WO2022239414A1 - Power source unit for aerosol generation device - Google Patents

Power source unit for aerosol generation device Download PDF

Info

Publication number
WO2022239414A1
WO2022239414A1 PCT/JP2022/009493 JP2022009493W WO2022239414A1 WO 2022239414 A1 WO2022239414 A1 WO 2022239414A1 JP 2022009493 W JP2022009493 W JP 2022009493W WO 2022239414 A1 WO2022239414 A1 WO 2022239414A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
power supply
input
switch
voltage
Prior art date
Application number
PCT/JP2022/009493
Other languages
French (fr)
Japanese (ja)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to KR1020237036607A priority Critical patent/KR20230161486A/en
Priority to EP22807121.3A priority patent/EP4338627A1/en
Priority to CN202280032340.5A priority patent/CN117279532A/en
Priority to JP2023520838A priority patent/JPWO2022239414A1/ja
Publication of WO2022239414A1 publication Critical patent/WO2022239414A1/en
Priority to US18/502,051 priority patent/US20240057684A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/65Devices with integrated communication means, e.g. wireless communication means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • A24F40/95Arrangements or methods specially adapted for charging batteries thereof structurally associated with cases
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Patent Literature 1 describes an electronic inhaler that can return variables and parameters changed by the user to their factory defaults by a reset operation.
  • Patent Document 2 describes the necessity of pressing a reset button in an e-cigarette when an error state is signaled to the user via the user interface.
  • Patent Document 3 describes an aerosol generator that performs a reset (initialization setting) operation by pressing the button for a long time.
  • Patent Document 4 describes automatic resetting of an aerosol delivery device if the control component, or the software running on it, continues to become unstable.
  • Patent Document 5 describes that an electronic cigarette is reset by a smartphone that can communicate with the electronic cigarette.
  • Patent Document 6 describes permanently disabling the inhaler until a reset procedure is performed.
  • Patent Document 7 describes a device for providing maintenance services for smoking devices.
  • the appliance is configured to enable a software reset of the smoking device.
  • An object of the present invention is to provide a power supply unit for an aerosol generator that can stably restart the controller.
  • a power supply unit of an aerosol generating apparatus includes a power supply, a heater connector to which a heater that consumes the power supplied from the power supply to heat the aerosol source is connected, and power from the power supply to the heater. and a switch that connects the power supply and the power supply terminal of the controller; and a switch capable of controlling opening and closing of the switch.
  • a restart circuit the restart circuit performing a first operation of opening the switch when a restart condition is met, and performing a second operation of closing the switch after performing the first operation; It is.
  • the controller can be restarted stably.
  • FIG. 1 is a perspective view of a non-combustion inhaler
  • FIG. 1 is a perspective view of a non-combustion inhaler showing a state in which a rod is attached
  • FIG. Fig. 10 is another perspective view of a non-combustion type inhaler
  • 1 is an exploded perspective view of a non-combustion inhaler
  • FIG. Fig. 3 is a perspective view of the internal unit of the non-combustion inhaler
  • FIG. 6 is an exploded perspective view of the internal unit of FIG. 5
  • FIG. 3 is a perspective view of the internal unit with the power supply and chassis removed
  • FIG. 11 is another perspective view of the internal unit with the power supply and chassis removed
  • It is a schematic diagram for demonstrating the operation mode of an aspirator.
  • FIG. 4 is a diagram for explaining the operation of an electric circuit in sleep mode; It is a figure for demonstrating the operation
  • FIG. 4 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode; It is a figure for demonstrating the operation
  • FIG. 5 is a diagram for explaining the operation of the electric circuit when detecting the temperature of the heater in the heating mode; FIG.
  • FIG. 4 is a diagram for explaining the operation of the electric circuit in charging mode;
  • FIG. 4 is a diagram for explaining the operation of an electric circuit when an MCU is reset (restarted); It is a figure which shows schematic structure inside charging IC.
  • FIG. 11 is a main circuit diagram showing main electronic components related to reset operation extracted from the electric circuit shown in FIG. 10 ;
  • Figure 2 is a cross-sectional view in a plane through the case thermistor of the suction device shown in Figure 1;
  • suction system which is one embodiment of the aerosol generator of the present invention, will be described below with reference to the drawings.
  • This suction system includes a non-combustion type suction device 100 (hereinafter also simply referred to as "suction device 100"), which is an embodiment of the power supply unit of the present invention, and a rod 500 heated by the suction device 100.
  • suction device 100 a non-combustion type suction device 100
  • the suction device 100 accommodates the heating unit in a non-detachable manner
  • the heating unit may be detachably attached to the aspirator 100 .
  • the rod 500 and the heating unit may be integrated and detachably attached to the aspirator 100 .
  • the power supply unit of the aerosol generator may have a configuration that does not include the heating section as a component.
  • “non-detachable” refers to a mode in which detachment is not possible as far as the intended use is concerned.
  • an induction heating coil provided in the aspirator 100 and a susceptor built in the rod 500 may cooperate to form a heating unit.
  • FIG. 1 is a perspective view showing the overall configuration of the aspirator 100.
  • FIG. FIG. 2 is a perspective view of the suction device 100 showing a state in which the rod 500 is attached.
  • FIG. 3 is another perspective view of the suction device 100.
  • FIG. FIG. 4 is an exploded perspective view of the aspirator 100.
  • FIG. Also, in the following description, for the sake of convenience, the orthogonal coordinate system of a three-dimensional space is used, in which the three mutually orthogonal directions are the front-back direction, the left-right direction, and the up-down direction. In the figure, the front is indicated by Fr, the rear by Rr, the right by R, the left by L, the upper by U, and the lower by D.
  • the inhaler 100 generates flavor-containing aerosol by heating an elongated, substantially cylindrical rod 500 (see FIG. 2) as an example of a flavor component-generating base having a filling containing an aerosol source and a flavor source. configured to
  • Rod 500 includes a fill containing an aerosol source that is heated at a predetermined temperature to produce an aerosol.
  • the type of aerosol source is not particularly limited, and extracts from various natural products and/or their constituent components can be selected according to the application.
  • the aerosol source may be solid or liquid, for example polyhydric alcohols such as glycerin, propylene glycol, or water.
  • the aerosol source may include a flavor source such as a tobacco material or an extract derived from the tobacco material that releases flavor components upon heating.
  • the gas to which the flavor component is added is not limited to an aerosol, and for example an invisible vapor may be generated.
  • the filling of rod 500 may contain tobacco shreds as a flavor source.
  • Materials for shredded tobacco are not particularly limited, and known materials such as lamina and backbone can be used.
  • the filling may contain one or more perfumes.
  • the type of flavoring agent is not particularly limited, but menthol is preferable from the viewpoint of imparting a good smoking taste.
  • Flavor sources may contain plants other than tobacco, such as mints, herbal medicines, or herbs. Depending on the application, rod 500 may not contain a flavor source.
  • the suction device 100 includes a substantially rectangular parallelepiped case 110 having a front surface, a rear surface, a left surface, a right surface, an upper surface, and a lower surface.
  • the case 110 comprises a bottomed cylindrical case body 112 in which front, rear, top, bottom, and right surfaces are integrally formed, and a left surface that seals an opening 114 (see FIG. 4) of the case body 112. It has an outer panel 115 , an inner panel 118 , and a slider 119 .
  • the inner panel 118 is fixed to the case body 112 with bolts 120 .
  • the outer panel 115 is fixed to the case body 112 so as to cover the outer surface of the inner panel 118 by a magnet 124 held by a chassis 150 (see FIG. 5) housed in the case body 112 and described later. Since the outer panel 115 is fixed by the magnet 124, the user can replace the outer panel 115 according to his or her preference.
  • the inner panel 118 is provided with two through holes 126 through which the magnets 124 pass.
  • the inner panel 118 is further provided with a longitudinally elongated hole 127 and a circular round hole 128 between the two vertically arranged through holes 126 .
  • This long hole 127 is for transmitting light emitted from eight LEDs (Light Emitting Diodes) L1 to L8 built in the case body 112 .
  • a button-type operation switch OPS built in the case body 112 passes through the round hole 128 . Thereby, the user can detect the light emitted from the eight LEDs L1 to L8 through the LED window 116 of the outer panel 115. FIG. Also, the user can press down the operation switch OPS via the pressing portion 117 of the outer panel 115 .
  • the upper surface of the case body 112 is provided with an opening 132 into which the rod 500 can be inserted.
  • the slider 119 is coupled to the case body 112 so as to be movable in the front-rear direction between a position for closing the opening 132 (see FIG. 1) and a position for opening the opening 132 (see FIG. 2).
  • the operation switch OPS is used to perform various operations of the aspirator 100.
  • the user operates the operation switch OPS via the pressing portion 117 while inserting the rod 500 into the opening 132 as shown in FIG.
  • the heating unit 170 (see FIG. 5) heats the rod 500 without burning it.
  • an aerosol is generated from the aerosol source contained in the rod 500 and the flavor of the flavor source contained in the rod 500 is added to the aerosol.
  • the user can inhale the flavor-containing aerosol by holding the mouthpiece 502 of the rod 500 projecting from the opening 132 and inhaling.
  • a charging terminal 134 is provided for receiving power supply by being electrically connected to an external power source such as an outlet or a mobile battery.
  • the charging terminal 134 is a USB (Universal Serial Bus) Type-C receptacle, but is not limited to this.
  • Charging terminal 134 is hereinafter also referred to as receptacle RCP.
  • the charging terminal 134 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply.
  • the wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
  • the charging terminal 134 can be connected to various USB terminals or the like, and may have the power receiving coil described above.
  • the configuration of the aspirator 100 shown in FIGS. 1-4 is merely an example.
  • the inhaler 100 holds the rod 500 and applies an action such as heating to generate gas to which a flavor component is added from the rod 500, and the user can inhale the generated gas. It can be configured in various forms.
  • FIG. 5 is a perspective view of the internal unit 140 of the suction device 100.
  • FIG. 6 is an exploded perspective view of the internal unit 140 of FIG. 5.
  • FIG. 7 is a perspective view of internal unit 140 with power supply BAT and chassis 150 removed.
  • FIG. 8 is another perspective view of the internal unit 140 with the power supply BAT and chassis 150 removed.
  • the internal unit 140 housed in the internal space of the case 110 includes a chassis 150, a power supply BAT, a circuit section 160, a heating section 170, a notification section 180, and various sensors.
  • the chassis 150 includes a plate-shaped chassis body 151 arranged substantially in the center of the interior space of the case 110 in the front-rear direction and extending in the vertical and front-rear directions, and a chassis body 151 disposed substantially in the center of the interior space of the case 110 in the front-rear direction.
  • a plate-shaped front and rear dividing wall 152 extending in the vertical and horizontal directions
  • a plate-shaped upper and lower dividing wall 153 extending forward from substantially the center of the front and rear dividing wall 152 in the vertical direction
  • the front and rear dividing wall 152 and the upper edges of the chassis body 151 and a plate-shaped chassis lower wall 155 extending rearward from the front-rear dividing wall 152 and the lower edge of the chassis body 151 .
  • the left surface of the chassis body 151 is covered with the inner panel 118 and the outer panel 115 of the case 110 described above.
  • the internal space of the case 110 is defined by a chassis 150 such that a heating unit housing area 142 is defined in the upper front, a board housing area 144 is defined in the lower front, and a power supply housing space 146 is defined in the rear to extend vertically. ing.
  • the heating part 170 housed in the heating part housing area 142 is composed of a plurality of tubular members, which are concentrically arranged to form a tubular body as a whole.
  • the heating section 170 has a rod housing section 172 capable of housing a portion of the rod 500 therein, and a heater HTR (see FIGS. 10 to 19) that heats the rod 500 from its outer circumference or center.
  • the surface of the rod housing portion 172 and the heater HTR are insulated by forming the rod housing portion 172 from a heat insulating material or providing a heat insulating material inside the rod housing portion 172 .
  • the heater HTR may be any element that can heat the rod 500 .
  • the heater HTR is, for example, a heating element.
  • Heating elements include heating resistors, ceramic heaters, induction heaters, and the like.
  • the heater HTR for example, one having a PTC (Positive Temperature Coefficient) characteristic in which the resistance value increases as the temperature increases is preferably used.
  • a heater HTR having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used.
  • the heating part 170 has a function of defining a flow path of air to be supplied to the rod 500 and a function of heating the rod 500 .
  • the case 110 is formed with a vent (not shown) for introducing air, and is configured to allow air to enter the heating unit 170 .
  • the power supply BAT housed in the power supply housing space 146 is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery.
  • the electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
  • the notification unit 180 notifies various information such as the SOC (State Of Charge) indicating the state of charge of the power supply BAT, the preheating time during suction, and the suction possible period.
  • the notification unit 180 of this embodiment includes eight LEDs L1 to L8 and a vibration motor M.
  • the notification unit 180 may be composed of light emitting elements such as LEDs L1 to L8, may be composed of vibrating elements such as the vibration motor M, or may be composed of sound output elements.
  • the notification unit 180 may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
  • Various sensors include an intake air sensor that detects the user's puff action (sucking action), a power supply temperature sensor that detects the temperature of the power supply BAT, a heater temperature sensor that detects the temperature of the heater HTR, and a case temperature sensor that detects the temperature of the case 110. , a cover position sensor that detects the position of the slider 119, a panel detection sensor that detects attachment/detachment of the outer panel 115, and the like.
  • the intake sensor is mainly composed of a thermistor T2 arranged near the opening 132, for example.
  • the power supply temperature sensor is mainly composed of, for example, a thermistor T1 arranged near the power supply BAT.
  • the heater temperature sensor is mainly composed of, for example, a thermistor T3 arranged near the heater HTR.
  • the rod housing portion 172 is preferably insulated from the heater HTR.
  • the thermistor T3 is preferably in contact with or close to the heater HTR inside the rod housing portion 172 . If the heater HTR has PTC characteristics or NTC characteristics, the heater HTR itself may be used as the heater temperature sensor.
  • the case temperature sensor is mainly composed of, for example, a thermistor T4 arranged near the left surface of the case 110 .
  • Thermistor T4 is preferably in contact with or in close proximity to case 110 .
  • the cover position sensor is mainly composed of a Hall IC 14 including a Hall element arranged near the slider 119 .
  • the panel detection sensor is mainly composed of a Hall IC 13 including a Hall element arranged near the inner surface of the inner panel 118 .
  • the circuit section 160 includes four circuit boards, multiple ICs (Integrate Circuits), and multiple elements.
  • the four circuit boards are an MCU-mounted board 161 on which an MCU (Micro Controller Unit) 1 and a charging IC 2, which will be described later, are mainly arranged, a receptacle-mounted board 162 mainly on which charging terminals 134 are arranged, an operation switch OPS, and an LED An LED mounting substrate 163 on which L1 to L8 and a communication IC 15 described later are arranged, and a Hall IC mounting substrate 164 on which a Hall IC 14 including a Hall element constituting a cover position sensor is arranged.
  • the MCU mounting board 161 and the receptacle mounting board 162 are arranged parallel to each other in the board accommodation area 144 . More specifically, the MCU mounting board 161 and the receptacle mounting board 162 are arranged such that their element mounting surfaces are arranged along the horizontal direction and the vertical direction, and the MCU mounting board 161 is arranged in front of the receptacle mounting board 162. .
  • the MCU mounting board 161 and the receptacle mounting board 162 are each provided with openings.
  • the MCU mounting board 161 and the receptacle mounting board 162 are fastened with bolts 136 to the board fixing portion 156 of the front/rear dividing wall 152 with a cylindrical spacer 173 interposed between the peripheral edges of these openings.
  • the spacer 173 fixes the positions of the MCU mounting board 161 and the receptacle mounting board 162 inside the case 110 and mechanically connects the MCU mounting board 161 and the receptacle mounting board 162 .
  • the MCU mounting board 161 and the receptacle mounting board 162 it is possible to prevent the MCU mounting board 161 and the receptacle mounting board 162 from coming into contact with each other and causing a short-circuit current between them.
  • the MCU mounting board 161 and the receptacle mounting board 162 have main surfaces 161a and 162a that face forward, and secondary surfaces 161b and 162b that are opposite to the main surfaces 161a and 162a. and the main surface 162a of the receptacle mounting substrate 162 face each other with a predetermined gap therebetween.
  • a main surface 161 a of the MCU mounting board 161 faces the front surface of the case 110
  • a secondary surface 162 b of the receptacle mounting board 162 faces the front and rear dividing walls 152 of the chassis 150 .
  • Elements and ICs mounted on the MCU mounting board 161 and the receptacle mounting board 162 will be described later.
  • the LED mounting board 163 is arranged on the left side of the chassis body 151 and between the two magnets 124 arranged vertically.
  • the element mounting surface of the LED mounting substrate 163 is arranged along the vertical direction and the front-rear direction.
  • the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 are orthogonal to the element mounting surface of the LED mounting board 163 .
  • the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 and the element mounting surface of the LED mounting board 163 are not limited to being orthogonal, but preferably intersect (non-parallel).
  • the vibration motor M which forms the notification unit 180 together with the LEDs L1 to L8, is fixed to the bottom surface of the chassis bottom wall 155 and electrically connected to the MCU mounting board 161.
  • the Hall IC mounting board 164 is arranged on the upper surface of the chassis upper wall 154 .
  • FIG. 9 is a schematic diagram for explaining the operation modes of the aspirator 100.
  • the operating modes of the suction device 100 include charging mode, sleep mode, active mode, heating initialization mode, heating mode, and heating termination mode.
  • the sleep mode is a mode for saving power by stopping the power supply to the electronic parts required for heating control of the heater HTR.
  • the active mode is a mode in which most functions except heating control of the heater HTR are enabled.
  • the operation mode is switched to the active mode.
  • the slider 119 is closed or the non-operating time of the operation switch OPS reaches a predetermined time while the aspirator 100 is operating in the active mode, the operating mode is switched to the sleep mode.
  • the heating initial setting mode is a mode for initializing control parameters and the like for starting heating control of the heater HTR.
  • the aspirator 100 detects the operation of the operation switch OPS while operating in the active mode, it switches the operation mode to the heating initial setting mode, and when the initial setting is completed, switches the operation mode to the heating mode.
  • the heating mode is a mode that executes heating control of the heater HTR (heating control for aerosol generation and heating control for temperature detection).
  • the aspirator 100 starts heating control of the heater HTR when the operation mode is switched to the heating mode.
  • the heating end mode is a mode for executing heating control end processing (heating history storage processing, etc.) of the heater HTR.
  • the operation mode is switched to the heating end mode.
  • the operation mode is switched to the active mode.
  • the USB connection is established while the aspirator 100 is operating in the heating mode, the operating mode is switched to the heating end mode, and when the end processing is completed, the operating mode is switched to the charging mode. As shown in FIG.
  • the operating mode may be switched to the active mode before switching the operating mode to the charging mode.
  • the aspirator 100 may switch the operation mode in order of the heating end mode, the active mode, and the charging mode when the USB connection is made while operating in the heating mode.
  • the charging mode is a mode in which the power supply BAT is charged with power supplied from an external power supply connected to the receptacle RCP.
  • the aspirator 100 switches the operation mode to the charge mode when an external power source is connected (USB connection) to the receptacle RCP while operating in sleep mode or active mode.
  • the aspirator 100 switches the operation mode to the sleep mode when the charging of the power supply BAT is completed or the connection between the receptacle RCP and the external power supply is released while operating in the charging mode.
  • FIG. 11 shows a range 161A mounted on the MCU mounting board 161 (range surrounded by thick dashed lines) and a range 163A mounted on the LED mounting board 163 (range surrounded by thick solid lines) in the electric circuit shown in FIG.
  • FIG. 12 is the same as FIG. 10 except that a range 162A mounted on the receptacle mounting board 162 and a range 164A mounted on the Hall IC mounting board 164 are added to the electric circuit shown in FIG. is.
  • the wiring indicated by the thick solid line in FIG. 10 is the wiring (the wiring connected to the ground provided in the internal unit 140) that has the same potential as the reference potential (ground potential) of the internal unit 140. It is described as a ground line below.
  • an electronic component in which a plurality of circuit elements are chipped is indicated by a rectangle, and the symbols of various terminals are indicated inside the rectangle.
  • a power supply terminal VCC and a power supply terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively.
  • a power supply terminal VSS and a ground terminal GND mounted on the chip indicate power supply terminals on the low potential side (reference potential side).
  • the power supply voltage is the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side. Chipped electronic components use this power supply voltage to perform various functions.
  • the MCU-mounted board 161 includes, as main electronic components, an MCU1 that controls the entire sucker 100, a charging IC2 that controls charging of the power source BAT, a capacitor, a resistor load switches (hereinafter referred to as LSW) 3, 4, 5, a ROM (Read Only Memory) 6, a switch driver 7, and a step-up/step-down DC/DC converter 8 (in the figure, buck-boost DC/DC 8), operational amplifier OP2, operational amplifier OP3, flip-flops (FF) 16, 17, connector Cn (t2) (which is electrically connected to thermistor T2 constituting an intake sensor) ( The figure shows the thermistor T2 connected to this connector), and a connector Cn(t3) electrically connected to the thermistor T3 constituting the heater temperature sensor (the figure shows the thermistor T3 connected to this connector).
  • LSW resistor load switches
  • LSW resistor load switches
  • ROM Read Only Memory
  • switch driver 7 a switch driver 7
  • a ground terminal GND of each of the charging IC 2, LSW3, LSW4, LSW5, switch driver 7, step-up/step-down DC/DC converter 8, FF16, and FF17 is connected to a ground line.
  • a power terminal VSS of the ROM 6 is connected to the ground line.
  • a negative power supply terminal of each of the operational amplifiers OP2 and OP3 is connected to the ground line.
  • the LED mounting board 163 (area 163A) has, as main electronic components, a Hall IC 13 including a Hall element constituting a panel detection sensor, LEDs L1 to L8, an operation switch OPS, a communication IC 15 and are provided.
  • the communication IC 15 is a communication module for communicating with electronic devices such as smartphones.
  • a power supply terminal VSS of the Hall IC 13 and a ground terminal GND of the communication IC 15 are each connected to a ground line.
  • Communication IC 15 and MCU 1 are configured to be communicable via communication line LN.
  • One end of the operation switch OPS is connected to the ground line, and the other end of the operation switch OPS is connected to the terminal P4 of the MCU1.
  • the receptacle mounting board 162 (range 162A) includes a power connector electrically connected to the power supply BAT as a main electronic component (in the figure, the power supply BAT connected to this power connector is shown). ), a connector electrically connected to a thermistor T1 constituting a power supply temperature sensor (in the figure, the thermistor T1 connected to this connector is shown), and a boost DC/DC converter 9 (in the figure, a boost DC/DC 9 ), the protection IC 10, the overvoltage protection IC 11, the fuel gauge IC 12, the receptacle RCP, the switches S3 to S6 configured by MOSFETs, the operational amplifier OP1, and the heater HTR. (positive electrode side and negative electrode side) heater connectors Cn are provided.
  • ground terminals GND of receptacle RCP, ground terminal GND of step-up DC/DC converter 9, power supply terminal VSS of protection IC 10, power supply terminal VSS of fuel gauge IC 12, ground terminal GND of overvoltage protection IC 11, and operational amplifier The negative power supply terminals of OP1 are each connected to the ground line.
  • the Hall IC mounting substrate 164 (area 164A) is provided with a Hall IC 14 including a Hall element that constitutes a cover position sensor.
  • a power terminal VSS of the Hall IC 14 is connected to the ground line.
  • the output terminal OUT of the Hall IC 14 is connected to the terminal P8 of the MCU1.
  • the MCU1 detects opening/closing of the slider 119 from a signal input to the terminal P8.
  • a connector electrically connected to the vibration motor M is provided on the MCU mounting board 161 .
  • the two power supply input terminals V BUS of the receptacle RCP are each connected to the input terminal IN of the overvoltage protection IC11 via a fuse Fs.
  • the USB voltage V USB is supplied to the two power input terminals V BUS of the receptacle RCP.
  • An input terminal IN of the overvoltage protection IC 11 is connected to one end of a voltage dividing circuit Pa consisting of a series circuit of two resistors.
  • the other end of the voltage dividing circuit Pa is connected to the ground line.
  • a connection point between the two resistors forming the voltage dividing circuit Pa is connected to the voltage detection terminal OVLo of the overvoltage protection IC11.
  • the overvoltage protection IC 11 outputs the voltage input to the input terminal IN from the output terminal OUT when the voltage input to the voltage detection terminal OVLo is less than the threshold.
  • the overvoltage protection IC 11 stops voltage output from the output terminal OUT (cuts off the electrical connection between the LSW3 and the receptacle RCP) when the voltage input to the voltage detection terminal OVLo exceeds the threshold (overvoltage). By doing so, the electronic components downstream of the overvoltage protection IC 11 are protected.
  • the output terminal OUT of the overvoltage protection IC11 is connected to the input terminal VIN of the LSW3 and one end of the voltage dividing circuit Pc (series circuit of two resistors) connected to the MCU1. The other end of the voltage dividing circuit Pc is connected to the ground line. A connection point of the two resistors forming the voltage dividing circuit Pc is connected to the terminal P17 of the MCU1.
  • An input terminal VIN of LSW3 is connected to one end of a voltage dividing circuit Pf consisting of a series circuit of two resistors.
  • the other end of the voltage dividing circuit Pf is connected to the ground line.
  • a connection point between the two resistors forming the voltage dividing circuit Pf is connected to the control terminal ON of the LSW3.
  • the collector terminal of the bipolar transistor S2 is connected to the control terminal ON of LSW3.
  • the emitter terminal of the bipolar transistor S2 is connected to the ground line.
  • the base terminal of bipolar transistor S2 is connected to terminal P19 of MCU1.
  • the output terminal VOUT of LSW3 is connected to the input terminal VBUS of charging IC2.
  • the MCU1 turns on the bipolar transistor S2 while the USB connection is not made.
  • the control terminal ON of LSW3 is connected to the ground line via the bipolar transistor S2, so that a low level signal is input to the control terminal ON of LSW3.
  • the bipolar transistor S2 connected to LSW3 is turned off by MCU1 when the USB connection is made.
  • the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. Therefore, when the USB connection is made and the bipolar transistor S2 is turned off, a high level signal is input to the control terminal ON of the LSW3.
  • the LSW 3 outputs the USB voltage VUSB supplied from the USB cable from the output terminal VOUT. Even if the USB connection is made while the bipolar transistor S2 is not turned off, the control terminal ON of the LSW3 is connected to the ground line via the bipolar transistor S2. Therefore, it should be noted that a low level signal continues to be input to the control terminal ON of LSW3 unless MCU1 turns off bipolar transistor S2.
  • the positive terminal of the power supply BAT is connected to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC2. Therefore, the power supply voltage V BAT of the power supply BAT is supplied to the protection IC 10 , the charging IC 2 and the step-up DC/DC converter 9 .
  • a resistor Ra, a switch Sa composed of a MOSFET, a switch Sb composed of a MOSFET, and a resistor Rb are connected in series in this order to the negative terminal of the power supply BAT.
  • a current detection terminal CS of the protection IC 10 is connected to a connection point between the resistor Ra and the switch Sa. Control terminals of the switches Sa and Sb are connected to the protection IC 10 . Both ends of the resistor Rb are connected to the fuel gauge IC12.
  • the protection IC 10 acquires the value of the current flowing through the resistor Ra during charging and discharging of the power supply BAT from the voltage input to the current detection terminal CS, and when this current value becomes excessive (overcurrent), the switch Sa , the switch Sb is controlled to open and close to stop the charging or discharging of the power source BAT, thereby protecting the power source BAT. More specifically, when the protection IC 10 acquires an excessive current value while charging the power supply BAT, it stops charging the power supply BAT by turning off the switch Sb. When the protection IC 10 acquires an excessive current value during discharging of the power supply BAT, the protection IC 10 stops discharging the power supply BAT by turning off the switch Sa.
  • the protection IC 10 performs opening/closing control of the switch Sa and the switch Sb to The power supply BAT is protected by stopping the charging or discharging of BAT. More specifically, when the protection IC 10 detects that the power supply BAT is overcharged, the protection IC 10 stops charging the power supply BAT by turning off the switch Sb. When detecting overdischarge of the power supply BAT, the protection IC 10 turns off the switch Sa to stop the discharge of the power supply BAT.
  • a resistor Rt1 is connected to a connector connected to the thermistor T1 arranged near the power supply BAT.
  • a series circuit of the resistor Rt1 and the thermistor T1 is connected to the ground line and the regulator terminal TREG of the fuel gauge IC12.
  • a connection point between the thermistor T1 and the resistor Rt1 is connected to a thermistor terminal THM of the fuel gauge IC12.
  • the thermistor T1 may be a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases, or an NTC (Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature increases.
  • the fuel gauge IC 12 detects the current flowing through the resistor Rb, and based on the detected current value, indicates the remaining capacity of the power supply BAT, SOC (State Of Charge) indicating the state of charge, and SOH (State Of Charge) indicating the state of health. Health) and other battery information.
  • the fuel gauge IC12 supplies a voltage to the voltage dividing circuit of the thermistor T1 and the resistor Rt1 from the built-in regulator connected to the regulator terminal TREG.
  • the fuel gauge IC 12 acquires the voltage divided by this voltage dividing circuit from the thermistor terminal THM, and acquires temperature information regarding the temperature of the power supply BAT based on this voltage.
  • the fuel gauge IC12 is connected to the MCU1 via a communication line LN for serial communication, and is configured to be able to communicate with the MCU1.
  • the fuel gauge IC12 transmits the derived battery information and the acquired temperature information of the power supply BAT to the MCU1 in response to a request from the MCU1.
  • serial communication requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that only one signal line is shown in FIGS. 10-19 for simplicity.
  • the fuel gauge IC 12 has a notification terminal 12a.
  • the notification terminal 12a is connected to the terminal P6 of the MCU1 and the cathode of a diode D2, which will be described later.
  • the fuel gauge IC 12 detects an abnormality such as an excessive temperature of the power supply BAT, it notifies the MCU 1 of the occurrence of the abnormality by outputting a low-level signal from the notification terminal 12a. This low level signal is also input to the CLR ( ⁇ ) terminal of the FF 17 via the diode D2.
  • One end of the reactor Lc is connected to the switching terminal SW of the step-up DC/DC converter 9 .
  • the other end of this reactor Lc is connected to the input terminal VIN of the step-up DC/DC converter 9 .
  • the step-up DC/DC converter 9 performs on/off control of the built-in transistor connected to the switching terminal SW to step up the input voltage and output it from the output terminal VOUT.
  • the input terminal VIN of the step-up DC/DC converter 9 constitutes a power supply terminal of the step-up DC/DC converter 9 on the high potential side.
  • the boost DC/DC converter 9 performs a boost operation when the signal input to the enable terminal EN is at high level.
  • the signal input to the enable terminal EN of the boost DC/DC converter 9 may be controlled to be low level by the MCU1.
  • the MCU 1 does not control the signal input to the enable terminal EN of the boost DC/DC converter 9, so that the potential of the enable terminal EN may be made indefinite.
  • the output terminal VOUT of the step-up DC/DC converter 9 is connected to the source terminal of the switch S4 composed of a P-channel MOSFET.
  • the gate terminal of switch S4 is connected to terminal P15 of MCU1.
  • One end of the resistor Rs is connected to the drain terminal of the switch S4.
  • the other end of the resistor Rs is connected to a positive heater connector Cn connected to one end of the heater HTR.
  • a voltage dividing circuit Pb consisting of two resistors is connected to the connection point between the switch S4 and the resistor Rs.
  • a connection point of the two resistors forming the voltage dividing circuit Pb is connected to the terminal P18 of the MCU1.
  • a connection point between the switch S4 and the resistor Rs is further connected to the positive power supply terminal of the operational amplifier OP1.
  • a connection line between the output terminal VOUT of the step-up DC/DC converter 9 and the source terminal of the switch S4 is connected to the source terminal of the switch S3 composed of a P-channel MOSFET.
  • the gate terminal of switch S3 is connected to terminal P16 of MCU1.
  • a drain terminal of the switch S3 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • a circuit including the switch S3 and a circuit including the switch S4 and the resistor Rs are connected in parallel between the output terminal VOUT of the boost DC/DC converter 9 and the positive electrode side of the heater connector Cn. . Since the circuit including the switch S3 does not have a resistor, it has a lower resistance than the circuit including the switch S4 and the resistor Rs.
  • the non-inverting input terminal of the operational amplifier OP1 is connected to the connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • the inverting input terminal of the operational amplifier OP1 is connected to the negative heater connector Cn connected to the other end of the heater HTR and to the drain terminal of the switch S6 composed of an N-channel MOSFET.
  • the source terminal of switch S6 is connected to the ground line.
  • a gate terminal of the switch S6 is connected to the terminal P14 of the MCU1, the anode of the diode D4, and the enable terminal EN of the step-up DC/DC converter 9.
  • the cathode of diode D4 is connected to the Q terminal of FF17.
  • resistor R4 One end of a resistor R4 is connected to the output terminal of the operational amplifier OP1. The other end of the resistor R4 is connected to the terminal P9 of the MCU1 and the drain terminal of the switch S5 composed of an N-channel MOSFET. A source terminal of the switch S5 is connected to the ground line. A gate terminal of the switch S5 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • the input terminal VBUS of charging IC2 is connected to the anode of each of LEDs L1-L8.
  • the cathodes of the LEDs L1-L8 are connected to the control terminals PD1-PD8 of the MCU1 via current limiting resistors. That is, LEDs L1 to L8 are connected in parallel to the input terminal VBUS.
  • the LEDs L1 to L8 are operable by the USB voltage V USB supplied from the USB cable connected to the receptacle RCP and the voltage supplied from the power supply BAT via the charging IC2.
  • the MCU 1 incorporates transistors (switching elements) connected to each of the control terminals PD1 to PD8 and the ground terminal GND.
  • the MCU1 turns on the transistor connected to the control terminal PD1 to energize the LED L1 to light it, and turns off the transistor connected to the control terminal PD1 to turn off the LED L1.
  • the brightness and light emission pattern of the LED L1 can be dynamically controlled.
  • LEDs L2 to L8 are similarly controlled by the MCU1.
  • the charging IC2 has a charging function of charging the power supply BAT based on the USB voltage VUSB input to the input terminal VBUS.
  • the charging IC 2 acquires the charging current and charging voltage of the power supply BAT from terminals and wiring (not shown), and based on these, performs charging control of the power supply BAT (power supply control from the charging terminal bat to the power supply BAT). Also, the charging IC 2 may acquire the temperature information of the power supply BAT transmitted from the fuel gauge IC 12 to the MCU 1 from the MCU 1 through serial communication using the communication line LN, and use it for charging control.
  • the charging IC2 further comprises a V BAT power pass function and an OTG function.
  • the V BAT power pass function is a function of outputting from the output terminal SYS a system power supply voltage Vcc0 substantially matching the power supply voltage V BAT input to the charging terminal bat.
  • the OTG function is a function for outputting from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input to the charging terminal bat.
  • ON/OFF of the OTG function of the charging IC 2 is controlled by the MCU 1 through serial communication using the communication line LN.
  • the power supply voltage V BAT input to the charging terminal bat may be directly output from the input terminal VBUS. In this case, power supply voltage VBAT and system power supply voltage Vcc4 are substantially the same.
  • the output terminal SYS of the charging IC 2 is connected to the input terminal VIN of the step-up/step-down DC/DC converter 8 .
  • One end of a reactor La is connected to the switching terminal SW of the charging IC2.
  • the other end of the reactor La is connected to the output terminal SYS of the charging IC2.
  • a charge enable terminal CE ( ⁇ ) of the charge IC2 is connected to a terminal P22 of the MCU1 via a resistor.
  • the collector terminal of the bipolar transistor S1 is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • the emitter terminal of the bipolar transistor S1 is connected to the output terminal VOUT of the LSW4 which will be described later.
  • the base terminal of bipolar transistor S1 is connected to the Q terminal of FF17.
  • one end of a resistor Rc is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • the other end of the resistor Rc is connected to the output terminal VOUT of LSW4.
  • a resistor is connected to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
  • the signal input to the enable terminal EN of the step-up/step-down DC/DC converter 8 is at a high level. Then, the step-up/step-down DC/DC converter 8 starts step-up operation or step-down operation.
  • the step-up/step-down DC/DC converter 8 steps up or steps down the system power supply voltage Vcc0 input to the input terminal VIN by switching control of the built-in transistor connected to the reactor Lb to generate the system power supply voltage Vcc1, and the output terminal VOUT.
  • Output from The output terminal VOUT of the buck-boost DC/DC converter 8 includes the feedback terminal FB of the buck-boost DC/DC converter 8, the input terminal VIN of the LSW 4, the input terminal VIN of the switch driver 7, the power supply terminal VCC and the D terminal of the FF 16. and connected to.
  • a wiring to which system power supply voltage Vcc1 output from output terminal VOUT of step-up/step-down DC/DC converter 8 is supplied is referred to as power supply line PL1.
  • the LSW4 When the signal input to the control terminal ON becomes high level, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN from the output terminal VOUT.
  • the control terminal ON of LSW4 and the power supply line PL1 are connected via a resistor. Therefore, by supplying the system power supply voltage Vcc1 to the power supply line PL1, a high level signal is input to the control terminal ON of the LSW4.
  • the voltage output from LSW4 is the same as the system power supply voltage Vcc1 if wiring resistance and the like are ignored. Described as voltage Vcc2.
  • the output terminal VOUT of the LSW4 is connected to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM6, the emitter terminal of the bipolar transistor S1, and the resistor Rc. , and the power supply terminal VCC of the FF 17 .
  • a wiring to which system power supply voltage Vcc2 output from output terminal VOUT of LSW4 is supplied is referred to as power supply line PL2.
  • the LSW5 When the signal input to the control terminal ON becomes high level, the LSW5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT.
  • a control terminal ON of LSW5 is connected to terminal P23 of MCU1.
  • the voltage output from LSW5 is the same as the system power supply voltage Vcc2 if wiring resistance and the like are ignored. Described as voltage Vcc3.
  • a wiring to which system power supply voltage Vcc3 output from output terminal VOUT of LSW5 is supplied is referred to as power supply line PL3.
  • a series circuit of a thermistor T2 and a resistor Rt2 is connected to the power supply line PL3, and the resistor Rt2 is connected to the ground line.
  • the thermistor T2 and the resistor Rt2 form a voltage dividing circuit, and their connection point is connected to the terminal P21 of the MCU1.
  • the MCU1 detects the temperature variation (resistance value variation) of the thermistor T2 based on the voltage input to the terminal P21, and determines the presence or absence of the puff operation based on the amount of temperature variation.
  • a series circuit of a thermistor T3 and a resistor Rt3 is connected to the power supply line PL3, and the resistor Rt3 is connected to the ground line.
  • the thermistor T3 and the resistor Rt3 form a voltage dividing circuit, and their connection point is connected to the terminal P13 of the MCU1 and the inverting input terminal of the operational amplifier OP2.
  • the MCU1 detects the temperature of the thermistor T3 (corresponding to the temperature of the heater HTR) based on the voltage input to the terminal P13.
  • a series circuit of a thermistor T4 and a resistor Rt4 is connected to the power supply line PL3, and the resistor Rt4 is connected to the ground line.
  • the thermistor T4 and the resistor Rt4 form a voltage dividing circuit, and the connection point between them is connected to the terminal P12 of the MCU1 and the inverting input terminal of the operational amplifier OP3.
  • the MCU1 detects the temperature of the thermistor T4 (corresponding to the temperature of the case 110) based on the voltage input to the terminal P12.
  • a source terminal of a switch S7 composed of a MOSFET is connected to the power supply line PL2.
  • the gate terminal of switch S7 is connected to terminal P20 of MCU1.
  • a drain terminal of the switch S7 is connected to one of a pair of connectors to which the vibration motor M is connected. The other of the pair of connectors is connected to the ground line.
  • the MCU1 can control the opening/closing of the switch S7 by manipulating the potential of the terminal P20, and vibrate the vibration motor M in a specific pattern.
  • a dedicated driver IC may be used instead of the switch S7.
  • a positive power supply terminal of the operational amplifier OP2 and a voltage dividing circuit Pd (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP2 are connected to the power supply line PL2.
  • a connection point between the two resistors forming the voltage dividing circuit Pd is connected to the non-inverting input terminal of the operational amplifier OP2.
  • the operational amplifier OP2 outputs a signal corresponding to the temperature of the heater HTR (signal corresponding to the resistance value of the thermistor T3).
  • the thermistor T3 since the thermistor T3 has the NTC characteristic, the higher the temperature of the heater HTR (the temperature of the thermistor T3), the lower the output voltage of the operational amplifier OP2.
  • the output of the voltage dividing circuit of the thermistor T3 and the resistor Rt3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP2.
  • the output of the pressure circuit Pd may be connected.
  • a positive power supply terminal of the operational amplifier OP3 and a voltage dividing circuit Pe (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP3 are connected to the power supply line PL2.
  • a connection point between the two resistors forming the voltage dividing circuit Pe is connected to the non-inverting input terminal of the operational amplifier OP3.
  • the operational amplifier OP3 outputs a signal corresponding to the temperature of the case 110 (a signal corresponding to the resistance value of the thermistor T4).
  • the thermistor T4 having the NTC characteristic is used, so the higher the temperature of the case 110, the lower the output voltage of the operational amplifier OP3.
  • the output of the voltage dividing circuit of the thermistor T4 and the resistor Rt4 is connected to the non-inverting input terminal of the operational amplifier OP3, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP3.
  • the output of the pressure circuit Pe may be connected.
  • a resistor R1 is connected to the output terminal of the operational amplifier OP2.
  • a cathode of a diode D1 is connected to the resistor R1.
  • the anode of the diode D1 is connected to the output terminal of the operational amplifier OP3, the D terminal of the FF17, and the CLR ( ⁇ ) terminal of the FF17.
  • a connection line between the resistor R1 and the diode D1 is connected to a resistor R2 connected to the power supply line PL1. Also, the CLR ( ⁇ ) terminal of the FF 16 is connected to this connection line.
  • resistor R3 One end of a resistor R3 is connected to the connection line between the anode of the diode D1 and the output terminal of the operational amplifier OP3 and the D terminal of the FF17.
  • the other end of resistor R3 is connected to power supply line PL2.
  • the anode of the diode D2 connected to the notification terminal 12a of the fuel gauge IC12, the anode of the diode D3, and the CLR ( ⁇ ) terminal of the FF 17 are connected to this connection line.
  • the cathode of diode D3 is connected to terminal P5 of MCU1.
  • the FF16 When the temperature of the heater HTR becomes excessive and the signal output from the operational amplifier OP2 becomes low and the signal input to the CLR ( ⁇ ) terminal becomes low level, the FF16 outputs a high level signal from the Q ( ⁇ ) terminal. Input to terminal P11 of MCU1. A high-level system power supply voltage Vcc1 is supplied from the power supply line PL1 to the D terminal of the FF16. Therefore, in the FF 16, a low level signal continues to be output from the Q ( ⁇ ) terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
  • the signal input to the CLR ( ⁇ ) terminal of the FF 17 is when the temperature of the heater HTR becomes excessive, when the temperature of the case 110 becomes excessive, and when an abnormality is detected from the notification terminal 12a of the fuel gauge IC 12.
  • the low-level signal shown When the low-level signal shown is output, it becomes low-level.
  • the FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR ( ⁇ ) terminal becomes low level.
  • This low-level signal is input to terminal P10 of MCU1, the gate terminal of switch S6, the enable terminal EN of boost DC/DC converter 9, and the base terminal of bipolar transistor S1 connected to charging IC2. be.
  • the CE ( ⁇ ) terminal of the charging IC2 is of negative logic, the charging of the power source BAT is stopped. As a result, the heating of the heater HTR and the charging of the power supply BAT are stopped. Even if the MCU1 attempts to output a low-level enable signal from the terminal P22 to the charge enable terminal CE ( ⁇ ) of the charging IC2, when the bipolar transistor S1 is turned on, the amplified current is transferred from the collector terminal to the MCU1 and the charge enable terminal CE ( ⁇ ) of the charge IC2. Note that a high level signal is input to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • a high-level system power supply voltage Vcc2 is supplied from the power supply line PL2 to the D terminal of the FF17. Therefore, the FF 17 continues to output a high level signal from the Q terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
  • a low level signal is output from the output terminal of the operational amplifier OP3
  • a low level signal is input to the CLR ( ⁇ ) terminal of the FF17 regardless of the level of the signal output from the output terminal of the operational amplifier OP2.
  • the low level signal output from the output terminal of the operational amplifier OP3 is not affected by the high level signal due to the diode D1. sea bream.
  • the high level signal is passed through the diode D1. signal.
  • the power line PL2 is further branched from the MCU mounting board 161 toward the LED mounting board 163 and the Hall IC mounting board 164 side.
  • the power terminal VDD of the hall IC 13, the power terminal VCC of the communication IC 15, and the power terminal VDD of the hall IC 14 are connected to the branched power line PL2.
  • the output terminal OUT of the Hall IC 13 is connected to the terminal P3 of the MCU1 and the terminal SW2 of the switch driver 7. When the outer panel 115 is removed, a low level signal is output from the output terminal OUT of the Hall IC 13 .
  • the MCU 1 determines whether or not the outer panel 115 is attached based on the signal input to the terminal P3.
  • a series circuit (a series circuit of a resistor and a capacitor) connected to the operation switch OPS is provided on the LED mounting board 163 .
  • This series circuit is connected to power supply line PL2.
  • a connection point between the resistor and the capacitor in this series circuit is connected to the terminal P4 of the MCU 1, the operation switch OPS, and the terminal SW1 of the switch driver 7.
  • FIG. When the operation switch OPS is not pressed, the operation switch OPS is not conductive, and the signals input to the terminal P4 of the MCU1 and the terminal SW1 of the switch driver 7 are at a high level due to the system power supply voltage Vcc2.
  • the operation switch OPS When the operation switch OPS is pressed and turned on, the signals input to the terminal P4 of the MCU 1 and the terminal SW1 of the switch driver 7 are connected to the ground line, and thus become low level.
  • the MCU1 detects the operation of the operation switch OPS from the signal input to the terminal P4.
  • the switch driver 7 is provided with a reset input terminal RSTB.
  • the reset input terminal RSTB is connected to the control terminal ON of LSW4.
  • the switch driver 7 By outputting a low level signal from the reset input terminal RSTB, the output operation of LSW4 is stopped.
  • the operation switch OPS which is originally pushed down via the pressing portion 117 of the outer panel 115, is directly pushed down by the user with the outer panel 115 removed, the signal is input to the terminals SW1 and SW2 of the switch driver 7. become low level.
  • FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
  • FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
  • FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
  • FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
  • FIG. 17 is a diagram for explaining the operation of the electric circuit when the temperature of the heater HTR is detected in the heating mode.
  • FIG. 18 is a diagram for explaining the operation of the electric circuit in charging mode.
  • FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
  • FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
  • FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
  • FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
  • FIG. 17 is a diagram for explaining the operation
  • FIGS. 13 to 19 are diagrams for explaining the operation of the electric circuit when the MCU 1 is reset (restarted).
  • the terminals surrounded by dashed ellipses have inputs or outputs such as the power supply voltage V BAT , the USB voltage V USB , and the system power supply voltage. It shows the terminals that have been made.
  • the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
  • FIG. 1 the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
  • MCU1 enables the V BAT power pass function of charging IC2 and disables the OTG function and charging function. Since the USB voltage VUSB is not input to the input terminal VBUS of the charging IC2, the VBAT power pass function of the charging IC2 is enabled. Since the signal for enabling the OTG function is not output from the MCU1 to the charging IC2 from the communication line LN, the OTG function is disabled. Therefore, the charging IC2 generates the system power supply voltage Vcc0 from the power supply voltage VBAT input to the charging terminal bat, and outputs it from the output terminal SYS.
  • the system power supply voltage Vcc0 output from the output terminal SYS is input to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
  • the buck-boost DC/DC converter 8 is enabled by inputting a high-level system power supply voltage Vcc0 to an enable terminal EN of positive logic, generates a system power supply voltage Vcc1 from the system power supply voltage Vcc0, and outputs it to an output terminal VOUT.
  • Output from The system power supply voltage Vcc1 output from the output terminal VOUT of the buck-boost DC/DC converter 8 is applied to the input terminal VIN of the LSW4, the control terminal ON of the LSW4, the input terminal VIN of the switch driver 7, the power supply terminal VCC of the FF16, and the D terminal and , respectively.
  • the LSW4 When the system power supply voltage Vcc1 is input to the control terminal ON, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN as the system power supply voltage Vcc2 from the output terminal VOUT.
  • the system power supply voltage Vcc2 output from the LSW4 is applied to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the Hall IC 13, the power supply terminal VCC of the communication IC 15, and the power supply terminal VDD of the Hall IC 14. is entered.
  • the system power supply voltage Vcc2 is the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM 6, the resistor Rc and the bipolar transistor S1 connected to the charge enable terminal CE ( ⁇ ) of the charging IC2, and the FF17. They are supplied to the power supply terminal VCC, the positive power supply terminal of the operational amplifier OP3, the voltage dividing circuit Pe, the positive power supply terminal of the operational amplifier OP2, and the voltage dividing circuit Pd.
  • the bipolar transistor S1 connected to the charging IC2 is off unless a low level signal is output from the Q terminal of the FF17. Therefore, the system power supply voltage Vcc2 generated by the LSW4 is also input to the charging enable terminal CE ( ⁇ ) of the charging IC2. Since the charge enable terminal CE ( ⁇ ) of the charge IC2 is of negative logic, the charge function of the charge IC2 is turned off in this state.
  • LSW 5 stops outputting system power supply voltage Vcc3, so power supply to electronic components connected to power supply line PL3 is stopped. Also, in the sleep mode, the OTG function of the charging IC 2 is stopped, so power supply to the LEDs L1 to L8 is stopped.
  • Fig. 14> When the MCU 1 detects that the signal input to the terminal P8 becomes high level from the sleep mode state of FIG. 13 and the slider 119 is opened, it inputs a high level signal from the terminal P23 to the control terminal ON of the LSW5. . As a result, the LSW 5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT as the system power supply voltage Vcc3. The system power supply voltage Vcc3 output from the output terminal VOUT of the LSW5 is supplied to the thermistor T2, the thermistor T3, and the thermistor T4.
  • the MCU1 detects that the slider 119 is opened, the MCU1 enables the OTG function of the charging IC2 via the communication line LN.
  • the charging IC2 outputs from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input from the charging terminal bat.
  • the system power supply voltage Vcc4 output from the input terminal VBUS is It is fed to the LEDs L1-L8.
  • Fig. 15> From the state of FIG. 14, when the signal input to the terminal P4 becomes low level (the operation switch OPS is pressed), the MCU1 performs various settings necessary for heating, and then boosts the voltage from the terminal P14. A high-level enable signal is input to the enable terminal EN of the DC/DC converter 9 . As a result, the step-up DC/DC converter 9 outputs the driving voltage V bst obtained by stepping up the power supply voltage V BAT from the output terminal VOUT. The drive voltage Vbst is supplied to switch S3 and switch S4. In this state, the switches S3 and S4 are off. Also, the switch S6 is turned on by the high-level enable signal output from the terminal P14.
  • the negative terminal of the heater HTR is connected to the ground line, and the heater HTR can be heated by turning on the switch S3.
  • the mode shifts to the heating mode.
  • Fig. 16> In the state of FIG. 15, the MCU1 starts switching control of the switch S3 connected to the terminal P16 and switching control of the switch S4 connected to the terminal P15. These switching controls may be automatically started when the heating initial setting mode described above is completed, or may be started by further pressing the operation switch OPS. Specifically, as shown in FIG. 16, the MCU 1 turns on the switch S3 and turns off the switch S4 to supply the driving voltage Vbst to the heater HTR to heat the heater HTR for generating aerosol. and temperature detection control for detecting the temperature of the heater HTR by turning off the switch S3 and turning on the switch S4 as shown in FIG.
  • the driving voltage Vbst is also supplied to the gate of the switch S5 to turn on the switch S5. Further, during heating control, the drive voltage Vbst that has passed through the switch S3 is also input to the positive power supply terminal of the operational amplifier OP1 via the resistor Rs.
  • the resistance value of the resistor Rs is negligibly small compared to the internal resistance value of the operational amplifier OP1. Therefore, during heating control, the voltage input to the positive power supply terminal of the operational amplifier OP1 is approximately equal to the drive voltage Vbst .
  • the resistance value of the resistor R4 is greater than the ON resistance value of the switch S5.
  • the switch S5 is turned on during heating control.
  • the output voltage of the operational amplifier OP1 is divided by the voltage dividing circuit of the resistor R4 and the switch S5 and input to the terminal P9 of the MCU1. Since the resistance value of the resistor R4 is higher than the ON resistance value of the switch S5, the voltage input to the terminal P9 of the MCU1 is sufficiently reduced. This can prevent a large voltage from being input from the operational amplifier OP1 to the MCU1.
  • Fig. 17> As shown in FIG. 17, during temperature detection control, the driving voltage Vbst is input to the positive power supply terminal of the operational amplifier OP1 and also to the voltage dividing circuit Pb. The voltage divided by the voltage dividing circuit Pb is input to the terminal P18 of the MCU1. Based on the voltage input to the terminal P18, the MCU1 acquires the reference voltage V temp applied to the series circuit of the resistor Rs and the heater HTR during temperature detection control.
  • the driving voltage V bst (reference voltage V temp ) is supplied to the series circuit of the resistor Rs and the heater HTR.
  • a voltage V heat obtained by dividing the driving voltage V bst (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1. Since the resistance value of the resistor Rs is sufficiently higher than the resistance value of the heater HTR, the voltage V heat is sufficiently lower than the driving voltage V bst .
  • the switch S5 is turned off by supplying the low voltage V heat to the gate terminal of the switch S5.
  • the operational amplifier OP1 amplifies and outputs the difference between the voltage input to the inverting input terminal and the voltage V heat input to the non-inverting input terminal.
  • the output signal of operational amplifier OP1 is input to terminal P9 of MCU1.
  • the MCU1 obtains the temperature of the heater HTR based on the signal input to the terminal P9, the reference voltage V temp obtained based on the input voltage of the terminal P18, and the known electrical resistance value of the resistor Rs. . Based on the acquired temperature of the heater HTR, the MCU 1 performs heating control of the heater HTR (for example, control so that the temperature of the heater HTR becomes a target temperature).
  • the MCU 1 can obtain the temperature of the heater HTR even during periods when the switches S3 and S4 are turned off (periods when the heater HTR is not energized). Specifically, the MCU1 obtains the temperature of the heater HTR based on the voltage input to the terminal P13 (the output voltage of the voltage dividing circuit composed of the thermistor T3 and the resistor Rt3).
  • the MCU 1 can acquire the temperature of the case 110 at any timing. Specifically, the MCU1 obtains the temperature of the case 110 based on the voltage input to the terminal P12 (the output voltage of the voltage dividing circuit composed of the thermistor T4 and the resistor Rt4).
  • FIG. 18 exemplifies a case where a USB connection is made in sleep mode.
  • the USB voltage VUSB is input to the input terminal VIN of LSW3 via the overvoltage protection IC11.
  • the USB voltage V USB is also supplied to a voltage dividing circuit Pf connected to the input terminal VIN of LSW3. Since the bipolar transistor S2 is ON immediately after the USB connection is made, the signal input to the control terminal ON of the LSW3 remains at a low level.
  • the USB voltage V USB is also supplied to the voltage dividing circuit Pc connected to the terminal P17 of the MCU1, and the voltage divided by this voltage dividing circuit Pc is input to the terminal P17.
  • the MCU1 detects that the USB connection has been made based on the voltage input to the terminal P17.
  • the MCU1 When the MCU1 detects that the USB connection has been made, the MCU1 turns off the bipolar transistor S2 connected to the terminal P19.
  • the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3.
  • a high-level signal is input to the control terminal ON of LSW3, and LSW3 outputs the USB voltage VUSB from the output terminal VOUT.
  • the USB voltage VUSB output from LSW3 is input to the input terminal VBUS of charging IC2.
  • the USB voltage V_USB output from LSW3 is directly supplied to LEDs L1 to L8 as system power supply voltage Vcc4.
  • the MCU1 When the MCU1 detects that the USB connection has been established, the MCU1 further outputs a low-level enable signal from the terminal P22 to the charge enable terminal CE( ⁇ ) of the charge IC2. As a result, the charging IC 2 enables the charging function of the power supply BAT, and starts charging the power supply BAT with the USB voltage VUSB input to the input terminal VBUS.
  • the MCU1 When the USB connection is made in the active mode, when the MCU1 detects that the USB connection is made, it turns off the bipolar transistor S2 connected to the terminal P19. A low-level enable signal is output to the charge enable terminal CE ( ⁇ ) of , and the OTG function of the charge IC 2 is turned off by serial communication using the communication line LN. As a result, the system power supply voltage Vcc4 supplied to the LEDs L1 to L8 is switched from the voltage generated by the OTG function of the charging IC 2 (voltage based on the power supply voltage VBAT) to the USB voltage VUSB output from the LSW3. . The LEDs L1 to L8 do not operate unless the MCU1 turns on the built-in transistors. This prevents an unstable voltage from being supplied to the LEDs L1-L8 during the on-to-off transition of the OTG function.
  • the supply state of the system power supply voltage in the charge mode is the same as in the sleep mode. However, it is preferable that the supply state of the system power supply voltage in the charge mode be the same as in the active mode shown in FIG. That is, in the charging mode, it is preferable that the system power supply voltage Vcc3 is supplied to the thermistors T2 to T4 for temperature control, which will be described later.
  • the switch driver 7 outputs a low-level signal from the reset input terminal RSTB when it reaches a predetermined time, or when the signal input to either the terminal SW1 or the terminal SW2 becomes high level, the reset input terminal RSTB is output. return the signal output from to high level. As a result, the control terminal ON of LSW4 becomes high level, and the state in which the system power supply voltage Vcc2 is supplied to each part is restored.
  • the thermistor T1 described above is also referred to as the power supply thermistor T1
  • the thermistor T2 described above is referred to as the puff thermistor T2
  • the thermistor T3 described above is also referred to as the heater thermistor T3.
  • the thermistor T4 that has been formed is also described as a case thermistor T4.
  • FIG. 20 is a diagram showing a schematic configuration inside the charging IC 2. As shown in FIG.
  • the charging IC 2 includes a processor 21, a gate driver 22, and switches Q1 to Q4 configured by N-channel MOSFETs.
  • a source terminal of the switch Q1 is connected to the input terminal VBUS.
  • the drain terminal of switch Q1 is connected to the drain terminal of switch Q2.
  • a source terminal of the switch Q2 is connected to the switching terminal SW.
  • a drain terminal of the switch Q3 is connected to a connection node between the switch Q2 and the switching terminal SW.
  • a source terminal of the switch Q3 is connected to the ground terminal GND.
  • a drain terminal of the switch Q4 is connected to the output terminal SYS.
  • a source terminal of the switch Q4 is connected to the charging terminal bat.
  • the gate driver 22 is connected to the gate terminal of the switch Q2 and the gate terminal of the switch Q3, and performs on/off control of the switches Q2 and Q3 based on commands from the processor 21.
  • the processor 21 is connected to the gate driver 22, the gate terminal of the switch Q1, the gate terminal of the switch Q4, and the charge enable terminal CE( ⁇ ).
  • the processor 21 performs on/off control of the switches Q2 and Q3 and on/off control of the switches Q1 and Q4 via the gate driver 22 .
  • the charging IC 2 has a V USB power pass function and a V USB & V BAT power pass function in addition to the above-described charging function, V BAT power pass function, and OTG function.
  • V USB power pass function and a V USB & V BAT power pass function in addition to the above-described charging function, V BAT power pass function, and OTG function.
  • the contents of control inside the charging IC 2 when these functions are enabled will be described below.
  • the specific numerical values of the various voltages described above are preferably the values shown below.
  • V BAT full charge voltage
  • V BAT nominal voltage
  • Vcc1 3.3V System power supply voltage
  • Vcc2 3.3V System power supply voltage
  • Vcc3 3.3V System power supply voltage
  • Vcc4 5.0V USB voltage
  • V USB 5.0V Drive voltage
  • V bst 4.9V
  • the processor 21 performs on/off control of the switches Q2 and Q4 while controlling the switch Q1 to be on and the switch Q3 to be off. ON/OFF control of the switch Q4 is performed to adjust the charging current of the power supply BAT.
  • the processor 21 performs on/off control of the switch Q2 so that the voltage of the output terminal SYS is the same as the voltage suitable for charging the power supply BAT.
  • the USB voltage VUSB input to the input terminal VBUS is stepped down and output from the output terminal SYS.
  • the voltage output from the output terminal SYS is input to the input terminal VIN of the buck-boost DC/DC converter 8 as the system power supply voltage Vcc0, and is output from the charging terminal bat of the charging IC2.
  • the power supply BAT is charged by the voltage obtained by stepping down the USB voltage VUSB.
  • the system power supply voltage Vcc0 finally becomes the same value as the full charge voltage of the power supply BAT. Therefore, the buck-boost DC/DC converter 8 steps down the 4.2V system power supply voltage Vcc0 input to the input terminal VIN to generate and output the 3.3V system power supply voltage Vcc1.
  • the potential of the input terminal VBUS is higher than the potential of the output terminal SYS in the charging IC2, so that the power from the power supply BAT is not output from the input terminal VBUS.
  • V USB power pass function The V USB power path function is effective, for example, when the power supply BAT cannot be used due to overdischarge or the like.
  • the processor 21 turns on the switch Q1, turns on the switch Q2, turns off the switch Q3, and turns off the switch Q4.
  • the USB voltage VUSB input to the input terminal VBUS is directly output from the switching terminal SW without being stepped down.
  • the voltage output from the switching terminal SW is input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0.
  • the step-up/step-down DC/DC converter 8 steps down the 5V system power supply voltage Vcc0 input to the input terminal VIN to generate and output the 3.3V system power supply voltage Vcc1.
  • the processor 21 may perform on/off control of the switch Q2 in a state in which the switch Q1 is turned on, the switch Q3 is turned off, and the switch Q4 is turned on. good.
  • the charging IC 2 and the step-up/step-down DC/DC converter 8 can share the step-down from the USB voltage VUSB of 5.0V to the system power supply voltage Vcc1 of 3.3V. Therefore, concentration of load and heat on the step-up/step-down DC/DC converter 8 can be suppressed.
  • V USB & V BAT power pass function The V USB & V BAT power pass function is valid, for example, when the charging of the power supply BAT is completed and the USB connection is continued.
  • the processor 21 performs on/off control of the switch Q2 while controlling the switch Q1 to be on, the switch Q3 to be off, and the switch Q4 to be on.
  • the processor 21 controls the switch Q2 so that the voltage of the output terminal SYS becomes the same as the voltage of the power supply BAT (power supply voltage V BAT ).
  • the USB voltage VUSB input to the input terminal VBUS is stepped down and output from the output terminal SYS.
  • the voltage output from the output terminal SYS after stepping down the USB voltage VUSB input to the input terminal VBUS and the voltage output from the output terminal SYS from the power supply BAT via the charging terminal bat have the same value. Therefore, the power including the voltage obtained by stepping down the USB voltage V USB and the power including the power supply voltage V BAT output from the output terminal SYS are synthesized, and the input terminal VIN of the step-up/step-down DC/DC converter 8 is supplied to the input terminal VIN. supplied.
  • the V USB & V BAT power pass function is enabled, the potential of the input terminal VBUS is higher than the potential of the output terminal SYS in the charging IC2, so the power from the power supply BAT is not output from the input terminal VBUS. .
  • the buck-boost DC/DC converter 8 determines whether to step up or down depending on the magnitude of the power supply voltage V BAT .
  • the step-up/down DC/DC converter 8 steps down the system power supply voltage Vcc0 input to the input terminal VIN to generate a 3.3 V system power supply voltage Vcc1. output.
  • the buck-boost DC/DC converter 8 boosts the system power supply voltage Vcc0 input to the input terminal VIN to generate a system power supply voltage Vcc1 of 3.3 V. output.
  • V BAT power pass function The V BAT power path function is enabled in modes other than charge mode (eg, sleep mode).
  • the processor 21 turns off the switches Q1 and Q3.
  • the power supply voltage V BAT input to the charging terminal bat is directly output from the output terminal SYS and input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0.
  • the power transmission path between the input terminal VBUS of the charging IC2 and the switching terminal SW is blocked by the parasitic diode of the switch Q1. Therefore, the power supply voltage VBAT output from the output terminal SYS is not output from the input terminal VBUS.
  • the buck-boost DC/DC converter 8 determines whether to step up or down depending on the magnitude of the power supply voltage V BAT .
  • the step-up/down DC/DC converter 8 steps down the power supply voltage V BAT to generate a 3.3 V system power supply voltage Vcc1. output.
  • the step-up/step-down DC/DC converter 8 boosts the power supply voltage V BAT to generate a system power supply voltage Vcc1 of 3.3 V. output.
  • OTG function The OTG feature is enabled at the same time as the V BAT power path feature, eg, enabled in active mode.
  • the processor 21 turns on/off the switch Q3 while turning on the switch Q1.
  • the power supply voltage V BAT input to the charging terminal bat is directly output from the output terminal SYS and input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0.
  • the power supply voltage V BAT output from the output terminal SYS is input to the switching terminal SW of the charging IC2.
  • Processor 21 controls switch Q3 so that power supply voltage VBAT input to switching terminal SW becomes equal to system power supply voltage Vcc4 .
  • the power supply voltage VBAT input to the switching terminal SW is stepped up and output from the input terminal VBUS.
  • the voltage output from the input terminal VBUS is input to the LEDs L1 to L8 as the system power supply voltage Vcc4.
  • the charging IC 2 has both a function as a step-down converter that steps down the USB voltage VUSB and a function as a step-up converter that steps up the power supply voltage VBAT.
  • the voltage input from the charging IC 2 to the step-up/down DC/DC converter 8 fluctuates in various ways according to the functions enabled by the charging IC 2 .
  • the system power supply voltage Vcc1 power including the system power supply voltage Vcc1 can be kept constant by selectively stepping up or stepping down the step-up/step-down DC/DC converter 8. can.
  • the buck-boost DC/DC converter 8 When the voltage of the system power supply voltage Vcc0 input to the input terminal VIN of the buck-boost DC/DC converter 8 is equal to the voltage of the system power supply voltage Vcc1 of 3.3 V, the buck-boost DC/DC converter 8 The system power supply voltage Vcc0 is output from the output terminal VOUT as the system power supply voltage Vcc1 without stepping down.
  • the temperature of the power supply BAT (hereinafter referred to as power supply temperature TBAT) can be obtained from the resistance value (output value) of the power supply thermistor T1
  • the temperature of the heater HTR can be obtained from the resistance value (output value) of the heater thermistor T3.
  • a temperature (hereinafter referred to as heater temperature THTR ) can be obtained
  • a temperature of the case 110 (hereinafter referred to as case temperature T CASE ) can be obtained from the resistance value (output value) of the case thermistor T4.
  • the aspirator 100 when at least one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE becomes far from the value under the recommended environment in which the aspirator 100 is used, the aspirator 100 , and protection control to prohibit charging of the power source BAT and discharging from the power source BAT to the heater HTR (hereinafter also referred to as charging and discharging) to enhance safety.
  • This protection control is performed by MCU1 and FF17.
  • Protection control that prohibits charging/discharging refers to controlling an electronic component so that charging/discharging is disabled.
  • a low level signal is input to the enable terminal EN of the boost DC/DC converter 9 (or the potential of the enable terminal EN is made unfixed) to start the boost operation.
  • a low level signal is input to the gate terminal of the switch S6 (or the potential of the gate terminal is made unfixed) to cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground.
  • the operation mode is further restricted when protection control is performed.
  • the operation mode is limited when protection control is performed.
  • the operation mode since the operation mode is managed by the MCU1, the operation mode need not be restricted when the MCU1 is not operating for some reason.
  • the protection control performed in the aspirator 100 includes manual return protection control that can be terminated by resetting the MCU 1 by user operation, and automatic recovery control that does not require resetting the MCU 1 and can be automatically terminated by improving the temperature environment. automatic revertive protection control and non-terminating non-revertive protection control.
  • the operating modes of the suction device 100 include an error mode and a permanent error mode in addition to those described with reference to FIG. In this specification, when we refer to "all operating modes of the aspirator", we mean all operating modes (all operating modes shown in FIG. 9) except for these error modes and permanent error modes.
  • the aspirator 100 shifts to error mode and cannot shift to other operation modes.
  • the state of the power supply voltage supply state of the system power supply voltage
  • the functions that can be executed in the previous operation mode for example, acquisition of temperature information, etc.
  • the functions that can be executed in the previous operation mode for example, acquisition of temperature information, etc.
  • the operation mode can be changed by user operation or the like.
  • the aspirator 100 shifts to permanent error mode.
  • permanent error mode all functions of the aspirator 100 are disabled and the aspirator 100 must be repaired or scrapped.
  • the MCU 1 outputs a low level signal from the terminal P14 to stop the boosting operation of the boost DC/DC converter 9 and cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. Protection control is performed by outputting a level signal and stopping the charging operation of the charging IC2. When only charging is prohibited, there is no need to output a low level signal from the terminal P14, and when only discharging is prohibited, there is no need to output a high level signal from the terminal P22.
  • the FF 17 outputs a low level signal from the Q terminal to stop the boost operation of the boost DC/DC converter 9, cut off the connection between the heater connector Cn (-) on the negative electrode side and the ground, and turn on the bipolar transistor S1. By stopping the charging operation of the charging IC 2 , protection control is performed without going through the MCU 1 .
  • the FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR ( ⁇ ) terminal switches from high level to low level. This low level signal is also input to the P10 terminal of MCU1. While the low level signal is input to the terminal P10, the MCU1 does not switch the signal input to the CLK terminal (not shown) of the FF17 from low level to high level. In other words, the CLK signal of FF17 does not rise while the low level signal is being input to the terminal P10. Further, when the MCU 1 is frozen, for example, the signal input to the CLK terminal (not shown) of the FF 17 remains at low level.
  • the MCU1 regardless of whether the MCU1 is in a normal operating state or a frozen state, after a low level signal is output from the Q terminal of FF17, it is input to the CLR ( ⁇ ) terminal of FF17. A low level signal continues to be output from the Q terminal of FF 17 even if the signal on the output switches from low level to high level.
  • the FF17 is restarted (the system power supply voltage Vcc2 is turned on again). Since the reset MCU1 operates in the sleep mode, the system power supply voltage Vcc3 is not applied to the heater thermistor T3 and the case thermistor T4, and the outputs of the operational amplifiers OP2 and OP3 both become high level.
  • a high level signal is input to the D terminal and the CLR ( ⁇ ) terminal of the FF17.
  • the MCU1 causes the CLK signal of FF17 to rise.
  • the output of the Q terminal of FF17 can be returned to high level.
  • the output of the Q terminal of FF17 returns to high level, thereby ending the protection control by FF17.
  • the signal output from the Q terminal of FF17 is also input to terminal P10 of MCU1. Therefore, the MCU1 can detect that the FF17 has performed the protection control from the low-level signal input to the terminal P10.
  • the MCU1 preferably causes the notification unit 180 to notify the reset request of the MCU1 and shifts to the error mode.
  • Fig. 21 is a circuit diagram of the essential part of the electric circuit shown in Fig. 10, showing the main electronic components that are related to the reset operation of the MCU1.
  • FIG. 21 additionally shows a motor connector Cn(m) and a resistor R7, which were not labeled in FIG.
  • a vibration motor M is connected to the motor connector Cn(m).
  • the motor connector Cn(m) is connected in parallel to the power terminal VDD of MCU1 via switch S7. Therefore, when the supply of the system power supply voltage Vcc2 to the power supply terminal VDD of the MCU1 is stopped, the supply of the operating voltage to the vibration motor M is also stopped.
  • the resistor R7 has one end connected to a node connecting the control terminal ON of the LSW4 and the reset input terminal RSTB of the switch driver 7, and the other end connected to the input terminal VIN of the switch driver 7.
  • the MCU1 is reset by stopping the supply of the system power supply voltage Vcc2, which is the operating voltage of the MCU1, to the power supply terminal VDD of the MCU1, and then restarting the supply.
  • the system power supply voltage Vcc2 is output from the output terminal VOUT of the LSW4 when the LSW4 is closed (the electrical connection between the input terminal VIN and the output terminal VOUT is closed). be done.
  • system power supply voltage Vcc2 is not output from output terminal VOUT of LSW4 when LSW4 is open (electrical connection between input terminal VIN and output terminal VOUT is interrupted).
  • a switch driver 7 controls the opening and closing of the LSW 4 .
  • the MCU 1 can be reset by the switch driver 7 controlling the opening and closing of the LSW 4.
  • the input terminal VIN of each of the LSW 4 and the switch driver 7 receives the system power supply voltage Vcc1. Therefore, when the system power supply voltage Vcc1 is generated in the step-up/step-down DC/DC converter 8, the LSW 4 and the switch driver 7 operate simultaneously.
  • the switch driver 7 incorporates, for example, a switch provided between the reset input terminal RSTB and the ground terminal GND. When this switch is closed, the potential of the reset input terminal RSTB is ground level (low level). becomes.
  • the input terminal VIN and reset input terminal RSTB of the switch driver 7 are connected in parallel via a resistor R7.
  • a control terminal ON for controlling the opening and closing of LSW 4 is connected to the output terminal VOUT of the step-up/down DC/DC converter 8 via a resistor R 7 and to the reset input terminal RSTB of the switch driver 7 . Therefore, when the switch built in the switch driver 7 is open, a high level voltage based on the system power supply voltage Vcc1 is input to the control terminal ON of LSW4.
  • the switch driver 7 controls the opening/closing of the LSW4 by controlling the potential of the reset input terminal RSTB.
  • the switch driver 7 controls the potential of the reset input terminal RSTB based on the voltage input to the terminal SW1 and the voltage input to the terminal SW2.
  • the voltage input to the terminal SW1 is low level (ground level) when the operation switch OPS is pressed, and is high level when the operation switch OPS is not pressed.
  • the voltage input to the terminal SW2 becomes low level when the outer panel 115 is removed from the inner panel 118, and becomes high level when the outer panel 115 is attached to the inner panel 118.
  • the switch driver 7 satisfies the panel condition that the outer panel 115 is removed from the inner panel 118, and also satisfies the switch operation condition that the operation switch OPS is pressed for a predetermined time (hereinafter referred to as reset operation time). If so, the reset process for resetting the MCU1 is started.
  • a state in which both the panel condition and the switch operation condition are satisfied is defined as a state in which the restart condition is satisfied.
  • a state in which the operation switch OPS continues to be pressed after both the panel condition and the switch operation condition are satisfied is defined as a state in which the restart condition continues to be satisfied.
  • the reset process waits for a predetermined delay time td of 0 seconds or more, then closes the switch built in the switch driver 7 to control the LSW 4 to be open, and then closes the switch for a predetermined time. is reached, the switch is opened to return LSW4 to the closed state.
  • the switch driver 7 waits for the elapse of the reset operation time. If so, it returns to the standby state without executing reset processing.
  • the switch driver 7 opens the built-in switch when the time for which the built-in switch is closed reaches a predetermined time regardless of whether the restart condition is satisfied. to end the reset process.
  • the restart condition is satisfied by satisfying the panel condition and continuing to press the operation switch OPS until the time during which the switch built into the switch driver 7 is closed reaches the predetermined time. Even after continuing, the switch driver 7 opens the built-in switch to return the LSW 4 to the closed state.
  • the above-mentioned reset operation time is the pressing duration of the operation switch OPS (hereinafter referred to as the heating start operation time) necessary for transitioning from the active mode to the heating setting mode (to instruct the start of heating of the rod 500 by the heater HTR). It is preferable to set the value to be different from that described above). By doing so, in order to reset the MCU1, an operation different from the operation for executing the aerosol generation, which should be frequently performed, is required. Therefore, the MCU1 can be reset under the user's clear intention. Moreover, it is more preferable to set the reset operation time to a value longer than the heating start operation time. By doing so, the MCU1 can be reset under the clearer intention of the user.
  • the heating start operation time is 1 second and the reset operation time is 5 seconds. These numerical values are examples and are not limited to these.
  • the notification unit 180 (vibration motor M and LED L1 to L8) to cause the notification unit 180 to notify the user.
  • LEDs L1 to L8 may be lit in a predetermined pattern, the vibration motor M may be vibrated, or a combination thereof may be used. This notification enables the user to recognize that the MCU1 will be reset by continuing the current operation. Note that the MCU 1 may execute this notification or a notification different from this notification while waiting for the reset operation time to elapse.
  • the MCU 1 when the delay time td is set to a value greater than 0, the MCU 1 preferably completes the notification by the notification unit 180 accompanying the start of the reset process before the delay time td elapses. . By doing so, the user can recognize that the reset of the MCU1 will soon start due to the completion of the notification. Of course, the above notification by the notification unit 180 may be continued until the above delay time td elapses. Even in this case, since the vibration motor M is operated by the system power supply voltage Vcc2, the notification is completed at the same time as the supply of the system power supply voltage Vcc2 to the MCU1 is stopped. .
  • the heater HTR may be overheated.
  • the output voltage of the operational amplifier OP2 becomes low level.
  • This low-level voltage is input to the CLR ( ⁇ ) terminal of FF16.
  • the FF 16 makes the output of the Q terminal low level when the signal input to the CLR ( ⁇ ) terminal becomes low level.
  • the Q(-) terminal of FF16 is a terminal for outputting a voltage obtained by inverting the output of the Q terminal of FF16. Therefore, the FF 16 outputs a high level signal from the Q( ⁇ ) terminal when the signal input to the CLR( ⁇ ) terminal becomes low level.
  • the signal input to the CLR ( ⁇ ) terminal of the FF16 is at high level. Therefore, in the normal state, the FF 16 outputs from the Q terminal a low level voltage obtained by inverting the high level voltage (system power supply voltage Vcc1) input to the D terminal.
  • the restarted MCU1 detects that the temperature of the heater HTR has become excessive, executes protection control, and changes the operation mode to a permanent error. mode. That is, the protection control executed here is non-recovery protection control. As described above, even when the heater HTR overheats as a result of the MCU1 freezing, the MCU1 can be returned to normal operation by resetting, and the operation mode can be changed to the permanent error mode. As a result, the suction device 100 can be disabled, and safety can be improved.
  • the switch driver 7 satisfies both the switch operation condition related to the operation of the operation switch OPS and the panel condition different from the operation of the operation switch OPS. Then, the LSW4 is opened and closed to reset the MCU1.
  • Techniques for resetting a controller when a single condition is met are well known. However, in the aspirator 100, the MCU1 is reset when a plurality of conditions are met. Therefore, resetting of the MCU 1 due to an erroneous operation or some kind of shock is suppressed, and the MCU 1 can be reset only when necessary.
  • the MCU1 when the outer panel 115 is attached to the inner panel 118, even if the operation switch OPS is kept pressed, the MCU1 is not reset. By continuing to press the operation switch OPS only when the outer panel 115 is removed from the inner panel 118, the MCU1 is reset. In this way, by switching the functions that can be realized by the same operation member depending on whether the outer panel 115 is attached or not, the number of operation members can be reduced, and operability can be improved and costs can be reduced.
  • the MCU 1 detects that the outer panel 115 has been removed from the inner panel 118, it is preferable to cause the notification unit 180 to make a notification. By doing so, in order to reset the MCU1, it is necessary to further operate the operation switch OPS while the panel condition is being notified. Therefore, the MCU 1 can be reset under the clear intention of the user.
  • the MCU 1 detects that the outer panel 115 has been removed from the inner panel 118, it is preferable to disable discharge from the power supply BAT to the heater HTR.
  • the outer panel 115 is not attached, the heat generated by the heating unit 170 is easily transmitted to the user, and thus safety can be improved by doing so.
  • FIG. 22 is a cross-sectional view of the aspirator 100 shown in FIG. 1 taken along a plane through the case thermistor T4.
  • the heating unit 170 includes a cylindrical rod housing portion 172 having a heat insulating function, a cylindrical heater support member 174 disposed inside the rod housing portion 172, and a heater support member 174 inside the heater support member 174. and a cylindrical heater HTR supported on the peripheral surface.
  • the heater HTR has a substantially elliptical cross-sectional shape perpendicular to the vertical direction. More specifically, the heater HTR includes flat portions H1 and H2 that are spaced apart in the front-rear direction and face each other and extend in the vertical direction, and a curved portion H3 that connects the right end of the flat portion H1 and the right end of the flat portion H2. , and a curved portion H4 connecting the left end of the flat portion H1 and the left end of the flat portion H2.
  • a substantially elliptical shape may be formed by using a curved portion having a curvature different from that of the curved portions H3 and H4 instead of the flat portions H1 and H2.
  • a part of the rod 500 is accommodated in the space 170A surrounded by the elliptical heater HTR.
  • the outer shape of rod 500 is circular, and the diameter of rod 500 is greater than the distance between flat portion H1 and flat portion H2 in the front-rear direction. Therefore, the rod 500 inserted into the space 170A is crushed in the front-rear direction by the flat portion H1 and the flat portion H2.
  • the heating unit 170 As shown in FIG. 21, the contact area between the rod 500 and the heater HTR can be increased, and the rod 500 can be efficiently heated.
  • the MCU1 can be reset regardless of whether the rod 500 is inserted into this space 170A.
  • the MCU 1 freezes before the rod 500 inserted through the opening 132 (see FIG. 2) is heated, and no aerosol is generated.
  • the MCU 1 instead of removing the rod 500 from the opening 132 and closing the slider 119, the MCU 1 can be operated by simply removing the outer panel 115 and pressing the operation switch OPS while the rod 500 remains inserted. can be reset. After the MCU 1 returns to the active mode by resetting, the user attaches the outer panel 115 and presses the operation switch OPS for the heating start operation time. This will execute the aerosol generation that was not executed. In this way, the MCU 1 can be reset without inserting and withdrawing the rod 500, in other words, opening and closing the slider 119, thereby reducing the burden on the user and improving usability.
  • a power supply (power supply BAT); a heater connector (heater connector Cn) to which a heater (heater HTR) that consumes power supplied from the power source and heats the aerosol source (rod 500) is connected; a controller (MCU1) configured to be able to control the supply of power from the power supply to the heater and including a power terminal (power terminal VDD) to which power for operation is input; a switch (LSW4) connecting the power source and the power terminal of the controller; A restart circuit (switch driver 7) capable of controlling opening and closing of the switch, The restart circuit performs a first operation to open the switch when a restart condition is satisfied, and performs a second operation to close the switch after performing the first operation.
  • Power supply unit for the aerosol generator for the aerosol generator.
  • the controller can be restarted by controlling the opening and closing of the switch by the restart circuit, so even if the controller freezes, it can be stably released and returned to normal operation.
  • the restart condition is less likely to be satisfied due to an erroneous operation or some kind of impact. This prevents situations in which the controller is restarted by mistake, and enables the controller to be restarted only by a clear operation by the user.
  • the power supply unit of the aerosol generator A notification unit (notification unit 180) capable of notifying the user,
  • the above controller is The predetermined operation can be detected, After the predetermined operation continues for the predetermined period and the restart condition is satisfied, and before the first operation is executed (before the delay time td elapses after the restart condition is satisfied). , configured to cause the notification unit to perform notification, Power supply unit for the aerosol generator.
  • the power supply for the notification unit and the power supply for the controller are common. As a result, when the controller is restarted, the notification unit does not operate, so that the user can easily recognize that the controller is being restarted.
  • the controller completes notification to the notification unit after the restart condition is satisfied and before the first operation is executed (before the delay time td elapses after the restart condition is satisfied). configured to allow Power supply unit for the aerosol generator.
  • a power supply unit for an aerosol generator according to any one of (1) to (6), The switch above an input terminal (input terminal VIN) connected to the power supply, an output terminal (output terminal VOUT) connected to the power supply terminal of the controller, and a control terminal (control terminal ON), configured to close an electrical connection between the input terminal and the output terminal when a high-level voltage is input to the control terminal;
  • the input terminal is connected in parallel to the control terminal, Power supply unit for the aerosol generator.
  • the power supply can input a high level voltage to the control terminal of the switch when the restart circuit is not functioning. Therefore, power supply to the controller is less likely to be interrupted when the restart circuit is not functioning.
  • the power supply unit of the aerosol generator is including a restart terminal (reset input terminal RSTB) connected to the control terminal of the switch; when the restart condition is satisfied, setting the potential of the restart terminal to a low level; Power supply unit for the aerosol generator.
  • RSTB reset input terminal
  • a low level signal is input to the control terminal of the switch only when the restart circuit functions. Therefore, it is possible to limit situations in which the power supply to the controller is interrupted.
  • the power supply unit of the aerosol generator includes a first input terminal (terminal SW1) and a second input terminal (terminal SW2), In order to satisfy the restart condition, a first level voltage must be input to the first input terminal and a second level voltage must be input to the second input terminal; The user's operation (pressing the operation switch OPS) required to input the voltage of the first level to the first input terminal is required to input the voltage of the second level to the second input terminal. Different from the user's operation (removal of the outer panel 115), Power supply unit for the aerosol generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention restarts a controller in a stable manner. An inhaler (100) is provided with: a heater connector Cn to which a heater HTR consuming power supplied from a power source BAT to heat a rod (500) is connected; an MCU 1 configured to be capable of controlling power supply from the power source BAT to the heater HTR and including a power source terminal VDD to which power for operation is input; an LSW 4 that connects the power source BAT with the power source terminal VDD of the MCU 1; and a switch driver (7) capable of controlling opening and closing of the LSW 4. The switch driver (7) carries out a first operation of opening the LSW 4 when a restart condition is satisfied, and after carrying out the first operation, carries out a second operation of closing the LSW 4.

Description

エアロゾル生成装置の電源ユニットPower supply unit for aerosol generator
 本発明は、エアロゾル生成装置の電源ユニットに関する。 The present invention relates to a power supply unit for an aerosol generator.
 特許文献1には、リセット操作により、利用者によって変更された変数およびパラメータを工場出荷時の状態に戻すことのできる電子式吸入装置が記載されている。 Patent Literature 1 describes an electronic inhaler that can return variables and parameters changed by the user to their factory defaults by a reset operation.
 特許文献2には、eシガレットにおいて、ユーザインターフェースを介してエラー状態が使用者に合図された場合に、リセットボタンを押圧する必要性が記載されている。 Patent Document 2 describes the necessity of pressing a reset button in an e-cigarette when an error state is signaled to the user via the user interface.
 特許文献3には、ボタンが長く押されることでリセット(初期化設定)作動を実行するエアロゾル生成装置が記載されている。 Patent Document 3 describes an aerosol generator that performs a reset (initialization setting) operation by pressing the button for a long time.
 特許文献4には、エアロゾル送達装置において、制御構成要素、またはその上で動いているソフトウェアが不安定になった状態が継続する場合に、装置を自動的にリセットすることが記載されている。 Patent Document 4 describes automatic resetting of an aerosol delivery device if the control component, or the software running on it, continues to become unstable.
 特許文献5には、電子タバコと通信可能なスマートフォンによって、電子タバコのリセットを行うことが記載されている。 Patent Document 5 describes that an electronic cigarette is reset by a smartphone that can communicate with the electronic cigarette.
 特許文献6には、リセット手順が実行されるまで、吸入装置を恒久的に使用不可能にすることが記載されている。 Patent Document 6 describes permanently disabling the inhaler until a reset procedure is performed.
 特許文献7には、喫煙装置の保守サービスを提供するための器具が記載されている。この器具は、喫煙装置のソフトウェアリセットを実施可能に構成されている。 Patent Document 7 describes a device for providing maintenance services for smoking devices. The appliance is configured to enable a software reset of the smoking device.
日本国特開2019-187428号公報Japanese Patent Application Laid-Open No. 2019-187428 日本国特表2020-518250号公報Japanese special table 2020-518250 日本国特表2020-527053号公報Japanese special table 2020-527053 日本国特表2020-527945号公報Japanese special table 2020-527945 日本国特許第6770579号Japanese Patent No. 6770579 日本国特表2017-538408号公報Japanese special table 2017-538408 日本国特許第6752220号Japanese Patent No. 6752220
 本発明の目的は、コントローラの再起動を安定して行うことのできるエアロゾル生成装置の電源ユニットを提供することにある。 An object of the present invention is to provide a power supply unit for an aerosol generator that can stably restart the controller.
 本発明の一態様のエアロゾル生成装置の電源ユニットは、電源と、前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、前記電源から前記ヒータへの電力の供給を制御可能に構成され、且つ、動作するための電力が入力される電源端子を含むコントローラと、前記電源と前記コントローラの電源端子とを接続するスイッチと、前記スイッチの開閉を制御可能な再起動回路と、を備え、前記再起動回路は、再起動条件が満たされると前記スイッチを開く第1操作を実行し、前記第1操作の実行後に前記スイッチを閉じる第2操作を実行する、ものである。 A power supply unit of an aerosol generating apparatus according to one aspect of the present invention includes a power supply, a heater connector to which a heater that consumes the power supplied from the power supply to heat the aerosol source is connected, and power from the power supply to the heater. and a switch that connects the power supply and the power supply terminal of the controller; and a switch capable of controlling opening and closing of the switch. a restart circuit, the restart circuit performing a first operation of opening the switch when a restart condition is met, and performing a second operation of closing the switch after performing the first operation; It is.
 本発明によれば、コントローラの再起動を安定して行うことができる。 According to the present invention, the controller can be restarted stably.
非燃焼式吸引器の斜視図である。1 is a perspective view of a non-combustion inhaler; FIG. ロッドを装着した状態を示す非燃焼式吸引器の斜視図である。1 is a perspective view of a non-combustion inhaler showing a state in which a rod is attached; FIG. 非燃焼式吸引器の他の斜視図である。Fig. 10 is another perspective view of a non-combustion type inhaler; 非燃焼式吸引器の分解斜視図である。1 is an exploded perspective view of a non-combustion inhaler; FIG. 非燃焼式吸引器の内部ユニットの斜視図である。Fig. 3 is a perspective view of the internal unit of the non-combustion inhaler; 図5の内部ユニットの分解斜視図である。FIG. 6 is an exploded perspective view of the internal unit of FIG. 5; 電源及びシャーシを取り除いた内部ユニットの斜視図である。FIG. 3 is a perspective view of the internal unit with the power supply and chassis removed; 電源及びシャーシを取り除いた内部ユニットの他の斜視図である。FIG. 11 is another perspective view of the internal unit with the power supply and chassis removed; 吸引器の動作モードを説明するための模式図である。It is a schematic diagram for demonstrating the operation mode of an aspirator. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. スリープモードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of an electric circuit in sleep mode; アクティブモードにおける電気回路の動作を説明するための図である。It is a figure for demonstrating the operation|movement of the electric circuit in active mode. 加熱初期設定モードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode; 加熱モードにおけるヒータの加熱時の電気回路の動作を説明するための図である。It is a figure for demonstrating the operation|movement of the electric circuit at the time of the heating of the heater in heating mode. 加熱モードにおけるヒータの温度検出時の電気回路の動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the electric circuit when detecting the temperature of the heater in the heating mode; 充電モードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the electric circuit in charging mode; MCUのリセット(再起動)時の電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of an electric circuit when an MCU is reset (restarted); 充電ICの内部の概略構成を示す図である。It is a figure which shows schematic structure inside charging IC. 図10に示す電気回路のうち、リセット動作と関係のある主要な電子部品を抜き出して示した要部回路図である。FIG. 11 is a main circuit diagram showing main electronic components related to reset operation extracted from the electric circuit shown in FIG. 10 ; 図1に示す吸引器のケースサーミスタを通る切断面での断面図である。Figure 2 is a cross-sectional view in a plane through the case thermistor of the suction device shown in Figure 1;
 以下、本発明におけるエアロゾル生成装置の一実施形態である吸引システムについて図面を参照しながら説明する。この吸引システムは、本発明の電源ユニットの一実施形態である非燃焼式吸引器100(以下、単に、「吸引器100」ともいう)と、吸引器100によって加熱されるロッド500と、を備える。以下の説明では、吸引器100が、加熱部を着脱不能に収容した構成を例に説明する。しかし、吸引器100に対し加熱部が着脱自在に構成されていてもよい。例えば、ロッド500と加熱部が一体化されたものを、吸引器100に着脱自在に構成したものであってもよい。つまり、エアロゾル生成装置の電源ユニットは、構成要素として加熱部を含まない構成であってもよい。なお、着脱不能とは、想定される用途の限りにおいて、取外しが行えないような態様を指すものとする。または、吸引器100に設けられる誘導加熱用コイルと、ロッド500に内蔵されるサセプタが協働して加熱部を構成してもよい。 A suction system, which is one embodiment of the aerosol generator of the present invention, will be described below with reference to the drawings. This suction system includes a non-combustion type suction device 100 (hereinafter also simply referred to as "suction device 100"), which is an embodiment of the power supply unit of the present invention, and a rod 500 heated by the suction device 100. . In the following description, a configuration in which the suction device 100 accommodates the heating unit in a non-detachable manner will be described as an example. However, the heating unit may be detachably attached to the aspirator 100 . For example, the rod 500 and the heating unit may be integrated and detachably attached to the aspirator 100 . In other words, the power supply unit of the aerosol generator may have a configuration that does not include the heating section as a component. It should be noted that "non-detachable" refers to a mode in which detachment is not possible as far as the intended use is concerned. Alternatively, an induction heating coil provided in the aspirator 100 and a susceptor built in the rod 500 may cooperate to form a heating unit.
 図1は、吸引器100の全体構成を示す斜視図である。図2は、ロッド500を装着した状態を示す吸引器100の斜視図である。図3は、吸引器100の他の斜視図である。図4は、吸引器100の分解斜視図である。また、以下の説明では、互いに直交する3方向を、便宜上、前後方向、左右方向、上下方向とした、3次元空間の直交座標系を用いて説明する。図中、前方をFr、後方をRr、右側をR、左側をL、上方をU、下方をD、として示す。 FIG. 1 is a perspective view showing the overall configuration of the aspirator 100. FIG. FIG. 2 is a perspective view of the suction device 100 showing a state in which the rod 500 is attached. FIG. 3 is another perspective view of the suction device 100. FIG. FIG. 4 is an exploded perspective view of the aspirator 100. FIG. Also, in the following description, for the sake of convenience, the orthogonal coordinate system of a three-dimensional space is used, in which the three mutually orthogonal directions are the front-back direction, the left-right direction, and the up-down direction. In the figure, the front is indicated by Fr, the rear by Rr, the right by R, the left by L, the upper by U, and the lower by D.
 吸引器100は、エアロゾル源及び香味源を含む充填物などを有する香味成分生成基材の一例としての細長い略円柱状のロッド500(図2参照)を加熱することによって、香味を含むエアロゾルを生成するように構成される。 The inhaler 100 generates flavor-containing aerosol by heating an elongated, substantially cylindrical rod 500 (see FIG. 2) as an example of a flavor component-generating base having a filling containing an aerosol source and a flavor source. configured to
<香味成分生成基材(ロッド)>
 ロッド500は、所定温度で加熱されてエアロゾルを生成するエアロゾル源を含有する充填物を含む。
<Flavor component-generating base material (rod)>
Rod 500 includes a fill containing an aerosol source that is heated at a predetermined temperature to produce an aerosol.
 エアロゾル源の種類は、特に限定されず、用途に応じて種々の天然物からの抽出物質及び/又はそれらの構成成分を選択することができる。エアロゾル源は、固体であってもよいし、例えば、グリセリン、プロピレングリコールといった多価アルコールや、水などの液体であってもよい。エアロゾル源は、加熱することによって香味成分を放出するたばこ原料やたばこ原料由来の抽出物等の香味源を含んでいてもよい。香味成分が付加される気体はエアロゾルに限定されず、例えば不可視の蒸気が生成されてもよい。 The type of aerosol source is not particularly limited, and extracts from various natural products and/or their constituent components can be selected according to the application. The aerosol source may be solid or liquid, for example polyhydric alcohols such as glycerin, propylene glycol, or water. The aerosol source may include a flavor source such as a tobacco material or an extract derived from the tobacco material that releases flavor components upon heating. The gas to which the flavor component is added is not limited to an aerosol, and for example an invisible vapor may be generated.
 ロッド500の充填物は、香味源としてたばこ刻みを含有し得る。たばこ刻みの材料は特に限定されず、ラミナや中骨等の公知の材料を用いることができる。充填物は、1種又は2種以上の香料を含んでいてもよい。当該香料の種類は特に限定されないが、良好な喫味の付与の観点から、好ましくはメンソールである。香味源は、たばこ以外の植物(例えば、ミント、漢方、又はハーブ等)を含有し得る。用途によっては、ロッド500は香味源を含まなくてもよい。 The filling of rod 500 may contain tobacco shreds as a flavor source. Materials for shredded tobacco are not particularly limited, and known materials such as lamina and backbone can be used. The filling may contain one or more perfumes. The type of flavoring agent is not particularly limited, but menthol is preferable from the viewpoint of imparting a good smoking taste. Flavor sources may contain plants other than tobacco, such as mints, herbal medicines, or herbs. Depending on the application, rod 500 may not contain a flavor source.
<非燃焼式吸引器の全体構成>
 続いて、吸引器100の全体構成について、図1~図4を参照しながら説明する。
 吸引器100は、前面、後面、左面、右面、上面、及び下面を備える略直方体形状のケース110を備える。ケース110は、前面、後面、上面、下面、及び右面が一体に形成された有底筒状のケース本体112と、ケース本体112の開口部114(図4参照)を封止し左面を構成するアウターパネル115及びインナーパネル118と、スライダ119と、を備える。
<Overall configuration of non-combustion type aspirator>
Next, the overall configuration of the suction device 100 will be described with reference to FIGS. 1 to 4. FIG.
The suction device 100 includes a substantially rectangular parallelepiped case 110 having a front surface, a rear surface, a left surface, a right surface, an upper surface, and a lower surface. The case 110 comprises a bottomed cylindrical case body 112 in which front, rear, top, bottom, and right surfaces are integrally formed, and a left surface that seals an opening 114 (see FIG. 4) of the case body 112. It has an outer panel 115 , an inner panel 118 , and a slider 119 .
 インナーパネル118は、ケース本体112にボルト120で固定される。アウターパネル115は、ケース本体112に収容された後述するシャーシ150(図5参照)に保持されたマグネット124によって、インナーパネル118の外面を覆うようにケース本体112に固定される。アウターパネル115が、マグネット124によって固定されることで、ユーザは好みに合わせてアウターパネル115を取り替えることが可能となっている。 The inner panel 118 is fixed to the case body 112 with bolts 120 . The outer panel 115 is fixed to the case body 112 so as to cover the outer surface of the inner panel 118 by a magnet 124 held by a chassis 150 (see FIG. 5) housed in the case body 112 and described later. Since the outer panel 115 is fixed by the magnet 124, the user can replace the outer panel 115 according to his or her preference.
 インナーパネル118には、マグネット124が貫通するように形成された2つの貫通孔126が設けられる。インナーパネル118には、上下に配置された2つの貫通孔126の間に、さらに縦長の長孔127及び円形の丸孔128が設けられる。この長孔127は、ケース本体112に内蔵された8つのLED(Light Emitting Diode) L1~L8から出射される光を透過させるためのものである。丸孔128には、ケース本体112に内蔵されたボタン式の操作スイッチOPSが貫通する。これにより、ユーザは、アウターパネル115のLED窓116を介して8つのLED L1~L8から出射される光を検知することができる。また、ユーザは、アウターパネル115の押圧部117を介して操作スイッチOPSを押し下げることができる。 The inner panel 118 is provided with two through holes 126 through which the magnets 124 pass. The inner panel 118 is further provided with a longitudinally elongated hole 127 and a circular round hole 128 between the two vertically arranged through holes 126 . This long hole 127 is for transmitting light emitted from eight LEDs (Light Emitting Diodes) L1 to L8 built in the case body 112 . A button-type operation switch OPS built in the case body 112 passes through the round hole 128 . Thereby, the user can detect the light emitted from the eight LEDs L1 to L8 through the LED window 116 of the outer panel 115. FIG. Also, the user can press down the operation switch OPS via the pressing portion 117 of the outer panel 115 .
 図2に示すように、ケース本体112の上面には、ロッド500を挿入可能な開口132が設けられる。スライダ119は、開口132を閉じる位置(図1参照)と開口132を開放する位置(図2参照)との間を、前後方向に移動可能にケース本体112に結合される。 As shown in FIG. 2, the upper surface of the case body 112 is provided with an opening 132 into which the rod 500 can be inserted. The slider 119 is coupled to the case body 112 so as to be movable in the front-rear direction between a position for closing the opening 132 (see FIG. 1) and a position for opening the opening 132 (see FIG. 2).
 操作スイッチOPSは、吸引器100の各種操作を行うために使用される。例えば、ユーザは、図2に示すようにロッド500を開口132に挿入して装着した状態で、押圧部117を介して操作スイッチOPSを操作する。これにより、加熱部170(図5参照)によって、ロッド500を燃焼させずに加熱する。ロッド500が加熱されると、ロッド500に含まれるエアロゾル源からエアロゾルが生成され、ロッド500に含まれる香味源の香味が当該エアロゾルに付加される。ユーザは、開口132から突出したロッド500の吸口502を咥えて吸引することにより、香味を含むエアロゾルを吸引することができる。 The operation switch OPS is used to perform various operations of the aspirator 100. For example, the user operates the operation switch OPS via the pressing portion 117 while inserting the rod 500 into the opening 132 as shown in FIG. Thus, the heating unit 170 (see FIG. 5) heats the rod 500 without burning it. When the rod 500 is heated, an aerosol is generated from the aerosol source contained in the rod 500 and the flavor of the flavor source contained in the rod 500 is added to the aerosol. The user can inhale the flavor-containing aerosol by holding the mouthpiece 502 of the rod 500 projecting from the opening 132 and inhaling.
 ケース本体112の下面には、図3に示すように、コンセントやモバイルバッテリ等の外部電源と電気的に接続して電力供給を受けるための充電端子134が設けられている。本実施形態において、充電端子134は、USB(Universal Serial Bus) Type-C形状のレセプタクルとしているが、これに限定されるものではない。充電端子134を、以下では、レセプタクルRCPとも記載する。  On the bottom surface of the case main body 112, as shown in Fig. 3, a charging terminal 134 is provided for receiving power supply by being electrically connected to an external power source such as an outlet or a mobile battery. In this embodiment, the charging terminal 134 is a USB (Universal Serial Bus) Type-C receptacle, but is not limited to this. Charging terminal 134 is hereinafter also referred to as receptacle RCP.
 なお、充電端子134は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。別の一例として、充電端子134は、各種USB端子等が接続可能であり、且つ上述した受電コイルを有していてもよい。 It should be noted that the charging terminal 134 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply. The wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type. As another example, the charging terminal 134 can be connected to various USB terminals or the like, and may have the power receiving coil described above.
 図1~図4に示される吸引器100の構成は一例にすぎない。吸引器100は、ロッド500を保持して例えば加熱等の作用を加えることで、ロッド500から香味成分が付与された気体を生成させ、生成された気体をユーザが吸引することができるような、様々な形態で構成することができる。 The configuration of the aspirator 100 shown in FIGS. 1-4 is merely an example. The inhaler 100 holds the rod 500 and applies an action such as heating to generate gas to which a flavor component is added from the rod 500, and the user can inhale the generated gas. It can be configured in various forms.
<非燃焼式吸引器の内部構成>
 吸引器100の内部ユニット140について図5~図8を参照しながら説明する。
 図5は、吸引器100の内部ユニット140の斜視図である。図6は、図5の内部ユニット140の分解斜視図である。図7は、電源BAT及びシャーシ150を取り除いた内部ユニット140の斜視図である。図8は、電源BAT及びシャーシ150を取り除いた内部ユニット140の他の斜視図である。
<Internal configuration of non-combustion type aspirator>
The internal unit 140 of the suction device 100 will be described with reference to FIGS. 5-8.
FIG. 5 is a perspective view of the internal unit 140 of the suction device 100. FIG. 6 is an exploded perspective view of the internal unit 140 of FIG. 5. FIG. FIG. 7 is a perspective view of internal unit 140 with power supply BAT and chassis 150 removed. FIG. 8 is another perspective view of the internal unit 140 with the power supply BAT and chassis 150 removed.
 ケース110の内部空間に収容される内部ユニット140は、シャーシ150と、電源BATと、回路部160と、加熱部170と、通知部180と、各種センサと、を備える。 The internal unit 140 housed in the internal space of the case 110 includes a chassis 150, a power supply BAT, a circuit section 160, a heating section 170, a notification section 180, and various sensors.
 シャーシ150は、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ前後方向に延設された板状のシャーシ本体151と、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ左右方向に延びる板状の前後分割壁152と、上下方向において前後分割壁152の略中央から前方に延びる板状の上下分割壁153と、前後分割壁152及びシャーシ本体151の上縁部から後方に延びる板状のシャーシ上壁154と、前後分割壁152及びシャーシ本体151の下縁部から後方に延びる板状のシャーシ下壁155と、を備える。シャーシ本体151の左面は、前述したケース110のインナーパネル118及びアウターパネル115に覆われる。 The chassis 150 includes a plate-shaped chassis body 151 arranged substantially in the center of the interior space of the case 110 in the front-rear direction and extending in the vertical and front-rear directions, and a chassis body 151 disposed substantially in the center of the interior space of the case 110 in the front-rear direction. A plate-shaped front and rear dividing wall 152 extending in the vertical and horizontal directions, a plate-shaped upper and lower dividing wall 153 extending forward from substantially the center of the front and rear dividing wall 152 in the vertical direction, the front and rear dividing wall 152 and the upper edges of the chassis body 151 and a plate-shaped chassis lower wall 155 extending rearward from the front-rear dividing wall 152 and the lower edge of the chassis body 151 . The left surface of the chassis body 151 is covered with the inner panel 118 and the outer panel 115 of the case 110 described above.
 ケース110の内部空間は、シャーシ150により前方上部に加熱部収容領域142が区画形成され、前方下部に基板収容領域144が区画形成され、後方に上下方向に亘って電源収容空間146が区画形成されている。 The internal space of the case 110 is defined by a chassis 150 such that a heating unit housing area 142 is defined in the upper front, a board housing area 144 is defined in the lower front, and a power supply housing space 146 is defined in the rear to extend vertically. ing.
 加熱部収容領域142に収容される加熱部170は、複数の筒状の部材から構成され、これらが同心円状に配置されることで、全体として筒状体をなしている。加熱部170は、その内部にロッド500の一部を収納可能なロッド収容部172と、ロッド500を外周または中心から加熱するヒータHTR(図10~図19参照)と、を有する。ロッド収容部172が断熱材で構成される、又は、ロッド収容部172の内部に断熱材が設けられることで、ロッド収容部172の表面とヒータHTRは断熱されることが好ましい。ヒータHTRは、ロッド500を加熱可能な素子であればよい。ヒータHTRは、例えば、発熱素子である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。ヒータHTRとしては、例えば、温度の増加に伴って抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが好ましく用いられる。これに代えて、温度の増加に伴って抵抗値が低下するNTC(Negative Temperature Coefficient)特性を有するヒータHTRを用いてもよい。加熱部170は、ロッド500へ供給する空気の流路を画定する機能、及びロッド500を加熱する機能を有する。ケース110には、空気を流入させるための通気口(不図示)が形成され、加熱部170に空気が流入できるように構成される。 The heating part 170 housed in the heating part housing area 142 is composed of a plurality of tubular members, which are concentrically arranged to form a tubular body as a whole. The heating section 170 has a rod housing section 172 capable of housing a portion of the rod 500 therein, and a heater HTR (see FIGS. 10 to 19) that heats the rod 500 from its outer circumference or center. Preferably, the surface of the rod housing portion 172 and the heater HTR are insulated by forming the rod housing portion 172 from a heat insulating material or providing a heat insulating material inside the rod housing portion 172 . The heater HTR may be any element that can heat the rod 500 . The heater HTR is, for example, a heating element. Heating elements include heating resistors, ceramic heaters, induction heaters, and the like. As the heater HTR, for example, one having a PTC (Positive Temperature Coefficient) characteristic in which the resistance value increases as the temperature increases is preferably used. Alternatively, a heater HTR having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used. The heating part 170 has a function of defining a flow path of air to be supplied to the rod 500 and a function of heating the rod 500 . The case 110 is formed with a vent (not shown) for introducing air, and is configured to allow air to enter the heating unit 170 .
 電源収容空間146に収容される電源BATは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源BATの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。 The power supply BAT housed in the power supply housing space 146 is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery. The electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
 通知部180は、電源BATの充電状態を示すSOC(State Of Charge)、吸引時の予熱時間、吸引可能期間等の各種情報を通知する。本実施形態の通知部180は、8つのLED L1~L8と、振動モータMと、を含む。通知部180は、LED L1~L8のような発光素子によって構成されていてもよく、振動モータMのような振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。通知部180は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。 The notification unit 180 notifies various information such as the SOC (State Of Charge) indicating the state of charge of the power supply BAT, the preheating time during suction, and the suction possible period. The notification unit 180 of this embodiment includes eight LEDs L1 to L8 and a vibration motor M. The notification unit 180 may be composed of light emitting elements such as LEDs L1 to L8, may be composed of vibrating elements such as the vibration motor M, or may be composed of sound output elements. The notification unit 180 may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
 各種センサは、ユーザのパフ動作(吸引動作)を検出する吸気センサ、電源BATの温度を検出する電源温度センサ、ヒータHTRの温度を検出するヒータ温度センサ、ケース110の温度を検出するケース温度センサ、スライダ119の位置を検出するカバー位置センサ、及びアウターパネル115の着脱を検出するパネル検出センサ等を含む。 Various sensors include an intake air sensor that detects the user's puff action (sucking action), a power supply temperature sensor that detects the temperature of the power supply BAT, a heater temperature sensor that detects the temperature of the heater HTR, and a case temperature sensor that detects the temperature of the case 110. , a cover position sensor that detects the position of the slider 119, a panel detection sensor that detects attachment/detachment of the outer panel 115, and the like.
 吸気センサは、例えば、開口132の近傍に配置されたサーミスタT2を主体に構成される。電源温度センサは、例えば、電源BATの近傍に配置されたサーミスタT1を主体に構成される。ヒータ温度センサは、例えば、ヒータHTRの近傍に配置されたサーミスタT3を主体に構成される。上述した通り、ロッド収容部172はヒータHTRから断熱されることが好ましい。この場合において、サーミスタT3は、ロッド収容部172の内部において、ヒータHTRと接する又は近接することが好ましい。ヒータHTRがPTC特性やNTC特性を有する場合、ヒータHTRそのものをヒータ温度センサに用いてもよい。ケース温度センサは、例えば、ケース110の左面の近傍に配置されたサーミスタT4を主体に構成される。サーミスタT4は、ケース110と接する又は近接することが好ましい。カバー位置センサは、スライダ119の近傍に配置されたホール素子を含むホールIC14を主体に構成される。パネル検出センサは、インナーパネル118の内側の面の近傍に配置されたホール素子を含むホールIC13を主体に構成される。 The intake sensor is mainly composed of a thermistor T2 arranged near the opening 132, for example. The power supply temperature sensor is mainly composed of, for example, a thermistor T1 arranged near the power supply BAT. The heater temperature sensor is mainly composed of, for example, a thermistor T3 arranged near the heater HTR. As described above, the rod housing portion 172 is preferably insulated from the heater HTR. In this case, the thermistor T3 is preferably in contact with or close to the heater HTR inside the rod housing portion 172 . If the heater HTR has PTC characteristics or NTC characteristics, the heater HTR itself may be used as the heater temperature sensor. The case temperature sensor is mainly composed of, for example, a thermistor T4 arranged near the left surface of the case 110 . Thermistor T4 is preferably in contact with or in close proximity to case 110 . The cover position sensor is mainly composed of a Hall IC 14 including a Hall element arranged near the slider 119 . The panel detection sensor is mainly composed of a Hall IC 13 including a Hall element arranged near the inner surface of the inner panel 118 .
 回路部160は、4つの回路基板と、複数のIC(Integrate Circuit)と、複数の素子と、を備える。4つの回路基板は、主に後述のMCU(Micro Controller Unit)1及び充電IC2が配置されたMCU搭載基板161と、主に充電端子134が配置されたレセプタクル搭載基板162と、操作スイッチOPS、LED L1~L8、及び後述の通信IC15が配置されたLED搭載基板163と、カバー位置センサを構成するホール素子を含む後述のホールIC14が配置されたホールIC搭載基板164と、を備える。 The circuit section 160 includes four circuit boards, multiple ICs (Integrate Circuits), and multiple elements. The four circuit boards are an MCU-mounted board 161 on which an MCU (Micro Controller Unit) 1 and a charging IC 2, which will be described later, are mainly arranged, a receptacle-mounted board 162 mainly on which charging terminals 134 are arranged, an operation switch OPS, and an LED An LED mounting substrate 163 on which L1 to L8 and a communication IC 15 described later are arranged, and a Hall IC mounting substrate 164 on which a Hall IC 14 including a Hall element constituting a cover position sensor is arranged.
 MCU搭載基板161及びレセプタクル搭載基板162は、基板収容領域144において互いに平行に配置される。具体的に説明すると、MCU搭載基板161及びレセプタクル搭載基板162は、それぞれの素子配置面が左右方向及び上下方向に沿って配置され、MCU搭載基板161がレセプタクル搭載基板162よりも前方に配置される。MCU搭載基板161及びレセプタクル搭載基板162には、それぞれ開口部が設けられる。MCU搭載基板161及びレセプタクル搭載基板162は、これら開口部の周縁部同士の間に円筒状のスペーサ173を介在させた状態で前後分割壁152の基板固定部156にボルト136で締結される。即ち、スペーサ173は、ケース110の内部におけるMCU搭載基板161及びレセプタクル搭載基板162の位置を固定し、且つ、MCU搭載基板161とレセプタクル搭載基板162とを機械的に接続する。これにより、MCU搭載基板161とレセプタクル搭載基板162が接触し、これらの間で短絡電流が生じることを抑制できる。 The MCU mounting board 161 and the receptacle mounting board 162 are arranged parallel to each other in the board accommodation area 144 . More specifically, the MCU mounting board 161 and the receptacle mounting board 162 are arranged such that their element mounting surfaces are arranged along the horizontal direction and the vertical direction, and the MCU mounting board 161 is arranged in front of the receptacle mounting board 162. . The MCU mounting board 161 and the receptacle mounting board 162 are each provided with openings. The MCU mounting board 161 and the receptacle mounting board 162 are fastened with bolts 136 to the board fixing portion 156 of the front/rear dividing wall 152 with a cylindrical spacer 173 interposed between the peripheral edges of these openings. That is, the spacer 173 fixes the positions of the MCU mounting board 161 and the receptacle mounting board 162 inside the case 110 and mechanically connects the MCU mounting board 161 and the receptacle mounting board 162 . As a result, it is possible to prevent the MCU mounting board 161 and the receptacle mounting board 162 from coming into contact with each other and causing a short-circuit current between them.
 便宜上、MCU搭載基板161及びレセプタクル搭載基板162の前方を向く面を、それぞれの主面161a、162aとし、主面161a、162aの反対面をそれぞれの副面161b、162bとすると、MCU搭載基板161の副面161bと、レセプタクル搭載基板162の主面162aとが、所定の隙間を介して対向する。MCU搭載基板161の主面161aはケース110の前面と対向し、レセプタクル搭載基板162の副面162bは、シャーシ150の前後分割壁152と対向する。MCU搭載基板161及びレセプタクル搭載基板162に搭載される素子及びICについては後述する。 For the sake of convenience, the MCU mounting board 161 and the receptacle mounting board 162 have main surfaces 161a and 162a that face forward, and secondary surfaces 161b and 162b that are opposite to the main surfaces 161a and 162a. and the main surface 162a of the receptacle mounting substrate 162 face each other with a predetermined gap therebetween. A main surface 161 a of the MCU mounting board 161 faces the front surface of the case 110 , and a secondary surface 162 b of the receptacle mounting board 162 faces the front and rear dividing walls 152 of the chassis 150 . Elements and ICs mounted on the MCU mounting board 161 and the receptacle mounting board 162 will be described later.
 LED搭載基板163は、シャーシ本体151の左側面、且つ上下に配置された2つのマグネット124の間に配置される。LED搭載基板163の素子配置面は、上下方向及び前後方向に沿って配置されている。換言すると、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交している。このように、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交に限らず、交差している(非平行である)ことが好ましい。なお、LED L1~L8とともに通知部180を構成する振動モータMは、シャーシ下壁155の下面に固定され、MCU搭載基板161に電気的に接続される。 The LED mounting board 163 is arranged on the left side of the chassis body 151 and between the two magnets 124 arranged vertically. The element mounting surface of the LED mounting substrate 163 is arranged along the vertical direction and the front-rear direction. In other words, the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 are orthogonal to the element mounting surface of the LED mounting board 163 . In this way, the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 and the element mounting surface of the LED mounting board 163 are not limited to being orthogonal, but preferably intersect (non-parallel). The vibration motor M, which forms the notification unit 180 together with the LEDs L1 to L8, is fixed to the bottom surface of the chassis bottom wall 155 and electrically connected to the MCU mounting board 161. FIG.
 ホールIC搭載基板164は、シャーシ上壁154の上面に配置される。 The Hall IC mounting board 164 is arranged on the upper surface of the chassis upper wall 154 .
<吸引器の動作モード>
 図9は、吸引器100の動作モードを説明するための模式図である。図9に示すように、吸引器100の動作モードには、充電モード、スリープモード、アクティブモード、加熱初期設定モード、加熱モード、及び加熱終了モードが含まれる。
<Operation mode of the aspirator>
FIG. 9 is a schematic diagram for explaining the operation modes of the aspirator 100. As shown in FIG. As shown in FIG. 9, the operating modes of the suction device 100 include charging mode, sleep mode, active mode, heating initialization mode, heating mode, and heating termination mode.
 スリープモードは、主にヒータHTRの加熱制御に必要な電子部品への電力供給を停止して省電力化を図るモードである。 The sleep mode is a mode for saving power by stopping the power supply to the electronic parts required for heating control of the heater HTR.
 アクティブモードは、ヒータHTRの加熱制御を除くほとんどの機能が有効になるモードである。吸引器100は、スリープモードにて動作している状態にて、スライダ119が開かれると、動作モードをアクティブモードに切り替える。吸引器100は、アクティブモードにて動作している状態にて、スライダ119が閉じられたり、操作スイッチOPSの無操作時間が所定時間に達したりすると、動作モードをスリープモードに切り替える。 The active mode is a mode in which most functions except heating control of the heater HTR are enabled. When the slider 119 is opened while the suction device 100 is operating in the sleep mode, the operation mode is switched to the active mode. When the slider 119 is closed or the non-operating time of the operation switch OPS reaches a predetermined time while the aspirator 100 is operating in the active mode, the operating mode is switched to the sleep mode.
 加熱初期設定モードは、ヒータHTRの加熱制御を開始するための制御パラメータ等の初期設定を行うモードである。吸引器100は、アクティブモードにて動作している状態にて、操作スイッチOPSの操作を検出すると、動作モードを加熱初期設定モードに切り替え、初期設定が終了すると、動作モードを加熱モードに切り替える。 The heating initial setting mode is a mode for initializing control parameters and the like for starting heating control of the heater HTR. When the aspirator 100 detects the operation of the operation switch OPS while operating in the active mode, it switches the operation mode to the heating initial setting mode, and when the initial setting is completed, switches the operation mode to the heating mode.
 加熱モードは、ヒータHTRの加熱制御(エアロゾル生成のための加熱制御と、温度検出のための加熱制御)を実行するモードである。吸引器100は、動作モードが加熱モードに切り替わると、ヒータHTRの加熱制御を開始する。 The heating mode is a mode that executes heating control of the heater HTR (heating control for aerosol generation and heating control for temperature detection). The aspirator 100 starts heating control of the heater HTR when the operation mode is switched to the heating mode.
 加熱終了モードは、ヒータHTRの加熱制御の終了処理(加熱履歴の記憶処理等)を実行するモードである。吸引器100は、加熱モードにて動作している状態にて、ヒータHTRへの通電時間又はユーザの吸引回数が上限に達したり、スライダ119が閉じられたりすると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードをアクティブモードに切り替える。吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードを充電モードに切り替える。図9に示したように、この場合において、動作モードを充電モードに切り替える前に、動作モードをアクティブモードへ切り替えてもよい。換言すれば、吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モード、アクティブモード、充電モードの順に切り替えてもよい。 The heating end mode is a mode for executing heating control end processing (heating history storage processing, etc.) of the heater HTR. In a state in which the suction device 100 is operating in the heating mode, when the energization time of the heater HTR or the number of times of suction by the user reaches the upper limit, or when the slider 119 is closed, the operation mode is switched to the heating end mode. , when the termination process is completed, the operation mode is switched to the active mode. When the USB connection is established while the aspirator 100 is operating in the heating mode, the operating mode is switched to the heating end mode, and when the end processing is completed, the operating mode is switched to the charging mode. As shown in FIG. 9, in this case, the operating mode may be switched to the active mode before switching the operating mode to the charging mode. In other words, the aspirator 100 may switch the operation mode in order of the heating end mode, the active mode, and the charging mode when the USB connection is made while operating in the heating mode.
 充電モードは、レセプタクルRCPに接続された外部電源から供給される電力により、電源BATの充電を行うモードである。吸引器100は、スリープモード又はアクティブモードにて動作している状態にて、レセプタクルRCPに外部電源が接続(USB接続)されると、動作モードを充電モードに切り替える。吸引器100は、充電モードにて動作している状態にて、電源BATの充電が完了したり、レセプタクルRCPと外部電源との接続が解除されたりすると、動作モードをスリープモードに切り替える。 The charging mode is a mode in which the power supply BAT is charged with power supplied from an external power supply connected to the receptacle RCP. The aspirator 100 switches the operation mode to the charge mode when an external power source is connected (USB connection) to the receptacle RCP while operating in sleep mode or active mode. The aspirator 100 switches the operation mode to the sleep mode when the charging of the power supply BAT is completed or the connection between the receptacle RCP and the external power supply is released while operating in the charging mode.
<内部ユニットの回路の概略>
 図10、図11、及び図12は、内部ユニット140の電気回路の概略構成を示す図である。図11は、図10に示す電気回路のうち、MCU搭載基板161に搭載される範囲161A(太い破線で囲まれた範囲)と、LED搭載基板163に搭載される範囲163A(太い実線で囲まれた範囲)とを追加した点を除いては、図10と同じである。図12は、図10に示す電気回路のうち、レセプタクル搭載基板162に搭載される範囲162Aと、ホールIC搭載基板164に搭載される範囲164Aとを追加した点を除いては、図10と同じである。
<Outline of internal unit circuit>
10, 11, and 12 are diagrams showing the schematic configuration of the electric circuit of the internal unit 140. FIG. 11 shows a range 161A mounted on the MCU mounting board 161 (range surrounded by thick dashed lines) and a range 163A mounted on the LED mounting board 163 (range surrounded by thick solid lines) in the electric circuit shown in FIG. It is the same as FIG. 12 is the same as FIG. 10 except that a range 162A mounted on the receptacle mounting board 162 and a range 164A mounted on the Hall IC mounting board 164 are added to the electric circuit shown in FIG. is.
 図10において太い実線で示した配線は、内部ユニット140の基準となる電位(グランド電位)と同電位となる配線(内部ユニット140に設けられたグランドに接続される配線)であり、この配線を以下ではグランドラインと記載する。図10では、複数の回路素子をチップ化した電子部品を矩形で示しており、この矩形の内側に各種端子の符号を記載している。チップに搭載される電源端子VCC及び電源端子VDDは、それぞれ、高電位側の電源端子を示す。チップに搭載される電源端子VSS及びグランド端子GNDは、それぞれ、低電位側(基準電位側)の電源端子を示す。チップ化された電子部品は、高電位側の電源端子の電位と低電位側の電源端子の電位の差分が、電源電圧となる。チップ化された電子部品は、この電源電圧を用いて、各種機能を実行する。 The wiring indicated by the thick solid line in FIG. 10 is the wiring (the wiring connected to the ground provided in the internal unit 140) that has the same potential as the reference potential (ground potential) of the internal unit 140. It is described as a ground line below. In FIG. 10, an electronic component in which a plurality of circuit elements are chipped is indicated by a rectangle, and the symbols of various terminals are indicated inside the rectangle. A power supply terminal VCC and a power supply terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively. A power supply terminal VSS and a ground terminal GND mounted on the chip indicate power supply terminals on the low potential side (reference potential side). In a chipped electronic component, the power supply voltage is the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side. Chipped electronic components use this power supply voltage to perform various functions.
 図11に示すように、MCU搭載基板161(範囲161A)には、主要な電子部品として、吸引器100の全体を統括制御するMCU1と、電源BATの充電制御を行う充電IC2と、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ(以下、LSW)3,4,5と、ROM(Read Only Memory)6と、スイッチドライバ7と、昇降圧DC/DCコンバータ8(図では、昇降圧DC/DC8と記載)と、オペアンプOP2と、オペアンプOP3と、フリップフロップ(以下、FF)16,17と、吸気センサを構成するサーミスタT2と電気的に接続されるコネクタCn(t2)(図では、このコネクタに接続されたサーミスタT2を記載)と、ヒータ温度センサを構成するサーミスタT3と電気的に接続されるコネクタCn(t3)(図では、このコネクタに接続されたサーミスタT3を記載)と、ケース温度センサを構成するサーミスタT4と電気的に接続されるコネクタCn(t4)(図では、このコネクタに接続されたサーミスタT4を記載)と、USB接続検出用の分圧回路Pcと、が設けられている。 As shown in FIG. 11, the MCU-mounted board 161 (range 161A) includes, as main electronic components, an MCU1 that controls the entire sucker 100, a charging IC2 that controls charging of the power source BAT, a capacitor, a resistor load switches (hereinafter referred to as LSW) 3, 4, 5, a ROM (Read Only Memory) 6, a switch driver 7, and a step-up/step-down DC/DC converter 8 (in the figure, buck-boost DC/DC 8), operational amplifier OP2, operational amplifier OP3, flip-flops (FF) 16, 17, connector Cn (t2) (which is electrically connected to thermistor T2 constituting an intake sensor) ( The figure shows the thermistor T2 connected to this connector), and a connector Cn(t3) electrically connected to the thermistor T3 constituting the heater temperature sensor (the figure shows the thermistor T3 connected to this connector). ), a connector Cn (t4) electrically connected to the thermistor T4 constituting the case temperature sensor (in the drawing, the thermistor T4 connected to this connector is shown), and a voltage dividing circuit Pc for detecting USB connection. , is provided.
 充電IC2、LSW3、LSW4、LSW5、スイッチドライバ7、昇降圧DC/DCコンバータ8、FF16、及びFF17の各々のグランド端子GNDは、グランドラインに接続されている。ROM6の電源端子VSSは、グランドラインに接続されている。オペアンプOP2及びオペアンプOP3の各々の負電源端子は、グランドラインに接続されている。 A ground terminal GND of each of the charging IC 2, LSW3, LSW4, LSW5, switch driver 7, step-up/step-down DC/DC converter 8, FF16, and FF17 is connected to a ground line. A power terminal VSS of the ROM 6 is connected to the ground line. A negative power supply terminal of each of the operational amplifiers OP2 and OP3 is connected to the ground line.
 図11に示すように、LED搭載基板163(範囲163A)には、主要な電子部品として、パネル検出センサを構成するホール素子を含むホールIC13と、LED L1~L8と、操作スイッチOPSと、通信IC15と、が設けられている。通信IC15は、スマートフォン等の電子機器との通信を行うための通信モジュールである。ホールIC13の電源端子VSS及び通信IC15のグランド端子GNDの各々は、グランドラインに接続されている。通信IC15とMCU1は、通信線LNによって通信可能に構成されている。操作スイッチOPSの一端はグランドラインに接続され、操作スイッチOPSの他端はMCU1の端子P4に接続されている。 As shown in FIG. 11, the LED mounting board 163 (area 163A) has, as main electronic components, a Hall IC 13 including a Hall element constituting a panel detection sensor, LEDs L1 to L8, an operation switch OPS, a communication IC 15 and are provided. The communication IC 15 is a communication module for communicating with electronic devices such as smartphones. A power supply terminal VSS of the Hall IC 13 and a ground terminal GND of the communication IC 15 are each connected to a ground line. Communication IC 15 and MCU 1 are configured to be communicable via communication line LN. One end of the operation switch OPS is connected to the ground line, and the other end of the operation switch OPS is connected to the terminal P4 of the MCU1.
 図12に示すように、レセプタクル搭載基板162(範囲162A)には、主要な電子部品として、電源BATと電気的に接続される電源コネクタ(図では、この電源コネクタに接続された電源BATを記載)と、電源温度センサを構成するサーミスタT1と電気的に接続されるコネクタ(図では、このコネクタに接続されたサーミスタT1を記載)と、昇圧DC/DCコンバータ9(図では、昇圧DC/DC9と記載)と、保護IC10と、過電圧保護IC11と、残量計IC12と、レセプタクルRCPと、MOSFETで構成されたスイッチS3~スイッチS6と、オペアンプOP1と、ヒータHTRと電気的に接続される一対(正極側と負極側)のヒータコネクタCnと、が設けられている。 As shown in FIG. 12, the receptacle mounting board 162 (range 162A) includes a power connector electrically connected to the power supply BAT as a main electronic component (in the figure, the power supply BAT connected to this power connector is shown). ), a connector electrically connected to a thermistor T1 constituting a power supply temperature sensor (in the figure, the thermistor T1 connected to this connector is shown), and a boost DC/DC converter 9 (in the figure, a boost DC/DC 9 ), the protection IC 10, the overvoltage protection IC 11, the fuel gauge IC 12, the receptacle RCP, the switches S3 to S6 configured by MOSFETs, the operational amplifier OP1, and the heater HTR. (positive electrode side and negative electrode side) heater connectors Cn are provided.
 レセプタクルRCPの2つのグランド端子GNDと、昇圧DC/DCコンバータ9のグランド端子GNDと、保護IC10の電源端子VSSと、残量計IC12の電源端子VSSと、過電圧保護IC11のグランド端子GNDと、オペアンプOP1の負電源端子は、それぞれ、グランドラインに接続されている。 Two ground terminals GND of receptacle RCP, ground terminal GND of step-up DC/DC converter 9, power supply terminal VSS of protection IC 10, power supply terminal VSS of fuel gauge IC 12, ground terminal GND of overvoltage protection IC 11, and operational amplifier The negative power supply terminals of OP1 are each connected to the ground line.
 図12に示すように、ホールIC搭載基板164(範囲164A)には、カバー位置センサを構成するホール素子を含むホールIC14が設けられている。ホールIC14の電源端子VSSは、グランドラインに接続されている。ホールIC14の出力端子OUTは、MCU1の端子P8に接続されている。MCU1は、端子P8に入力される信号により、スライダ119の開閉を検出する。 As shown in FIG. 12, the Hall IC mounting substrate 164 (area 164A) is provided with a Hall IC 14 including a Hall element that constitutes a cover position sensor. A power terminal VSS of the Hall IC 14 is connected to the ground line. The output terminal OUT of the Hall IC 14 is connected to the terminal P8 of the MCU1. The MCU1 detects opening/closing of the slider 119 from a signal input to the terminal P8.
 図11に示すように、振動モータMと電気的に接続されるコネクタは、MCU搭載基板161に設けられている。 As shown in FIG. 11, a connector electrically connected to the vibration motor M is provided on the MCU mounting board 161 .
<内部ユニットの回路の詳細>
 以下、図10を参照しながら各電子部品の接続関係等について説明する。
<Details of internal unit circuit>
The connection relationship and the like of each electronic component will be described below with reference to FIG. 10 .
 レセプタクルRCPの2つの電源入力端子VBUSは、それぞれ、ヒューズFsを介して、過電圧保護IC11の入力端子INに接続されている。レセプタクルRCPにUSBプラグが接続され、このUSBプラグを含むUSBケーブルが外部電源に接続されると、レセプタクルRCPの2つの電源入力端子VBUSにUSB電圧VUSBが供給される。 The two power supply input terminals V BUS of the receptacle RCP are each connected to the input terminal IN of the overvoltage protection IC11 via a fuse Fs. When a USB plug is connected to the receptacle RCP and a USB cable including this USB plug is connected to an external power supply, the USB voltage V USB is supplied to the two power input terminals V BUS of the receptacle RCP.
 過電圧保護IC11の入力端子INには、2つの抵抗器の直列回路からなる分圧回路Paの一端が接続されている。分圧回路Paの他端はグランドラインに接続されている。分圧回路Paを構成する2つの抵抗器の接続点は、過電圧保護IC11の電圧検出端子OVLoに接続されている。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値未満の状態では、入力端子INに入力された電圧を出力端子OUTから出力する。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値以上(過電圧)となった場合には、出力端子OUTからの電圧出力を停止(LSW3とレセプタクルRCPとの電気的な接続を遮断)することで、過電圧保護IC11よりも下流の電子部品の保護を図る。過電圧保護IC11の出力端子OUTは、LSW3の入力端子VINと、MCU1に接続された分圧回路Pc(2つの抵抗器の直列回路)の一端と、に接続されている。分圧回路Pcの他端はグランドラインに接続されている。分圧回路Pcを構成する2つの抵抗器の接続点は、MCU1の端子P17に接続されている。 An input terminal IN of the overvoltage protection IC 11 is connected to one end of a voltage dividing circuit Pa consisting of a series circuit of two resistors. The other end of the voltage dividing circuit Pa is connected to the ground line. A connection point between the two resistors forming the voltage dividing circuit Pa is connected to the voltage detection terminal OVLo of the overvoltage protection IC11. The overvoltage protection IC 11 outputs the voltage input to the input terminal IN from the output terminal OUT when the voltage input to the voltage detection terminal OVLo is less than the threshold. The overvoltage protection IC 11 stops voltage output from the output terminal OUT (cuts off the electrical connection between the LSW3 and the receptacle RCP) when the voltage input to the voltage detection terminal OVLo exceeds the threshold (overvoltage). By doing so, the electronic components downstream of the overvoltage protection IC 11 are protected. The output terminal OUT of the overvoltage protection IC11 is connected to the input terminal VIN of the LSW3 and one end of the voltage dividing circuit Pc (series circuit of two resistors) connected to the MCU1. The other end of the voltage dividing circuit Pc is connected to the ground line. A connection point of the two resistors forming the voltage dividing circuit Pc is connected to the terminal P17 of the MCU1.
 LSW3の入力端子VINには、2つの抵抗器の直列回路からなる分圧回路Pfの一端が接続されている。分圧回路Pfの他端はグランドラインに接続されている。分圧回路Pfを構成する2つの抵抗器の接続点は、LSW3の制御端子ONに接続されている。LSW3の制御端子ONには、バイポーラトランジスタS2のコレクタ端子が接続されている。バイポーラトランジスタS2のエミッタ端子はグランドラインに接続されている。バイポーラトランジスタS2のベース端子は、MCU1の端子P19に接続されている。LSW3は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力された電圧を出力端子VOUTから出力する。LSW3の出力端子VOUTは、充電IC2の入力端子VBUSに接続されている。MCU1は、USB接続がなされていない間は、バイポーラトランジスタS2をオンにする。これにより、LSW3の制御端子ONはバイポーラトランジスタS2を介してグランドラインへ接続されるため、LSW3の制御端子ONにはローレベルの信号が入力される。
 LSW3に接続されたバイポーラトランジスタS2は、USB接続がなされると、MCU1によってオフされる。バイポーラトランジスタS2がオフすることで、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。このため、USB接続がなされ且つバイポーラトランジスタS2がオフされると、LSW3の制御端子ONには、ハイレベルの信号が入力される。これにより、LSW3は、USBケーブルから供給されるUSB電圧VUSBを出力端子VOUTから出力する。なお、バイポーラトランジスタS2がオフされていない状態でUSB接続がなされても、LSW3の制御端子ONは、バイポーラトランジスタS2を介してグランドラインへ接続されている。このため、MCU1がバイポーラトランジスタS2をオフしない限り、LSW3の制御端子ONにはローレベルの信号が入力され続ける点に留意されたい。
An input terminal VIN of LSW3 is connected to one end of a voltage dividing circuit Pf consisting of a series circuit of two resistors. The other end of the voltage dividing circuit Pf is connected to the ground line. A connection point between the two resistors forming the voltage dividing circuit Pf is connected to the control terminal ON of the LSW3. The collector terminal of the bipolar transistor S2 is connected to the control terminal ON of LSW3. The emitter terminal of the bipolar transistor S2 is connected to the ground line. The base terminal of bipolar transistor S2 is connected to terminal P19 of MCU1. When the signal input to the control terminal ON becomes high level, the LSW3 outputs the voltage input to the input terminal VIN from the output terminal VOUT. The output terminal VOUT of LSW3 is connected to the input terminal VBUS of charging IC2. The MCU1 turns on the bipolar transistor S2 while the USB connection is not made. As a result, the control terminal ON of LSW3 is connected to the ground line via the bipolar transistor S2, so that a low level signal is input to the control terminal ON of LSW3.
The bipolar transistor S2 connected to LSW3 is turned off by MCU1 when the USB connection is made. By turning off the bipolar transistor S2, the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. Therefore, when the USB connection is made and the bipolar transistor S2 is turned off, a high level signal is input to the control terminal ON of the LSW3. As a result, the LSW 3 outputs the USB voltage VUSB supplied from the USB cable from the output terminal VOUT. Even if the USB connection is made while the bipolar transistor S2 is not turned off, the control terminal ON of the LSW3 is connected to the ground line via the bipolar transistor S2. Therefore, it should be noted that a low level signal continues to be input to the control terminal ON of LSW3 unless MCU1 turns off bipolar transistor S2.
 電源BATの正極端子は、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batと、に接続されている。したがって、電源BATの電源電圧VBATは、保護IC10と、充電IC2と、昇圧DC/DCコンバータ9とに供給される。電源BATの負極端子には、抵抗器Raと、MOSFETで構成されたスイッチSaと、MOSFETで構成されたスイッチSbと、抵抗器Rbと、がこの順に直列接続されている。抵抗器RaとスイッチSaの接続点には、保護IC10の電流検出端子CSが接続されている。スイッチSaとスイッチSbの各々の制御端子は、保護IC10に接続されている。抵抗器Rbの両端は、残量計IC12に接続されている。 The positive terminal of the power supply BAT is connected to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC2. Therefore, the power supply voltage V BAT of the power supply BAT is supplied to the protection IC 10 , the charging IC 2 and the step-up DC/DC converter 9 . A resistor Ra, a switch Sa composed of a MOSFET, a switch Sb composed of a MOSFET, and a resistor Rb are connected in series in this order to the negative terminal of the power supply BAT. A current detection terminal CS of the protection IC 10 is connected to a connection point between the resistor Ra and the switch Sa. Control terminals of the switches Sa and Sb are connected to the protection IC 10 . Both ends of the resistor Rb are connected to the fuel gauge IC12.
 保護IC10は、電流検出端子CSに入力される電圧から、電源BATの充放電時において抵抗器Raに流れる電流値を取得し、この電流値が過大になった場合(過電流)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの充電時に過大な電流値を取得した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの放電時に過大な電流値を取得した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。また、保護IC10は、電源端子VDDに入力される電圧から、電源BATの電圧値が異常になった場合(過充電又は過電圧の場合)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの過充電を検知した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの過放電を検知した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。 The protection IC 10 acquires the value of the current flowing through the resistor Ra during charging and discharging of the power supply BAT from the voltage input to the current detection terminal CS, and when this current value becomes excessive (overcurrent), the switch Sa , the switch Sb is controlled to open and close to stop the charging or discharging of the power source BAT, thereby protecting the power source BAT. More specifically, when the protection IC 10 acquires an excessive current value while charging the power supply BAT, it stops charging the power supply BAT by turning off the switch Sb. When the protection IC 10 acquires an excessive current value during discharging of the power supply BAT, the protection IC 10 stops discharging the power supply BAT by turning off the switch Sa. In addition, when the voltage value of the power supply BAT becomes abnormal from the voltage input to the power supply terminal VDD (in the case of overcharge or overvoltage), the protection IC 10 performs opening/closing control of the switch Sa and the switch Sb to The power supply BAT is protected by stopping the charging or discharging of BAT. More specifically, when the protection IC 10 detects that the power supply BAT is overcharged, the protection IC 10 stops charging the power supply BAT by turning off the switch Sb. When detecting overdischarge of the power supply BAT, the protection IC 10 turns off the switch Sa to stop the discharge of the power supply BAT.
 電源BATの近傍に配置されたサーミスタT1と接続されるコネクタには抵抗器Rt1が接続されている。抵抗器Rt1とサーミスタT1の直列回路は、グランドラインと、残量計IC12のレギュレータ端子TREGとに接続されている。サーミスタT1と抵抗器Rt1の接続点は、残量計IC12のサーミスタ端子THMに接続されている。サーミスタT1は、温度の増加に従い抵抗値が増大するPTC(Positive Temperature Coefficient)サーミスタであってもよいし、温度の増加に従い抵抗値が減少するNTC(Negative Temperature Coefficient)サーミスタでもよい。 A resistor Rt1 is connected to a connector connected to the thermistor T1 arranged near the power supply BAT. A series circuit of the resistor Rt1 and the thermistor T1 is connected to the ground line and the regulator terminal TREG of the fuel gauge IC12. A connection point between the thermistor T1 and the resistor Rt1 is connected to a thermistor terminal THM of the fuel gauge IC12. The thermistor T1 may be a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases, or an NTC (Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature increases.
 残量計IC12は、抵抗器Rbに流れる電流を検出し、検出した電流値に基づいて、電源BATの残容量、充電状態を示すSOC(State Of Charge)、及び健全状態を示すSOH(State Of Health)等のバッテリ情報を導出する。残量計IC12は、レギュレータ端子TREGに接続される内蔵レギュレータから、サーミスタT1と抵抗器Rt1の分圧回路に電圧を供給する。残量計IC12は、この分圧回路によって分圧された電圧をサーミスタ端子THMから取得し、この電圧に基づいて、電源BATの温度に関する温度情報を取得する。残量計IC12は、シリアル通信を行うための通信線LNによってMCU1と接続されており、MCU1と通信可能に構成されている。残量計IC12は、導出したバッテリ情報と、取得した電源BATの温度情報を、MCU1からの要求に応じて、MCU1に送信する。なお、シリアル通信を行うためには、データ送信用のデータラインや同期用のクロックラインなどの複数の信号線が必要になる。図10-図19では、簡略化のため、1本の信号線のみが図示されている点に留意されたい。 The fuel gauge IC 12 detects the current flowing through the resistor Rb, and based on the detected current value, indicates the remaining capacity of the power supply BAT, SOC (State Of Charge) indicating the state of charge, and SOH (State Of Charge) indicating the state of health. Health) and other battery information. The fuel gauge IC12 supplies a voltage to the voltage dividing circuit of the thermistor T1 and the resistor Rt1 from the built-in regulator connected to the regulator terminal TREG. The fuel gauge IC 12 acquires the voltage divided by this voltage dividing circuit from the thermistor terminal THM, and acquires temperature information regarding the temperature of the power supply BAT based on this voltage. The fuel gauge IC12 is connected to the MCU1 via a communication line LN for serial communication, and is configured to be able to communicate with the MCU1. The fuel gauge IC12 transmits the derived battery information and the acquired temperature information of the power supply BAT to the MCU1 in response to a request from the MCU1. Note that serial communication requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that only one signal line is shown in FIGS. 10-19 for simplicity.
 残量計IC12は、通知端子12aを備えている。通知端子12aは、MCU1の端子P6と、後述するダイオードD2のカソードと、に接続されている。残量計IC12は、電源BATの温度が過大になった等の異常を検出すると、通知端子12aからローレベルの信号を出力することで、その異常発生をMCU1に通知する。このローレベルの信号は、ダイオードD2を経由して、FF17のCLR( ̄)端子にも入力される。 The fuel gauge IC 12 has a notification terminal 12a. The notification terminal 12a is connected to the terminal P6 of the MCU1 and the cathode of a diode D2, which will be described later. When the fuel gauge IC 12 detects an abnormality such as an excessive temperature of the power supply BAT, it notifies the MCU 1 of the occurrence of the abnormality by outputting a low-level signal from the notification terminal 12a. This low level signal is also input to the CLR (~) terminal of the FF 17 via the diode D2.
 昇圧DC/DCコンバータ9のスイッチング端子SWには、リアクトルLcの一端が接続されている。このリアクトルLcの他端は昇圧DC/DCコンバータ9の入力端子VINに接続されている。昇圧DC/DCコンバータ9は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、入力された電圧を昇圧して、出力端子VOUTから出力する。なお、昇圧DC/DCコンバータ9の入力端子VINは、昇圧DC/DCコンバータ9の高電位側の電源端子を構成している。昇圧DC/DCコンバータ9は、イネーブル端子ENに入力される信号がハイレベルとなっている場合に、昇圧動作を行う。USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号は、MCU1によってローレベルに制御されてもよい。若しくは、USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号をMCU1が制御しないことで、イネーブル端子ENの電位を不定にしてもよい。 One end of the reactor Lc is connected to the switching terminal SW of the step-up DC/DC converter 9 . The other end of this reactor Lc is connected to the input terminal VIN of the step-up DC/DC converter 9 . The step-up DC/DC converter 9 performs on/off control of the built-in transistor connected to the switching terminal SW to step up the input voltage and output it from the output terminal VOUT. The input terminal VIN of the step-up DC/DC converter 9 constitutes a power supply terminal of the step-up DC/DC converter 9 on the high potential side. The boost DC/DC converter 9 performs a boost operation when the signal input to the enable terminal EN is at high level. In the USB-connected state, the signal input to the enable terminal EN of the boost DC/DC converter 9 may be controlled to be low level by the MCU1. Alternatively, in the USB-connected state, the MCU 1 does not control the signal input to the enable terminal EN of the boost DC/DC converter 9, so that the potential of the enable terminal EN may be made indefinite.
 昇圧DC/DCコンバータ9の出力端子VOUTには、Pチャネル型MOSFETにより構成されたスイッチS4のソース端子が接続されている。スイッチS4のゲート端子は、MCU1の端子P15と接続されている。スイッチS4のドレイン端子には、抵抗器Rsの一端が接続されている。抵抗器Rsの他端は、ヒータHTRの一端と接続される正極側のヒータコネクタCnに接続されている。スイッチS4と抵抗器Rsの接続点には、2つの抵抗器からなる分圧回路Pbが接続されている。分圧回路Pbを構成する2つの抵抗器の接続点は、MCU1の端子P18と接続されている。スイッチS4と抵抗器Rsの接続点は、更に、オペアンプOP1の正電源端子と接続されている。 The output terminal VOUT of the step-up DC/DC converter 9 is connected to the source terminal of the switch S4 composed of a P-channel MOSFET. The gate terminal of switch S4 is connected to terminal P15 of MCU1. One end of the resistor Rs is connected to the drain terminal of the switch S4. The other end of the resistor Rs is connected to a positive heater connector Cn connected to one end of the heater HTR. A voltage dividing circuit Pb consisting of two resistors is connected to the connection point between the switch S4 and the resistor Rs. A connection point of the two resistors forming the voltage dividing circuit Pb is connected to the terminal P18 of the MCU1. A connection point between the switch S4 and the resistor Rs is further connected to the positive power supply terminal of the operational amplifier OP1.
 昇圧DC/DCコンバータ9の出力端子VOUTとスイッチS4のソース端子との接続ラインには、Pチャネル型MOSFETにより構成されたスイッチS3のソース端子が接続されている。スイッチS3のゲート端子は、MCU1の端子P16と接続されている。スイッチS3のドレイン端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。このように、昇圧DC/DCコンバータ9の出力端子VOUTとヒータコネクタCnの正極側との間には、スイッチS3を含む回路と、スイッチS4及び抵抗器Rsを含む回路とが並列接続されている。スイッチS3を含む回路は、抵抗器を有さないため、スイッチS4及び抵抗器Rsを含む回路よりも低抵抗の回路である。 A connection line between the output terminal VOUT of the step-up DC/DC converter 9 and the source terminal of the switch S4 is connected to the source terminal of the switch S3 composed of a P-channel MOSFET. The gate terminal of switch S3 is connected to terminal P16 of MCU1. A drain terminal of the switch S3 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side. Thus, a circuit including the switch S3 and a circuit including the switch S4 and the resistor Rs are connected in parallel between the output terminal VOUT of the boost DC/DC converter 9 and the positive electrode side of the heater connector Cn. . Since the circuit including the switch S3 does not have a resistor, it has a lower resistance than the circuit including the switch S4 and the resistor Rs.
 オペアンプOP1の非反転入力端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。オペアンプOP1の反転入力端子は、ヒータHTRの他端と接続される負極側のヒータコネクタCnと、Nチャネル型MOSFETにより構成されたスイッチS6のドレイン端子と、に接続されている。スイッチS6のソース端子はグランドラインに接続されている。スイッチS6のゲート端子は、MCU1の端子P14と、ダイオードD4のアノードと、昇圧DC/DCコンバータ9のイネーブル端子ENと、に接続されている。ダイオードD4のカソードは、FF17のQ端子と接続されている。オペアンプOP1の出力端子には抵抗器R4の一端が接続されている。抵抗器R4の他端は、MCU1の端子P9と、Nチャネル型MOSFETにより構成されたスイッチS5のドレイン端子と、に接続されている。スイッチS5のソース端子は、グランドラインに接続されている。スイッチS5のゲート端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。 The non-inverting input terminal of the operational amplifier OP1 is connected to the connection line between the resistor Rs and the heater connector Cn on the positive electrode side. The inverting input terminal of the operational amplifier OP1 is connected to the negative heater connector Cn connected to the other end of the heater HTR and to the drain terminal of the switch S6 composed of an N-channel MOSFET. The source terminal of switch S6 is connected to the ground line. A gate terminal of the switch S6 is connected to the terminal P14 of the MCU1, the anode of the diode D4, and the enable terminal EN of the step-up DC/DC converter 9. The cathode of diode D4 is connected to the Q terminal of FF17. One end of a resistor R4 is connected to the output terminal of the operational amplifier OP1. The other end of the resistor R4 is connected to the terminal P9 of the MCU1 and the drain terminal of the switch S5 composed of an N-channel MOSFET. A source terminal of the switch S5 is connected to the ground line. A gate terminal of the switch S5 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
 充電IC2の入力端子VBUSは、LED L1~L8の各々のアノードに接続されている。LED L1~L8の各々のカソードは、電流制限ための抵抗器を介して、MCU1の制御端子PD1~PD8に接続されている。すなわち、入力端子VBUSには、LED L1~L8が並列接続されている。LED L1~L8は、レセプタクルRCPに接続されたUSBケーブルから供給されるUSB電圧VUSBと、電源BATから充電IC2を経由して供給される電圧と、のそれぞれによって動作可能に構成されている。MCU1には、制御端子PD1~制御端子PD8の各々とグランド端子GNDとに接続されたトランジスタ(スイッチング素子)が内蔵されている。MCU1は、制御端子PD1と接続されたトランジスタをオンすることでLED L1に通電してこれを点灯させ、制御端子PD1と接続されたトランジスタをオフすることでLED L1を消灯させる。制御端子PD1と接続されたトランジスタのオンとオフを高速で切り替えることで、LED L1の輝度や発光パターンを動的に制御できる。LED L2~L8についても同様にMCU1によって点灯制御される。 The input terminal VBUS of charging IC2 is connected to the anode of each of LEDs L1-L8. The cathodes of the LEDs L1-L8 are connected to the control terminals PD1-PD8 of the MCU1 via current limiting resistors. That is, LEDs L1 to L8 are connected in parallel to the input terminal VBUS. The LEDs L1 to L8 are operable by the USB voltage V USB supplied from the USB cable connected to the receptacle RCP and the voltage supplied from the power supply BAT via the charging IC2. The MCU 1 incorporates transistors (switching elements) connected to each of the control terminals PD1 to PD8 and the ground terminal GND. The MCU1 turns on the transistor connected to the control terminal PD1 to energize the LED L1 to light it, and turns off the transistor connected to the control terminal PD1 to turn off the LED L1. By switching on and off the transistor connected to the control terminal PD1 at high speed, the brightness and light emission pattern of the LED L1 can be dynamically controlled. LEDs L2 to L8 are similarly controlled by the MCU1.
 充電IC2は、入力端子VBUSに入力されるUSB電圧VUSBに基づいて電源BATを充電する充電機能を備える。充電IC2は、不図示の端子や配線から、電源BATの充電電流や充電電圧を取得し、これらに基づいて、電源BATの充電制御(充電端子batから電源BATへの電力供給制御)を行う。また、充電IC2は、残量計IC12からMCU1に送信された電源BATの温度情報を、通信線LNを利用したシリアル通信によってMCU1から取得し、充電制御に利用してもよい。 The charging IC2 has a charging function of charging the power supply BAT based on the USB voltage VUSB input to the input terminal VBUS. The charging IC 2 acquires the charging current and charging voltage of the power supply BAT from terminals and wiring (not shown), and based on these, performs charging control of the power supply BAT (power supply control from the charging terminal bat to the power supply BAT). Also, the charging IC 2 may acquire the temperature information of the power supply BAT transmitted from the fuel gauge IC 12 to the MCU 1 from the MCU 1 through serial communication using the communication line LN, and use it for charging control.
 充電IC2は、更に、VBATパワーパス機能と、OTG機能とを備える。VBATパワーパス機能は、充電端子batに入力される電源電圧VBATと略一致するシステム電源電圧Vcc0を、出力端子SYSから出力する機能である。OTG機能は、充電端子batに入力される電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する機能である。充電IC2のOTG機能のオンオフは、通信線LNを利用したシリアル通信によって、MCU1により制御される。なお、OTG機能においては、充電端子batに入力される電源電圧VBATを、入力端子VBUSからそのまま出力してもよい。この場合において、電源電圧VBATとシステム電源電圧Vcc4は略一致する。 The charging IC2 further comprises a V BAT power pass function and an OTG function. The V BAT power pass function is a function of outputting from the output terminal SYS a system power supply voltage Vcc0 substantially matching the power supply voltage V BAT input to the charging terminal bat. The OTG function is a function for outputting from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input to the charging terminal bat. ON/OFF of the OTG function of the charging IC 2 is controlled by the MCU 1 through serial communication using the communication line LN. In addition, in the OTG function, the power supply voltage V BAT input to the charging terminal bat may be directly output from the input terminal VBUS. In this case, power supply voltage VBAT and system power supply voltage Vcc4 are substantially the same.
 充電IC2の出力端子SYSは、昇降圧DC/DCコンバータ8の入力端子VINに接続されている。充電IC2のスイッチング端子SWにはリアクトルLaの一端が接続されている。リアクトルLaの他端は、充電IC2の出力端子SYSに接続されている。充電IC2の充電イネーブル端子CE( ̄)は、抵抗器を介して、MCU1の端子P22に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、バイポーラトランジスタS1のコレクタ端子が接続されている。バイポーラトランジスタS1のエミッタ端子は、後述のLSW4の出力端子VOUTに接続されている。バイポーラトランジスタS1のベース端子は、FF17のQ端子に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、抵抗器Rcの一端が接続されている。抵抗器Rcの他端は、LSW4の出力端子VOUTに接続されている。 The output terminal SYS of the charging IC 2 is connected to the input terminal VIN of the step-up/step-down DC/DC converter 8 . One end of a reactor La is connected to the switching terminal SW of the charging IC2. The other end of the reactor La is connected to the output terminal SYS of the charging IC2. A charge enable terminal CE (~) of the charge IC2 is connected to a terminal P22 of the MCU1 via a resistor. Furthermore, the collector terminal of the bipolar transistor S1 is connected to the charge enable terminal CE (~) of the charge IC2. The emitter terminal of the bipolar transistor S1 is connected to the output terminal VOUT of the LSW4 which will be described later. The base terminal of bipolar transistor S1 is connected to the Q terminal of FF17. Furthermore, one end of a resistor Rc is connected to the charge enable terminal CE (~) of the charge IC2. The other end of the resistor Rc is connected to the output terminal VOUT of LSW4.
 昇降圧DC/DCコンバータ8の入力端子VINとイネーブル端子ENには抵抗器が接続されている。充電IC2の出力端子SYSから、昇降圧DC/DCコンバータ8の入力端子VINにシステム電源電圧Vcc0が入力されることで、昇降圧DC/DCコンバータ8のイネーブル端子ENに入力される信号はハイレベルとなり、昇降圧DC/DCコンバータ8は昇圧動作又は降圧動作を開始する。昇降圧DC/DCコンバータ8は、リアクトルLbに接続された内蔵トランジスタのスイッチング制御により、入力端子VINに入力されたシステム電源電圧Vcc0を昇圧又は降圧してシステム電源電圧Vcc1を生成し、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTは、昇降圧DC/DCコンバータ8のフィードバック端子FBと、LSW4の入力端子VINと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、に接続されている。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されるシステム電源電圧Vcc1が供給される配線を電源ラインPL1と記載する。 A resistor is connected to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 . By inputting the system power supply voltage Vcc0 from the output terminal SYS of the charging IC 2 to the input terminal VIN of the step-up/step-down DC/DC converter 8, the signal input to the enable terminal EN of the step-up/step-down DC/DC converter 8 is at a high level. Then, the step-up/step-down DC/DC converter 8 starts step-up operation or step-down operation. The step-up/step-down DC/DC converter 8 steps up or steps down the system power supply voltage Vcc0 input to the input terminal VIN by switching control of the built-in transistor connected to the reactor Lb to generate the system power supply voltage Vcc1, and the output terminal VOUT. Output from The output terminal VOUT of the buck-boost DC/DC converter 8 includes the feedback terminal FB of the buck-boost DC/DC converter 8, the input terminal VIN of the LSW 4, the input terminal VIN of the switch driver 7, the power supply terminal VCC and the D terminal of the FF 16. and connected to. A wiring to which system power supply voltage Vcc1 output from output terminal VOUT of step-up/step-down DC/DC converter 8 is supplied is referred to as power supply line PL1.
 LSW4は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc1を出力端子VOUTから出力する。LSW4の制御端子ONと電源ラインPL1は、抵抗器を介して接続されている。このため、電源ラインPL1にシステム電源電圧Vcc1が供給されることで、LSW4の制御端子ONにはハイレベルの信号が入力される。LSW4が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc1と同一であるが、システム電源電圧Vcc1と区別するために、LSW4の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc2と記載する。 When the signal input to the control terminal ON becomes high level, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN from the output terminal VOUT. The control terminal ON of LSW4 and the power supply line PL1 are connected via a resistor. Therefore, by supplying the system power supply voltage Vcc1 to the power supply line PL1, a high level signal is input to the control terminal ON of the LSW4. The voltage output from LSW4 is the same as the system power supply voltage Vcc1 if wiring resistance and the like are ignored. Described as voltage Vcc2.
 LSW4の出力端子VOUTは、MCU1の電源端子VDDと、LSW5の入力端子VINと、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、バイポーラトランジスタS1のエミッタ端子と、抵抗器Rcと、FF17の電源端子VCCと、に接続されている。LSW4の出力端子VOUTから出力されるシステム電源電圧Vcc2が供給される配線を電源ラインPL2と記載する。 The output terminal VOUT of the LSW4 is connected to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM6, the emitter terminal of the bipolar transistor S1, and the resistor Rc. , and the power supply terminal VCC of the FF 17 . A wiring to which system power supply voltage Vcc2 output from output terminal VOUT of LSW4 is supplied is referred to as power supply line PL2.
 LSW5は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc2を出力端子VOUTから出力する。LSW5の制御端子ONは、MCU1の端子P23と接続されている。LSW5が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc2と同一であるが、システム電源電圧Vcc2と区別するために、LSW5の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc3と記載する。LSW5の出力端子VOUTから出力されるシステム電源電圧Vcc3が供給される配線を電源ラインPL3と記載する。 When the signal input to the control terminal ON becomes high level, the LSW5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT. A control terminal ON of LSW5 is connected to terminal P23 of MCU1. The voltage output from LSW5 is the same as the system power supply voltage Vcc2 if wiring resistance and the like are ignored. Described as voltage Vcc3. A wiring to which system power supply voltage Vcc3 output from output terminal VOUT of LSW5 is supplied is referred to as power supply line PL3.
 電源ラインPL3には、サーミスタT2と抵抗器Rt2の直列回路が接続され、抵抗器Rt2はグランドラインに接続されている。サーミスタT2と抵抗器Rt2は分圧回路を構成しており、これらの接続点は、MCU1の端子P21と接続されている。MCU1は、端子P21に入力される電圧に基づいて、サーミスタT2の温度変動(抵抗値変動)を検出し、その温度変動量によって、パフ動作の有無を判定する。 A series circuit of a thermistor T2 and a resistor Rt2 is connected to the power supply line PL3, and the resistor Rt2 is connected to the ground line. The thermistor T2 and the resistor Rt2 form a voltage dividing circuit, and their connection point is connected to the terminal P21 of the MCU1. The MCU1 detects the temperature variation (resistance value variation) of the thermistor T2 based on the voltage input to the terminal P21, and determines the presence or absence of the puff operation based on the amount of temperature variation.
 電源ラインPL3には、サーミスタT3と抵抗器Rt3の直列回路が接続され、抵抗器Rt3はグランドラインに接続されている。サーミスタT3と抵抗器Rt3は分圧回路を構成しており、これらの接続点は、MCU1の端子P13と、オペアンプOP2の反転入力端子と、に接続されている。MCU1は、端子P13に入力される電圧に基づいて、サーミスタT3の温度(ヒータHTRの温度に相当)を検出する。 A series circuit of a thermistor T3 and a resistor Rt3 is connected to the power supply line PL3, and the resistor Rt3 is connected to the ground line. The thermistor T3 and the resistor Rt3 form a voltage dividing circuit, and their connection point is connected to the terminal P13 of the MCU1 and the inverting input terminal of the operational amplifier OP2. The MCU1 detects the temperature of the thermistor T3 (corresponding to the temperature of the heater HTR) based on the voltage input to the terminal P13.
 電源ラインPL3には、サーミスタT4と抵抗器Rt4の直列回路が接続され、抵抗器Rt4はグランドラインに接続されている。サーミスタT4と抵抗器Rt4は分圧回路を構成しており、これらの接続点は、MCU1の端子P12と、オペアンプOP3の反転入力端子と、に接続されている。MCU1は、端子P12に入力される電圧に基づいて、サーミスタT4の温度(ケース110の温度に相当)を検出する。 A series circuit of a thermistor T4 and a resistor Rt4 is connected to the power supply line PL3, and the resistor Rt4 is connected to the ground line. The thermistor T4 and the resistor Rt4 form a voltage dividing circuit, and the connection point between them is connected to the terminal P12 of the MCU1 and the inverting input terminal of the operational amplifier OP3. The MCU1 detects the temperature of the thermistor T4 (corresponding to the temperature of the case 110) based on the voltage input to the terminal P12.
 電源ラインPL2には、MOSFETにより構成されたスイッチS7のソース端子が接続されている。スイッチS7のゲート端子は、MCU1の端子P20に接続されている。スイッチS7のドレイン端子は、振動モータMが接続される一対のコネクタの一方に接続されている。この一対のコネクタの他方はグランドラインに接続されている。MCU1は、端子P20の電位を操作することでスイッチS7の開閉を制御し、振動モータMを特定のパターンで振動させることができる。スイッチS7に代えて、専用のドライバICを用いてもよい。 A source terminal of a switch S7 composed of a MOSFET is connected to the power supply line PL2. The gate terminal of switch S7 is connected to terminal P20 of MCU1. A drain terminal of the switch S7 is connected to one of a pair of connectors to which the vibration motor M is connected. The other of the pair of connectors is connected to the ground line. The MCU1 can control the opening/closing of the switch S7 by manipulating the potential of the terminal P20, and vibrate the vibration motor M in a specific pattern. A dedicated driver IC may be used instead of the switch S7.
 電源ラインPL2には、オペアンプOP2の正電源端子と、オペアンプOP2の非反転入力端子に接続されている分圧回路Pd(2つの抵抗器の直列回路)と、が接続されている。分圧回路Pdを構成する2つの抵抗器の接続点は、オペアンプOP2の非反転入力端子に接続されている。オペアンプOP2は、ヒータHTRの温度に応じた信号(サーミスタT3の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT3としてNTC特性を持つものを用いているため、ヒータHTRの温度(サーミスタT3の温度)が高いほど、オペアンプOP2の出力電圧は低くなる。これは、オペアンプOP2の負電源端子はグランドラインへ接続されており、オペアンプOP2の反転入力端子に入力される電圧値(サーミスタT3と抵抗器Rt3による分圧値)が、オペアンプOP2の非反転入力端子に入力される電圧値(分圧回路Pdによる分圧値)より高くなると、オペアンプOP2の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、ヒータHTRの温度(サーミスタT3の温度)が高温になると、オペアンプOP2の出力電圧はローレベルになる。
 なお、サーミスタT3としてPTC特性を持つものを用いる場合には、オペアンプOP2の非反転入力端子に、サーミスタT3及び抵抗器Rt3の分圧回路の出力を接続し、オペアンプOP2の反転入力端子に、分圧回路Pdの出力を接続すればよい。
A positive power supply terminal of the operational amplifier OP2 and a voltage dividing circuit Pd (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP2 are connected to the power supply line PL2. A connection point between the two resistors forming the voltage dividing circuit Pd is connected to the non-inverting input terminal of the operational amplifier OP2. The operational amplifier OP2 outputs a signal corresponding to the temperature of the heater HTR (signal corresponding to the resistance value of the thermistor T3). In this embodiment, since the thermistor T3 has the NTC characteristic, the higher the temperature of the heater HTR (the temperature of the thermistor T3), the lower the output voltage of the operational amplifier OP2. This is because the negative power supply terminal of operational amplifier OP2 is connected to the ground line, and the voltage value input to the inverting input terminal of operational amplifier OP2 (divided voltage value by thermistor T3 and resistor Rt3) is the non-inverting input of operational amplifier OP2. This is because the value of the output voltage of the operational amplifier OP2 becomes substantially equal to the value of the ground potential when it becomes higher than the voltage value input to the terminal (divided voltage value by the voltage dividing circuit Pd). That is, when the temperature of the heater HTR (the temperature of the thermistor T3) becomes high, the output voltage of the operational amplifier OP2 becomes low level.
When a thermistor T3 having a PTC characteristic is used, the output of the voltage dividing circuit of the thermistor T3 and the resistor Rt3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP2. The output of the pressure circuit Pd may be connected.
 電源ラインPL2には、オペアンプOP3の正電源端子と、オペアンプOP3の非反転入力端子に接続されている分圧回路Pe(2つの抵抗器の直列回路)と、が接続されている。分圧回路Peを構成する2つの抵抗器の接続点は、オペアンプOP3の非反転入力端子に接続されている。オペアンプOP3は、ケース110の温度に応じた信号(サーミスタT4の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT4としてNTC特性を持つものを用いているため、ケース110の温度が高いほど、オペアンプOP3の出力電圧は低くなる。これは、オペアンプOP3の負電源端子はグランドラインへ接続されており、オペアンプOP3の反転入力端子に入力される電圧値(サーミスタT4と抵抗器Rt4による分圧値)が、オペアンプOP3の非反転入力端子に入力される電圧値(分圧回路Peによる分圧値)より高くなると、オペアンプOP3の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、サーミスタT4の温度が高温になると、オペアンプOP3の出力電圧が、ローレベルになる。
 なお、サーミスタT4としてPTC特性を持つものを用いる場合には、オペアンプOP3の非反転入力端子に、サーミスタT4及び抵抗器Rt4の分圧回路の出力を接続し、オペアンプOP3の反転入力端子に、分圧回路Peの出力を接続すればよい。
A positive power supply terminal of the operational amplifier OP3 and a voltage dividing circuit Pe (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP3 are connected to the power supply line PL2. A connection point between the two resistors forming the voltage dividing circuit Pe is connected to the non-inverting input terminal of the operational amplifier OP3. The operational amplifier OP3 outputs a signal corresponding to the temperature of the case 110 (a signal corresponding to the resistance value of the thermistor T4). In this embodiment, the thermistor T4 having the NTC characteristic is used, so the higher the temperature of the case 110, the lower the output voltage of the operational amplifier OP3. This is because the negative power supply terminal of operational amplifier OP3 is connected to the ground line, and the voltage value input to the inverting input terminal of operational amplifier OP3 (divided voltage value by thermistor T4 and resistor Rt4) is the non-inverting input of operational amplifier OP3. This is because the value of the output voltage of the operational amplifier OP3 becomes substantially equal to the value of the ground potential when it becomes higher than the voltage value input to the terminal (divided voltage value by the voltage dividing circuit Pe). That is, when the temperature of the thermistor T4 becomes high, the output voltage of the operational amplifier OP3 becomes low level.
When a thermistor T4 having a PTC characteristic is used, the output of the voltage dividing circuit of the thermistor T4 and the resistor Rt4 is connected to the non-inverting input terminal of the operational amplifier OP3, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP3. The output of the pressure circuit Pe may be connected.
 オペアンプOP2の出力端子には抵抗器R1が接続されている。抵抗器R1には、ダイオードD1のカソードが接続されている。ダイオードD1のアノードは、オペアンプOP3の出力端子と、FF17のD端子と、FF17のCLR( ̄)端子と、に接続されている。抵抗器R1とダイオードD1との接続ラインには、電源ラインPL1に接続された抵抗器R2が接続されている。また、この接続ラインには、FF16のCLR( ̄)端子が接続されている。 A resistor R1 is connected to the output terminal of the operational amplifier OP2. A cathode of a diode D1 is connected to the resistor R1. The anode of the diode D1 is connected to the output terminal of the operational amplifier OP3, the D terminal of the FF17, and the CLR (~) terminal of the FF17. A connection line between the resistor R1 and the diode D1 is connected to a resistor R2 connected to the power supply line PL1. Also, the CLR (~) terminal of the FF 16 is connected to this connection line.
 ダイオードD1のアノード及びオペアンプOP3の出力端子の接続点と、FF17のD端子との接続ラインには、抵抗器R3の一端が接続されている。抵抗器R3の他端は電源ラインPL2に接続されている。更に、この接続ラインには、残量計IC12の通知端子12aと接続されているダイオードD2のアノードと、ダイオードD3のアノードと、FF17のCLR( ̄)端子と、が接続されている。ダイオードD3のカソードは、MCU1の端子P5に接続されている。 One end of a resistor R3 is connected to the connection line between the anode of the diode D1 and the output terminal of the operational amplifier OP3 and the D terminal of the FF17. The other end of resistor R3 is connected to power supply line PL2. Furthermore, the anode of the diode D2 connected to the notification terminal 12a of the fuel gauge IC12, the anode of the diode D3, and the CLR (~) terminal of the FF 17 are connected to this connection line. The cathode of diode D3 is connected to terminal P5 of MCU1.
 FF16は、ヒータHTRの温度が過大となり、オペアンプOP2から出力される信号が小さくなって、CLR( ̄)端子に入力される信号がローレベルになると、Q( ̄)端子からハイレベルの信号をMCU1の端子P11に入力する。FF16のD端子には電源ラインPL1からハイレベルのシステム電源電圧Vcc1が供給されている。このため、FF16では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q( ̄)端子からはローレベルの信号が出力され続ける。 When the temperature of the heater HTR becomes excessive and the signal output from the operational amplifier OP2 becomes low and the signal input to the CLR (~) terminal becomes low level, the FF16 outputs a high level signal from the Q (~) terminal. Input to terminal P11 of MCU1. A high-level system power supply voltage Vcc1 is supplied from the power supply line PL1 to the D terminal of the FF16. Therefore, in the FF 16, a low level signal continues to be output from the Q (~) terminal unless the signal input to the CLR (~) terminal operating in negative logic becomes low level.
 FF17のCLR( ̄)端子に入力される信号は、ヒータHTRの温度が過大となった場合と、ケース110の温度が過大となった場合と、残量計IC12の通知端子12aから異常検出を示すローレベルの信号が出力された場合のいずれかの場合に、ローレベルとなる。FF17は、CLR( ̄)端子に入力される信号がローレベルになると、Q端子からローレベルの信号を出力する。このローレベルの信号は、MCU1の端子P10と、スイッチS6のゲート端子と、昇圧DC/DCコンバータ9のイネーブル端子ENと、充電IC2に接続されたバイポーラトランジスタS1のベース端子と、にそれぞれ入力される。スイッチS6のゲート端子にローレベルの信号が入力されると、スイッチS6を構成するNチャネル型MOSFETのゲート-ソース間電圧が閾値電圧未満となるため、スイッチS6がオフになる。昇圧DC/DCコンバータ9のイネーブル端子ENにローレベルの信号が入力されると、昇圧DC/DCコンバータ9のイネーブル端子ENは正論理であるため、昇圧動作が停止する。バイポーラトランジスタS1のベース端子にローレベルの信号が入力されると、バイポーラトランジスタS1がオンになる(コレクタ端子から増幅された電流が出力される)。バイポーラトランジスタS1がオンになると、充電IC2のCE( ̄)端子にバイポーラトランジスタS1を介してハイレベルのシステム電源電圧Vcc2が入力される。充電IC2のCE( ̄)端子は負論理であるため、電源BATの充電が停止される。これらにより、ヒータHTRの加熱と電源BATの充電が停止される。なお、MCU1が端子P22から充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力しようとしても、バイポーラトランジスタS1がオンされると、増幅された電流が、コレクタ端子からMCU1の端子P22および充電IC2の充電イネーブル端子CE( ̄)に入力される。これにより、充電IC2の充電イネーブル端子CE( ̄)にはハイレベルの信号が入力される点に留意されたい。 The signal input to the CLR (~) terminal of the FF 17 is when the temperature of the heater HTR becomes excessive, when the temperature of the case 110 becomes excessive, and when an abnormality is detected from the notification terminal 12a of the fuel gauge IC 12. When the low-level signal shown is output, it becomes low-level. The FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR (~) terminal becomes low level. This low-level signal is input to terminal P10 of MCU1, the gate terminal of switch S6, the enable terminal EN of boost DC/DC converter 9, and the base terminal of bipolar transistor S1 connected to charging IC2. be. When a low level signal is input to the gate terminal of the switch S6, the gate-source voltage of the N-channel MOSFET constituting the switch S6 becomes less than the threshold voltage, so the switch S6 is turned off. When a low level signal is input to the enable terminal EN of the boost DC/DC converter 9, the boost operation stops because the enable terminal EN of the boost DC/DC converter 9 is positive logic. When a low level signal is input to the base terminal of the bipolar transistor S1, the bipolar transistor S1 is turned on (amplified current is output from the collector terminal). When the bipolar transistor S1 is turned on, the high level system power supply voltage Vcc2 is input to the CE (~) terminal of the charging IC2 through the bipolar transistor S1. Since the CE (~) terminal of the charging IC2 is of negative logic, the charging of the power source BAT is stopped. As a result, the heating of the heater HTR and the charging of the power supply BAT are stopped. Even if the MCU1 attempts to output a low-level enable signal from the terminal P22 to the charge enable terminal CE (~) of the charging IC2, when the bipolar transistor S1 is turned on, the amplified current is transferred from the collector terminal to the MCU1 and the charge enable terminal CE (~) of the charge IC2. Note that a high level signal is input to the charge enable terminal CE (~) of the charge IC2.
 FF17のD端子には電源ラインPL2からハイレベルのシステム電源電圧Vcc2が供給されている。このため、FF17では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q端子からハイレベルの信号が出力され続ける。オペアンプOP3の出力端子からローレベルの信号が出力されると、オペアンプOP2の出力端子から出力される信号のレベルに拠らず、FF17のCLR( ̄)端子にはローレベルの信号が入力される。オペアンプOP2の出力端子からハイレベルの信号が出力される場合には、オペアンプOP3の出力端子から出力されるローレベルの信号は、ダイオードD1によってこのハイレベルの信号の影響を受けない点に留意されたい。また、オペアンプOP2の出力端子からローレベルの信号が出力される場合には、オペアンプOP3の出力端子からハイレベルの信号が出力されたとしても、ダイオードD1を介してこのハイレベルの信号はローレベルの信号に置き換わる。 A high-level system power supply voltage Vcc2 is supplied from the power supply line PL2 to the D terminal of the FF17. Therefore, the FF 17 continues to output a high level signal from the Q terminal unless the signal input to the CLR (~) terminal operating in negative logic becomes low level. When a low level signal is output from the output terminal of the operational amplifier OP3, a low level signal is input to the CLR (~) terminal of the FF17 regardless of the level of the signal output from the output terminal of the operational amplifier OP2. . Note that when a high level signal is output from the output terminal of the operational amplifier OP2, the low level signal output from the output terminal of the operational amplifier OP3 is not affected by the high level signal due to the diode D1. sea bream. Further, when a low level signal is output from the output terminal of the operational amplifier OP2, even if a high level signal is output from the output terminal of the operational amplifier OP3, the high level signal is passed through the diode D1. signal.
 電源ラインPL2は、MCU搭載基板161からLED搭載基板163及びホールIC搭載基板164側に向けて更に分岐している。この分岐した電源ラインPL2には、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、が接続されている。 The power line PL2 is further branched from the MCU mounting board 161 toward the LED mounting board 163 and the Hall IC mounting board 164 side. The power terminal VDD of the hall IC 13, the power terminal VCC of the communication IC 15, and the power terminal VDD of the hall IC 14 are connected to the branched power line PL2.
 ホールIC13の出力端子OUTは、MCU1の端子P3と、スイッチドライバ7の端子SW2と、に接続されている。アウターパネル115が外れると、ホールIC13の出力端子OUTからローレベルの信号が出力される。MCU1は、端子P3に入力される信号により、アウターパネル115の装着有無を判定する。 The output terminal OUT of the Hall IC 13 is connected to the terminal P3 of the MCU1 and the terminal SW2 of the switch driver 7. When the outer panel 115 is removed, a low level signal is output from the output terminal OUT of the Hall IC 13 . The MCU 1 determines whether or not the outer panel 115 is attached based on the signal input to the terminal P3.
 LED搭載基板163には、操作スイッチOPSと接続された直列回路(抵抗器とコンデンサの直列回路)が設けられている。この直列回路は、電源ラインPL2に接続されている。この直列回路の抵抗器とコンデンサの接続点は、MCU1の端子P4と、操作スイッチOPSと、スイッチドライバ7の端子SW1と、に接続されている。操作スイッチOPSが押下されていない状態では、操作スイッチOPSは導通せず、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、システム電源電圧Vcc2によりハイレベルとなる。操作スイッチOPSが押下されて操作スイッチOPSが導通状態になると、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、グランドラインへ接続されるためローレベルとなる。MCU1は、端子P4に入力される信号により、操作スイッチOPSの操作を検出する。 A series circuit (a series circuit of a resistor and a capacitor) connected to the operation switch OPS is provided on the LED mounting board 163 . This series circuit is connected to power supply line PL2. A connection point between the resistor and the capacitor in this series circuit is connected to the terminal P4 of the MCU 1, the operation switch OPS, and the terminal SW1 of the switch driver 7. FIG. When the operation switch OPS is not pressed, the operation switch OPS is not conductive, and the signals input to the terminal P4 of the MCU1 and the terminal SW1 of the switch driver 7 are at a high level due to the system power supply voltage Vcc2. When the operation switch OPS is pressed and turned on, the signals input to the terminal P4 of the MCU 1 and the terminal SW1 of the switch driver 7 are connected to the ground line, and thus become low level. The MCU1 detects the operation of the operation switch OPS from the signal input to the terminal P4.
 スイッチドライバ7には、リセット入力端子RSTBが設けられている。リセット入力端子RSTBは、LSW4の制御端子ONに接続されている。スイッチドライバ7は、端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルとなった場合(アウターパネル115が外されており、且つ、操作スイッチOPSが押下された状態)には、リセット入力端子RSTBからローレベルの信号を出力することで、LSW4の出力動作を停止させる。つまり、本来はアウターパネル115の押圧部117を介して押し下げられる操作スイッチOPSが、アウターパネル115が外れた状態でユーザによって直接押し下げられると、スイッチドライバ7の端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルになる。 The switch driver 7 is provided with a reset input terminal RSTB. The reset input terminal RSTB is connected to the control terminal ON of LSW4. When the levels of the signals input to the terminals SW1 and SW2 are both low (the outer panel 115 is removed and the operation switch OPS is pressed), the switch driver 7 By outputting a low level signal from the reset input terminal RSTB, the output operation of LSW4 is stopped. In other words, when the operation switch OPS, which is originally pushed down via the pressing portion 117 of the outer panel 115, is directly pushed down by the user with the outer panel 115 removed, the signal is input to the terminals SW1 and SW2 of the switch driver 7. become low level.
<吸引器の動作モード毎の動作>
 以下、図13~図19を参照して、図10に示す電気回路の動作を説明する。図13は、スリープモードにおける電気回路の動作を説明するための図である。図14は、アクティブモードにおける電気回路の動作を説明するための図である。図15は、加熱初期設定モードにおける電気回路の動作を説明するための図である。図16は、加熱モードにおけるヒータHTRの加熱時の電気回路の動作を説明するための図である。図17は、加熱モードにおけるヒータHTRの温度検出時の電気回路の動作を説明するための図である。図18は、充電モードにおける電気回路の動作を説明するための図である。図19は、MCU1のリセット(再起動)時の電気回路の動作を説明するための図である。図13~図19の各々において、チップ化された電子部品の端子のうち、破線の楕円で囲まれた端子は、電源電圧VBAT、USB電圧VUSB、及びシステム電源電圧等の入力又は出力がなされている端子を示している。
<Operation for each operating mode of the aspirator>
The operation of the electric circuit shown in FIG. 10 will be described below with reference to FIGS. 13 to 19. FIG. FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode. FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode. FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode. FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode. FIG. 17 is a diagram for explaining the operation of the electric circuit when the temperature of the heater HTR is detected in the heating mode. FIG. 18 is a diagram for explaining the operation of the electric circuit in charging mode. FIG. 19 is a diagram for explaining the operation of the electric circuit when the MCU 1 is reset (restarted). In each of FIGS. 13 to 19, among the terminals of the chipped electronic component, the terminals surrounded by dashed ellipses have inputs or outputs such as the power supply voltage V BAT , the USB voltage V USB , and the system power supply voltage. It shows the terminals that have been made.
 いずれの動作モードにおいても、電源電圧VBATは、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batに入力されている。 In any operation mode, the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2. FIG.
<スリープモード:図13>
 MCU1は、充電IC2のVBATパワーパス機能を有効とし、OTG機能と充電機能を無効とする。充電IC2の入力端子VBUSにUSB電圧VUSBが入力されないことで、充電IC2のVBATパワーパス機能は有効になる。通信線LNからOTG機能を有効にするための信号がMCU1から充電IC2へ出力されないため、OTG機能は無効になる。このため、充電IC2は、充電端子batに入力された電源電圧VBATからシステム電源電圧Vcc0を生成して、出力端子SYSから出力する。出力端子SYSから出力されたシステム電源電圧Vcc0は、昇降圧DC/DCコンバータ8の入力端子VIN及びイネーブル端子ENに入力される。昇降圧DC/DCコンバータ8は、正論理であるイネーブル端子ENにハイレベルのシステム電源電圧Vcc0が入力されることでイネーブルとなり、システム電源電圧Vcc0からシステム電源電圧Vcc1を生成して、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されたシステム電源電圧Vcc1は、LSW4の入力端子VINと、LSW4の制御端子ONと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、にそれぞれ供給される。
<Sleep mode: Fig. 13>
MCU1 enables the V BAT power pass function of charging IC2 and disables the OTG function and charging function. Since the USB voltage VUSB is not input to the input terminal VBUS of the charging IC2, the VBAT power pass function of the charging IC2 is enabled. Since the signal for enabling the OTG function is not output from the MCU1 to the charging IC2 from the communication line LN, the OTG function is disabled. Therefore, the charging IC2 generates the system power supply voltage Vcc0 from the power supply voltage VBAT input to the charging terminal bat, and outputs it from the output terminal SYS. The system power supply voltage Vcc0 output from the output terminal SYS is input to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 . The buck-boost DC/DC converter 8 is enabled by inputting a high-level system power supply voltage Vcc0 to an enable terminal EN of positive logic, generates a system power supply voltage Vcc1 from the system power supply voltage Vcc0, and outputs it to an output terminal VOUT. Output from The system power supply voltage Vcc1 output from the output terminal VOUT of the buck-boost DC/DC converter 8 is applied to the input terminal VIN of the LSW4, the control terminal ON of the LSW4, the input terminal VIN of the switch driver 7, the power supply terminal VCC of the FF16, and the D terminal and , respectively.
 LSW4は、制御端子ONにシステム電源電圧Vcc1が入力されることで、入力端子VINに入力されたシステム電源電圧Vcc1を、出力端子VOUTからシステム電源電圧Vcc2として出力する。LSW4から出力されたシステム電源電圧Vcc2は、MCU1の電源端子VDDと、LSW5の入力端子VINと、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、に入力される。更に、システム電源電圧Vcc2は、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、充電IC2の充電イネーブル端子CE( ̄)に接続された抵抗器Rc及びバイポーラトランジスタS1と、FF17の電源端子VCCと、オペアンプOP3の正電源端子と、分圧回路Peと、オペアンプOP2の正電源端子と、分圧回路Pdと、にそれぞれ供給される。充電IC2に接続されているバイポーラトランジスタS1は、FF17のQ端子からローレベルの信号が出力されない限りはオフとなっている。そのため、LSW4で生成されたシステム電源電圧Vcc2は、充電IC2の充電イネーブル端子CE( ̄)にも入力される。充電IC2の充電イネーブル端子CE( ̄)は負論理のため、この状態では、充電IC2による充電機能はオフとなる。 When the system power supply voltage Vcc1 is input to the control terminal ON, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN as the system power supply voltage Vcc2 from the output terminal VOUT. The system power supply voltage Vcc2 output from the LSW4 is applied to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the Hall IC 13, the power supply terminal VCC of the communication IC 15, and the power supply terminal VDD of the Hall IC 14. is entered. Furthermore, the system power supply voltage Vcc2 is the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM 6, the resistor Rc and the bipolar transistor S1 connected to the charge enable terminal CE (~) of the charging IC2, and the FF17. They are supplied to the power supply terminal VCC, the positive power supply terminal of the operational amplifier OP3, the voltage dividing circuit Pe, the positive power supply terminal of the operational amplifier OP2, and the voltage dividing circuit Pd. The bipolar transistor S1 connected to the charging IC2 is off unless a low level signal is output from the Q terminal of the FF17. Therefore, the system power supply voltage Vcc2 generated by the LSW4 is also input to the charging enable terminal CE (~) of the charging IC2. Since the charge enable terminal CE (~) of the charge IC2 is of negative logic, the charge function of the charge IC2 is turned off in this state.
 このように、スリープモードにおいては、LSW5はシステム電源電圧Vcc3の出力を停止しているため、電源ラインPL3に接続される電子部品への電力供給は停止される。また、スリープモードにおいては、充電IC2のOTG機能は停止しているため、LED L1~L8への電力供給は停止される。 Thus, in the sleep mode, LSW 5 stops outputting system power supply voltage Vcc3, so power supply to electronic components connected to power supply line PL3 is stopped. Also, in the sleep mode, the OTG function of the charging IC 2 is stopped, so power supply to the LEDs L1 to L8 is stopped.
<アクティブモード:図14>
 MCU1は、図13のスリープモードの状態から、端子P8に入力される信号がハイレベルとなり、スライダ119が開いたことを検出すると、端子P23からLSW5の制御端子ONにハイレベルの信号を入力する。これにより、LSW5は入力端子VINに入力されているシステム電源電圧Vcc2を、システム電源電圧Vcc3として、出力端子VOUTから出力する。LSW5の出力端子VOUTから出力されたシステム電源電圧Vcc3は、サーミスタT2と、サーミスタT3と、サーミスタT4と、に供給される。
<Active mode: Fig. 14>
When the MCU 1 detects that the signal input to the terminal P8 becomes high level from the sleep mode state of FIG. 13 and the slider 119 is opened, it inputs a high level signal from the terminal P23 to the control terminal ON of the LSW5. . As a result, the LSW 5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT as the system power supply voltage Vcc3. The system power supply voltage Vcc3 output from the output terminal VOUT of the LSW5 is supplied to the thermistor T2, the thermistor T3, and the thermistor T4.
 更に、MCU1は、スライダ119が開いたことを検出すると、通信線LNを介して、充電IC2のOTG機能を有効化する。これにより、充電IC2は、充電端子batから入力された電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する。入力端子VBUSから出力されたシステム電源電圧Vcc4は、
LED L1~L8に供給される。
Further, when the MCU1 detects that the slider 119 is opened, the MCU1 enables the OTG function of the charging IC2 via the communication line LN. As a result, the charging IC2 outputs from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input from the charging terminal bat. The system power supply voltage Vcc4 output from the input terminal VBUS is
It is fed to the LEDs L1-L8.
<加熱初期設定モード:図15>
 図14の状態から、端子P4に入力される信号がローレベルになる(操作スイッチOPSの押下がなされる)と、MCU1は、加熱に必要な各種の設定を行った後、端子P14から、昇圧DC/DCコンバータ9のイネーブル端子ENにハイレベルのイネーブル信号を入力する。これにより、昇圧DC/DCコンバータ9は、電源電圧VBATを昇圧して得られる駆動電圧Vbstを出力端子VOUTから出力する。駆動電圧Vbstは、スイッチS3とスイッチS4に供給される。この状態では、スイッチS3とスイッチS4はオフとなっている。また、端子P14から出力されたハイレベルのイネーブル信号によってスイッチS6はオンされる。これにより、ヒータHTRの負極側端子がグランドラインに接続されて、スイッチS3をONにすればヒータHTRを加熱可能な状態になる。MCU1の端子P14からハイレベルの信号のイネーブル信号が出力された後、加熱モードに移行する。
<Heating initial setting mode: Fig. 15>
From the state of FIG. 14, when the signal input to the terminal P4 becomes low level (the operation switch OPS is pressed), the MCU1 performs various settings necessary for heating, and then boosts the voltage from the terminal P14. A high-level enable signal is input to the enable terminal EN of the DC/DC converter 9 . As a result, the step-up DC/DC converter 9 outputs the driving voltage V bst obtained by stepping up the power supply voltage V BAT from the output terminal VOUT. The drive voltage Vbst is supplied to switch S3 and switch S4. In this state, the switches S3 and S4 are off. Also, the switch S6 is turned on by the high-level enable signal output from the terminal P14. As a result, the negative terminal of the heater HTR is connected to the ground line, and the heater HTR can be heated by turning on the switch S3. After a high-level enable signal is output from the terminal P14 of the MCU1, the mode shifts to the heating mode.
<加熱モード時のヒータ加熱:図16>
 図15の状態において、MCU1は、端子P16に接続されたスイッチS3のスイッチング制御と、端子P15に接続されたスイッチS4のスイッチング制御を開始する。これらスイッチング制御は、上述した加熱初期設定モードが完了すれば自動的に開始されてもよいし、さらなる操作スイッチOPSの押下によって開始されてもよい。具体的には、MCU1は、図16のように、スイッチS3をオンし、スイッチS4をオフして、駆動電圧VbstをヒータHTRに供給し、エアロゾル生成のためのヒータHTRの加熱を行う加熱制御と、図17のように、スイッチS3をオフし、スイッチS4をオンして、ヒータHTRの温度を検出する温度検出制御と、を行う。
<Heater heating in heating mode: Fig. 16>
In the state of FIG. 15, the MCU1 starts switching control of the switch S3 connected to the terminal P16 and switching control of the switch S4 connected to the terminal P15. These switching controls may be automatically started when the heating initial setting mode described above is completed, or may be started by further pressing the operation switch OPS. Specifically, as shown in FIG. 16, the MCU 1 turns on the switch S3 and turns off the switch S4 to supply the driving voltage Vbst to the heater HTR to heat the heater HTR for generating aerosol. and temperature detection control for detecting the temperature of the heater HTR by turning off the switch S3 and turning on the switch S4 as shown in FIG.
 図16に示すように、加熱制御時においては、駆動電圧Vbstは、スイッチS5のゲートにも供給されて、スイッチS5がオンとなる。また、加熱制御時には、スイッチS3を通過した駆動電圧Vbstが、抵抗器Rsを介して、オペアンプOP1の正電源端子にも入力される。抵抗器Rsの抵抗値は、オペアンプOP1の内部抵抗値と比べると無視できるほど小さい。そのため、加熱制御時において、オペアンプOP1の正電源端子に入力される電圧は、駆動電圧Vbstとほぼ同等になる。 As shown in FIG. 16, during heating control, the driving voltage Vbst is also supplied to the gate of the switch S5 to turn on the switch S5. Further, during heating control, the drive voltage Vbst that has passed through the switch S3 is also input to the positive power supply terminal of the operational amplifier OP1 via the resistor Rs. The resistance value of the resistor Rs is negligibly small compared to the internal resistance value of the operational amplifier OP1. Therefore, during heating control, the voltage input to the positive power supply terminal of the operational amplifier OP1 is approximately equal to the drive voltage Vbst .
 なお、抵抗器R4の抵抗値は、スイッチS5のオン抵抗値よりも大きくなっている。加熱制御時にもオペアンプOP1は動作するが、加熱制御時にはスイッチS5がオンになる。スイッチS5がオンの状態では、オペアンプOP1の出力電圧が、抵抗器R4とスイッチS5の分圧回路によって分圧されて、MCU1の端子P9に入力される。抵抗器R4の抵抗値がスイッチS5のオン抵抗値よりも大きくなっていることで、MCU1の端子P9に入力される電圧は十分に小さくなる。これにより、オペアンプOP1からMCU1に対して大きな電圧が入力されるのを防ぐことができる。 It should be noted that the resistance value of the resistor R4 is greater than the ON resistance value of the switch S5. Although the operational amplifier OP1 operates during heating control, the switch S5 is turned on during heating control. When the switch S5 is on, the output voltage of the operational amplifier OP1 is divided by the voltage dividing circuit of the resistor R4 and the switch S5 and input to the terminal P9 of the MCU1. Since the resistance value of the resistor R4 is higher than the ON resistance value of the switch S5, the voltage input to the terminal P9 of the MCU1 is sufficiently reduced. This can prevent a large voltage from being input from the operational amplifier OP1 to the MCU1.
<加熱モード時のヒータ温度検出:図17>
 図17に示すように、温度検出制御時には、駆動電圧VbstがオペアンプOP1の正電源端子に入力されると共に、分圧回路Pbに入力される。分圧回路Pbによって分圧された電圧は、MCU1の端子P18に入力される。MCU1は、端子P18に入力される電圧に基づいて、温度検出制御時における抵抗器RsとヒータHTRの直列回路に印加される基準電圧Vtempを取得する。
<Heater temperature detection in heating mode: Fig. 17>
As shown in FIG. 17, during temperature detection control, the driving voltage Vbst is input to the positive power supply terminal of the operational amplifier OP1 and also to the voltage dividing circuit Pb. The voltage divided by the voltage dividing circuit Pb is input to the terminal P18 of the MCU1. Based on the voltage input to the terminal P18, the MCU1 acquires the reference voltage V temp applied to the series circuit of the resistor Rs and the heater HTR during temperature detection control.
 また、温度検出制御時には、駆動電圧Vbst(基準電圧Vtemp)が、抵抗器RsとヒータHTRの直列回路に供給される。そして、この駆動電圧Vbst(基準電圧Vtemp)を抵抗器RsとヒータHTRによって分圧した電圧Vheatが、オペアンプOP1の非反転入力端子に入力される。抵抗器Rsの抵抗値はヒータHTRの抵抗値よりも十分に大きいため、電圧Vheatは、駆動電圧Vbstよりも十分に低い値である。温度検出制御時には、この低い電圧VheatがスイッチS5のゲート端子にも供給されることで、スイッチS5はオフされる。オペアンプOP1は、反転入力端子に入力される電圧と非反転入力端子に入力される電圧Vheatの差を増幅して出力する。 Further, during temperature detection control, the driving voltage V bst (reference voltage V temp ) is supplied to the series circuit of the resistor Rs and the heater HTR. A voltage V heat obtained by dividing the driving voltage V bst (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1. Since the resistance value of the resistor Rs is sufficiently higher than the resistance value of the heater HTR, the voltage V heat is sufficiently lower than the driving voltage V bst . During temperature detection control, the switch S5 is turned off by supplying the low voltage V heat to the gate terminal of the switch S5. The operational amplifier OP1 amplifies and outputs the difference between the voltage input to the inverting input terminal and the voltage V heat input to the non-inverting input terminal.
 オペアンプOP1の出力信号は、MCU1の端子P9に入力される。MCU1は、端子P9に入力された信号と、端子P18の入力電圧に基づいて取得した基準電圧Vtempと、既知の抵抗器Rsの電気抵抗値と、に基づいて、ヒータHTRの温度を取得する。MCU1は、取得したヒータHTRの温度に基づいて、ヒータHTRの加熱制御(例えばヒータHTRの温度が目標温度となるような制御)を行う。 The output signal of operational amplifier OP1 is input to terminal P9 of MCU1. The MCU1 obtains the temperature of the heater HTR based on the signal input to the terminal P9, the reference voltage V temp obtained based on the input voltage of the terminal P18, and the known electrical resistance value of the resistor Rs. . Based on the acquired temperature of the heater HTR, the MCU 1 performs heating control of the heater HTR (for example, control so that the temperature of the heater HTR becomes a target temperature).
 なお、MCU1は、スイッチS3とスイッチS4をそれぞれオフにしている期間(ヒータHTRへの通電を行っていない期間)においても、ヒータHTRの温度を取得することができる。具体的には、MCU1は、端子P13に入力される電圧(サーミスタT3と抵抗器Rt3から構成される分圧回路の出力電圧)に基づいて、ヒータHTRの温度を取得する。 Note that the MCU 1 can obtain the temperature of the heater HTR even during periods when the switches S3 and S4 are turned off (periods when the heater HTR is not energized). Specifically, the MCU1 obtains the temperature of the heater HTR based on the voltage input to the terminal P13 (the output voltage of the voltage dividing circuit composed of the thermistor T3 and the resistor Rt3).
 また、MCU1は、任意のタイミングにて、ケース110の温度の取得も可能である。具体的には、MCU1は、端子P12に入力される電圧(サーミスタT4と抵抗器Rt4から構成される分圧回路の出力電圧)に基づいて、ケース110の温度を取得する。 Also, the MCU 1 can acquire the temperature of the case 110 at any timing. Specifically, the MCU1 obtains the temperature of the case 110 based on the voltage input to the terminal P12 (the output voltage of the voltage dividing circuit composed of the thermistor T4 and the resistor Rt4).
<充電モード:図18>
 図18は、スリープモードの状態でUSB接続がなされた場合を例示している。USB接続がなされると、USB電圧VUSBが過電圧保護IC11を介してLSW3の入力端子VINに入力される。USB電圧VUSBは、LSW3の入力端子VINに接続された分圧回路Pfにも供給される。USB接続がなされた直後の時点では、バイポーラトランジスタS2がオンとなっているため、LSW3の制御端子ONに入力される信号はローレベルのままとなる。USB電圧VUSBは、MCU1の端子P17に接続された分圧回路Pcにも供給され、この分圧回路Pcで分圧された電圧が端子P17に入力される。MCU1は、端子P17に入力された電圧に基づいて、USB接続がなされたことを検出する。
<Charging mode: Fig. 18>
FIG. 18 exemplifies a case where a USB connection is made in sleep mode. When the USB connection is made, the USB voltage VUSB is input to the input terminal VIN of LSW3 via the overvoltage protection IC11. The USB voltage V USB is also supplied to a voltage dividing circuit Pf connected to the input terminal VIN of LSW3. Since the bipolar transistor S2 is ON immediately after the USB connection is made, the signal input to the control terminal ON of the LSW3 remains at a low level. The USB voltage V USB is also supplied to the voltage dividing circuit Pc connected to the terminal P17 of the MCU1, and the voltage divided by this voltage dividing circuit Pc is input to the terminal P17. The MCU1 detects that the USB connection has been made based on the voltage input to the terminal P17.
 MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフする。バイポーラトランジスタS2のゲート端子にローレベルの信号を入力すると、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。これにより、LSW3の制御端子ONにハイレベルの信号が入力されて、LSW3は、USB電圧VUSBを出力端子VOUTから出力する。LSW3から出力されたUSB電圧VUSBは、充電IC2の入力端子VBUSに入力される。また、LSW3から出力されたUSB電圧VUSBは、そのままシステム電源電圧Vcc4として、LED L1~L8に供給される。 When the MCU1 detects that the USB connection has been made, the MCU1 turns off the bipolar transistor S2 connected to the terminal P19. When a low level signal is input to the gate terminal of the bipolar transistor S2, the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. As a result, a high-level signal is input to the control terminal ON of LSW3, and LSW3 outputs the USB voltage VUSB from the output terminal VOUT. The USB voltage VUSB output from LSW3 is input to the input terminal VBUS of charging IC2. In addition, the USB voltage V_USB output from LSW3 is directly supplied to LEDs L1 to L8 as system power supply voltage Vcc4.
 MCU1は、USB接続がなされたことを検出すると、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力する。これにより、充電IC2は、電源BATの充電機能を有効化し、入力端子VBUSに入力されるUSB電圧VUSBによる電源BATの充電を開始する。 When the MCU1 detects that the USB connection has been established, the MCU1 further outputs a low-level enable signal from the terminal P22 to the charge enable terminal CE(~) of the charge IC2. As a result, the charging IC 2 enables the charging function of the power supply BAT, and starts charging the power supply BAT with the USB voltage VUSB input to the input terminal VBUS.
 なお、アクティブモードの状態でUSB接続がなされた場合には、MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフし、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力し、更に、通信線LNを利用したシリアル通信によって、充電IC2のOTG機能をオフする。これにより、LED L1~L8に供給されるシステム電源電圧Vcc4は、充電IC2のOTG機能で生成されていた電圧(電源電圧VBATに基づく電圧)から、LSW3から出力されたUSB電圧VUSBに切り替わる。LED L1~L8は、MCU1によって内蔵トランジスタのオン制御がなされない限りは作動しない。このため、OTG機能のオンからオフへの過渡期における不安定な電圧がLED L1~L8に供給されるのは防がれる。 When the USB connection is made in the active mode, when the MCU1 detects that the USB connection is made, it turns off the bipolar transistor S2 connected to the terminal P19. A low-level enable signal is output to the charge enable terminal CE (~) of , and the OTG function of the charge IC 2 is turned off by serial communication using the communication line LN. As a result, the system power supply voltage Vcc4 supplied to the LEDs L1 to L8 is switched from the voltage generated by the OTG function of the charging IC 2 (voltage based on the power supply voltage VBAT) to the USB voltage VUSB output from the LSW3. . The LEDs L1 to L8 do not operate unless the MCU1 turns on the built-in transistors. This prevents an unstable voltage from being supplied to the LEDs L1-L8 during the on-to-off transition of the OTG function.
 図18では、充電モードにおけるシステム電源電圧の供給状態は、スリープモードと同じとしている。しかし、充電モードにおけるシステム電源電圧の供給状態は、図14に示したアクティブモードと同じにすることが好ましい。すなわち、充電モードにおいては、後述する温度管理のために、サーミスタT2~T4にシステム電源電圧Vcc3が供給された状態となっていることが好ましい。  In FIG. 18, the supply state of the system power supply voltage in the charge mode is the same as in the sleep mode. However, it is preferable that the supply state of the system power supply voltage in the charge mode be the same as in the active mode shown in FIG. That is, in the charging mode, it is preferable that the system power supply voltage Vcc3 is supplied to the thermistors T2 to T4 for temperature control, which will be described later.
<MCUのリセット:図19>
 アウターパネル115が外されてホールIC13の出力がローレベルとなり、操作スイッチOPSのオン操作がなされてMCU1の端子P4に入力される信号がローレベルになると、スイッチドライバ7の端子SW1と端子SW2が共にローレベルとなる。これにより、スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力する。リセット入力端子RSTBから出力されたローレベルの信号はLSW4の制御端子ONに入力される。これにより、LSW4は、出力端子VOUTからのシステム電源電圧Vcc2の出力を停止する。システム電源電圧Vcc2の出力が停止されることで、MCU1の電源端子VDDにシステム電源電圧Vcc2が入力されなくなるため、MCU1は停止する。
<Reset MCU: Fig. 19>
When the outer panel 115 is removed, the output of the hall IC 13 becomes low level, and the signal input to the terminal P4 of the MCU 1 becomes low level by turning on the operation switch OPS, the terminals SW1 and SW2 of the switch driver 7 are turned on. Both become low level. As a result, the switch driver 7 outputs a low level signal from the reset input terminal RSTB. A low-level signal output from the reset input terminal RSTB is input to the control terminal ON of LSW4. As a result, LSW4 stops outputting system power supply voltage Vcc2 from output terminal VOUT. Since the output of the system power supply voltage Vcc2 is stopped, the system power supply voltage Vcc2 is no longer input to the power supply terminal VDD of the MCU1, so the MCU1 is stopped.
 スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力している時間が既定時間に達するか、端子SW1と端子SW2のいずれかに入力される信号がハイレベルになると、リセット入力端子RSTBから出力する信号をハイレベルに戻す。これにより、LSW4の制御端子ONがハイレベルとなり、システム電源電圧Vcc2が各部に供給される状態に復帰する。 The switch driver 7 outputs a low-level signal from the reset input terminal RSTB when it reaches a predetermined time, or when the signal input to either the terminal SW1 or the terminal SW2 becomes high level, the reset input terminal RSTB is output. return the signal output from to high level. As a result, the control terminal ON of LSW4 becomes high level, and the state in which the system power supply voltage Vcc2 is supplied to each part is restored.
 以下では理解を容易にするために、前述してきたサーミスタT1を電源サーミスタT1とも記載し、前述してきたサーミスタT2をパフサーミスタT2とも記載し、前述してきたサーミスタT3をヒータサーミスタT3とも記載し、前述してきたサーミスタT4をケースサーミスタT4とも記載する。 In the following, for ease of understanding, the thermistor T1 described above is also referred to as the power supply thermistor T1, the thermistor T2 described above is referred to as the puff thermistor T2, and the thermistor T3 described above is also referred to as the heater thermistor T3. The thermistor T4 that has been formed is also described as a case thermistor T4.
<充電ICの機能の詳細)
 図20は、充電IC2の内部の概略構成を示す図である。充電IC2は、プロセッサ21と、ゲートドライバ22と、Nチャネル型MOSFETで構成されたスイッチQ1~Q4と、を備える。
<Details of charging IC functions)
FIG. 20 is a diagram showing a schematic configuration inside the charging IC 2. As shown in FIG. The charging IC 2 includes a processor 21, a gate driver 22, and switches Q1 to Q4 configured by N-channel MOSFETs.
 スイッチQ1のソース端子は入力端子VBUSに接続されている。スイッチQ1のドレイン端子は、スイッチQ2のドレイン端子に接続されている。スイッチQ2のソース端子は、スイッチング端子SWに接続されている。スイッチQ3のドレイン端子は、スイッチQ2とスイッチング端子SWの接続ノードに接続されている。スイッチQ3のソース端子は、グランド端子GNDに接続されている。スイッチQ4のドレイン端子は、出力端子SYSに接続されている。スイッチQ4のソース端子は、充電端子batに接続されている。 A source terminal of the switch Q1 is connected to the input terminal VBUS. The drain terminal of switch Q1 is connected to the drain terminal of switch Q2. A source terminal of the switch Q2 is connected to the switching terminal SW. A drain terminal of the switch Q3 is connected to a connection node between the switch Q2 and the switching terminal SW. A source terminal of the switch Q3 is connected to the ground terminal GND. A drain terminal of the switch Q4 is connected to the output terminal SYS. A source terminal of the switch Q4 is connected to the charging terminal bat.
 ゲートドライバ22は、スイッチQ2のゲート端子とスイッチQ3のゲート端子に接続されており、プロセッサ21の指令に基づき、スイッチQ2,Q3のオンオフ制御を行う。 The gate driver 22 is connected to the gate terminal of the switch Q2 and the gate terminal of the switch Q3, and performs on/off control of the switches Q2 and Q3 based on commands from the processor 21.
 プロセッサ21は、ゲートドライバ22と、スイッチQ1のゲート端子と、スイッチQ4のゲート端子と、充電イネーブル端子CE( ̄)とに接続されている。プロセッサ21は、ゲートドライバ22を介したスイッチQ2,Q3のオンオフ制御と、スイッチQ1,Q4のオンオフ制御を行う。 The processor 21 is connected to the gate driver 22, the gate terminal of the switch Q1, the gate terminal of the switch Q4, and the charge enable terminal CE(~). The processor 21 performs on/off control of the switches Q2 and Q3 and on/off control of the switches Q1 and Q4 via the gate driver 22 .
 充電IC2は、前述した充電機能、VBATパワーパス機能、及びOTG機能に加えて、VUSBパワーパス機能と、VUSB&VBATパワーパス機能と、を備える。以下では、これら各機能の有効時における充電IC2の内部の制御内容について説明する。なお、前述してきた各種電圧の具体的な数値は、好ましくは下記に示す値である。 The charging IC 2 has a V USB power pass function and a V USB & V BAT power pass function in addition to the above-described charging function, V BAT power pass function, and OTG function. The contents of control inside the charging IC 2 when these functions are enabled will be described below. The specific numerical values of the various voltages described above are preferably the values shown below.
電源電圧VBAT(満充電電圧)=4.2V
電源電圧VBAT(公称電圧)=3.7V
システム電源電圧Vcc1=3.3V
システム電源電圧Vcc2=3.3V
システム電源電圧Vcc3=3.3V
システム電源電圧Vcc4=5.0V
USB電圧VUSB=5.0V
駆動電圧Vbst=4.9V
Power supply voltage V BAT (full charge voltage) = 4.2V
Power supply voltage V BAT (nominal voltage) = 3.7V
System power supply voltage Vcc1=3.3V
System power supply voltage Vcc2=3.3V
System power supply voltage Vcc3=3.3V
System power supply voltage Vcc4=5.0V
USB voltage V USB =5.0V
Drive voltage V bst =4.9V
(充電機能)
 プロセッサ21は、スイッチQ1をオン、スイッチQ3をオフに制御した状態で、スイッチQ2及びスイッチQ4のオンオフ制御を行う。スイッチQ4のオンオフ制御は、電源BATの充電電流を調整するために行われる。プロセッサ21は、出力端子SYSの電圧が電源BATの充電に適した電圧と同じになるようにスイッチQ2のオンオフ制御を行う。これにより、入力端子VBUSに入力されたUSB電圧VUSBは降圧されて出力端子SYSから出力される。出力端子SYSから出力される電圧は、システム電源電圧Vcc0として昇降圧DC/DCコンバータ8の入力端子VINに入力されると共に、充電IC2の充電端子batから出力される。これにより、USB電圧VUSBを降圧して得た電圧による電源BATの充電が行われる。なお、充電機能の有効時には、システム電源電圧Vcc0は、最終的に、電源BATの満充電電圧と同じ値になる。このため、昇降圧DC/DCコンバータ8は、入力端子VINに入力される4.2Vのシステム電源電圧Vcc0を降圧して、3.3Vのシステム電源電圧Vcc1を生成して出力することになる。充電機能の有効時には、充電IC2において、入力端子VBUSの電位が出力端子SYSの電位よりも高電位となるため、電源BATからの電力が入力端子VBUSから出力されることはない。
(charging function)
The processor 21 performs on/off control of the switches Q2 and Q4 while controlling the switch Q1 to be on and the switch Q3 to be off. ON/OFF control of the switch Q4 is performed to adjust the charging current of the power supply BAT. The processor 21 performs on/off control of the switch Q2 so that the voltage of the output terminal SYS is the same as the voltage suitable for charging the power supply BAT. As a result, the USB voltage VUSB input to the input terminal VBUS is stepped down and output from the output terminal SYS. The voltage output from the output terminal SYS is input to the input terminal VIN of the buck-boost DC/DC converter 8 as the system power supply voltage Vcc0, and is output from the charging terminal bat of the charging IC2. As a result, the power supply BAT is charged by the voltage obtained by stepping down the USB voltage VUSB. Incidentally, when the charging function is enabled, the system power supply voltage Vcc0 finally becomes the same value as the full charge voltage of the power supply BAT. Therefore, the buck-boost DC/DC converter 8 steps down the 4.2V system power supply voltage Vcc0 input to the input terminal VIN to generate and output the 3.3V system power supply voltage Vcc1. When the charging function is enabled, the potential of the input terminal VBUS is higher than the potential of the output terminal SYS in the charging IC2, so that the power from the power supply BAT is not output from the input terminal VBUS.
(VUSBパワーパス機能)
 VUSBパワーパス機能は、例えば、電源BATが過放電等の理由で利用できない場合に有効となる。プロセッサ21は、スイッチQ1をオン、スイッチQ2をオン、スイッチQ3をオフ、スイッチQ4をオフに制御する。これにより、入力端子VBUSに入力されたUSB電圧VUSBは、降圧されることなく、そのままスイッチング端子SWから出力される。スイッチング端子SWから出力された電圧は、システム電源電圧Vcc0として昇降圧DC/DCコンバータ8の入力端子VINに入力される。この場合も、昇降圧DC/DCコンバータ8は、入力端子VINに入力される5Vのシステム電源電圧Vcc0を降圧して、3.3Vのシステム電源電圧Vcc1を生成して出力することになる。なお、VUSBパワーパス機能を有効とする場合であっても、プロセッサ21は、スイッチQ1をオン、スイッチQ3をオフ、スイッチQ4をオンに制御した状態で、スイッチQ2のオンオフ制御を行ってもよい。このようにすれば、5.0VのUSB電圧VUSBから3.3Vのシステム電源電圧Vcc1までの降圧を、充電IC2と昇降圧DC/DCコンバータ8が分け合って行うことができる。このため、昇降圧DC/DCコンバータ8へ負荷や発熱が集中することを抑制できる。
(V USB power pass function)
The V USB power path function is effective, for example, when the power supply BAT cannot be used due to overdischarge or the like. The processor 21 turns on the switch Q1, turns on the switch Q2, turns off the switch Q3, and turns off the switch Q4. As a result, the USB voltage VUSB input to the input terminal VBUS is directly output from the switching terminal SW without being stepped down. The voltage output from the switching terminal SW is input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0. In this case as well, the step-up/step-down DC/DC converter 8 steps down the 5V system power supply voltage Vcc0 input to the input terminal VIN to generate and output the 3.3V system power supply voltage Vcc1. Note that even when the V USB power path function is enabled, the processor 21 may perform on/off control of the switch Q2 in a state in which the switch Q1 is turned on, the switch Q3 is turned off, and the switch Q4 is turned on. good. In this way, the charging IC 2 and the step-up/step-down DC/DC converter 8 can share the step-down from the USB voltage VUSB of 5.0V to the system power supply voltage Vcc1 of 3.3V. Therefore, concentration of load and heat on the step-up/step-down DC/DC converter 8 can be suppressed.
(VUSB&VBATパワーパス機能)
 VUSB&VBATパワーパス機能は、例えば、電源BATの充電が完了しており且つUSB接続が継続されている場合に有効となる。プロセッサ21は、スイッチQ1をオン、スイッチQ3をオフ、スイッチQ4をオンに制御した状態で、スイッチQ2のオンオフ制御を行う。プロセッサ21は、出力端子SYSの電圧が、電源BATの電圧(電源電圧VBAT)と同じになるようにスイッチQ2を制御する。これにより、入力端子VBUSに入力されたUSB電圧VUSBは降圧されて出力端子SYSから出力される。入力端子VBUSに入力されたUSB電圧VUSBが降圧されて出力端子SYSから出力される電圧と、電源BATから充電端子batを経由して出力端子SYSから出力される電圧は同じ値となる。このため、USB電圧VUSBを降圧して得た電圧を含む電力と、出力端子SYSから出力される電源電圧VBATを含む電力が合成されて、昇降圧DC/DCコンバータ8の入力端子VINに供給される。VUSB&VBATパワーパス機能の有効時には、充電IC2において、入力端子VBUSの電位が出力端子SYSの電位よりも高電位となるため、電源BATからの電力が入力端子VBUSから出力されることはない。
(V USB & V BAT power pass function)
The V USB & V BAT power pass function is valid, for example, when the charging of the power supply BAT is completed and the USB connection is continued. The processor 21 performs on/off control of the switch Q2 while controlling the switch Q1 to be on, the switch Q3 to be off, and the switch Q4 to be on. The processor 21 controls the switch Q2 so that the voltage of the output terminal SYS becomes the same as the voltage of the power supply BAT (power supply voltage V BAT ). As a result, the USB voltage VUSB input to the input terminal VBUS is stepped down and output from the output terminal SYS. The voltage output from the output terminal SYS after stepping down the USB voltage VUSB input to the input terminal VBUS and the voltage output from the output terminal SYS from the power supply BAT via the charging terminal bat have the same value. Therefore, the power including the voltage obtained by stepping down the USB voltage V USB and the power including the power supply voltage V BAT output from the output terminal SYS are synthesized, and the input terminal VIN of the step-up/step-down DC/DC converter 8 is supplied to the input terminal VIN. supplied. When the V USB & V BAT power pass function is enabled, the potential of the input terminal VBUS is higher than the potential of the output terminal SYS in the charging IC2, so the power from the power supply BAT is not output from the input terminal VBUS. .
 VUSB&VBATパワーパス機能の有効時には、昇降圧DC/DCコンバータ8は、電源電圧VBATの大きさによって昇圧と降圧のどちらを行うかを決める。昇降圧DC/DCコンバータ8は、電源電圧VBATが3.3V以上の場合には、入力端子VINに入力されるシステム電源電圧Vcc0を降圧して、3.3Vのシステム電源電圧Vcc1を生成して出力する。昇降圧DC/DCコンバータ8は、電源電圧VBATが3.3V未満の場合には、入力端子VINに入力されるシステム電源電圧Vcc0を昇圧して、3.3Vのシステム電源電圧Vcc1を生成して出力する。 When the V USB & V BAT power path function is enabled, the buck-boost DC/DC converter 8 determines whether to step up or down depending on the magnitude of the power supply voltage V BAT . When the power supply voltage V BAT is 3.3 V or more, the step-up/down DC/DC converter 8 steps down the system power supply voltage Vcc0 input to the input terminal VIN to generate a 3.3 V system power supply voltage Vcc1. output. When the power supply voltage V BAT is less than 3.3 V, the buck-boost DC/DC converter 8 boosts the system power supply voltage Vcc0 input to the input terminal VIN to generate a system power supply voltage Vcc1 of 3.3 V. output.
(VBATパワーパス機能)
 VBATパワーパス機能は、充電モード以外のモード(例えば、スリープモード)にて有効となる。プロセッサ21は、スイッチQ1とスイッチQ3をオフに制御する。これにより、充電端子batに入力された電源電圧VBATは、そのまま、出力端子SYSから出力され、システム電源電圧Vcc0として、昇降圧DC/DCコンバータ8の入力端子VINに入力される。この制御により、充電IC2の入力端子VBUSとスイッチング端子SWの間の電力伝達経路は、スイッチQ1の寄生ダイオードによりブロックされる。このため、出力端子SYSから出力される電源電圧VBATが、入力端子VBUSから出力されることはない。
(V BAT power pass function)
The V BAT power path function is enabled in modes other than charge mode (eg, sleep mode). The processor 21 turns off the switches Q1 and Q3. As a result, the power supply voltage V BAT input to the charging terminal bat is directly output from the output terminal SYS and input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0. By this control, the power transmission path between the input terminal VBUS of the charging IC2 and the switching terminal SW is blocked by the parasitic diode of the switch Q1. Therefore, the power supply voltage VBAT output from the output terminal SYS is not output from the input terminal VBUS.
 VBATパワーパス機能の有効時には、昇降圧DC/DCコンバータ8は、電源電圧VBATの大きさによって昇圧と降圧のどちらを行うかを決める。昇降圧DC/DCコンバータ8は、入力端子VINに入力される電源電圧VBATが3.3V以上の場合には、電源電圧VBATを降圧して、3.3Vのシステム電源電圧Vcc1を生成して出力する。昇降圧DC/DCコンバータ8は、入力端子VINに入力される電源電圧VBATが3.3V未満の場合には、電源電圧VBATを昇圧して、3.3Vのシステム電源電圧Vcc1を生成して出力する。 When the V BAT power path function is enabled, the buck-boost DC/DC converter 8 determines whether to step up or down depending on the magnitude of the power supply voltage V BAT . When the power supply voltage V BAT input to the input terminal VIN is 3.3 V or higher, the step-up/down DC/DC converter 8 steps down the power supply voltage V BAT to generate a 3.3 V system power supply voltage Vcc1. output. When the power supply voltage V BAT input to the input terminal VIN is less than 3.3 V, the step-up/step-down DC/DC converter 8 boosts the power supply voltage V BAT to generate a system power supply voltage Vcc1 of 3.3 V. output.
(OTG機能)
 OTG機能は、VBATパワーパス機能と同時に有効となり、例えば、アクティブモードにて有効となる。OTG機能とVBATパワーパス機能の両方の有効時には、プロセッサ21は、スイッチQ1をオンに制御した状態で、スイッチQ3をオンオフ制御する。これにより、充電端子batに入力された電源電圧VBATは、そのまま、出力端子SYSから出力され、システム電源電圧Vcc0として、昇降圧DC/DCコンバータ8の入力端子VINに入力される。また、出力端子SYSから出力された電源電圧VBATは、充電IC2のスイッチング端子SWに入力される。プロセッサ21は、スイッチング端子SWに入力される電源電圧VBATがシステム電源電圧Vcc4と同じになるように、スイッチQ3を制御する。これにより、スイッチング端子SWに入力された電源電圧VBATは昇圧されて入力端子VBUSから出力される。入力端子VBUSから出力された電圧は、システム電源電圧Vcc4としてLED L1~L8に入力される。
(OTG function)
The OTG feature is enabled at the same time as the V BAT power path feature, eg, enabled in active mode. When both the OTG function and the V BAT power path function are valid, the processor 21 turns on/off the switch Q3 while turning on the switch Q1. As a result, the power supply voltage V BAT input to the charging terminal bat is directly output from the output terminal SYS and input to the input terminal VIN of the step-up/step-down DC/DC converter 8 as the system power supply voltage Vcc0. Also, the power supply voltage V BAT output from the output terminal SYS is input to the switching terminal SW of the charging IC2. Processor 21 controls switch Q3 so that power supply voltage VBAT input to switching terminal SW becomes equal to system power supply voltage Vcc4 . As a result, the power supply voltage VBAT input to the switching terminal SW is stepped up and output from the input terminal VBUS. The voltage output from the input terminal VBUS is input to the LEDs L1 to L8 as the system power supply voltage Vcc4.
 このように、充電IC2は、USB電圧VUSBを降圧する降圧コンバータとしての機能と、電源電圧VBATを昇圧する昇圧コンバータとしての機能を併せ持つ。充電IC2から昇降圧DC/DCコンバータ8に入力される電圧は、充電IC2の有効としている機能に応じてさまざまに変動する。しかし、このような変動があっても、昇降圧DC/DCコンバータ8が昇圧と降圧を選択的に実行することで、システム電源電圧Vcc1(システム電源電圧Vcc1を含む電力)を一定に保つことができる。なお、昇降圧DC/DCコンバータ8の入力端子VINに入力されるシステム電源電圧Vcc0の電圧がシステム電源電圧Vcc1の電圧である3.3Vと等しい場合、昇降圧DC/DCコンバータ8は、昇圧及び降圧を実行せず、システム電源電圧Vcc0をシステム電源電圧Vcc1として、出力端子VOUTから出力する。 Thus, the charging IC 2 has both a function as a step-down converter that steps down the USB voltage VUSB and a function as a step-up converter that steps up the power supply voltage VBAT. The voltage input from the charging IC 2 to the step-up/down DC/DC converter 8 fluctuates in various ways according to the functions enabled by the charging IC 2 . However, even with such fluctuations, the system power supply voltage Vcc1 (power including the system power supply voltage Vcc1) can be kept constant by selectively stepping up or stepping down the step-up/step-down DC/DC converter 8. can. When the voltage of the system power supply voltage Vcc0 input to the input terminal VIN of the buck-boost DC/DC converter 8 is equal to the voltage of the system power supply voltage Vcc1 of 3.3 V, the buck-boost DC/DC converter 8 The system power supply voltage Vcc0 is output from the output terminal VOUT as the system power supply voltage Vcc1 without stepping down.
(保護制御)
 吸引器100では、電源サーミスタT1の抵抗値(出力値)によって電源BATの温度(以下、電源温度TBATと記載)を取得可能であり、ヒータサーミスタT3の抵抗値(出力値)によってヒータHTRの温度(以下、ヒータ温度THTRと記載)を取得可能であり、ケースサーミスタT4の抵抗値(出力値)によってケース110の温度(以下、ケース温度TCASEと記載)を取得可能である。そして、吸引器100は、電源温度TBAT、ヒータ温度THTR、及びケース温度TCASEの少なくともいずれかが、吸引器100の使用される推奨環境下での値とかけ離れた状態になった場合に、電源BATの充電及び電源BATからヒータHTRへの放電(以下、充放電とも記載)を禁止する保護制御を実行して、安全性を高めるように構成されている。この保護制御は、MCU1とFF17によって行われる。
(protective control)
In the aspirator 100, the temperature of the power supply BAT (hereinafter referred to as power supply temperature TBAT) can be obtained from the resistance value (output value) of the power supply thermistor T1, and the temperature of the heater HTR can be obtained from the resistance value (output value) of the heater thermistor T3. A temperature (hereinafter referred to as heater temperature THTR ) can be obtained, and a temperature of the case 110 (hereinafter referred to as case temperature T CASE ) can be obtained from the resistance value (output value) of the case thermistor T4. Then, when at least one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE becomes far from the value under the recommended environment in which the aspirator 100 is used, the aspirator 100 , and protection control to prohibit charging of the power source BAT and discharging from the power source BAT to the heater HTR (hereinafter also referred to as charging and discharging) to enhance safety. This protection control is performed by MCU1 and FF17.
 充放電を禁止する保護制御とは、充放電が不可となるように電子部品を制御することを言う。電源BATからヒータHTRへの放電を不可とするためには、昇圧DC/DCコンバータ9のイネーブル端子ENにローレベルの信号を入力して(或いはイネーブル端子ENの電位を不定にして)昇圧動作を停止させ、且つ、スイッチS6のゲート端子にローレベルの信号を入力して(或いはゲート端子の電位を不定にして)負極側のヒータコネクタCn(-)とグランドとの接続を遮断すればよい。なお、昇圧DC/DCコンバータ9の昇圧動作の停止と、ヒータコネクタCn(-)とグランドとの接続遮断のうち一方のみを行うことでも、電源BATからヒータHTRへの放電を不可とすることは可能である。電源BATの充電を不可とするためには、充電IC2の充電イネーブル端子CE( ̄)にハイレベルの信号が入力されるようにして、充電IC2の充電動作を停止させればよい。
 以下では、保護制御として充放電を禁止する例を説明するが、保護制御は、安全性の向上という観点から、充電のみを禁止する制御としてもよいし、放電のみを禁止する制御としてもよい。
Protection control that prohibits charging/discharging refers to controlling an electronic component so that charging/discharging is disabled. In order to disable discharge from the power supply BAT to the heater HTR, a low level signal is input to the enable terminal EN of the boost DC/DC converter 9 (or the potential of the enable terminal EN is made unfixed) to start the boost operation. Then, a low level signal is input to the gate terminal of the switch S6 (or the potential of the gate terminal is made unfixed) to cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. It is also possible to disable discharge from the power supply BAT to the heater HTR by performing only one of stopping the step-up operation of the step-up DC/DC converter 9 and cutting off the connection between the heater connector Cn(-) and the ground. It is possible. In order to disable the charging of the power supply BAT, the charging operation of the charging IC2 should be stopped by inputting a high level signal to the charging enable terminal CE(~) of the charging IC2.
An example of prohibiting charging and discharging as protection control will be described below, but from the viewpoint of improving safety, protection control may be control that prohibits only charging, or control that prohibits only discharging.
 保護制御が行われた場合に、動作モードの制限が更に行われることが好ましい。以下では、保護制御が行われると、動作モードが制限されるものとする。ただし、動作モードの管理はMCU1が行うため、MCU1が何らかの理由で作動していない状態においては、動作モードの制限は行われなくてもよい。 It is preferable that the operation mode is further restricted when protection control is performed. In the following, it is assumed that the operation mode is limited when protection control is performed. However, since the operation mode is managed by the MCU1, the operation mode need not be restricted when the MCU1 is not operating for some reason.
 吸引器100にて行われる保護制御には、ユーザ操作によってMCU1のリセットがなされることで終了可能な手動復帰保護制御と、MCU1のリセットを必要とせず、温度環境の改善によって自動的に終了可能な自動復帰保護制御と、終了不能な非復帰保護制御と、が含まれる。吸引器100の動作モードには、図9にて説明したものに加えて、エラーモードと、永久エラーモードと、がある。本明細書において、”吸引器の全ての動作モード“と記載するときは、これらエラーモードと永久エラーモードを除く全ての動作モード(図9に示した全ての動作モード)のことを意味する。 The protection control performed in the aspirator 100 includes manual return protection control that can be terminated by resetting the MCU 1 by user operation, and automatic recovery control that does not require resetting the MCU 1 and can be automatically terminated by improving the temperature environment. automatic revertive protection control and non-terminating non-revertive protection control. The operating modes of the suction device 100 include an error mode and a permanent error mode in addition to those described with reference to FIG. In this specification, when we refer to "all operating modes of the aspirator", we mean all operating modes (all operating modes shown in FIG. 9) except for these error modes and permanent error modes.
 手動復帰保護制御又は自動復帰保護制御が行われた場合には、吸引器100はエラーモードに移行し、他の動作モードへの移行は不可となる。なお、エラーモードでは、直前の動作モードにおける電源電圧の状態(システム電源電圧の供給状態)が維持されるものとする。すなわち、エラーモードにおいては、充放電を除く、直前の動作モードにて実行可能な機能(例えば温度情報の取得等)が実行可能となる。エラーモードにおいて、MCU1のリセットがなされると、手動復帰保護制御は終了される。エラーモードにおいて、温度環境の改善がなされると、自動復帰保護制御は終了される。手動復帰保護制御又は自動復帰保護制御が終了されると、動作モードの制限は解除され、動作モードはスリープモードに移行する。それ以降は、ユーザ操作等による動作モードの変更が可能となる。 When manual return protection control or automatic return protection control is performed, the aspirator 100 shifts to error mode and cannot shift to other operation modes. In the error mode, the state of the power supply voltage (supply state of the system power supply voltage) in the immediately preceding operation mode is maintained. That is, in the error mode, the functions that can be executed in the previous operation mode (for example, acquisition of temperature information, etc.) can be executed except for charging and discharging. In error mode, when the MCU1 is reset, the manual return protection control is terminated. In the error mode, when the temperature environment is improved, the automatic recovery protection control is terminated. When the manual return protection control or the automatic return protection control is terminated, the operating mode restriction is lifted and the operating mode shifts to the sleep mode. After that, the operation mode can be changed by user operation or the like.
 非復帰保護制御が行われた場合には、吸引器100は永久エラーモードに移行する。永久エラーモードでは、吸引器100のすべての機能が使用不可となり、吸引器100は、修理又は廃棄が必要になる。 When non-recovery protection control is performed, the aspirator 100 shifts to permanent error mode. In permanent error mode, all functions of the aspirator 100 are disabled and the aspirator 100 must be repaired or scrapped.
 MCU1は、端子P14からローレベルの信号を出力して、昇圧DC/DCコンバータ9の昇圧動作の停止及び負極側のヒータコネクタCn(-)とグランドとの接続遮断を行うと共に、端子P22からハイレベルの信号を出力して、充電IC2の充電動作を停止することで、保護制御を行う。充電のみ禁止する場合には端子P14からローレベルの信号を出力する必要はなく、放電のみ禁止する場合には端子P22からハイレベルの信号を出力する必要はない。 The MCU 1 outputs a low level signal from the terminal P14 to stop the boosting operation of the boost DC/DC converter 9 and cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. Protection control is performed by outputting a level signal and stopping the charging operation of the charging IC2. When only charging is prohibited, there is no need to output a low level signal from the terminal P14, and when only discharging is prohibited, there is no need to output a high level signal from the terminal P22.
 FF17は、Q端子からローレベルの信号を出力して、昇圧DC/DCコンバータ9の昇圧動作の停止、負極側のヒータコネクタCn(-)とグランドとの接続遮断、及びバイポーラトランジスタS1のオンによる充電IC2の充電動作の停止を行うことで、MCU1を介さずに、保護制御を行う。 The FF 17 outputs a low level signal from the Q terminal to stop the boost operation of the boost DC/DC converter 9, cut off the connection between the heater connector Cn (-) on the negative electrode side and the ground, and turn on the bipolar transistor S1. By stopping the charging operation of the charging IC 2 , protection control is performed without going through the MCU 1 .
 FF17は、CLR( ̄)端子に入力される信号がハイレベルからローレベルに切り替わると、Q端子からローレベルの信号を出力する。このローレベル信号は、MCU1のP10端子にも入力される。端子P10にローレベル信号が入力されている間は、MCU1はFF17の不図示のCLK端子に入力される信号をローレベルからハイレベルに切替えない。換言すれば、端子P10にローレベル信号が入力されている間は、FF17のCLK信号が立ち上がらない。また、MCU1が例えばフリーズしている状態では、FF17の不図示のCLK端子に入力される信号はローレベルのままとなる。したがって、MCU1が正常動作している状態とフリーズしている状態のどちらの状態であっても、FF17のQ端子からローレベルの信号が出力された後、FF17のCLR( ̄)端子に入力される信号がローレベルからハイレベルに切り替わっても、FF17のQ端子からはローレベルの信号が出力され続ける。図19にて説明したようにMCU1のリセットを行うと、FF17が再起動する(システム電源電圧Vcc2の再投入が行われる)。リセットされたMCU1はスリープモードで動作するため、ヒータサーミスタT3及びケースサーミスタT4にはシステム電源電圧Vcc3が投入されず、オペアンプOP2の出力とオペアンプOP3の出力が共にハイレベルになる。これにより、FF17のD端子とCLR( ̄)端子にはハイレベルの信号が入力される。このタイミングにおいては、FF17の再起動によって、端子P10にローレベルの信号が入力されていないため、MCU1は、FF17のCLK信号を立ち上がらせる。これにより、FF17のQ端子の出力をハイレベルに戻すことが可能である。FF17のQ端子の出力がハイレベルに戻ることで、FF17による保護制御は終了される。 The FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR (~) terminal switches from high level to low level. This low level signal is also input to the P10 terminal of MCU1. While the low level signal is input to the terminal P10, the MCU1 does not switch the signal input to the CLK terminal (not shown) of the FF17 from low level to high level. In other words, the CLK signal of FF17 does not rise while the low level signal is being input to the terminal P10. Further, when the MCU 1 is frozen, for example, the signal input to the CLK terminal (not shown) of the FF 17 remains at low level. Therefore, regardless of whether the MCU1 is in a normal operating state or a frozen state, after a low level signal is output from the Q terminal of FF17, it is input to the CLR (~) terminal of FF17. A low level signal continues to be output from the Q terminal of FF 17 even if the signal on the output switches from low level to high level. When the MCU1 is reset as described with reference to FIG. 19, the FF17 is restarted (the system power supply voltage Vcc2 is turned on again). Since the reset MCU1 operates in the sleep mode, the system power supply voltage Vcc3 is not applied to the heater thermistor T3 and the case thermistor T4, and the outputs of the operational amplifiers OP2 and OP3 both become high level. As a result, a high level signal is input to the D terminal and the CLR (~) terminal of the FF17. At this timing, since a low level signal is not input to the terminal P10 due to the restart of FF17, the MCU1 causes the CLK signal of FF17 to rise. As a result, the output of the Q terminal of FF17 can be returned to high level. The output of the Q terminal of FF17 returns to high level, thereby ending the protection control by FF17.
 上述した通り、FF17のQ端子から出力された信号は、MCU1の端子P10にも入力される。このため、MCU1は、端子P10に入力されたローレベルの信号によって、FF17が保護制御を行ったことを検知可能である。MCU1は、FF17が保護制御を行ったことを検知すると、MCU1のリセット要求通知を通知部180に行わせて、エラーモードに移行することが好ましい。 As described above, the signal output from the Q terminal of FF17 is also input to terminal P10 of MCU1. Therefore, the MCU1 can detect that the FF17 has performed the protection control from the low-level signal input to the terminal P10. When the MCU1 detects that the FF 17 has performed the protection control, the MCU1 preferably causes the notification unit 180 to notify the reset request of the MCU1 and shifts to the error mode.
(MCU1のリセットの詳細)
 手動復帰保護制御の実行により動作モードがエラーモードに移行した場合、又は、MCU1が何らかの原因によって正常に動作しなくなった場合(フリーズした場合)には、MCU1のリセット(再起動)が必要となる。
(Details of MCU1 reset)
When the operation mode shifts to the error mode due to the execution of the manual recovery protection control, or when the MCU1 does not operate normally for some reason (when it freezes), it is necessary to reset (restart) the MCU1. .
 図21は、図10に示す電気回路のうち、MCU1のリセット動作と関係のある主要な電子部品を抜き出して示した要部回路図である。図21では、図10では符号を付していなかったモータコネクタCn(m)と抵抗器R7が追加で示されている。モータコネクタCn(m)には、振動モータMが接続されている。モータコネクタCn(m)は、スイッチS7を介してMCU1の電源端子VDDへ並列接続される。したがって、MCU1の電源端子VDDへのシステム電源電圧Vcc2の供給が停止されると、振動モータMへの動作電圧の供給も停止される。抵抗器R7は、LSW4の制御端子ONとスイッチドライバ7のリセット入力端子RSTBを接続するノードに一端が接続され、スイッチドライバ7の入力端子VINに他端が接続されている。  Fig. 21 is a circuit diagram of the essential part of the electric circuit shown in Fig. 10, showing the main electronic components that are related to the reset operation of the MCU1. FIG. 21 additionally shows a motor connector Cn(m) and a resistor R7, which were not labeled in FIG. A vibration motor M is connected to the motor connector Cn(m). The motor connector Cn(m) is connected in parallel to the power terminal VDD of MCU1 via switch S7. Therefore, when the supply of the system power supply voltage Vcc2 to the power supply terminal VDD of the MCU1 is stopped, the supply of the operating voltage to the vibration motor M is also stopped. The resistor R7 has one end connected to a node connecting the control terminal ON of the LSW4 and the reset input terminal RSTB of the switch driver 7, and the other end connected to the input terminal VIN of the switch driver 7. FIG.
 MCU1のリセットは、MCU1の動作電圧となるシステム電源電圧Vcc2のMCU1の電源端子VDDへの供給を停止し、その後、その供給を再開することで行われる。図20に示すように、システム電源電圧Vcc2は、LSW4が閉じられている状態(入力端子VINと出力端子VOUTの間の電気的な接続が閉じられている状態)においてLSW4の出力端子VOUTから出力される。換言すると、システム電源電圧Vcc2は、LSW4が開かれた状態(入力端子VINと出力端子VOUTの間の電気的な接続が遮断されている状態)においては、LSW4の出力端子VOUTからは出力されない。そして、LSW4の開閉制御はスイッチドライバ7によって行われる。このように、吸引器100では、スイッチドライバ7がLSW4の開閉制御を行うことで、MCU1のリセットが可能となっている。 The MCU1 is reset by stopping the supply of the system power supply voltage Vcc2, which is the operating voltage of the MCU1, to the power supply terminal VDD of the MCU1, and then restarting the supply. As shown in FIG. 20, the system power supply voltage Vcc2 is output from the output terminal VOUT of the LSW4 when the LSW4 is closed (the electrical connection between the input terminal VIN and the output terminal VOUT is closed). be done. In other words, system power supply voltage Vcc2 is not output from output terminal VOUT of LSW4 when LSW4 is open (electrical connection between input terminal VIN and output terminal VOUT is interrupted). A switch driver 7 controls the opening and closing of the LSW 4 . Thus, in the aspirator 100, the MCU 1 can be reset by the switch driver 7 controlling the opening and closing of the LSW 4. FIG.
 LSW4とスイッチドライバ7のそれぞれの入力端子VINには、システム電源電圧Vcc1が入力される。このため、昇降圧DC/DCコンバータ8においてシステム電源電圧Vcc1が生成されている状態では、LSW4とスイッチドライバ7は同時に作動する。スイッチドライバ7は、例えば、リセット入力端子RSTBとグランド端子GNDの間に設けられたスイッチを内蔵しており、このスイッチが閉じられた状態では、リセット入力端子RSTBの電位はグランドレベル(ローレベル)となる。スイッチドライバ7の入力端子VINとリセット入力端子RSTBは、抵抗器R7を介して並列接続されている。このため、昇降圧DC/DCコンバータ8においてシステム電源電圧Vcc1が生成されている限り、スイッチドライバ7に内蔵されたスイッチが開かれた状態では、リセット入力端子RSTBの電位はハイレベルとなる。LSW4の開閉を制御するための制御端子ONは、抵抗器R7を介して昇降圧DC/DCコンバータ8の出力端子VOUTへ接続され、且つ、スイッチドライバ7のリセット入力端子RSTBへ接続されている。したがって、スイッチドライバ7に内蔵されたスイッチが開かれた状態では、システム電源電圧Vcc1に基づくハイレベルの電圧がLSW4の制御端子ONに入力されることになる。一方、スイッチドライバ7に内蔵されたスイッチが閉じられた状態では、抵抗器R7の一端がグランドに接続されるため、システム電源電圧Vcc1に基づくハイレベルの信号がLSW4の制御端子ONに入力されることはなく、LSW4の制御端子ONに入力される信号はローレベルとなる。このように、スイッチドライバ7は、リセット入力端子RSTBの電位を制御することで、LSW4の開閉制御を行う。 The input terminal VIN of each of the LSW 4 and the switch driver 7 receives the system power supply voltage Vcc1. Therefore, when the system power supply voltage Vcc1 is generated in the step-up/step-down DC/DC converter 8, the LSW 4 and the switch driver 7 operate simultaneously. The switch driver 7 incorporates, for example, a switch provided between the reset input terminal RSTB and the ground terminal GND. When this switch is closed, the potential of the reset input terminal RSTB is ground level (low level). becomes. The input terminal VIN and reset input terminal RSTB of the switch driver 7 are connected in parallel via a resistor R7. Therefore, as long as the system power supply voltage Vcc1 is generated in the step-up/step-down DC/DC converter 8, the potential of the reset input terminal RSTB becomes high level when the switch incorporated in the switch driver 7 is open. A control terminal ON for controlling the opening and closing of LSW 4 is connected to the output terminal VOUT of the step-up/down DC/DC converter 8 via a resistor R 7 and to the reset input terminal RSTB of the switch driver 7 . Therefore, when the switch built in the switch driver 7 is open, a high level voltage based on the system power supply voltage Vcc1 is input to the control terminal ON of LSW4. On the other hand, when the switch built in the switch driver 7 is closed, one end of the resistor R7 is grounded, so that a high level signal based on the system power supply voltage Vcc1 is input to the control terminal ON of LSW4. Therefore, the signal input to the control terminal ON of LSW4 becomes low level. Thus, the switch driver 7 controls the opening/closing of the LSW4 by controlling the potential of the reset input terminal RSTB.
 スイッチドライバ7は、リセット入力端子RSTBの電位を、端子SW1に入力される電圧と、端子SW2に入力される電圧に基づいて制御する。端子SW1に入力される電圧は、操作スイッチOPSが押圧された状態においてローレベル(グランドレベル)となり、操作スイッチOPSが押圧されていない状態においてハイレベルとなる。端子SW2に入力される電圧は、アウターパネル115がインナーパネル118から取り外された状態においてローレベルとなり、アウターパネル115がインナーパネル118に装着された状態においてハイレベルとなる。 The switch driver 7 controls the potential of the reset input terminal RSTB based on the voltage input to the terminal SW1 and the voltage input to the terminal SW2. The voltage input to the terminal SW1 is low level (ground level) when the operation switch OPS is pressed, and is high level when the operation switch OPS is not pressed. The voltage input to the terminal SW2 becomes low level when the outer panel 115 is removed from the inner panel 118, and becomes high level when the outer panel 115 is attached to the inner panel 118. FIG.
 スイッチドライバ7は、アウターパネル115がインナーパネル118から取り外されるというパネル条件が満たされ、且つ、操作スイッチOPSの押圧が既定の時間(以下、リセット操作時間と記載)持続するというスイッチ操作条件が満たされた場合に、MCU1をリセットするためのリセット処理を開始する。パネル条件とスイッチ操作条件が共に満たされた状態を、再起動条件が満たされた状態と定義する。パネル条件とスイッチ操作条件が共に満たされた後、操作スイッチOPSの押圧が継続される状態を、再起動条件が満たされ続ける状態と定義する。 The switch driver 7 satisfies the panel condition that the outer panel 115 is removed from the inner panel 118, and also satisfies the switch operation condition that the operation switch OPS is pressed for a predetermined time (hereinafter referred to as reset operation time). If so, the reset process for resetting the MCU1 is started. A state in which both the panel condition and the switch operation condition are satisfied is defined as a state in which the restart condition is satisfied. A state in which the operation switch OPS continues to be pressed after both the panel condition and the switch operation condition are satisfied is defined as a state in which the restart condition continues to be satisfied.
 リセット処理とは、0秒以上の所定の遅延時間tdを待ってから、スイッチドライバ7の内蔵のスイッチを閉じてLSW4を開いた状態に制御し、その後、そのスイッチを閉じている時間が既定時間に達すると、そのスイッチを開いてLSW4を閉じた状態に戻すことを言う。スイッチドライバ7は、パネル条件が満たされた状態における操作スイッチOPSの押圧の開始後、リセット操作時間の経過を待つ間に、パネル条件が満たされなくなった場合又はユーザが操作スイッチOPSの押圧を止めた場合には、リセット処理を実行せずに待機状態に戻る。スイッチドライバ7は、リセット処理を開始した後は、再起動条件が満たされているか否かによらずに、内蔵のスイッチを閉じている時間が既定時間に達した時点で、内蔵のスイッチを開いて、リセット処理を終了させる。換言すると、スイッチドライバ7に内蔵されたスイッチが閉じられている時間が既定時間に達した状態に至るまで、パネル条件が満たされ且つ操作スイッチOPSの押圧が継続することで再起動条件が満たされ続けても、スイッチドライバ7は内蔵されたスイッチを開いてLSW4を閉じた状態に戻す。 The reset process waits for a predetermined delay time td of 0 seconds or more, then closes the switch built in the switch driver 7 to control the LSW 4 to be open, and then closes the switch for a predetermined time. is reached, the switch is opened to return LSW4 to the closed state. After starting to press the operation switch OPS in a state in which the panel condition is satisfied, the switch driver 7 waits for the elapse of the reset operation time. If so, it returns to the standby state without executing reset processing. After starting the reset process, the switch driver 7 opens the built-in switch when the time for which the built-in switch is closed reaches a predetermined time regardless of whether the restart condition is satisfied. to end the reset process. In other words, the restart condition is satisfied by satisfying the panel condition and continuing to press the operation switch OPS until the time during which the switch built into the switch driver 7 is closed reaches the predetermined time. Even after continuing, the switch driver 7 opens the built-in switch to return the LSW 4 to the closed state.
 上記のリセット操作時間は、アクティブモードから加熱設定モードに遷移させるため(ヒータHTRによるロッド500の加熱の開始を指示するため)に必要な操作スイッチOPSの押圧持続時間(以下、加熱開始操作時間と記載)とは異なる値とすることが好ましい。このようにすることで、MCU1をリセットするためには、頻繁に行われる筈であるエアロゾル生成を実行するための操作とは異なる操作が必要となる。このため、ユーザの明確な意思の下、MCU1をリセットできるようになる。また、リセット操作時間は、加熱開始操作時間よりも長い値とすることがより好ましい。このようにすることで、ユーザのより明確な意思の下、MCU1をリセットできるようになる。 The above-mentioned reset operation time is the pressing duration of the operation switch OPS (hereinafter referred to as the heating start operation time) necessary for transitioning from the active mode to the heating setting mode (to instruct the start of heating of the rod 500 by the heater HTR). It is preferable to set the value to be different from that described above). By doing so, in order to reset the MCU1, an operation different from the operation for executing the aerosol generation, which should be frequently performed, is required. Therefore, the MCU1 can be reset under the user's clear intention. Moreover, it is more preferable to set the reset operation time to a value longer than the heating start operation time. By doing so, the MCU1 can be reset under the clearer intention of the user.
 一例として、加熱開始操作時間は1秒であり、リセット操作時間は5秒である。これらの数値は一例であってこれに限定されるものではない。 As an example, the heating start operation time is 1 second and the reset operation time is 5 seconds. These numerical values are examples and are not limited to these.
 MCU1は、自身がフリーズしていない状態であれば、スイッチドライバ7によってリセット処理が開始された場合(換言すると、再起動条件が満たされた場合)に、通知部180(振動モータM及びLED L1~L8)を制御して、通知部180にユーザへの通知を実行させることが好ましい。通知の方法としては、LED L1~L8を所定パターンで点灯させたり、振動モータMを振動させたり、これらを組み合わせたりすればよい。ユーザは、この通知により、現在の操作を続けることでMCU1がリセットされることを認識可能となる。なお、MCU1は、この通知又はこの通知とは異なる通知を、リセット操作時間の経過を待つ間に実行させてもよい。 If the MCU 1 itself is not frozen, if the reset process is started by the switch driver 7 (in other words, if the restart condition is satisfied), the notification unit 180 (vibration motor M and LED L1 to L8) to cause the notification unit 180 to notify the user. As a notification method, LEDs L1 to L8 may be lit in a predetermined pattern, the vibration motor M may be vibrated, or a combination thereof may be used. This notification enables the user to recognize that the MCU1 will be reset by continuing the current operation. Note that the MCU 1 may execute this notification or a notification different from this notification while waiting for the reset operation time to elapse.
 また、遅延時間tdを0よりも大きい値とした場合、MCU1は、リセット処理の開始に伴う通知部180による上記の通知を、上記の遅延時間tdが経過するよりも前に完了させることが好ましい。このようにすることで、ユーザは、通知の完了によって、MCU1のリセットがまもなく開始されることを認識可能となる。もちろん、通知部180による上記の通知を上記の遅延時間tdが経過するまで持続させてもよい。この場合でも、振動モータMはシステム電源電圧Vcc2により動作することから、MCU1へのシステム電源電圧Vcc2の供給停止と同時に通知が完了されるため、MCU1のリセットが開始されたことを認識可能となる。 Further, when the delay time td is set to a value greater than 0, the MCU 1 preferably completes the notification by the notification unit 180 accompanying the start of the reset process before the delay time td elapses. . By doing so, the user can recognize that the reset of the MCU1 will soon start due to the completion of the notification. Of course, the above notification by the notification unit 180 may be continued until the above delay time td elapses. Even in this case, since the vibration motor M is operated by the system power supply voltage Vcc2, the notification is completed at the same time as the supply of the system power supply voltage Vcc2 to the MCU1 is stopped. .
 MCU1がフリーズしている結果、例えばヒータHTRが過度に加熱される状況が考えられる。 As a result of the MCU1 freezing, for example, the heater HTR may be overheated.
 前述したように、ヒータHTRの温度(ヒータサーミスタT3の温度)が過大になると、オペアンプOP2の出力電圧はローレベルになる。このローレベルの電圧は、FF16のCLR( ̄)端子に入力される。FF16は、CLR( ̄)端子に入力される信号がローレベルになると、Q端子の出力をローレベルにする。FF16のQ( ̄)端子は、FF16のQ端子の出力を反転させた電圧を出力する端子である。したがって、FF16は、CLR( ̄)端子に入力される信号がローレベルになると、Q( ̄)端子からハイレベルの信号を出力する。なお、ヒータHTRの温度(ヒータサーミスタT3の温度)が過大になっていない通常状態においては、FF16のCLR( ̄)端子に入力される信号はハイレベルになっている。このため、通常状態において、FF16は、D端子に入力されているハイレベルの電圧(システム電源電圧Vcc1)を反転させたローレベルの電圧をQ( ̄)端子から出力する。 As described above, when the temperature of the heater HTR (the temperature of the heater thermistor T3) becomes excessive, the output voltage of the operational amplifier OP2 becomes low level. This low-level voltage is input to the CLR (~) terminal of FF16. The FF 16 makes the output of the Q terminal low level when the signal input to the CLR (~) terminal becomes low level. The Q(-) terminal of FF16 is a terminal for outputting a voltage obtained by inverting the output of the Q terminal of FF16. Therefore, the FF 16 outputs a high level signal from the Q(~) terminal when the signal input to the CLR(~) terminal becomes low level. In a normal state where the temperature of the heater HTR (the temperature of the heater thermistor T3) is not excessive, the signal input to the CLR (~) terminal of the FF16 is at high level. Therefore, in the normal state, the FF 16 outputs from the Q terminal a low level voltage obtained by inverting the high level voltage (system power supply voltage Vcc1) input to the D terminal.
 ノイズによって、MCU1がフリーズした場合を想定する。MCU1がフリーズした場合には、ユーザが、アウターパネル115をインナーパネル118から取り外し、更に、操作スイッチOPSの押圧を続けることで、MCU1のリセットを行う。MCU1のリセットが行われている間も、FF16の電源端子VCCには、システム電源電圧Vcc1が供給され続ける。このため、MCU1のリセット前後において、FF16は、ヒータHTRの温度が過大になったことを示す情報(Q( ̄)端子のハイレベル出力)を保持し続ける。 Assume that MCU1 freezes due to noise. When the MCU1 freezes, the user removes the outer panel 115 from the inner panel 118 and continues to press the operation switch OPS to reset the MCU1. Even while the MCU1 is being reset, the system power supply voltage Vcc1 continues to be supplied to the power supply terminal VCC of the FF16. Therefore, before and after resetting the MCU 1, the FF 16 continues to hold the information indicating that the temperature of the heater HTR has become excessive (high level output from the Q(-) terminal).
 再起動したMCU1は、端子P11に入力されている電圧がハイレベルとなっている場合に、ヒータHTRの温度が過大になったことを検知し、保護制御を実行して、動作モードを永久エラーモードに遷移させる。すなわち、ここで実行される保護制御は非復帰保護制御である。このように、MCU1がフリーズした結果、ヒータHTRの過加熱が発生した場合でも、リセットによってMCU1を正常動作に復帰させて、動作モードを永久エラーモードに遷移させることができる。これにより、吸引器100を使用不可にすることができ、安全性を高めることができる。 When the voltage input to the terminal P11 is at a high level, the restarted MCU1 detects that the temperature of the heater HTR has become excessive, executes protection control, and changes the operation mode to a permanent error. mode. That is, the protection control executed here is non-recovery protection control. As described above, even when the heater HTR overheats as a result of the MCU1 freezing, the MCU1 can be returned to normal operation by resetting, and the operation mode can be changed to the permanent error mode. As a result, the suction device 100 can be disabled, and safety can be improved.
 以上のように、吸引器100では、スイッチドライバ7が、操作スイッチOPSの操作に関する条件であるスイッチ操作条件と、操作スイッチOPSの操作とは異なる条件であるパネル条件との両方が満たされた場合に、LSW4の開閉を行ってMCU1のリセットを行う。単一の条件が満たされた場合にコントローラのリセットを行う技術はよく知られている。しかし、吸引器100では、複数の条件が満たされた場合にMCU1のリセットが行われる。このため、誤操作や何らかの衝撃によりMCU1がリセットされることが抑制され、必要な場合にのみMCU1をリセットすることができる。 As described above, in the aspirator 100, when the switch driver 7 satisfies both the switch operation condition related to the operation of the operation switch OPS and the panel condition different from the operation of the operation switch OPS. Then, the LSW4 is opened and closed to reset the MCU1. Techniques for resetting a controller when a single condition is met are well known. However, in the aspirator 100, the MCU1 is reset when a plurality of conditions are met. Therefore, resetting of the MCU 1 due to an erroneous operation or some kind of shock is suppressed, and the MCU 1 can be reset only when necessary.
 また、吸引器100では、アウターパネル115がインナーパネル118に装着されている状態では、操作スイッチOPSを押圧し続けても、MCU1のリセットは行われない。アウターパネル115がインナーパネル118から取り外されている状態でのみ、操作スイッチOPSを押圧し続けることで、MCU1のリセットが行われる。このように、同一の操作部材で実現できる機能を、アウターパネル115の装着有無に応じて切り替えることで、操作部材の数を減らして、操作性の向上とコスト削減を図ることができる。 Also, in the aspirator 100, when the outer panel 115 is attached to the inner panel 118, even if the operation switch OPS is kept pressed, the MCU1 is not reset. By continuing to press the operation switch OPS only when the outer panel 115 is removed from the inner panel 118, the MCU1 is reset. In this way, by switching the functions that can be realized by the same operation member depending on whether the outer panel 115 is attached or not, the number of operation members can be reduced, and operability can be improved and costs can be reduced.
 なお、MCU1は、アウターパネル115がインナーパネル118から取り外されたことを検知した場合に、通知部180に通知を行わせることが好ましい。このようにすることで、MCU1をリセットするためには、パネル条件が満たされることで通知がされている中、さらに操作スイッチOPSを操作する必要がある。このため、ユーザの明確な意思の下、MCU1をリセットできる。 In addition, when the MCU 1 detects that the outer panel 115 has been removed from the inner panel 118, it is preferable to cause the notification unit 180 to make a notification. By doing so, in order to reset the MCU1, it is necessary to further operate the operation switch OPS while the panel condition is being notified. Therefore, the MCU 1 can be reset under the clear intention of the user.
 また、MCU1は、アウターパネル115がインナーパネル118から取り外されたことを検知した場合には、電源BATからヒータHTRへの放電を不可とすることが好ましい。アウターパネル115が装着されていない状態では、加熱部170で発生する熱がユーザに伝わりやすくなるため、このようにすることで、安全性を向上させることができる。 Also, when the MCU 1 detects that the outer panel 115 has been removed from the inner panel 118, it is preferable to disable discharge from the power supply BAT to the heater HTR. When the outer panel 115 is not attached, the heat generated by the heating unit 170 is easily transmitted to the user, and thus safety can be improved by doing so.
(加熱部170の好ましい形態)
 図22は、図1に示す吸引器100のケースサーミスタT4を通る切断面での断面図である。図22に示すように、加熱部170は、断熱機能を持つ円筒状のロッド収容部172と、ロッド収容部172の内側に配置された円筒状のヒータ支持部材174と、ヒータ支持部材174の内周面に支持された筒状のヒータHTRと、を備える。
(Preferred form of heating unit 170)
FIG. 22 is a cross-sectional view of the aspirator 100 shown in FIG. 1 taken along a plane through the case thermistor T4. As shown in FIG. 22, the heating unit 170 includes a cylindrical rod housing portion 172 having a heat insulating function, a cylindrical heater support member 174 disposed inside the rod housing portion 172, and a heater support member 174 inside the heater support member 174. and a cylindrical heater HTR supported on the peripheral surface.
 ヒータHTRは、上下方向に垂直な断面形状が略楕円形状となっている。具体的には、ヒータHTRは、前後方向に離間して対向配置された上下方向に延びる平坦部H1,H2と、平坦部H1の右側端と平坦部H2の右側端とを繋ぐ湾曲部H3と、平坦部H1の左側端と平坦部H2の左側端とを繋ぐ湾曲部H4とにより構成されている。なお、平坦部H1,H2に代えて湾曲部H3及び湾曲部H4と曲率が異なる湾曲部を用いることで、略楕円形状を構成してもよい。 The heater HTR has a substantially elliptical cross-sectional shape perpendicular to the vertical direction. More specifically, the heater HTR includes flat portions H1 and H2 that are spaced apart in the front-rear direction and face each other and extend in the vertical direction, and a curved portion H3 that connects the right end of the flat portion H1 and the right end of the flat portion H2. , and a curved portion H4 connecting the left end of the flat portion H1 and the left end of the flat portion H2. A substantially elliptical shape may be formed by using a curved portion having a curvature different from that of the curved portions H3 and H4 instead of the flat portions H1 and H2.
 この楕円形状のヒータHTRで囲まれた空間170Aに、ロッド500の一部が収容される。ロッド500の外形は円形であり、ロッド500の直径は、前後方向における平坦部H1と平坦部H2の間の距離よりも大きい。このため、空間170Aに挿入されたロッド500は、平坦部H1と平坦部H2によって前後方向に押し潰された状態となる。加熱部170を図21に示す構成とすることで、ロッド500とヒータHTRの接触面積を大きくして、ロッド500を効率よく加熱することができる。MCU1のリセットは、この空間170Aにロッド500が挿入されているか否かに関係なく実行可能である。 A part of the rod 500 is accommodated in the space 170A surrounded by the elliptical heater HTR. The outer shape of rod 500 is circular, and the diameter of rod 500 is greater than the distance between flat portion H1 and flat portion H2 in the front-rear direction. Therefore, the rod 500 inserted into the space 170A is crushed in the front-rear direction by the flat portion H1 and the flat portion H2. By configuring the heating unit 170 as shown in FIG. 21, the contact area between the rod 500 and the heater HTR can be increased, and the rod 500 can be efficiently heated. The MCU1 can be reset regardless of whether the rod 500 is inserted into this space 170A.
 例えば、開口132(図2参照)から挿入されたロッド500の加熱が行われる前にMCU1がフリーズして、エアロゾルの生成が実行されなかった場合を想定する。このような場合には、ロッド500を開口132から取り出してスライダ119を閉じる等の操作を行うことなく、ロッド500を挿入したまま、アウターパネル115を取り外して操作スイッチOPSを押圧するだけで、MCU1をリセットできる。MCU1がリセットによってアクティブモードへ復帰した後、ユーザは、アウターパネル115を装着してから操作スイッチOPSを加熱開始操作時間だけ押圧する。これにより、実行されなかったエアロゾルの生成が実行されることになる。このように、ロッド500の抜き差し、換言すると、スライダ119の開閉を行うことなく、MCU1のリセットが可能となることで、ユーザの負担を軽減でき、使い勝手を向上させることができる。 For example, assume a case where the MCU 1 freezes before the rod 500 inserted through the opening 132 (see FIG. 2) is heated, and no aerosol is generated. In such a case, instead of removing the rod 500 from the opening 132 and closing the slider 119, the MCU 1 can be operated by simply removing the outer panel 115 and pressing the operation switch OPS while the rod 500 remains inserted. can be reset. After the MCU 1 returns to the active mode by resetting, the user attaches the outer panel 115 and presses the operation switch OPS for the heating start operation time. This will execute the aerosol generation that was not executed. In this way, the MCU 1 can be reset without inserting and withdrawing the rod 500, in other words, opening and closing the slider 119, thereby reducing the burden on the user and improving usability.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood.
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。 At least the following matters are described in this specification. In addition, although the parenthesis shows the components corresponding to the above-described embodiment, the present invention is not limited to this.
(1)
 電源(電源BAT)と、
 上記電源から供給される電力を消費してエアロゾル源(ロッド500)を加熱するヒータ(ヒータHTR)が接続されるヒータコネクタ(ヒータコネクタCn)と、
 上記電源から上記ヒータへの電力の供給を制御可能に構成され、且つ、動作するための電力が入力される電源端子(電源端子VDD)を含むコントローラ(MCU1)と、
 上記電源と上記コントローラの電源端子とを接続するスイッチ(LSW4)と、
 上記スイッチの開閉を制御可能な再起動回路(スイッチドライバ7)と、を備え、
 上記再起動回路は、再起動条件が満たされると上記スイッチを開く第1操作を実行し、上記第1操作の実行後に上記スイッチを閉じる第2操作を実行する、
 エアロゾル生成装置の電源ユニット。
(1)
a power supply (power supply BAT);
a heater connector (heater connector Cn) to which a heater (heater HTR) that consumes power supplied from the power source and heats the aerosol source (rod 500) is connected;
a controller (MCU1) configured to be able to control the supply of power from the power supply to the heater and including a power terminal (power terminal VDD) to which power for operation is input;
a switch (LSW4) connecting the power source and the power terminal of the controller;
A restart circuit (switch driver 7) capable of controlling opening and closing of the switch,
The restart circuit performs a first operation to open the switch when a restart condition is satisfied, and performs a second operation to close the switch after performing the first operation.
Power supply unit for the aerosol generator.
 (1)によれば、再起動回路によるスイッチの開閉制御によってコントローラを再起動できるので、コントローラにフリーズが生じてもこれを安定的に解除し、正常な動作に戻すことができる。 According to (1), the controller can be restarted by controlling the opening and closing of the switch by the restart circuit, so even if the controller freezes, it can be stably released and returned to normal operation.
(2)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記再起動回路は、上記第1操作の実行後に上記再起動条件が満たされ続けても上記第2操作を実行する、
 エアロゾル生成装置の電源ユニット。
(2)
(1) The power supply unit of the aerosol generator,
The restart circuit executes the second operation even if the restart condition continues to be satisfied after the execution of the first operation.
Power supply unit for the aerosol generator.
 (2)によれば、コントローラへの電源供給が断たれた後の状況の変化に拠らず、コントローラへ再び電源供給が行われるので、ユーザ操作を必要とすることなく、コントローラを確実に再起動させることができる。 According to (2), power is supplied to the controller again regardless of a change in the situation after the power supply to the controller is cut off. can be activated.
(3)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記再起動条件が満たされるためには、ユーザによる所定の操作(操作スイッチOPSの押圧)が所定の期間持続する必要がある、
 エアロゾル生成装置の電源ユニット。
(3)
(1) The power supply unit of the aerosol generator,
In order to satisfy the restart condition, it is necessary that a predetermined operation (pressing of the operation switch OPS) by the user continues for a predetermined period of time.
Power supply unit for the aerosol generator.
 (3)によれば、再起動条件が誤操作や何らかの衝撃によって満たされにくくなる。このため、コントローラが誤って再起動される状況を防ぎ、ユーザによる明確な操作によってのみコントローラを再起動できるようになる。 According to (3), the restart condition is less likely to be satisfied due to an erroneous operation or some kind of impact. This prevents situations in which the controller is restarted by mistake, and enables the controller to be restarted only by a clear operation by the user.
(4)
 (3)に記載のエアロゾル生成装置の電源ユニットであって、
 ユーザへの通知を実行可能な通知部(通知部180)を備え、
 上記コントローラは、
  上記所定の操作を検知可能であり、
  上記所定の操作が上記所定の期間持続して上記再起動条件が満たされた後、上記第1操作が実行される前に(再起動条件が満たされてから遅延時間tdが経過する前に)、上記通知部に通知を実行させるように構成される、
 エアロゾル生成装置の電源ユニット。
(4)
(3) The power supply unit of the aerosol generator,
A notification unit (notification unit 180) capable of notifying the user,
The above controller is
The predetermined operation can be detected,
After the predetermined operation continues for the predetermined period and the restart condition is satisfied, and before the first operation is executed (before the delay time td elapses after the restart condition is satisfied). , configured to cause the notification unit to perform notification,
Power supply unit for the aerosol generator.
 (4)によれば、コントローラの再起動前の通知により、操作が継続されるとコントローラが再起動することをユーザに気付かせることができる。このため、ユーザがエアロゾル生成装置の状態を正確に把握できるようになる。 According to (4), it is possible to make the user aware that the controller will be restarted if the operation is continued by the notification before the controller is restarted. Therefore, the user can accurately grasp the state of the aerosol generator.
(5)
 (4)に記載のエアロゾル生成装置の電源ユニットであって、
 上記通知部(振動モータM)が接続されるコネクタ(モータコネクタCn(m))を備え、
 上記コネクタは、上記コントローラの電源端子へ並列接続される、
 エアロゾル生成装置の電源ユニット。
(5)
(4) The power supply unit of the aerosol generator,
A connector (motor connector Cn (m)) to which the notification unit (vibration motor M) is connected,
The connector is connected in parallel to a power terminal of the controller,
Power supply unit for the aerosol generator.
 (5)によれば、通知部の電源とコントローラの電源が共通になる。これにより、コントローラの再起動時に、通知部が動作しなくなるので、コントローラの再起動が行われていることを、ユーザが把握しやくなる。 According to (5), the power supply for the notification unit and the power supply for the controller are common. As a result, when the controller is restarted, the notification unit does not operate, so that the user can easily recognize that the controller is being restarted.
(6)
 (4)又は(5)に記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、上記再起動条件が満たされた後、上記第1操作が実行される前に(再起動条件が満たされてから遅延時間tdが経過する前に)、上記通知部に通知を完了させるように構成される、
 エアロゾル生成装置の電源ユニット。
(6)
(4) or (5), the power supply unit of the aerosol generator,
The controller completes notification to the notification unit after the restart condition is satisfied and before the first operation is executed (before the delay time td elapses after the restart condition is satisfied). configured to allow
Power supply unit for the aerosol generator.
 (6)によれば、コントローラの再起動時には通知が完了されているので、再起動が行われていることを、ユーザが把握しやくなる。 According to (6), since the notification is completed when the controller is restarted, it becomes easier for the user to grasp that the restart is being performed.
(7)
 (1)から(6)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記スイッチは、
  上記電源へ接続される入力端子(入力端子VIN)と、上記コントローラの電源端子へ接続される出力端子(出力端子VOUT)と、制御端子(制御端子ON)と、を含み、
  上記制御端子へハイレベルの電圧が入力されると、上記入力端子と上記出力端子の間の電気的な接続を閉じるように構成され、
 上記入力端子は、上記制御端子へ並列接続される、
 エアロゾル生成装置の電源ユニット。
(7)
A power supply unit for an aerosol generator according to any one of (1) to (6),
The switch above
an input terminal (input terminal VIN) connected to the power supply, an output terminal (output terminal VOUT) connected to the power supply terminal of the controller, and a control terminal (control terminal ON),
configured to close an electrical connection between the input terminal and the output terminal when a high-level voltage is input to the control terminal;
The input terminal is connected in parallel to the control terminal,
Power supply unit for the aerosol generator.
 (7)によれば、再起動回路が機能していない時に、電源によってスイッチの制御端子へハイレベルの電圧を入力できる。このため、再起動回路が機能していない時に、コントローラへの電力供給が断たれにくくなる。 According to (7), the power supply can input a high level voltage to the control terminal of the switch when the restart circuit is not functioning. Therefore, power supply to the controller is less likely to be interrupted when the restart circuit is not functioning.
(8)
 (7)に記載のエアロゾル生成装置の電源ユニットであって、
 上記再起動回路は、
  上記スイッチの制御端子へ接続される再起動端子(リセット入力端子RSTB)を含み、
  上記再起動条件が満たされると、上記再起動端子の電位をローレベルにする、
 エアロゾル生成装置の電源ユニット。
(8)
(7) The power supply unit of the aerosol generator,
The above restart circuit is
including a restart terminal (reset input terminal RSTB) connected to the control terminal of the switch;
when the restart condition is satisfied, setting the potential of the restart terminal to a low level;
Power supply unit for the aerosol generator.
 (8)によれば、再起動回路が機能する時のみ、スイッチの制御端子にはローレベル信号が入力される。このため、コントローラへの電力供給が断たれる状況を、限られたものにすることができる。 According to (8), a low level signal is input to the control terminal of the switch only when the restart circuit functions. Therefore, it is possible to limit situations in which the power supply to the controller is interrupted.
(9)
 (8)に記載のエアロゾル生成装置の電源ユニットであって、
 上記再起動回路は、第1入力端子(端子SW1)及び第2入力端子(端子SW2)を含み、
 上記再起動条件が満たされるためには、上記第1入力端子へ第1レベルの電圧が入力され、上記第2入力端子へ第2レベルの電圧が入力される必要があり、
 上記第1入力端子に上記第1レベルの電圧を入力するために必要なユーザの操作(操作スイッチOPSの押圧)は、上記第2入力端子に上記第2レベルの電圧を入力するために必要なユーザの操作(アウターパネル115の取り外し)とは異なる、
 エアロゾル生成装置の電源ユニット。
(9)
(8) The power supply unit of the aerosol generator,
The restart circuit includes a first input terminal (terminal SW1) and a second input terminal (terminal SW2),
In order to satisfy the restart condition, a first level voltage must be input to the first input terminal and a second level voltage must be input to the second input terminal;
The user's operation (pressing the operation switch OPS) required to input the voltage of the first level to the first input terminal is required to input the voltage of the second level to the second input terminal. Different from the user's operation (removal of the outer panel 115),
Power supply unit for the aerosol generator.
 (9)によれば、コントローラを再起動しようとすると、複雑な操作が要求される。このため、コントローラが誤って再起動される状況を防ぎ、ユーザによる明確な操作によってのみコントローラを再起動できるようになる。 According to (9), when trying to restart the controller, complicated operations are required. This prevents situations in which the controller is restarted by mistake, and enables the controller to be restarted only by a clear operation by the user.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年5月10日出願の日本特許出願(特願2021-079905)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-079905) filed on May 10, 2021, the content of which is incorporated herein by reference.
100 吸引器
112 ケース本体
115 アウターパネル
118 インナーパネル
119 スライダ
170 加熱部
1 MCU
8 昇降圧DC/DCコンバータ
16 フリップフロップ
HTR ヒータ
BAT 電源
Cn ヒータコネクタ
Cn(m) モータコネクタ
OPS 操作スイッチ
M 振動モータ
100 Suction Device 112 Case Body 115 Outer Panel 118 Inner Panel 119 Slider 170 Heating Unit 1 MCU
8 Buck-boost DC/DC converter 16 Flip-flop HTR Heater BAT Power supply Cn Heater connector Cn (m) Motor connector OPS Operation switch M Vibration motor

Claims (9)

  1.  電源と、
     前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、
     前記電源から前記ヒータへの電力の供給を制御可能に構成され、且つ、動作するための電力が入力される電源端子を含むコントローラと、
     前記電源と前記コントローラの電源端子とを接続するスイッチと、
     前記スイッチの開閉を制御可能な再起動回路と、を備え、
     前記再起動回路は、再起動条件が満たされると前記スイッチを開く第1操作を実行し、前記第1操作の実行後に前記スイッチを閉じる第2操作を実行する、
     エアロゾル生成装置の電源ユニット。
    a power supply;
    a heater connector connected to a heater that consumes power supplied from the power supply to heat the aerosol source;
    a controller configured to be able to control the supply of power from the power source to the heater and including a power terminal to which power for operation is input;
    a switch connecting the power source and a power terminal of the controller;
    a restart circuit capable of controlling opening and closing of the switch,
    The restart circuit performs a first operation to open the switch when a restart condition is satisfied, and a second operation to close the switch after performing the first operation.
    Power supply unit for the aerosol generator.
  2.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記再起動回路は、前記第1操作の実行後に前記再起動条件が満たされ続けても前記第2操作を実行する、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 1,
    The restart circuit executes the second operation even if the restart condition continues to be satisfied after the execution of the first operation.
    Power supply unit for the aerosol generator.
  3.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記再起動条件が満たされるためには、ユーザによる所定の操作が所定の期間持続する必要がある、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 1,
    In order for the restart condition to be satisfied, a predetermined operation by the user must continue for a predetermined period of time.
    Power supply unit for the aerosol generator.
  4.  請求項3に記載のエアロゾル生成装置の電源ユニットであって、
     ユーザへの通知を実行可能な通知部を備え、
     前記コントローラは、
      前記所定の操作を検知可能であり、
      前記所定の操作が前記所定の期間持続して前記再起動条件が満たされた後、前記第1操作が実行される前に、前記通知部に通知を実行させるように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 3,
    A notification unit capable of notifying a user is provided,
    The controller is
    The predetermined operation can be detected,
    After the predetermined operation continues for the predetermined period and the restart condition is satisfied, and before the first operation is performed, the notification unit is configured to perform notification.
    Power supply unit for the aerosol generator.
  5.  請求項4に記載のエアロゾル生成装置の電源ユニットであって、
     前記通知部が接続されるコネクタを備え、
     前記コネクタは、前記コントローラの電源端子へ並列接続される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 4,
    A connector to which the notification unit is connected,
    the connector is connected in parallel to a power terminal of the controller;
    Power supply unit for the aerosol generator.
  6.  請求項4又は5に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、前記再起動条件が満たされた後、前記第1操作が実行される前に、前記通知部に通知を完了させるように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 4 or 5,
    The controller is configured to cause the notification unit to complete notification after the restart condition is satisfied and before the first operation is performed.
    Power supply unit for the aerosol generator.
  7.  請求項1から6のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記スイッチは、
      前記電源へ接続される入力端子と、前記コントローラの電源端子へ接続される出力端子と、制御端子と、を含み、
      前記制御端子へハイレベルの電圧が入力されると、前記入力端子と前記出力端子の間の電気的な接続を閉じるように構成され、
     前記入力端子は、前記制御端子へ並列接続される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 1 to 6,
    The switch is
    an input terminal connected to the power supply, an output terminal connected to the power supply terminal of the controller, and a control terminal;
    configured to close an electrical connection between the input terminal and the output terminal when a high-level voltage is input to the control terminal;
    the input terminal is connected in parallel to the control terminal;
    Power supply unit for the aerosol generator.
  8.  請求項7に記載のエアロゾル生成装置の電源ユニットであって、
     前記再起動回路は、
      前記スイッチの制御端子へ接続される再起動端子を含み、
      前記再起動条件が満たされると、前記再起動端子の電位をローレベルにする、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to claim 7,
    The restart circuit is
    a restart terminal connected to a control terminal of the switch;
    setting the potential of the restart terminal to a low level when the restart condition is satisfied;
    Power supply unit for the aerosol generator.
  9.  請求項8に記載のエアロゾル生成装置の電源ユニットであって、
     前記再起動回路は、第1入力端子及び第2入力端子を含み、
     前記再起動条件が満たされるためには、前記第1入力端子へ第1レベルの電圧が入力され、前記第2入力端子へ第2レベルの電圧が入力される必要があり、
     前記第1入力端子に前記第1レベルの電圧を入力するために必要なユーザの操作は、前記第2入力端子に前記第2レベルの電圧を入力するために必要なユーザの操作とは異なる、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to claim 8,
    The restart circuit includes a first input terminal and a second input terminal,
    In order to satisfy the restart condition, a voltage of a first level must be input to the first input terminal and a voltage of a second level must be input to the second input terminal;
    the user operation required to input the first level voltage to the first input terminal is different from the user operation required to input the second level voltage to the second input terminal;
    Power supply unit for the aerosol generator.
PCT/JP2022/009493 2021-05-10 2022-03-04 Power source unit for aerosol generation device WO2022239414A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237036607A KR20230161486A (en) 2021-05-10 2022-03-04 Power unit of aerosol generating device
EP22807121.3A EP4338627A1 (en) 2021-05-10 2022-03-04 Power source unit for aerosol generation device
CN202280032340.5A CN117279532A (en) 2021-05-10 2022-03-04 Power supply unit for aerosol-generating device
JP2023520838A JPWO2022239414A1 (en) 2021-05-10 2022-03-04
US18/502,051 US20240057684A1 (en) 2021-05-10 2023-11-05 Power supply unit for aerosol generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079905 2021-05-10
JP2021079905 2021-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/502,051 Continuation US20240057684A1 (en) 2021-05-10 2023-11-05 Power supply unit for aerosol generating device

Publications (1)

Publication Number Publication Date
WO2022239414A1 true WO2022239414A1 (en) 2022-11-17

Family

ID=84029524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009493 WO2022239414A1 (en) 2021-05-10 2022-03-04 Power source unit for aerosol generation device

Country Status (6)

Country Link
US (1) US20240057684A1 (en)
EP (1) EP4338627A1 (en)
JP (1) JPWO2022239414A1 (en)
KR (1) KR20230161486A (en)
CN (1) CN117279532A (en)
WO (1) WO2022239414A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019394A1 (en) * 2013-08-05 2015-02-12 富士通株式会社 Electronic device
JP2017538408A (en) 2014-12-11 2017-12-28 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Inhalation device with user recognition based on inhalation behavior
JP2019187428A (en) 2012-10-19 2019-10-31 ニコベンチャーズ ホールディングス リミテッド Electronic inhalation device
JP2020518250A (en) 2017-05-05 2020-06-25 ニコベンチャーズ ホールディングス リミテッド Electronic aerosol supply system
JP2020527053A (en) 2017-10-30 2020-09-03 ケイティー アンド ジー コーポレイション Aerosol generator and its control method
JP2020527945A (en) 2017-07-17 2020-09-17 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Non-heated, non-burning smoking goods
WO2021059377A1 (en) * 2019-09-25 2021-04-01 日本たばこ産業株式会社 Battery unit, information processing method, and program
JP2021079905A (en) 2019-11-22 2021-05-27 株式会社豊田中央研究所 Air vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752220B2 (en) 2015-04-30 2020-09-09 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Defective diagnostic equipment for electrically operated smoking devices
GB201600539D0 (en) 2016-01-12 2016-02-24 British American Tobacco Co Visualisation system and method for electronic vapour provision systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019187428A (en) 2012-10-19 2019-10-31 ニコベンチャーズ ホールディングス リミテッド Electronic inhalation device
WO2015019394A1 (en) * 2013-08-05 2015-02-12 富士通株式会社 Electronic device
JP2017538408A (en) 2014-12-11 2017-12-28 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Inhalation device with user recognition based on inhalation behavior
JP2020518250A (en) 2017-05-05 2020-06-25 ニコベンチャーズ ホールディングス リミテッド Electronic aerosol supply system
JP2020527945A (en) 2017-07-17 2020-09-17 アール・エイ・アイ・ストラテジック・ホールディングス・インコーポレイテッド Non-heated, non-burning smoking goods
JP2020527053A (en) 2017-10-30 2020-09-03 ケイティー アンド ジー コーポレイション Aerosol generator and its control method
WO2021059377A1 (en) * 2019-09-25 2021-04-01 日本たばこ産業株式会社 Battery unit, information processing method, and program
JP2021079905A (en) 2019-11-22 2021-05-27 株式会社豊田中央研究所 Air vehicle

Also Published As

Publication number Publication date
EP4338627A1 (en) 2024-03-20
KR20230161486A (en) 2023-11-27
US20240057684A1 (en) 2024-02-22
JPWO2022239414A1 (en) 2022-11-17
CN117279532A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
EP4088592B1 (en) Aerosol generation device
US20240079893A1 (en) Power supply unit for aerosol generation device
JP7066927B1 (en) Power supply unit for aerosol generator
WO2022239414A1 (en) Power source unit for aerosol generation device
WO2022239413A1 (en) Power supply unit of aerosol generation device
WO2022239410A1 (en) Power supply unit for aerosol generation device
WO2022239374A1 (en) Power supply unit of aerosol generation device
WO2022239407A1 (en) Power supply unit for aerosol generation device
WO2022239412A1 (en) Power supply unit for aerosol generation device
WO2022239405A1 (en) Power supply unit of aerosol generator
WO2022239389A1 (en) Power supply unit for aerosol generation device
WO2022239408A1 (en) Power supply unit for aerosol generation device
WO2022239370A1 (en) Power supply unit for aerosol generation device
JP7137039B1 (en) aerosol generator
WO2022239395A1 (en) Power supply unit for aerosol generation device
WO2022239373A1 (en) Power supply unit for aerosol generation device
WO2022239371A1 (en) Power supply unit for aerosol generation device
WO2022239409A1 (en) Power supply unit for aerosol generation apparatus
WO2022239396A1 (en) Power supply unit for aerosol generation device
WO2022239372A1 (en) Power supply unit for aerosol generation device
WO2022239383A1 (en) Power supply unit for aerosol generation device
WO2022239384A1 (en) Power supply unit for aerosol generation device
WO2022239382A1 (en) Power supply unit for aerosol generation device
WO2022239385A1 (en) Power supply unit for aerosol generation device
JP2022173879A (en) Power supply unit for aerosol generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520838

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237036607

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036607

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280032340.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022807121

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807121

Country of ref document: EP

Effective date: 20231211