WO2022239422A1 - Taping device and taping method - Google Patents

Taping device and taping method Download PDF

Info

Publication number
WO2022239422A1
WO2022239422A1 PCT/JP2022/009770 JP2022009770W WO2022239422A1 WO 2022239422 A1 WO2022239422 A1 WO 2022239422A1 JP 2022009770 W JP2022009770 W JP 2022009770W WO 2022239422 A1 WO2022239422 A1 WO 2022239422A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
pocket
information
taping
carrier tape
Prior art date
Application number
PCT/JP2022/009770
Other languages
French (fr)
Japanese (ja)
Inventor
斉藤浩二
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2022239422A1 publication Critical patent/WO2022239422A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B15/00Attaching articles to cards, sheets, strings, webs, or other carriers
    • B65B15/04Attaching a series of articles, e.g. small electrical components, to a continuous web

Definitions

  • the present invention relates to a taping device and a taping method.
  • Parts storage tapes are sometimes used to store and transport large quantities of parts.
  • the component storage tape is formed by attaching a cover tape for closing the pockets to a carrier tape in which components are inserted one by one into pockets (component storage recesses).
  • taping systems for sequentially inserting components into pockets of a carrier tape see, for example, Patent Document 1
  • taping apparatuses see, for example, Patent Documents 2 to 4
  • the work of inserting a part into a carrier tape pocket is affected by the machining accuracy and operating accuracy of each part of the equipment used in the work, as well as the dimensional accuracy of the carrier tape pocket and the dimensional accuracy of the part itself. Therefore, if the clearance between the component and the pocket is set small, it is assumed that it will be difficult to insert the component into the pocket. Therefore, if the size of the component is set relatively small and the size of the pocket is set large to increase the clearance between the two, the component can be easily inserted into the pocket regardless of variations in accuracy. However, when the clearance between the component and the pocket is set large, the component inserted into the pocket may rotate within the pocket.
  • an object of the present invention is to provide a taping device and a taping method that can insert a component into a carrier tape pocket while ensuring an appropriate clearance between the carrier tape pocket and the component.
  • the taping device is a taping device that sequentially inserts components into a plurality of pockets provided on a carrier tape, wherein the dimensions are measured for each of the plurality of components, and information about the dimensions is obtained.
  • pocket information acquisition means for acquiring, for each component, the component information including the combination information generating means for generating combination information indicating which part to insert into which pocket based on the component information and the pocket information; and based on the combination information generated by the combination information generating means, component inserting means for inserting the component into the pocket associated with the component.
  • the component information acquisition means includes a component imaging unit that captures an image of the component supplied to the component placement unit, and the image that is supplied to the component placement unit from the image obtained by the component imaging unit.
  • a mode may be provided in which a component image processing unit acquires the component information of the component.
  • the component imaging unit captures an image of the plurality of components supplied onto the component placement unit
  • the component image processing unit captures images of the components supplied onto the component placement unit. It is possible to adopt a mode in which position information of the part included in the part information is acquired along with the information about the dimensions of the plurality of parts.
  • the component insertion means includes a component holding portion that moves to a position where the component is supplied based on the position information and holds the component, and the pocket provided in the carrier tape. and has a guide hole for guiding the component to the pocket, the guide hole being positioned above the pocket, and the carrier tape being in communication with the pocket. and a guide plate provided so as to be able to face each other, wherein the component holding portion is provided with the guide hole provided so as to be positioned above the pocket combined with the held component based on the combination information. It is possible to adopt a mode in which the held component is inserted into.
  • the guide plate may be arranged so as to be movable in a direction orthogonal to the feeding direction of the carrier tape.
  • the guide plate may have a plurality of the guide holes arranged along the feeding direction of the carrier tape.
  • the guide plate may be rotatably provided.
  • the guide plate may have a plurality of guide holes arranged along the direction of rotation.
  • the component imaging unit captures images of the plurality of components that are aligned and supplied on the component placement unit
  • the component image processing unit captures images of the components on the component placement unit.
  • the component inserting means acquires the information on the dimensions of the plurality of components supplied in an aligned manner and the alignment order information of the components included in the component information
  • the component insertion means includes the component placement section and inserts the components into the component. and a guide hole having a size larger than the size of the pocket provided in the carrier tape to temporarily hold the component and guide it to the pocket, and the guide hole guides the component to the pocket.
  • the guide hole may be rotated to position the guide hole above the pocket associated with the component.
  • the tape guide on which the carrier tape is installed may be provided with a vibrating portion.
  • the pocket information acquiring means includes a pocket imaging section for imaging the pocket and a pocket image processing section for acquiring the pocket information of the pocket from the image obtained by the pocket imaging section.
  • the pocket information may include arrangement order information indicating the arrangement order of the pockets that are sent in sequence.
  • a taping method for sequentially inserting components into a plurality of pockets provided on a carrier tape, wherein dimensions are determined for each of the plurality of components by component information acquisition means. a step of measuring and acquiring part information including information on the dimensions for each part; a step of generating combination information indicating which component is to be inserted into which pocket based on the component information and the pocket information by a combination information generation means; and a step of component insertion means, and inserting the component into the pocket combined with the component based on the combination information generated by the combination information generating means.
  • the step of acquiring the component information for each component includes a step of capturing an image of the component supplied to the component placement unit by a component imaging unit provided in the component information acquiring means, and acquiring the component information. obtaining the component information of the component supplied to the component placement unit from the image obtained by the component imaging unit by a component image processing unit provided in the means.
  • the step of acquiring the pocket information for each pocket includes a step of capturing an image of the pocket by a pocket imaging unit provided in the pocket information obtaining means, and pocket image processing provided in the pocket information obtaining means. obtaining the pocket information of the pocket from the image obtained by the pocket imaging unit.
  • a component can be inserted into a pocket of the carrier tape while ensuring an appropriate clearance between the pocket of the carrier tape and the component.
  • FIG. 1 is a top view showing a schematic configuration of the taping apparatus of the first embodiment.
  • FIGS. 2(A) to 2(C) are partial top views showing an example of a carrier tape that can be used in the taping apparatus of the first embodiment.
  • 3 is an enlarged partial longitudinal sectional view of the component supply means shown in FIG. 1.
  • FIG. 4A is a top view showing the positional relationship between the tray section included in the component supply means shown in FIG. 3 and the first imaging section included in the component information acquisition means
  • FIG. 2 is a side view showing the positional relationship between the unit and the first imaging unit;
  • FIG. 5(A) is an enlarged side view of the component holding/inserting means shown in FIG. 1
  • FIG. 5(B) is an enlarged partial longitudinal sectional view of FIG.
  • FIG. 5(A), and FIG. FIG. 5(D) is an enlarged partial longitudinal sectional view, and FIG. 5(D) is an enlarged bottom view of the head portion shown in FIG. 5(A).
  • FIG. 6(A) is an enlarged top view of a tape guide included in tape feeding means provided in the taping apparatus of the first embodiment
  • FIG. 6(B) is a cross-sectional view taken along the line X1-X1 in FIG. 6(A).
  • FIG. 7(A) is an enlarged view of the X1-X1 sectional view shown in FIG. 6(B)
  • FIG. 7(B) separates the components laminated on the tape guide shown in FIG. 7(A). It is an explanatory diagram showing 8A-1 is a top view of the part, FIG.
  • FIG. 8A-2 is a front view of the part
  • FIG. 8A-3 shows the width of the pocket when the part is tilted in the pocket. It is an explanatory view showing dimensions occupied by parts along a direction that matches the direction.
  • FIG. 8(B) is an explanatory diagram showing the dimensions of the pocket provided in the carrier tape.
  • FIG. 8(C) is an explanatory diagram showing the dimensions of the guide holes provided in the guide plate.
  • FIG. 9(A) is an explanatory view showing the gap g1 between the lower end of the component and the carrier tape when inserting the component into the guide hole
  • FIG. 9(B) is the lower end of the lowered suction nozzle and the guide plate.
  • FIG. 10 is a diagram showing the control system of the taping machine.
  • 11(A) is a flow chart for inputting initial data of the taping apparatus of the first embodiment
  • FIG. 11(B) is a flow chart for inputting operating conditions of the taping apparatus of the first embodiment
  • FIG. It is a flowchart of parts supply of the taping apparatus of embodiment.
  • FIG. 12(A) is a flow chart for part information acquisition in the taping apparatus of the first embodiment
  • FIG. 12(B) is a flow chart for pocket information acquisition in the taping apparatus of the first embodiment
  • FIG. 12(C) is the first embodiment.
  • FIG. 12D is a flowchart of component holding in the taping device of the first embodiment
  • FIG. 12E is a flowchart of component orientation recognition in the taping device of the first embodiment
  • FIG. 12(F) is a flow chart of component insertion in the taping apparatus of the first embodiment
  • 13A and 13B are diagrams for explaining the operation of acquiring the component information shown in FIG. 12A.
  • FIG. 14 is an explanatory diagram showing an example of matching between parts and pockets.
  • 15A and 15B are diagrams for explaining the component holding operation shown in FIG. 12(D).
  • 16A and 16B are explanatory diagrams of the component orientation recognition operation shown in FIG. 12(E).
  • FIGS. 18(A) and 18(B) are explanatory diagrams for adjusting the component orientation of the component holding/inserting means shown in FIG.
  • FIG. 19(A) is a flow chart for reholding the parts of the taping device of the first embodiment
  • FIG. 19(B) is a flow chart of re-recognizing the component orientation of the taping device of the first embodiment
  • FIG. 19(C) is the first embodiment.
  • FIG. 19D is a flowchart of parts resupply of the taping device of the first embodiment
  • FIG. 20 is a top view showing the periphery of the component guide means provided in the taping apparatus of the second embodiment.
  • FIG. 21 is a top view showing the periphery of the component guide means provided in the taping apparatus of the third embodiment.
  • the taping apparatus 1000 shown in FIG. 1 selects a carrier tape having a pocket CTa (see FIGS. 2A to 2C) suitable for the component EC to be handled from among multiple types of carrier tapes CT1 to CT3. do. Then, the components EC are sequentially inserted into the pocket CTa of the selected carrier tape.
  • the taping apparatus 1000 includes a moving means 10, a component placing section 20, a component supplying means 30, a component information obtaining means 40, a component holding/inserting means 50, a component orientation recognizing means 60, and a tape feeding means .
  • the taping apparatus 1000 further includes pocket information acquisition means 80 and component guide means 90 .
  • the component EC and the three carrier tapes CT1 to CT3 shown in FIG. 1 are drawn according to the explanation of the taping method later, and the components and carrier tapes that can be used in the taping apparatus shown in FIG. is not intended to limit the size and type of
  • Representative examples of the components EC that can be used in the taping apparatus 1000 shown in FIG. 1 are rectangular parallelepiped electronic components such as capacitor elements, varistor elements, inductor elements, array elements, composite elements, and the like.
  • the component EC it is possible to use a component other than a rectangular parallelepiped electronic component, a non-rectangular parallelepiped electronic component, or a component other than an electronic component.
  • the size of the main commercial product is 0.4 mm to 3.2 mm for the length reference dimension and 0 for the width reference dimension. .2 mm to 2.5 mm, with a height (thickness) standard dimension range of 0.2 mm to 2.5 mm.
  • a carrier tape that can be used for the taping apparatus 1000 shown in FIG. 1 may have pockets CTa (component storage recesses) that can store the components EC to be handled at regular intervals.
  • pockets CTa component storage recesses
  • the carrier tapes CT1 to CT3 that can be handled by the taping apparatus 1000 of this embodiment will be described with reference to FIGS. 2(A) to 2(C).
  • the carrier tapes CT1 to CT3 are examples, and the taping apparatus 1000 can handle carrier tapes other than these.
  • the components handled by the carrier tapes CT1 to CT3 have different sizes, but the same reference numerals are used in the following description.
  • the width Wt of the carrier tape CT1 shown in FIG. 2A is 4 mm
  • the pitch Pa of the rectangular parallelepiped pockets CTa is 1 mm
  • the pitch Pb of the circular tape feeding holes CTb is 2 mm.
  • a rectangular parallelepiped component (electronic component) EC having a standard height of 0.4 mm, a standard width of 0.2 mm, and a standard height of 0.2 mm can be stored.
  • the width Wt of the carrier tape CT2 shown in FIG. 2B is 8 mm
  • the pitch Pa of the rectangular parallelepiped pockets CTa is 1 mm
  • the pitch Pb of the circular tape feed holes CTb is 4 mm.
  • a rectangular parallelepiped component (electronic component) EC having a standard height of 0.6 mm, a standard width of 0.3 mm, and a standard height of 0.3 mm can be stored.
  • the width Wt of the carrier tape CT2 shown in FIG. 2C is 8 mm
  • the pitch Pa of the rectangular parallelepiped pockets CTa is 2 mm
  • the pitch Pb of the circular tape feed holes CTb is 4 mm.
  • a rectangular parallelepiped component (electronic component) EC having a standard height of 0.6 mm, a standard width of 0.3 mm, and a standard height of 0.15 mm can be stored.
  • the moving means 10 has a Y-direction moving portion 11 and an X-direction moving portion 12 provided on the base plate BP, as shown in FIG. As indicated by arrows on the left side of FIG. 1, the Y direction indicates the vertical direction in FIG. 1, the X direction indicates the horizontal direction in FIG.
  • the Y-direction moving unit 11 has a first table 11a and a linear movement mechanism (not shown) using a motor 11b (see FIG. 10).
  • the first table 11a is connected to the movable portion of the linear movement mechanism, and can move in the +Y direction and the -Y direction by forward and reverse rotation of the motor 11b.
  • the X-direction moving unit 12 has a second table 12a and a linear movement mechanism (not shown) using a motor 12b (see FIG. 10).
  • the second table 12a is connected to the movable portion of the linear movement mechanism, and can move in the +X direction and the -X direction by forward and reverse rotation of the motor 12b.
  • the component mounting section 20 includes a tray section 21 having a flat mounting surface 21a and a vibrating, preferably has an electrically operated component diffuser 22 (see also FIG. 10) capable of imparting vibration in the XY directions.
  • the component placement unit 20 has its lower surface connected to the first table 11a, and can move to the component supply location P1 and the component information acquisition location P2 shown in FIG. 1 in conjunction with the first table 11a.
  • the parts supply place P1 and the parts information acquisition place P2 are places predetermined by the XY coordinates on the XY plane, and the X direction coordinate values of the centers of the places P1 and P2 are the same.
  • the component diffusion section 22 applies vibration to the tray section 21 to diffuse the components EC supplied from the component supply means 30 to the placement surface 21a of the tray section 21 at the component supply location P1. It is possible to increase the gap between
  • the mounting surface 21a is located lower than the upper surface of the tray portion 21 and is surrounded by walls. Secondly (see FIG. 3), the component EC is prevented from falling outside from the periphery of the mounting surface 21a.
  • the mounting surface 21a is arranged so that the positions of the respective components EC on the mounting surface 21a do not shift. It is preferably made of a material with a high coefficient of friction. Furthermore, the component EC on the mounting surface 21a is sucked and held by a sucking nozzle 52 (see FIG. 5A, etc.), which will be described later. For this reason, it is also required that the placement surface 21a be made of a material to which the component EC is less likely to stick so that the component EC can be taken out smoothly.
  • the component supply means 30 includes a component container 31 capable of containing a large number (for example, several thousand to several million) of components EC, and an outlet 31a of the component container 31. It has a component supply unit 32 which can lead out the components, and which can transport the components that have been led out and drop them onto the component placement unit 20 from the transport end. It is configured to be able to supply a corresponding number of components to the component placement section 20 at the component supply location P1.
  • the component supply means 30 is arranged adjacent to the component supply place P1 shown in FIG. 1, and its frame (not shown) is connected to the base plate BP.
  • the component supply means 30 may be connected to the first table 11a so that it can move together with the first table 11a. This eliminates the need to move the component placement section 20 in order to supply the component EC to the component placement section 20, thereby shortening the component EC replenishment time.
  • the component housing portion 31 has an inverted truncated cone shape in appearance, has a tubular portion (reference numerals omitted) at the bottom thereof, and has a rectangular outlet 31a in the tubular portion.
  • the component supply section 32 has an endless belt 32a having a flat support portion 32a1 capable of supporting the components led out from the outlet 31a of the component storage section 31, and a belt rotating section 32b capable of rotating the endless belt 32a.
  • the belt rotating portion 32b has two pulleys (not shown) around which the endless belt 32a is wound, and a motor 32b1 (see FIG. 10) that rotates the pulley on the right side in FIG. 3 clockwise at a constant speed. .
  • the conveying distance of the endless belt 32a can be controlled by the operating time of the motor 32b1.
  • the conveying end 32a2 of the endless belt 32a is positioned above the center of the component placement section 20 (above the center of the placement surface 21a of the tray section 21) at the component supply location P1. That is, the components EC dropped and supplied from the conveying end 32a2 of the endless belt 32a are scattered on the mounting surface 21a of the tray portion 21 so as to spread outward from the center thereof.
  • the component supply means 30 will be described with reference to FIG. 3.
  • the components EC accommodated in the component accommodation unit 31 are fed to the endless belt 32a. It is drawn out from its outlet 31a by rotation. Then, the extracted component EC is conveyed toward the component mounting portion 20 while being supported by the support portion 32a1 of the endless belt 32a, and is transferred from the conveying end 32a2 of the endless belt 32a to the tray portion 21 of the component mounting portion 20. is dropped and supplied to the center of the mounting surface 21a.
  • the dropping supply of the components EC continues from the start of rotation of the endless belt 32a until it stops (until the transport stops), the number of components corresponding to the transport distance of the endless belt 32a is placed on the component placement section 20. is supplied to the mounting surface 21a of the tray portion 21 of the .
  • the components EC supplied to the mounting surface 21a of the tray portion 21 of the component mounting portion 20 according to the conveying distance of the endless belt 32a are spread outward from the center of the mounting surface 21a of the tray portion 21.
  • the component diffusion section 22 of the component placement section 20 operates during the component supply process or after the component supply is stopped, and the component EC supplied to the placement surface 21a of the tray section 21 is diffused by the vibration from the component diffusion section 22. be. That is, the components EC supplied from the component supply means 30 to the placement surface 21a of the tray portion 21 of the component placement portion 20 are in a scattered state on the placement surface 21a of the tray portion 21, and the vibration from the component diffusion portion 22 causes the components EC to be dispersed.
  • the scattered state means a state in which each suction nozzle 52 of the component holding/inserting means 50 can hold the components on the mounting surface 21a of the tray portion 21 of the component mounting portion 20 without any trouble.
  • the components EC dropped and supplied from the conveying end 32a2 of the endless belt 32a to the center of the mounting surface 21a of the tray section 21 are appropriately scattered on the mounting surface 21a.
  • the component diffusion portion 22 may be omitted.
  • the placement surface of the tray unit 21 Since the component placement unit 20 is shared by components EC of various sizes, in order to place the components EC supplied to the placement surface 21a of the tray unit 21 in a scattered state, the placement surface of the tray unit 21 has It is necessary to vary the number of supplied parts EC according to the size of the parts EC.
  • the component EC is an electronic component having a rectangular parallelepiped shape. Thickness)
  • the reference dimension range is 0.2 mm to 2.5 mm
  • the area where the smallest component (0.4 mm ⁇ 0.2 mm ⁇ 0.2 mm) contacts the mounting surface 21a of the tray part 21 is Since the largest part EC (3.2 mm x 2.5 mm x 2.5 mm) is 1/100 (calculated) of the area in contact with the mounting surface 21a of the tray part 21, in order to secure the scattered state, , it is necessary to reduce the number of parts EC of the largest size to be supplied with respect to the number of parts EC of the smallest size.
  • the size (height dimension and width dimension) of the outlet 31a of the component storage section 31 is set to the size of the largest component (3.2 mm x 2.5 mm x 2.5 mm), such as 10 mm x 10 mm or 5 mm x 5 mm. That is, if the size of the outlet 31a is matched to the largest size component EC, the smallest size component EC (0.4 mm ⁇ 0.2 mm ⁇ 0.2 mm) may be led out from the outlet 31a in an overlapping state. get higher Moreover, since the directions of the components EC accommodated in the component accommodation section 31 are random, the number of the components EC led out from the outlet 31a at once varies subtly regardless of the size of the components.
  • the optimal number of components to be supplied to the placement surface 21a of the tray portion 21 of the component placement unit 20 for each size of the component EC is determined by preliminary experiments. be determined in advance. Further, the conveying distance of the endless belt 32a for supplying the optimum number of parts to the mounting surface 21a of the tray part 21 is determined in advance for each size of the parts EC. Then, it is necessary to store the transport distance by size (when the motor 32b1 rotates at a constant speed, the operation time by size can be substituted) in the storage unit 104 (see FIG. 10) before operation.
  • the component supply means 30 uses the endless belt 32a as the component supply unit 32, but the component supply unit 32 uses a vibrating linear feeder capable of exhibiting the same conveying function. is also possible.
  • the component information acquisition means 40 includes a first imaging section 41 (see FIG. 10) incorporating an imaging element such as CMOS or CCD and an optical system. Further, the component information acquisition means 40 recognizes position information (XY coordinates of the center of each component) and dimension information of each component EC scattered on the component placement unit 20 from the image obtained by the first imaging unit 41. It has a first image processing unit 42 (see FIG. 10) that can be used.
  • the first imaging section 41 functions as a component imaging section
  • the first image processing section 42 functions as a component image processing section. The position information and dimension information of each part are included in the part information.
  • the size of the component EC on the mounting surface 21a is smaller than the number of pixels (resolution) of the first imaging unit 41, and the position information and dimension information of the component EC cannot be obtained appropriately.
  • the area of the mounting surface 21a can be divided into a plurality of regions, and the first imaging section 41 can capture an image for each region.
  • the component placement section 20 is appropriately moved so that the area to be imaged is positioned directly below the first imaging section 41 . This makes it possible to take advantage of the number of imaging pixels of the first imaging section 41 to perform more accurate measurements and collect information.
  • the dimensions of the component EC are its length l and width w or thickness t (see FIGS. 8(A-1) and 8(A-2)). The length l, width w and thickness t of the component EC will be explained later.
  • the first imaging unit 41 has its upper surface connected to the second table 12a, and can move to the parts information acquisition location P2 shown in FIG. 1 in conjunction with the second table 12a. That is, the first imaging unit 41 can image the scattered components EC on the component placement unit 20 from above at the component information acquisition location P2.
  • the position information and dimension information of the component EC recognized by the first image processing unit 42 are stored in the storage unit 104 (see FIG. 10).
  • the component holding/inserting means 50 functions as part of the component inserting means, and as shown in FIG. 1 and FIGS. .
  • the head portion 51 is provided with a plurality of suction nozzles (16 in the drawing, hereinafter referred to as suction nozzles 52 ) as a plurality of component holding portions 52 and a head rotating portion 53 capable of rotating the head portion 51 .
  • the head unit 51 is also provided with a nozzle lifting unit 55 capable of individually raising and lowering the suction nozzles 52 and a nozzle rotating unit 56 capable of individually rotating the suction nozzles 52 .
  • the angular interval between the centers of the suction nozzles 52 is 22.5 degrees, and the distance between each center and the rotation center of the head section 51 is the same.
  • the head rotating section 53 has a motor 53a (see FIG. 10) provided on the upper surface of the second table 12a.
  • the shaft 53b of the motor 53a is connected to the center of the upper surface of the head rotating portion 53 through the cylindrical hole 12a1 of the second table 12a (see FIG. 5A). That is, the component holding/inserting means 50 can move to the component information acquisition location P2, the component orientation recognition location P3, and the component insertion location P4 shown in FIG. 1 in conjunction with the second table 12a. Further, the head rotation section 53 can rotate the head section 51 clockwise and counterclockwise when viewed from the top by forward and reverse rotation of the motor 11b.
  • the center of the component holding/inserting means 50 interlocked with the second table 12a is separated in the X direction from the center of the component information acquiring means 40 connected to the same second table 12a.
  • the component orientation recognition location P3 is a location predetermined by the XY coordinates on the XY plane, and the Y direction coordinate value of the center of the component orientation recognition location P3 is the same as the Y direction coordinate value of the center of the component information acquisition location P2.
  • a component insertion location P4 is a location along the X direction common to each of the carrier tapes CT1 to CT3.
  • the second table 12a can change its position relative to each of the carrier tapes CT1 to CT3 by moving the tape feeding means table 70a along the Y direction, as will be described later. Specifically, on the base plate BP, the center of one of the 16 suction nozzles 52 of the component holding/inserting means 50 intersects the guide hole 92a into which the component EC is to be inserted at the component insertion location P4 in top view. It can be moved to the position P4a where it is located (see FIG. 6(A)).
  • Each suction nozzle 52 has a nozzle support portion 52a and a rotation restricting portion 52b, which are larger in outer shape than the suction nozzle 52, integrally or separately, and is arranged in a cylindrical nozzle holder 54 so that it can be raised and lowered (see FIG. 5 ( C)). Further, the nozzle support portion 52a is positioned so as to be able to move up and down in the cylindrical hole 54a in the lower portion of the nozzle holder 54, and the rotation restricting portion 52b is positioned so as to be able to move up and down within the nozzle holder 54 and is prevented from rotating.
  • the suction holes of each suction nozzle 52 are supplied with negative pressure and positive pressure from an air supply source 105 (see FIG.
  • each suction nozzle 52 is arranged in a state in which it is only possible to move up and down in each nozzle holder 54.
  • a negative pressure By applying a negative pressure, it is possible to hold a component at its lower end, and it is possible to remove the component in an extremely short time.
  • the holding of the part EC can be released by applying a positive pressure to break the vacuum.
  • the nozzle elevating unit 55 has a servomotor 55a provided on the upper surface of each nozzle holder 54, and a rod 55b provided movably in the axial direction by the servomotor 55a moves through a cylindrical hole 54b in the upper part of the nozzle holder 54. contact with the center of the upper surface of the rotation restricting portion 52b of the suction nozzle 52 (see FIG. 5C).
  • each servomotor 55a can lower and raise the rod 55b by means of a gear mechanism.
  • the unit (see FIG. 5C, reference numerals omitted) including the suction nozzle 52, the nozzle holder 54, and the nozzle elevating section 55 is attached to the head section 51.
  • the lower part of the nozzle holder 54 is rotatably arranged in cylindrical holes 51a provided at equal angular intervals (22.5 degree intervals in the drawing) around the lower surface in a state in which the lower part protrudes downward.
  • the nozzle rotating part 56 includes a motor 56a (see FIG. 10) arranged in the head part 51 corresponding to each unit, a gear 56c connected to a shaft 56b of the motor 56a, and an upper part of the nozzle holder 54 of each unit. It has an external gear-shaped concave-convex portion 54c provided on the outer surface and meshed with the gear 56c (see FIG. 5(B)). That is, each nozzle rotating part 56 can rotate the suction nozzle 52 in the clockwise direction and the counterclockwise direction when viewed from above by forward and reverse rotation of the motor 56a.
  • the component orientation recognizing means 60 includes, as shown in FIG. 1, a second imaging section 61 (see FIG. 10) containing an imaging element such as CMOS or CCD and an optical system.
  • the component orientation recognizing means 60 also uses the image obtained by the second imaging section 61 to determine the orientation of each of the components held by the suction nozzles 52 of the component holding and inserting means 50, specifically the Y direction. It has a second image processing unit 62 (see FIG. 10) capable of recognizing the component angle ⁇ (see FIG. 18A) or the component angle (not shown) with respect to the X direction as component orientation information. is doing.
  • the second image processing unit 62 also recognizes the amount of deviation (Y direction and X direction) between the center of the component EC held by the suction nozzle 52 and the center of the suction nozzle 52 together with the direction of the component EC.
  • the second imaging unit 61 has its lower surface connected to the base plate BP and is arranged at the component orientation recognition location P3 shown in FIG. That is, the second imaging unit 61 can image the held components held by the suction nozzles 52 of the component holding/inserting means 50 from below at the component orientation recognition location P3.
  • the direction information of the component EC recognized by the second image processing unit 62 and the information on the amount of deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 are stored in the storage unit 104 (see FIG. 10). be done.
  • the tape feeding means 70 is provided separately from the base plate BP.
  • the tape feeding means 70 is installed on a tape feeding means table 70a provided above the base plate BP.
  • the tape feeding means table 70a is mounted on a rail portion 70b laid so as to extend along the Y direction on the base plate BP. Thereby, the tape feeding means 70 can move along the Y direction. As a result, the relative positional relationship between the tape feeding means 70 and the base plate BP can be changed.
  • the illustration and detailed description of the driving section for moving the tape feeding means table 70a on the rail section 70b are omitted.
  • the tape feeding means 70 includes a pair of reel support portions 71 spaced apart in the Y direction, a shaft 72 supported by the pair of reel support portions 71, and projecting portions at both ends of the shaft 72. It has a cap 73 for fixing the shaft.
  • Figure 1 depicts three carrier tapes CT1 to CT3 (see Figure 2).
  • the shaft 72 is provided with a supply reel TR1 around which the carrier tape CT1 is wound, a supply reel TR2 around which the carrier tape CT2 is wound, and a supply reel TR3 around which the carrier tape CT3 is wound. These are rotatably and detachably arranged via a spacer ring 74 .
  • each of the supply reels TR1 to TR3 can be replaced.
  • each of the carrier tapes CT1 to CT3 wound around each of the supply reels TR1 to TR3 is unwound from each of the supply reels TR1 to TR3 with each pocket CTa facing upward.
  • the tape feeding means 70 includes three tape guides 75 to 77 provided at the component insertion place P4 and three carrier tapes CT1 to CT3 on each of the tape guides 75 to 77 which can be intermittently moved in the +Y direction. and a tape feeding section (not shown).
  • Each of the tape guides 75-77 has grooves 75a-77a corresponding to the width W of each of the carrier tapes CT1-CT3.
  • motors 78a1, 78b1 and 78c1 capable of rotating the sprockets.
  • the tape guides 75 to 77 guide the carrier tapes CT1 to CT3 unwound from the supply reels TR1 to TR3 by the operation of the motors 78a1, 78b1, and 78c1 of the tape feeding units, and the tape guides 75 to 77 guide the carrier tapes CT1 to CT3. can be intermittently moved in the +X direction at a pitch Pa of .
  • the tape feeding means 70 has, in addition to the above, three cover tape attachment portions (not shown) provided at positions separated in the +X direction from the component insertion location P4.
  • Each cover tape attachment section includes three cover tape supply reels (not shown) capable of supplying cover tapes that can be thermocompressed corresponding to the width of each of the carrier tapes CT1 to CT3, and cover tapes from the respective cover tape supply reels. and movable heater portions 78a2, 78b2, 78c2 (see FIG. 10) that can be attached to the respective carrier tapes CT1 to CT3 by thermocompression.
  • the cover tapes are attached to the carrier tapes CT1 to CT3 after inserting the component intermittently moving in the +X direction to close the respective pockets CTa. be able to.
  • the tape feeding means 70 has, in addition to the above, three tape winding units (not shown) provided at positions separated from the tape guides 75 to 77 in the +Z direction.
  • Each tape take-up unit has three take-up reels (not shown) capable of taking up each of the carrier tapes CT1 to CT3 (component storage tapes) after the components have been inserted and the cover tape attached, and each take-up reel.
  • winding motors 78a3, 78b3, and 78c3 that can rotate in any direction.
  • the carrier tapes CT1 to CT3 (component storage tapes) to which the cover tape has been attached after the components have been inserted can be wound onto the respective winding reels. .
  • the pocket information acquisition means 80 includes a third imaging section 81 (see FIG. 10) incorporating an imaging element such as CMOS or CCD and an optical system. Further, the pocket information acquiring means 80 selects a third image processing section 82 (see FIG. 10) capable of recognizing information about the dimensions of the pockets CTa provided on the carrier tapes CT1 to CT3 from the image obtained by the third imaging section 81. have.
  • the third imaging section 81 functions as a pocket imaging section
  • the third image processing section 82 functions as a pocket image processing section.
  • the dimensional information of each pocket CTa is included in the pocket information together with information on the arrangement order of the pockets CTa.
  • the dimensions of the pocket CTa are its length Lc and width Wc (see FIG. 8(B)). The length Lc and width Wc of the pocket CTa will be explained later.
  • the upper surface of the third imaging section 81 is connected to a supporting section (not shown) extending from the base plate BP, and can be moved onto the tape guides 75-76 in conjunction with the base plate BP. As a result, the third imaging section 81 can move above the tape guide being used among the tape guides 75 to 78 . Then, the third imaging section 81 can image the pocket CTa provided on the carrier tape fed by the tape feeding means 70 from above.
  • the dimension information and the arrangement order information of the pockets CTa recognized by the third image processing section 82 are stored in the storage section 104 (see FIG. 10).
  • the parts guide means 90 includes a motor 91 , an eccentric cam 91 a and a guide plate 92 .
  • the motor 91 and the eccentric cam 91a correspond to the vibrating section.
  • a component guide means 90 is provided for each of the tape guides 75-77. 1 and 6A, the guide plate 92 is provided with guide holes 92a corresponding to the pockets CTa provided in the carrier tape CT1.
  • the dimension of the guide hole 92a is slightly larger than the dimension of the pocket CTa.
  • the guide plate 92 is prepared in correspondence with the target carrier tape. That is, the arrangement pitch and dimensions of the guide holes 92a are provided corresponding to the pockets CTa of the carrier tape.
  • 6A and 6B illustrate the tape guide 75 for guiding the carrier tape CT1, and show the guide plate 92 corresponding to the carrier tape CT1.
  • the case of inserting the component EC into the pocket CTa of the carrier tape CT1 will be described, but the same applies to the case of inserting the component EC into the carrier tape CT2 or CT3.
  • the guide hole 92a is provided for smoothly inserting the component EC into the pocket CTa.
  • the component EC is once inserted into the guide hole 92a and then stored in the pocket CTa.
  • the guide plate 92 is provided with a plurality of guide holes 92a.
  • eleven guide holes 92a are provided along the X direction, and three rows of these are provided along the Y direction.
  • the number and arrangement of the guide holes 92a are not limited to this, and can be set as appropriate.
  • the number of guide holes 92a arranged in a row may be set according to the number of suction nozzles 52 (16 in this embodiment).
  • the guide plate 92 is arranged so as to be slidable on the surface of a support plate 95 (not shown in FIGS. 1, 13, etc.) provided on a support portion (not shown) that supports the tape feeding means 70 .
  • the support plate 95 is arranged on the side of the tape guide 75 .
  • the guide plate 92 is provided movably in a direction (Y direction) perpendicular to the feeding direction (X direction) of the carrier tape CT1.
  • the guide plate 92 can be moved in the Y direction by drive motors 93 arranged on both sides thereof.
  • the guide hole 92a is a through hole, since the guide plate 92 is arranged so as to slide on the support plate 95, the component EC inserted into the guide hole 92a does not fall off and passes through the guide hole 92a. can stay inside.
  • the component EC is inserted into the guide hole 92a by the suction nozzle 52 at the component insertion position P4.
  • the guide plate 92 is moved in the +Y direction by the drive motor 93 in a state in which the parts EC are inserted into all the guide holes 92a for one row along the X direction.
  • the component EC moves onto the pocket CTa of the carrier tape CT1 and is housed in the pocket CTa.
  • Guide plates 92 and support plates 95 are similarly provided for the tape guides 76,77.
  • the motor 91 and the eccentric cam 91a are provided to vibrate the tape guide 75 and shake down the component EC inserted into the guide hole 92a to store it in the pocket CTa.
  • the eccentric cam 91 a is attached to the tape guide 75 .
  • the rotating shaft of the motor 91 is connected to the eccentric cam 91a at a position deviated from its center point.
  • the eccentric cam 91a of this embodiment imparts vibrations to the tape guide 75 in the X direction, the Y direction, and the direction perpendicular thereto (Z direction).
  • the amplitude of the eccentric cam 91a is set so that the position of the inner wall of the pocket CTa approximately coincides with the position of the inner wall of the guide hole 92a, which is set to be one size larger than the pocket CTa. As a result, it is possible to prevent the component EC from being sandwiched between the guide plate 92 and the carrier tape CT1 and being damaged. Motors 91 and eccentric cams 91a are similarly equipped in the tape guides 76,77.
  • the tape guide 75 is provided with a groove 75a in which the carrier tape CT1 is arranged and a recess 75b into which the pocket CTa can enter.
  • a magnet 75c is arranged in the recess 75b. If the component EC contains a ferromagnetic material, the magnetic force of the magnet 75c can adjust the posture of the component EC. Thereby, the component EC can be accommodated in the pocket CTa in a correct posture.
  • FIG. 7A showing an enlarged view of FIG. 6B and FIG. 7B showing separated components laminated on the tape guide 75
  • the tape guide 75 and the carrier tape CT1 A separator 94 is arranged between the .
  • the separator 94 is arranged so as to cover the carrier tape CT1, and is provided so that the guide plate 92 does not come into direct contact with the carrier tape CT1 and the moving guide plate 92 does not damage the carrier tape CT1.
  • the separator 94 is provided with an opening 94a.
  • the size of the opening 94a is larger than the size of the guide hole 92a and the size of the opening of the pocket CTa, and is set so as not to interfere with the insertion of the component EC into the pocket CTa.
  • a lift detection sensor 96 for detecting lift of the guide plate 92 is provided on the side of the tape guide 75 . If the component EC is not properly inserted into the pocket CTa and the carrier tape CT1 is transported in this state, the guide plate 92 will ride on the component EC that has not been inserted and float up. A lift detection sensor 96 detects such lift of the guide plate 92 . When the lift detection sensor 96 detects that the guide plate 92 is lifted, it is possible to take measures to temporarily stop the operation of the taping apparatus 1000 . This makes it possible to cope with the insertion failure of the component EC into the pocket CTa.
  • the floating detection sensor 96 is also provided in the tape guide 76 and the tape guide 77 in the same manner.
  • the width and length of the component EC are w and l, respectively.
  • the length of the diagonal line on the plane where the width w and the length l of the part EC appear is d2.
  • the thickness (height) of the component EC is t.
  • the length of the diagonal line on the plane where the width w and thickness t of the component EC appear is d1.
  • the width and length of the opening of the pocket CTa are Wc and Lc, respectively.
  • the width Wc of the opening of the pocket CTa is the dimension along the X direction
  • the length Lc of the opening of the pocket CTa is the dimension along the Y direction.
  • the width and length of the opening of the guide hole 92a are Wg and Lg, respectively.
  • the width Wg of the opening of the guide hole 92a is the dimension along the X direction
  • the length Lg of the opening of the guide hole 92a is the dimension along the Y direction.
  • the dimensions of the guide hole 92a and the dimensions of the component EC are set to satisfy the following conditions.
  • Wg (min) is the minimum width assumed when considering tolerances that may occur when creating the guide hole 92a.
  • d1(max) is the maximum diagonal length assumed when considering the tolerances that can occur when manufacturing the part EC.
  • Wg(max) is the maximum width assumed when taking into consideration tolerances that may occur when creating the guide hole 92a.
  • Lg (min) is the minimum width assumed when considering tolerances that may occur when creating the guide hole 92a.
  • d2(max) is the maximum diagonal length assumed when considering the tolerance that can occur when manufacturing the part EC.
  • Lg(max) is the maximum length assumed when considering the tolerance that may occur when creating the guide hole 92a.
  • l(min) is the minimum length assumed when considering tolerances that may occur when manufacturing the part EC.
  • the minimum width assumed when considering tolerances that may occur when manufacturing the component EC is written as w (min).
  • the component EC can be inserted into the guide hole 92a according to conditions (1) and (2).
  • Condition (3) prevents the part EC from being caught in the guide hole 92a in the width direction even if the part EC rotates about the center axis AXy.
  • Condition (4) prevents the central axis AXy of the component EC from being inclined by an angle of A° (for example, 30°) or more with respect to the Y direction, thereby preventing the component EC from being sandwiched in the guide hole 92a in its width direction. be.
  • for example, 30°
  • Condition (5) prevents the part EC from being caught in the guide hole 92a in its longitudinal direction even if the part EC rotates around the center axis AXz.
  • the parts EC can be inserted one by one into the guide hole 92a.
  • the condition (7) and the condition (8) facilitate the operation of inserting the component EC, which is to be finally inserted into the pocket CTa, into the guide hole 92a and then moving it into the pocket CTa.
  • the relationship between the dimension of the component EC and the dimension of the pocket CTa is w ⁇ Wc and l ⁇ Lc.
  • these numerical values are designed values, but there is a possibility that the relationship between the two may vary due to tolerances that may occur when manufacturing the component EC and tolerances that may occur when forming the pocket CTa. . If the dimension of the component EC is relatively large with respect to the dimension of the pocket CTa, it is assumed that the component EC will not be inserted or will be difficult to insert. Conversely, if the dimension of the component EC is relatively small with respect to the dimension of the pocket CTa, it is assumed that the component EC rotates within the pocket CTa and cannot be picked up by the chip mounter. In order to avoid these situations, the present embodiment performs matching between the component EC and the pocket CTa. This matching will be explained in detail later.
  • the setting of the intervals between the parts when the component EC is inserted into the guide hole 92a by the suction nozzle 52 will be described.
  • the interval g1 shown in FIG. 9A will be described.
  • the interval g1 is the distance between the lower surface of the component EC lowered for insertion into the guide hole 92a and the upper surface of the carrier tape CT1. By providing the gap g1, damage to the component EC and the carrier tape CT1 can be avoided.
  • the interval g2 shown in FIG. 9B will be explained.
  • the interval g2 is the distance between the upper surface of the guide plate 92 and the lower end surface of the suction nozzle 52 lowered to insert the component EC into the guide hole 92a.
  • the gap g2 By providing the gap g2, it is possible to avoid damage to the suction nozzle 52 and the guide plate 92, and to avoid misalignment of the guide plate 92.
  • the interval g3 shown in FIG. 9B will be explained.
  • the interval g3 is the distance between the lower end surface of the suction nozzle 52 lowered to insert the component EC into the guide hole 92a and the inner bottom surface of the pocket CTa.
  • the interval g3 is set so that the relation with the diagonal length d2 (see FIG. 8A-1) of the component EC satisfies g3>d2.
  • the component EC is sandwiched between the inner bottom surface of the pocket CTa and the suction nozzle 52 even if the component EC is inserted in a state in which the length direction and the direction in which the diagonal line extends are substantially aligned with the vertical direction. state can be avoided.
  • the width Wg and the length Lg as design values of the guide hole 92a in this embodiment will be described.
  • the width Wg is a dimension B is set to Wg(max).
  • the width Wg of the guide hole 92a as a design value is set so that the width in consideration of tolerance is Wg(max).
  • the length Lg as a design value is the difference between the length Lg (max) considering the tolerance and the minimum value Lc (min) assumed as the length of the pocket CTa, which is the width Wg ( max) and the minimum value Wc (min) assumed as the width of the pocket CTa.
  • the control system of the taping apparatus 1000 includes, as shown in FIG. A storage unit 104 for storing data, and the memory of the main control unit 101 or the storage unit 104 stores an operation control program.
  • the main control unit 101 functions as combination information generating means. That is, the main control unit 101 generates combination information as to which component EC is to be inserted into which pocket CTa based on the component information stored in the storage unit 104 and the pocket information. Then, the main control section 101 operates the component holding/inserting means 50 based on this combination information. Note that the other control system elements and their functions shown in FIG. 10 are the same as described above, so description thereof will be omitted.
  • FIG. 11 to 18 a taping method using the taping apparatus 1000 will be described with reference to FIGS. 11 to 18 and 1.
  • FIG. 11 to 18 a taping method using the taping apparatus 1000 will be described with reference to FIGS. 11 to 18 and 1.
  • product numbers, model numbers, etc. can be used for the types of parts and carrier tapes.
  • the input data be in a format in which the type of carrier tape and the transport distance for each size are associated with each size of the component.
  • the operator uses the input unit 102 and the display unit 103 of the control system to input the actual operating conditions and store them in the storage unit 104 (see steps S111 and S112 in FIG. 11(B)).
  • the operator uses the input unit 102 and the display unit 103 of the control system to input the actual operating conditions and store them in the storage unit 104 (see steps S111 and S112 in FIG. 11(B)).
  • the component EC corresponding to the carrier tape CT1 the arrangement position of the carrier tape CT1 (uppermost in FIG. 1), the number of components to be inserted, and the order of insertion are input.
  • the insertion order is the order in which the carrier tapes CT1 to CT3 are inserted.
  • the arrangement position (the center in FIG. 1) of the carrier tape CT2, the number of components to be inserted, and the order of insertion are input.
  • the arrangement position (lowest in FIG. 1) of the carrier tape CT3, the number of components to be inserted, and the order of insertion are input.
  • the operating conditions in this embodiment are as follows.
  • the component EC is inserted first into the carrier tape CT1, and the number of insertions is 10000 pieces.
  • the insertion of the component EC into the carrier tape CT2 is the second, and the number of insertions is 5000 pieces.
  • the insertion of the component EC into the carrier tape CT3 is the third, and the number of insertions is 500 pieces.
  • the input unit 102 and display unit 103 of the control system are used to start operation based on the operating conditions described above.
  • the component supply section 32 of the component supply means 30 operates to supply the optimum number of components to the component placement section 20 at the component supply location P1. are supplied, and the components EC supplied to the component placement section 20 are spread by the operation of the component spreading section 22 (see steps S121 to S123 in FIG. 11C). It should be noted that the operation of the component spreading section 22 is not necessary if the components EC after being supplied are properly scattered even if the component spreading section 22 is not operated.
  • the Y-direction moving unit 11 moves the component placement unit 20 to the component information acquisition location P2 as shown in FIG. Then, the components EC scattered on the component placement section 20 are imaged from above by the first imaging section 41 of the component information acquisition means 40 located at the component information acquisition location P2. Then, the first image processing unit 42 recognizes the position information and dimension information of each of the components EC scattered on the component mounting unit 20 from the image obtained by the first imaging unit 41, and stores them in the storage unit 104 (FIG. 12). See steps S131 to S133 in (A)).
  • each pocket CTa provided in the carrier tape CT1 is imaged from above by the third imaging section 81 included in the pocket information acquisition means 80 .
  • the dimension information of each pocket CTa is recognized by the third image processing unit 82 from the image obtained by the third imaging unit 81, and stored in the storage unit 104 (see steps S134 and S135 in FIG. 12B).
  • the dimension information also includes arrangement order information of each pocket CTa. For example, as shown in FIG.
  • the main control unit 101 selects a combination of the component EC and the pocket CTa based on the dimension information of the component EC included in the component information stored in the storage unit 104 and the dimension information of the pocket CTa included in the pocket information. do. For example, if the dimensions of the component EC1 and the dimensions of the pocket CTa1 shown in FIG. 14 are compatible, they are combined. Similarly, if the dimensions of the part EC2 and the dimensions of the pocket CTa2 match, they are combined. Other components EC and pocket CTa are also combined in the same manner.
  • the conformity between the dimension of the component EC and the dimension of the pocket CTa is determined whether the component EC can be inserted into the pocket CTa and a suitable clearance is maintained so that the component EC does not rotate within the pocket CTa. determined by whether
  • the combination information also includes holding order information as to which suction nozzle 52 holds which component EC among the plurality of suction nozzles 52 included in the component holding/inserting means 50 .
  • the suction nozzle 52 that has picked up the component EC1 is linked so as to insert the component EC1 into the pocket CTa1.
  • the suction nozzles 52 are distinguished as suction nozzles 52-1, 52-2, . . . (see FIG. 5(D)).
  • the component EC1 to be inserted into the pocket CTa1 shown in FIG. 14 is held by the suction nozzle 52-1.
  • the component EC2 to be inserted into the pocket CTa2 is held by the suction nozzle 52-2.
  • the retention order information is generated in a similar manner.
  • the combination information generated in this way is stored in the storage unit 104 (see steps S136 to S139 in FIG. 12(C)).
  • the X-direction moving unit 12 moves the component holding/inserting means 50 to the component information acquisition location P2. Then, based on the holding order information included in the combination information stored in step S139, the parts EC included in the combination information are sequentially placed among the scattered parts EC on the component placement unit 20 at the part information acquisition location P2. It is held by each suction nozzle 52 of the holding and inserting means 50 (see steps S141 to S143 in FIG. 12(D)).
  • the component holding method in step S143 will be supplemented.
  • the component EC to be inserted into the pocket CTa is once inserted into the guide hole 92 a of the guide plate 92 .
  • the number of guide holes 92a provided in the guide plate 92 of this embodiment is eleven per row. Therefore, 11 suction nozzles 52 out of 16 suction nozzles 52 of the component holding/inserting means 50 are used.
  • the number of suction nozzles 52 to be used can be appropriately changed according to the number of rows of guide holes 92a. For example, when the number of guide holes 92a in one row is 16, all 16 suction nozzles 52 provided in the component holding/inserting means 50 can be used for the insertion work.
  • the X-direction moving unit 12 moves the component holding/inserting means 50 to the component orientation recognition position P3, and the second position of the component orientation recognition means 60 located at the component orientation recognition position P3 is moved.
  • the component EC held by each suction nozzle 52 of the component holding/inserting means 50 is imaged by the imaging unit 61 from below.
  • the orientation of the component EC held by each suction nozzle 52 specifically, the angle ⁇ of the component with respect to the Y direction (see FIG. 18A), Alternatively, the angle (not shown) of the component EC with respect to the X direction is recognized by the second image processing unit 62 .
  • the amount of deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 is recognized. Then, the information regarding the recognized part orientation and the amount of deviation are stored in the storage unit 104 (see steps S151 to S153 in FIG. 12E).
  • the component holding/inserting means 50 is moved to the component insertion position P4 by the X-direction moving section 12 as shown in FIG. Specifically, the component holding/inserting means 50 moves above the guide plate 92 provided on the tape guide 75 (position P4a in FIG. 6A). Then, based on the component orientation information and deviation amount information stored in step S153, the components EC held by the suction nozzles 52 of the component holding/inserting means 50 are adjusted for orientation and deviation of the center coordinates of the components EC. They are sequentially inserted into the guide holes 92a provided in the guide plate 92. As shown in FIG.
  • each component EC is inserted into a guide hole 92a provided so as to be positioned above the pocket CTa combined with the component EC held by each suction nozzle 52 .
  • the guide plate 92 is moved by the motor 3 so that the rows of the guide holes 92a into which the parts EC are inserted are positioned on the carrier tape CT1.
  • the component EC in the guide hole 92a is dropped into the pocket CTa and stored (step S161 in FIG. 12F). to S163).
  • the pocket CTa at the component insertion location P4 is intermittently moved in the +X direction by operating the tape feeding portion of the tape feeding means 70 corresponding to the carrier tape CT1. Then, the pocket CTa after the insertion of the component is closed with the cover tape by operating the cover tape adhering portion corresponding to the carrier tape CT1 of the tape feeding means 70 . Further, the operation of winding the carrier tape CT1 (component storage tape) to the take-up reel after the component is inserted and the cover tape attached is performed by the operation of the tape winding portion corresponding to the carrier tape CT1 of the tape feeding means 70 .
  • the component orientation information described above is the angle ⁇ of the component EC with respect to the X direction (see FIG. 18A)
  • the Y direction of the component EC held by the suction nozzle 52 at the suction position described above is A reference angle ⁇ is calculated based on the component orientation information.
  • the suction nozzle 52 is rotated so that the angle ⁇ becomes zero.
  • the orientation of the component EC held by the suction nozzle 52 is adjusted to match the orientation of the guide hole 92 a provided in the guide plate 92 .
  • the component EC is inserted into the guide hole 92a by adjusting the orientation and adjusting the deviation of the central coordinates of the component EC.
  • the component orientation information described above is the component angle (not shown) with respect to the X direction
  • the suction nozzle 52 is rotated so that the angle becomes 90 degrees
  • the component is held by the suction nozzle 52 .
  • the component EC can be inserted into the guide hole 92a by adjusting the direction of the component EC so as to match the direction of the guide hole 92a of the guide plate 92 and by adjusting the deviation of the center coordinates of the component EC.
  • the number of parts EC to be inserted into the carrier tape CT1 is 10,000. Therefore, when all the components EC held by the respective suction nozzles 52 of the component holding/inserting means 50 are inserted into the guide holes 92a of the guide plate 92 in step S163, the component holding/inserting means 50 returns to the part information acquisition location P2. (see Figure 15). Note that the movement of the component holding/inserting means 50 can be performed immediately after the component EC has been completely inserted into the guide hole 92a. In other words, the component holding/inserting means 50 can be moved in synchronization with the timing at which the motor 91 is operated and the tape guide 75 is vibrated. In this way, by performing different tasks in parallel, it is possible to shorten the overall task time.
  • step S133 based on the component position information stored in step S133, some of the components EC among the components EC scattered on the component placement unit 20 at the component information acquisition location P2 are again placed in the component holding/inserting means 50. It is held by each suction nozzle 52 (see steps S171 to S173 in FIG. 19A).
  • the X-direction moving unit 12 moves the component holding/inserting means 50 to the component orientation recognition location P3 (see FIG. 16). Then, the component EC held by each suction nozzle 52 of the component holding/inserting means 50 is imaged from below by the second imaging section 61 of the component orientation recognition means 60 located at the component orientation recognition location P3. Then, the orientation of the component EC held by each suction nozzle 52 and the deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 from the image obtained by the second imaging unit 61 are the second image. The component orientation and deviation information recognized by the processing unit 62 are stored again in the storage unit 104 (see steps S181 to S183 in FIG. 19B).
  • the component holding/inserting means 50 When re-recognition of the component orientation and deviation is completed, the component holding/inserting means 50 is moved to the component insertion position P4 by the X-direction moving section 12 as shown in FIG. Specifically, the component holding/inserting means 50 moves above the guide plate 92 provided on the tape guide 75 (position P4a in FIG. 6A). Then, based on the component orientation and deviation information stored in step S183, the components EC held by the suction nozzles 52 of the component holding/inserting means 50 are again sequentially inserted into the guide holes 92a of the guide plate 92. be. Each component EC is then sequentially inserted into the pocket CTa of the carrier tape CT1 (see steps S191 to S193 in FIG. 19C).
  • the number of components EC scattered on the component placement unit 20 is gradually reduced.
  • 19A to 19C are repeated a predetermined number of times, the component placement unit 20 is moved to the component supply location P1 by the Y-direction moving unit 11 (see the two-dot chain line in FIG. 17). ), the component EC is again supplied to the component placement unit 20 by the operation of the component supply unit 32 of the component supply means 30 (see steps S201 to S203 in FIG. 19D).
  • the guide holes 92a are provided in a plurality of rows, when the operations of FIGS. set to target. For example, when the process of inserting the component EC into the pocket CTa and intermittently moving the carrier tape CT1 by activating the motor 91 takes a long time, using another row as an insertion target results in wasted time. can be avoided.
  • the time required for the component EC to be inserted from the guide hole 92a into the pocket CTa due to the application of vibration to the carrier tape CT1 by the motor 91 is not constant. The time required is also not constant. Thus, the operation time of each function changes depending on the situation. Efficient equipment operation is enabled by providing a plurality of rows of guide holes 92a in order to cope with such a situation.
  • the Y-direction moving unit 11 moves the component placement unit 20 to the component information acquisition location P2. Then, the components EC scattered on the component placement unit 20 are imaged from above by the first imaging unit 41 of the component information acquisition means 40 located at the component information acquisition location P2.
  • the first image processing unit 42 recognizes component information including position information and dimension information of each of the components EC scattered on the mounting unit 20 .
  • the recognized component information is stored again in the storage unit 104 (see steps S211 to S213 in FIG. 19E).
  • the component EC (5000 pieces) is inserted second into the carrier tape CT2.
  • the components EC that can be supplied by the component supply means 30 are changed from the components EC to be inserted into the carrier tape CT1 to the components EC to be inserted into the carrier tape CT2.
  • the part EC remaining in the part container 31 may be removed and a new part EC may be introduced, or the part EC may be replaced with the part container 31 containing the new part EC.
  • a method may be adopted in which the component supply means 30 is removed from the base plate BP, another component supply means 30 is arranged, and then a new component EC is put into the component storage section 31 .
  • a take-up reel can be obtained on which 5000 components EC are inserted and the carrier tape CT3 (component storage tape) wound with the cover tape is wound.
  • the taping apparatus 1000 of the present embodiment is based on component information including information on the dimensions of the component EC and pocket information including information on the dimensions of the pocket CTa, and combination information as to which component is to be inserted into which pocket. to generate Then, based on this combination information, the component EC is inserted into the pocket CTa. As a result, the component EC is inserted while maintaining an appropriate clearance with respect to the pocket CTa. As a result, a situation in which the component EC is not inserted into the pocket CTa is avoided, and the rotation of the component EC within the pocket CTa is avoided.
  • the taping device 1000 has a guide hole 92a that is larger than the pocket CTa and guides the component EC to the pocket CTa. As a result, the component EC can be easily inserted into the pocket CTa compared to inserting the component EC directly into the pocket CTa.
  • the guide plate 92 is provided movably in a direction orthogonal to the feeding direction of the carrier tapes CT1 to CT3. This facilitates the operation of once inserting the component EC into the guide hole 92a and then inserting it into the pocket CTa.
  • the guide plate 92 has a plurality of guide holes 92a arranged along the feed direction of the carrier tapes CT1 to CT3. As a result, a plurality of components EC can be inserted into the guide hole 92a at once, and thus a plurality of components EC can be inserted into the pocket CTa at a time.
  • the taping apparatus 1000 includes motors 91 and eccentric cams 91a in tape guides 75-77 on which carrier tapes CT1-CT3 are placed. As a result, the component EC inserted into the guide hole 92a can be dropped into the pocket CTa and can be easily inserted.
  • the second embodiment includes component guide means 190 instead of the component guide means 90 in the first embodiment.
  • the component guide means 190 is provided for each of the tape guides 75-77.
  • the component guide means 190 has a guide plate 192 rotatably provided on a support plate 195 .
  • the guide plate 192 is rotatably fitted in a circular recess 195a in which the support plate 195 is provided.
  • the guide plate 192 is a disc intermittently rotatable by a step motor 193 and forms an index table.
  • the guide plate 192 is provided with a plurality of guide holes 192a arranged along the direction of rotation in its peripheral portion.
  • the guide hole 192a corresponds to the guide hole 92a in the first embodiment, and has dimensions larger than the dimensions of the pocket CTa.
  • the outer peripheral portion of the guide hole 192a is open, and is closed by the inner peripheral wall surface of the recess 195a by fitting the guide plate 192 into the recess 195a.
  • a motor 91 and an eccentric cam 91a are provided in the same manner as in the first embodiment.
  • a servomotor may be employed instead of the step motor 193 to rotate the guide plate 192 .
  • the support plate 195 is provided with an opening 195b at a position overlapping the carrier tape CT1 so that the guide hole 192a and the pocket CTa can communicate with each other.
  • a component EC is inserted into the guide hole 192a.
  • the guide plate 192 rotates based on the combination information so that the guide hole 192a into which the part EC combined with the pocket CTa is inserted is positioned above the pocket CTa. If each part EC is inserted in accordance with the arrangement order of the pockets CTa combined along the rotation direction of the guide plate 192, by synchronizing the feeding of the pockets CTa and the rotation of the guide plate 192, each part EC can be inserted. It can be inserted into the desired pocket CTa.
  • the component EC is inserted with an appropriate clearance between it and the pocket CTa, as in the first embodiment.
  • the component EC is not inserted into the pocket CTa, and the rotation of the component EC within the pocket CTa is avoided.
  • the guide plate 192 By adopting the guide plate 192 forming the index table, it becomes possible to perform visual inspection of the upper and lower surfaces of the component EC, electrical characteristic inspection, and other various inspections.
  • the guide plate 192 can have a mechanism (not shown) for ejecting a component EC determined to be defective by various inspections from the guide hole 192a before the component EC reaches a position for insertion into the pocket CTa.
  • the guide plate 192 is reversely rotated to return the guide hole 192a from which the component EC was ejected to the front of the inspection station. Then, other parts EC can be compensated.
  • a third embodiment will now be described with reference to FIG.
  • the third embodiment instead of the moving means 10, the component placement section 20, the component supply means 30, the first imaging section 41, and the second imaging section 61 in the first and second embodiments, a parts feeder 230 and A fourth imaging unit 241 is provided.
  • the third embodiment includes a component guide means 190 similar to that of the second embodiment.
  • the parts feeder 230 corresponds to a parts conveying section and includes a chute 230a corresponding to a parts placing section.
  • the chute 230a is supplied with the aligned parts EC.
  • the tip of the chute 230a passes through the support plate 195 and opens to the inner peripheral wall surface of the recess 195a.
  • the tip of the chute 230a can sequentially face the guide holes 192a provided in the rotating guide plate 192.
  • the parts EC that have moved along the chute 230a in an aligned state are sequentially inserted into the guide holes 192a.
  • the function of the parts feeder 230 that feeds and moves the parts EC along the chute 230a is conventionally known, so a detailed description thereof will be omitted here.
  • a fourth imaging unit 241 is provided above the chute 230a.
  • a fourth image processing section 242 is connected to the fourth imaging section 241 .
  • the fourth imaging unit 241 images the component EC moving on the chute 230a.
  • the fourth image processing unit 242 acquires information about the dimensions of each component EC from the image obtained by the fourth image capturing unit 241, as well as its alignment order information. Information about these dimensions and alignment order information are included in the part information. Then, as in the first embodiment, combination information as to which component EC is to be inserted into which pocket CTa is generated based on the component information and the pocket information.
  • the guide plate 192 rotates based on the combination information so that the component EC inserted into the guide hole 192a is inserted into the desired pocket CTa.
  • the component EC is inserted with an appropriate clearance between it and the pocket CTa, as in the first and second embodiments.
  • the parts feeder 230 has an air discharge section 230b in the middle of the chute 230a.
  • the air discharge part 230b can blow off the parts EC that cannot be paired with the pocket CTa and eliminate them from the chute 230a.
  • the removed parts EC are returned to the parts EC return path (not shown) so that they can be aligned with the chute 230a again.
  • the guide plate 192 can have a mechanism (not shown) for ejecting a component EC determined to be defective by various inspections from the guide hole 192a before the component EC reaches a position for insertion into the pocket CTa. If there is a component EC that is determined to be defective and is to be ejected, the component EC inserted into the guide hole 192a subsequent to the ejected guide hole 192a is also ejected once. Furthermore, the components EC on standby in the chute 230a are once ejected out of the chute 230a and aligned again.
  • the alignment of the parts EC is reset, and the alignment information is obtained again. Then, the process of inserting the component EC is restarted.
  • the guide plate 192 is equipped with an air discharger (not shown) capable of discharging air toward the outside of the guide hole 192a. After that, the air discharging portion is operated.
  • Nozzle lifting section 56 ... Nozzle rotating section 60 ... Component orientation recognition means 61 ... Second imaging section 62 ... Second image processing section 70 ... Tape feeding means TR1 to TR3 Supply reel 71 Reel supporting part 75 to 77 Tape guide 80 Pocket information acquisition means 81 Third image pickup part 82 Third image processing part 90 Parts guide means 91 Motor 91a... Eccentric cam 92, 192... Guide plate 92a, 192a... Guide hole 1000... Taping device P1... Parts supply place P2... Parts information acquisition place P3... Parts orientation recognition place P4... Parts insertion place.

Abstract

This taping device sequentially inserts components in a plurality of pockets of a carrier tape, the taping device comprising: a component information acquisition means for measuring the dimensions for each of the plurality of components, and acquiring, for each component, component information including information relating to the dimensions; a pocket information acquisition means for measuring the dimensions of an opening for each of the plurality of pockets, and acquiring, for each pocket, pocket information including information relating to the dimensions; a combination information generation means for generating combination information regarding the insertion of any component into any pocket, such generation being on the basis of the component information and the pocket information; and a component insertion means for inserting a component into a pocket which was combined with the relevant component, such insertion being on the basis of the combination information generated by the combination information generation means. 

Description

テーピング装置およびテーピング方法Taping device and taping method
 本発明は、テーピング装置およびテーピング方法に関する。 The present invention relates to a taping device and a taping method.
 大量の部品を保管したり、搬送したりするために、部品収納テープが用いられることがある。部品収納テープは、ポケット(部品収納凹部)に一つずつ部品が挿入されたキャリアテープにポケット閉塞用のカバーテープを付着して形成される。従来、キャリアテープのポケットに部品を順次挿入するテーピングシステム(例えば、特許文献1参照)や、テーピング装置(例えば、特許文献2から特許文献4参照)が知られている。 Parts storage tapes are sometimes used to store and transport large quantities of parts. The component storage tape is formed by attaching a cover tape for closing the pockets to a carrier tape in which components are inserted one by one into pockets (component storage recesses). Conventionally, taping systems for sequentially inserting components into pockets of a carrier tape (see, for example, Patent Document 1) and taping apparatuses (see, for example, Patent Documents 2 to 4) are known.
特開2002-29505号公報JP-A-2002-29505 特開2006-168754号公報JP 2006-168754 A 特開2009-173305号公報JP 2009-173305 A 特開2019-218111号公報JP 2019-218111 A
 ところで、キャリアテープのポケットに部品を挿入する作業は、作業に用いられる設備の各部の工作精度や動作精度、さらには、キャリアテープのポケットの寸法精度や部品自体の寸法精度の影響を受ける。このため、部品とポケットのクリアランスを小さく設定すると、ポケットへの部品の挿入が困難となることが想定される。そこで、相対的に部品の寸法を小さくし、ポケットの寸法を大きく設定して、両者のクリアランスを大きくすれば、各種の精度のバラツキにかかわらず、部品をポケットに挿入し易くなる。しかしながら、部品とポケットとのクリアランスを大きく設定した場合、ポケットに挿入された部品がポケット内で回転してしまうことがある。部品がポケット内で回転し、所望の姿勢を維持できなくなっていると、部品実装機(チップマウンタ)による部品の取り出しに支障をきたすことが想定される。つまり、ポケットと部品とのクリアランスが狭過ぎると部品が挿入できないという問題が生じ、ポケットと部品とのクリアランスが広過ぎると部品を取り出すことができないという問題が生じ得る。このような問題は、特許文献1から特許文献4においても生じ得る。 By the way, the work of inserting a part into a carrier tape pocket is affected by the machining accuracy and operating accuracy of each part of the equipment used in the work, as well as the dimensional accuracy of the carrier tape pocket and the dimensional accuracy of the part itself. Therefore, if the clearance between the component and the pocket is set small, it is assumed that it will be difficult to insert the component into the pocket. Therefore, if the size of the component is set relatively small and the size of the pocket is set large to increase the clearance between the two, the component can be easily inserted into the pocket regardless of variations in accuracy. However, when the clearance between the component and the pocket is set large, the component inserted into the pocket may rotate within the pocket. If the component rotates in the pocket and cannot maintain a desired orientation, it is assumed that the component mounting machine (chip mounter) will interfere with picking up the component. That is, if the clearance between the pocket and the component is too narrow, the component cannot be inserted, and if the clearance between the pocket and the component is too wide, the component cannot be taken out. Such a problem may also occur in Patent Documents 1 to 4 as well.
 そこで、本発明の課題は、キャリアテープのポケットと部品との間の適正なクリアランスを確保した状態でキャリアテープのポケットに部品を挿入することができるテーピング装置およびテーピング方法を提供することにある。 Therefore, an object of the present invention is to provide a taping device and a taping method that can insert a component into a carrier tape pocket while ensuring an appropriate clearance between the carrier tape pocket and the component.
 前記課題を解決するため、本発明に係るテーピング装置は、キャリアテープが備える複数のポケットに部品を順次挿入するテーピング装置であって、複数の前記部品毎に寸法を測定し、当該寸法に関する情報を含む部品情報を部品毎に取得する部品情報取得手段と、複数の前記ポケット毎に開口部の寸法を測定し、当該寸法に関する情報を含むポケット情報をポケット毎に取得するポケット情報取得手段と、前記部品情報と前記ポケット情報とに基づいて、いずれのポケットにいずれの部品を挿入するかの組み合わせ情報を生成する組み合わせ情報生成手段と、前記組み合わせ情報生成手段によって生成された前記組み合わせ情報に基づいて、前記部品を当該部品と組み合わされた前記ポケットへ挿入する部品挿入手段と、を備える。 In order to solve the above problems, the taping device according to the present invention is a taping device that sequentially inserts components into a plurality of pockets provided on a carrier tape, wherein the dimensions are measured for each of the plurality of components, and information about the dimensions is obtained. pocket information acquisition means for acquiring, for each component, the component information including the combination information generating means for generating combination information indicating which part to insert into which pocket based on the component information and the pocket information; and based on the combination information generated by the combination information generating means, component inserting means for inserting the component into the pocket associated with the component.
 上記構成のテーピング装置において、前記部品情報取得手段は、部品載置部に供給された前記部品を撮像する部品撮像部と当該部品撮像部で得た画像から前記部品載置部に供給された前記部品の前記部品情報を取得する部品画像処理部を備えた態様とすることができる。 In the taping apparatus configured as described above, the component information acquisition means includes a component imaging unit that captures an image of the component supplied to the component placement unit, and the image that is supplied to the component placement unit from the image obtained by the component imaging unit. A mode may be provided in which a component image processing unit acquires the component information of the component.
 また、上記構成のテーピング装置において、前記部品撮像部は、前記部品載置部上に供給された複数の前記部品を撮像し、前記部品画像処理部は、前記部品載置部上に供給された複数の前記部品の前記寸法に関する情報とともに前記部品情報に含まれる当該部品の位置情報を取得する態様とすることができる。 Further, in the taping apparatus configured as described above, the component imaging unit captures an image of the plurality of components supplied onto the component placement unit, and the component image processing unit captures images of the components supplied onto the component placement unit. It is possible to adopt a mode in which position information of the part included in the part information is acquired along with the information about the dimensions of the plurality of parts.
 さらに、上記構成のテーピング装置において、前記部品挿入手段は、前記位置情報に基づいて前記部品が供給されている位置まで移動して前記部品を保持する部品保持部と、前記キャリアテープが備える前記ポケットの寸法よりも大きい寸法を有し、前記部品を前記ポケットへ案内する案内孔を備え、当該案内孔が前記ポケットの上方に位置し、前記案内孔が前記ポケットと連通するように前記キャリアテープと対向可能に設けられた案内板と、を含み、前記部品保持部は、前記組み合わせ情報に基づいて、保持した前記部品と組み合わされている前記ポケットの上方に位置するように設けられた前記案内孔に前記保持した部品を挿入する態様とすることができる。 Further, in the taping apparatus configured as described above, the component insertion means includes a component holding portion that moves to a position where the component is supplied based on the position information and holds the component, and the pocket provided in the carrier tape. and has a guide hole for guiding the component to the pocket, the guide hole being positioned above the pocket, and the carrier tape being in communication with the pocket. and a guide plate provided so as to be able to face each other, wherein the component holding portion is provided with the guide hole provided so as to be positioned above the pocket combined with the held component based on the combination information. It is possible to adopt a mode in which the held component is inserted into.
 また、上記構成のテーピング装置において、前記案内板は、前記キャリアテープの送り方向と直交する方向に移動可能に設けられた態様とすることができる。 In addition, in the taping apparatus having the above configuration, the guide plate may be arranged so as to be movable in a direction orthogonal to the feeding direction of the carrier tape.
 さらに、上記構成のテーピング装置において、前記案内板は、前記キャリアテープの送り方向に沿って配列された複数の前記案内孔を備えた態様とすることができる。 Further, in the taping apparatus configured as described above, the guide plate may have a plurality of the guide holes arranged along the feeding direction of the carrier tape.
 また、上記構成のテーピング装置において、前記案内板は、回転可能に設けられた態様とすることができる。 Further, in the taping apparatus having the above configuration, the guide plate may be rotatably provided.
 さらに、上記構成のテーピング装置において、前記案内板は、回転方向に沿って配列された複数の前記案内孔を備えた態様とすることができる。 Furthermore, in the taping apparatus configured as described above, the guide plate may have a plurality of guide holes arranged along the direction of rotation.
 また、上記構成のテーピング装置において、前記部品撮像部は、前記部品載置部上に整列させて供給された複数の前記部品を撮像し、前記部品画像処理部は、前記部品載置部上に整列させて供給された複数の前記部品の前記寸法に関する情報とともに前記部品情報に含まれる当該部品の整列順情報を取得し、前記部品挿入手段は、前記部品載置部を備えるとともに、前記部品を整列順に搬送する部品搬送部と、前記キャリアテープが備える前記ポケットの寸法よりも大きい寸法を有し、前記部品を一旦保持して前記ポケットへ案内する案内孔を備え、当該案内孔が前記ポケットの上方に位置し、前記案内孔が前記ポケットと連通するように前記キャリアテープと対向可能に設けられた案内板と、を含み、前記案内板は、前記組み合わせ情報に基づいて、前記案内孔に保持した前記部品と組み合わされている前記ポケットの上方に前記案内孔を位置させるように回転する態様とすることができる。 Further, in the taping apparatus configured as described above, the component imaging unit captures images of the plurality of components that are aligned and supplied on the component placement unit, and the component image processing unit captures images of the components on the component placement unit. The component inserting means acquires the information on the dimensions of the plurality of components supplied in an aligned manner and the alignment order information of the components included in the component information, and the component insertion means includes the component placement section and inserts the components into the component. and a guide hole having a size larger than the size of the pocket provided in the carrier tape to temporarily hold the component and guide it to the pocket, and the guide hole guides the component to the pocket. a guide plate located above and provided so as to be opposed to the carrier tape so that the guide hole communicates with the pocket, the guide plate being held in the guide hole based on the combination information. The guide hole may be rotated to position the guide hole above the pocket associated with the component.
 さらに、上記構成のテーピング装置において、前記キャリアテープが設置されるテープガイドに振動部を備える態様とすることができる。 Furthermore, in the taping apparatus having the above configuration, the tape guide on which the carrier tape is installed may be provided with a vibrating portion.
 また、上記構成のテーピング装置において、ポケット情報取得手段は、前記ポケットを撮像するポケット撮像部と当該ポケット撮像部で得た画像から前記ポケットの前記ポケット情報を取得するポケット画像処理部を備えた態様とすることができる。 Further, in the taping apparatus configured as described above, the pocket information acquiring means includes a pocket imaging section for imaging the pocket and a pocket image processing section for acquiring the pocket information of the pocket from the image obtained by the pocket imaging section. can be
 前記ポケット情報は、順次送られる前記ポケットの並び順を示す並び順情報を含む態様とすることができる。 The pocket information may include arrangement order information indicating the arrangement order of the pockets that are sent in sequence.
 また、前記課題を解決するため、本発明に係るテーピング方法は、キャリアテープが備える複数のポケットに部品を順次挿入するテーピング方法であって、部品情報取得手段によって、複数の前記部品毎に寸法を測定し、当該寸法に関する情報を含む部品情報を部品毎に取得する工程と、ポケット情報取得手段によって、複数の前記ポケット毎に開口部の寸法を測定し、当該寸法に関する情報を含むポケット情報をポケット毎に取得する工程と、組み合わせ情報生成手段によって、前記部品情報と前記ポケット情報とに基づいて、いずれのポケットにいずれの部品を挿入するかの組み合わせ情報を生成する工程と、部品挿入手段によって、前記組み合わせ情報生成手段によって生成された前記組み合わせ情報に基づいて、前記部品を当該部品と組み合わされた前記ポケットへ挿入する工程とを備える。 Further, in order to solve the above problems, a taping method according to the present invention is a taping method for sequentially inserting components into a plurality of pockets provided on a carrier tape, wherein dimensions are determined for each of the plurality of components by component information acquisition means. a step of measuring and acquiring part information including information on the dimensions for each part; a step of generating combination information indicating which component is to be inserted into which pocket based on the component information and the pocket information by a combination information generation means; and a step of component insertion means, and inserting the component into the pocket combined with the component based on the combination information generated by the combination information generating means.
 上記構成のテーピング方法において、前記部品情報を部品毎に取得する工程は、前記部品情報取得手段が備える部品撮像部によって部品載置部に供給された前記部品を撮像する工程と、前記部品情報取得手段が備える部品画像処理部によって前記部品撮像部で得た画像から前記部品載置部に供給された前記部品の前記部品情報を取得する工程と、を含む態様とすることができる。 In the taping method configured as described above, the step of acquiring the component information for each component includes a step of capturing an image of the component supplied to the component placement unit by a component imaging unit provided in the component information acquiring means, and acquiring the component information. obtaining the component information of the component supplied to the component placement unit from the image obtained by the component imaging unit by a component image processing unit provided in the means.
 また、上記構成のテーピング方法において、前記ポケット情報をポケット毎に取得する工程は、前記ポケット情報取得手段が備えるポケット撮像部によって前記ポケットを撮像する工程と、前記ポケット情報取得手段が備えるポケット画像処理部によって前記ポケット撮像部で得た画像から前記ポケットの前記ポケット情報を取得する工程と、を含む態様とすることができる。 Further, in the taping method configured as described above, the step of acquiring the pocket information for each pocket includes a step of capturing an image of the pocket by a pocket imaging unit provided in the pocket information obtaining means, and pocket image processing provided in the pocket information obtaining means. obtaining the pocket information of the pocket from the image obtained by the pocket imaging unit.
 本明細書開示の発明によれば、キャリアテープのポケットと部品との間の適正なクリアランスを確保した状態でキャリアテープのポケットに部品を挿入することができる。 According to the invention disclosed in this specification, a component can be inserted into a pocket of the carrier tape while ensuring an appropriate clearance between the pocket of the carrier tape and the component.
図1は第1実施形態のテーピング装置の概略構成を示す上面図である。FIG. 1 is a top view showing a schematic configuration of the taping apparatus of the first embodiment. 図2(A)から図2(C)は第1実施形態のテーピング装置で使用可能なキャリアテープの一例を示す部分上面図である。FIGS. 2(A) to 2(C) are partial top views showing an example of a carrier tape that can be used in the taping apparatus of the first embodiment. 図3は図1に示す部品供給手段の拡大部分縦断面図である。3 is an enlarged partial longitudinal sectional view of the component supply means shown in FIG. 1. FIG. 図4(A)は図3に示した部品供給手段に含まれるトレイ部と部品情報取得手段に含まれる第1撮像部との位置関係を示す上面図であり、図4(B)は同トレイ部と同第1撮像部との位置関係を示す側面図である。4A is a top view showing the positional relationship between the tray section included in the component supply means shown in FIG. 3 and the first imaging section included in the component information acquisition means, and FIG. 2 is a side view showing the positional relationship between the unit and the first imaging unit; FIG. 図5(A)は図1に示した部品保持挿入手段の拡大側面図、図5(B)は図5(A)の拡大部分縦断面図、図5(C)は図5(B)の拡大部分縦断面図、図5(D)は図5(A)に示したヘッド部の拡大下面図である。5(A) is an enlarged side view of the component holding/inserting means shown in FIG. 1, FIG. 5(B) is an enlarged partial longitudinal sectional view of FIG. 5(A), and FIG. FIG. 5(D) is an enlarged partial longitudinal sectional view, and FIG. 5(D) is an enlarged bottom view of the head portion shown in FIG. 5(A). 図6(A)は第1実施形態のテーピング装置が備えるテープ送り手段に含まれるテープガイドの拡大上面図であり、図6(B)は図6(A)におけるX1-X1線断面図である。FIG. 6(A) is an enlarged top view of a tape guide included in tape feeding means provided in the taping apparatus of the first embodiment, and FIG. 6(B) is a cross-sectional view taken along the line X1-X1 in FIG. 6(A). . 図7(A)は図6(B)に示したX1-X1断面図の拡大図であり、図7(B)は図7(A)で示したテープガイドに積層される構成要素を分離して示す説明図である。FIG. 7(A) is an enlarged view of the X1-X1 sectional view shown in FIG. 6(B), and FIG. 7(B) separates the components laminated on the tape guide shown in FIG. 7(A). It is an explanatory diagram showing 図8(A-1)は部品の上面図であり、図8(A-2)は部品の正面図であり、図8(A-3)は部品がポケット内で傾いたときにポケットの幅方向に一致する方向に沿って部品が占める寸法を示す説明図である。図8(B)はキャリアテープが備えるポケットの寸法を示す説明図である。図8(C)は案内板が備える案内孔の寸法を示す説明図である。8A-1 is a top view of the part, FIG. 8A-2 is a front view of the part, and FIG. 8A-3 shows the width of the pocket when the part is tilted in the pocket. It is an explanatory view showing dimensions occupied by parts along a direction that matches the direction. FIG. 8(B) is an explanatory diagram showing the dimensions of the pocket provided in the carrier tape. FIG. 8(C) is an explanatory diagram showing the dimensions of the guide holes provided in the guide plate. 図9(A)は部品を案内孔に挿入する際の部品下端部とキャリアテープとの間のギャップg1を示す説明図であり、図9(B)は下降した吸着ノズルの下端部と案内板とのギャップg2と、下降した吸着ノズルの下端部とポケットの内底面とのギャップg3を示す説明図である。FIG. 9(A) is an explanatory view showing the gap g1 between the lower end of the component and the carrier tape when inserting the component into the guide hole, and FIG. 9(B) is the lower end of the lowered suction nozzle and the guide plate. and a gap g3 between the lower end of the lowered suction nozzle and the inner bottom surface of the pocket. 図10はテーピング装置の制御系を示す図である。FIG. 10 is a diagram showing the control system of the taping machine. 図11(A)は第1実施形態のテーピング装置の初期データ入力のフローチャート、図11(B)は第1実施形態のテーピング装置の稼働条件入力のフローチャートであり、図11(C)は第1実施形態のテーピング装置の部品供給のフローチャートである。11(A) is a flow chart for inputting initial data of the taping apparatus of the first embodiment, FIG. 11(B) is a flow chart for inputting operating conditions of the taping apparatus of the first embodiment, and FIG. It is a flowchart of parts supply of the taping apparatus of embodiment. 図12(A)は第1実施形態のテーピング装置における部品情報取得のフローチャート、図12(B)は第1実施形態のテーピング装置におけるポケット情報取得のフローチャート、図12(C)は第1実施形態のテーピング装置における組み合わせ情報生成のフローチャート、図12(D)は第1実施形態のテーピング装置における部品保持のフローチャート、図12(E)は第1実施形態のテーピング装置における部品向き認識のフローチャート、図12(F)は第1実施形態のテーピング装置における部品挿入のフローチャートである。FIG. 12(A) is a flow chart for part information acquisition in the taping apparatus of the first embodiment, FIG. 12(B) is a flow chart for pocket information acquisition in the taping apparatus of the first embodiment, and FIG. 12(C) is the first embodiment. Flowchart of combination information generation in the taping device of, FIG. 12D is a flowchart of component holding in the taping device of the first embodiment, FIG. 12E is a flowchart of component orientation recognition in the taping device of the first embodiment, FIG. 12(F) is a flow chart of component insertion in the taping apparatus of the first embodiment. 図13は図12(A)で示す部品情報取得の動作説明図である。13A and 13B are diagrams for explaining the operation of acquiring the component information shown in FIG. 12A. 図14は部品とポケットとのマッチングの一例を示す説明図である。FIG. 14 is an explanatory diagram showing an example of matching between parts and pockets. 図15は図12(D)で示す部品保持の動作説明図である。15A and 15B are diagrams for explaining the component holding operation shown in FIG. 12(D). 図16は図12(E)で示す部品向き認識の動作説明図である。16A and 16B are explanatory diagrams of the component orientation recognition operation shown in FIG. 12(E). 図17は図12(F)で示す部品挿入の動作説明図である。17A and 17B are diagrams for explaining the component insertion operation shown in FIG. 12(F). 図18(A)および図18(B)は図1に示した部品保持挿入手段の部品向き調整の動作説明図である。FIGS. 18(A) and 18(B) are explanatory diagrams for adjusting the component orientation of the component holding/inserting means shown in FIG. 図19(A)は第1実施形態のテーピング装置の部品再保持のフローチャート、図19(B)は第1実施形態のテーピング装置の部品向き再認識のフローチャート、図19(C)は第1実施形態のテーピング装置の部品再挿入のフローチャート、図19(D)は第1実施形態のテーピング装置の部品再供給のフローチャート、図19(E)は第1実施形態のテーピング装置の部品情報再取得のフローチャートである。FIG. 19(A) is a flow chart for reholding the parts of the taping device of the first embodiment, FIG. 19(B) is a flow chart of re-recognizing the component orientation of the taping device of the first embodiment, and FIG. 19(C) is the first embodiment. Flowchart of parts reinsertion of the taping device of the form, FIG. 19D is a flowchart of parts resupply of the taping device of the first embodiment, FIG. It is a flow chart. 図20は第2実施形態のテーピング装置が備える部品案内手段の周辺を示す上面図である。FIG. 20 is a top view showing the periphery of the component guide means provided in the taping apparatus of the second embodiment. 図21は第3実施形態のテーピング装置が備える部品案内手段の周辺を示す上面図である。FIG. 21 is a top view showing the periphery of the component guide means provided in the taping apparatus of the third embodiment.
(第1実施形態)
 まず、図1~図10参照し、図1に例示したテーピング装置1000の構造および制御系と、このテーピング装置1000に使用可能な部品ECとキャリアテープCT1~CT3について説明する。
(First embodiment)
First, referring to FIGS. 1 to 10, the structure and control system of the taping apparatus 1000 illustrated in FIG. 1, and the parts EC and carrier tapes CT1 to CT3 that can be used in this taping apparatus 1000 will be described.
 図1に示したテーピング装置1000は、複数種類のキャリアテープCT1~CT3のうち、取り扱う部品ECに適したポケットCTa(図2(A)から図2(C)参照)を備えたキャリアテープを選択する。そして、選択されたキャリアテープが備えるポケットCTaに部品ECを順次挿入する。テーピング装置1000は、移動手段10、部品載置部20、部品供給手段30、部品情報取得手段40、部品保持挿入手段50と、部品向き認識手段60およびテープ送り手段70を備える。テーピング装置1000は、さらに、ポケット情報取得手段80および部品案内手段90を備える。 The taping apparatus 1000 shown in FIG. 1 selects a carrier tape having a pocket CTa (see FIGS. 2A to 2C) suitable for the component EC to be handled from among multiple types of carrier tapes CT1 to CT3. do. Then, the components EC are sequentially inserted into the pocket CTa of the selected carrier tape. The taping apparatus 1000 includes a moving means 10, a component placing section 20, a component supplying means 30, a component information obtaining means 40, a component holding/inserting means 50, a component orientation recognizing means 60, and a tape feeding means . The taping apparatus 1000 further includes pocket information acquisition means 80 and component guide means 90 .
 なお、図1に示した部品ECと3本のキャリアテープCT1~CT3は後のテーピング方法の説明に合わせて描いたものであって、図1に示したテーピング装置に使用可能な部品およびキャリアテープのサイズおよび種類等を制限するものではない。 The component EC and the three carrier tapes CT1 to CT3 shown in FIG. 1 are drawn according to the explanation of the taping method later, and the components and carrier tapes that can be used in the taping apparatus shown in FIG. is not intended to limit the size and type of
<テーピング装置に使用可能な部品およびキャリアテープの説明>
 図1に示したテーピング装置1000に使用可能な部品ECの代表例は、直方体状を成す電子部品、例えばコンデンサ素子、バリスタ素子、インダクタ素子、アレイ素子、複合素子等である。無論、部品ECには、直方体状を成す電子部品以外の部品や、非直方体状の電子部品または電子部品以外の部品の使用も可能である。
<Explanation of parts and carrier tape that can be used for taping equipment>
Representative examples of the components EC that can be used in the taping apparatus 1000 shown in FIG. 1 are rectangular parallelepiped electronic components such as capacitor elements, varistor elements, inductor elements, array elements, composite elements, and the like. Of course, as the component EC, it is possible to use a component other than a rectangular parallelepiped electronic component, a non-rectangular parallelepiped electronic component, or a component other than an electronic component.
 挿入対象となる部品ECが直方体状を成す電子部品の場合のサイズは、主たる市販品を例に挙げると、長さ基準寸法の範囲が0.4mm~3.2mm、幅基準寸法の範囲が0.2mm~2.5mm、高さ(厚さ)基準寸法の範囲が0.2mm~2.5mmである。また、長さ基準寸法と幅基準寸法と高さ基準寸法の関係は、長さ基準寸法>幅基準寸法=高さ基準寸法、長さ基準寸法>幅基準寸法>高さ基準寸法、長さ基準寸法>高さ基準寸法>幅基準寸法のいずれかである。 When the component EC to be inserted is an electronic component having a rectangular parallelepiped shape, the size of the main commercial product is 0.4 mm to 3.2 mm for the length reference dimension and 0 for the width reference dimension. .2 mm to 2.5 mm, with a height (thickness) standard dimension range of 0.2 mm to 2.5 mm. In addition, the relationship between the length standard dimension, width standard dimension, and height standard dimension is: length standard dimension > width standard dimension = height standard dimension, length standard dimension > width standard dimension > height standard dimension, length standard Either dimension>height standard dimension>width standard dimension.
 図1に示したテーピング装置1000に使用可能なキャリアテープは、取り扱う部品ECを収納可能なポケットCTa(部品収納凹部)を等間隔で有するものであればよい。つまり、キャリアテープの幅とポケットCTaのサイズおよびピッチに特段の制限はなく、材質にも制限はない。 A carrier tape that can be used for the taping apparatus 1000 shown in FIG. 1 may have pockets CTa (component storage recesses) that can store the components EC to be handled at regular intervals. In other words, there are no particular restrictions on the width of the carrier tape, the size and pitch of the pockets CTa, and no restrictions on the material.
 ここで、図2(A)~図2(C)を用いて、本実施形態のテーピング装置1000が取り扱うことができるキャリアテープCT1~CT3について説明する。キャリアテープCT1~CT3は一例であり、テーピング装置1000はこれら以外のキャリアテープも取り扱うことができる。なお、各キャリアテープCT1~CT3が取り扱う部品は、そのサイズが異なるが、以下の説明では、いずれも同一の参照符号を用いている。 Here, the carrier tapes CT1 to CT3 that can be handled by the taping apparatus 1000 of this embodiment will be described with reference to FIGS. 2(A) to 2(C). The carrier tapes CT1 to CT3 are examples, and the taping apparatus 1000 can handle carrier tapes other than these. The components handled by the carrier tapes CT1 to CT3 have different sizes, but the same reference numerals are used in the following description.
 図2(A)に示したキャリアテープCT1の幅Wtは4mm、直方体状のポケットCTaのピッチPaは1mm、円状のテープ送り孔CTbのピッチPbは2mmであり、各ポケットCTaには、長さ基準寸法が0.4mmで幅基準寸法が0.2mmで高さ基準寸法0.2mmの直方体状の部品(電子部品)ECが収納可能である。 The width Wt of the carrier tape CT1 shown in FIG. 2A is 4 mm, the pitch Pa of the rectangular parallelepiped pockets CTa is 1 mm, and the pitch Pb of the circular tape feeding holes CTb is 2 mm. A rectangular parallelepiped component (electronic component) EC having a standard height of 0.4 mm, a standard width of 0.2 mm, and a standard height of 0.2 mm can be stored.
 図2(B)に示したキャリアテープCT2の幅Wtは8mm、直方体状のポケットCTaのピッチPaは1mm、円状のテープ送り孔CTbのピッチPbは4mmであり、各ポケットCTaには、長さ基準寸法が0.6mmで幅基準寸法が0.3mmで高さ基準寸法0.3mmの直方体状の部品(電子部品)ECが収納可能である。 The width Wt of the carrier tape CT2 shown in FIG. 2B is 8 mm, the pitch Pa of the rectangular parallelepiped pockets CTa is 1 mm, and the pitch Pb of the circular tape feed holes CTb is 4 mm. A rectangular parallelepiped component (electronic component) EC having a standard height of 0.6 mm, a standard width of 0.3 mm, and a standard height of 0.3 mm can be stored.
 図2(C)に示したキャリアテープCT2の幅Wtは8mm、直方体状のポケットCTaのピッチPaは2mm、円状のテープ送り孔CTbのピッチPbは4mmであり、各ポケットCTaには、長さ基準寸法が0.6mmで幅基準寸法が0.3mmで高さ基準寸法0.15mmの直方体状の部品(電子部品)ECが収納可能である。 The width Wt of the carrier tape CT2 shown in FIG. 2C is 8 mm, the pitch Pa of the rectangular parallelepiped pockets CTa is 2 mm, and the pitch Pb of the circular tape feed holes CTb is 4 mm. A rectangular parallelepiped component (electronic component) EC having a standard height of 0.6 mm, a standard width of 0.3 mm, and a standard height of 0.15 mm can be stored.
<移動手段10の説明>
 移動手段10は、図1に示したように、台板BPに設けられたY方向移動部11とX方向移動部12とを有している。図1の左側に矢印で示したように、Y方向は図1の上下方向を指し、X方向は図1の左右方向を指しており、Y方向とX方向は平面において直交している。
<Explanation of moving means 10>
The moving means 10 has a Y-direction moving portion 11 and an X-direction moving portion 12 provided on the base plate BP, as shown in FIG. As indicated by arrows on the left side of FIG. 1, the Y direction indicates the vertical direction in FIG. 1, the X direction indicates the horizontal direction in FIG.
 Y方向移動部11は、第1テーブル11aと、モータ11b(図10参照)を用いた直線移動機構(図示省略)とを有している。第1テーブル11aは、直線移動機構の可動部に連結されていて、モータ11bの正逆回転によって+Y方向と-Y方向に移動することができる。 The Y-direction moving unit 11 has a first table 11a and a linear movement mechanism (not shown) using a motor 11b (see FIG. 10). The first table 11a is connected to the movable portion of the linear movement mechanism, and can move in the +Y direction and the -Y direction by forward and reverse rotation of the motor 11b.
 X方向移動部12は、第2テーブル12aと、モータ12b(図10参照)を用いた直線移動機構(図示省略)とを有している。第2テーブル12aは、直線移動機構の可動部に連結されていて、モータ12bの正逆回転によって+X方向と-X方向に移動することができる。 The X-direction moving unit 12 has a second table 12a and a linear movement mechanism (not shown) using a motor 12b (see FIG. 10). The second table 12a is connected to the movable portion of the linear movement mechanism, and can move in the +X direction and the -X direction by forward and reverse rotation of the motor 12b.
<部品載置部20の説明>
 部品載置部20は、図1、図3、図4(A)及び図4(B)に示したように、平坦な載置面21aを有するトレイ部21と、トレイ部21に振動、好ましくはXY方向の振動を付与可能な電気作動の部品拡散部22(図10も参照)とを有している。部品載置部20は、その下面を第1テーブル11aに連結されていて、第1テーブル11aと連動し、図1に示した部品供給場所P1と部品情報取得場所P2とに移動することができる。ちなみに、部品供給場所P1と部品情報取得場所P2はXY平面にXY座標によって予め定められた場所であり、各場所P1およびP2の中心のX方向座標値は同じである。
<Explanation of Component Mounting Unit 20>
As shown in FIGS. 1, 3, 4A, and 4B, the component mounting section 20 includes a tray section 21 having a flat mounting surface 21a and a vibrating, preferably has an electrically operated component diffuser 22 (see also FIG. 10) capable of imparting vibration in the XY directions. The component placement unit 20 has its lower surface connected to the first table 11a, and can move to the component supply location P1 and the component information acquisition location P2 shown in FIG. 1 in conjunction with the first table 11a. . Incidentally, the parts supply place P1 and the parts information acquisition place P2 are places predetermined by the XY coordinates on the XY plane, and the X direction coordinate values of the centers of the places P1 and P2 are the same.
 部品拡散部22は、トレイ部21に振動を付与することにより、部品供給場所P1において部品供給手段30からトレイ部21の載置面21aに供給された部品ECを拡散、具体的には部品相互の隙間を増加することが可能である。 The component diffusion section 22 applies vibration to the tray section 21 to diffuse the components EC supplied from the component supply means 30 to the placement surface 21a of the tray section 21 at the component supply location P1. It is possible to increase the gap between
 また、載置面21aはトレイ部21の上面よりも低い位置にあって周囲が壁に囲まれており、部品供給手段30からトレイ部21の載置面21aに部品ECが落下供給されたときに(図3参照)、部品ECが載置面21aの周囲から外部にこぼれ落ちないようになっている。 Moreover, the mounting surface 21a is located lower than the upper surface of the tray portion 21 and is surrounded by walls. Secondly (see FIG. 3), the component EC is prevented from falling outside from the periphery of the mounting surface 21a.
 なお、部品落下距離にもよるが、部品供給手段30からトレイ部21の載置面21aに落下供給された部品が飛び跳ねるような場合には、このような飛び跳ねを防止するために合成樹脂や合成ゴムやエラストマー等から形成されたマット(図示省略)を載置面21aに配置しておくとよい。また、載置面21aの部品ECは部品載置部20が移動することで搬送されるが、この際、各部品ECの載置面21a上での位置がずれないよう、載置面21aは摩擦係数が高い材料で形成されているとよい。さらに、載置面21a上の部品ECは、後に説明する吸着ノズル52(図5(A)等参照)によって吸着保持される。このため、部品ECを円滑に取り出すことができるように、載置面21aは、部品ECが張りつき難い材料で形成されていることも求められる。 It should be noted that although it depends on the component drop distance, in the case where the components dropped and supplied from the component supply means 30 to the mounting surface 21a of the tray portion 21 jump, synthetic resin or synthetic resin is used to prevent such jumping. A mat (not shown) made of rubber, elastomer, or the like may be placed on the mounting surface 21a. The components EC on the mounting surface 21a are conveyed by the movement of the component mounting unit 20. At this time, the mounting surface 21a is arranged so that the positions of the respective components EC on the mounting surface 21a do not shift. It is preferably made of a material with a high coefficient of friction. Furthermore, the component EC on the mounting surface 21a is sucked and held by a sucking nozzle 52 (see FIG. 5A, etc.), which will be described later. For this reason, it is also required that the placement surface 21a be made of a material to which the component EC is less likely to stick so that the component EC can be taken out smoothly.
<部品供給手段30の説明>
 部品供給手段30は、図1および図3に示したように、多数(例えば数千個~数百万個)の部品ECを収容可能な部品収容部31と、部品収容部31の出口31aから部品を導出可能で、かつ、導出された部品を搬送してその搬送端から部品載置部20に落下可能な部品供給部32とを有しており、部品供給部32の搬送距離によってサイズに応じた数の部品を部品供給場所P1にある部品載置部20に供給できるように構成されている。部品供給手段30は、図1に示した部品供給場所P1に隣接して配置され、そのフレーム(図示省略)を台板BPに連結されている。なお、部品供給手段30は、第1テーブル11aと連結し、第1テーブル11aとともに移動できるようにしてもよい。これにより、部品載置部20へ部品ECを供給するために部品載置部20を移動させる必要がなくなり、部品ECの補給時間を短縮することができる。
<Explanation of Component Supply Means 30>
As shown in FIGS. 1 and 3, the component supply means 30 includes a component container 31 capable of containing a large number (for example, several thousand to several million) of components EC, and an outlet 31a of the component container 31. It has a component supply unit 32 which can lead out the components, and which can transport the components that have been led out and drop them onto the component placement unit 20 from the transport end. It is configured to be able to supply a corresponding number of components to the component placement section 20 at the component supply location P1. The component supply means 30 is arranged adjacent to the component supply place P1 shown in FIG. 1, and its frame (not shown) is connected to the base plate BP. The component supply means 30 may be connected to the first table 11a so that it can move together with the first table 11a. This eliminates the need to move the component placement section 20 in order to supply the component EC to the component placement section 20, thereby shortening the component EC replenishment time.
 部品収容部31は、外観が逆円錐台状でその下部に筒状部分(符号省略)を有し、筒状部分に矩形状の出口31aを有している。部品供給部32は、部品収容部31の出口31aから導出された部品を支持可能な平坦な支持部分32a1を有する無端ベルト32aと、無端ベルト32aを回転可能なベルト回転部32bとを有している。ベルト回転部32bは、無端ベルト32aが巻き付けられた2個のプーリ(符号省略)と、図3の右側のプーリを定速で時計回り方向に回転駆動するモータ32b1(図10参照)とを有する。無端ベルト32aの搬送距離はモータ32b1の動作時間によって制御可能である。 The component housing portion 31 has an inverted truncated cone shape in appearance, has a tubular portion (reference numerals omitted) at the bottom thereof, and has a rectangular outlet 31a in the tubular portion. The component supply section 32 has an endless belt 32a having a flat support portion 32a1 capable of supporting the components led out from the outlet 31a of the component storage section 31, and a belt rotating section 32b capable of rotating the endless belt 32a. there is The belt rotating portion 32b has two pulleys (not shown) around which the endless belt 32a is wound, and a motor 32b1 (see FIG. 10) that rotates the pulley on the right side in FIG. 3 clockwise at a constant speed. . The conveying distance of the endless belt 32a can be controlled by the operating time of the motor 32b1.
 また、無端ベルト32aの搬送端32a2は、部品供給場所P1にある部品載置部20の中央上方(トレイ部21の載置面21aの中央上方)に位置している。すなわち、無端ベルト32aの搬送端32a2から落下供給される部品ECは、トレイ部21の載置面21aにその中央から外側に広がるように散らばる。 Further, the conveying end 32a2 of the endless belt 32a is positioned above the center of the component placement section 20 (above the center of the placement surface 21a of the tray section 21) at the component supply location P1. That is, the components EC dropped and supplied from the conveying end 32a2 of the endless belt 32a are scattered on the mounting surface 21a of the tray portion 21 so as to spread outward from the center thereof.
 図3を用いて部品供給手段30の動作を説明すると、部品載置部20が部品供給場所P1(図1参照)にあるとき、部品収容部31に収容された部品ECは、無端ベルト32aの回転によってその出口31aから導出される。そして、導出された部品ECは無端ベルト32aの支持部分32a1に支持された状態のまま部品載置部20に向かって搬送され、無端ベルト32aの搬送端32a2から部品載置部20のトレイ部21の載置面21aの中央に落下供給される。この部品ECの落下供給は、無端ベルト32aの回転が開始してから停止するまで(搬送が停止するまで)継続するため、無端ベルト32aの搬送距離に応じた数の部品が部品載置部20のトレイ部21の載置面21aに供給される。 The operation of the component supply means 30 will be described with reference to FIG. 3. When the component placement unit 20 is at the component supply location P1 (see FIG. 1), the components EC accommodated in the component accommodation unit 31 are fed to the endless belt 32a. It is drawn out from its outlet 31a by rotation. Then, the extracted component EC is conveyed toward the component mounting portion 20 while being supported by the support portion 32a1 of the endless belt 32a, and is transferred from the conveying end 32a2 of the endless belt 32a to the tray portion 21 of the component mounting portion 20. is dropped and supplied to the center of the mounting surface 21a. Since the dropping supply of the components EC continues from the start of rotation of the endless belt 32a until it stops (until the transport stops), the number of components corresponding to the transport distance of the endless belt 32a is placed on the component placement section 20. is supplied to the mounting surface 21a of the tray portion 21 of the .
 無端ベルト32aの搬送距離に応じて部品載置部20のトレイ部21の載置面21aに供給された部品ECは、トレイ部21の載置面21aの中央から外側に広がるように散らばる。また、部品載置部20の部品拡散部22が部品供給過程または部品供給停止後に作動して、トレイ部21の載置面21aに供給された部品ECが部品拡散部22からの振動によって拡散される。すなわち、部品供給手段30から部品載置部20のトレイ部21の載置面21aに供給された部品ECは、トレイ部21の載置面21aにおいて散在状態となり、部品拡散部22からの振動によって拡散されてより適正な散在状態となる(図4(A)および図4(B)参照)。ちなみに、散在状態とは、部品保持挿入手段50の各吸着ノズル52で部品載置部20のトレイ部21の載置面21aにある部品を支障なく保持できる状態を意味する。 The components EC supplied to the mounting surface 21a of the tray portion 21 of the component mounting portion 20 according to the conveying distance of the endless belt 32a are spread outward from the center of the mounting surface 21a of the tray portion 21. Also, the component diffusion section 22 of the component placement section 20 operates during the component supply process or after the component supply is stopped, and the component EC supplied to the placement surface 21a of the tray section 21 is diffused by the vibration from the component diffusion section 22. be. That is, the components EC supplied from the component supply means 30 to the placement surface 21a of the tray portion 21 of the component placement portion 20 are in a scattered state on the placement surface 21a of the tray portion 21, and the vibration from the component diffusion portion 22 causes the components EC to be dispersed. It diffuses into a more properly dispersed state (see FIGS. 4(A) and 4(B)). Incidentally, the scattered state means a state in which each suction nozzle 52 of the component holding/inserting means 50 can hold the components on the mounting surface 21a of the tray portion 21 of the component mounting portion 20 without any trouble.
 なお、部品拡散部22からの振動付与が無くても、無端ベルト32aの搬送端32a2からトレイ部21の載置面21aの中央に落下供給された部品ECが載置面21aにおいて適正な散在状態となる場合には、部品拡散部22は無くてもよい。 Even without the application of vibration from the component diffusing section 22, the components EC dropped and supplied from the conveying end 32a2 of the endless belt 32a to the center of the mounting surface 21a of the tray section 21 are appropriately scattered on the mounting surface 21a. In this case, the component diffusion portion 22 may be omitted.
 ここで、部品供給手段30から部品載置部20への部品の供給数を部品供給部32の無端ベルト32aの搬送距離によって制御する点について詳述する。 Here, the point of controlling the number of components supplied from the component supply means 30 to the component placement section 20 by the conveying distance of the endless belt 32a of the component supply section 32 will be described in detail.
 部品載置部20は各種サイズの部品ECで共用されるものであるため、トレイ部21の載置面21aに供給された部品ECを散在状態とするには、トレイ部21の載置面に供給される部品ECの数を部品ECのサイズに応じて異ならせる必要がある。 Since the component placement unit 20 is shared by components EC of various sizes, in order to place the components EC supplied to the placement surface 21a of the tray unit 21 in a scattered state, the placement surface of the tray unit 21 has It is necessary to vary the number of supplied parts EC according to the size of the parts EC.
 部品ECが直方体状を成す電子部品の場合を例に挙げると、例えば長さ基準寸法の範囲が0.4mm~3.2mm、幅基準寸法の範囲が0.2mm~2.5mm、高さ(厚さ)基準寸法の範囲が0.2mm~2.5mmの場合、最もサイズが小さな部品(0.4mm×0.2mm×0.2mm)がトレイ部21の載置面21aに接する面積は、最もサイズが大きな部品EC(3.2mm×2.5mm×2.5mm)がトレイ部21の載置面21aに接する面積の1/100(計算上)となるため、散在状態を確保するには、最もサイズが小さな部品ECを供給するときの数に対して最もサイズが大きな部品ECを供給するときの数を少なくする必要がある。 For example, the component EC is an electronic component having a rectangular parallelepiped shape. Thickness) When the reference dimension range is 0.2 mm to 2.5 mm, the area where the smallest component (0.4 mm × 0.2 mm × 0.2 mm) contacts the mounting surface 21a of the tray part 21 is Since the largest part EC (3.2 mm x 2.5 mm x 2.5 mm) is 1/100 (calculated) of the area in contact with the mounting surface 21a of the tray part 21, in order to secure the scattered state, , it is necessary to reduce the number of parts EC of the largest size to be supplied with respect to the number of parts EC of the smallest size.
 また、部品供給手段30を各種サイズの部品ECで共用する場合、部品収容部31の出口31aのサイズ(高さ寸法と幅寸法)は、最もサイズが大きな部品(3.2mm×2.5mm×2.5mm)が通過できるサイズ、例えば10mm×10mmや5mm×5mmとしなければならない。すなわち、出口31aのサイズを最もサイズが大きな部品ECに合わせると、最もサイズが小さな部品EC(0.4mm×0.2mm×0.2mm)は重なった状態で出口31aから導出される可能性が高くなる。しかも、部品収容部31に収容される部品ECの向きはランダムであるため、部品のサイズに拘わらず、出口31aから一度に導出される部品ECの数も微妙に変化する。 In addition, when the component supply means 30 is shared by components EC of various sizes, the size (height dimension and width dimension) of the outlet 31a of the component storage section 31 is set to the size of the largest component (3.2 mm x 2.5 mm x 2.5 mm), such as 10 mm x 10 mm or 5 mm x 5 mm. That is, if the size of the outlet 31a is matched to the largest size component EC, the smallest size component EC (0.4 mm×0.2 mm×0.2 mm) may be led out from the outlet 31a in an overlapping state. get higher Moreover, since the directions of the components EC accommodated in the component accommodation section 31 are random, the number of the components EC led out from the outlet 31a at once varies subtly regardless of the size of the components.
 したがって、部品供給手段30を各種サイズの部品ECで共用する場合には、事前実験によって、部品ECのサイズ毎に部品載置部20のトレイ部21の載置面21aに供給される最適な数を予め定めておく。また、このように最適な数をトレイ部21の載置面21aに供給するための無端ベルト32aの搬送距離を部品ECのサイズ毎に予め定めておく。そして、サイズ別搬送距離(モータ32b1が定速回転する場合はサイズ別動作時間でも代用可)を稼働前に記憶部104(図10参照)に記憶させておく必要がある。 Therefore, when the component supply means 30 is shared by components EC of various sizes, the optimal number of components to be supplied to the placement surface 21a of the tray portion 21 of the component placement unit 20 for each size of the component EC is determined by preliminary experiments. be determined in advance. Further, the conveying distance of the endless belt 32a for supplying the optimum number of parts to the mounting surface 21a of the tray part 21 is determined in advance for each size of the parts EC. Then, it is necessary to store the transport distance by size (when the motor 32b1 rotates at a constant speed, the operation time by size can be substituted) in the storage unit 104 (see FIG. 10) before operation.
 なお、本実施形態では、部品供給手段30では部品供給部32として無端ベルト32aを用いたものを示したが、当該部品供給部32には同様の搬送機能を発揮し得る振動式リニアフィーダを用いることも可能である。 In this embodiment, the component supply means 30 uses the endless belt 32a as the component supply unit 32, but the component supply unit 32 uses a vibrating linear feeder capable of exhibiting the same conveying function. is also possible.
<部品情報取得手段40の説明>
 部品情報取得手段40は、図1に示したように、CMOSやCCD等の撮像素子および光学系を内蔵した第1撮像部41(図10参照)を含む。また、部品情報取得手段40は、第1撮像部41で得た画像から部品載置部20上に散在している部品ECそれぞれの位置情報(各部品の中心のXY座標)および寸法情報を認識可能な第1画像処理部42(図10参照)を有している。第1撮像部41は部品撮像部として機能し、第1画像処理部42は部品画像処理部として機能する。各部品の位置情報及び寸法情報は、部品情報に含まれる。なお、載置面21a上の部品ECのサイズが第1撮像部41の画素数(解像度)に対して小さく、部品ECの位置情報や寸法情報が適切に取得できない場合が想定される。このような場合は、載置面21aの面積を複数の領域に分け、その領域毎に第1撮像部41によって撮像することができる。この場合、撮像対象となる領域が第1撮像部41の直下に位置するように、部品載置部20を適宜移動させる。これにより、第1撮像部41の撮像画素数を生かし、より高精度な測定、情報の収集が可能となる。ここで、部品ECの寸法は、その長さlと幅wまたは厚さtである(図8(A-1)および図8(A-2)参照)。部品ECの長さl、幅wおよび厚さtについては、後に説明する。
<Description of the component information acquisition unit 40>
As shown in FIG. 1, the component information acquisition means 40 includes a first imaging section 41 (see FIG. 10) incorporating an imaging element such as CMOS or CCD and an optical system. Further, the component information acquisition means 40 recognizes position information (XY coordinates of the center of each component) and dimension information of each component EC scattered on the component placement unit 20 from the image obtained by the first imaging unit 41. It has a first image processing unit 42 (see FIG. 10) that can be used. The first imaging section 41 functions as a component imaging section, and the first image processing section 42 functions as a component image processing section. The position information and dimension information of each part are included in the part information. It is assumed that the size of the component EC on the mounting surface 21a is smaller than the number of pixels (resolution) of the first imaging unit 41, and the position information and dimension information of the component EC cannot be obtained appropriately. In such a case, the area of the mounting surface 21a can be divided into a plurality of regions, and the first imaging section 41 can capture an image for each region. In this case, the component placement section 20 is appropriately moved so that the area to be imaged is positioned directly below the first imaging section 41 . This makes it possible to take advantage of the number of imaging pixels of the first imaging section 41 to perform more accurate measurements and collect information. Here, the dimensions of the component EC are its length l and width w or thickness t (see FIGS. 8(A-1) and 8(A-2)). The length l, width w and thickness t of the component EC will be explained later.
 第1撮像部41は、その上面を第2テーブル12aに連結されていて、第2テーブル12aと連動し、図1に示した部品情報取得場所P2に移動することができる。すなわち、第1撮像部41は、部品情報取得場所P2において、部品載置部20上の散在した部品ECをその上方から撮像することができる。ちなみに、第1画像処理部42で認識された部品ECの位置情報および寸法情報は記憶部104(図10参照)に記憶される。 The first imaging unit 41 has its upper surface connected to the second table 12a, and can move to the parts information acquisition location P2 shown in FIG. 1 in conjunction with the second table 12a. That is, the first imaging unit 41 can image the scattered components EC on the component placement unit 20 from above at the component information acquisition location P2. Incidentally, the position information and dimension information of the component EC recognized by the first image processing unit 42 are stored in the storage unit 104 (see FIG. 10).
<部品保持挿入手段50の説明>
 部品保持挿入手段50は、部品挿入手段の一部として機能するものであり、図1および図5(A)から図5(D)に示すように、外観が円柱状を成すヘッド部51を備える。ヘッド部51には、複数の部品保持部52としての複数の吸着ノズル(図面では16個、以下吸着ノズル52と言う)、ヘッド部51を回転可能なヘッド回転部53が設けられている。ヘッド部51には、また、各吸着ノズル52を個別に昇降可能なノズル昇降部55、各吸着ノズル52を個別に回転可能なノズル回転部56が設けられている。ちなみに、各吸着ノズル52の中心の角度間隔は22.5度であり、各々の中心とヘッド部51の回転中心との距離は同じである。
<Description of Component Holding/Inserting Means 50>
The component holding/inserting means 50 functions as part of the component inserting means, and as shown in FIG. 1 and FIGS. . The head portion 51 is provided with a plurality of suction nozzles (16 in the drawing, hereinafter referred to as suction nozzles 52 ) as a plurality of component holding portions 52 and a head rotating portion 53 capable of rotating the head portion 51 . The head unit 51 is also provided with a nozzle lifting unit 55 capable of individually raising and lowering the suction nozzles 52 and a nozzle rotating unit 56 capable of individually rotating the suction nozzles 52 . Incidentally, the angular interval between the centers of the suction nozzles 52 is 22.5 degrees, and the distance between each center and the rotation center of the head section 51 is the same.
 ヘッド回転部53は、第2テーブル12aの上面に設けられたモータ53a(図10参照)を有している。モータ53aのシャフト53bは第2テーブル12aの円柱状の孔12a1を通じてヘッド回転部53の上面中心に連結されている(図5(A)参照)。すなわち、部品保持挿入手段50は、第2テーブル12aと連動し、図1に示した部品情報取得場所P2と部品向き認識場所P3と部品挿入場所P4とに移動することができる。また、ヘッド回転部53は、モータ11bの正逆回転によってヘッド部51を上面視で時計回り方向と反時計回り方向に回転させることができる。 The head rotating section 53 has a motor 53a (see FIG. 10) provided on the upper surface of the second table 12a. The shaft 53b of the motor 53a is connected to the center of the upper surface of the head rotating portion 53 through the cylindrical hole 12a1 of the second table 12a (see FIG. 5A). That is, the component holding/inserting means 50 can move to the component information acquisition location P2, the component orientation recognition location P3, and the component insertion location P4 shown in FIG. 1 in conjunction with the second table 12a. Further, the head rotation section 53 can rotate the head section 51 clockwise and counterclockwise when viewed from the top by forward and reverse rotation of the motor 11b.
 図1から分かるように、第2テーブル12aと連動する部品保持挿入手段50の中心は、同じ第2テーブル12aに連結された部品情報取得手段40の中心とX方向に離れている。ちなみに、部品向き認識場所P3はXY平面にXY座標によって予め定められた場所であり、部品向き認識場所P3の中心のY方向座標値は部品情報取得場所P2の中心のY方向座標値と同じである。部品挿入場所P4は各キャリアテープCT1~CT3で共通のX方向に沿う場所である。第2テーブル12aは、後に説明するようにテープ送り手段用テーブル70aがY方向に沿って移動することで、各キャリアテープCT1~CT3に対する位置を相対的に変化することができる。具体的に、台板BPは、部品保持挿入手段50の16個の吸着ノズル52のうちの1個の中心が上面視で部品挿入場所P4において、部品ECの挿入対象となる案内孔92aと交差する位置P4aに移動できる(図6(A)参照)。 As can be seen from FIG. 1, the center of the component holding/inserting means 50 interlocked with the second table 12a is separated in the X direction from the center of the component information acquiring means 40 connected to the same second table 12a. Incidentally, the component orientation recognition location P3 is a location predetermined by the XY coordinates on the XY plane, and the Y direction coordinate value of the center of the component orientation recognition location P3 is the same as the Y direction coordinate value of the center of the component information acquisition location P2. be. A component insertion location P4 is a location along the X direction common to each of the carrier tapes CT1 to CT3. The second table 12a can change its position relative to each of the carrier tapes CT1 to CT3 by moving the tape feeding means table 70a along the Y direction, as will be described later. Specifically, on the base plate BP, the center of one of the 16 suction nozzles 52 of the component holding/inserting means 50 intersects the guide hole 92a into which the component EC is to be inserted at the component insertion location P4 in top view. It can be moved to the position P4a where it is located (see FIG. 6(A)).
 各吸着ノズル52は、吸着ノズル52よりも外形が大きなノズル支持部52aと回転規制部52bを一体または別体で有し、円筒状のノズルホルダ54に昇降可能に配置されている(図5(C)参照)。また、ノズル支持部52aはノズルホルダ54の下部の円柱状の孔54aに昇降可能に位置し、回転規制部52bはノズルホルダ54内に昇降可能に、かつ、回り止めされた状態で位置している。図示を省略したが、各吸着ノズル52の吸引孔には、エア供給源105(図10参照)からエアチューブを介して負圧と正圧を供与できるようになっている。すなわち、各吸着ノズル52は、各ノズルホルダ54に昇降のみを可能とした状態で配置されており、負圧を供与することによってその下端に部品を保持することができ、また、極短時間に正圧を供与して真空破壊させることで部品ECの保持を解除することができる。 Each suction nozzle 52 has a nozzle support portion 52a and a rotation restricting portion 52b, which are larger in outer shape than the suction nozzle 52, integrally or separately, and is arranged in a cylindrical nozzle holder 54 so that it can be raised and lowered (see FIG. 5 ( C)). Further, the nozzle support portion 52a is positioned so as to be able to move up and down in the cylindrical hole 54a in the lower portion of the nozzle holder 54, and the rotation restricting portion 52b is positioned so as to be able to move up and down within the nozzle holder 54 and is prevented from rotating. there is Although not shown, the suction holes of each suction nozzle 52 are supplied with negative pressure and positive pressure from an air supply source 105 (see FIG. 10) via air tubes. That is, each suction nozzle 52 is arranged in a state in which it is only possible to move up and down in each nozzle holder 54. By applying a negative pressure, it is possible to hold a component at its lower end, and it is possible to remove the component in an extremely short time. The holding of the part EC can be released by applying a positive pressure to break the vacuum.
 ノズル昇降部55は、各ノズルホルダ54の上面に設けられたサーボモータ55aを有し、サーボモータ55aによって軸方向に移動可能に設けられたロッド55bはノズルホルダ54の上部の円柱状の孔54bを通じて吸着ノズル52の回転規制部52bの上面中心に接している(図5(C)参照)。図示を省略したが、各サーボモータ55aは歯車機構によってロッド55bを下降させ、また、上昇させることができる。 The nozzle elevating unit 55 has a servomotor 55a provided on the upper surface of each nozzle holder 54, and a rod 55b provided movably in the axial direction by the servomotor 55a moves through a cylindrical hole 54b in the upper part of the nozzle holder 54. contact with the center of the upper surface of the rotation restricting portion 52b of the suction nozzle 52 (see FIG. 5C). Although not shown, each servomotor 55a can lower and raise the rod 55b by means of a gear mechanism.
 図5(B)および図5(D)から分かるように、吸着ノズル52とノズルホルダ54とノズル昇降部55とを備えたユニット(図5(C)参照、符号省略)は、ヘッド部51の下面の周囲に等角度間隔(図面では22.5度間隔)で設けられた円柱状の孔51aに、ノズルホルダ54の下部が下方に突出した状態で回転自在に配置されている。 As can be seen from FIGS. 5B and 5D, the unit (see FIG. 5C, reference numerals omitted) including the suction nozzle 52, the nozzle holder 54, and the nozzle elevating section 55 is attached to the head section 51. The lower part of the nozzle holder 54 is rotatably arranged in cylindrical holes 51a provided at equal angular intervals (22.5 degree intervals in the drawing) around the lower surface in a state in which the lower part protrudes downward.
 ノズル回転部56は、各ユニットに対応してヘッド部51内に配置されたモータ56a(図10参照)と、モータ56aのシャフト56bに連結された歯車56cと、各ユニットのノズルホルダ54の上部外面に設けられ、かつ、歯車56cが噛合する外歯車状凹凸部54cとを有している(図5(B)参照)。すなわち、各ノズル回転部56は、モータ56aの正逆回転によって吸着ノズル52を上面視で時計回り方向と反時計回り方向に回転させることができる。 The nozzle rotating part 56 includes a motor 56a (see FIG. 10) arranged in the head part 51 corresponding to each unit, a gear 56c connected to a shaft 56b of the motor 56a, and an upper part of the nozzle holder 54 of each unit. It has an external gear-shaped concave-convex portion 54c provided on the outer surface and meshed with the gear 56c (see FIG. 5(B)). That is, each nozzle rotating part 56 can rotate the suction nozzle 52 in the clockwise direction and the counterclockwise direction when viewed from above by forward and reverse rotation of the motor 56a.
<部品向き認識手段60の説明>
 部品向き認識手段60は、図1に示したように、CMOSやCCD等の撮像素子および光学系を内蔵した第2撮像部61(図10参照)を含む。部品向き認識手段60は、また、第2撮像部61で得た画像から部品保持挿入手段50の各吸着ノズル52に保持されている保持部品それぞれの向き、具体的にはY方向を基準とした部品の角度θ(図18(A)参照)、または、X方向を基準とした部品の角度(図示省略)を、部品向き情報として認識可能な第2画像処理部62(図10参照)を有している。第2画像処理部62は、部品ECの向きと併せて吸着ノズル52に保持された部品ECの中心と吸着ノズル52の中心とのずれ(Y方向とX方向)量の認識も行う。
<Description of Component Orientation Recognizing Means 60>
The component orientation recognizing means 60 includes, as shown in FIG. 1, a second imaging section 61 (see FIG. 10) containing an imaging element such as CMOS or CCD and an optical system. The component orientation recognizing means 60 also uses the image obtained by the second imaging section 61 to determine the orientation of each of the components held by the suction nozzles 52 of the component holding and inserting means 50, specifically the Y direction. It has a second image processing unit 62 (see FIG. 10) capable of recognizing the component angle θ (see FIG. 18A) or the component angle (not shown) with respect to the X direction as component orientation information. is doing. The second image processing unit 62 also recognizes the amount of deviation (Y direction and X direction) between the center of the component EC held by the suction nozzle 52 and the center of the suction nozzle 52 together with the direction of the component EC.
 第2撮像部61は、その下面を台板BPに連結されていて、図1に示した部品向き認識場所P3に配置されている。すなわち、第2撮像部61は、部品向き認識場所P3において、部品保持挿入手段50の各吸着ノズル52に保持されている保持部品をその下方から撮像することができる。第2画像処理部62で認識された部品ECの向き情報および部品ECの中心と吸着ノズル52の中心とのずれ(Y方向とX方向)量に関する情報は記憶部104(図10参照)に記憶される。 The second imaging unit 61 has its lower surface connected to the base plate BP and is arranged at the component orientation recognition location P3 shown in FIG. That is, the second imaging unit 61 can image the held components held by the suction nozzles 52 of the component holding/inserting means 50 from below at the component orientation recognition location P3. The direction information of the component EC recognized by the second image processing unit 62 and the information on the amount of deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 are stored in the storage unit 104 (see FIG. 10). be done.
<テープ送り手段70の説明>
 テープ送り手段70は、台板BPとは別個に設けられている。テープ送り手段70は、台板BPの上方に設けられたテープ送り手段用テーブル70a上に設置されている。テープ送り手段用テーブル70aは、台板BP上のY方向に沿って延びるように敷設されたレール部70bに搭載されている。これにより、テープ送り手段70は、Y方向に沿って移動することができる。これによりテープ送り手段70と台板BPとは、相対的な位置関係を変化させることができる。テープ送り手段用テーブル70aがレール部70b上を移動するための駆動部の図示及びその詳細な説明は省略する。テープ送り手段70は、Y方向に間隔をおいて設けられた1対のリール支持部71と、1対のリール支持部71に支持されたシャフト72と、シャフト72の両端突出部分に被せられたシャフト固定用のキャップ73とを有している。
<Description of Tape Feeding Means 70>
The tape feeding means 70 is provided separately from the base plate BP. The tape feeding means 70 is installed on a tape feeding means table 70a provided above the base plate BP. The tape feeding means table 70a is mounted on a rail portion 70b laid so as to extend along the Y direction on the base plate BP. Thereby, the tape feeding means 70 can move along the Y direction. As a result, the relative positional relationship between the tape feeding means 70 and the base plate BP can be changed. The illustration and detailed description of the driving section for moving the tape feeding means table 70a on the rail section 70b are omitted. The tape feeding means 70 includes a pair of reel support portions 71 spaced apart in the Y direction, a shaft 72 supported by the pair of reel support portions 71, and projecting portions at both ends of the shaft 72. It has a cap 73 for fixing the shaft.
 図1には3本のキャリアテープCT1~CT3(図2参照)が描かれている。シャフト72には、キャリアテープCT1が巻き付けられた供給リールTR1、キャリアテープCT2が巻き付けられた供給リールTR2、キャリアテープCT3が巻き付けられた供給リールTR3が設けられている。これらは、スペーサリング74を介して回転自在に、かつ、着脱可能に配置されている。  Figure 1 depicts three carrier tapes CT1 to CT3 (see Figure 2). The shaft 72 is provided with a supply reel TR1 around which the carrier tape CT1 is wound, a supply reel TR2 around which the carrier tape CT2 is wound, and a supply reel TR3 around which the carrier tape CT3 is wound. These are rotatably and detachably arranged via a spacer ring 74 .
 すなわち、少なくとも一方のキャップ73を取ってシャフト72をリール支持部71から取り出すことによって、各供給リールTR1~TR3の交換が可能である。ちなみに、各供給リールTR1~TR3に巻き付けられた各キャリアテープCT1~CT3は、各々のポケットCTaが上を向いた状態で各供給リールTR1~TR3から繰り出される。 That is, by removing at least one cap 73 and taking out the shaft 72 from the reel support portion 71, each of the supply reels TR1 to TR3 can be replaced. Incidentally, each of the carrier tapes CT1 to CT3 wound around each of the supply reels TR1 to TR3 is unwound from each of the supply reels TR1 to TR3 with each pocket CTa facing upward.
 また、テープ送り手段70は、部品挿入場所P4に設けられた3個のテープガイド75~77と、各テープガイド75~77にある各キャリアテープCT1~CT3を+Y方向に間欠移動可能な3個のテープ送り部(図示省略)とを有している。各テープガイド75~77は、各キャリアテープCT1~CT3の幅Wに応じた溝75a~77aを有しており、各テープ送り部は、各テープガイド75~77にある各キャリアテープCT1~CT3のテープ送り孔CTbに係合可能なスプロケット(図示省略)と、各スプロケットを回転可能なモータ78a1、78b1、78c1(図10参照)とを有している。すなわち、各テープ送り部のモータ78a1、78b1、78c1の作動によって、各供給リールTR1~TR3から繰り出された各キャリアテープCT1~CT3を、各テープガイド75~77で案内しつつ、各々のポケットCTaのピッチPaで+X方向に間欠移動することができる。 Further, the tape feeding means 70 includes three tape guides 75 to 77 provided at the component insertion place P4 and three carrier tapes CT1 to CT3 on each of the tape guides 75 to 77 which can be intermittently moved in the +Y direction. and a tape feeding section (not shown). Each of the tape guides 75-77 has grooves 75a-77a corresponding to the width W of each of the carrier tapes CT1-CT3. , and motors 78a1, 78b1 and 78c1 (see FIG. 10) capable of rotating the sprockets. Specifically, the tape guides 75 to 77 guide the carrier tapes CT1 to CT3 unwound from the supply reels TR1 to TR3 by the operation of the motors 78a1, 78b1, and 78c1 of the tape feeding units, and the tape guides 75 to 77 guide the carrier tapes CT1 to CT3. can be intermittently moved in the +X direction at a pitch Pa of .
 さらに、テープ送り手段70は、前掲に加えて、部品挿入場所P4よりも+X方向に離れた位置に設けられた3個のカバーテープ付着部(図示省略)を有している。各カバーテープ付着部は、各キャリアテープCT1~CT3の幅に対応した熱圧着可能なカバーテープを供給可能な3個のカバーテープ供給リール(図示省略)と、各カバーテープ供給リールからのカバーテープを熱圧着によって各キャリアテープCT1~CT3に付着可能な可動ヒータ部78a2、78b2、78c2(図10参照)とを有している。すなわち、各カバーテープ付着部の可動ヒータ部78a2、78b2、78c2の作動によって、+X方向に間欠移動する部品挿入後の各キャリアテープCT1~CT3にカバーテープを付着して各々のポケットCTaを閉塞することができる。 Furthermore, the tape feeding means 70 has, in addition to the above, three cover tape attachment portions (not shown) provided at positions separated in the +X direction from the component insertion location P4. Each cover tape attachment section includes three cover tape supply reels (not shown) capable of supplying cover tapes that can be thermocompressed corresponding to the width of each of the carrier tapes CT1 to CT3, and cover tapes from the respective cover tape supply reels. and movable heater portions 78a2, 78b2, 78c2 (see FIG. 10) that can be attached to the respective carrier tapes CT1 to CT3 by thermocompression. That is, by the operation of the movable heater portions 78a2, 78b2, and 78c2 of the respective cover tape attaching portions, the cover tapes are attached to the carrier tapes CT1 to CT3 after inserting the component intermittently moving in the +X direction to close the respective pockets CTa. be able to.
 さらに、テープ送り手段70は、前掲に加えて、各テープガイド75~77よりも+Z方向に離れた位置に設けられた3個のテープ巻取部(図示省略)を有している。各テープ巻取部は、部品挿入後でカバーテープ付着後の各キャリアテープCT1~CT3(部品収納テープ)を巻き取り可能な3個の巻取リール(図示省略)と、各巻取リールを巻取方向に回転可能な巻き取りモータ78a3、78b3、78c3(図10参照)とを有している。すなわち、各テープ巻取部の巻き取りモータ78a3、78b3、78c3の作動によって、部品挿入後でカバーテープ付着後の各キャリアテープCT1~CT3(部品収納テープ)を各巻取リールに巻き取ることができる。 Furthermore, the tape feeding means 70 has, in addition to the above, three tape winding units (not shown) provided at positions separated from the tape guides 75 to 77 in the +Z direction. Each tape take-up unit has three take-up reels (not shown) capable of taking up each of the carrier tapes CT1 to CT3 (component storage tapes) after the components have been inserted and the cover tape attached, and each take-up reel. winding motors 78a3, 78b3, and 78c3 (see FIG. 10) that can rotate in any direction. That is, by operating the winding motors 78a3, 78b3, and 78c3 of the respective tape winding units, the carrier tapes CT1 to CT3 (component storage tapes) to which the cover tape has been attached after the components have been inserted can be wound onto the respective winding reels. .
<ポケット情報取得手段80の説明>
 ポケット情報取得手段80は、図1に示したように、CMOSやCCD等の撮像素子および光学系を内蔵した第3撮像部81(図10参照)を含む。また、ポケット情報取得手段80は、第3撮像部81で得た画像からキャリアテープCT1~CT3に設けられているポケットCTaの寸法に関する情報認識可能な第3画像処理部82(図10参照)を有している。第3撮像部81はポケット撮像部として機能し、第3画像処理部82はポケット画像処理部として機能する。各ポケットCTaの寸法情報は、ポケットCTaの並び順の情報とともにポケット情報に含まれる。ここで、ポケットCTaの寸法は、その長さLcと幅Wcである(図8(B)参照)。ポケットCTaの長さLcと幅Wcについては、後に説明する。
<Description of Pocket Information Acquisition Means 80>
As shown in FIG. 1, the pocket information acquisition means 80 includes a third imaging section 81 (see FIG. 10) incorporating an imaging element such as CMOS or CCD and an optical system. Further, the pocket information acquiring means 80 selects a third image processing section 82 (see FIG. 10) capable of recognizing information about the dimensions of the pockets CTa provided on the carrier tapes CT1 to CT3 from the image obtained by the third imaging section 81. have. The third imaging section 81 functions as a pocket imaging section, and the third image processing section 82 functions as a pocket image processing section. The dimensional information of each pocket CTa is included in the pocket information together with information on the arrangement order of the pockets CTa. Here, the dimensions of the pocket CTa are its length Lc and width Wc (see FIG. 8(B)). The length Lc and width Wc of the pocket CTa will be explained later.
 第3撮像部81は、その上面を台板BPから延びる図示しない支持部に連結されていて、台板BPと連動し、テープガイド75~76上に移動することができる。これにより、第3撮像部81は、テープガイド75~78のうち、使用されているテープガイドの上方に移動することができる。そして、第3撮像部81は、テープ送り手段70によって送られるキャリアテープに設けられたポケットCTaをその上方から撮像することができる。第3画像処理部82で認識されたポケットCTaの寸法情報および並び順情報は記憶部104(図10参照)に記憶される。 The upper surface of the third imaging section 81 is connected to a supporting section (not shown) extending from the base plate BP, and can be moved onto the tape guides 75-76 in conjunction with the base plate BP. As a result, the third imaging section 81 can move above the tape guide being used among the tape guides 75 to 78 . Then, the third imaging section 81 can image the pocket CTa provided on the carrier tape fed by the tape feeding means 70 from above. The dimension information and the arrangement order information of the pockets CTa recognized by the third image processing section 82 are stored in the storage section 104 (see FIG. 10).
<部品案内手段90の説明>
 部品案内手段90は、モータ91、偏心カム91a、案内板92を備える。モータ91および偏心カム91aは振動部に相当する。部品案内手段90は、テープガイド75~77毎に設けられている。図1や図6(A)等を参照すると、案内板92には、キャリアテープCT1に設けられたポケットCTaに対応させて案内孔92aが設けられている。案内孔92aの寸法は、ポケットCTaの寸法よりも一回り大きい。なお、案内板92は、対象となるキャリアテープに対応させて準備されている。つまり、案内孔92aの配置ピッチや寸法は、キャリアテープのポケットCTaに対応させて設けられている。図6(A)および図6(B)は、キャリアテープCT1を案内するテープガイド75が描かれており、キャリアテープCT1に対応する案内板92が示されている。以下の説明では、キャリアテープCT1のポケットCTaに部品ECを挿入する場合について説明するが、キャリアテープCT2やキャリアテープCT3に対して部品ECを挿入する場合も同様である。
<Description of the component guide means 90>
The parts guide means 90 includes a motor 91 , an eccentric cam 91 a and a guide plate 92 . The motor 91 and the eccentric cam 91a correspond to the vibrating section. A component guide means 90 is provided for each of the tape guides 75-77. 1 and 6A, the guide plate 92 is provided with guide holes 92a corresponding to the pockets CTa provided in the carrier tape CT1. The dimension of the guide hole 92a is slightly larger than the dimension of the pocket CTa. The guide plate 92 is prepared in correspondence with the target carrier tape. That is, the arrangement pitch and dimensions of the guide holes 92a are provided corresponding to the pockets CTa of the carrier tape. 6A and 6B illustrate the tape guide 75 for guiding the carrier tape CT1, and show the guide plate 92 corresponding to the carrier tape CT1. In the following description, the case of inserting the component EC into the pocket CTa of the carrier tape CT1 will be described, but the same applies to the case of inserting the component EC into the carrier tape CT2 or CT3.
 案内孔92aは、部品ECをスムーズにポケットCTaに挿入するために設けられている。部品ECは、一旦、案内孔92a内へ挿入された後にポケットCTa内に収納される。案内板92には、複数の案内孔92aが設けられている。本実施形態では、X方向に沿って11個の案内孔92aが設けられ、これがY方向に沿って3列設けられている。但し、このような案内孔92aの配列は、一例であり、案内孔92aの個数、配列は、これに限定されるものではなく、適宜設定することができる。例えば、吸着ノズル52の数に合わせて、一列に配置される案内孔92aの数を設定してもよい(本実施形態にあっては16個)。 The guide hole 92a is provided for smoothly inserting the component EC into the pocket CTa. The component EC is once inserted into the guide hole 92a and then stored in the pocket CTa. The guide plate 92 is provided with a plurality of guide holes 92a. In this embodiment, eleven guide holes 92a are provided along the X direction, and three rows of these are provided along the Y direction. However, such an arrangement of the guide holes 92a is an example, and the number and arrangement of the guide holes 92a are not limited to this, and can be set as appropriate. For example, the number of guide holes 92a arranged in a row may be set according to the number of suction nozzles 52 (16 in this embodiment).
 案内板92は、テープ送り手段70を支持する図示しない支持部上に設けられた支持板95(図1、図13等では省略)の表面上を摺動できるように配置されている。支持板95は、テープガイド75の側方に配置されている。案内板92は、キャリアテープCT1の送り方向(X方向)と直交する方向(Y方向)に移動可能に設けられている。案内板92は、その両側に配置された駆動モータ93によってY方向に移動することができる。案内孔92aは貫通孔であるが、案内板92が支持板95上を摺動するように配置されているため、案内孔92a内に挿入された部品ECは、落下することなく、案内孔92a内に留まることができる。部品ECは、部品挿入場所P4において、吸着ノズル52によって案内孔92a内に挿入される。案内板92は、X方向に沿う一列分の全ての案内孔92a内に部品ECが挿入された状態で駆動モータ93によって+Y方向に移動する。部品ECは、案内板92が移動することで、キャリアテープCT1のポケットCTa上に移動し、ポケットCTa内に収納される。案内板92および支持板95は、テープガイド76、77に対しても同様に装備されている。 The guide plate 92 is arranged so as to be slidable on the surface of a support plate 95 (not shown in FIGS. 1, 13, etc.) provided on a support portion (not shown) that supports the tape feeding means 70 . The support plate 95 is arranged on the side of the tape guide 75 . The guide plate 92 is provided movably in a direction (Y direction) perpendicular to the feeding direction (X direction) of the carrier tape CT1. The guide plate 92 can be moved in the Y direction by drive motors 93 arranged on both sides thereof. Although the guide hole 92a is a through hole, since the guide plate 92 is arranged so as to slide on the support plate 95, the component EC inserted into the guide hole 92a does not fall off and passes through the guide hole 92a. can stay inside. The component EC is inserted into the guide hole 92a by the suction nozzle 52 at the component insertion position P4. The guide plate 92 is moved in the +Y direction by the drive motor 93 in a state in which the parts EC are inserted into all the guide holes 92a for one row along the X direction. As the guide plate 92 moves, the component EC moves onto the pocket CTa of the carrier tape CT1 and is housed in the pocket CTa. Guide plates 92 and support plates 95 are similarly provided for the tape guides 76,77.
 モータ91と偏心カム91aは、テープガイド75に振動を付与し、案内孔92a内に挿入された部品ECをポケットCTa内に振り落として収納するために設けられている。偏心カム91aはテープガイド75に取り付けられている。また、偏心カム91aは、その中心点からずれた位置にモータ91の回転軸部が接続されている。これにより、モータ91が回転することで、テープガイド75を振動させ、案内孔92a内の部品ECをポケットCTaに収納することができる。本実施形態の偏心カム91aは、テープガイド75にX方向、Y方向およびこれらと直交する方向(Z方向)の振動を付与する。なお、偏心カム91aによる振幅は、ポケットCTaの内壁の位置が、ポケットCTaよりも一回り大きい寸法に設定されている案内孔92aの内壁の位置と概ね一致する程度に設定されている。これにより、部品ECが案内板92とキャリアテープCT1とに挟まれて破損することを回避することができる。モータ91および偏心カム91aは、テープガイド76、77にも同様に装備されている。 The motor 91 and the eccentric cam 91a are provided to vibrate the tape guide 75 and shake down the component EC inserted into the guide hole 92a to store it in the pocket CTa. The eccentric cam 91 a is attached to the tape guide 75 . The rotating shaft of the motor 91 is connected to the eccentric cam 91a at a position deviated from its center point. As a result, the tape guide 75 is vibrated by rotating the motor 91, and the component EC in the guide hole 92a can be accommodated in the pocket CTa. The eccentric cam 91a of this embodiment imparts vibrations to the tape guide 75 in the X direction, the Y direction, and the direction perpendicular thereto (Z direction). The amplitude of the eccentric cam 91a is set so that the position of the inner wall of the pocket CTa approximately coincides with the position of the inner wall of the guide hole 92a, which is set to be one size larger than the pocket CTa. As a result, it is possible to prevent the component EC from being sandwiched between the guide plate 92 and the carrier tape CT1 and being damaged. Motors 91 and eccentric cams 91a are similarly equipped in the tape guides 76,77.
 図6(B)を参照すると、テープガイド75には、キャリアテープCT1が配置される溝75aと、ポケットCTaが入り込むことができる凹部75bが設けられている。凹部75bには、磁石75cが配置されている。部品ECが、強磁性体に属する材料を含んでいる場合、磁石75cの磁力によって部品ECの姿勢を整えることができる。これにより、部品ECを正しい姿勢でポケットCTa内に収納することができる。 Referring to FIG. 6(B), the tape guide 75 is provided with a groove 75a in which the carrier tape CT1 is arranged and a recess 75b into which the pocket CTa can enter. A magnet 75c is arranged in the recess 75b. If the component EC contains a ferromagnetic material, the magnetic force of the magnet 75c can adjust the posture of the component EC. Thereby, the component EC can be accommodated in the pocket CTa in a correct posture.
 ここで、図6(B)を拡大して示す図7(A)と、テープガイド75に積層された構成要素を分離して示す図7(B)を参照すると、テープガイド75とキャリアテープCT1との間には、セパレータ94が配置されている。セパレータ94は、キャリアテープCT1上を被覆するように配置されるもので、案内板92がキャリアテープCT1に直接触れ、移動する案内板92がキャリアテープCT1を損傷させることがないように設けられるものである。セパレータ94には、開口部94aが設けられている。開口部94aの寸法は、案内孔92aの寸法やポケットCTaの開口部の寸法よりも大きく、部品ECのポケットCTa内への挿入の妨げとならないように設定されている。 Here, referring to FIG. 7A showing an enlarged view of FIG. 6B and FIG. 7B showing separated components laminated on the tape guide 75, the tape guide 75 and the carrier tape CT1 A separator 94 is arranged between the . The separator 94 is arranged so as to cover the carrier tape CT1, and is provided so that the guide plate 92 does not come into direct contact with the carrier tape CT1 and the moving guide plate 92 does not damage the carrier tape CT1. is. The separator 94 is provided with an opening 94a. The size of the opening 94a is larger than the size of the guide hole 92a and the size of the opening of the pocket CTa, and is set so as not to interfere with the insertion of the component EC into the pocket CTa.
 図6(A)および図6(B)を参照すると、テープガイド75の側方には、案内板92の浮き上がりを検知する浮き上がり検知センサ96が設けられている。仮に、ポケットCTa内に部品ECが適切に挿入されなかった場合、この状態でキャリアテープCT1が搬送されると、案内板92は、挿入されなかった部品ECに乗り上げる状態となって浮き上がる。浮き上がり検知センサ96は、このような案内板92の浮き上がりを検知する。浮き上がり検知センサ96が案内板92の浮き上がりを検知した場合、テーピング装置1000の稼働を一時停止する措置をとることができる。これにより、ポケットCTa内への部品ECの挿入不良に対処することができる。浮き上がり検知センサ96は、テープガイド76やテープガイド77にも同様に設けられている。 6(A) and 6(B), a lift detection sensor 96 for detecting lift of the guide plate 92 is provided on the side of the tape guide 75 . If the component EC is not properly inserted into the pocket CTa and the carrier tape CT1 is transported in this state, the guide plate 92 will ride on the component EC that has not been inserted and float up. A lift detection sensor 96 detects such lift of the guide plate 92 . When the lift detection sensor 96 detects that the guide plate 92 is lifted, it is possible to take measures to temporarily stop the operation of the taping apparatus 1000 . This makes it possible to cope with the insertion failure of the component EC into the pocket CTa. The floating detection sensor 96 is also provided in the tape guide 76 and the tape guide 77 in the same manner.
 ここで、図8を参照して、部品ECの寸法、ポケットCTaの寸法(開口部の寸法)および案内孔92aの寸法の関係について説明する。まず、図8(A-1)を参照すると、部品ECの幅と長さは、それぞれwとlである。そして、部品ECの幅wと長さlとが表れる面における対角線の長さはd2である。つぎに、図8(A-2)を参照すると、部品ECの厚さ(高さ)はtである。そして、部品ECの幅wと厚さtとが表れる面における対角線の長さはd1である。つぎに、図8(A-3)を参照すると、部品ECの長さ方向に沿う中心軸線AXyがY方向に対して角度A°傾いた場合に、対角線を形成する角部間のX方向に沿う長さはBである。つぎに、図8(B)を参照すると、ポケットCTaの開口部の幅と長さは、それぞれWcとLcである。ここで、ポケットCTaの開口部の幅Wcは、X方向に沿う寸法であり、ポケットCTaの開口部の長さLcは、Y方向に沿う寸法である。つぎに、図8(C)を参照すると、案内孔92aの開口部の幅と長さは、それぞれWgとLgである。ここで、案内孔92aの開口部の幅Wgは、X方向に沿う寸法であり、案内孔92aの開口部の長さLgは、Y方向に沿う寸法である。 Here, referring to FIG. 8, the relationship between the dimension of the component EC, the dimension of the pocket CTa (the dimension of the opening) and the dimension of the guide hole 92a will be described. First, referring to FIG. 8A-1, the width and length of the component EC are w and l, respectively. The length of the diagonal line on the plane where the width w and the length l of the part EC appear is d2. Next, referring to FIG. 8A-2, the thickness (height) of the component EC is t. The length of the diagonal line on the plane where the width w and thickness t of the component EC appear is d1. Next, referring to FIG. 8A-3, when the central axis AXy along the length direction of the part EC is inclined at an angle A° with respect to the Y direction, the X direction between the corners forming the diagonal line The length along is B. Next, referring to FIG. 8B, the width and length of the opening of the pocket CTa are Wc and Lc, respectively. Here, the width Wc of the opening of the pocket CTa is the dimension along the X direction, and the length Lc of the opening of the pocket CTa is the dimension along the Y direction. Next, referring to FIG. 8C, the width and length of the opening of the guide hole 92a are Wg and Lg, respectively. Here, the width Wg of the opening of the guide hole 92a is the dimension along the X direction, and the length Lg of the opening of the guide hole 92a is the dimension along the Y direction.
 案内孔92aの寸法と、部品ECの寸法は、以下の条件を満たすように設定されている。
条件(1) Wg>w
条件(2) Lg>l
条件(3) Wg(min)>d1(max)
条件(4) B≦Wg(min)
条件(5) Lg(min)>d2(max)
条件(6) Lg(max)≦l(min)×2
 また、ポケットCTaの寸法と、案内孔92aの寸法は、以下の条件を満たすように設定されている。
条件(7) Wg>Wc
条件(8) Lg>Lc
The dimensions of the guide hole 92a and the dimensions of the component EC are set to satisfy the following conditions.
Condition (1) Wg>w
Condition (2) Lg>l
Condition (3) Wg (min)>d1 (max)
Condition (4) B≤Wg (min)
Condition (5) Lg (min)>d2 (max)
Condition (6) Lg (max) ≤ l (min) x 2
Also, the dimensions of the pocket CTa and the dimensions of the guide hole 92a are set so as to satisfy the following conditions.
Condition (7) Wg>Wc
Condition (8) Lg>Lc
 ここで、Wg(min)は、案内孔92aを作成する際に生じ得る公差を考慮したときに想定される最小の幅である。d1(max)は、部品ECを製造する際に生じ得る公差を考慮したときに想定される最大の対角線長さである。Wg(max)は、案内孔92aを作成する際に生じ得る公差を考慮したときに想定される最大の幅である。Lg(min)は、案内孔92aを作成する際に生じ得る公差を考慮したときに想定される最小の幅である。d2(max)は、部品ECを製造する際に生じ得る公差を考慮したときに想定される最大の対角線長さである。Lg(max)は、案内孔92aを作成する際に生じ得る公差を考慮したときに想定される最大の長さである。l(min)は、部品ECを製造する際に生じ得る公差を考慮したときに想定される最小の長さである。同様に、部品ECを製造する際に生じ得る公差を考慮したときに想定される最小の幅は、w(min)と表記するものとなる。なお、各種寸法を設定する場合には、各要素の製造時の公差だけでなく、テーピング装置1000が備える部品保持挿入手段50やテープ送り手段70等の稼働部の動作の精度を考慮することができる。 Here, Wg (min) is the minimum width assumed when considering tolerances that may occur when creating the guide hole 92a. d1(max) is the maximum diagonal length assumed when considering the tolerances that can occur when manufacturing the part EC. Wg(max) is the maximum width assumed when taking into consideration tolerances that may occur when creating the guide hole 92a. Lg (min) is the minimum width assumed when considering tolerances that may occur when creating the guide hole 92a. d2(max) is the maximum diagonal length assumed when considering the tolerance that can occur when manufacturing the part EC. Lg(max) is the maximum length assumed when considering the tolerance that may occur when creating the guide hole 92a. l(min) is the minimum length assumed when considering tolerances that may occur when manufacturing the part EC. Similarly, the minimum width assumed when considering tolerances that may occur when manufacturing the component EC is written as w (min). In addition, when setting various dimensions, it is necessary to consider not only the manufacturing tolerance of each element but also the accuracy of the operation of the moving parts such as the component holding/inserting means 50 and the tape feeding means 70 provided in the taping apparatus 1000. can.
 条件(1)と条件(2)により、部品ECを案内孔92a内へ挿入することができる。条件(3)により、部品ECが中心軸線AXy回りに回転しても、部品ECが案内孔92aに対しその幅方向において挟まれる状態となることが回避される。条件(4)により、部品ECの中心軸線AXyがY方向に対して角度A°(例えば30°)以上傾いて部品ECが案内孔92aに対しその幅方向において挟まれる状態となることが回避される。ここで、角度A°を何度に設定するかは。実験やシミュレーションによって適宜設定することができる。条件(5)により、部品ECが中心軸線AXz回りに回転しても、部品ECが案内孔92aに対しその長さ方向において挟まれる状態となることが回避される。条件(6)により、案内孔92a内に部品ECを一つずつ挿入することができる。また、条件(7)と条件(8)により、最終的にポケットCTa内へ挿入される部品ECを一旦案内孔92a内へ挿入し、その後、ポケットCTa内へ移動させる操作が容易となる。 The component EC can be inserted into the guide hole 92a according to conditions (1) and (2). Condition (3) prevents the part EC from being caught in the guide hole 92a in the width direction even if the part EC rotates about the center axis AXy. Condition (4) prevents the central axis AXy of the component EC from being inclined by an angle of A° (for example, 30°) or more with respect to the Y direction, thereby preventing the component EC from being sandwiched in the guide hole 92a in its width direction. be. Here, how many degrees should the angle A° be set to? It can be appropriately set by experiments and simulations. Condition (5) prevents the part EC from being caught in the guide hole 92a in its longitudinal direction even if the part EC rotates around the center axis AXz. According to the condition (6), the parts EC can be inserted one by one into the guide hole 92a. Further, the condition (7) and the condition (8) facilitate the operation of inserting the component EC, which is to be finally inserted into the pocket CTa, into the guide hole 92a and then moving it into the pocket CTa.
 なお、部品ECの寸法と、ポケットCTaの寸法との関係は、w<Wc、l<Lcである。ここで、これらの数値は、設計値であるが、部品ECを製造する際に生じ得る公差やポケットCTaを形成する際に生じ得る公差に起因して両者の関係にバラツキが生じる可能性がある。ポケットCTaの寸法に対して部品ECの寸法が相対的に大きいと部品ECが挿入されない、または、挿入し難くなることが想定される。これとは逆に、ポケットCTaの寸法に対して部品ECの寸法が相対的に小さいと、部品ECがポケットCTa内で回転し、チップマウンタで部品ECを取り出せなくなることが想定される。本実施形態では、これらの事態を回避するために、部品ECとポケットCTaとのマッチングを行う。このマッチングについては、後に詳説する。 Note that the relationship between the dimension of the component EC and the dimension of the pocket CTa is w<Wc and l<Lc. Here, these numerical values are designed values, but there is a possibility that the relationship between the two may vary due to tolerances that may occur when manufacturing the component EC and tolerances that may occur when forming the pocket CTa. . If the dimension of the component EC is relatively large with respect to the dimension of the pocket CTa, it is assumed that the component EC will not be inserted or will be difficult to insert. Conversely, if the dimension of the component EC is relatively small with respect to the dimension of the pocket CTa, it is assumed that the component EC rotates within the pocket CTa and cannot be picked up by the chip mounter. In order to avoid these situations, the present embodiment performs matching between the component EC and the pocket CTa. This matching will be explained in detail later.
 つぎに、図9(A)および図9(B)を参照して、吸着ノズル52によって部品ECが案内孔92a内へ挿入される際の各部の間隔の設定について説明する。まず、図9(A)に示す間隔g1について説明する。間隔g1は、案内孔92a内へ挿入するために降下させた部品ECの下面とキャリアテープCT1の上面との距離である。間隔g1を設けることで、部品ECやキャリアテープCT1の損傷を回避することができる。つぎに、図9(B)に示す間隔g2について説明する。間隔g2は、部品ECを案内孔92a内へ挿入するために降下した吸着ノズル52の下端面と案内板92の上面との距離である。間隔g2を設けることで、吸着ノズル52や案内板92の損傷を回避し、また、案内板92の位置ずれを回避することができる。つぎに、図9(B)に示す間隔g3について説明する。間隔g3は、部品ECを案内孔92a内へ挿入するために降下した吸着ノズル52の下端面とポケットCTaの内底面との距離である。間隔g3は、部品ECの対角線の長さd2(図8(A-1)参照)との関係が、g3>d2となるように設定する。これにより、部品ECが、その長さ方向や対角線が延びる方向が概ね垂直方向に一致した状態で挿入されていても、部品ECがポケットCTaの内底面と吸着ノズル52との間に挟まれた状態となることを回避することができる。 Next, with reference to FIGS. 9(A) and 9(B), the setting of the intervals between the parts when the component EC is inserted into the guide hole 92a by the suction nozzle 52 will be described. First, the interval g1 shown in FIG. 9A will be described. The interval g1 is the distance between the lower surface of the component EC lowered for insertion into the guide hole 92a and the upper surface of the carrier tape CT1. By providing the gap g1, damage to the component EC and the carrier tape CT1 can be avoided. Next, the interval g2 shown in FIG. 9B will be explained. The interval g2 is the distance between the upper surface of the guide plate 92 and the lower end surface of the suction nozzle 52 lowered to insert the component EC into the guide hole 92a. By providing the gap g2, it is possible to avoid damage to the suction nozzle 52 and the guide plate 92, and to avoid misalignment of the guide plate 92. Next, the interval g3 shown in FIG. 9B will be explained. The interval g3 is the distance between the lower end surface of the suction nozzle 52 lowered to insert the component EC into the guide hole 92a and the inner bottom surface of the pocket CTa. The interval g3 is set so that the relation with the diagonal length d2 (see FIG. 8A-1) of the component EC satisfies g3>d2. As a result, the component EC is sandwiched between the inner bottom surface of the pocket CTa and the suction nozzle 52 even if the component EC is inserted in a state in which the length direction and the direction in which the diagonal line extends are substantially aligned with the vertical direction. state can be avoided.
 ここで、本実施形態における案内孔92aの設計値としての幅Wgと長さLgの設定について説明する。まず、幅Wgは、公差を考慮した長さl(min)と幅w(min)を有する部品ECを想定し、このような部品ECが角度A°(例えば30°)傾いたときの寸法BをWg(max)に設定する。案内孔92aの設計値としての幅Wgは、公差を考慮した幅がWg(max)となるように設定する。そして、設計値としての長さLgは、公差を考慮した長さLg(max)とポケットCTaの長さとして想定される最小の値Lc(min)との差分が、案内孔92aの幅Wg(max)とポケットCTaの幅として想定される最小の値Wc(min)との差分と同じ差分となるように、設定する。 Here, setting of the width Wg and the length Lg as design values of the guide hole 92a in this embodiment will be described. First, assuming a part EC having a length l (min) and a width w (min) in consideration of tolerance, the width Wg is a dimension B is set to Wg(max). The width Wg of the guide hole 92a as a design value is set so that the width in consideration of tolerance is Wg(max). The length Lg as a design value is the difference between the length Lg (max) considering the tolerance and the minimum value Lc (min) assumed as the length of the pocket CTa, which is the width Wg ( max) and the minimum value Wc (min) assumed as the width of the pocket CTa.
<制御系の説明>
 つぎに、テーピング装置1000の制御系について説明する。テーピング装置1000の制御系は、図10に示したように、マイクロコンピュータ、各種ドライバおよびインターフェース等を有する主制御部101と、キーボード等の入力部102と、液晶ディスプレイ等の表示部103と、各種データを記憶するための記憶部104とを有しており、主制御部101のメモリまたは記憶部104には動作制御用プログラムが格納されている。主制御部101は、組み合わせ情報生成手段として機能する。つまり、主制御部101は、記憶部104に記憶された部品情報と、ポケット情報とに基づき、いずれのポケットCTaにいずれの部品ECを挿入するかの組み合わせ情報を生成する。そして、主制御部101は、この組み合わせ情報に基づいて、部品保持挿入手段50を作動させる。なお、図10に示したその他の制御系要素およびその機能については先に説明したとおりであるためその説明を省略する。
<Description of control system>
Next, a control system of the taping apparatus 1000 will be explained. The control system of the taping apparatus 1000 includes, as shown in FIG. A storage unit 104 for storing data, and the memory of the main control unit 101 or the storage unit 104 stores an operation control program. The main control unit 101 functions as combination information generating means. That is, the main control unit 101 generates combination information as to which component EC is to be inserted into which pocket CTa based on the component information stored in the storage unit 104 and the pocket information. Then, the main control section 101 operates the component holding/inserting means 50 based on this combination information. Note that the other control system elements and their functions shown in FIG. 10 are the same as described above, so description thereof will be omitted.
 つぎに、図11~図18および図1を用いて、テーピング装置1000を用いたテーピング方法について説明する。 Next, a taping method using the taping apparatus 1000 will be described with reference to FIGS. 11 to 18 and 1. FIG.
<テーピング装置によるテーピング方法の説明>
 まず、テーピング装置1000の稼働前に、その準備として、制御系の入力部102と表示部103を用い、各種のデータ入力が行われる。具体的に、作業者は、使用可能性が高い部品ECの種類全てと、各部品EC対応のキャリアテープCTの種類全てを入力し、記憶部104に記憶させる。また、作業者は、事前実験によって予め定めた各部品EC対応の部品供給手段30の無端ベルト32aのサイズ別搬送距離(モータ32b1が定速回転する場合はサイズ別動作時間でも代用可)を入力して記憶部104に記憶させる(図11(A)のステップS101~S104を参照)。ちなみに、部品およびキャリアテープの種類には品番や型番等を使用することできる。また、入力データは、部品のサイズそれぞれにキャリアテープの種類とサイズ別搬送距離が対応付けられた形式とすることが望ましい。
<Explanation of taping method by taping device>
First, before starting the operation of the taping apparatus 1000, various data are input using the input unit 102 and the display unit 103 of the control system as a preparation. Specifically, the operator inputs all types of parts EC that are highly likely to be used and all types of carrier tapes CT corresponding to each part EC, and stores them in the storage unit 104 . In addition, the operator inputs the conveying distance by size of the endless belt 32a of the component supply means 30 corresponding to each component EC determined in advance by a preliminary experiment (when the motor 32b1 rotates at a constant speed, the operation time by size can be substituted). and store it in the storage unit 104 (see steps S101 to S104 in FIG. 11A). Incidentally, product numbers, model numbers, etc. can be used for the types of parts and carrier tapes. Moreover, it is preferable that the input data be in a format in which the type of carrier tape and the transport distance for each size are associated with each size of the component.
 続いて、作業者は、制御系の入力部102と表示部103を用いて、実際の稼働条件を入力して記憶部104に記憶する(図11(B)のステップS111およびS112を参照)。ここでは、一例として、挿入対象となる部品ECがキャリアテープCT1~CT3に対応した3種類である場合について説明する。まず、キャリアテープCT1に対応する部品ECに関し、キャリアテープCT1の配置位置(図1では最も上)と部品挿入数と挿入順番を入力する。ここで、挿入順番とは、キャリアテープCT1~CT3に対し、どのような順番で挿入を行うかの順序である。同様に、キャリアテープCT2に対応する部品ECに関し、キャリアテープCT2の配置位置(図1では中央)と部品挿入数と挿入順番を入力する。同様に、キャリアテープCT3に対応する部品ECに関し、キャリアテープCT3の配置位置(図1では最も下)と部品挿入数と挿入順番を入力する。ちなみに、先の入力データが部品ECのサイズそれぞれにキャリアテープの種類他が対応付けられた形式の場合は、キャリアテープの選択は不要である。また、キャリアテープCT1~CT3(供給リールTR1~TR3)の配置位置は図1の上、中、下の3箇所から任意に選択できるため、図1に示した以外の並び順となっていてもよい。 Subsequently, the operator uses the input unit 102 and the display unit 103 of the control system to input the actual operating conditions and store them in the storage unit 104 (see steps S111 and S112 in FIG. 11(B)). Here, as an example, a case where there are three types of components EC to be inserted corresponding to the carrier tapes CT1 to CT3 will be described. First, regarding the component EC corresponding to the carrier tape CT1, the arrangement position of the carrier tape CT1 (uppermost in FIG. 1), the number of components to be inserted, and the order of insertion are input. Here, the insertion order is the order in which the carrier tapes CT1 to CT3 are inserted. Similarly, regarding the component EC corresponding to the carrier tape CT2, the arrangement position (the center in FIG. 1) of the carrier tape CT2, the number of components to be inserted, and the order of insertion are input. Similarly, regarding the component EC corresponding to the carrier tape CT3, the arrangement position (lowest in FIG. 1) of the carrier tape CT3, the number of components to be inserted, and the order of insertion are input. Incidentally, if the previous input data is in a format in which each size of the component EC is associated with the type of carrier tape, etc., selection of the carrier tape is unnecessary. In addition, since the arrangement positions of the carrier tapes CT1 to CT3 (supply reels TR1 to TR3) can be arbitrarily selected from the top, middle, and bottom positions in FIG. good.
 本実施形態における稼働条件は以下の如くである。本実施形態において、キャリアテープCT1への部品ECの挿入は1番目で挿入数は10000個である。また、キャリアテープCT2への部品ECの挿入は2番目で挿入数は5000個である。さらに、キャリアテープCT3への部品ECの挿入は3番目で挿入数は500個である。 The operating conditions in this embodiment are as follows. In this embodiment, the component EC is inserted first into the carrier tape CT1, and the number of insertions is 10000 pieces. Also, the insertion of the component EC into the carrier tape CT2 is the second, and the number of insertions is 5000 pieces. Furthermore, the insertion of the component EC into the carrier tape CT3 is the third, and the number of insertions is 500 pieces.
 このような稼働条件が設定されている場合、テーピング装置1000の稼働準備として、まず、図1に示したように、キャリアテープCT1に挿入される部品ECを部品供給手段30の部品収容部31に投入する。そして、供給リールTR1~TR3を前記配置位置に応じてテープ送り手段70に取り付ける。各供給リールTR1~TR3から引き出したキャリアテープCT1~CT3のそれぞれの端部は、各テープガイド75~77を通じて巻取リール(図示省略)に連結される。 When such operating conditions are set, as preparation for operation of the taping apparatus 1000, first, as shown in FIG. throw into. Then, the supply reels TR1 to TR3 are attached to the tape feeding means 70 according to the arrangement positions. The ends of the carrier tapes CT1-CT3 pulled out from the supply reels TR1-TR3 are connected to the take-up reel (not shown) through the tape guides 75-77.
 稼働準備が完了した後は、制御系の入力部102と表示部103を用いて、前述の稼働条件に基づく稼働を開始する。稼働が開始されると、図1および図3を用いて先に説明したように、部品供給手段30の部品供給部32が作動して部品供給場所P1にある部品載置部20に最適な数の部品ECが供給され、部品載置部20に供給された部品ECが部品拡散部22の作動によって拡散される(図11(C)のステップS121~S123を参照)。なお、部品拡散部22を作動しなくても供給後の部品ECが適正な散在状態となる場合には、部品拡散部22の作動は不要である。 After the preparation for operation is completed, the input unit 102 and display unit 103 of the control system are used to start operation based on the operating conditions described above. When the operation is started, as described above with reference to FIGS. 1 and 3, the component supply section 32 of the component supply means 30 operates to supply the optimum number of components to the component placement section 20 at the component supply location P1. are supplied, and the components EC supplied to the component placement section 20 are spread by the operation of the component spreading section 22 (see steps S121 to S123 in FIG. 11C). It should be noted that the operation of the component spreading section 22 is not necessary if the components EC after being supplied are properly scattered even if the component spreading section 22 is not operated.
 部品供給が完了すると、図13に示したように、Y方向移動部11によって部品載置部20が部品情報取得場所P2に移動する。そして、部品情報取得場所P2にある部品情報取得手段40の第1撮像部41によって部品載置部20上に散在した部品ECがその上方から撮像される。そして、第1撮像部41で得た画像から第1画像処理部42によって部品載置部20に散在した部品ECそれぞれの位置情報および寸法情報が認識され、記憶部104に記憶される(図12(A)のステップS131~S133を参照)。 When the component supply is completed, the Y-direction moving unit 11 moves the component placement unit 20 to the component information acquisition location P2 as shown in FIG. Then, the components EC scattered on the component placement section 20 are imaged from above by the first imaging section 41 of the component information acquisition means 40 located at the component information acquisition location P2. Then, the first image processing unit 42 recognizes the position information and dimension information of each of the components EC scattered on the component mounting unit 20 from the image obtained by the first imaging unit 41, and stores them in the storage unit 104 (FIG. 12). See steps S131 to S133 in (A)).
 また、テーピング装置1000の稼働が開始されると、キャリアテープCT1の巻き取りも開始される。キャリアテープCT1の巻き取りは間欠的に行われる。キャリアテープCT1の巻き取りが行われる際、ポケット情報取得手段80に含まれる第3撮像部81によってキャリアテープCT1に設けられている各ポケットCTaがその上方から撮像される。そして、第3撮像部81で得た画像から第3画像処理部82によって各ポケットCTaの寸法情報が認識され、記憶部104に記憶される(図12(B)のステップS134~S135を参照)。寸法情報には、各ポケットCTaの並び順情報も含まれる。例えば、図14に示すようにキャリアテープCT1の+X方向から-X方向に向かって順にポケットCTa1、ポケットCTa2・・・のような並び順になっている場合に、その並び順とともに、各ポケットCTanの開口部の寸法の情報が認識され、記憶される。なお、部品情報とポケット情報は、つぎに説明する組み合わせ情報の生成が開始されるまでに記憶部104に記憶されていればよい。ポケット状の取得は、キャリアテープCT1が間欠移動する度に行われる。 Further, when the operation of the taping device 1000 is started, winding of the carrier tape CT1 is also started. The winding of the carrier tape CT1 is performed intermittently. When the carrier tape CT1 is wound, each pocket CTa provided in the carrier tape CT1 is imaged from above by the third imaging section 81 included in the pocket information acquisition means 80 . Then, the dimension information of each pocket CTa is recognized by the third image processing unit 82 from the image obtained by the third imaging unit 81, and stored in the storage unit 104 (see steps S134 and S135 in FIG. 12B). . The dimension information also includes arrangement order information of each pocket CTa. For example, as shown in FIG. 14, when the carrier tape CT1 is arranged in order from the +X direction to the -X direction, such as pocket CTa1, pocket CTa2, . Aperture size information is recognized and stored. Note that the part information and the pocket information need only be stored in the storage unit 104 before the generation of the combination information described below is started. Pocket-like acquisition is performed each time the carrier tape CT1 intermittently moves.
 つぎに、組み合わせ情報の生成を行う。主制御部101は、記憶部104に記憶されている部品情報に含まれる部品ECの寸法情報と、ポケット情報に含まれるポケットCTaの寸法情報とに基づいて、部品ECとポケットCTaとの組み合わせをする。例えば、図14に示す部品EC1の寸法とポケットCTa1の寸法とが適合する場合は、この両者を組み合わせる。同様に、部品EC2の寸法とポケットCTa2の寸法とが適合する場合は、この両者を組み合わせる。他の部品ECとポケットCTaについても同様に組み合わせる。ここで、部品ECの寸法とポケットCTaの寸法との適合は、ポケットCTa内に部品ECを挿入でき、かつ、ポケットCTa内で部品ECが回転することがない適度なクリアランスが保たれるか否かによって判断される。 Next, generate combination information. The main control unit 101 selects a combination of the component EC and the pocket CTa based on the dimension information of the component EC included in the component information stored in the storage unit 104 and the dimension information of the pocket CTa included in the pocket information. do. For example, if the dimensions of the component EC1 and the dimensions of the pocket CTa1 shown in FIG. 14 are compatible, they are combined. Similarly, if the dimensions of the part EC2 and the dimensions of the pocket CTa2 match, they are combined. Other components EC and pocket CTa are also combined in the same manner. Here, the conformity between the dimension of the component EC and the dimension of the pocket CTa is determined whether the component EC can be inserted into the pocket CTa and a suitable clearance is maintained so that the component EC does not rotate within the pocket CTa. determined by whether
 組み合わせ情報には、部品保持挿入手段50に含まれる複数の吸着ノズル52のうち、いずれの吸着ノズル52がいずれの部品ECを保持するかの保持順序情報も含まれている。これにより、例えば、部品EC1を吸着した吸着ノズル52は、その部品EC1をポケットCTa1に挿入するように紐づけられる。具体的に、各吸着ノズル52は、吸着ノズル52-1、52-2、・・・のように区別されるものとする(図5(D)参照)。このような場合に、図14に示すポケットCTa1に挿入される部品EC1を吸着ノズル52-1に保持させる。同様に、ポケットCTa2に挿入される部品EC2を吸着ノズル52-2に保持される。以下、同様の要領で、保持順序情報を生成する。 The combination information also includes holding order information as to which suction nozzle 52 holds which component EC among the plurality of suction nozzles 52 included in the component holding/inserting means 50 . As a result, for example, the suction nozzle 52 that has picked up the component EC1 is linked so as to insert the component EC1 into the pocket CTa1. Specifically, the suction nozzles 52 are distinguished as suction nozzles 52-1, 52-2, . . . (see FIG. 5(D)). In such a case, the component EC1 to be inserted into the pocket CTa1 shown in FIG. 14 is held by the suction nozzle 52-1. Similarly, the component EC2 to be inserted into the pocket CTa2 is held by the suction nozzle 52-2. Thereafter, the retention order information is generated in a similar manner.
 このようにして生成された組み合わせ情報は、記憶部104に記憶される(図12(C)のステップS136~S139を参照)。 The combination information generated in this way is stored in the storage unit 104 (see steps S136 to S139 in FIG. 12(C)).
 組み合わせ情報の生成が完了すると、図15に示したように、X方向移動部12によって部品保持挿入手段50が部品情報取得場所P2に移動される。そして、ステップS139で記憶された組み合わせ情報に含まれる保持順序情報に基づいて、部品情報取得場所P2にある部品載置部20上の散在した部品EC中、組み合わせ情報に含まれる部品ECが順次部品保持挿入手段50の各吸着ノズル52に保持される(図12(D)のステップS141~S143を参照)。 When the generation of combination information is completed, as shown in FIG. 15, the X-direction moving unit 12 moves the component holding/inserting means 50 to the component information acquisition location P2. Then, based on the holding order information included in the combination information stored in step S139, the parts EC included in the combination information are sequentially placed among the scattered parts EC on the component placement unit 20 at the part information acquisition location P2. It is held by each suction nozzle 52 of the holding and inserting means 50 (see steps S141 to S143 in FIG. 12(D)).
 ここで、ステップS143の部品保持方法について補足する。本実施形態では、ポケットCTaに挿入する部品ECを一旦、案内板92の案内孔92aへ挿入する。本実施形態の案内板92が備える案内孔92aは、一列当たり11個である。このため、部品保持挿入手段50の16個の吸着ノズル52のうち、11個の吸着ノズル52を用いる。使用する吸着ノズル52の数は、案内孔92aの一列の数に応じて適宜変更することができる。例えば、案内孔92aの一列の数が16個である場合には、部品保持挿入手段50が備える16個すべての吸着ノズル52を用いて挿入作業を行うことができる。 Here, the component holding method in step S143 will be supplemented. In this embodiment, the component EC to be inserted into the pocket CTa is once inserted into the guide hole 92 a of the guide plate 92 . The number of guide holes 92a provided in the guide plate 92 of this embodiment is eleven per row. Therefore, 11 suction nozzles 52 out of 16 suction nozzles 52 of the component holding/inserting means 50 are used. The number of suction nozzles 52 to be used can be appropriately changed according to the number of rows of guide holes 92a. For example, when the number of guide holes 92a in one row is 16, all 16 suction nozzles 52 provided in the component holding/inserting means 50 can be used for the insertion work.
 部品保持が完了すると、図16に示したように、X方向移動部12によって部品保持挿入手段50が部品向き認識場所P3に移動され、部品向き認識場所P3にある部品向き認識手段60の第2撮像部61によって部品保持挿入手段50の各吸着ノズル52に保持されている部品ECがその下方から撮像される。そして、第2撮像部61で得た画像から各吸着ノズル52に保持されている部品ECの向き、具体的にはY方向を基準とした部品の角度θ(図18(A)を参照)、または、X方向を基準とした部品ECの角度(図示省略)が第2画像処理部62によって認識される。また、部品ECの中心と吸着ノズル52の中心とのずれ(Y方向とX方向)量が認識される。そして、認識された部品向き情報およびずれ量に関する情報が記憶部104に記憶される(図12(E)のステップS151~S153を参照)。 When the component holding is completed, as shown in FIG. 16, the X-direction moving unit 12 moves the component holding/inserting means 50 to the component orientation recognition position P3, and the second position of the component orientation recognition means 60 located at the component orientation recognition position P3 is moved. The component EC held by each suction nozzle 52 of the component holding/inserting means 50 is imaged by the imaging unit 61 from below. Then, from the image obtained by the second imaging unit 61, the orientation of the component EC held by each suction nozzle 52, specifically, the angle θ of the component with respect to the Y direction (see FIG. 18A), Alternatively, the angle (not shown) of the component EC with respect to the X direction is recognized by the second image processing unit 62 . Also, the amount of deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 is recognized. Then, the information regarding the recognized part orientation and the amount of deviation are stored in the storage unit 104 (see steps S151 to S153 in FIG. 12E).
 部品向き認識が完了すると、図17に示したように、X方向移動部12によって部品保持挿入手段50が部品挿入場所P4に移動する。具体的に、部品保持挿入手段50が、テープガイド75に設けられた案内板92の上方(図6(A)における位置P4a)に移動する。そして、ステップS153で記憶された部品向き情報およびずれ量に関する情報に基づいて、部品保持挿入手段50の各吸着ノズル52に保持されている部品ECが向きおよび部品ECの中心座標のずれの調整後に案内板92が備える案内孔92aに順次挿入される。ここで、各部品ECは、各吸着ノズル52に保持された部品ECと組み合わされているポケットCTaの上方に位置するように設けられた案内孔92aに挿入される。各案内孔92aへの部品ECの挿入が完了した後、部品ECが挿入されている案内孔92aの列が、キャリアテープCT1上に位置するように、モータ3によって案内板92を移動させる。そして、偏心カム91aが取り付けられたモータ91を稼働させ、テープガイド75を振動させることで、案内孔92a内の部品ECをポケットCTa内へ落下させ、収納する(図12(F)のステップS161~S163を参照)。 When the recognition of the component orientation is completed, the component holding/inserting means 50 is moved to the component insertion position P4 by the X-direction moving section 12 as shown in FIG. Specifically, the component holding/inserting means 50 moves above the guide plate 92 provided on the tape guide 75 (position P4a in FIG. 6A). Then, based on the component orientation information and deviation amount information stored in step S153, the components EC held by the suction nozzles 52 of the component holding/inserting means 50 are adjusted for orientation and deviation of the center coordinates of the components EC. They are sequentially inserted into the guide holes 92a provided in the guide plate 92. As shown in FIG. Here, each component EC is inserted into a guide hole 92a provided so as to be positioned above the pocket CTa combined with the component EC held by each suction nozzle 52 . After the parts EC are completely inserted into the guide holes 92a, the guide plate 92 is moved by the motor 3 so that the rows of the guide holes 92a into which the parts EC are inserted are positioned on the carrier tape CT1. Then, by operating the motor 91 to which the eccentric cam 91a is attached and vibrating the tape guide 75, the component EC in the guide hole 92a is dropped into the pocket CTa and stored (step S161 in FIG. 12F). to S163).
 ポケットCTaへの部品ECの挿入が完了した後は、テープ送り手段70のキャリアテープCT1対応のテープ送り部の作動によって部品挿入場所P4のポケットCTaを+X方向に間欠移動させる。そして、テープ送り手段70のキャリアテープCT1対応のカバーテープ付着部の作動によって部品挿入後のポケットCTaをカバーテープで閉塞する。また、テープ送り手段70のキャリアテープCT1対応のテープ巻取部の作動によって部品挿入後でカバーテープ付着後のキャリアテープCT1(部品収納テープ)を巻取リールに巻き取る動作が行われる。 After the component EC has been completely inserted into the pocket CTa, the pocket CTa at the component insertion location P4 is intermittently moved in the +X direction by operating the tape feeding portion of the tape feeding means 70 corresponding to the carrier tape CT1. Then, the pocket CTa after the insertion of the component is closed with the cover tape by operating the cover tape adhering portion corresponding to the carrier tape CT1 of the tape feeding means 70 . Further, the operation of winding the carrier tape CT1 (component storage tape) to the take-up reel after the component is inserted and the cover tape attached is performed by the operation of the tape winding portion corresponding to the carrier tape CT1 of the tape feeding means 70 .
 前述の部品向き情報がX方向を基準とした部品ECの角度θ(図18(A)を参照)の場合は、前掲の吸着位置にある吸着ノズル52に保持されている部品ECのY方向を基準とした角度θを部品向き情報に基づいて演算する。そして、この角度θが零になるように吸着ノズル52を回転させる。これにより、吸着ノズル52に保持されている部品ECの向きが案内板92に設けられている案内孔92aの向きに整合するように調整される。このような向きの調整と、部品ECの中心座標のずれの調整とによって、部品ECは、案内孔92aに挿入される。また、前述の部品向き情報がX方向を基準とした部品の角度(図示省略)の場合も、当該角度が90度になるように吸着ノズル52を回転させれば、吸着ノズル52に保持されている部品ECの向きを案内板92の案内孔92aの向きに整合するように調整し、部品ECの中心座標のずれの調整とによって、部品ECを案内孔92aに挿入することができる。 When the component orientation information described above is the angle θ of the component EC with respect to the X direction (see FIG. 18A), the Y direction of the component EC held by the suction nozzle 52 at the suction position described above is A reference angle θ is calculated based on the component orientation information. Then, the suction nozzle 52 is rotated so that the angle θ becomes zero. As a result, the orientation of the component EC held by the suction nozzle 52 is adjusted to match the orientation of the guide hole 92 a provided in the guide plate 92 . The component EC is inserted into the guide hole 92a by adjusting the orientation and adjusting the deviation of the central coordinates of the component EC. In addition, even when the component orientation information described above is the component angle (not shown) with respect to the X direction, if the suction nozzle 52 is rotated so that the angle becomes 90 degrees, the component is held by the suction nozzle 52 . The component EC can be inserted into the guide hole 92a by adjusting the direction of the component EC so as to match the direction of the guide hole 92a of the guide plate 92 and by adjusting the deviation of the center coordinates of the component EC.
 前述の稼働条件例ではキャリアテープCT1に挿入する部品ECの挿入数が10000個である。このため、ステップS163で部品保持挿入手段50の各吸着ノズル52に保持された部品EC全てがそれぞれ案内板92の案内孔92aに挿入されると、部品保持挿入手段50は再度部品情報取得場所P2に移動する(図15を参照)。なお、部品保持挿入手段50の移動は、部品ECの案内孔92aへの挿入が完了した後、即座に行うことができる。つまり、モータ91を稼働させ、テープガイド75を振動させているタイミングに合わせて部品保持挿入手段50の移動を行うことができる。このように、異なる作業を並行して行うことで、全体の作業時間を短縮することができる。 In the operating condition example described above, the number of parts EC to be inserted into the carrier tape CT1 is 10,000. Therefore, when all the components EC held by the respective suction nozzles 52 of the component holding/inserting means 50 are inserted into the guide holes 92a of the guide plate 92 in step S163, the component holding/inserting means 50 returns to the part information acquisition location P2. (see Figure 15). Note that the movement of the component holding/inserting means 50 can be performed immediately after the component EC has been completely inserted into the guide hole 92a. In other words, the component holding/inserting means 50 can be moved in synchronization with the timing at which the motor 91 is operated and the tape guide 75 is vibrated. In this way, by performing different tasks in parallel, it is possible to shorten the overall task time.
 そして、ステップS133で記憶された部品位置情報に基づいて、部品情報取得場所P2にある部品載置部20上に散在した部品EC中の一部の部品ECが、再度、部品保持挿入手段50の各吸着ノズル52に保持される(図19(A)のステップS171~S173を参照)。 Then, based on the component position information stored in step S133, some of the components EC among the components EC scattered on the component placement unit 20 at the component information acquisition location P2 are again placed in the component holding/inserting means 50. It is held by each suction nozzle 52 (see steps S171 to S173 in FIG. 19A).
 部品再保持が完了すると、X方向移動部12によって部品保持挿入手段50が部品向き認識場所P3に移動する(図16を参照)。そして、部品向き認識場所P3にある部品向き認識手段60の第2撮像部61によって部品保持挿入手段50の各吸着ノズル52に保持されている部品ECがその下方から撮像される。そして、第2撮像部61で得た画像から各吸着ノズル52に保持されている部品ECの向きおよび部品ECの中心と吸着ノズル52の中心とのずれ(Y方向とX方向)が第2画像処理部62によって認識されて、認識された部品向きおよびずれ情報が、再度、記憶部104に記憶される(図19(B)のステップS181~S183を参照)。 When the component re-holding is completed, the X-direction moving unit 12 moves the component holding/inserting means 50 to the component orientation recognition location P3 (see FIG. 16). Then, the component EC held by each suction nozzle 52 of the component holding/inserting means 50 is imaged from below by the second imaging section 61 of the component orientation recognition means 60 located at the component orientation recognition location P3. Then, the orientation of the component EC held by each suction nozzle 52 and the deviation (Y direction and X direction) between the center of the component EC and the center of the suction nozzle 52 from the image obtained by the second imaging unit 61 are the second image. The component orientation and deviation information recognized by the processing unit 62 are stored again in the storage unit 104 (see steps S181 to S183 in FIG. 19B).
 部品向きおよびずれの再認識が完了すると、図17に示したように、X方向移動部12によって部品保持挿入手段50が部品挿入場所P4に移動する。具体的に、部品保持挿入手段50が、テープガイド75に設けられた案内板92の上方(図6(A)における位置P4a)に移動する。そして、ステップS183で記憶された部品向きおよびずれ情報に基づいて、部品保持挿入手段50の各吸着ノズル52に保持されている部品ECが、再度、案内板92が備える案内孔92aに順次挿入される。そして、各部品ECは、キャリアテープCT1のポケットCTaに順次挿入される(図19(C)のステップS191~S193を参照)。 When re-recognition of the component orientation and deviation is completed, the component holding/inserting means 50 is moved to the component insertion position P4 by the X-direction moving section 12 as shown in FIG. Specifically, the component holding/inserting means 50 moves above the guide plate 92 provided on the tape guide 75 (position P4a in FIG. 6A). Then, based on the component orientation and deviation information stored in step S183, the components EC held by the suction nozzles 52 of the component holding/inserting means 50 are again sequentially inserted into the guide holes 92a of the guide plate 92. be. Each component EC is then sequentially inserted into the pocket CTa of the carrier tape CT1 (see steps S191 to S193 in FIG. 19C).
 このような操作、つまり、図19(A)~図19(C)の操作を繰り返すことで、部品載置部20上に散在した部品ECは、徐々に減る。このため、図19(A)~図19(C)を所定回数繰り返したタイミングで、Y方向移動部11によって部品載置部20を部品供給場所P1に移動し(図17の2点鎖線を参照)、部品供給手段30の部品供給部32の作動によって、再度、部品載置部20に部品ECを供給する(図19(D)のステップS201~S203を参照)。 By repeating such operations, that is, the operations of FIGS. 19A to 19C, the number of components EC scattered on the component placement unit 20 is gradually reduced. 19A to 19C are repeated a predetermined number of times, the component placement unit 20 is moved to the component supply location P1 by the Y-direction moving unit 11 (see the two-dot chain line in FIG. 17). ), the component EC is again supplied to the component placement unit 20 by the operation of the component supply unit 32 of the component supply means 30 (see steps S201 to S203 in FIG. 19D).
 なお、案内孔92aは、複数列設けられているため、図19(A)~図19(C)の操作を繰り返し行う場合には、前回挿入対象とした案内孔92aの列と異なる列を挿入対象とする。例えば、モータ91の作動により、ポケットCTaへ部品ECを挿入し、キャリアテープCT1を間欠移動させる工程に時間がかかるような場合に、他の列を挿入対象とすることで、無駄な時間の発生を回避することができる。本実施形態のテーピング装置1000では、モータ91によるキャリアテープCT1への振動付与によって、部品ECが案内孔92aからポケットCTaに挿入されるまでの所要時間が一定ではない、また、組み合わせ情報の生成に要する時間も一定ではない。このように、各機能の動作時間が、状況によって変化する。このような状況に対処すべく、複数列の案内孔92aを設けておくことで、効率的な設備稼働が可能となる。 In addition, since the guide holes 92a are provided in a plurality of rows, when the operations of FIGS. set to target. For example, when the process of inserting the component EC into the pocket CTa and intermittently moving the carrier tape CT1 by activating the motor 91 takes a long time, using another row as an insertion target results in wasted time. can be avoided. In the taping apparatus 1000 of the present embodiment, the time required for the component EC to be inserted from the guide hole 92a into the pocket CTa due to the application of vibration to the carrier tape CT1 by the motor 91 is not constant. The time required is also not constant. Thus, the operation time of each function changes depending on the situation. Efficient equipment operation is enabled by providing a plurality of rows of guide holes 92a in order to cope with such a situation.
 部品再供給が完了すると、Y方向移動部11によって部品載置部20が部品情報取得場所P2に移動される。そして、部品情報取得場所P2にある部品情報取得手段40の第1撮像部41によって部品載置部20上に散在した部品ECがその上方から撮像され、第1撮像部41で得た画像から部品載置部20上に散在した部品ECそれぞれの位置情報および寸法情報を含む部品情報が第1画像処理部42によって認識される。認識された部品情報は、再度、記憶部104に記憶される(図19(E)のステップS211~S213を参照)。 When the component re-supply is completed, the Y-direction moving unit 11 moves the component placement unit 20 to the component information acquisition location P2. Then, the components EC scattered on the component placement unit 20 are imaged from above by the first imaging unit 41 of the component information acquisition means 40 located at the component information acquisition location P2. The first image processing unit 42 recognizes component information including position information and dimension information of each of the components EC scattered on the mounting unit 20 . The recognized component information is stored again in the storage unit 104 (see steps S211 to S213 in FIG. 19E).
 これらの動作は、稼働条件として設定された10000個の部品ECの挿入が完了するまで繰り返される。 These operations are repeated until the insertion of 10000 parts EC set as operating conditions is completed.
 前述の稼働条件例ではキャリアテープCT2への部品EC(5000個)の挿入が2番目に行われる。このため、部品供給手段30で供給可能な部品をキャリアテープCT1に挿入する部品ECからキャリアテープCT2に挿入する部品ECに交換する。この交換方法としては、部品収容部31内に残っている部品ECを取り除き、新たに部品ECを投入してもよいし、新たな部品ECが収納された部品収容部31に付け替えてもよい。また、部品供給手段30を台板BPから取り外して別の部品供給手段30を配置してから部品収容部31に新たに部品ECを投入する方法としてもよい。 In the operating condition example described above, the component EC (5000 pieces) is inserted second into the carrier tape CT2. For this reason, the components EC that can be supplied by the component supply means 30 are changed from the components EC to be inserted into the carrier tape CT1 to the components EC to be inserted into the carrier tape CT2. As this exchange method, the part EC remaining in the part container 31 may be removed and a new part EC may be introduced, or the part EC may be replaced with the part container 31 containing the new part EC. Alternatively, a method may be adopted in which the component supply means 30 is removed from the base plate BP, another component supply means 30 is arranged, and then a new component EC is put into the component storage section 31 .
 部品交換後に稼働を再開させると(図11(C)のステップS121を参照)、キャリアテープCT1のポケットCTaに挿入される部品ECの場合と同様の手順で、5000個の部品ECがキャリアテープCT2のポケットCTaに順次挿入される。これにより、5000個の部品ECが挿入され、かつ、カバーテープが付着されたキャリアテープCT2(部品収納テープ)が巻き取られた巻取リールを取得することができる。ただし、キャリアテープCT2の位置は、キャリアテープCT1に対して、-Y方向にずれているので、台板BPは、テープ送り手段70に対して相対移動した状態となる。 When the operation is restarted after the replacement of the parts (see step S121 in FIG. 11C), 5000 parts EC are transferred to the carrier tape CT2 in the same procedure as the parts EC inserted into the pocket CTa of the carrier tape CT1. are sequentially inserted into the pocket CTa. As a result, it is possible to obtain a take-up reel on which 5000 components EC are inserted and the carrier tape CT2 (component storage tape) wound with the cover tape is wound. However, since the position of the carrier tape CT2 is shifted in the -Y direction with respect to the carrier tape CT1, the base plate BP is moved relative to the tape feeding means .
 以後、同様の要領で、5000個の部品ECが挿入され、かつ、カバーテープが付着されたキャリアテープCT3(部品収納テープ)が巻き取られた巻取リールを取得することができる。 After that, in a similar manner, a take-up reel can be obtained on which 5000 components EC are inserted and the carrier tape CT3 (component storage tape) wound with the cover tape is wound.
 次に、本実施形態のテーピング装置1000およびテーピング方法で得ることができる主たる効果について説明する。 Next, the main effects that can be obtained with the taping device 1000 and the taping method of this embodiment will be described.
 本実施形態のテーピング装置1000は、部品ECの寸法に関する情報を含む部品情報と、ポケットCTaの寸法に関する情報を含むポケット情報とに基づいて、いずれのポケットにいずれの部品を挿入するかの組み合わせ情報を生成する。そして、この組み合わせ情報に基づいて、ポケットCTaに部品ECが挿入される。これにより、部品ECがポケットCTaとの間に適度なクリアランスを保って挿入される。この結果、部品ECがポケットCTaに挿入されない事態が回避され、また、ポケットCTa内で部品ECが回転することが回避される。 The taping apparatus 1000 of the present embodiment is based on component information including information on the dimensions of the component EC and pocket information including information on the dimensions of the pocket CTa, and combination information as to which component is to be inserted into which pocket. to generate Then, based on this combination information, the component EC is inserted into the pocket CTa. As a result, the component EC is inserted while maintaining an appropriate clearance with respect to the pocket CTa. As a result, a situation in which the component EC is not inserted into the pocket CTa is avoided, and the rotation of the component EC within the pocket CTa is avoided.
 テーピング装置1000は、ポケットCTaの寸法よりも大きい寸法を有し、部品ECをポケットCTaへ案内する案内孔92aを備えている。これにより、部品ECを直接ポケットCTa内へ挿入する場合と比較して、容易に部品ECをポケットCTa内へ挿入することができる。 The taping device 1000 has a guide hole 92a that is larger than the pocket CTa and guides the component EC to the pocket CTa. As a result, the component EC can be easily inserted into the pocket CTa compared to inserting the component EC directly into the pocket CTa.
 案内板92は、キャリアテープCT1~CT3の送り方向と直交する方向に移動可能に設けられている。これにより、部品ECを一旦案内孔92aに挿入し、その後、ポケットCTaへ挿入する操作が容易となる。 The guide plate 92 is provided movably in a direction orthogonal to the feeding direction of the carrier tapes CT1 to CT3. This facilitates the operation of once inserting the component EC into the guide hole 92a and then inserting it into the pocket CTa.
 案内板92は、キャリアテープCT1~CT3の送り方向に沿って配列された複数の案内孔92aを備えている。これにより、一度に複数の部品ECを案内孔92aへ挿入し、ひいては、一度に複数の部品ECをポケットCTa内へ挿入することができる。 The guide plate 92 has a plurality of guide holes 92a arranged along the feed direction of the carrier tapes CT1 to CT3. As a result, a plurality of components EC can be inserted into the guide hole 92a at once, and thus a plurality of components EC can be inserted into the pocket CTa at a time.
 テーピング装置1000は、キャリアテープCT1~CT3が設置されるテープガイド75~77にモータ91および偏心カム91aを備える。これにより、案内孔92aへ挿入された部品ECをポケットCTa内へ落下させ、挿入し易くすることができる。 The taping apparatus 1000 includes motors 91 and eccentric cams 91a in tape guides 75-77 on which carrier tapes CT1-CT3 are placed. As a result, the component EC inserted into the guide hole 92a can be dropped into the pocket CTa and can be easily inserted.
(第2実施形態)
 つぎに、図20参照して、第2実施形態について説明する。第2実施形態は、第1実施形態における部品案内手段90に代えて、部品案内手段190を備える。部品案内手段190は、テープガイド75~77のそれぞれに設けられている。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG. The second embodiment includes component guide means 190 instead of the component guide means 90 in the first embodiment. The component guide means 190 is provided for each of the tape guides 75-77.
 部品案内手段190は、支持板195上に回転可能に設けられた案内板192を備えている。案内板192は、支持板195が設けられた円形の凹部195aに回転可能に嵌め込まれている。案内板192は、ステップモータ193によって間欠的に回転可能に設けられた円盤であり、インデックステーブルを形成している。案内板192には、その周縁部分に回転方向に沿って配列された複数の案内孔192aが設けられている。案内孔192aは、第1実施形態における案内孔92aに相当するものであり、ポケットCTaの寸法よりも大きい寸法を有している。案内孔192aの外周部分は、開放されており、案内板192が凹部195aに嵌め込まれることで、凹部195aの内周壁面によって閉塞された状態となる。なお、モータ91や偏心カム91aは、第1実施形態と同様に装備されている。なお、案内板192を回転させるために、ステップモータ193に代えてサーボモータを採用してもよい。 The component guide means 190 has a guide plate 192 rotatably provided on a support plate 195 . The guide plate 192 is rotatably fitted in a circular recess 195a in which the support plate 195 is provided. The guide plate 192 is a disc intermittently rotatable by a step motor 193 and forms an index table. The guide plate 192 is provided with a plurality of guide holes 192a arranged along the direction of rotation in its peripheral portion. The guide hole 192a corresponds to the guide hole 92a in the first embodiment, and has dimensions larger than the dimensions of the pocket CTa. The outer peripheral portion of the guide hole 192a is open, and is closed by the inner peripheral wall surface of the recess 195a by fitting the guide plate 192 into the recess 195a. A motor 91 and an eccentric cam 91a are provided in the same manner as in the first embodiment. A servomotor may be employed instead of the step motor 193 to rotate the guide plate 192 .
 支持板195には、キャリアテープCT1と重なる位置に開口部195bが設けられており、案内孔192aとポケットCTaとが連通できるようになっている。 The support plate 195 is provided with an opening 195b at a position overlapping the carrier tape CT1 so that the guide hole 192a and the pocket CTa can communicate with each other.
 案内孔192aには、部品ECが挿入される。案内板192は、組み合わせ情報に基づいて、ポケットCTaと組み合わされた部品ECが挿入された案内孔192aがそのポケットCTa上に位置するように回転する。各部品ECを案内板192の回転方向に沿って組み合わされたポケットCTaの並び順に合わせて挿入しておけば、ポケットCTaの送りと案内板192の回転とを同期させることで、各部品ECを所望のポケットCTaへ挿入することができる。 A component EC is inserted into the guide hole 192a. The guide plate 192 rotates based on the combination information so that the guide hole 192a into which the part EC combined with the pocket CTa is inserted is positioned above the pocket CTa. If each part EC is inserted in accordance with the arrangement order of the pockets CTa combined along the rotation direction of the guide plate 192, by synchronizing the feeding of the pockets CTa and the rotation of the guide plate 192, each part EC can be inserted. It can be inserted into the desired pocket CTa.
 このような第2実施形態においても、第1実施形態と同様に、部品ECがポケットCTaとの間に適度なクリアランスを保って挿入される。この結果、部品ECがポケットCTaに挿入されない事態が回避され、また、ポケットCTa内で部品ECが回転することが回避される。 Also in the second embodiment like this, the component EC is inserted with an appropriate clearance between it and the pocket CTa, as in the first embodiment. As a result, a situation in which the component EC is not inserted into the pocket CTa is avoided, and the rotation of the component EC within the pocket CTa is avoided.
 なお、インデックステーブルを形成する案内板192を採用することで、部品ECの上下面の外観検査や、電気特性検査や、その他の各種検査を実施することができるようになる。案内板192は、各種検査によって不良判定された部品ECがポケットCTaへ挿入する位置に到達する前に、このような部品ECを案内孔192aから排出する仕組み(不図示)を備えることができる。不良判定された部品ECが排出された場合、案内板192を逆回転させて、部品ECが排出された案内孔192aを検査ステーションの前まで戻す。そして、他の部品ECが補填されるようにすることができる。 By adopting the guide plate 192 forming the index table, it becomes possible to perform visual inspection of the upper and lower surfaces of the component EC, electrical characteristic inspection, and other various inspections. The guide plate 192 can have a mechanism (not shown) for ejecting a component EC determined to be defective by various inspections from the guide hole 192a before the component EC reaches a position for insertion into the pocket CTa. When the component EC judged to be defective is ejected, the guide plate 192 is reversely rotated to return the guide hole 192a from which the component EC was ejected to the front of the inspection station. Then, other parts EC can be compensated.
(第3実施形態)
 つぎに、第3実施形態について、図21を参照して説明する。第3実施形態は、第1実施形態や第2実施形態における移動手段10、部品載置部20、部品供給手段30、第1撮像部41、第2撮像部61に代えて、パーツフィーダ230および第4撮像部241を備える。また、第3実施形態は、第2実施形態と同様の部品案内手段190を備える。
(Third embodiment)
A third embodiment will now be described with reference to FIG. In the third embodiment, instead of the moving means 10, the component placement section 20, the component supply means 30, the first imaging section 41, and the second imaging section 61 in the first and second embodiments, a parts feeder 230 and A fourth imaging unit 241 is provided. Also, the third embodiment includes a component guide means 190 similar to that of the second embodiment.
 パーツフィーダ230は、部品搬送部に相当し、部品載置部に相当するシュート230aを備える。シュート230aには、部品ECが整列した状態で供給される。シュート230aの先端部は、支持板195を貫通し、凹部195aの内周壁面に開口している。これにより、シュート230aの先端部は、回転する案内板192に設けられた案内孔192aと順次対向することができる。これにより、シュート230aに沿って整列した状態で移動してきた部品ECが、順次案内孔192a内に挿入される。なお、シュート230aに沿って部品ECを供給し、移動させるパーツフィーダ230の機能は従来公知なものであるので、ここでは、その詳細な説明は省略する。 The parts feeder 230 corresponds to a parts conveying section and includes a chute 230a corresponding to a parts placing section. The chute 230a is supplied with the aligned parts EC. The tip of the chute 230a passes through the support plate 195 and opens to the inner peripheral wall surface of the recess 195a. As a result, the tip of the chute 230a can sequentially face the guide holes 192a provided in the rotating guide plate 192. As shown in FIG. As a result, the parts EC that have moved along the chute 230a in an aligned state are sequentially inserted into the guide holes 192a. Note that the function of the parts feeder 230 that feeds and moves the parts EC along the chute 230a is conventionally known, so a detailed description thereof will be omitted here.
 シュート230aの上方には、第4撮像部241が設けられている。第4撮像部241には第4画像処理部242が接続されている。第4撮像部241は、シュート230aを移動する部品ECを撮像する。第4画像処理部242は、第4撮像部241で得た画像から各部品ECの寸法に関する情報とともに、その整列順情報を取得する。これらの寸法に関する情報と整列順情報は、部品情報に含まれる。そして、第1実施形態と同様に、部品情報とポケット情報とに基づいて、いずれのポケットCTaにいずれの部品ECを挿入するかの組み合わせ情報が生成される。 A fourth imaging unit 241 is provided above the chute 230a. A fourth image processing section 242 is connected to the fourth imaging section 241 . The fourth imaging unit 241 images the component EC moving on the chute 230a. The fourth image processing unit 242 acquires information about the dimensions of each component EC from the image obtained by the fourth image capturing unit 241, as well as its alignment order information. Information about these dimensions and alignment order information are included in the part information. Then, as in the first embodiment, combination information as to which component EC is to be inserted into which pocket CTa is generated based on the component information and the pocket information.
 案内板192は、組み合わせ情報に基づいて、案内孔192aに挿入された部品ECが、所望のポケットCTaへ挿入されるように回転する。 The guide plate 192 rotates based on the combination information so that the component EC inserted into the guide hole 192a is inserted into the desired pocket CTa.
 これにより、第1実施形態や第2実施形態と同様に、部品ECがポケットCTaとの間に適度なクリアランスを保って挿入される。 As a result, the component EC is inserted with an appropriate clearance between it and the pocket CTa, as in the first and second embodiments.
 なお、パーツフィーダ230は、シュート230aの途中にエア吐出部230bを備えている。エア吐出部230bは、ポケットCTaと組になることができない部品ECを吹き飛ばし、シュート230aから排除することができる。排除された部品ECは、再度シュート230aに整列することができるように、部品ECのリターン経路(不図示)に戻される。 It should be noted that the parts feeder 230 has an air discharge section 230b in the middle of the chute 230a. The air discharge part 230b can blow off the parts EC that cannot be paired with the pocket CTa and eliminate them from the chute 230a. The removed parts EC are returned to the parts EC return path (not shown) so that they can be aligned with the chute 230a again.
 第3実施形態においても、第2実施形態と同様に、部品ECの上下面の外観検査や、電気特性検査や、その他の各種検査を実施することができる。案内板192は、各種検査によって不良判定された部品ECがポケットCTaへ挿入する位置に到達する前に、このような部品ECを案内孔192aから排出する仕組み(不図示)を備えることができる。不良判定されて、排出される部品ECが存在する場合は、その排出された案内孔192a以降の案内孔192aに挿入されている部品ECも一旦排出される。さらに、シュート230a内で待機状態にある部品ECも一旦シュート230a外に排出され、再度、整列させる。つまり、部品ECの整列をリセットし、、再度、整列情報を取得する。そして、部品ECの挿入工程を再開する。なお、シュート230aに整列している部品ECを排出するためには、例えば、案内板192に、案内孔192aの外側に向かってエアを吐出することができるエア吐出部(不図示)を装備しておき、このエア吐出部を作動させればよい。 Also in the third embodiment, similar to the second embodiment, it is possible to perform visual inspection of the upper and lower surfaces of the component EC, electrical characteristic inspection, and other various inspections. The guide plate 192 can have a mechanism (not shown) for ejecting a component EC determined to be defective by various inspections from the guide hole 192a before the component EC reaches a position for insertion into the pocket CTa. If there is a component EC that is determined to be defective and is to be ejected, the component EC inserted into the guide hole 192a subsequent to the ejected guide hole 192a is also ejected once. Furthermore, the components EC on standby in the chute 230a are once ejected out of the chute 230a and aligned again. In other words, the alignment of the parts EC is reset, and the alignment information is obtained again. Then, the process of inserting the component EC is restarted. In order to discharge the parts EC aligned on the chute 230a, for example, the guide plate 192 is equipped with an air discharger (not shown) capable of discharging air toward the outside of the guide hole 192a. After that, the air discharging portion is operated.
 上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。 The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these, and various modifications of these examples are within the scope of the present invention, and furthermore, It is self-evident from the above description that many other embodiments are possible within the scope.
EC…部品(電子部品)、CT1~CT3…キャリアテープ、CTa…ポケット、10…移動手段、11…Y方向移動部、12…X方向移動部、20…部品載置部、21…トレイ部、21a…載置面、22…部品拡散部、30…部品供給手段、31…部品収容部、31a…出口、32…部品供給部、32a…無端ベルト、32a1…支持部分、32a2…搬送端、32b…ベルト回転部、40…部品情報取得手段、41…第1撮像部、42…第1画像処理部、50…部品保持挿入手段、51…ヘッド部、52…部品保持部(吸着ノズル)、53…ヘッド回転部、54…ノズルホルダ、55…ノズル昇降部、56…ノズル回転部、60…部品向き認識手段、61…第2撮像部、62…第2画像処理部、70…テープ送り手段、TR1~TR3…供給リール、71…リール支持部、75~77…テープガイド、80…ポケット情報取得手段、81…第3撮像部、82…第3画像処理部、90…部品案内手段、91…モータ、91a…偏心カム、92,192…案内板、92a,192a…案内孔、1000…テーピング装置、P1…部品供給場所、P2…部品情報取得場所、P3…部品向き認識場所、P4…部品挿入場所。
 
EC... parts (electronic parts), CT1 to CT3... carrier tape, CTa... pocket, 10... moving means, 11... Y-direction moving part, 12... X-direction moving part, 20... component placement part, 21... tray part, 21a... Placement surface 22...Component diffusion section 30...Component supply means 31...Component storage section 31a...Exit 32...Component supply section 32a...Endless belt 32a1...Support portion 32a2...Conveying end 32b ... belt rotating section 40 ... component information acquiring means 41 ... first imaging section 42 ... first image processing section 50 ... component holding and inserting means 51 ... head section 52 ... component holding section (suction nozzle) 53 ... Head rotating section 54 ... Nozzle holder 55 ... Nozzle lifting section 56 ... Nozzle rotating section 60 ... Component orientation recognition means 61 ... Second imaging section 62 ... Second image processing section 70 ... Tape feeding means TR1 to TR3 Supply reel 71 Reel supporting part 75 to 77 Tape guide 80 Pocket information acquisition means 81 Third image pickup part 82 Third image processing part 90 Parts guide means 91 Motor 91a... Eccentric cam 92, 192... Guide plate 92a, 192a... Guide hole 1000... Taping device P1... Parts supply place P2... Parts information acquisition place P3... Parts orientation recognition place P4... Parts insertion place.

Claims (15)

  1.  キャリアテープが備える複数のポケットに部品を順次挿入するテーピング装置であって、
     複数の前記部品毎に寸法を測定し、当該寸法に関する情報を含む部品情報を部品毎に取得する部品情報取得手段と、
     複数の前記ポケット毎に開口部の寸法を測定し、当該寸法に関する情報を含むポケット情報をポケット毎に取得するポケット情報取得手段と、
     前記部品情報と前記ポケット情報とに基づいて、いずれのポケットにいずれの部品を挿入するかの組み合わせ情報を生成する組み合わせ情報生成手段と、
     前記組み合わせ情報生成手段によって生成された前記組み合わせ情報に基づいて、前記部品を当該部品と組み合わされた前記ポケットへ挿入する部品挿入手段と、
    を、備えたテーピング装置。
    A taping device that sequentially inserts components into a plurality of pockets provided on a carrier tape,
    part information acquisition means for measuring dimensions for each of the plurality of parts and acquiring part information including information on the dimensions for each part;
    pocket information acquisition means for measuring the dimensions of the openings of each of the plurality of pockets and acquiring pocket information including information on the dimensions for each pocket;
    combination information generating means for generating combination information as to which component is to be inserted into which pocket, based on the component information and the pocket information;
    component inserting means for inserting the component into the pocket combined with the component based on the combination information generated by the combination information generating means;
    , a taping device.
  2.  前記部品情報取得手段は、部品載置部に供給された前記部品を撮像する部品撮像部と当該部品撮像部で得た画像から前記部品載置部に供給された前記部品の前記部品情報を取得する部品画像処理部を備えた、
    請求項1に記載のテーピング装置。
    The component information acquisition means acquires the component information of the component supplied to the component placement section from a component imaging section that captures an image of the component supplied to the component placement section and an image obtained by the component imaging section. Equipped with a parts image processing unit that
    The taping device according to claim 1.
  3.  前記部品撮像部は、前記部品載置部上に供給された複数の前記部品を撮像し、前記部品画像処理部は、前記部品載置部上に供給された複数の前記部品の前記寸法に関する情報とともに前記部品情報に含まれる当該部品の位置情報を取得する、
    請求項2に記載のテーピング装置。
    The component imaging section captures images of the plurality of components supplied onto the component placement section, and the component image processing section provides information on the dimensions of the plurality of components supplied onto the component placement section. Acquire the position information of the part included in the part information with
    The taping device according to claim 2.
  4.  前記部品挿入手段は、前記位置情報に基づいて前記部品が供給されている位置まで移動して前記部品を保持する部品保持部と、
     前記キャリアテープが備える前記ポケットの寸法よりも大きい寸法を有し、前記部品を前記ポケットへ案内する案内孔を備え、当該案内孔が前記ポケットの上方に位置し、前記案内孔が前記ポケットと連通するように前記キャリアテープと対向可能に設けられた案内板と、を含み、
     前記部品保持部は、前記組み合わせ情報に基づいて、保持した前記部品と組み合わされている前記ポケットの上方に位置するように設けられた前記案内孔に前記保持した部品を挿入する、
    請求項3に記載のテーピング装置。
    The component inserting means includes a component holding unit that moves to a position where the component is supplied based on the position information and holds the component;
    The carrier tape has a dimension larger than the dimension of the pocket, and has a guide hole for guiding the component to the pocket, the guide hole is located above the pocket, and the guide hole communicates with the pocket. and a guide plate provided so as to be opposed to the carrier tape,
    The component holding unit inserts the held component into the guide hole provided so as to be positioned above the pocket combined with the held component, based on the combination information.
    The taping device according to claim 3.
  5.  前記案内板は、前記キャリアテープの送り方向と直交する方向に移動可能に設けられた、
    請求項4に記載のテーピング装置。
    The guide plate is provided movably in a direction orthogonal to the feeding direction of the carrier tape,
    The taping device according to claim 4.
  6.  前記案内板は、前記キャリアテープの送り方向に沿って配列された複数の前記案内孔を備えた、
    請求項5に記載のテーピング装置。
    The guide plate has a plurality of the guide holes arranged along the feeding direction of the carrier tape,
    The taping device according to claim 5.
  7.  前記案内板は、回転可能に設けられた、
    請求項4に記載のテーピング装置。
    The guide plate is rotatably provided,
    The taping device according to claim 4.
  8.  前記案内板は、回転方向に沿って配列された複数の前記案内孔を備えた、請求項7に記載のテーピング装置。 The taping apparatus according to claim 7, wherein the guide plate has a plurality of the guide holes arranged along the direction of rotation.
  9.  前記部品撮像部は、前記部品載置部上に整列させて供給された複数の前記部品を撮像し、前記部品画像処理部は、前記部品載置部上に整列させて供給された複数の前記部品の前記寸法に関する情報とともに前記部品情報に含まれる当該部品の整列順情報を取得し、
     前記部品挿入手段は、前記部品載置部を備えるとともに、前記部品を整列順に搬送する部品搬送部と、
     前記キャリアテープが備える前記ポケットの寸法よりも大きい寸法を有し、前記部品を一旦保持して前記ポケットへ案内する案内孔を備え、当該案内孔が前記ポケットの上方に位置し、前記案内孔が前記ポケットと連通するように前記キャリアテープと対向可能に設けられた案内板と、を含み、
     前記案内板は、前記組み合わせ情報に基づいて、前記案内孔に保持した前記部品と組み合わされている前記ポケットの上方に前記案内孔を位置させるように回転する、
    請求項2に記載のテーピング装置。
    The component imaging section captures images of the plurality of components aligned and supplied on the component placement section, and the component image processing section captures the plurality of components aligned and supplied on the component placement section. Acquiring information about the dimensions of the part and information about the order of arrangement of the part included in the part information,
    The component insertion means includes the component placement unit, and a component transport unit that transports the components in order of alignment;
    It has a dimension larger than the dimension of the pocket provided in the carrier tape, has a guide hole for temporarily holding the part and guides it to the pocket, the guide hole is located above the pocket, and the guide hole is located above the pocket. a guide plate provided opposite to the carrier tape so as to communicate with the pocket,
    The guide plate rotates based on the combination information so as to position the guide hole above the pocket combined with the component held in the guide hole.
    The taping device according to claim 2.
  10.  前記キャリアテープが設置されるテープガイドに振動部を備える、
     請求項4から9のいずれか一項に記載のテーピング装置。
    A tape guide on which the carrier tape is installed is provided with a vibrating part,
    A taping apparatus according to any one of claims 4 to 9.
  11.  ポケット情報取得手段は、前記ポケットを撮像するポケット撮像部と当該ポケット撮像部で得た画像から前記ポケットの前記ポケット情報を取得するポケット画像処理部を備えた、
    請求項1から10のいずれか一項に記載のテーピング装置。
    The pocket information acquisition means comprises a pocket imaging unit for imaging the pocket and a pocket image processing unit for acquiring the pocket information of the pocket from the image obtained by the pocket imaging unit,
    11. The taping device according to any one of claims 1-10.
  12.  前記ポケット情報は、順次送られる前記ポケットの並び順を示す並び順情報を含む、
    請求項1から11のいずれか一項に記載のテーピング装置。
    The pocket information includes arrangement order information indicating the arrangement order of the pockets that are sequentially sent,
    12. A taping apparatus according to any one of claims 1-11.
  13.  キャリアテープが備える複数のポケットに部品を順次挿入するテーピング方法であって、
     部品情報取得手段によって、複数の前記部品毎に寸法を測定し、当該寸法に関する情報を含む部品情報を部品毎に取得する工程と、
     ポケット情報取得手段によって、複数の前記ポケット毎に開口部の寸法を測定し、当該寸法に関する情報を含むポケット情報をポケット毎に取得する工程と、
     組み合わせ情報生成手段によって、前記部品情報と前記ポケット情報とに基づいて、いずれのポケットにいずれの部品を挿入するかの組み合わせ情報を生成する工程と、
     部品挿入手段によって、前記組み合わせ情報生成手段によって生成された前記組み合わせ情報に基づいて、前記部品を当該部品と組み合わされた前記ポケットへ挿入する工程と、
    を、備えたテーピング方法。
    A taping method for sequentially inserting components into a plurality of pockets provided on a carrier tape,
    a step of measuring dimensions for each of the plurality of parts by a part information acquisition means and acquiring part information including information on the dimensions for each part;
    a step of measuring the dimension of the opening of each of the plurality of pockets by a pocket information acquisition means and acquiring pocket information including information on the dimension for each pocket;
    a step of generating combination information indicating which component is to be inserted into which pocket based on the component information and the pocket information by combination information generating means;
    a step of inserting the part into the pocket combined with the part based on the combination information generated by the combination information generation means, by the part insertion means;
    A taping method with
  14.  前記部品情報を部品毎に取得する工程は、
     前記部品情報取得手段が備える部品撮像部によって部品載置部に供給された前記部品を撮像する工程と、
     前記部品情報取得手段が備える部品画像処理部によって前記部品撮像部で得た画像から前記部品載置部に供給された前記部品の前記部品情報を取得する工程と、
    を含む請求項13に記載のテーピング方法。
    The step of acquiring the component information for each component includes:
    a step of capturing an image of the component supplied to the component placement section by a component imaging section provided in the component information acquisition means;
    a step of acquiring the component information of the component supplied to the component placement unit from the image obtained by the component imaging unit by a component image processing unit provided in the component information acquisition means;
    14. The taping method of claim 13, comprising:
  15.  前記ポケット情報をポケット毎に取得する工程は、
     前記ポケット情報取得手段が備えるポケット撮像部によって前記ポケットを撮像する工程と、
     前記ポケット情報取得手段が備えるポケット画像処理部によって前記ポケット撮像部で得た画像から前記ポケットの前記ポケット情報を取得する工程と、
    を含む請求項13または14に記載のテーピング方法。
    The step of acquiring the pocket information for each pocket includes:
    a step of capturing an image of the pocket by a pocket imaging unit included in the pocket information acquisition means;
    a step of obtaining the pocket information of the pocket from the image obtained by the pocket imaging unit by the pocket image processing unit provided in the pocket information obtaining means;
    15. The taping method according to claim 13 or 14, comprising:
PCT/JP2022/009770 2021-05-10 2022-03-07 Taping device and taping method WO2022239422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079825 2021-05-10
JP2021079825A JP2022173849A (en) 2021-05-10 2021-05-10 Taping device and taping method

Publications (1)

Publication Number Publication Date
WO2022239422A1 true WO2022239422A1 (en) 2022-11-17

Family

ID=84029137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009770 WO2022239422A1 (en) 2021-05-10 2022-03-07 Taping device and taping method

Country Status (2)

Country Link
JP (1) JP2022173849A (en)
WO (1) WO2022239422A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268986A (en) * 2003-03-10 2004-09-30 Tamakkusu:Kk Method and device for taping electronic components
JP2005035569A (en) * 2003-07-16 2005-02-10 Ricoh Co Ltd Taping apparatus for small component
JP2012116528A (en) * 2010-11-30 2012-06-21 Ueno Seiki Kk Taping unit and electronic component inspection device
JP2019218111A (en) * 2018-06-21 2019-12-26 太陽誘電株式会社 Taping device and taping method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268986A (en) * 2003-03-10 2004-09-30 Tamakkusu:Kk Method and device for taping electronic components
JP2005035569A (en) * 2003-07-16 2005-02-10 Ricoh Co Ltd Taping apparatus for small component
JP2012116528A (en) * 2010-11-30 2012-06-21 Ueno Seiki Kk Taping unit and electronic component inspection device
JP2019218111A (en) * 2018-06-21 2019-12-26 太陽誘電株式会社 Taping device and taping method

Also Published As

Publication number Publication date
JP2022173849A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
KR101639667B1 (en) Component mounting apparatus
EP0920243B1 (en) Electronic parts supplying device and electronic parts mounting method
EP2760264B1 (en) Electronic circuit component mounter
JP2010050338A (en) Surface mounting apparatus
JP5961257B2 (en) Electronic component mounting machine
US20030115836A1 (en) Apparatus for and method of manufacturing film
WO2022239422A1 (en) Taping device and taping method
JP2017024756A (en) Taping device
JP6935341B2 (en) Parts supply equipment and parts mounting equipment
EP2059112A1 (en) Electronic component taking out apparatus, surface mounting apparatus and method for taking out electronic component
JP2013004703A (en) Electronic component mounting device
JP7159003B2 (en) Component mounter
JP4829941B2 (en) Surface mount machine
JP6095668B2 (en) Electronic component mounting machine
JP2006332468A (en) Electronic component pickup apparatus and taping apparatus
JP2000077892A (en) Tape feeder and surface mounting machine
JP2021031106A (en) Taping device and taping method
JP7300576B2 (en) Component feeder, component mounter and carrier feeder
JP5024280B2 (en) Electronic component mounting method
JP6720057B2 (en) Work machine
JP7457611B2 (en) Parts mounting equipment
CN112753292B (en) Component supply device
WO2023286126A1 (en) Used tape processing device and component mounter
JP2023016670A (en) Carrier tape loading device
JP4530798B2 (en) Mounting unit, component mounting apparatus, and component mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE