WO2022239418A1 - 測距センサ及び測距装置 - Google Patents

測距センサ及び測距装置 Download PDF

Info

Publication number
WO2022239418A1
WO2022239418A1 PCT/JP2022/009557 JP2022009557W WO2022239418A1 WO 2022239418 A1 WO2022239418 A1 WO 2022239418A1 JP 2022009557 W JP2022009557 W JP 2022009557W WO 2022239418 A1 WO2022239418 A1 WO 2022239418A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic data
light
histogram
flight
time
Prior art date
Application number
PCT/JP2022/009557
Other languages
English (en)
French (fr)
Inventor
剛 大島
浩章 坂口
浩一 長谷川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022239418A1 publication Critical patent/WO2022239418A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to ranging sensors and ranging devices.
  • a distance measuring sensor is used to measure the distance to an object by irradiating light, receiving the light reflected by the object, and measuring the time it takes for the light to travel back and forth between the object and the object. ing.
  • a laser diode is used for light irradiation.
  • an avalanche photo diode (APD) or a single photon avalanche diode (SPAD) is used as a light receiving element for receiving reflected light. These light receiving elements can detect the incidence of reflected light with high sensitivity and high speed.
  • the present disclosure proposes a distance measuring sensor and a distance measuring device that acquire characteristic data of a light receiving element.
  • a ranging sensor includes pixels, a time-of-flight detection unit, a characteristic data detection unit, and a characteristic data storage unit.
  • the pixel includes a light receiving element that receives light reflected by an object from the light emitted from the light source device, and generates a light reception signal based on the reception of the reflected light.
  • a time-of-flight detection unit detects a time-of-flight from the emission of the emitted light to the reception of the reflected light for detecting the distance to the object, based on the generated light reception signal.
  • a characteristic data detector detects characteristic data of the light receiving element based on the light receiving signal.
  • the characteristic data holding unit holds the detected characteristic data.
  • FIG. 1 is a diagram illustrating a configuration example of a distance measuring device according to a first embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a schematic configuration example of a light receiving unit according to an embodiment of the present disclosure
  • FIG. 1 is a circuit diagram showing a schematic configuration example of a SPAD pixel according to an embodiment of the present disclosure
  • FIG. It is a figure which shows the structural example of the light reception pulse signal production
  • FIG. 4 is a diagram showing an example of a received light pulse signal according to the embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram illustrating an example of crosstalk according to embodiments of the present disclosure;
  • FIG. 4 is a diagram showing an example of a characteristic data histogram according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing an example of a characteristic data histogram according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing a configuration example of a characteristic data histogram generation unit and a characteristic data histogram holding unit according to the first embodiment of the present disclosure
  • FIG. 7 is a block diagram showing a schematic configuration example of a light receiving unit according to the second embodiment of the present disclosure
  • FIG. 10 is a diagram illustrating a configuration example of a ranging sensor according to a second embodiment of the present disclosure
  • FIG. 10 is a diagram illustrating a configuration example of a characteristic data histogram holding unit according to the second embodiment of the present disclosure
  • FIG. 10 is a diagram illustrating another configuration example of a characteristic data histogram holding unit according to the second embodiment of the present disclosure
  • FIG. 11 is a diagram showing a configuration example of a distance measuring sensor according to a fourth embodiment of the present disclosure
  • FIG. 11 is a diagram showing another configuration example of a distance measuring sensor according to the fourth embodiment of the present disclosure
  • FIG. 12 is a diagram illustrating a configuration example of a distance measuring device according to a fifth embodiment of the present disclosure
  • 1 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile body control system to which technology according to the present disclosure may be applied
  • FIG. FIG. 4 is a diagram showing an example of an installation position of an imaging unit
  • FIG. 1 is a diagram showing a configuration example of a distance measuring device according to the first embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing a configuration example of the distance measuring device 1.
  • the distance measuring device 1 includes a light source device 11 , a distance measuring sensor 2 and a control device 10 .
  • the light source device 11 irradiates the object for distance measurement with light.
  • the light source device 11 includes a light emitting element such as a laser diode, and emits light such as infrared light to an object under the control of the control device 10, which will be described later. This figure shows an example of outputting emitted light 401 to an object 400 .
  • the distance measuring sensor 2 detects the light emitted from the light source device 11 and reflected by the object, and measures the distance to the object based on the detected reflected light.
  • the figure shows an example in which reflected light 402 reflected by an object 400 is detected from emitted light 401 .
  • the distance measuring sensor 2 has a light receiving element that receives the reflected light 402 and measures the time from the emission of the emitted light 401 to the reception of the reflected light 402 in the light source device 11 . Then, the distance measuring sensor 2 measures the distance to the object 400 based on the measured time and the speed of light, and outputs it as data.
  • the distance measuring sensor 2 also measures the characteristics of the light receiving element and outputs the measured data.
  • the control device 10 controls the range finding device 1 as a whole. This control device 10 controls the distance measuring device 1 based on commands input from the outside. Further, the control device 10 performs control for synchronizing the emission of the emitted light 401 from the light source device 11 and the start of time measurement by the distance measurement sensor 2 .
  • the distance measuring sensor 2 shown in FIG. Prepare.
  • the distance measurement sensor 2 further includes a sampling adjustment section 30 , a characteristic data detection section 31 , a characteristic data histogram generation section 32 , a characteristic data histogram holding section 33 and a characteristic data holding section 40 .
  • the time-of-flight histogram generation unit 16, the time-of-flight histogram storage unit 17, and the most frequent value detection unit 18 perform time-of-flight detection that detects the flight time from the emission of emitted light to the reception of reflected light based on a light reception signal described later. compose the department.
  • the light receiving section 14 includes a plurality of light receiving elements and receives the reflected light 402 .
  • the light-receiving unit 14 is configured by arranging a plurality of pixels (SPAD pixels 20 to be described later) each having a light-receiving element in a two-dimensional lattice.
  • the SPAD pixel 20 generates a received light signal upon receiving the reflected light 402 .
  • the light receiving section 14 outputs this light receiving signal to the light receiving pulse signal generating section 15 .
  • the above-mentioned APD can be used for the light receiving element.
  • This APD is a light receiving diode that operates with a reverse bias voltage applied. By setting the reverse bias voltage to a voltage near the breakdown voltage, a high electric field is formed in the depletion layer inside the APD. Due to the avalanche multiplication effect of this high electric field, the APD can increase charges generated by photoelectric conversion of incident light, and can improve light receiving sensitivity.
  • a SPAD can also be used as the light receiving element.
  • This SPAD is an APD in which the charge multiplication action is improved by applying a reverse bias voltage exceeding the breakdown voltage.
  • the charge generated by photoelectric conversion increases rapidly due to high multiplication. Due to this increased electric charge, a steeply rising current flows through the SPAD. By detecting this current and generating a pulse signal, the incidence of a single photon can be detected. Such a mode of operation is called Geiger mode.
  • SPAD is assumed as a light receiving element. The details of the configuration of the light receiving section 14 will be described later.
  • the light-receiving pulse signal generation unit 15 generates a light-receiving pulse signal from the light-receiving signal.
  • the light-receiving pulse signal is a signal obtained by binarizing the light-receiving signal at a predetermined sampling period.
  • the sampling period the period of the clock signal that serves as a reference for the operation of the subsequent circuit can be applied.
  • the received light pulse signal is a digital signal synchronized with the clock signal. The details of the configuration of the received light pulse signal generator 15 will be described later.
  • the time-of-flight histogram generator 16 detects the time-of-flight of light from the emission of the emitted light 401 to the reception of the reflected light 402 based on the received light signal.
  • a time-of-flight histogram generation unit 16 shown in FIG. The above-described control device 10 controls emission of the emitted light 401 from the light source device 11 and outputs a signal synchronized with the emission of the emitted light 401 to the time-of-flight histogram generator 16 .
  • the time-of-flight histogram generator 16 starts timing in synchronization with this signal, and counts the time until the received light pulse signal is input from the received light pulse signal generator 15 .
  • the time-of-flight histogram generation unit 16 generates a histogram of measured flight times. Specifically, the time-of-flight histogram generation unit 16 counts the light-receiving pulse signals for each predetermined measurement period starting from the emission of the emitted light 401 from the light source device 11, and detects the number of light-receiving pulse signals for each measurement period. do. Next, the time-of-flight histogram generation unit 16 generates a histogram representing the detection frequency of the received light pulse signal as a frequency, with the time-series measurement period as a class. The class of this histogram corresponds to the flight time corresponding to the total sum from the first measurement cycle to the measurement cycle of the class. The time-of-flight corresponding to the class with the highest detection frequency of the received light pulse signal can be detected from this histogram. By using the flight time corresponding to this detected class as the flight time to the object 400, the distance to the object 400 can be calculated.
  • the time-of-flight histogram holding unit 17 holds the histogram generated by the time-of-flight histogram generation unit 16 .
  • the time-of-flight histogram holding unit 17 has a plurality of storage areas corresponding to classes of the time-of-flight histogram.
  • the time-of-flight histogram generation unit 16 adds 1 to the value in the storage area of the time-of-flight histogram storage unit 17 corresponding to the class corresponding to the measurement period every time the received light pulse signal is detected. Thereby, the detection frequency of the received light pulse signal can be stored in the storage area.
  • the time-of-flight histogram can be stored in the time-of-flight histogram storage unit 17 while generating the time-of-flight histogram.
  • the processing for generating the time-of-flight histogram is the same as the processing for generating the characteristic data histogram, which will be described later with reference to FIG.
  • the most frequent value detection unit 18 detects the measurement period with the highest detection frequency of the received light pulse signal in the time-of-flight histogram held in the time-of-flight histogram holding unit 17 .
  • the most frequent value detection unit 18 can detect the measurement period with the highest detection frequency of the received light pulse signal by detecting the class with the maximum frequency of the time-of-flight histogram.
  • the total sum of the measurement periods from the emission of the emitted light 401 up to the detected measurement period can be taken as the flight time.
  • the detected flight time is output to the output unit 19 .
  • the sampling adjustment section 30 adjusts the sampling period in the received light pulse signal generation section 15 .
  • the sampling period is a period during which the received light signal is acquired. This sampling period corresponds to the time-of-flight measurement period and the detection period of the characteristic data of the light-receiving element, which will be described later.
  • the sampling adjuster 30 adjusts this sampling period.
  • the sampling adjustment unit 30 can also adjust the sampling period to be different between the time-of-flight measurement and the characteristic data detection. For example, the sampling adjustment unit 30 can adjust the sampling period for characteristic data detection to be longer than the sampling period for time-of-flight detection.
  • the sampling adjustment unit 30 further generates a clock signal used for sampling the received light pulse signal.
  • the generated clock signal is output to the received light pulse signal generator 15 .
  • the adjustment of the sampling period described above can be performed, for example, by adjusting the period for outputting this clock signal.
  • the sampling adjustment section 30 can also adjust the cycle of this clock signal. Thereby, the sampling adjustment unit 30 can adjust the sampling period described above.
  • the sampling adjustment unit 30 can also adjust to different clock periods for time-of-flight measurement and characteristic data detection.
  • the characteristic data detection unit 31 detects characteristic data of the light receiving element based on the received light pulse signal.
  • This characteristic data corresponds to, for example, the pulse width of the received light pulse signal, the pulse interval, and the number of pulses in a predetermined measurement period.
  • the pulse interval corresponds to the pulse interval of the light receiving pulse signal output from the same light receiving element as well as the pulse interval of the light receiving pulse signal output from the different light receiving element. By detecting the intervals between the light receiving path signals of the different light receiving elements, the crosstalk of the light receiving pulse signals can be detected.
  • the characteristic data detector 31 detects these characteristic data based on instructions from the control device 10 .
  • the characteristic data detection unit 31 outputs data that requires histogram generation from among the detected characteristic data to the characteristic data histogram generation unit 32 and outputs data that does not require a histogram to the characteristic data storage unit 40 .
  • the characteristic data detector 31 outputs the pulse width and pulse interval of the received light pulse signal to the characteristic data histogram generator 32 and outputs the number of pulses of the received light pulse signal to the characteristic data holding section 40 . Details of the characteristic data will be described later.
  • the characteristic data histogram generation unit 32 generates a characteristic data histogram, which is a histogram representing the detection frequency of characteristic data as a frequency.
  • a characteristic data histogram generator 32 in FIG. 3 generates a histogram of the pulse width and pulse interval of the received light pulse signal output from the characteristic data detector 31 . Details of the characteristic data histogram will be described later.
  • the characteristic data histogram holding unit 33 holds the characteristic data histogram generated by the characteristic data histogram generating unit 32. Like the time-of-flight histogram holding unit 17, the characteristic data histogram holding unit 33 has a plurality of storage areas corresponding to the classes of the characteristic data histogram. The characteristic data histogram holding section 33 outputs the held characteristic data histogram to the output section 19 at a predetermined timing. The details of the configuration of the characteristic data histogram holding unit 33 will be described later.
  • the characteristic data histogram holding unit 33 is an example of the characteristic data holding unit described in the claims.
  • the characteristic data holding unit 40 holds characteristic data.
  • the output unit 19 outputs the detected time-of-flight and the detected characteristic data to an external device.
  • the output unit 19 selects one of the flight time output from the most frequent value detection unit 18, the characteristic data histogram held in the characteristic data histogram holding unit 33, and the characteristic data held in the characteristic data holding unit 40. output.
  • FIG. 2 is a block diagram showing a schematic configuration example of a light receiving unit according to the embodiment of the present disclosure.
  • the light receiving section 14 includes a timing control circuit 141, a drive circuit 142, a SPAD array 143, and an output circuit 144.
  • the SPAD array 143 comprises a plurality of SPAD pixels 20 arranged in a two-dimensional lattice.
  • a pixel drive line LD (in the vertical direction in the drawing) is connected for each column, and an output signal line LS (in the horizontal direction in the drawing) is connected for each row.
  • One end of the pixel drive line LD is connected to the output end corresponding to each column of the drive circuit 142, and one end of the output signal line LS is connected to the input end of the output circuit 144 corresponding to each row.
  • the drive circuit 142 includes a shift register, an address decoder, and the like, and drives each SPAD pixel 20 of the SPAD array 143 all pixels simultaneously or in units of columns. Therefore, the drive circuit 142 applies at least a quench voltage V_QCH, which will be described later, to each SPAD pixel 20 in the selected column in the SPAD array 143, and a selection control voltage V_SEL, which will be described later, to each SPAD pixel 20 in the selected column. and a circuit to apply. Then, the drive circuit 142 applies the selection control voltage V_SEL to the pixel drive line LD corresponding to the column to be read, thereby selecting the SPAD pixels 20 used for detecting incident photons on a column-by-column basis.
  • V_QCH quench voltage
  • V_SEL selection control voltage
  • a signal (light receiving signal) V_OUT output from each SPAD pixel 20 in a column selectively scanned by the drive circuit 142 is input to the output circuit 144 through each of the output signal lines LS.
  • the output circuit 144 outputs the received light signal V_OUT input from each SPAD pixel 20 .
  • the timing control circuit 141 includes a timing generator that generates various timing signals, and controls the drive circuit 142 and the output circuit 144 based on the various timing signals generated by the timing generator.
  • FIG. 3 is a circuit diagram showing a schematic configuration example of a SPAD pixel according to an embodiment of the present disclosure.
  • the SPAD pixel 20 includes a photodiode 21 as a light receiving element and a readout circuit 22 for detecting incident photons on the photodiode 21 .
  • the photodiode 21 generates an avalanche current when a photon is incident while a reverse bias voltage V_SPAD equal to or higher than the breakdown voltage is applied between its anode and cathode.
  • the readout circuit 22 includes a quench resistor 23 , a digital converter 25 , an inverter 26 , a buffer 27 and a selection transistor 24 .
  • the quench resistor 23 is composed of, for example, an N-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor, hereinafter referred to as an NMOS transistor), its drain is connected to the anode of the photodiode 21, and its source is grounded through the selection transistor 24. It is In addition, a quench voltage V_QCH, which is set in advance to cause the NMOS transistor to act as a quench resistor, is applied to the gate of the NMOS transistor that constitutes the quench resistor 23 from the drive circuit 142 via the pixel drive line LD. .
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the photodiode 21 is a SPAD.
  • a SPAD is an avalanche photodiode that operates in Geiger mode when a reverse bias voltage greater than or equal to its breakdown voltage is applied between its anode and cathode, and can detect the incidence of a single photon.
  • the digital converter 25 includes a resistor 251 and an NMOS transistor 252.
  • the NMOS transistor 252 has its drain connected to the power supply voltage VDD through the resistor 251 and its source grounded. Also, the voltage at the connection point N1 between the anode of the photodiode 21 and the quench resistor 23 is applied to the gate of the NMOS transistor 252 .
  • the inverter 26 includes a P-channel MOSFET (hereinafter referred to as PMOS transistor) 261 and an NMOS transistor 262 .
  • the PMOS transistor 261 has its drain connected to the power supply voltage VDD and its source connected to the drain of the NMOS transistor 262 .
  • the NMOS transistor 262 has its drain connected to the source of the PMOS transistor 261 and its source grounded.
  • the voltage at the connection point N2 between the resistor 251 and the drain of the NMOS transistor 252 is applied to the gate of the PMOS transistor 261 and the gate of the NMOS transistor 262, respectively.
  • the output of inverter 26 is input to buffer 27 .
  • the buffer 27 is a circuit for impedance conversion, and when an output signal is input from the inverter 26, it impedance-converts the input output signal and outputs it as a received light signal V_OUT.
  • the select transistor 24 is, for example, an NMOS transistor whose drain is connected to the source of the NMOS transistor that constitutes the quench resistor 23 and whose source is grounded.
  • the selection transistor 24 is connected to the drive circuit 142, and when the selection control voltage V_SEL from the drive circuit 142 is applied to the gate of the selection transistor 24 through the pixel drive line LD, the off state changes to the on state. .
  • the readout circuit 22 illustrated in FIG. 3 operates, for example, as follows. That is, first, while the selection control voltage V_SEL is applied from the drive circuit 142 to the selection transistor 24 and the selection transistor 24 is in the ON state, the reverse bias voltage V_SPAD equal to or higher than the breakdown voltage is applied to the photodiode 21 . is applied. This permits the photodiode 21 to operate.
  • the selection control voltage V_SEL is not applied from the drive circuit 142 to the selection transistor 24, and the reverse bias voltage V_SPAD is not applied to the photodiode 21 while the selection transistor 24 is in the OFF state. operation is prohibited.
  • the buffer 27 outputs a high-level received light signal V_OUT.
  • the voltage applied between the anode and cathode of the photodiode 21 becomes smaller than the breakdown voltage, thereby stopping the avalanche current and causing the voltage at the connection point N1 to drop. Voltage drops. Then, when the voltage at the connection point N1 becomes lower than the ON voltage of the NMOS transistor 452, the NMOS transistor 452 is turned off, and the output of the received light signal V_OUT from the buffer 27 is stopped (low level).
  • the avalanche current is stopped and the NMOS transistor 452 is turned off at the timing when a photon is incident on the photodiode 21 to generate an avalanche current and the NMOS transistor 452 is turned on.
  • a high-level light receiving signal V_OUT is output until the timing of The output light receiving signal V_OUT is input to the light receiving pulse signal generator 15 via the output circuit 144 .
  • FIG. 4 is a diagram illustrating a configuration example of a received light pulse signal generation unit according to an embodiment of the present disclosure.
  • This figure is a block diagram showing a configuration example of the received light pulse signal generator 15 .
  • the received light pulse signal generator 15 includes D flip-flops 151 and 152 .
  • D flip-flops 151 and 152 are connected in series. That is, the Q output of D flip-flop 151 is connected to the D input of D flip-flop 152 .
  • a received light signal from the output circuit 144 is input to the D input of the D flip-flop 151 .
  • a clock signal 1 is supplied to the D flip-flop 151 and a clock signal 2 is supplied to the D flip-flop 152 .
  • Clock signal 1 and clock signal 2 are clock signals having the same frequency.
  • Clock signal 2 is a clock signal with a delayed phase with respect to clock signal 1 .
  • the received light signal input via the output circuit 144 is taken into the D flip-flop 151 in synchronization with the rise of the clock signal 1 and output to the Q output of the D flip-flop 151 .
  • the outputted light receiving signal is taken into the D flip-flop 152 in synchronization with the rise of the clock signal 2 and outputted to the Q output of the D flip-flop 152 .
  • the received light signal asynchronous with respect to the clock signal can be converted into a signal synchronized with the clock signal (clock signal 2).
  • the period of the clock signal is the acquisition (sampling) period.
  • the Q output of the D flip-flop 151 will be in a quasi-stable state.
  • the delay time of clock signal 2 with respect to clock signal 1 longer than the time required for the D flip-flop 151 to return from the metastable state plus the setup time, propagation of the metastable state to the D flip-flop 152 is suppressed. can be prevented.
  • the light reception signal is converted into a light emission pulse signal, which is a 1-bit binarized signal (that is, a digital signal).
  • the light receiving pulse signal generating section 15 is arranged for each output light receiving signal.
  • the configuration of the received light pulse signal generation unit 15 is not limited to this example.
  • the same clock signal can be provided for clock signal 1 and clock signal 2 .
  • a delay time of one clock cycle can be secured.
  • FIG. 5A is a diagram illustrating an example of a received light pulse signal according to an embodiment of the present disclosure.
  • “SPAD output” represents the voltage waveform at the connection point N1 in FIG.
  • “Light receiving signal” represents a light receiving signal output from the readout circuit 22 .
  • “Clock signal” refers to clock signal 2 described above.
  • “Light-receiving pulse signal” represents a light-receiving pulse signal output from the light-receiving pulse signal generator 15 . Note that the dashed line in the figure represents the level of 0V.
  • the output voltage (anode voltage) of the photodiode 21 is 0 V in a steady state.
  • the voltage at the connection point N1 changes as described with reference to FIG. 3, and a pulsed response signal 408 is generated.
  • This response signal 408 is shaped into a substantially rectangular shape by the digital converter 25 or the like, and output as a received light signal 411 .
  • a dashed-dotted line in the figure represents the threshold value of the digital converter 25 .
  • This light reception signal 411 is taken into the D flip-flops 151 and 152 in synchronization with the rise of the clock signal described in FIG. Thus, the received light pulse signal 431 is generated.
  • the period in which a photon is incident on the photodiode 21 (SPAD) and the response signal 408 is generated is a dead time during which no new incident photon can be detected. This is because the transfer of the SPAD to the Geiger mode causes the charge to diffuse into the SPAD. "Dead time” in the figure represents this period. Such dead time can be detected by measuring the pulse width and pulse interval of the received light pulse signal.
  • SPAD may cause a malfunction called afterpulse.
  • This afterpulse occurs, for example, when charges generated by avalanche multiplication are trapped in impurity levels and released after a time.
  • a response signal 409 in the figure represents a waveform when an afterpulse is generated.
  • the dotted line in the figure represents the waveform when no afterpulses are generated.
  • the pulse widths of the received light signal 412 and the received light pulse signal 432 become longer.
  • the photon detection efficiency can be measured by measuring the number of light-receiving pulse signals in a predetermined period while irradiating a specified amount of light.
  • the SPAD may generate a received light signal even in the absence of incident light. This is a light-receiving signal caused by charges trapped in the interface level of the semiconductor substrate on which the SPAD is formed, and has a different occurrence probability for each SPAD. This occurrence probability is called DCR (Dark Count Rate). This DCR can be detected by measuring the number of received light pulse signals in a light shielded state.
  • a light receiving signal generated by crosstalk is known as a light receiving signal not caused by incident light. This is a malfunction due to the influence of the received light signal generated by another SPAD pixel 20 .
  • SPADs may emit light during charge avalanche multiplication. When photons based on this light emission enter the adjacent SPAD and shift to the Geiger mode, a light reception signal is generated due to crosstalk.
  • Such crosstalk can be detected by measuring pulse intervals of light receiving pulse signals generated by different SPAD pixels 20 .
  • FIG. 5B is a diagram illustrating an example of crosstalk according to the embodiment of the present disclosure.
  • “light-receiving pulse signal 1” and “light-receiving pulse signal 2” represent light-receiving pulse signals generated by different SPAD pixels 20, respectively.
  • a light-receiving pulse signal 434 of the light-receiving pulse signal 2 represents a pulse signal generated under the influence of the light-receiving pulse signal 433 of the light-receiving pulse signal 1 .
  • the path width of the received light pulse signal can be detected in units of, for example, the period of the clock signal. Taking the pulse width of the light-receiving pulse signal 431 shown in FIG. Therefore, the pulse width of the received light pulse signal 431 can be expressed as the value "4". Similarly, the pulse interval of the received light pulse signals 431 and 432 can be expressed as the value "14".
  • the characteristic data detection unit 31 described in FIG. 1 detects the pulse width and pulse interval of the received light pulse signal in units of the period of the clock signal each time the received light pulse signal is input, and sends the characteristic data histogram generation unit 32 Output.
  • the measurement of these SPAD characteristic data can be performed at a predetermined timing.
  • characteristic data can be measured in an inspection process after manufacturing the distance measuring sensor 2 .
  • characteristic data can be measured to detect deterioration during use of the distance measuring sensor 2 .
  • FIG. 6A and 6B are diagrams illustrating examples of characteristic data histograms according to embodiments of the present disclosure.
  • the distribution of the data can be obtained by creating a histogram.
  • FIG. 6A shows an example of a histogram representing the detection frequency for each class of the pulse width of the received light pulse signal.
  • the class can correspond to the period of the clock signal described above.
  • it can be a class for each multiple of the clock signal period.
  • the first class of the characteristic data histogram represents the pulse width of one clock period and the second class is the class of two clock periods.
  • the characteristic data histogram generation unit 32 adds a value "1" to the detection frequency of the corresponding class each time the characteristic data is input from the characteristic data detection unit 31, updates the result, and generates a histogram.
  • FIG. 6B shows an example of a histogram representing the detection frequency for each class of the pulse interval of the received light pulse signal. Similar to the histogram of FIG. 6A, the classes can be in multiples of the clock signal period.
  • FIG. 7 is a diagram illustrating a configuration example of a characteristic data histogram generation unit and a characteristic data histogram holding unit according to the first embodiment of the present disclosure; This figure is a block diagram showing a configuration example of the characteristic data histogram generation section 32 and the characteristic data histogram holding section 33. As shown in FIG.
  • the characteristic data histogram generation unit 32 in the figure includes a histogram generation unit 320 , a storage area selection unit 321 and an addition unit 322 .
  • the histogram generating section 320 generates a histogram based on the characteristic data output from the characteristic data detecting section 31.
  • the histogram generating section 320 selects a class according to the characteristic data and outputs a storage area corresponding to the selected class to the storage area selecting section 321 .
  • the storage area selection section 321 selects a storage area of the characteristic data histogram holding section 33 corresponding to the storage area output from the histogram generation section 320 .
  • the adder 322 adds the value "1" to the input data and outputs the result.
  • the adder 322 adds 1 to the data in the storage area selected by the storage area selector 321 from among the plurality of storage areas of the characteristic data histogram holding unit 33 .
  • the adder 322 in the figure has data inputs In0 to In7 and data outputs Out0 to Out7 having the same bit width as a storage area described later.
  • the adder 322 outputs data obtained by adding the value "1" to the data input to the data inputs In0 to In7 from the data outputs Out0 to Out7.
  • the characteristic data histogram holding unit 33 shown in the same drawing includes a plurality of storage areas 330 . These storage areas 330 hold frequencies corresponding to the classes of the histogram.
  • the storage area 330 is configured to have a bit width corresponding to the maximum frequency of the histogram.
  • a storage area 330 in the figure represents an example configured to have a bit width of 8 bits.
  • the storage area 330 also has data inputs Di0-Di7, data outputs Do0-Do7, a read control input RD, and a write control input WD.
  • the data inputs Di0-Di7 are terminals for inputting data to be held in the storage area 330.
  • Data outputs Do0 to Do7 are terminals to which data held in the storage area 330 are output.
  • a read control input RD is a terminal for inputting a control signal instructing the storage area 330 to read data. For example, when a signal of value "1" is input to the read control input RD, the data held in the storage area 330 is output to the data outputs Do0-Do7.
  • a write control input WD is a terminal for inputting a control signal instructing writing of data to the storage area 330 . For example, when a signal having a value of “1” is input to the write control input WD, the data input to the data inputs D0 to D7 are held (stored) in the storage area 330 .
  • the data outputs Out0-Out7 of the adder 322 are commonly connected to the data inputs Di0-Di7 of all the storage areas 330 via the signal line 328.
  • Data inputs In0-In7 of the adder 322 are commonly connected to data outputs Do0-Do7 of all the storage areas 330 via signal lines 339.
  • the histogram generator 320 selects a class according to characteristic data.
  • a storage area 330 corresponding to this selected class is selected by the storage area selection unit 321 .
  • the storage area selection unit 321 outputs a control signal to the read control input RD of the selected storage area 330 to output the data held in the storage area 330 .
  • the output data is input to the adder 322 via the signal line 339 .
  • the adder 322 adds the value "1" to this data and outputs the result to the data outputs Out0-Out7.
  • the output data of the adder 322 is input to the data inputs In0-In7 of the storage area 330 via the signal line 328.
  • the storage area selector 321 outputs a control signal to the write control input WD of the selected storage area 330 .
  • the data input to the data inputs In0-In7 are written and held in the selected storage area 330 in synchronization with a clock signal (not shown).
  • a storage area 330 in the figure is a storage device to which read-modify-write access is performed. Also, the storage area 330 can be initialized by resetting. Such a storage area 330 can be configured by, for example, the above-described bit-width registers and read/write control circuits. This register can be composed of the same number of flip-flops as the bit width.
  • the time-of-flight histogram generation unit 16 and the time-of-flight histogram storage unit 17 described with reference to FIG. 1 can also generate time-of-flight histograms using the same configuration and procedure.
  • the characteristic data histogram held in the characteristic data histogram holding unit 33 is output to the output unit 19 via the signal line 339 .
  • the distance measuring sensor 2 of the first embodiment of the present disclosure can detect various characteristic data of the SPAD, which is a light receiving element, by the characteristic data detection unit 31, and can improve convenience. .
  • the distance measuring sensor 2 since the distance measuring sensor 2 generates and outputs a characteristic data histogram by the characteristic data histogram generating section 32, convenience can be further improved. Further, the distance measuring sensor 2 can hold detected characteristic data and data processed into a histogram and collectively output them to an external device. As a result, the time required to transfer the characteristic data can be shortened.
  • the distance measuring sensor 2 of the first embodiment described above detects SPAD characteristic data for each SPAD pixel 20 .
  • the ranging sensor 2 of the second embodiment of the present disclosure differs from the first embodiment described above in that characteristic data is detected for each of the plurality of SPAD pixels 20 .
  • FIG. 8 is a block diagram showing a schematic configuration example of a light receiving unit according to the second embodiment of the present disclosure.
  • This figure like FIG. 2, is a block diagram showing a configuration example of the light receiving section 14.
  • the light-receiving section 14 in FIG. 2 is different from the light-receiving section 14 in FIG. 2 in that a pixel group 28 including a plurality of SPAD pixels 20 is arranged.
  • the driving circuit 142 and the timing control circuit 141 are omitted from the light receiving section 14 in FIG.
  • the SPAD array 143 in the figure comprises a plurality of pixel groups 28.
  • a plurality of SPAD pixels 20 are arranged in this pixel group 28 .
  • the distance measuring sensor 2 according to the second embodiment of the present disclosure generates a light-receiving pulse signal for each pixel group 28 .
  • a drive circuit 142 shown in the figure drives a plurality of SPAD pixels 20 arranged in a pixel group 28 to simultaneously generate light reception signals.
  • the received light signal for each pixel group 28 is output to the received light pulse signal generation unit 15 via the output circuit 144 shown in FIG.
  • FIG. 9 is a diagram illustrating a configuration example of a ranging sensor according to the second embodiment of the present disclosure.
  • FIG. 1 is a block diagram showing a configuration example of the distance measuring sensor 2. As shown in FIG. The distance measuring sensor 2 shown in FIG. 1 is different from the distance measuring sensor 2 shown in FIG. 1 in that a plurality of received light pulse signal generators 15 are arranged, and further includes a received light pulse signal consolidation unit 34 and a serial/parallel converter 35 .
  • a sampling adjustment unit 30, a time-of-flight histogram generation unit 16, a time-of-flight histogram storage unit 17, a most frequent value detection unit 18, a characteristic data histogram generation unit 32, a characteristic data histogram storage unit 33, a characteristic data storage unit 40 and the output unit 19 are omitted.
  • the same number of received light pulse signal generators 15 as the SPAD pixels 20 arranged in the pixel group 28 are arranged.
  • a plurality of light-receiving signals output for each pixel group 28 are input to these light-receiving pulse signal generators 15 .
  • the plurality of received light pulse signal generators 15 Based on the received received light signals, the plurality of received light pulse signal generators 15 simultaneously generate and output received light pulse signals.
  • the light-receiving pulse signal aggregator 34 aggregates a plurality of light-receiving pulse signals into one light-receiving pulse signal and outputs it. Aggregation of the light-receiving pulse signals can be performed, for example, by OR operation of a plurality of light-receiving pulse signals.
  • the pixel group 28 By detecting the time-of-flight for the aggregated light-receiving pulse signal, the pixel group 28 can be regarded as one pixel and distance measurement processing can be performed.
  • the number of SPADs arranged in a pixel can be adjusted to change the dynamic range. In this case, the characteristic data can be detected based on the aggregated received light pulse signal.
  • the serial/parallel converter 35 converts the received light pulse signal into a parallel signal with a predetermined bit width. For example, 4 bits can be applied to the bit width. In this case, the serial-to-parallel converter 35 divides the received light pulse signal every four clock cycles and converts it into a parallel signal. By performing time-of-flight detection and characteristic data detection based on the parallel light-receiving pulse signals, the time allowed for processing can be lengthened. A circuit with a relatively low processing speed can be applied to the subsequent circuit such as the characteristic data detector 31 .
  • the characteristic data detection unit 31 in the figure detects characteristic data based on parallel received light pulse signals.
  • the configuration of the ranging sensor 2 according to the second embodiment of the present disclosure is not limited to this example.
  • the serial/parallel converter 35 can be omitted.
  • the characteristic data detection section 31 detects the characteristic data based on the serial received light pulse signal output from the received light pulse signal integrating section 34 .
  • the configuration of the distance measurement sensor 2 other than this is the same as the configuration of the distance measurement sensor 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the distance measuring sensor 2 generates a light-receiving pulse signal for each pixel group 28, and detects characteristic data based on the light-receiving pulse signal obtained by collecting these light-receiving pulse signals. do.
  • the distance measuring sensor 2 of the first embodiment described above holds characteristic data histograms in the characteristic data histogram holding unit 33 having a plurality of storage areas 330 .
  • the distance measuring sensor 2 of the third embodiment of the present disclosure differs from the above-described first embodiment in that a part of the characteristic data histogram is held in the memory device.
  • FIG. 10 is a diagram illustrating a configuration example of a characteristic data histogram holding unit according to the second embodiment of the present disclosure; This figure is a block diagram showing a configuration example of the characteristic data histogram holding unit 33. As shown in FIG. In addition, the characteristic data histogram generator 32 is also shown in FIG.
  • the characteristic data histogram holding unit 33 in the figure includes a register array 36 , an SRAM (Static Random Access Memory) 37 , and a holding memory selection unit 38 .
  • SRAM Static Random Access Memory
  • the register array 36 is composed of a plurality of registers and holds data of some classes of the characteristic data histogram.
  • the register array 36 can use the storage area 330 described with reference to FIG. 7 as a register.
  • the SRAM 37 is a memory device that holds some class data of the characteristic data histogram.
  • This SRAM 37 has a plurality of storage units to which unique addresses are assigned.
  • a register is used for this storage unit in the same manner as the storage area 330 .
  • the SRAM 37 can allocate data of a plurality of classes of the characteristic data histogram to a word, which is the data width of the storage section. Therefore, by using the SRAM 37, the distance measuring sensor 2 can be miniaturized.
  • the SRAM 37 performs read-modify-write access. This access requires two clock cycles, making the access speed slower than the register array 36 .
  • the holding memory selection unit 38 selects the register array 36 and the SRAM 37 . This holding memory selection unit 38 assigns each class of the characteristic data histogram to either the register array 36 or the SRAM 37 . Then, the holding memory selection unit 38 selects either the register array 36 or the SRAM 37 according to the selection result of the storage area output from the storage area selection unit 321, and controls reading and writing of data.
  • the holding memory selection section 38 outputs a selection signal to the register array 36 . This selection signal corresponds to the input signal of the read control input RD and the write control input WD described in FIG.
  • the adder 322 adds the value “1” to the storage area 330 of the register array 36 to which the selection signal is output.
  • the holding memory selection unit 38 outputs addresses to the SRAM 37 .
  • the data in the storage section corresponding to this address is read in synchronization with a clock signal (not shown) and output to the signal line 339 .
  • the adder 322 adds the value “1” to this data and outputs it to the SRAM 37 via the signal line 328 .
  • the output data after addition is written in the storage section corresponding to the above address in synchronization with the clock signal.
  • the holding memory selection unit 38 can allocate the class of the characteristic data histogram to the register array 36 and the SRAM 37 according to the update frequency. For example, a class in which characteristic data is predicted to be detected frequently corresponds to a class in which data is frequently updated. Retention memory selector 38 can assign such classes to register array 36 . In this case, it is possible to update the data of the class whose characteristic data is expected to be detected frequently at high speed. The time required to generate the histogram can be shortened.
  • FIG. 11 is a diagram illustrating another configuration example of the characteristic data histogram holding unit according to the second embodiment of the present disclosure.
  • This figure is a block diagram showing a configuration example of the characteristic data histogram holding unit 33, like FIG.
  • the characteristic data histogram holding unit 33 in FIG. 10 differs from the characteristic data histogram holding unit 33 in FIG. 10 in that it includes a plurality of counters 39 instead of the register array 36 .
  • the configuration of the characteristic data histogram holding unit 33 is illustrated in a simplified manner in FIG.
  • the counter 39 is a bit-width counter corresponding to the maximum frequency of the characteristic data histogram. This counter 39 counts up each time a selection signal is input from the holding memory selection unit 38 . By this up-counting, it is possible to update the histogram class data.
  • the counter 39 can be composed of the storage area 330 and the adder 322 described with reference to FIG. That is, since the counter 39 incorporates the adder 322, data can be updated at high speed. Further, as the counter 39, an asynchronous counter can be used as well as a counter synchronous with the clock signal.
  • the configuration of the characteristic data histogram holding unit 33 is not limited to these examples.
  • the characteristic data histogram holding unit 33 can be composed only of the SRAM 37 .
  • the characteristic data histogram holding unit 33 can be configured only with a plurality of counters 39 .
  • the configuration of the distance measurement sensor 2 other than this is the same as the configuration of the distance measurement sensor 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the distance measuring sensor 2 according to the third embodiment of the present disclosure assigns classes with high update frequency in the characteristic data histogram to the high-speed register array 36 and counter 39 .
  • the characteristic data histogram generation time can be shortened.
  • the distance measuring sensor 2 according to the third embodiment of the present disclosure can downsize the characteristic data histogram holding unit 33 by allocating classes with a relatively low update frequency to the SRAM 37 having a large capacity.
  • the distance measuring sensor 2 of the first embodiment described above includes the time-of-flight histogram holding section 17 and the characteristic data histogram holding section 33 .
  • the distance measuring sensor 2 of the fourth embodiment of the present disclosure differs from the above-described first embodiment in that the histogram holding unit is commonly used for flight time measurement and characteristic data detection. .
  • FIG. 12 is a diagram illustrating a configuration example of a ranging sensor according to the fourth embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a configuration example of the distance measuring sensor 2.
  • the distance measuring sensor 2 shown in FIG. 1 is different from the distance measuring sensor 2 shown in FIG. 1 in that it further includes a selection section 41 and the characteristic data histogram holding section 33 is omitted. Note that the sampling adjustment unit 30 and the characteristic data holding unit 40 are omitted in FIG.
  • the selection unit 41 selects histograms held in the time-of-flight histogram holding unit 17 in the latter stage.
  • the selection unit 41 selects either the time-of-flight histogram generation unit 16 or the characteristic data histogram generation unit 32 and transmits the histogram data.
  • the selection unit 41 selects the time-of-flight histogram generation unit 16 .
  • the selected time-of-flight histogram generation unit 16 outputs time-of-flight histogram data to the time-of-flight histogram holding unit 17 via the selection unit 41 .
  • the time-of-flight histogram generation unit 16 updates the classes of the histogram via the selection unit 41 to generate and hold the time-of-flight histogram.
  • the selector 41 selects the characteristic data histogram generator 32 .
  • the selected characteristic data histogram generation unit 32 outputs data of the characteristic data histogram to the time-of-flight histogram holding unit 17 via the selection unit 41 .
  • the time-of-flight histogram holding unit 17 holds the characteristic data histogram.
  • the output unit 19 selects and outputs the characteristic data histogram held in the time-of-flight histogram holding unit 17 .
  • the characteristic data histogram holding unit 33 can be omitted.
  • FIG. 13 is a diagram illustrating another configuration example of the distance measuring sensor according to the fourth embodiment of the present disclosure. This figure is a block diagram showing a configuration example of the distance measuring sensor 2, similar to FIG. The distance measurement sensor 2 shown in FIG. 12 is different from the distance measurement sensor 2 shown in FIG. Note that the sampling adjustment unit 30 and the characteristic data holding unit 40 are also omitted in FIG.
  • a selection unit 41 in the figure selects either the time-of-flight histogram generation unit 16 or the received light pulse signal generation unit 15 .
  • the selection unit 41 selects the time-of-flight histogram generation unit 16 .
  • the time-of-flight histogram holding unit 17 holds a time-of-flight histogram.
  • the selector 41 selects the received light pulse signal generator 15 .
  • the time-of-flight histogram holding unit 17 holds the received light pulse signal.
  • the characteristic data detection unit 31 detects characteristic data based on the received light pulse signal held in the time-of-flight histogram holding unit 17 .
  • the selection unit 42 selects either the time-of-flight histogram holding unit 17 or the characteristic data histogram generation unit 32 .
  • the selection unit 42 selects the time-of-flight histogram holding unit 17 to hold the time-of-flight histogram in the subsequent histogram holding unit 13 .
  • the selector 42 selects the characteristic data histogram generator 32 . In this case, the histogram holding unit 13 holds the characteristic data histogram.
  • the histogram holding unit 13 holds either the time-of-flight histogram or the characteristic data histogram.
  • the histogram holding unit 13 holds the time-of-flight histogram when the selection unit 42 selects the time-of-flight histogram holding unit 17, and holds the characteristic data histogram when the selection unit 42 selects the characteristic data histogram generation unit 32. .
  • the distance measurement sensor 2 shown in FIG. 1 performs distance measurement
  • the time-of-flight histogram generated by the time-of-flight histogram generation unit 16 and held in the time-of-flight histogram holding unit 17 is transferred to the histogram holding unit 13 and held. be.
  • the most frequent value detection unit 18 detects the most frequent value of the time-of-flight.
  • the distance measuring sensor 2 in FIG. 1 uses both the time-of-flight histogram holding unit 17 and the histogram holding unit 13 to generate a time-of-flight histogram and detect the mode of the generated time-of-flight histogram. and can be performed in parallel.
  • the characteristic data is acquired by the distance measuring sensor 2 in FIG.
  • the characteristic data is detected by the characteristic data detector 31 based on the held received light pulse signal.
  • a characteristic data histogram is generated by the characteristic data histogram generation unit 32 based on the detected characteristic data, and is held in the histogram holding unit 13 .
  • the distance measuring sensor 2 shown in FIG. and in parallel.
  • the distance measurement sensor 2 shown in FIG. 13 to hold temporarily. As a result, it is possible to apply parallel processing to ranging and the like to speed up the processing.
  • the configuration of the distance measurement sensor 2 other than this is the same as the configuration of the distance measurement sensor 2 in the first embodiment of the present disclosure, so the description is omitted.
  • the distance measurement sensor 2 of the fourth embodiment of the present disclosure shares a storage device such as a memory holding histograms for distance measurement and characteristic data acquisition. This makes it possible to reduce the amount of hardware required to acquire characteristic data. It is possible to reduce the size of the distance measuring sensor 2 .
  • the distance measuring device 1 of the first embodiment described above obtains the characteristic data of the light receiving element.
  • the distance measuring device 1 of the fifth embodiment of the present disclosure differs from the above-described first embodiment in that deterioration of the light-receiving element is detected using acquired characteristic data.
  • FIG. 14 is a diagram illustrating a configuration example of a distance measuring device according to the fifth embodiment of the present disclosure;
  • This figure like FIG. 1, is a block diagram showing a configuration example of the distance measuring device 1.
  • the rangefinder 1 shown in FIG. 1 is different from the rangefinder 1 shown in FIG. 1 in that it further includes a deterioration detector 43 .
  • a control unit 3, a light source device 5, a light shielding section 6, and a light shielding device 7 are further illustrated in FIG.
  • the distance measuring device 1 shown in FIG. 1 is assumed to be used as an in-vehicle device.
  • the distance measuring sensor 2 is illustrated in a simplified manner.
  • the deterioration detection unit 43 detects deterioration of the SPAD, which is a light receiving element. This deterioration detector 43 detects deterioration of the SPAD based on the characteristic data, and outputs deterioration information to an external device.
  • SPAD degradation can be detected when the amount of change in the characteristic data exceeds a predetermined threshold. For example, it can be determined that the SPAD has deteriorated when the pulse width or pulse interval exceeds a predetermined threshold. Also, it can be determined that the SPAD has deteriorated when the PDE drops below a predetermined threshold or when the DCR exceeds a predetermined threshold.
  • the control unit 3 controls the distance measuring device 1 and acquires the distance measurement value up to the object 400 .
  • the control unit 3 is composed of a microcomputer or the like, and controls the distance measuring device 1 by generating a command instructing distance measurement or the like and outputting it to the control device 10 .
  • control unit 3 controls the distance measuring device 1 to acquire characteristic data.
  • the acquired characteristic data can be used for evaluation of the ranging sensor 2 .
  • control unit 3 controls the light source device 5 and the light blocking section 6 shown in FIG.
  • the light source device 5 is a light source that irradiates the light receiving section 14 with light of a prescribed light amount for characteristic data measurement.
  • the characteristic data detector 31 detects the pulse width, pulse interval and number of pulses of the received light pulse signal of the SPAD while the light from the light source device 5 is applied.
  • the light shielding portion 6 shields the light receiving portion 14 from light.
  • the light receiving section 14 is light-shielded by operating the light shielding device 7 .
  • the light blocking device 7 can be composed of, for example, a light blocking object such as a shutter.
  • the control unit 3 can measure the DCR by controlling the light shielding section 6 to shield the light receiving section 14 and measuring the number of pulses of the light receiving pulse signal in the dark.
  • the characteristic data are input from the distance measuring sensor 2 to the control unit 3 and also input to the deterioration detection section 43 .
  • the deterioration detector 43 detects deterioration of the SPAD based on the input characteristic data.
  • a configuration in which the control unit 3 detects deterioration of the SPAD can also be adopted.
  • the measurement of characteristic data by the control unit 3 can be performed, for example, when the in-vehicle device is activated. Also, the light source device 5 and the light shielding portion 6 can be omitted. In this case, it is necessary to prepare an environment for characteristic data measurement by arranging an external light source device and a light shielding device. For example, characteristic data can be measured during periodic inspections.
  • the configuration of the distance measuring device 1 other than this is the same as the configuration of the distance measuring device 1 according to the first embodiment of the present disclosure, so description thereof will be omitted.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (Interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) functions including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) functions including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 12100, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 16 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the traveling path of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the vehicle exterior information detection unit 12030 and the imaging unit 12031 among the configurations described above.
  • the distance measuring device 1 in FIG. 1 can be applied to the vehicle exterior information detection unit 12030 .
  • the light receiving unit 14 in FIG. 1 can be applied to the imaging unit 12031 .
  • the configuration of the second embodiment of the present disclosure can be applied to other embodiments.
  • the received light pulse signal aggregation unit 34 in FIG. 9 can be applied to the third to fifth embodiments of the present disclosure.
  • the serial/parallel converter 35 of FIG. 9 can be applied to the first and third to fifth embodiments of the present disclosure.
  • the configuration of the third embodiment of the present disclosure can be applied to other embodiments.
  • the characteristic data histogram holding unit 33 of FIGS. 10 and 11 can be applied to the second, fourth and fifth embodiments of the present disclosure.
  • the configuration of the fourth embodiment of the present disclosure can be applied to other embodiments. Specifically, the configuration including the selection unit 41 in FIG. 12 and the configuration including the selection unit 41, the selection unit 42, and the histogram holding unit 13 in FIG. can be applied.
  • the configuration of the fifth embodiment of the present disclosure can be applied to other embodiments.
  • the deterioration detector 43 of FIG. 14 can be applied to the second to fourth embodiments of the present disclosure.
  • the ranging sensor 2 has a SPAD pixel 20, a time-of-flight detection section, a characteristic data detection section 31, and a characteristic data storage section.
  • the SPAD pixel 20 includes a light-receiving element (photodiode 21) that receives reflected light of the emitted light emitted from the light source device 11 and reflected by the object, and generates a light-receiving signal based on the reception of the reflected light.
  • the time-of-flight detector detects the time-of-flight from the emission of emitted light to the reception of reflected light for detecting the distance to the object, based on the generated light reception signal.
  • the characteristic data detector 31 detects characteristic data of the light receiving element (photodiode 21) based on the received light signal.
  • the characteristic data holding unit holds the detected characteristic data. Thereby, the characteristic data of the light-receiving element can be measured in the distance measuring sensor 2 .
  • the light receiving element may be composed of an avalanche photodiode. Thereby, the characteristic data of the avalanche photodiode can be measured.
  • the characteristic data detection unit 31 may detect the pulse width of the received light signal as characteristic data.
  • the characteristic data detection unit 31 may detect the pulse interval of the received light signal as characteristic data.
  • the characteristic data detection unit 31 may detect the number of pulses of the received light signal as the characteristic data.
  • a light receiving pulse signal generating unit 15 is provided for generating a light receiving pulse signal which is a signal obtained by binarizing the generated light receiving signal at a predetermined sampling period.
  • the characteristic data detector 31 may detect the characteristic data based on the generated received light pulse signal. Thereby, the characteristic data can be measured in units of the sampling period.
  • the received light pulse signal generation unit 15 may generate the received light pulse signal in different periods when detecting the flight time and when detecting the characteristic data. This makes it possible to adopt a sampling period suitable for characteristic data detection.
  • it may further include an output unit that outputs the detected time-of-flight and the held characteristic data to the outside.
  • it further includes a plurality of SPAD pixels 20 and a light reception signal aggregation unit that generates a signal obtained by aggregating the plurality of light reception signals respectively generated by the plurality of SPAD pixels 20, and the time-of-flight detection unit aggregates the light reception signals.
  • the time of flight may be detected based on the signal generated by the unit, and the characteristic data detector 31 may detect the characteristic data based on the signal generated by the received light signal aggregator. Thereby, characteristic data can be detected for each of the plurality of SPAD pixels 20 .
  • a characteristic data histogram generating unit 32 for generating a characteristic data histogram which is a histogram representing the frequency of detection of the detected characteristic data, is provided, and the characteristic data holding unit stores the generated characteristic data histogram as characteristic data. may be retained. As a result, specific data configured in a histogram can be output.
  • the characteristic data holding unit includes a plurality of storage areas 330 for storing frequencies corresponding to a plurality of classes of the characteristic data histogram, respectively.
  • the characteristic data histogram may be generated by adding the value "1" to the frequency stored in the storage area 330 corresponding to the class according to the obtained characteristic data.
  • the characteristic data holding unit may include a register configured by a plurality of flip-flops as the storage area 330 . Thereby, the characteristic data histogram can be generated at high speed.
  • the characteristic data holding unit may include SRAM (Static Random Access Memory) as a plurality of storage areas 330 . Thereby, the characteristic data holding unit can be miniaturized.
  • SRAM Static Random Access Memory
  • the characteristic data holding unit may include a counter as the storage area 330 .
  • a characteristic data histogram can be generated at high speed.
  • the time-of-flight detection unit includes a time-of-flight histogram generation unit 16 that generates a time-of-flight histogram, which is a histogram of the time-of-flight detected at each predetermined measurement period in time series,
  • a time-of-flight histogram generation unit 16 stores the generated time-of-flight histogram in a characteristic data storage unit. , the most frequent value in the time-of-flight histogram held in the characteristic data holding unit may be detected. Thereby, the ranging sensor 2 can be miniaturized.
  • the distance measuring device 1 includes a light source device 11 and a light receiving element (photodiode 21) that receives reflected light emitted from the light source device 11 and reflected by an object. a time-of-flight detection unit for detecting the flight time from the emission of the emitted light to the reception of the reflected light for detecting the distance to the object based on the generated light reception signal, and the light reception signal and a characteristic data holding unit for holding the detected characteristic data. Thereby, the characteristic data of the light receiving element can be measured in the distance measuring device 1 .
  • it may further include a deterioration detection unit 43 that detects deterioration of the light receiving element (photodiode 21) based on the held characteristic data. This makes it possible to detect deterioration of the light receiving element.
  • the present technology can also take the following configuration.
  • a pixel that includes a light-receiving element that receives reflected light emitted from a light source device and that is reflected by an object, and generates a light-receiving signal based on the reception of the reflected light; a time-of-flight detection unit that detects a flight time from the emission of the emitted light to the reception of the reflected light for detecting the distance to the object, based on the generated light reception signal; a characteristic data detection unit that detects characteristic data of the light receiving element based on the light receiving signal; and a characteristic data holding unit that holds the detected characteristic data.
  • the light receiving element is an avalanche photodiode.
  • (6) further comprising a light receiving pulse signal generation unit that generates a light receiving pulse signal that is a signal obtained by binarizing the generated light receiving signal at a predetermined sampling period;
  • the time-of-flight detection unit detects the time-of-flight based on the generated light-receiving pulse signal,
  • the distance measuring sensor according to any one of (1) to (5), wherein the characteristic data detection section detects the characteristic data based on the generated light receiving pulse signal.
  • the light-receiving pulse signal generation unit generates the light-receiving pulse signal in different periods when detecting the time-of-flight and when detecting the characteristic data.
  • the distance measuring sensor further comprising a serial/parallel converter for converting the generated light receiving pulse signal into a parallel light receiving pulse signal;
  • the distance measuring sensor according to (6), wherein the characteristic data detection section detects the characteristic data based on the parallel received light pulse signal.
  • the distance measuring sensor according to any one of (1) to (8), further comprising an output unit that outputs the detected time-of-flight and the held characteristic data to the outside.
  • (10) a plurality of said pixels; a light reception signal consolidating unit that generates a signal obtained by consolidating the plurality of light reception signals respectively generated by the plurality of pixels;
  • the time-of-flight detection unit detects the time-of-flight based on the signal generated by the received light signal aggregation unit,
  • the distance measuring sensor according to any one of (1) to (9), wherein the characteristic data detection section detects the characteristic data based on the signal generated by the received light signal aggregation section.
  • the distance measuring sensor according to any one of (1) to (10), wherein the characteristic data holding unit holds the generated characteristic data histogram as the characteristic data.
  • the characteristic data holding unit includes a plurality of storage areas for storing the frequencies corresponding to the plurality of classes of the characteristic data histogram, The characteristic data histogram generating unit adds a value "1" to the frequency stored in the storage area corresponding to the class corresponding to the detected characteristic data each time the characteristic data is detected.
  • the distance measuring sensor according to (11), which generates the characteristic data histogram.
  • the characteristic data holding unit includes an SRAM (Static Random Access Memory) as the plurality of storage areas.
  • the characteristic data holding unit includes a counter as the storage area.
  • the time-of-flight detection unit a time-of-flight histogram generation unit that generates a time-of-flight histogram that is a histogram of the time-of-flight detected for each predetermined time-series measurement period;
  • a most frequent value detection unit that detects the most frequent value in the time-of-flight histogram as the flight time corresponding to the distance to the object,
  • the time-of-flight histogram generation unit holds the generated time-of-flight histogram in the characteristic data holding unit,
  • the distance measuring sensor according to any one of (11) to (15), wherein the most frequent value detection unit detects the most frequent value in the time-of-flight histogram held in the characteristic data holding unit.
  • a light source device a pixel that includes a light receiving element that receives light emitted from the light source device and that is reflected by an object, and that generates a light reception signal based on the reception of the reflected light; a time-of-flight detection unit that detects a flight time from the emission of the emitted light to the reception of the reflected light for detecting the distance to the object, based on the generated light reception signal; a characteristic data detection unit that detects characteristic data of the light receiving element based on the light receiving signal; and a characteristic data holding unit that holds the detected characteristic data.
  • the distance measuring device further comprising a deterioration detection unit that detects deterioration of the light receiving element based on the held characteristic data.
  • a deterioration detection unit that detects deterioration of the light receiving element based on the held characteristic data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

受光素子の特性データを取得する。測距センサは、画素と、飛行時間検出部と、特性データ検出部と、特性データ保持部とを有する。画素は、光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて反射光の受光に基づく受光信号を生成する。飛行時間検出部は、対象物までの距離を検出するための出射光の出射から反射光の受光までの飛行時間を生成された受光信号に基づいて検出する。特性データ検出部は、受光信号に基づいて受光素子の特性データを検出する。特性データ保持部は、検出した特性データを保持する。

Description

測距センサ及び測距装置
 本開示は、測距センサ及び測距装置に関する。
 光を照射し、照射した光が対象物により反射された反射光を受光して光が対象物との間を往復する時間を計時して対象物までの距離を測定する測距センサが使用されている。この測距センサにおいて、光の照射には、レーザダイオードが使用される。また、反射光を受光する受光素子には、アバランシェフォトダイオード(APD:Avalanche Photo Diode)や単一光子アバランシェダイオード(SPAD:Single Photon Avalanche diode)が使用される。これらの受光素子は、高感度かつ高速に反射光の入射を検出することができる。
 このAPDやSPADは、特性のばらつきが比較的大きいという問題がある。また、これらの素子は、光の入射に起因しない電流である暗電流が流れる。この暗電流は、素子内部の欠陥に起因する電流であり、素子の劣化に伴って増加する。この暗電流が大きくなると、距離測定の誤動作を生じる。そこで、受光素子に光が当たらない暗状態において暗電流を測定し、受光素子の劣化状態を判断する光学的距離測定装置が提案されている(例えば、特許文献1参照)。
特開2020-143996号公報
 しかしながら、上記の従来技術では、通常の使用状態における受光素子の特性が測定できないという問題がある。
 そこで、本開示では、受光素子の特性データを取得する測距センサ及び測距装置を提案する。
 本開示に係る測距センサは、画素と、飛行時間検出部と、特性データ検出部と、特性データ保持部とを有する。画素は、光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて上記反射光の受光に基づく受光信号を生成する。飛行時間検出部は、上記対象物までの距離を検出するための上記出射光の出射から上記反射光の受光までの飛行時間を上記生成された受光信号に基づいて検出する。特性データ検出部は、上記受光信号に基づいて上記受光素子の特性データを検出する。特性データ保持部は、上記検出した特性データを保持する。
本開示の第1の実施形態に係る測距装置の構成例を示す図である。 本開示の実施形態に係る受光部の概略構成例を示すブロック図である。 本開示の実施形態に係るSPAD画素の概略構成例を示す回路図である。 本開示の実施形態に係る受光パルス信号生成部の構成例を示す図である。 本開示の実施形態に係る受光パルス信号の一例を示す図である。 本開示の実施形態に係るクロストークの一例を示す図である。 本開示の実施形態に係る特性データヒストグラムの一例を示す図である。 本開示の実施形態に係る特性データヒストグラムの一例を示す図である。 本開示の第1の実施形態に係る特性データヒストグラム生成部及び特性データヒストグラム保持部の構成例を示す図である。 本開示の第2の実施形態に係る受光部の概略構成例を示すブロック図である。 本開示の第2の実施形態に係る測距センサの構成例を示す図である。 本開示の第2の実施形態に係る特性データヒストグラム保持部の構成例を示す図である。 本開示の第2の実施形態に係る特性データヒストグラム保持部の他の構成例を示す図である。 本開示の第4の実施形態に係る測距センサの構成例を示す図である。 本開示の第4の実施形態に係る測距センサの他の構成例を示す図である。 本開示の第5の実施形態に係る測距装置の構成例を示す図である。 本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の例を示す図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。説明は、以下の順に行う。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.第5の実施形態
6.移動体への応用例
 (1.第1の実施形態)
 [測距装置の構成]
 図1は、本開示の第1の実施形態に係る測距装置の構成例を示す図である。同図は、測距装置1の構成例を表すブロック図である。測距装置1は、光源装置11と、測距センサ2と、制御装置10とを備える。
 光源装置11は、距離測定の対象物に光を照射するものである。この光源装置11は、レーザダイオード等の発光素子を備え、後述する制御装置10の制御に基づいて赤外光等の光を対象物に対して出射する。同図は、対象物400に対して出射光401を出力する例を表したものである。
 測距センサ2は、光源装置11からの出射光が対象物により反射された反射光を検出し、検出した反射光に基づいて対象物までの距離を測定するものである。同図は、出射光401が対象物400により反射された反射光402を検出する例を表したものである。測距センサ2は、反射光402を受光する受光素子を備え、光源装置11における出射光401の出射から反射光402の受光までの時間を計時する。そして、測距センサ2は、計時した時間と光の速度とに基づいて対象物400までの距離を測定し、データとして出力する。また、測距センサ2は、受光素子の特性を測定し、測定したデータを更に出力する。
 制御装置10は、測距装置1の全体を制御するものである。この制御装置10は、外部から入力されたコマンドに基づいて測距装置1の制御を行う。また、制御装置10は、光源装置11における出射光401の出射と測距センサ2における計時の開始とを同期させる制御を行う。
 [測距センサの構成]
 同図の測距センサ2は、受光部14と、受光パルス信号生成部15と、飛行時間ヒストグラム生成部16と、飛行時間ヒストグラム保持部17と、最頻出値検出部18と、出力部19とを備える。また、測距センサ2は、サンプリング調整部30と、特性データ検出部31と、特性データヒストグラム生成部32と、特性データヒストグラム保持部33と、特性データ保持部40とを更に備える。
 なお、飛行時間ヒストグラム生成部16、飛行時間ヒストグラム保持部17及び最頻出値検出部18は、出射光の出射から反射光の受光までの飛行時間を後述する受光信号に基づいて検出する飛行時間検出部を構成する。
 受光部14は、複数の受光素子を備え、反射光402を受光するものである。この受光部14は、受光素子をそれぞれ備える複数の画素(後述するSPAD画素20)が2次元格子状に配置されて構成される。このSPAD画素20は、反射光402を受光すると受光信号を生成する。受光部14は、この受光信号を受光パルス信号生成部15に対して出力する。
 受光素子には、上述のAPDを使用することができる。このAPDは、逆バイアス電圧が印加された状態において動作する受光ダイオードである。逆バイアス電圧を降伏電圧の近傍の電圧にすることにより、APD内部の空乏層に高電界が形成される。この高電界によるなだれ増倍作用により、APDは、入射光の光電変換により生成された電荷を増加させることができ、受光感度を向上させることができる。
 また、受光素子にSPADを使用することもできる。このSPADは、降伏電圧を超える逆バイアス電圧を印加することにより電荷の増倍作用を向上させたAPDである。SPADでは、光電変換により生成される電荷が高い増倍作用により急激に増加する。この増加した電荷により、急峻な立ち上がりの電流がSPADに流れる。この電流を検出してパルス信号を生成することにより、単一の光子の入射を検出することができる。このような動作モードは、ガイガーモードと称される。以下、受光素子としてSPADを想定する。受光部14の構成の詳細については後述する。
 受光パルス信号生成部15は、受光信号から受光パルス信号を生成するものである。ここで、受光パルス信号は、受光信号を所定のサンプリング周期において2値化した信号である。このサンプリング周期には、後段の回路の動作の基準となるクロック信号の周期を適用することができる。この場合、受光パルス信号は、クロック信号に同期したデジタルの信号となる。受光パルス信号生成部15の構成の詳細については後述する。
 飛行時間ヒストグラム生成部16は、出射光401の出射から反射光402の受光までの光の飛行時間を受光信号に基づいて検出するものである。同図の飛行時間ヒストグラム生成部16は、受光パルス信号生成部15により生成された受光パルス信号に基づいて飛行時間を検出する。前述の制御装置10は、光源装置11に対して出射光401の出射を制御するとともに出射光401の出射に同期した信号を飛行時間ヒストグラム生成部16に対して出力する。飛行時間ヒストグラム生成部16は、この信号に同期して計時を開始し、受光パルス信号生成部15から受光パルス信号が入力されるまでの時間を計時する。
 また、飛行時間ヒストグラム生成部16は、計時した飛行時間のヒストグラムを生成する。具体的には、飛行時間ヒストグラム生成部16は、光源装置11からの出射光401の出射を起点とする所定の測定周期毎に受光パルス信号を計数し、測定周期毎の受光パルス信号数を検出する。次に、飛行時間ヒストグラム生成部16は、時系列の測定周期を階級とし、受光パルス信号の検出頻度を度数として表すヒストグラムを生成する。このヒストグラムの階級は、初回の測定周期から当該階級の測定周期までの総和に相当する飛行時間に対応する。受光パルス信号の検出頻度が最も高い階級に対応する飛行時間をこのヒストグラムから検出することができる。この検出された階級に対応する飛行時間を対象物400までの飛行時間とすることにより、対象物400までの距離を算出することができる。
 飛行時間ヒストグラム保持部17は、飛行時間ヒストグラム生成部16により生成されるヒストグラムを保持するものである。この飛行時間ヒストグラム保持部17は、飛行時間ヒストグラムの階級にそれぞれ対応する複数の記憶領域を備える。上述の飛行時間ヒストグラム生成部16は、受光パルス信号を検出する毎に、測定周期に応じた階級に対応する飛行時間ヒストグラム保持部17の記憶領域の値に1を加算する。これにより、当該記憶領域に受光パルス信号の検出頻度を記憶させることができる。この処理を全ての測定周期(階級)に対して行うことにより、飛行時間ヒストグラムを生成しながら飛行時間ヒストグラム保持部17に保持させることができる。この飛行時間ヒストグラムの生成の処理は、図7において後述する特性データヒストグラムの生成の処理と同様である。
 最頻出値検出部18は、飛行時間ヒストグラム保持部17に保持された飛行時間ヒストグラムにおける受光パルス信号の検出頻度が最も高い測定周期を検出するものである。最頻出値検出部18は、飛行時間ヒストグラムの最大の度数となる階級を検出することにより、受光パルス信号の検出頻度が最も高い測定周期を検出することができる。この検出された測定周期に至るまでの出射光401の出射からの測定周期の総和を飛行時間とすることができる。検出された飛行時間は、出力部19に対して出力される。
 サンプリング調整部30は、受光パルス信号生成部15におけるサンプリング期間を調整するものである。ここで、サンプリング期間とは、受光信号を取得する期間である。このサンプリング期間は、飛行時間の測定期間及び後述する受光素子の特性データの検出期間に相当する。サンプリング調整部30は、このサンプリング期間を調整する。また、サンプリング調整部30は、飛行時間の測定と特性データの検出とにおいて異なるサンプリング期間に調整することもできる。例えば、サンプリング調整部30は、特性データの検出の際のサンプリング期間を飛行時間検出の際のサンプリング期間と比較して長い期間に調整することができる。
 また、サンプリング調整部30は、受光パルス信号のサンプリングに使用するクロック信号の生成を更に行う。この生成されたクロック信号は、受光パルス信号生成部15に対して出力される。上述のサンプリング期間の調整は、例えば、このクロック信号を出力する期間を調整することにより行うことができる。また、サンプリング調整部30は、このクロック信号の周期を調整することもできる。これにより、サンプリング調整部30は、上述のサンプリング周期を調整することができる。また、サンプリング調整部30は、飛行時間の測定と特性データの検出とにおいて異なるクロック周期に調整することもできる。
 特性データ検出部31は、受光パルス信号に基づいて受光素子の特性データを検出するものである。この特性データには、例えば、受光パルス信号のパルス幅、パルス間隔及び所定の測定期間におけるパルス数が該当する。なお、パルス間隔は、同一の受光素子から出力される受光パルス信号のパルス間隔の他に、異なる受光素子から出力される受光パルス信号のパルス間隔が該当する。この異なる受光素子の受光パス信号の間隔を検出することにより、受光パルス信号のクロストークを検出することができる。特性データ検出部31は、制御装置10からの指示に基づいてこれらの特性データの検出を行う。
 また、特性データ検出部31は、検出した特性データのうちのヒストグラムの生成が必要なデータを特性データヒストグラム生成部32に出力し、ヒストグラムを必要としないデータを特性データ保持部40に出力する。具体的には、特性データ検出部31は、受光パルス信号のパルス幅及びパルス間隔を特性データヒストグラム生成部32に出力し、受光パルス信号のパルス数を特性データ保持部40に出力する。特性データの詳細については後述する。
 特性データヒストグラム生成部32は、特性データの検出頻度を度数として表すヒストグラムである特性データヒストグラムを生成するものである。同図の特性データヒストグラム生成部32は、特性データ検出部31から出力された受光パルス信号のパルス幅及びパルス間隔についてのヒストグラムを生成する。特性データヒストグラムの詳細については後述する。
 特性データヒストグラム保持部33は、特性データヒストグラム生成部32により生成される特性データヒストグラムを保持するものである。この特性データヒストグラム保持部33は、飛行時間ヒストグラム保持部17と同様に、特性データヒストグラムの階級にそれぞれ対応する複数の記憶領域を備える。特性データヒストグラム保持部33は、所定のタイミングにおいて保持した特性データヒストグラムを出力部19に対して出力する。特性データヒストグラム保持部33の構成の詳細については後述する。なお、特性データヒストグラム保持部33は、請求の範囲に記載の特性データ保持部の一例である。
 特性データ保持部40は、特性データを保持するものである。同図の特性データ保持部40は、特性データ検出部31から出力された受光パルス信号のパルス数を保持する。また、特性データ保持部40は、所定のタイミングにおいて保持した特性データを出力部19に対して出力する。
 出力部19は、検出された飛行時間及び検出された特性データを外部の装置に対して出力するものである。この出力部19は、最頻出値検出部18から出力される飛行時間、特性データヒストグラム保持部33に保持された特性データヒストグラム及び特性データ保持部40に保持された特性データの何れかを選択して出力する。
 [受光部の構成]
 図2は、本開示の実施形態に係る受光部の概略構成例を示すブロック図である。図2に示すように、受光部14は、タイミング制御回路141と、駆動回路142と、SPADアレイ143と、出力回路144とを備える。
 SPADアレイ143は、2次元格子状に配列する複数のSPAD画素20を備える。複数のSPAD画素20に対しては、列ごとに画素駆動線LD(図面中の上下方向)が接続され、行ごとに出力信号線LS(図面中の左右方向)が接続される。画素駆動線LDの一端は、駆動回路142の各列に対応した出力端に接続され、出力信号線LSの一端は、出力回路144の各行に対応した入力端に接続される。
 駆動回路142は、シフトレジスタやアドレスデコーダなどを含み、SPADアレイ143の各SPAD画素20を、全画素同時や列単位等で駆動する。そこで、駆動回路142は、少なくとも、SPADアレイ143内の選択列における各SPAD画素20に、後述するクエンチ電圧V_QCHを印加する回路と、選択列における各SPAD画素20に、後述する選択制御電圧V_SELを印加する回路とを含む。そして、駆動回路142は、読出し対象の列に対応する画素駆動線LDに選択制御電圧V_SELを印加することにより、光子の入射を検出するために用いるSPAD画素20を列単位で選択する。
 駆動回路142によって選択走査された列の各SPAD画素20から出力される信号(受光信号)V_OUTは、出力信号線LSの各々を通して出力回路144に入力される。出力回路144は、各SPAD画素20から入力された受光信号V_OUTを出力する。
 タイミング制御回路141は、各種のタイミング信号を生成するタイミングジェネレータ等を含み、タイミングジェネレータで生成された各種のタイミング信号を基に、駆動回路142及び出力回路144を制御する。
 [SPAD画素]
 図3は、本開示の実施形態に係るSPAD画素の概略構成例を示す回路図である。同図に示すように、SPAD画素20は、受光素子としてのフォトダイオード21と、フォトダイオード21に光子が入射したことを検出する読出し回路22とを備える。フォトダイオード21は、そのアノードとカソードとの間に降伏電圧(ブレークダウン電圧)以上の逆バイアス電圧V_SPADが印加されている状態で光子が入射すると、アバランシェ電流を発生する。
 読出し回路22は、クエンチ抵抗23と、デジタル変換器25と、インバータ26と、バッファ27と、選択トランジスタ24とを備える。クエンチ抵抗23は、例えば、NチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor。以下、NMOSトランジスタという)で構成され、そのドレインがフォトダイオード21のアノードに接続され、そのソースが選択トランジスタ24を介して接地されている。また、クエンチ抵抗23を構成するNMOSトランジスタのゲートには、当該NMOSトランジスタをクエンチ抵抗として作用させるために予め設定されているクエンチ電圧V_QCHが、駆動回路142から画素駆動線LDを介して印加される。
 本実施形態において、フォトダイオード21はSPADである。SPADは、そのアノードとカソードとの間に降伏電圧(ブレークダウン電圧)以上の逆バイアス電圧が印加されるとガイガーモードで動作するアバランシェフォトダイオードであり、1つの光子の入射を検出可能である。
 デジタル変換器25は、抵抗251とNMOSトランジスタ252とを備える。NMOSトランジスタ252は、そのドレインが抵抗251を介して電源電圧VDDに接続され、そのソースが接地されている。また、NMOSトランジスタ252のゲートには、フォトダイオード21のアノードとクエンチ抵抗23との接続点N1の電圧が印加される。
 インバータ26は、PチャネルMOSFET(以下、PMOSトランジスタという)261とNMOSトランジスタ262とを備える。PMOSトランジスタ261は、そのドレインが電源電圧VDDに接続され、そのソースがNMOSトランジスタ262のドレインに接続されている。NMOSトランジスタ262は、そのドレインがPMOSトランジスタ261のソースに接続され、そのソースが接地されている。PMOSトランジスタ261のゲート及びNMOSトランジスタ262のゲートには、それぞれ抵抗251とNMOSトランジスタ252のドレインとの接続点N2の電圧が印加される。インバータ26の出力は、バッファ27に入力される。
 バッファ27は、インピーダンス変換のための回路であり、インバータ26から出力信号を入力すると、その入力した出力信号をインピーダンス変換し、受光信号V_OUTとして出力する。
 選択トランジスタ24は、例えば、NMOSトランジスタであり、そのドレインがクエンチ抵抗23を構成するNMOSトランジスタのソースに接続され、そのソースが接地されている。選択トランジスタ24は、駆動回路142に接続されており、選択トランジスタ24のゲートに駆動回路142からの選択制御電圧V_SELが画素駆動線LDを介して印加されると、オフ状態からオン状態に変化する。
 図3に例示した読出し回路22は、例えば、以下のように動作する。すなわち、まず、駆動回路142から選択トランジスタ24に選択制御電圧V_SELが印加されて選択トランジスタ24がオン状態となっている期間、フォトダイオード21には降伏電圧(ブレークダウン電圧)以上の逆バイアス電圧V_SPADが印加される。これにより、フォトダイオード21の動作が許可される。
 一方、駆動回路142から選択トランジスタ24に選択制御電圧V_SELが印加されておらず、選択トランジスタ24がオフ状態となっている期間、逆バイアス電圧V_SPADがフォトダイオード21に印加されないことから、フォトダイオード21の動作が禁止される。
 選択トランジスタ24がオン状態であるときにフォトダイオード21に光子が入射すると、フォトダイオード21においてアバランシェ電流が発生する。それにより、クエンチ抵抗23にアバランシェ電流が流れ、接続点N1の電圧が上昇する。接続点N1の電圧がNMOSトランジスタ252のオン電圧よりも高くなると、NMOSトランジスタ252がオン状態になり、接続点N2の電圧が電源電圧VDDから0Vに変化する。そして、接続点N2の電圧が電源電圧VDDから0Vに変化すると、PMOSトランジスタ261がオフ状態からオン状態に変化すると共にNMOSトランジスタ262がオン状態からオフ状態に変化し、接続点N3の電圧が0Vから電源電圧VDDに変化する。その結果、バッファ27からハイレベルの受光信号V_OUTが出力される。
 その後、接続点N1の電圧が上昇し続けると、フォトダイオード21のアノードとカソードとの間に印加されている電圧が降伏電圧よりも小さくなり、それにより、アバランシェ電流が止まって、接続点N1の電圧が低下する。そして、接続点N1の電圧がNMOSトランジスタ452のオン電圧よりも低くなると、NMOSトランジスタ452がオフ状態になり、バッファ27からの受光信号V_OUTの出力が停止する(ローレベル)。
 このように、読出し回路22は、フォトダイオード21に光子が入射してアバランシェ電流が発生し、これによりNMOSトランジスタ452がオン状態になったタイミングから、アバランシェ電流が止まってNMOSトランジスタ452がオフ状態になるタイミングまでの期間、ハイレベルの受光信号V_OUTを出力する。出力された受光信号V_OUTは、出力回路144を介して、受光パルス信号生成部15に入力される。
 [受光パルス信号生成部の構成]
 図4は、本開示の実施形態に係る受光パルス信号生成部の構成例を示す図である。同図は、受光パルス信号生成部15の構成例を表すブロック図である。受光パルス信号生成部15は、Dフリップフロップ151及び152を備える。Dフリップフロップ151及び152は、直列に接続される。すなわち、Dフリップフロップ151のQ出力がDフリップフロップ152のD入力に接続される。Dフリップフロップ151のD入力には、出力回路144からの受光信号が入力される。Dフリップフロップ151にはクロック信号1が供給され、Dフリップフロップ152にはクロック信号2が供給される。クロック信号1及びクロック信号2は、同じ周波数のクロック信号である。また、クロック信号2は、クロック信号1に対して遅れ位相のクロック信号である。
 出力回路144を介して入力される受光信号は、クロック信号1の立ち上がりに同期してDフリップフロップ151に取り込まれ、Dフリップフロップ151のQ出力に出力される。この出力された受光信号がクロック信号2の立ち上がりに同期してDフリップフロップ152に取り込まれ、Dフリップフロップ152のQ出力に出力される。これにより、クロック信号に対して非同期の受光信号をクロック信号(クロック信号2)に同期した信号に変換することができる。この場合、クロック信号の周期が取り込み(サンプリング)周期となる。
 受光信号のDフリップフロップ151への取り込みの際にセットアップタイムが不足すると、Dフリップフロップ151のQ出力が準安定状態になる。クロック信号1に対するクロック信号2の遅れ時間をDフリップフロップ151の準安定状態からの復帰に要する時間にセットアップタイムを加算した時間より長くすることにより、Dフリップフロップ152への準安定状態の伝播を防ぐことができる。このように、受光信号が1ビットの2値化された信号(すなわちデジタル信号)である発光パルス信号に変換される。なお、受光部14から複数の受光信号が並列に出力される場合には、出力される受光信号毎に受光パルス信号生成部15が配置される。
 なお、受光パルス信号生成部15の構成は、この例に限定されない。例えば、クロック信号1及びクロック信号2に同じクロック信号を供給することもできる。この場合は、1クロック周期の遅れ時間を確保することができる。
 [受光パルス信号]
 図5Aは、本開示の実施形態に係る受光パルス信号の一例を示す図である。同図において、「SPAD出力」は、図3における接続点N1の電圧波形を表す。「受光信号」は、読出し回路22から出力される受光信号を表す。「クロック信号」は、上述のクロック信号2を表す。「受光パルス信号」は、受光パルス信号生成部15から出力される受光パルス信号を表す。なお、同図の破線は0Vのレベルを表す。
 図3の回路において、定常時のフォトダイオード21(SPAD)の出力電圧(アノードの電圧)は0Vである。フォトダイオード21に光子が入射すると、図3において説明したように接続点N1の電圧が変化し、パルス状の応答信号408が生成される。この応答信号408がデジタル変換器25等により略矩形形状に整形されて、受光信号411として出力される。同図の一点鎖線は、デジタル変換器25の閾値を表す。
 この受光信号411が図4において説明したクロック信号の立ち上がりに同期してDフリップフロップ151及び152に取り込まれ、クロック信号2に同期した受光パルス信号431に変換される。このように、受光パルス信号431が生成される。
 フォトダイオード21(SPAD)に光子が入射して応答信号408が生成される期間は、新たな光子の入射を検出できないデットタイムとなる。SPADのガイガーモードへの移行により、SPAD内に電荷が拡散した状態になるためである。同図の「デットタイム」は、この期間を表したものである。このようなデットタイムは、受光パルス信号のパルス幅やパルス間隔を測定することにより検出することができる。
 また、SPADには、アフターパルスと称される誤動作を生じる場合がある。このアフターパルスは、例えば、なだれ増倍により生成された電荷が不純物準位に捕獲され、時間をおいて放出される場合に発生する。同図の応答信号409は、アフターパルスを生じた場合の波形を表したものである。また、同図の点線は、アフターパルスを生じない場合の波形を表す。アフターパルスを生じると、受光信号412及び受光パルス信号432のパルス幅が長くなる。複数の受光パルス信号のパルス幅のデータを取得することにより、アフターパルスの発生確率を算出することができる。
 また、規程の光量の光を照射しながら所定期間における受光パルス信号の個数を測定することにより検出効率(PDE:Photon Detection Efficiency)を測定することができる。また、SPADは、入射光が無い状態においても受光信号を生成する場合がある。これは、SPADが形成される半導体基板の界面準位に捕獲された電荷に起因する受光信号であり、SPAD毎に異なる発生確率を有する。この発生確率は、DCR(Dark Count Rate)と称される。このDCRは、遮光した状態において受光パルス信号の個数を測定することにより検出することができる。
 また、入射光に起因しない受光信号として、クロストークにより生成される受光信号が知られている。これは、他のSPAD画素20により生成された受光信号の影響を受けることによる誤動作である。電荷のなだれ増倍作用の際にSPADが発光する場合がある。この発光に基づく光子が隣接するSPADに入射してガイガーモードに移行すると、クロストークによる受光信号が生成される。このようなクロストークは、異なるSPAD画素20により生成される受光パルス信号のパルス間隔を測定することにより検出することができる。
 図5Bは、本開示の実施形態に係るクロストークの一例を示す図である。同図において、「受光パルス信号1」及び「受光パルス信号2」は、それぞれ異なるSPAD画素20により生成される受光パルス信号を表したものである。受光パルス信号2の受光パルス信号434は、受光パルス信号1の受光パルス信号433の影響を受けて生成されるパルス信号を表したものである。
 受光パルス信号のパス幅は、例えば、クロック信号の周期を単位として検出することができる。同図の受光パルス信号431のパルス幅を例に挙げて説明すると、受光パルス信号431の期間は、クロック信号の4サイクルの期間に相当する。そこで、受光パルス信号431のパルス幅を値「4」と表すことができる。同様に、受光パルス信号431及び432のパルス間隔は、値「14」と表すことができる。図1において説明した特性データ検出部31は、受光パルス信号が入力される毎にクロック信号の周期を単位として受光パルス信号のパルス幅及びパルス間隔を検出し、特性データヒストグラム生成部32に対して出力する。
 これらのSPADの特性データの測定は、所定のタイミングに行うことができる。例えば、特性データの測定は、測距センサ2の製造後の検査工程にて行うことができる。また、例えば、特性データの測定は、測距センサ2の使用時における劣化の検出のために行うこともできる。
 [特性データヒストグラム]
 図6A及び6Bは、本開示の実施形態に係る特性データヒストグラムの一例を示す図である。特性データのうち、受光パルス信号のバルス幅及びパルス間隔については、ヒストグラムを作成することにより、データの分布を取得することができる。図6Aは、受光パルス信号のパルス幅のそれぞれの階級毎の検出頻度を表すヒストグラムの例を表したものである。ここで、階級は、上述のクロック信号の周期に対応させることができる。例えば、クロック信号周期の倍数毎の階級にすることができる。この場合、特性データヒストグラムの最初の階級は1クロック周期のパルス幅を表し、2番目の階級は2クロック周期の階級となる。特性データヒストグラム生成部32は、特性データ検出部31から特性データが入力される毎に対応する階級の検出頻度に値「1」を加算して更新を行い、ヒストグラムを生成する。
 図6Bは、受光パルス信号のパルス間隔のそれぞれの階級毎の検出頻度を表すヒストグラムの例を表したものである。図6Aのヒストグラムと同様に、クロック信号周期の倍数毎の階級にすることができる。
 [特性データヒストグラム生成部及び特性データヒストグラム保持部の構成]
 図7は、本開示の第1の実施形態に係る特性データヒストグラム生成部及び特性データヒストグラム保持部の構成例を示す図である。同図は、特性データヒストグラム生成部32及び特性データヒストグラム保持部33の構成例を表すブロック図である。
 同図の特性データヒストグラム生成部32は、ヒストグラム生成部320と、記憶領域選択部321と、加算部322とを備える。
 ヒストグラム生成部320は、特性データ検出部31から出力された特性データに基づいてヒストグラムを生成するものである。このヒストグラム生成部320は、特性データに応じて階級を選択し、選択した階級に対応する記憶領域を記憶領域選択部321に対して出力する。
 記憶領域選択部321は、ヒストグラム生成部320から出力された記憶領域に対応する特性データヒストグラム保持部33の記憶領域を選択するものである。
 加算部322は、入力されたデータに値「1」を加算して出力するものである。この加算部322は、特性データヒストグラム保持部33の複数の記憶領域のうち記憶領域選択部321により選択された記憶領域のデータに対して+1の演算を行う。同図の加算部322は、後述する記憶領域と同じビット幅のデータ入力In0-In7及びデータ出力Out0-Out7を備える。加算部322は、データ入力In0-In7に入力されたデータに値「1」を加算したデータをデータ出力Out0-Out7から出力する。
 同図の特性データヒストグラム保持部33は、複数の記憶領域330を備える。これらの記憶領域330は、ヒストグラムの階級にそれぞれ対応して度数を保持するものである。記憶領域330は、ヒストグラムの度数の最大値に応じたビット幅に構成される。同図の記憶領域330は、8ビットのビット幅に構成される例を表したものである。また、記憶領域330は、データ入力Di0-Di7と、データ出力Do0-Do7と、読み出し制御入力RDと、書込み制御入力WDとを備える。
 データ入力Di0-Di7は、記憶領域330に保持させるデータを入力する端子である。データ出力Do0-Do7は、記憶領域330に保持されたデータが出力される端子である。読み出し制御入力RDは、記憶領域330に対してデータの読出しを指示する制御信号を入力する端子である。読み出し制御入力RDに例えば、値「1」の信号を入力すると、記憶領域330に保持されたデータがデータ出力Do0-Do7に出力される。書込み制御入力WDは、記憶領域330に対してデータの書き込みを指示する制御信号を入力する端子である。書込み制御入力WDに、例えば、値「1」の信号を入力すると、データ入力D0-D7に入力されたデータが記憶領域330に保持(記憶)される。
 加算部322のデータ出力Out0-Out7は、信号線328を介して全ての記憶領域330のデータ入力Di0-Di7に共通に接続される。また、加算部322のデータ入力In0-In7は、信号線339を介して全ての記憶領域330のデータ出力Do0-Do7に共通に接続される。
 特性データヒストグラム生成部32及び特性データヒストグラム保持部33の動作について説明する。まず、ヒストグラム生成部320が特性データに応じた階級を選択する。この選択された階級に対応する記憶領域330が記憶領域選択部321により選択される。記憶領域選択部321は、選択した記憶領域330の読み出し制御入力RDに制御信号を出力し、当該記憶領域330に保持されたデータを出力させる。この出力されたデータは、信号線339を介して加算部322に入力される。加算部322は、このデータに値「1」を加算してデータ出力Out0-Out7に出力する。この加算部322の出力データは、信号線328を介して記憶領域330のデータ入力In0-In7に入力される。その後、記憶領域選択部321は、選択した記憶領域330の書込み制御入力WDに制御信号を出力する。これにより、不図示のクロック信号に同期してデータ入力In0-In7に入力されたデータが選択された記憶領域330に書き込まれて保持される。
 このように、記憶領域選択部321により選択された記憶領域330に保持されたデータに値「1」が加算され、対応する階級の度数が更新される。このような記憶領域330のデータの更新を繰り返すことにより、特性データヒストグラムを生成することができる。同図の記憶領域330は、リード・モデファイ・ライト型のアクセスが行われる記憶装置である。また、記憶領域330は、リセットにより初期化することができる。このような記憶領域330は、例えば、上述のビット幅のレジスタと読み出し及び書込み制御回路とにより構成することができる。このレジスタは、ビット幅と同数のフリップフロップにより構成することができる。なお、図1において説明した飛行時間ヒストグラム生成部16及び飛行時間ヒストグラム保持部17においても同様の構成及び手順により飛行時間ヒストグラムを生成することができる。
 特性データヒストグラム保持部33に保持された特性データのヒストグラムは、信号線339を介して出力部19に出力される。
 このように、本開示の第1の実施形態の測距センサ2は、特性データ検出部31により受光素子であるSPADの各種の特性データを検出することができ、利便性を向上させることができる。また、測距センサ2は、特性データヒストグラム生成部32により特性データのヒストグラムを生成して出力するため、利便性を更に向上させることができる。また、測距センサ2は、検出した特性データやヒストグラムに加工したデータを保持し、外部の装置に対して一括して出力することができる。これにより、特性データの転送に要する時間を短縮することができる。
 (2.第2の実施形態)
 上述の第1の実施形態の測距センサ2は、SPAD画素20毎にSPADの特性データを検出していた。これに対し、本開示の第2の実施形態の測距センサ2は、複数のSPAD画素20毎に特性データを検出する点で、上述の第1の実施形態と異なる。
 [受光部の構成]
 図8は、本開示の第2の実施形態に係る受光部の概略構成例を示すブロック図である。同図は、図2と同様に、受光部14の構成例を表すブロック図である。同図の受光部14は、複数のSPAD画素20を含む画素グループ28が配列される点で、図2の受光部14と異なる。なお、同図の受光部14において、駆動回路142及びタイミング制御回路141の記載を省略している。
 同図のSPADアレイ143は、複数の画素グループ28を備える。この画素グループ28には、複数のSPAD画素20が配置される。本開示の第2の実施形態の測距センサ2は、この画素グループ28を単位として受光パルス信号が生成される。同図の駆動回路142は、画素グループ28に配置される複数のSPAD画素20を駆動して受光信号を同時に生成させる。この画素グループ28毎の受光信号は、同図の出力回路144を介して受光パルス信号生成部15に出力される。
 [測距センサの構成]
 図9は、本開示の第2の実施形態に係る測距センサの構成例を示す図である。同図は、測距センサ2の構成例を表すブロック図である。同図の測距センサ2は、複数の受光パルス信号生成部15が配置され、受光パルス信号集約部34及びシリアルパラレル変換部35を更に備える点で、図1の測距センサ2と異なる。なお、同図において、サンプリング調整部30、飛行時間ヒストグラム生成部16、飛行時間ヒストグラム保持部17、最頻出値検出部18、特性データヒストグラム生成部32、特性データヒストグラム保持部33、特性データ保持部40及び出力部19の記載を省略している。
 同図の測距センサ2においては、画素グループ28に配置されるSPAD画素20と同じ個数の受光パルス信号生成部15が配置される。これらの受光パルス信号生成部15には、画素グループ28毎に出力される複数の受光信号がそれぞれ入力される。この入力された受光信号に基づいて複数の受光パルス信号生成部15が同時に受光パルス信号を生成して出力する。
 受光パルス信号集約部34は、複数の受光パルス信号を1つの受光パルス信号に集約して出力するものである。この受光パルス信号の集約は、例えば、複数の受光パルス信号の論理和演算により行うことができる。集約した受光パルス信号に対して飛行時間の検出を行うことにより、画素グループ28を1つの画素とみなして測距の処理を行うことができる。画素に配置されるSPAD数を調整することができ、ダイナミックレンジを変更することができる。この場合、集約した受光パルス信号に基づいて特性データを検出することができる。
 シリアルパラレル変換部35は、受光パルス信号を所定のビット幅のパラレルの信号に変換するものである。ビット幅には、例えば、4ビットを適用することができる。この場合、シリアルパラレル変換部35は、受光パルス信号を4クロック周期毎に区切ってパラレルの信号に変換する。このパラレルの受光パルス信号に基づいて飛行時間の検出や特性データの検出を行うことにより、処理に許容される時間を長くすることができる。特性データ検出部31等の後段の回路に比較的低い処理速度の回路を適用することができる。
 同図の特性データ検出部31は、パラレルの受光パルス信号に基づいて特性データの検出を行う。
 なお、本開示の第2の実施形態の測距センサ2の構成は、この例に限定されない。例えば、シリアルパラレル変換部35を省略することもできる。この場合には、特性データ検出部31は、受光パルス信号集約部34から出力されるシリアルの受光パルス信号に基づいて特性データを検出する。
 これ以外の測距センサ2の構成は本開示の第1の実施形態における測距センサ2の構成と同様であるため、説明を省略する。
 このように、本開示の第2の実施形態の測距センサ2は、画素グループ28毎に受光パルス信号を生成し、これらの受光パルス信号が集約された受光パルス信号に基づいて特性データを検出する。
 (3.第3の実施形態)
 上述の第1の実施形態の測距センサ2は、複数の記憶領域330を備える特性データヒストグラム保持部33に特性データヒストグラムを保持していた。これに対し、本開示の第3の実施形態の測距センサ2は、一部の特性データヒストグラムをメモリ装置に保持させる点で、上述の第1の実施形態と異なる。
 [特性データヒストグラム保持部の構成]
 図10は、本開示の第2の実施形態に係る特性データヒストグラム保持部の構成例を示す図である。同図は、特性データヒストグラム保持部33の構成例を表すブロック図である。なお、同図には、特性データヒストグラム生成部32も記載している。
 同図の特性データヒストグラム保持部33は、レジスタアレイ36と、SRAM(Static Random Access Memory)37と、保持メモリ選択部38とを備える。
 レジスタアレイ36は、複数のレジスタにより構成されて特性データヒストグラムの一部の階級のデータを保持するものである。レジスタアレイ36は、図7において説明した記憶領域330をレジスタとして使用することができる。
 SRAM37は、特性データヒストグラムの一部の階級のデータを保持するメモリ装置である。このSRAM37は、固有のアドレスが割り振られた複数の記憶部を備える。この記憶部には、記憶領域330と同様にレジスタが使用される。一方、SRAM37は、記憶部のデータ幅であるワードに特性データヒストグラムの複数の階級のデータを割り当てることができる。このため、SRAM37を使用することにより、測距センサ2を小型化することができる。また、SRAM37は、リード・モデファイ・ライト型のアクセスを行う。このアクセスには、2クロック周期が必要となり、レジスタアレイ36よりアクセス速度が遅くなる。
 保持メモリ選択部38は、レジスタアレイ36及びSRAM37を選択するものである。この保持メモリ選択部38は、特性データヒストグラムのそれぞれの階級をレジスタアレイ36及びSRAM37の何れかに割り当てる。そして、保持メモリ選択部38は、記憶領域選択部321から出力される記憶領域の選択結果に応じてレジスタアレイ36及びSRAM37の何れかを選択し、データの読み出し及び書込みの制御を行う。保持メモリ選択部38は、レジスタアレイ36に対して選択信号を出力する。この選択信号は、図7において説明した、読み出し制御入力RD及び書込み制御入力WDの入力信号に該当する。この選択信号が出力されたレジスタアレイ36の記憶領域330は、加算部322により値「1」が加算される。
 一方、保持メモリ選択部38は、SRAM37に対してアドレスを出力する。このアドレスに対応する記憶部のデータが不図示のクロック信号に同期して読み出され、信号線339に出力される。加算部322がこのデータに値「1」を加算し、信号線328を介してSRAM37に出力する。この出力された加算後のデータがクロック信号に同期して上述のアドレスに対応する記憶部に書き込まれる。
 このように、保持メモリ選択部38により選択されたレジスタアレイ36及びSRAM37の特性データヒストグラムが保持されるとともに更新される。保持メモリ選択部38は、更新の頻度に応じて特性データヒストグラムの階級をレジスタアレイ36及びSRAM37に割り当てることができる。例えば、特性データの検出頻度が高いと予測される階級は、データの更新の頻度が高い階級に該当する。保持メモリ選択部38は、そのような階級をレジスタアレイ36に割り当てることができる。この場合には、特性データの検出頻度が高いと予測される階級のデータの更新を高速に行うことができる。ヒストグラムの生成に要する時間を短縮することができる。
 なお、特性データヒストグラムの生成後にレジスタアレイ36に保持されたデータをSRAM37に転送して保持させる構成を採ることもできる。
 [特性データヒストグラム保持部の他の構成]
 図11は、本開示の第2の実施形態に係る特性データヒストグラム保持部の他の構成例を示す図である。同図は、図10と同様に、特性データヒストグラム保持部33の構成例を表すブロック図である。同図の特性データヒストグラム保持部33は、レジスタアレイ36の代わりに複数のカウンタ39を備える点で、図10の特性データヒストグラム保持部33と異なる。なお、同図においては、特性データヒストグラム保持部33の構成を簡略化して記載した。
 カウンタ39は、特性データヒストグラムの度数の最大値に応じたビット幅のカウンタである。このカウンタ39は、保持メモリ選択部38からの選択信号が入力される毎にアップカウントを行う。このアップカウントによりヒストグラムの階級のデータの更新を行うことができる。カウンタ39は、図7において説明した記憶領域330及び加算部322により構成することができる。すなわち、カウンタ39は、加算部322を内蔵しているため、データの更新を高速に行うことができる。また、カウンタ39には、クロック信号に同期したカウンタのほかに非同期のカウンタを使用することもできる。
 いずれの場合においても、カウンタ39におけるデータの更新は、前述のレジスタアレイ36よりも高速に行われる。このため、特性データの検出頻度が高いと予測される階級をカウンタ39に割り当てることにより、特性データヒストグラムの生成に要する時間を更に短縮することができる。
 なお、特性データヒストグラム保持部33の構成は、これらの例に限定されない。例えば、特性データヒストグラム保持部33をSRAM37のみにより構成することもできる。また、特性データヒストグラム保持部33を複数のカウンタ39のみにより構成することもできる。
 これ以外の測距センサ2の構成は本開示の第1の実施形態における測距センサ2の構成と同様であるため、説明を省略する。
 このように、本開示の第3の実施形態の測距センサ2は、特性データヒストグラムにおける更新頻度が高い階級を高速なレジスタアレイ36やカウンタ39に割り当てる。これにより、特性データヒストグラムの生成時間を短縮することができる。また、本開示の第3の実施形態の測距センサ2は、更新頻度が比較的低い階級を容量の大きなSRAM37に割り当てることにより、特性データヒストグラム保持部33を小型化することができる。
 (4.第4の実施形態)
 上述の第1の実施形態の測距センサ2は、飛行時間ヒストグラム保持部17及び特性データヒストグラム保持部33を備えていた。これに対し、本開示の第4の実施形態の測距センサ2は、ヒストグラムの保持部を飛行時間の測定及び特性データの検出に共通に使用する点で、上述の第1の実施形態と異なる。
 [測距センサの構成]
 図12は、本開示の第4の実施形態に係る測距センサの構成例を示す図である。同図は、測距センサ2の構成例を表すブロック図である。同図の測距センサ2は、選択部41を更に備え、特性データヒストグラム保持部33が省略される点で、図1の測距センサ2と異なる。なお、同図において、サンプリング調整部30及び特性データ保持部40の記載を省略している。
 選択部41は、後段の飛行時間ヒストグラム保持部17に保持するヒストグラムを選択するものである。この選択部41は、飛行時間ヒストグラム生成部16及び特性データヒストグラム生成部32の何れかを選択してヒストグラムのデータを伝達する。
 測距センサ2において測距を行う際には、選択部41は、飛行時間ヒストグラム生成部16を選択する。選択された飛行時間ヒストグラム生成部16は、選択部41を介して飛行時間ヒストグラムのデータを飛行時間ヒストグラム保持部17に出力する。具体的には、飛行時間ヒストグラム生成部16は、選択部41を介してヒストグラムの階級の更新を行って飛行時間ヒストグラムを生成し、保持させる。
 一方、特性データヒストグラムを生成する際には、選択部41は、特性データヒストグラム生成部32を選択する。選択された特性データヒストグラム生成部32は、選択部41を介して特性データヒストグラムのデータを飛行時間ヒストグラム保持部17に出力する。この場合、飛行時間ヒストグラム保持部17には、特性データヒストグラムが保持される。また、出力部19は、飛行時間ヒストグラム保持部17に保持された特性データヒストグラムを選択して出力する。
 このように、特性データヒストグラムを飛行時間ヒストグラム保持部17に保持させることにより、特性データヒストグラム保持部33を省略することができる。
 [測距センサの他の構成]
 図13は、本開示の第4の実施形態に係る測距センサの他の構成例を示す図である。同図は、図12と同様に、測距センサ2の構成例を表すブロック図である。同図の測距センサ2は、選択部42及びヒストグラム保持部13を更に備える点で、図12の測距センサ2と異なる。なお、同図においても、サンプリング調整部30及び特性データ保持部40の記載を省略している。
 同図の選択部41は、飛行時間ヒストグラム生成部16及び受光パルス信号生成部15の何れかを選択する。測距センサ2において測距を行う際には、選択部41は、飛行時間ヒストグラム生成部16を選択する。飛行時間ヒストグラム保持部17には、飛行時間ヒストグラムが保持される。一方、特性データを取得する際には、選択部41は、受光パルス信号生成部15を選択する。この場合、飛行時間ヒストグラム保持部17には、受光パルス信号が保持される。特性データ検出部31は、飛行時間ヒストグラム保持部17に保持された受光パルス信号に基づいて特性データを検出する。
 選択部42は、飛行時間ヒストグラム保持部17及び特性データヒストグラム生成部32の何れかを選択するものである。測距センサ2において測距を行う際には、選択部42は、飛行時間ヒストグラム保持部17を選択し、飛行時間ヒストグラムを後段のヒストグラム保持部13に保持させる。一方、特性データを取得する際には、選択部42は、特性データヒストグラム生成部32を選択する。この場合、ヒストグラム保持部13には、特性データヒストグラムが保持される。
 ヒストグラム保持部13は、飛行時間ヒストグラム及び特性データヒストグラムの何れかを保持するものである。このヒストグラム保持部13は、選択部42が飛行時間ヒストグラム保持部17を選択する際に飛行時間ヒストグラムを保持し、選択部42が特性データヒストグラム生成部32を選択する際に特性データヒストグラムを保持する。
 同図の測距センサ2において測距を行う際には、飛行時間ヒストグラム生成部16により飛行時間ヒストグラム保持部17に生成されて保持された飛行時間ヒストグラムがヒストグラム保持部13に転送されて保持される。この保持された飛行時間ヒストグラムに基づいて最頻出値検出部18が飛行時間の最頻値を検出する。このように、同図の測距センサ2は、飛行時間ヒストグラム保持部17及びヒストグラム保持部13の2つを使用して、飛行時間ヒストグラムの生成と生成された飛行時間ヒストグラムの最頻値の検出とを並列に行うことができる。
 また、同図の測距センサ2において特性データを取得する際には、特性データ取得のための受光パルス信号が飛行時間ヒストグラム保持部17に保持される。この保持された受光パルス信号に基づいて特性データ検出部31により特性データが検出される。この検出された特性データに基づいて特性データヒストグラム生成部32により特性データヒストグラムが生成されてヒストグラム保持部13に保持される。このように、同図の測距センサ2は、飛行時間ヒストグラム保持部17及びヒストグラム保持部13の2つを使用して、受光パルス信号の取得及び保持と特性データの検出及び特性データヒストグラムの生成とを並列に行う。
 このように、同図の測距センサ2は、測距並びに特性データの取得および特性データヒストグラム生成の処理を2段に分割し、それぞれの処理の結果を飛行時間ヒストグラム保持部17及びヒストグラム保持部13に一時的に保持させる。これにより、測距等に並列処理を適用して処理の高速化を図ることができる。
 これ以外の測距センサ2の構成は本開示の第1の実施形態における測距センサ2の構成と同様であるため、説明を省略する。
 このように、本開示の第4の実施形態の測距センサ2は、ヒストグラムを保持するメモリ等の記憶装置を測距及び特性データの取得において共有する。これにより、特性データの取得に要するハードウェアを削減することができる。測距センサ2の小型化が可能になる。
 (5.第5の実施形態)
 上述の第1の実施形態の測距装置1は、受光素子の特性データを取得していた。これに対し、本開示の第5の実施形態の測距装置1は、取得した特性データを使用して受光素子の劣化を検出する点で、上述の第1の実施形態と異なる。
 [測距装置の構成]
 図14は、本開示の第5の実施形態に係る測距装置の構成例を示す図である。同図は、図1と同様に、測距装置1の構成例を表すブロック図である。同図の測距装置1は、劣化検出部43を更に備える点で、図1の測距装置1と異なる。また、同図には、制御ユニット3、光源装置5、遮光部6及び遮光装置7を更に記載した。同図の測距装置1は、車載機器として使用される場合を想定したものである。なお、同図において、測距センサ2を簡略化して記載している。
 劣化検出部43は、受光素子であるSPADの劣化を検出するものである。この劣化検出部43は、特性データに基づいてSPADの劣化を検出し、劣化の情報を外部の装置に出力する。SPADの劣化は、特性データの変化量が所定の閾値を超える場合に検出することができる。例えば、パルス幅やパルス間隔が所定の閾値を超える場合にSPADが劣化したと判断することができる。また、PDEが所定の閾値未満に低下する場合やDCRが所定の閾値を超える場合にSPADが劣化したと判断することができる。
 制御ユニット3は、測距装置1を制御して対象物400までの測距値を取得するものである。この制御ユニット3は、マイコン等により構成され、測距等を指示するコマンドを生成して制御装置10に対して出力することにより測距装置1を制御する。
 また、制御ユニット3は、測距装置1を制御して特性データを取得する。取得した特性データは、測距センサ2の評価に使用することができる。特性データの取得の際、制御ユニット3は、同図の光源装置5及び遮光部6を制御する。光源装置5は、特性データ測定における規程の光量の光を受光部14に照射する光源である。この光源装置5からの光が照射された状態においてSPADの受光パルス信号のパルス幅、パルス間隔及びパルス数が特性データ検出部31により検出される。また、遮光部6は、受光部14を遮光するものである。この受光部14は、遮光装置7を操作して受光部14を遮光する。遮光装置7は、例えば、シャッタ等の遮光物により構成することができる。制御ユニット3は、遮光部6を制御して受光部14を遮光して暗時の受光パルス信号のパルス数を測定することによりDCRを測定することができる。
 これらの特性データは、測距センサ2から制御ユニット3に入力されるとともに劣化検出部43に入力される。この入力された特性データに基づいて劣化検出部43がSPADの劣化を検出する。なお、制御ユニット3がSPADの劣化の検出を行う構成を採ることもできる。
 制御ユニット3による特性データの測定は、例えば、車載機器の起動時に行うことができる。また、光源装置5や遮光部6を省略することもできる。この場合には、外部の光源装置や遮光装置を配置して特性データ測定の環境を準備する必要がある。例えば、定期検査の際に特性データの測定を行うことができる。
 これ以外の測距装置1の構成は本開示の第1の実施形態における測距装置1の構成と同様であるため、説明を省略する。
 (6.移動体への応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図16は、撮像部12031の設置位置の例を示す図である。
 図16では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、車外情報検出ユニット12030及び撮像部12031に適用され得る。具体的には、図1の測距装置1は、車外情報検出ユニット12030に適用することができる。また、図1の受光部14は、撮像部12031に適用することができる。本開示に係る技術を適用することにより、撮像部12031の受光素子の特性データを検出することができる。
 なお、本開示の第2の実施形態の構成は、他の実施形態に適用することができる。具体的には、図9の受光パルス信号集約部34は、本開示の第3乃至第5の実施形態に適用することができる。また、図9のシリアルパラレル変換部35は、本開示の第1及び第3乃至第5の実施形態に適用することができる。
 なお、本開示の第3の実施形態の構成は、他の実施形態に適用することができる。具体的には、図10及び11の特性データヒストグラム保持部33は、本開示の第2、第4及び第5の実施形態に適用することができる。
 なお、本開示の第4の実施形態の構成は、他の実施形態に適用することができる。具体的には、図12の選択部41を備える構成並びに図13の選択部41、選択部42及びヒストグラム保持部13を備える構成は、本開示の第2、第3及び第5の実施形態に適用することができる。
 なお、本開示の第5の実施形態の構成は、他の実施形態に適用することができる。具体的には、図14の劣化検出部43は、本開示の第2乃至第4の実施形態に適用することができる。
(効果)
 測距センサ2は、SPAD画素20と、飛行時間検出部と、特性データ検出部31と、特性データ保持部とを有する。SPAD画素20は、光源装置11から出射された出射光が対象物により反射された反射光を受光する受光素子(フォトダイオード21)を備えて反射光の受光に基づく受光信号を生成する。飛行時間検出部は、対象物までの距離を検出するための出射光の出射から反射光の受光までの飛行時間を生成された受光信号に基づいて検出する。特性データ検出部31は、受光信号に基づいて受光素子(フォトダイオード21)の特性データを検出する。特性データ保持部は、検出した特性データを保持する。これにより、測距センサ2において受光素子の特性データを測定することができる。
 また、受光素子(フォトダイオード21)は、アバランシェフォトダイオードにより構成されてもよい。これにより、アバランシェフォトダイオードの特性データを測定することができる。
 また、特性データ検出部31は、受光信号のパルス幅を特性データとして検出してもよい。
 また、特性データ検出部31は、受光信号のパルス間隔を特性データとして検出してもよい。
 また、特性データ検出部31は、受光信号のパルス数を特性データとして検出してもよい。
 また、生成された受光信号を所定のサンプリング周期において2値化した信号である受光パルス信号を生成する受光パルス信号生成部15を更に有し、飛行時間検出部は、生成された受光パルス信号に基づいて飛行時間を検出し、特性データ検出部31は、生成された受光パルス信号に基づいて特性データを検出してもよい。これにより、サンプリング周期を単位として特性データを測定することができる。
 また、受光パルス信号生成部15は、飛行時間の検出の際及び特性データの検出の際にそれぞれ異なる期間において受光パルス信号を生成してもよい。これにより、特性データ検出に適したサンプリング期間を採用することができる。
 また、生成された時系列の受光パルス信号をパラレルの受光パルス信号に変換するシリアルパラレル変換部35を更に有し、特性データ検出部31は、パラレルの受光パルス信号に基づいて特性データを検出してもよい。これにより、特性データの検出回路の動作速度を低減することができる。
 また、検出された飛行時間と保持された特性データとを外部に対して出力する出力部を更に有してもよい。
 また、複数のSPAD画素20と、複数のSPAD画素20によりそれぞれ生成された複数の受光信号が集約された信号を生成する受光信号集約部とを更に有し、飛行時間検出部は、受光信号集約部により生成された信号に基づいて飛行時間を検出し、特性データ検出部31は、受光信号集約部により生成された信号に基づいて特性データを検出してもよい。これにより、複数のSPAD画素20毎に特性データを検出することができる。
 また、検出された特性データの検出頻度を度数として表すヒストグラムである特性データヒストグラムを生成する特性データヒストグラム生成部32を更に有し、特性データ保持部は、生成された特性データヒストグラムを特性データとして保持してもよい。これにより、ヒストグラムに構成された特定データを出力することができる。
 また、特性データ保持部は、特性データヒストグラムの複数の階級にそれぞれ対応して度数を記憶する複数の記憶領域330を備え、特性データヒストグラム生成部32は、特性データが検出される毎に当該検出された特性データに応じた階級に対応する記憶領域330に記憶された度数に値「1」を加える更新を行って特性データヒストグラムを生成してもよい。
 また、特性データ保持部は、複数のフリップフロップにより構成されるレジスタを記憶領域330として備えてもよい。これにより、特性データヒストグラムの生成を高速に行うことができる。
 また、特性データ保持部は、SRAM(Static Random Access Memory)を複数の記憶領域330として備えてもよい。これにより、特性データ保持部を小型化することができる。
 また、特性データ保持部は、カウンタを記憶領域330として備えてもよい。特性データヒストグラムの生成を高速に行うことができる。
 また、飛行時間検出部は、時系列の所定の測定周期毎に検出された飛行時間のヒストグラムである飛行時間ヒストグラムを生成する飛行時間ヒストグラム生成部16と、飛行時間ヒストグラムにおける最頻出値を対象物までの距離に対応する飛行時間として検出する最頻出値検出部18とを備え、飛行時間ヒストグラム生成部16は、生成した飛行時間ヒストグラムを特性データ保持部に保持させ、最頻出値検出部18は、特性データ保持部に保持された飛行時間ヒストグラムにおける最頻出値を検出してもよい。これにより、測距センサ2を小型化することができる。
 測距装置1は、光源装置11と、光源装置11から出射された出射光が対象物により反射された反射光を受光する受光素子(フォトダイオード21)を備えて反射光の受光に基づく受光信号を生成するSPAD画素20と、対象物までの距離を検出するための出射光の出射から反射光の受光までの飛行時間を生成された受光信号に基づいて検出する飛行時間検出部と、受光信号に基づいて受光素子(フォトダイオード21)の特性データを検出する特性データ検出部31と、検出した特性データを保持する特性データ保持部とを有する測距装置である。これにより、測距装置1において受光素子の特性データを測定することができる。
 また、保持された特性データに基づいて受光素子(フォトダイオード21)の劣化を検出する劣化検出部43を更に有してもよい。これにより、受光素子の劣化を検出することができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて前記反射光の受光に基づく受光信号を生成する画素と、
 前記対象物までの距離を検出するための前記出射光の出射から前記反射光の受光までの飛行時間を前記生成された受光信号に基づいて検出する飛行時間検出部と、
 前記受光信号に基づいて前記受光素子の特性データを検出する特性データ検出部と、
 前記検出した特性データを保持する特性データ保持部と
を有する測距センサ。
(2)
 前記受光素子は、アバランシェフォトダイオードにより構成される
前記(1)に記載の測距センサ。
(3)
 前記特性データ検出部は、前記受光信号のパルス幅を前記特性データとして検出する
前記(1)に記載の測距センサ。
(4)
 前記特性データ検出部は、前記受光信号のパルス間隔を前記特性データとして検出する
前記(1)に記載の測距センサ。
(5)
 前記特性データ検出部は、前記受光信号のパルス数を前記特性データとして検出する
前記(1)に記載の測距センサ。
(6)
 前記生成された受光信号を所定のサンプリング周期において2値化した信号である受光パルス信号を生成する受光パルス信号生成部を更に有し、
 前記飛行時間検出部は、前記生成された受光パルス信号に基づいて前記飛行時間を検出し、
 前記特性データ検出部は、前記生成された受光パルス信号に基づいて前記特性データを検出する
前記(1)から(5)の何れかに記載の測距センサ。
(7)
 前記受光パルス信号生成部は、前記飛行時間の検出の際及び前記特性データの検出の際にそれぞれ異なる期間において前記受光パルス信号を生成する
前記(6)に記載の測距センサ。
(8)
 前記生成された受光パルス信号をパラレルの受光パルス信号に変換するシリアルパラレル変換部
を更に有し、
 前記特性データ検出部は、前記パラレルの受光パルス信号に基づいて前記特性データを検出する
前記(6)に記載の測距センサ。
(9)
 前記検出された飛行時間と前記保持された特性データとを外部に対して出力する出力部を更に有する
前記(1)から(8)の何れかに記載の測距センサ。
(10)
 複数の前記画素と、
 前記複数の画素によりそれぞれ生成された複数の受光信号が集約された信号を生成する受光信号集約部と
を更に有し、
 前記飛行時間検出部は、前記受光信号集約部により生成された信号に基づいて前記飛行時間を検出し、
 前記特性データ検出部は、前記受光信号集約部により生成された信号に基づいて前記特性データを検出する
前記(1)から(9)の何れかに記載の測距センサ。
(11)
 前記検出された特性データの検出頻度を度数として表すヒストグラムである特性データヒストグラムを生成する特性データヒストグラム生成部
を更に有し、
 前記特性データ保持部は、前記生成された特性データヒストグラムを前記特性データとして保持する
前記(1)から(10)の何れかに記載の測距センサ。
(12)
 前記特性データ保持部は、前記特性データヒストグラムの複数の階級にそれぞれ対応して前記度数を記憶する複数の記憶領域を備え、
 前記特性データヒストグラム生成部は、前記特性データが検出される毎に当該検出された特性データに応じた前記階級に対応する記憶領域に記憶された前記度数に値「1」を加える更新を行って前記特性データヒストグラムを生成する
前記(11)に記載の測距センサ。
(13)
 前記特性データ保持部は、複数のフリップフロップにより構成されるレジスタを前記記憶領域として備える
前記(12)に記載の測距センサ。
(14)
 前記特性データ保持部は、SRAM(Static Random Access Memory)を前記複数の記憶領域として備える
前記(12)に記載の測距センサ。
(15)
 前記特性データ保持部は、カウンタを前記記憶領域として備える
前記(12)に記載の測距センサ。
(16)
 前記飛行時間検出部は、
 時系列の所定の測定周期毎に前記検出された飛行時間のヒストグラムである飛行時間ヒストグラムを生成する飛行時間ヒストグラム生成部と、
 前記飛行時間ヒストグラムにおける最頻出値を前記対象物までの距離に対応する飛行時間として検出する最頻出値検出部と
を備え、
 前記飛行時間ヒストグラム生成部は、前記生成した飛行時間ヒストグラムを前記特性データ保持部に保持させ、
 前記最頻出値検出部は、前記特性データ保持部に保持された前記飛行時間ヒストグラムにおける前記最頻出値を検出する
前記(11)から(15)の何れかに記載の測距センサ。
(17)
 光源装置と、
 前記光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて前記反射光の受光に基づく受光信号を生成する画素と、
 前記対象物までの距離を検出するための前記出射光の出射から前記反射光の受光までの飛行時間を前記生成された受光信号に基づいて検出する飛行時間検出部と、
 前記受光信号に基づいて前記受光素子の特性データを検出する特性データ検出部と、
 前記検出した特性データを保持する特性データ保持部と
を有する測距装置。
(18)
 前記保持された特性データに基づいて前記受光素子の劣化を検出する劣化検出部
を更に有する前記(17)に記載の測距装置。
(19)
 対象物までの距離を測定するために光源から出射された出射光が前記対象物により反射された反射光を受光する受光素子を備えて前記反射光の受光に基づく受光信号を生成する画素により前記受光信号生成することと、
 前記生成された受光信号に基づいて前記受光素子の特性データを検出することと、
 前記検出した特性データに基づいて前記受光素子の劣化を検出することと
を含む受光素子の劣化検出方法。
 1 測距装置
 2 測距センサ
 13 ヒストグラム保持部
 14 受光部
 15 受光パルス信号生成部
 16 飛行時間ヒストグラム生成部
 17 飛行時間ヒストグラム保持部
 18 最頻出値検出部
 19 出力部
 20 SPAD画素
 21 フォトダイオード
 28 画素グループ
 30 サンプリング調整部
 31 特性データ検出部
 32 特性データヒストグラム生成部
 33 特性データヒストグラム保持部
 34 受光パルス信号集約部
 35 シリアルパラレル変換部
 36 レジスタアレイ
 37 SRAM
 38 保持メモリ選択部
 39 カウンタ
 40 特性データ保持部
 41、42 選択部
 43 劣化検出部
 143 SPADアレイ
 330 記憶領域
 12030 車外情報検出ユニット
 12031、12101~12105 撮像部

Claims (18)

  1.  光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて前記反射光の受光に基づく受光信号を生成する画素と、
     前記対象物までの距離を検出するための前記出射光の出射から前記反射光の受光までの飛行時間を前記生成された受光信号に基づいて検出する飛行時間検出部と、
     前記受光信号に基づいて前記受光素子の特性データを検出する特性データ検出部と、
     前記検出した特性データを保持する特性データ保持部と
    を有する測距センサ。
  2.  前記受光素子は、アバランシェフォトダイオードにより構成される
    請求項1に記載の測距センサ。
  3.  前記特性データ検出部は、前記受光信号のパルス幅を前記特性データとして検出する
    請求項1に記載の測距センサ。
  4.  前記特性データ検出部は、前記受光信号のパルス間隔を前記特性データとして検出する
    請求項1に記載の測距センサ。
  5.  前記特性データ検出部は、前記受光信号のパルス数を前記特性データとして検出する
    請求項1に記載の測距センサ。
  6.  前記生成された受光信号を所定のサンプリング周期において2値化した信号である受光パルス信号を生成する受光パルス信号生成部を更に有し、
     前記飛行時間検出部は、前記生成された受光パルス信号に基づいて前記飛行時間を検出し、
     前記特性データ検出部は、前記生成された受光パルス信号に基づいて前記特性データを検出する
    請求項1に記載の測距センサ。
  7.  前記受光パルス信号生成部は、前記飛行時間の検出の際及び前記特性データの検出の際にそれぞれ異なる期間において前記受光パルス信号を生成する
    請求項6に記載の測距センサ。
  8.  前記生成された受光パルス信号をパラレルの受光パルス信号に変換するシリアルパラレル変換部
    を更に有し、
     前記特性データ検出部は、前記パラレルの受光パルス信号に基づいて前記特性データを検出する
    請求項6に記載の測距センサ。
  9.  前記検出された飛行時間と前記保持された特性データとを外部に対して出力する出力部を更に有する
    請求項1に記載の測距センサ。
  10.  複数の前記画素と、
     前記複数の画素によりそれぞれ生成された複数の受光信号が集約された信号を生成する受光信号集約部と
    を更に有し、
     前記飛行時間検出部は、前記受光信号集約部により生成された信号に基づいて前記飛行時間を検出し、
     前記特性データ検出部は、前記受光信号集約部により生成された信号に基づいて前記特性データを検出する
    請求項1に記載の測距センサ。
  11.  前記検出された特性データの検出頻度を度数として表すヒストグラムである特性データヒストグラムを生成する特性データヒストグラム生成部
    を更に有し、
     前記特性データ保持部は、前記生成された特性データヒストグラムを前記特性データとして保持する
    請求項1に記載の測距センサ。
  12.  前記特性データ保持部は、前記特性データヒストグラムの複数の階級にそれぞれ対応して前記度数を記憶する複数の記憶領域を備え、
     前記特性データヒストグラム生成部は、前記特性データが検出される毎に当該検出された特性データに応じた前記階級に対応する記憶領域に記憶された前記度数に値「1」を加える更新を行って前記特性データヒストグラムを生成する
    請求項11に記載の測距センサ。
  13.  前記特性データ保持部は、複数のフリップフロップにより構成されるレジスタを前記記憶領域として備える
    請求項12に記載の測距センサ。
  14.  前記特性データ保持部は、SRAM(Static Random Access Memory)を前記複数の記憶領域として備える
    請求項12に記載の測距センサ。
  15.  前記特性データ保持部は、カウンタを前記記憶領域として備える
    請求項12に記載の測距センサ。
  16.  前記飛行時間検出部は、
     時系列の所定の測定周期毎に前記検出された飛行時間のヒストグラムである飛行時間ヒストグラムを生成する飛行時間ヒストグラム生成部と、
     前記飛行時間ヒストグラムにおける最頻出値を前記対象物までの距離に対応する飛行時間として検出する最頻出値検出部と
    を備え、
     前記飛行時間ヒストグラム生成部は、前記生成した飛行時間ヒストグラムを前記特性データ保持部に保持させ、
     前記最頻出値検出部は、前記特性データ保持部に保持された前記飛行時間ヒストグラムにおける前記最頻出値を検出する
    請求項11に記載の測距センサ。
  17.  光源装置と、
     前記光源装置から出射された出射光が対象物により反射された反射光を受光する受光素子を備えて前記反射光の受光に基づく受光信号を生成する画素と、
     前記対象物までの距離を検出するための前記出射光の出射から前記反射光の受光までの飛行時間を前記生成された受光信号に基づいて検出する飛行時間検出部と、
     前記受光信号に基づいて前記受光素子の特性データを検出する特性データ検出部と、
     前記検出した特性データを保持する特性データ保持部と
    を有する測距装置。
  18.  前記保持された特性データに基づいて前記受光素子の劣化を検出する劣化検出部
    を更に有する請求項17に記載の測距装置。
PCT/JP2022/009557 2021-05-13 2022-03-04 測距センサ及び測距装置 WO2022239418A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021081926A JP2022175511A (ja) 2021-05-13 2021-05-13 測距センサ及び測距装置
JP2021-081926 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022239418A1 true WO2022239418A1 (ja) 2022-11-17

Family

ID=84029172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009557 WO2022239418A1 (ja) 2021-05-13 2022-03-04 測距センサ及び測距装置

Country Status (2)

Country Link
JP (1) JP2022175511A (ja)
WO (1) WO2022239418A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540953A (zh) * 2023-07-07 2023-08-04 苏州识光芯科技术有限公司 时差区间分布直方图数据生成方法、装置、芯片及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081253A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光検出器
JP2021071458A (ja) * 2019-11-01 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 受光装置、測距装置および受光回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014081253A (ja) * 2012-10-16 2014-05-08 Toyota Central R&D Labs Inc 光検出器
JP2021071458A (ja) * 2019-11-01 2021-05-06 ソニーセミコンダクタソリューションズ株式会社 受光装置、測距装置および受光回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116540953A (zh) * 2023-07-07 2023-08-04 苏州识光芯科技术有限公司 时差区间分布直方图数据生成方法、装置、芯片及设备
CN116540953B (zh) * 2023-07-07 2023-09-29 苏州识光芯科技术有限公司 时差区间分布直方图数据生成方法、装置、芯片及设备

Also Published As

Publication number Publication date
JP2022175511A (ja) 2022-11-25

Similar Documents

Publication Publication Date Title
KR102577166B1 (ko) 광 검출 장치 및 거리 측정 장치
EP3748316B1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
JP7478526B2 (ja) 固体撮像素子、および、測距システム
CN212321848U (zh) 光检测设备以及距离测量传感器
CN112513678B (zh) 光电检测器和距离测量设备
WO2020184224A1 (ja) 距離測定装置及びスキュー補正方法
US20210293958A1 (en) Time measurement device and time measurement apparatus
WO2021090691A1 (ja) センシングデバイスおよび測距装置
JP2021001764A (ja) 測距装置、測距方法、および、測距システム
WO2022239418A1 (ja) 測距センサ及び測距装置
US11566939B2 (en) Measurement device, distance measurement device, electronic device, and measurement method
US20240111033A1 (en) Photodetection device and photodetection system
WO2022181081A1 (ja) 光検出装置および光検出システム
WO2021192460A1 (ja) センシングデバイス、および、電子装置
WO2020255855A1 (ja) 測距装置および測距方法
WO2023085143A1 (ja) 光検出素子
WO2022176532A1 (ja) 受光装置、測距装置及び受光装置の信号処理方法
US20230228875A1 (en) Solid-state imaging element, sensing system, and control method of solid-state imaging element
WO2024075409A1 (en) Photodetection device
WO2022239459A1 (ja) 測距装置及び測距システム
WO2021256276A1 (ja) 測距装置および測距システム
TWI853056B (zh) 固態影像感測器及測距系統
US12050268B2 (en) System to measure a distance to an object without addition of a distance measuring sensor
WO2024042668A1 (ja) 光検出素子
WO2021186817A1 (ja) 固体撮像素子、および、電子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807125

Country of ref document: EP

Kind code of ref document: A1