層40とは異なっている。中間層240は、平面視において、複数の領域に離散的に設けられている。
 図8Aは、本実施の形態に係る中間層240の一例を示す平面図である。図8Aに示される中間層240Aの平面視形状は、ストライプ状である。例えば、中間層240Aは、側面11および12に平行な方向に延びるストライプ形状である。中間層240Aの隙間241は、側面13および14にまで達している。これにより、空隙51の場合と同様に、隙間241内に空気または冷却媒体などを流動させることにより、電池201の放熱性または冷却性能を向上させることができる。また、隙間241によって、充放電に伴う電池201の膨張収縮時の応力、および、衝撃時に電池1に加わる衝撃力を緩和することができる。
 なお、隙間241は、側面13および14の一方のみに達していてもよく、あるいは、側面13および14のいずれにも達していなくてもよい。つまり、隙間241は、y軸方向に延びる長尺形状であり、かつ、z軸方向に中間層240Aを貫通するスリットであってもよい。隙間241の本数、延びる方向、幅および間隔(それぞれx軸方向の長さ)はそれぞれ、特に限定されない。なお、隙間241の間隔とは、中間層240Aのストライプの幅である。
 図8Bは、本実施の形態に係る中間層240の別の一例を示す平面図である。図8Bに示される中間層240Bの平面視形状は、格子状である。例えば、中間層240Bは、y軸方向に沿って延びる隙間241だけでなく、x軸方向に沿って延びる隙間242が設けられている。電池セル100間の隙間の容積が増えるので、応力または衝撃力の緩和効果を高めることができる。
 なお、図8Bでは、隙間241および242の各々の延びる方向が直交しているが、これに限定されない。隙間241の延びる方向と隙間242の延びる方向とは、斜めに交差していてもよい。また、中間層240には、隙間241および242のいずれとも異なる方向に延びる隙間がさらに設けられていてもよい。
 また、隙間241および242は、中間層240を複数の領域に分離するようにz軸方向に貫通しているが、これに限らない。例えば、中間層240は、多孔質材料を用いて形成されていてもよい。
 (実施の形態3)
 続いて、実施の形態3について説明する。
 実施の形態3に係る電池では、実施の形態1に係る電池と比較して、電池セルが備える集電体の枚数が相違している。以下では、実施の形態1との相違点を中心に説明を行い、共通点の説明を省略または簡略化する。
 図9は、本実施の形態に係る電池301の断面構成を示す断面図である。図9に示されるように、電池301は、発電要素10の代わりに、複数の電池セル100Bを含む発電要素310を備える。複数の電池セル100Bは、図3Bに示されたように、対極集電体121を備えない。
 発電要素310が含む集電体の枚数が減るので、発電要素310の小型化が実現される。このため、電池301のエネルギー密度を高めることができる。
 なお、発電要素310は、電池セル100Bの代わりに、複数の電池セル100Cを含んでもよい。あるいは、発電要素310は、異なる種類の電池セルの組み合わせによって形成されてもよい。
 図10は、本実施の形態に係る電池401の断面構成を示す断面図である。図10に示されるように、電池401は、発電要素10の代わりに、複数の電池セル100Aおよび100Cを含む発電要素410を備える。
 以上のように、発電要素が含む複数の電池セルの全てが、集電体が1枚の電池セル100Bまたは100Cであってもよい。あるいは、発電要素が含む複数の電池セルの少なくとも1つが、集電体が1枚の電池セル100Bまたは100Cであり、残りの電池セルは、集電体が2枚の電池セル100Aであってもよい。いずれの場合においても、電池の容量密度を高めることができる。
 なお、本実施の形態では、空隙51、52、53および54が設けられていない。つまり、中間層41と電極絶縁層21の延在部21aおよび電極端子32の延在部32aの各々とは接触している。中間層42と対極絶縁層22の延在部22aおよび対極端子31の延在部31aの各々とは接触している。例えば、中間層41および42は、空隙51などが設けられている場合よりも、平面視における大きさが大きい。つまり、対極活物質層122または電極活物質層112の広い範囲を中間層41または42が覆っている。これにより、活物質層の崩落などを抑制し、電池301または401の強度を高めることができる。
 (実施の形態4)
 続いて、実施の形態4について説明する。
 実施の形態4に係る電池では、実施の形態1に係る電池と比較して、封止部材をさらに備える点が相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図11は、本実施の形態に係る電池501の断面構成を示す断面図である。図11に示されるように、電池501は、実施の形態1に係る電池1の構成に加えて、封止部材560を備える。
 封止部材560は、対極端子31および電極端子32の各々の少なくとも一部を露出させ、かつ、発電要素10を封止する。封止部材560は、例えば、発電要素10、電極絶縁層21および対極絶縁層22が露出しないように設けられている。
 封止部材560は、例えば、電気的に絶縁性を有する絶縁材料を用いて形成されている。絶縁材料としては、例えば封止剤などの一般に公知の電池の封止部材の材料が用いられうる。絶縁材料としては、例えば、樹脂材料が用いられうる。なお、絶縁材料は、絶縁性であり、かつ、イオン伝導性を有さない材料であってもよい。例えば、絶縁材料は、エポキシ樹脂とアクリル樹脂とポリイミド樹脂とシルセスキオキサンとのうちの少なくとも1種であってもよい。
 なお、封止部材560は、複数の異なる絶縁材料を含んでもよい。例えば、封止部材560は、多層構造を有してもよい。多層構造の各層は、異なる材料を用いて形成され、異なる性質を有してもよい。
 封止部材560は、粒子状の金属酸化物材料を含んでもよい。金属酸化物材料としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄、酸化タングステン、酸化ジルコニウム、酸化カルシウム、ゼオライト、ガラスなどが用いられうる。例えば、封止部材560は、金属酸化物材料からなる複数の粒子が分散された樹脂材料を用いて形成されていてもよい。
 金属酸化物材料の粒子サイズは、電極集電体111と対極集電体121との間隔以下であればよい。金属酸化物材料の粒子形状は、例えば球状、楕円球状または棒状などであるが、これに限定されない。
 封止部材560が設けられることで、電池501の信頼性を、機械的強度、短絡防止、防湿など様々な点で向上することができる。
 (変形例)
 続いて、上述した各実施の形態の変形例について説明する。
 各変形例では、各実施の形態と比較して、側面を覆う絶縁層の範囲が相違している。以下では、各実施の形態との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図12は、変形例に係る電池601の断面構成を示す断面図である。図12に示されるように、電池601は、実施の形態1に係る電池1と比較して、電極絶縁層21および対極絶縁層22の代わりに電極絶縁層621および対極絶縁層622を備える。
 電極絶縁層621は、図12に示されるように、側面11において、電極層110だけでなく、固体電解質層130および対極層120の一部を覆っている。つまり、電極絶縁層621は、電極層110から対極層120の一部までを覆っている。具体的には、電極絶縁層621は、対極活物質層122の一部を覆っている。本変形例では、電極絶縁層621は、隣り合う2つの電池セル100の一方の対極活物質層122の少なくとも一部から、隣り合う2つの電池セル100の他方の対極活物質層122の少なくとも一部までを連続的に覆っている。例えば、電極絶縁層621は、中間層41、中間層41の両側に位置する2つの電極層110および2つの固体電解質層130を完全に覆っている。例えば、側面11を平面視した場合に、電極絶縁層621の輪郭は、対極活物質層122に重なっている。
 これにより、電極絶縁層621の製造ばらつきによって幅(z軸方向の長さ)が変動したとしても、電極層110を露出させるおそれが極めて低くなる。このため、対極端子31を介して電極層110と対極層120とが短絡するのを抑制することができる。また、電極絶縁層621が対極活物質層122の端面の凹凸に入り込むことで、電極絶縁層621の密着強度が向上し、絶縁信頼性が向上する。
 なお、電極絶縁層621は、側面11において、対極活物質層122の全てを覆っていてもよい。具体的には、電極絶縁層621の輪郭は、対極活物質層122と対極集電体121との境界に重なっていてもよい。
 本変形例では、側面12において、対極絶縁層622も同様の構成を有する。具体的には、側面12において、対極絶縁層622は、対極層120だけでなく、固体電解質層130および電極層110の一部を覆っている。つまり、対極絶縁層622は、対極層120から電極層110の一部までを覆っている。具体的には、対極絶縁層622は、電極活物質層112の一部を覆っている。本変形例では、対極絶縁層622は、隣り合う2つの電池セル100の一方の電極活物質層112の少なくとも一部から、隣り合う2つの電池セル100の他方の電極活物質層112の少なくとも一部までを連続的に覆っている。例えば、対極絶縁層622は、中間層42、中間層42の両側に位置する2つの対極層120および2つの固体電解質層130を完全に覆っている。例えば、側面12を平面視した場合に、対極絶縁層622の輪郭は、電極活物質層112に重なっている。
 これにより、対極絶縁層622の製造ばらつきによって幅(z軸方向の長さ)が変動したとしても、対極層120を露出させるおそれが極めて低くなる。このため、電極端子32を介して対極層120と電極層110とが短絡するのを抑制することができる。また、対極絶縁層622が電極活物質層112の端面の凹凸に入り込むことで、対極絶縁層622の密着強度が向上し、絶縁信頼性が向上する。
 なお、対極絶縁層622は、側面12において、電極活物質層112の全てを覆っていてもよい。具体的には、対極絶縁層622の輪郭は、電極活物質層112と電極集電体111との境界に重なっていてもよい。
 図12は、実施の形態1に係る電池1の変形例を示したが、上述した各実施の形態に係る電池に対して、電極絶縁層621および対極絶縁層622が適用されてもよい。いずれの場合においても、電池601と同様に、電極層110と対極層120との短絡の可能性を充分に低くすることができるので、電池の信頼性を高めることができる。
 (製造方法)
 続いて、上述した各実施の形態および各変形例に係る電池の製造方法について説明する。
 図13は、各実施の形態または各変形例に係る電池の製造方法の一例を示すフローチャートである。
 図13に示されるように、まず、複数の電池セルを準備する(S10、第一ステップ)。準備される電池セルは、例えば、図3Aから図3Cに示した電池セル100A、100Bおよび100Cである。
 次に、電池セル100の主面に中間層40を配置する(S20)。例えば、電池セル100の電極集電体111および対極集電体121の一方の主面に中間層40を配置する。配置される中間層40は、例えば、硬化前の導電性接着材である。中間層40の配置は、インクジェット法、スプレー法、スクリーン印刷法またはグラビア印刷法などによって行われる。
 次に、複数の電池セル100を積層する(S30、第二ステップ)。具体的には、電極層110、対極層120および固体電解質層130の並び順が交互に入れ替わるように、かつ、隣り合う2つの電池セル100間に中間層40を配置しながら、複数の電池セル100を順に積層した積層体を形成する。積層体を形成した後、必要に応じて、中間層40を硬化させる。
 なお、複数の電池セル100を積層した後、発電要素10の側面を平坦化してもよい。例えば、複数の電池セル100の積層体を一括して切断することにより、各側面が平坦な発電要素10を形成することができる。切断処理は、例えば、刃物、レーザーまたはジェットなどによって行われる。
 次に、発電要素10の側面に絶縁層を形成する(S40、第三ステップ)。具体的には、側面11において、電極層110を覆う電極絶縁層21を形成する。また、側面12において、対極層120を覆う対極絶縁層22を形成する。
 電極絶縁層21および対極絶縁層22は、例えば、流動性を有する樹脂材料を塗工して硬化させることによって形成される。塗工は、インクジェット法、スプレー法、スクリーン印刷法またはグラビア印刷法などによって行われる。硬化は、用いる樹脂材料によって、乾燥、加熱、光照射などによって行われる。流動性を有する樹脂材料を用いることで、中間層40によって形成される集電体間の隙間に樹脂材料の一部が入り込む。これにより、電極絶縁層21の延在部21aおよび対極絶縁層22の延在部22aを形成することができる。
 なお、電極絶縁層21および対極絶縁層22の形成を行う際に、対極集電体121の端面および電極集電体111の端面が絶縁されないように、絶縁層を形成すべきでない領域にテープなどによるマスキングまたはレジスト処理によって保護部材を形成する処理を行ってもよい。電極絶縁層21および対極絶縁層22の形成後に、保護部材を除去することで、各集電体の導電性を確保することができる。
 次に、発電要素10の側面に取り出し端子を形成する(S50、第四ステップ)。具体的には、側面11において、複数の対極層120を電気的に接続する対極端子31を形成する。側面12において、複数の電極層110を電気的に接続する電極端子32を形成する。
 例えば、電極絶縁層21と、側面11の電極絶縁層21に覆われていない部分とを覆うように導電性樹脂を塗工して硬化させることで、対極端子31を形成する。また、対極絶縁層22と、側面12の対極絶縁層22に覆われていない部分とを覆うように導電性樹脂を塗工して硬化させることで、電極端子32を配置する。なお、対極端子31および電極端子32は、例えば印刷、めっき、蒸着、スパッタ、溶接、はんだ付け、接合その他の方法によって形成されてもよい。このとき、中間層40によって形成される集電体間の隙間に導電材料の一部が入り込む。これにより、対極端子31の延在部31aおよび電極端子32の延在部32aを形成することができる。
 以上の工程を経て、図1に示される電池1を製造することができる。
 なお、ステップS10において準備した複数の電池セル100を個別に、または、複数の電池セルの積層後に、積層方向に対してプレスする工程が行われてもよい。
 また、取り出し端子の形成(S50)の後、図11に示される封止部材560を形成してもよい。封止部材560は、例えば、流動性を有する樹脂材料を塗工して硬化させることによって形成される。塗工は、インクジェット法、スプレー法、スクリーン印刷法またはグラビア印刷法などによって行われる。硬化は、用いる樹脂材料によって、乾燥、加熱、光照射などによって行われる。
 (他の実施の形態)
 以上、1つまたは複数の態様に係る電池および電池の製造方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、および、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 例えば、上記の実施の形態では、側面11および12の各々に端子電極が設けられている例を説明したが、側面13および14の各々に端子電極が設けられていてもよい。つまり、側面13が第一側面の一例であり、かつ、側面14が第二側面の一例であってもよい。また、側面11および12の一方と側面13および14の一方との各々に端子電極が設けられていてもよい。つまり、端子電極は、主面15の隣り合う2辺に沿って設けられていてもよい。
 また、同極性の端子電極が複数個ずつ設けられていてもよい。例えば、隣り合う2つの側面の各々には対極層に接続された端子電極が設けられ、残りの隣り合う2つの側面の各々には電極層に接続された端子電極が設けられてもよい。あるいは、向かい合う2つの側面には対極層に接続された端子電極が設けられ、残りの向かい合う2つの側面の各々には電極層に接続された端子電極が設けられてもよい。
 また、例えば、中間層40は、接着性を有していなくてもよい。つまり、中間層40は、隣り合う2つの電池セル100を接着する機能を有さずに、単に2つの電池セル100を所定距離空けて配置するスペーサとして機能してもよい。また、中間層40は、導電性を有していなくてもよい。
 また、上記の実施の形態では、2つの電池セル100間の全てに中間層40が配置されている例を示したが、中間層40が配置されていない電池セル100間が存在していてもよい。つまり、2つの電池セル100は、互いの電極層110または対極層120が接触していてもよい。
 また、例えば、電極端子および対極端子の各々の最表面に対して、めっき、印刷、はんだ付けなどの方法によって、外部電極が形成されてもよい。電池が外部電極を備えることにより、電池の実装性を更に高めることができる。
 また、上記の実施の形態では、各電池が対極端子31および電極端子32の両方を備える例を示したが、一方のみを備えてもよい。つまり、電池の正極および負極の一方の電極取り出しは、タブ電極によって行われてもよい。
 また、上記の各実施の形態は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、例えば、電子機器、電気器具装置および電気車両などの電池として利用することができる。
1、201、301、401、501、601 電池
10、310、410 発電要素
11、12、13、14 側面
15、16 主面
21、621 電極絶縁層
21a、22a、31a、32a 延在部
22、622 対極絶縁層
31 対極端子
32 電極端子
40、41、42、240、240A、240B 中間層
41a、41b、42a、42b、111a、111b、121a、121b 端面
51、52、53、54 空隙
100、100A、100B、100C 電池セル
110、110C 電極層
111 電極集電体
112 電極活物質層
120、120B 対極層
121 対極集電体
122 対極活物質層
130 固体電解質層
241、242 隙間
560 封止部材

Claims (20)

  1.  電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを有し、前記複数の電池セルが電気的に並列接続されて積層された発電要素と、
     隣り合う2つの電池セル間に位置する中間層と、
     前記発電要素の第一側面において、前記電極層を覆う第一絶縁部材と、
     前記第一側面および前記第一絶縁部材を覆い、前記対極層と電気的に接続された第一端子電極と、
    を備える、
     電池。
  2.  前記中間層は、
     前記隣り合う2つの電池セルの各々の前記対極層に接しており、
     前記第一側面において、前記中間層が接する2つの前記対極層よりも後退しており、
     前記第一端子電極の一部は、前記中間層が接する2つの前記対極層の各々の主面に接している、
     請求項1に記載の電池。
  3.  前記隣り合う2つの電池セル間において、前記中間層と前記第一端子電極との間に空隙が設けられている、
     請求項2に記載の電池。
  4.  前記中間層は、
     前記隣り合う2つの電池セルの各々の前記電極層に接しており、
     前記第一側面において、前記中間層が接する2つの前記電極層よりも後退しており、
     前記第一絶縁部材の一部は、前記中間層が接する2つの前記電極層の各々の主面に接している、
     請求項1に記載の電池。
  5.  前記隣り合う2つの電池セル間において、前記中間層と前記第一絶縁部材との間に空隙が設けられている、
     請求項4に記載の電池。
  6.  前記中間層の平面視形状は、ストライプ状または格子状である、
     請求項1から5のいずれか一項に記載の電池。
  7.  前記中間層は、接着性を有する、
     請求項1から6のいずれか一項に記載の電池。
  8.  前記中間層は、導電性を有する、
     請求項1から7のいずれか一項に記載の電池。
  9.  前記第一絶縁部材は、前記第一側面において、前記固体電解質層の少なくとも一部を覆う、
     請求項1から8のいずれか一項に記載の電池。
  10.  前記第一絶縁部材は、前記第一側面において、前記発電要素の積層方向に沿って前記電極層から前記対極層の一部までを覆う、
     請求項9に記載の電池。
  11.  前記第一絶縁部材は、前記第一側面において、前記複数の電池セルの各々の前記電極層を覆い、
     前記第一端子電極は、前記複数の電池セルの各々の前記対極層と電気的に接続されている、
     請求項1から10のいずれか一項に記載の電池。
  12.  前記第一絶縁部材は、前記第一側面の平面視において、ストライプ形状を有する、
     請求項11に記載の電池。
  13.  前記発電要素の第二側面において、前記対極層を覆う第二絶縁部材と、
     前記第二側面および前記第二絶縁部材を覆い、前記電極層と電気的に接続された第二端子電極と、をさらに備える、
     請求項1から12のいずれか一項に記載の電池。
  14.  前記中間層は、前記隣り合う2つの電池セルの各々の前記対極層、または、前記隣り合う2つの電池セルの各々の前記電極層に接しており、
     前記第二側面において、前記中間層は、前記中間層が接する2つの前記対極層よりも、または、前記中間層が接する2つの前記電極層よりも後退している、
     請求項13に記載の電池。
  15.  前記複数の電池セルの各々において、前記電極層および前記対極層の各々は、集電体を有する、
     請求項1から14のいずれか一項に記載の電池。
  16.  前記複数の電池セルの少なくとも1つは、前記電極層および前記対極層の一方のみが集電体を有する、
     請求項1から14のいずれか一項に記載の電池。
  17.  前記集電体の厚みは、20μm以下である、
     請求項15または16に記載の電池。
  18.  前記第一絶縁部材は、樹脂を含む、
     請求項1から17のいずれか一項に記載の電池。
  19.  前記第一端子電極の少なくとも一部を露出させ、前記発電要素を封止する封止部材をさらに備える、
     請求項1から18のいずれか一項に記載の電池。
  20.  電極層、対極層、および、前記電極層と前記対極層との間に位置する固体電解質層、をそれぞれが含む複数の電池セルを準備する第一ステップと、
     前記電極層、前記対極層および前記固体電解質層の並び順が交互に入れ替わるように、かつ、隣り合う2つの電池セル間に中間層を配置しながら、前記複数の電池セルを順に積層した積層体を形成する第二ステップと、
     前記積層体の一側面において、前記電極層を絶縁部材で覆う第三ステップと、
     前記一側面および前記絶縁部材を、前記対極層と電気的に接続された端子電極で覆う第四ステップと、を含む、
     電池の製造方法。
PCT/JP2022/014299 2021-05-10 2022-03-25 電池および電池の製造方法 WO2022239527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023520901A JPWO2022239527A1 (ja) 2021-05-10 2022-03-25
CN202280032118.5A CN117280516A (zh) 2021-05-10 2022-03-25 电池及电池的制造方法
EP22807232.8A EP4340091A1 (en) 2021-05-10 2022-03-25 Battery and method for manufacturing battery
US18/499,015 US20240063431A1 (en) 2021-05-10 2023-10-31 Battery and method of manufacturing battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080067 2021-05-10
JP2021-080067 2021-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/499,015 Continuation US20240063431A1 (en) 2021-05-10 2023-10-31 Battery and method of manufacturing battery

Publications (1)

Publication Number Publication Date
WO2022239527A1 true WO2022239527A1 (ja) 2022-11-17

Family

ID=84029569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014299 WO2022239527A1 (ja) 2021-05-10 2022-03-25 電池および電池の製造方法

Country Status (5)

Country Link
US (1) US20240063431A1 (ja)
EP (1) EP4340091A1 (ja)
JP (1) JPWO2022239527A1 (ja)
CN (1) CN117280516A (ja)
WO (1) WO2022239527A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273436A (ja) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd 全固体薄膜積層電池
JP2008198492A (ja) 2007-02-13 2008-08-28 Namics Corp 全固体二次電池
JP2013120717A (ja) 2011-12-08 2013-06-17 Toyota Motor Corp 全固体電池
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273436A (ja) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd 全固体薄膜積層電池
JP2008198492A (ja) 2007-02-13 2008-08-28 Namics Corp 全固体二次電池
JP2013120717A (ja) 2011-12-08 2013-06-17 Toyota Motor Corp 全固体電池
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Also Published As

Publication number Publication date
EP4340091A1 (en) 2024-03-20
US20240063431A1 (en) 2024-02-22
JPWO2022239527A1 (ja) 2022-11-17
CN117280516A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP7437710B2 (ja) 積層電池
US20230387473A1 (en) Battery and method for manufacturing battery
US20240258666A1 (en) Battery and method for manufacturing battery
US20240213495A1 (en) Battery and method for manufacturing battery
US20240072381A1 (en) Battery and method of manufacturing battery
US20240072392A1 (en) Battery and method of manufacturing battery
JP7378097B2 (ja) 積層電池
WO2022239527A1 (ja) 電池および電池の製造方法
WO2023058294A1 (ja) 電池および電池の製造方法
WO2023053639A1 (ja) 電池および電池の製造方法
WO2023053637A1 (ja) 電池および電池の製造方法
WO2023058295A1 (ja) 電池および電池の製造方法
WO2023053636A1 (ja) 電池および電池の製造方法
WO2022239525A1 (ja) 電池
WO2023145223A1 (ja) 電池および電池の製造方法
WO2023053640A1 (ja) 電池および電池の製造方法
WO2024062777A1 (ja) 電池およびその製造方法
US20240021959A1 (en) Battery and method for manufacturing battery
WO2024062778A1 (ja) 電池およびその製造方法
WO2024062776A1 (ja) 電池およびその製造方法
WO2023089874A1 (ja) 電池、電池の製造方法および回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280032118.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023520901

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022807232

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807232

Country of ref document: EP

Effective date: 20231211