WO2022239372A1 - Power supply unit for aerosol generation device - Google Patents

Power supply unit for aerosol generation device Download PDF

Info

Publication number
WO2022239372A1
WO2022239372A1 PCT/JP2022/007923 JP2022007923W WO2022239372A1 WO 2022239372 A1 WO2022239372 A1 WO 2022239372A1 JP 2022007923 W JP2022007923 W JP 2022007923W WO 2022239372 A1 WO2022239372 A1 WO 2022239372A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
terminal
mcu
temperature
supply unit
Prior art date
Application number
PCT/JP2022/007923
Other languages
French (fr)
Japanese (ja)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2022239372A1 publication Critical patent/WO2022239372A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Patent Document 1 describes a device comprising an aerosol generator including a battery and an aerosol-generating element, and a portable charger.
  • the portable charger has a thermistor that senses the temperature of the housing of the aerosol generator, and when the temperature sensed by the thermistor falls below 10°C, it activates a coil around the battery of the aerosol generator. This prevents the temperature of the battery from dropping to 10°C.
  • Patent Document 2 describes a device that uses a comparator to protect against overcurrent and overvoltage.
  • An aerosol generator configured to be able to inhale aerosols has heat-generating parts such as a power supply and a heater in its housing. It is important for safety to ensure that these parts do not generate heat in high temperature environments.
  • the purpose of the present invention is to provide an aerosol generator with enhanced safety.
  • a power supply unit of an aerosol generating apparatus includes a case forming the surface of the power supply unit, a power supply, and a connector connected to a heater that consumes the power supplied from the power supply and heats the aerosol source.
  • a first sensor arranged near the power supply for outputting a value related to the temperature of the power supply;
  • a second sensor arranged near the case for outputting a value related to the temperature of the case; and
  • the controller performs a primary check to determine whether the output value of the first sensor and the output value of the second sensor are abnormal, and the output value of the first sensor is determined in the primary check. and when it is determined that the output value of the second sensor is abnormal, protection control is performed to prohibit one or both of charging of the power supply and discharging from the power supply to the heater is.
  • FIG. 1 is a perspective view of a non-combustion inhaler
  • FIG. 1 is a perspective view of a non-combustion inhaler showing a state in which a rod is attached
  • FIG. Fig. 10 is another perspective view of a non-combustion type inhaler
  • 1 is an exploded perspective view of a non-combustion inhaler
  • FIG. Fig. 3 is a perspective view of the internal unit of the non-combustion inhaler
  • FIG. 6 is an exploded perspective view of the internal unit of FIG. 5
  • FIG. 3 is a perspective view of the internal unit with the power supply and chassis removed
  • FIG. 11 is another perspective view of the internal unit with the power supply and chassis removed
  • It is a schematic diagram for demonstrating the operation mode of an aspirator.
  • FIG. 4 is a diagram for explaining the operation of an electric circuit in sleep mode; It is a figure for demonstrating the operation
  • FIG. 4 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode; It is a figure for demonstrating the operation
  • FIG. 5 is a diagram for explaining the operation of the electric circuit when detecting the temperature of the heater in the heating mode; FIG.
  • FIG. 4 is a diagram for explaining the operation of the electric circuit in charging mode;
  • FIG. 4 is a diagram for explaining the operation of an electric circuit when an MCU is reset (restarted);
  • FIG. 10 is a schematic diagram for explaining suction operation detection processing by an MCU using a puff thermistor;
  • FIG. 11 is a circuit diagram of a main part of the electric circuit shown in FIG. 10, showing the main electronic components related to the thermistor.
  • FIG. 22 is a diagram extracting and showing a portion of a range AR surrounded by a dashed line in FIG. 21; It is a figure which put together the specific example of the pattern of the protection control performed in an aspirator.
  • FIG. 5 is a flowchart for explaining an example of operations of the fuel gauge IC and the MCU when a high temperature notification signal is output from the fuel gauge IC in a sleep mode;
  • Figure 2 is a cross-sectional view in a plane through case thermistor T4 of the suction device shown in Figure 1;
  • Figure 2 is a cross-sectional view in a plane through case thermistor T4 of the suction device shown in Figure 1;
  • suction system which is one embodiment of the aerosol generator of the present invention, will be described below with reference to the drawings.
  • This suction system includes a non-combustion type suction device 100 (hereinafter also simply referred to as "suction device 100"), which is an embodiment of the power supply unit of the present invention, and a rod 500 heated by the suction device 100.
  • suction device 100 a non-combustion type suction device 100
  • the suction device 100 accommodates the heating unit in a non-detachable manner
  • the heating unit may be detachably attached to the aspirator 100 .
  • the rod 500 and the heating unit may be integrated and detachably attached to the aspirator 100 .
  • the power supply unit of the aerosol generator may have a configuration that does not include the heating section as a component.
  • “non-detachable” refers to a mode in which detachment is not possible as far as the intended use is concerned.
  • an induction heating coil provided in the aspirator 100 and a susceptor built in the rod 500 may cooperate to form a heating unit.
  • FIG. 1 is a perspective view showing the overall configuration of the aspirator 100.
  • FIG. FIG. 2 is a perspective view of the suction device 100 showing a state in which the rod 500 is attached.
  • FIG. 3 is another perspective view of the suction device 100.
  • FIG. FIG. 4 is an exploded perspective view of the aspirator 100.
  • FIG. Also, in the following description, for the sake of convenience, the orthogonal coordinate system of a three-dimensional space is used, in which the three mutually orthogonal directions are the front-back direction, the left-right direction, and the up-down direction. In the figure, the front is indicated by Fr, the rear by Rr, the right by R, the left by L, the upper by U, and the lower by D.
  • the inhaler 100 generates flavor-containing aerosol by heating an elongated, substantially cylindrical rod 500 (see FIG. 2) as an example of a flavor component-generating base having a filling containing an aerosol source and a flavor source. configured to
  • Rod 500 includes a fill containing an aerosol source that is heated at a predetermined temperature to produce an aerosol.
  • the type of aerosol source is not particularly limited, and extracts from various natural products and/or their constituent components can be selected according to the application.
  • the aerosol source may be solid or liquid, for example polyhydric alcohols such as glycerin, propylene glycol, or water.
  • the aerosol source may include a flavor source such as a tobacco material or an extract derived from the tobacco material that releases flavor components upon heating.
  • the gas to which the flavor component is added is not limited to an aerosol, and for example an invisible vapor may be generated.
  • the filling of rod 500 may contain tobacco shreds as a flavor source.
  • Materials for shredded tobacco are not particularly limited, and known materials such as lamina and backbone can be used.
  • the filling may contain one or more perfumes.
  • the type of flavoring agent is not particularly limited, but menthol is preferable from the viewpoint of imparting a good smoking taste.
  • Flavor sources may contain plants other than tobacco, such as mints, herbal medicines, or herbs. Depending on the application, rod 500 may not contain a flavor source.
  • the suction device 100 includes a substantially rectangular parallelepiped case 110 having a front surface, a rear surface, a left surface, a right surface, an upper surface, and a lower surface.
  • the case 110 comprises a bottomed cylindrical case body 112 in which front, rear, top, bottom, and right surfaces are integrally formed, and a left surface that seals an opening 114 (see FIG. 4) of the case body 112. It has an outer panel 115 , an inner panel 118 , and a slider 119 .
  • the inner panel 118 is fixed to the case body 112 with bolts 120 .
  • the outer panel 115 is fixed to the case body 112 so as to cover the outer surface of the inner panel 118 by a magnet 124 held by a chassis 150 (see FIG. 5) housed in the case body 112 and described later. Since the outer panel 115 is fixed by the magnet 124, the user can replace the outer panel 115 according to his or her preference.
  • the inner panel 118 is provided with two through holes 126 through which the magnets 124 pass.
  • the inner panel 118 is further provided with a longitudinally elongated hole 127 and a circular round hole 128 between the two vertically arranged through holes 126 .
  • This long hole 127 is for transmitting light emitted from eight LEDs (Light Emitting Diodes) L1 to L8 built in the case body 112 .
  • a button-type operation switch OPS built in the case body 112 passes through the round hole 128 . Thereby, the user can detect the light emitted from the eight LEDs L1 to L8 through the LED window 116 of the outer panel 115. FIG. Also, the user can press down the operation switch OPS via the pressing portion 117 of the outer panel 115 .
  • the upper surface of the case body 112 is provided with an opening 132 into which the rod 500 can be inserted.
  • the slider 119 is coupled to the case body 112 so as to be movable in the front-rear direction between a position for closing the opening 132 (see FIG. 1) and a position for opening the opening 132 (see FIG. 2).
  • the operation switch OPS is used to perform various operations of the aspirator 100.
  • the user operates the operation switch OPS via the pressing portion 117 while inserting the rod 500 into the opening 132 as shown in FIG.
  • the heating unit 170 (see FIG. 5) heats the rod 500 without burning it.
  • an aerosol is generated from the aerosol source contained in the rod 500 and the flavor of the flavor source contained in the rod 500 is added to the aerosol.
  • the user can inhale the flavor-containing aerosol by holding the mouthpiece 502 of the rod 500 projecting from the opening 132 and inhaling.
  • a charging terminal 134 is provided for receiving power supply by being electrically connected to an external power source such as an outlet or a mobile battery.
  • the charging terminal 134 is a USB (Universal Serial Bus) Type-C receptacle, but is not limited to this.
  • Charging terminal 134 is hereinafter also referred to as receptacle RCP.
  • the charging terminal 134 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply.
  • the wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
  • the charging terminal 134 can be connected to various USB terminals or the like, and may have the power receiving coil described above.
  • the configuration of the aspirator 100 shown in FIGS. 1-4 is merely an example.
  • the inhaler 100 holds the rod 500 and applies an action such as heating to generate gas to which a flavor component is added from the rod 500, and the user can inhale the generated gas. It can be configured in various forms.
  • FIG. 5 is a perspective view of the internal unit 140 of the suction device 100.
  • FIG. 6 is an exploded perspective view of the internal unit 140 of FIG. 5.
  • FIG. 7 is a perspective view of internal unit 140 with power supply BAT and chassis 150 removed.
  • FIG. 8 is another perspective view of the internal unit 140 with the power supply BAT and chassis 150 removed.
  • the internal unit 140 housed in the internal space of the case 110 includes a chassis 150, a power supply BAT, a circuit section 160, a heating section 170, a notification section 180, and various sensors.
  • the chassis 150 includes a plate-shaped chassis body 151 arranged substantially in the center of the interior space of the case 110 in the front-rear direction and extending in the vertical and front-rear directions, and a chassis body 151 disposed substantially in the center of the interior space of the case 110 in the front-rear direction.
  • a plate-shaped front and rear dividing wall 152 extending in the vertical and horizontal directions
  • a plate-shaped upper and lower dividing wall 153 extending forward from substantially the center of the front and rear dividing wall 152 in the vertical direction
  • the front and rear dividing wall 152 and the upper edges of the chassis body 151 and a plate-shaped chassis lower wall 155 extending rearward from the front-rear dividing wall 152 and the lower edge of the chassis body 151 .
  • the left surface of the chassis body 151 is covered with the inner panel 118 and the outer panel 115 of the case 110 described above.
  • the internal space of the case 110 is defined by a chassis 150 such that a heating unit housing area 142 is defined in the upper front, a board housing area 144 is defined in the lower front, and a power supply housing space 146 is defined in the rear to extend vertically. ing.
  • the heating part 170 housed in the heating part housing area 142 is composed of a plurality of tubular members, which are concentrically arranged to form a tubular body as a whole.
  • the heating section 170 has a rod housing section 172 capable of housing a portion of the rod 500 therein, and a heater HTR (see FIGS. 10 to 19) that heats the rod 500 from its outer circumference or center.
  • the surface of the rod housing portion 172 and the heater HTR are insulated by forming the rod housing portion 172 from a heat insulating material or providing a heat insulating material inside the rod housing portion 172 .
  • the heater HTR may be any element that can heat the rod 500 .
  • the heater HTR is, for example, a heating element.
  • Heating elements include heating resistors, ceramic heaters, induction heaters, and the like.
  • the heater HTR for example, one having a PTC (Positive Temperature Coefficient) characteristic in which the resistance value increases as the temperature increases is preferably used.
  • a heater HTR having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used.
  • the heating part 170 has a function of defining a flow path of air to be supplied to the rod 500 and a function of heating the rod 500 .
  • the case 110 is formed with a vent (not shown) for introducing air, and is configured to allow air to enter the heating unit 170 .
  • the power supply BAT housed in the power supply housing space 146 is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery.
  • the electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
  • the notification unit 180 notifies various information such as the SOC (State Of Charge) indicating the state of charge of the power supply BAT, the preheating time during suction, and the suction possible period.
  • the notification unit 180 of this embodiment includes eight LEDs L1 to L8 and a vibration motor M.
  • the notification unit 180 may be composed of light emitting elements such as LEDs L1 to L8, may be composed of vibrating elements such as the vibration motor M, or may be composed of sound output elements.
  • the notification unit 180 may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
  • Various sensors include an intake air sensor that detects the user's puff action (sucking action), a power supply temperature sensor that detects the temperature of the power supply BAT, a heater temperature sensor that detects the temperature of the heater HTR, and a case temperature sensor that detects the temperature of the case 110. , a cover position sensor that detects the position of the slider 119, a panel detection sensor that detects attachment/detachment of the outer panel 115, and the like.
  • the intake sensor is mainly composed of a thermistor T2 arranged near the opening 132, for example.
  • the power supply temperature sensor is mainly composed of, for example, a thermistor T1 arranged near the power supply BAT.
  • the heater temperature sensor is mainly composed of, for example, a thermistor T3 arranged near the heater HTR.
  • the rod housing portion 172 is preferably insulated from the heater HTR.
  • the thermistor T3 is preferably in contact with or close to the heater HTR inside the rod housing portion 172 . If the heater HTR has PTC characteristics or NTC characteristics, the heater HTR itself may be used as the heater temperature sensor.
  • the case temperature sensor is mainly composed of, for example, a thermistor T4 arranged near the left surface of the case 110 .
  • Thermistor T4 is preferably in contact with or in close proximity to case 110 .
  • the cover position sensor is mainly composed of a Hall IC 14 including a Hall element arranged near the slider 119 .
  • the panel detection sensor is mainly composed of a Hall IC 13 including a Hall element arranged near the inner surface of the inner panel 118 .
  • the circuit section 160 includes four circuit boards, multiple ICs (Integrate Circuits), and multiple elements.
  • the four circuit boards are an MCU-mounted board 161 on which an MCU (Micro Controller Unit) 1 and a charging IC 2, which will be described later, are mainly arranged, a receptacle-mounted board 162 mainly on which charging terminals 134 are arranged, an operation switch OPS, and an LED An LED mounting substrate 163 on which L1 to L8 and a communication IC 15 described later are arranged, and a Hall IC mounting substrate 164 on which a Hall IC 14 including a Hall element constituting a cover position sensor is arranged.
  • the MCU mounting board 161 and the receptacle mounting board 162 are arranged parallel to each other in the board accommodation area 144 . More specifically, the MCU mounting board 161 and the receptacle mounting board 162 are arranged such that their element mounting surfaces are arranged along the horizontal direction and the vertical direction, and the MCU mounting board 161 is arranged in front of the receptacle mounting board 162. .
  • the MCU mounting board 161 and the receptacle mounting board 162 are each provided with openings.
  • the MCU mounting board 161 and the receptacle mounting board 162 are fastened with bolts 136 to the board fixing portion 156 of the front/rear dividing wall 152 with a cylindrical spacer 173 interposed between the peripheral edges of these openings.
  • the spacer 173 fixes the positions of the MCU mounting board 161 and the receptacle mounting board 162 inside the case 110 and mechanically connects the MCU mounting board 161 and the receptacle mounting board 162 .
  • the MCU mounting board 161 and the receptacle mounting board 162 it is possible to prevent the MCU mounting board 161 and the receptacle mounting board 162 from coming into contact with each other and causing a short-circuit current between them.
  • the MCU mounting board 161 and the receptacle mounting board 162 have main surfaces 161a and 162a that face forward, and secondary surfaces 161b and 162b that are opposite to the main surfaces 161a and 162a. and the main surface 162a of the receptacle mounting substrate 162 face each other with a predetermined gap therebetween.
  • a main surface 161 a of the MCU mounting board 161 faces the front surface of the case 110
  • a secondary surface 162 b of the receptacle mounting board 162 faces the front and rear dividing walls 152 of the chassis 150 .
  • Elements and ICs mounted on the MCU mounting board 161 and the receptacle mounting board 162 will be described later.
  • the LED mounting board 163 is arranged on the left side of the chassis body 151 and between the two magnets 124 arranged vertically.
  • the element mounting surface of the LED mounting substrate 163 is arranged along the vertical direction and the front-rear direction.
  • the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 are orthogonal to the element mounting surface of the LED mounting board 163 .
  • the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 and the element mounting surface of the LED mounting board 163 are not limited to being orthogonal, but preferably intersect (non-parallel).
  • the vibration motor M which forms the notification unit 180 together with the LEDs L1 to L8, is fixed to the bottom surface of the chassis bottom wall 155 and electrically connected to the MCU mounting board 161.
  • the Hall IC mounting board 164 is arranged on the upper surface of the chassis upper wall 154 .
  • FIG. 9 is a schematic diagram for explaining the operation modes of the aspirator 100.
  • the operating modes of the suction device 100 include charging mode, sleep mode, active mode, heating initialization mode, heating mode, and heating termination mode.
  • the sleep mode is a mode for saving power by stopping the power supply to the electronic parts required for heating control of the heater HTR.
  • the active mode is a mode in which most functions except heating control of the heater HTR are enabled.
  • the operation mode is switched to the active mode.
  • the slider 119 is closed or the non-operating time of the operation switch OPS reaches a predetermined time while the aspirator 100 is operating in the active mode, the operating mode is switched to the sleep mode.
  • the heating initial setting mode is a mode for initializing control parameters and the like for starting heating control of the heater HTR.
  • the aspirator 100 detects the operation of the operation switch OPS while operating in the active mode, it switches the operation mode to the heating initial setting mode, and when the initial setting is completed, switches the operation mode to the heating mode.
  • the heating mode is a mode that executes heating control of the heater HTR (heating control for aerosol generation and heating control for temperature detection).
  • the aspirator 100 starts heating control of the heater HTR when the operation mode is switched to the heating mode.
  • the heating end mode is a mode for executing heating control end processing (heating history storage processing, etc.) of the heater HTR.
  • the operation mode is switched to the heating end mode.
  • the operation mode is switched to the active mode.
  • the USB connection is established while the aspirator 100 is operating in the heating mode, the operating mode is switched to the heating end mode, and when the end processing is completed, the operating mode is switched to the charging mode. As shown in FIG.
  • the operating mode may be switched to the active mode before switching the operating mode to the charging mode.
  • the aspirator 100 may switch the operation mode in order of the heating end mode, the active mode, and the charging mode when the USB connection is made while operating in the heating mode.
  • the charging mode is a mode in which the power supply BAT is charged with power supplied from an external power supply connected to the receptacle RCP.
  • the aspirator 100 switches the operation mode to the charge mode when an external power source is connected (USB connection) to the receptacle RCP while operating in sleep mode or active mode.
  • the aspirator 100 switches the operation mode to the sleep mode when the charging of the power supply BAT is completed or the connection between the receptacle RCP and the external power supply is released while operating in the charging mode.
  • FIG. 11 shows a range 161A mounted on the MCU mounting board 161 (range surrounded by thick dashed lines) and a range 163A mounted on the LED mounting board 163 (range surrounded by thick solid lines) in the electric circuit shown in FIG.
  • FIG. 12 is the same as FIG. 10 except that a range 162A mounted on the receptacle mounting board 162 and a range 164A mounted on the Hall IC mounting board 164 are added to the electric circuit shown in FIG. is.
  • the wiring indicated by the thick solid line in FIG. 10 is the wiring (the wiring connected to the ground provided in the internal unit 140) that has the same potential as the reference potential (ground potential) of the internal unit 140. It is described as a ground line below.
  • an electronic component in which a plurality of circuit elements are chipped is indicated by a rectangle, and the symbols of various terminals are indicated inside the rectangle.
  • a power supply terminal VCC and a power supply terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively.
  • a power supply terminal VSS and a ground terminal GND mounted on the chip indicate power supply terminals on the low potential side (reference potential side).
  • the power supply voltage is the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side. Chipped electronic components use this power supply voltage to perform various functions.
  • the MCU-mounted board 161 includes, as main electronic components, an MCU1 that controls the entire sucker 100, a charging IC2 that controls charging of the power source BAT, a capacitor, a resistor load switches (hereinafter referred to as LSW) 3, 4, 5, a ROM (Read Only Memory) 6, a switch driver 7, and a step-up/step-down DC/DC converter 8 (in the figure, buck-boost DC/DC 8), operational amplifier OP2, operational amplifier OP3, flip-flops (FF) 16, 17, connector Cn (t2) (which is electrically connected to thermistor T2 constituting an intake sensor) ( The figure shows the thermistor T2 connected to this connector), and a connector Cn(t3) electrically connected to the thermistor T3 constituting the heater temperature sensor (the figure shows the thermistor T3 connected to this connector).
  • LSW resistor load switches
  • LSW resistor load switches
  • ROM Read Only Memory
  • switch driver 7 a switch driver 7
  • a ground terminal GND of each of the charging IC 2, LSW3, LSW4, LSW5, switch driver 7, step-up/step-down DC/DC converter 8, FF16, and FF17 is connected to a ground line.
  • a power terminal VSS of the ROM 6 is connected to the ground line.
  • a negative power supply terminal of each of the operational amplifiers OP2 and OP3 is connected to the ground line.
  • the LED mounting board 163 (area 163A) has, as main electronic components, a Hall IC 13 including a Hall element constituting a panel detection sensor, LEDs L1 to L8, an operation switch OPS, a communication IC 15 and are provided.
  • the communication IC 15 is a communication module for communicating with electronic devices such as smartphones.
  • a power supply terminal VSS of the Hall IC 13 and a ground terminal GND of the communication IC 15 are each connected to a ground line.
  • Communication IC 15 and MCU 1 are configured to be communicable via communication line LN.
  • One end of the operation switch OPS is connected to the ground line, and the other end of the operation switch OPS is connected to the terminal P4 of the MCU1.
  • the receptacle mounting board 162 (range 162A) includes a power connector electrically connected to the power supply BAT as a main electronic component (in the figure, the power supply BAT connected to this power connector is shown). ), a connector electrically connected to a thermistor T1 constituting a power supply temperature sensor (in the figure, the thermistor T1 connected to this connector is shown), and a boost DC/DC converter 9 (in the figure, a boost DC/DC 9 ), the protection IC 10, the overvoltage protection IC 11, the fuel gauge IC 12, the receptacle RCP, the switches S3 to S6 configured by MOSFETs, the operational amplifier OP1, and the heater HTR. (positive electrode side and negative electrode side) heater connectors Cn are provided.
  • ground terminals GND of receptacle RCP, ground terminal GND of step-up DC/DC converter 9, power supply terminal VSS of protection IC 10, power supply terminal VSS of fuel gauge IC 12, ground terminal GND of overvoltage protection IC 11, and operational amplifier The negative power supply terminals of OP1 are each connected to the ground line.
  • the Hall IC mounting substrate 164 (area 164A) is provided with a Hall IC 14 including a Hall element that constitutes a cover position sensor.
  • a power terminal VSS of the Hall IC 14 is connected to the ground line.
  • the output terminal OUT of the Hall IC 14 is connected to the terminal P8 of the MCU1.
  • the MCU1 detects opening/closing of the slider 119 from a signal input to the terminal P8.
  • a connector electrically connected to the vibration motor M is provided on the MCU mounting board 161 .
  • the two power supply input terminals V BUS of the receptacle RCP are each connected to the input terminal IN of the overvoltage protection IC11 via a fuse Fs.
  • the USB voltage V USB is supplied to the two power input terminals V BUS of the receptacle RCP.
  • An input terminal IN of the overvoltage protection IC 11 is connected to one end of a voltage dividing circuit Pa consisting of a series circuit of two resistors.
  • the other end of the voltage dividing circuit Pa is connected to the ground line.
  • a connection point between the two resistors forming the voltage dividing circuit Pa is connected to the voltage detection terminal OVLo of the overvoltage protection IC11.
  • the overvoltage protection IC 11 outputs the voltage input to the input terminal IN from the output terminal OUT when the voltage input to the voltage detection terminal OVLo is less than the threshold.
  • the overvoltage protection IC 11 stops voltage output from the output terminal OUT (cuts off the electrical connection between the LSW3 and the receptacle RCP) when the voltage input to the voltage detection terminal OVLo exceeds the threshold (overvoltage). By doing so, the electronic components downstream of the overvoltage protection IC 11 are protected.
  • the output terminal OUT of the overvoltage protection IC11 is connected to the input terminal VIN of the LSW3 and one end of the voltage dividing circuit Pc (series circuit of two resistors) connected to the MCU1. The other end of the voltage dividing circuit Pc is connected to the ground line. A connection point of the two resistors forming the voltage dividing circuit Pc is connected to the terminal P17 of the MCU1.
  • An input terminal VIN of LSW3 is connected to one end of a voltage dividing circuit Pf consisting of a series circuit of two resistors.
  • the other end of the voltage dividing circuit Pf is connected to the ground line.
  • a connection point between the two resistors forming the voltage dividing circuit Pf is connected to the control terminal ON of the LSW3.
  • the collector terminal of the bipolar transistor S2 is connected to the control terminal ON of LSW3.
  • the emitter terminal of the bipolar transistor S2 is connected to the ground line.
  • the base terminal of bipolar transistor S2 is connected to terminal P19 of MCU1.
  • the output terminal VOUT of LSW3 is connected to the input terminal VBUS of charging IC2.
  • the MCU1 turns on the bipolar transistor S2 while the USB connection is not made.
  • the control terminal ON of LSW3 is connected to the ground line via the bipolar transistor S2, so that a low level signal is input to the control terminal ON of LSW3.
  • the bipolar transistor S2 connected to LSW3 is turned off by MCU1 when the USB connection is made.
  • the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. Therefore, when the USB connection is made and the bipolar transistor S2 is turned off, a high level signal is input to the control terminal ON of the LSW3.
  • the LSW 3 outputs the USB voltage VUSB supplied from the USB cable from the output terminal VOUT. Even if the USB connection is made while the bipolar transistor S2 is not turned off, the control terminal ON of the LSW3 is connected to the ground line via the bipolar transistor S2. Therefore, it should be noted that a low level signal continues to be input to the control terminal ON of LSW3 unless MCU1 turns off bipolar transistor S2.
  • the positive terminal of the power supply BAT is connected to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC2. Therefore, the power supply voltage V BAT of the power supply BAT is supplied to the protection IC 10 , the charging IC 2 and the step-up DC/DC converter 9 .
  • a resistor Ra, a switch Sa composed of a MOSFET, a switch Sb composed of a MOSFET, and a resistor Rb are connected in series in this order to the negative terminal of the power supply BAT.
  • a current detection terminal CS of the protection IC 10 is connected to a connection point between the resistor Ra and the switch Sa. Control terminals of the switches Sa and Sb are connected to the protection IC 10 . Both ends of the resistor Rb are connected to the fuel gauge IC12.
  • the protection IC 10 acquires the value of the current flowing through the resistor Ra during charging and discharging of the power supply BAT from the voltage input to the current detection terminal CS, and when this current value becomes excessive (overcurrent), the switch Sa , the switch Sb is controlled to open and close to stop the charging or discharging of the power source BAT, thereby protecting the power source BAT. More specifically, when the protection IC 10 acquires an excessive current value while charging the power supply BAT, it stops charging the power supply BAT by turning off the switch Sb. When the protection IC 10 acquires an excessive current value during discharging of the power supply BAT, the protection IC 10 stops discharging the power supply BAT by turning off the switch Sa.
  • the protection IC 10 performs opening/closing control of the switch Sa and the switch Sb to The power supply BAT is protected by stopping the charging or discharging of BAT. More specifically, when the protection IC 10 detects that the power supply BAT is overcharged, the protection IC 10 stops charging the power supply BAT by turning off the switch Sb. When detecting overdischarge of the power supply BAT, the protection IC 10 turns off the switch Sa to stop the discharge of the power supply BAT.
  • a resistor Rt1 is connected to a connector connected to the thermistor T1 arranged near the power supply BAT.
  • a series circuit of the resistor Rt1 and the thermistor T1 is connected to the ground line and the regulator terminal TREG of the fuel gauge IC12.
  • a connection point between the thermistor T1 and the resistor Rt1 is connected to a thermistor terminal THM of the fuel gauge IC12.
  • the thermistor T1 may be a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases, or an NTC (Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature increases.
  • the fuel gauge IC 12 detects the current flowing through the resistor Rb, and based on the detected current value, indicates the remaining capacity of the power supply BAT, SOC (State Of Charge) indicating the state of charge, and SOH (State Of Charge) indicating the state of health. Health) and other battery information.
  • the fuel gauge IC12 supplies a voltage to the voltage dividing circuit of the thermistor T1 and the resistor Rt1 from the built-in regulator connected to the regulator terminal TREG.
  • the fuel gauge IC 12 acquires the voltage divided by this voltage dividing circuit from the thermistor terminal THM, and acquires temperature information regarding the temperature of the power supply BAT based on this voltage.
  • the fuel gauge IC12 is connected to the MCU1 via a communication line LN for serial communication, and is configured to be able to communicate with the MCU1.
  • the fuel gauge IC12 transmits the derived battery information and the acquired temperature information of the power supply BAT to the MCU1 in response to a request from the MCU1.
  • serial communication requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that only one signal line is shown in FIGS. 10-19 for simplicity.
  • the fuel gauge IC 12 has a notification terminal 12a.
  • the notification terminal 12a is connected to the terminal P6 of the MCU1 and the cathode of a diode D2, which will be described later.
  • the fuel gauge IC 12 detects an abnormality such as an excessive temperature of the power supply BAT, it notifies the MCU 1 of the occurrence of the abnormality by outputting a low-level signal from the notification terminal 12a. This low level signal is also input to the CLR ( ⁇ ) terminal of the FF 17 via the diode D2.
  • One end of the reactor Lc is connected to the switching terminal SW of the step-up DC/DC converter 9 .
  • the other end of this reactor Lc is connected to the input terminal VIN of the step-up DC/DC converter 9 .
  • the step-up DC/DC converter 9 performs on/off control of the built-in transistor connected to the switching terminal SW to step up the input voltage and output it from the output terminal VOUT.
  • the input terminal VIN of the step-up DC/DC converter 9 constitutes a power supply terminal of the step-up DC/DC converter 9 on the high potential side.
  • the boost DC/DC converter 9 performs a boost operation when the signal input to the enable terminal EN is at high level.
  • the signal input to the enable terminal EN of the boost DC/DC converter 9 may be controlled to be low level by the MCU1.
  • the MCU 1 does not control the signal input to the enable terminal EN of the boost DC/DC converter 9, so that the potential of the enable terminal EN may be made indefinite.
  • the output terminal VOUT of the step-up DC/DC converter 9 is connected to the source terminal of the switch S4 composed of a P-channel MOSFET.
  • the gate terminal of switch S4 is connected to terminal P15 of MCU1.
  • One end of the resistor Rs is connected to the drain terminal of the switch S4.
  • the other end of the resistor Rs is connected to a positive heater connector Cn connected to one end of the heater HTR.
  • a voltage dividing circuit Pb consisting of two resistors is connected to the connection point between the switch S4 and the resistor Rs.
  • a connection point of the two resistors forming the voltage dividing circuit Pb is connected to the terminal P18 of the MCU1.
  • a connection point between the switch S4 and the resistor Rs is further connected to the positive power supply terminal of the operational amplifier OP1.
  • a connection line between the output terminal VOUT of the step-up DC/DC converter 9 and the source terminal of the switch S4 is connected to the source terminal of the switch S3 composed of a P-channel MOSFET.
  • the gate terminal of switch S3 is connected to terminal P16 of MCU1.
  • a drain terminal of the switch S3 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • a circuit including the switch S3 and a circuit including the switch S4 and the resistor Rs are connected in parallel between the output terminal VOUT of the boost DC/DC converter 9 and the positive electrode side of the heater connector Cn. . Since the circuit including the switch S3 does not have a resistor, it has a lower resistance than the circuit including the switch S4 and the resistor Rs.
  • the non-inverting input terminal of the operational amplifier OP1 is connected to the connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • the inverting input terminal of the operational amplifier OP1 is connected to the negative heater connector Cn connected to the other end of the heater HTR and to the drain terminal of the switch S6 composed of an N-channel MOSFET.
  • the source terminal of switch S6 is connected to the ground line.
  • a gate terminal of the switch S6 is connected to the terminal P14 of the MCU1, the anode of the diode D4, and the enable terminal EN of the step-up DC/DC converter 9.
  • the cathode of diode D4 is connected to the Q terminal of FF17.
  • resistor R4 One end of a resistor R4 is connected to the output terminal of the operational amplifier OP1. The other end of the resistor R4 is connected to the terminal P9 of the MCU1 and the drain terminal of the switch S5 composed of an N-channel MOSFET. A source terminal of the switch S5 is connected to the ground line. A gate terminal of the switch S5 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
  • the input terminal VBUS of charging IC2 is connected to the anode of each of LEDs L1-L8.
  • the cathodes of the LEDs L1-L8 are connected to the control terminals PD1-PD8 of the MCU1 via current limiting resistors. That is, LEDs L1 to L8 are connected in parallel to the input terminal VBUS.
  • the LEDs L1 to L8 are operable by the USB voltage V USB supplied from the USB cable connected to the receptacle RCP and the voltage supplied from the power supply BAT via the charging IC2.
  • the MCU 1 incorporates transistors (switching elements) connected to each of the control terminals PD1 to PD8 and the ground terminal GND.
  • the MCU1 turns on the transistor connected to the control terminal PD1 to energize the LED L1 to light it, and turns off the transistor connected to the control terminal PD1 to turn off the LED L1.
  • the brightness and light emission pattern of the LED L1 can be dynamically controlled.
  • LEDs L2 to L8 are similarly controlled by the MCU1.
  • the charging IC2 has a charging function of charging the power supply BAT based on the USB voltage VUSB input to the input terminal VBUS.
  • the charging IC 2 acquires the charging current and charging voltage of the power supply BAT from terminals and wiring (not shown), and based on these, performs charging control of the power supply BAT (power supply control from the charging terminal bat to the power supply BAT). Also, the charging IC 2 may acquire the temperature information of the power supply BAT transmitted from the fuel gauge IC 12 to the MCU 1 from the MCU 1 through serial communication using the communication line LN, and use it for charging control.
  • the charging IC2 further comprises a V BAT power pass function and an OTG function.
  • the V BAT power pass function is a function of outputting from the output terminal SYS a system power supply voltage Vcc0 substantially matching the power supply voltage V BAT input to the charging terminal bat.
  • the OTG function is a function for outputting from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input to the charging terminal bat.
  • ON/OFF of the OTG function of the charging IC 2 is controlled by the MCU 1 through serial communication using the communication line LN.
  • the power supply voltage V BAT input to the charging terminal bat may be directly output from the input terminal VBUS. In this case, power supply voltage VBAT and system power supply voltage Vcc4 are substantially the same.
  • the output terminal SYS of the charging IC 2 is connected to the input terminal VIN of the step-up/step-down DC/DC converter 8 .
  • One end of a reactor La is connected to the switching terminal SW of the charging IC2.
  • the other end of the reactor La is connected to the output terminal SYS of the charging IC2.
  • a charge enable terminal CE ( ⁇ ) of the charge IC2 is connected to a terminal P22 of the MCU1 via a resistor.
  • the collector terminal of the bipolar transistor S1 is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • the emitter terminal of the bipolar transistor S1 is connected to the output terminal VOUT of the LSW4 which will be described later.
  • the base terminal of bipolar transistor S1 is connected to the Q terminal of FF17.
  • one end of a resistor Rc is connected to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • the other end of the resistor Rc is connected to the output terminal VOUT of LSW4.
  • a resistor is connected to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
  • the signal input to the enable terminal EN of the step-up/step-down DC/DC converter 8 is at a high level. Then, the step-up/step-down DC/DC converter 8 starts step-up operation or step-down operation.
  • the step-up/step-down DC/DC converter 8 steps up or steps down the system power supply voltage Vcc0 input to the input terminal VIN by switching control of the built-in transistor connected to the reactor Lb to generate the system power supply voltage Vcc1, and the output terminal VOUT.
  • Output from The output terminal VOUT of the buck-boost DC/DC converter 8 includes the feedback terminal FB of the buck-boost DC/DC converter 8, the input terminal VIN of the LSW 4, the input terminal VIN of the switch driver 7, the power supply terminal VCC and the D terminal of the FF 16. and connected to A wiring to which system power supply voltage Vcc1 output from output terminal VOUT of step-up/step-down DC/DC converter 8 is supplied is referred to as power supply line PL1.
  • the LSW4 When the signal input to the control terminal ON becomes high level, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN from the output terminal VOUT.
  • the control terminal ON of LSW4 and the power supply line PL1 are connected via a resistor. Therefore, by supplying the system power supply voltage Vcc1 to the power supply line PL1, a high level signal is input to the control terminal ON of the LSW4.
  • the voltage output from LSW4 is the same as the system power supply voltage Vcc1 if wiring resistance and the like are ignored. Described as voltage Vcc2.
  • the output terminal VOUT of the LSW4 is connected to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM6, the emitter terminal of the bipolar transistor S1, and the resistor Rc. , and the power supply terminal VCC of the FF 17 .
  • a wiring to which system power supply voltage Vcc2 output from output terminal VOUT of LSW4 is supplied is referred to as power supply line PL2.
  • the LSW5 When the signal input to the control terminal ON becomes high level, the LSW5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT.
  • a control terminal ON of LSW5 is connected to terminal P23 of MCU1.
  • the voltage output from LSW5 is the same as the system power supply voltage Vcc2 if wiring resistance and the like are ignored. Described as voltage Vcc3.
  • a wiring to which system power supply voltage Vcc3 output from output terminal VOUT of LSW5 is supplied is referred to as power supply line PL3.
  • a series circuit of a thermistor T2 and a resistor Rt2 is connected to the power supply line PL3, and the resistor Rt2 is connected to the ground line.
  • the thermistor T2 and the resistor Rt2 form a voltage dividing circuit, and their connection point is connected to the terminal P21 of the MCU1.
  • the MCU1 detects the temperature variation (resistance value variation) of the thermistor T2 based on the voltage input to the terminal P21, and determines the presence or absence of the puff operation based on the amount of temperature variation.
  • a series circuit of a thermistor T3 and a resistor Rt3 is connected to the power supply line PL3, and the resistor Rt3 is connected to the ground line.
  • the thermistor T3 and the resistor Rt3 form a voltage dividing circuit, and their connection point is connected to the terminal P13 of the MCU1 and the inverting input terminal of the operational amplifier OP2.
  • the MCU1 detects the temperature of the thermistor T3 (corresponding to the temperature of the heater HTR) based on the voltage input to the terminal P13.
  • a series circuit of a thermistor T4 and a resistor Rt4 is connected to the power supply line PL3, and the resistor Rt4 is connected to the ground line.
  • the thermistor T4 and the resistor Rt4 form a voltage dividing circuit, and the connection point between them is connected to the terminal P12 of the MCU1 and the inverting input terminal of the operational amplifier OP3.
  • the MCU1 detects the temperature of the thermistor T4 (corresponding to the temperature of the case 110) based on the voltage input to the terminal P12.
  • a source terminal of a switch S7 composed of a MOSFET is connected to the power supply line PL2.
  • the gate terminal of switch S7 is connected to terminal P20 of MCU1.
  • a drain terminal of the switch S7 is connected to one of a pair of connectors to which the vibration motor M is connected. The other of the pair of connectors is connected to the ground line.
  • the MCU1 can control the opening/closing of the switch S7 by manipulating the potential of the terminal P20, and vibrate the vibration motor M in a specific pattern.
  • a dedicated driver IC may be used instead of the switch S7.
  • a positive power supply terminal of the operational amplifier OP2 and a voltage dividing circuit Pd (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP2 are connected to the power supply line PL2.
  • a connection point between the two resistors forming the voltage dividing circuit Pd is connected to the non-inverting input terminal of the operational amplifier OP2.
  • the operational amplifier OP2 outputs a signal corresponding to the temperature of the heater HTR (signal corresponding to the resistance value of the thermistor T3).
  • the thermistor T3 since the thermistor T3 has the NTC characteristic, the higher the temperature of the heater HTR (the temperature of the thermistor T3), the lower the output voltage of the operational amplifier OP2.
  • the output of the voltage dividing circuit of the thermistor T3 and the resistor Rt3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP2.
  • the output of the pressure circuit Pd may be connected.
  • a positive power supply terminal of the operational amplifier OP3 and a voltage dividing circuit Pe (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP3 are connected to the power supply line PL2.
  • a connection point between the two resistors forming the voltage dividing circuit Pe is connected to the non-inverting input terminal of the operational amplifier OP3.
  • the operational amplifier OP3 outputs a signal corresponding to the temperature of the case 110 (a signal corresponding to the resistance value of the thermistor T4).
  • the thermistor T4 having the NTC characteristic is used, so the higher the temperature of the case 110, the lower the output voltage of the operational amplifier OP3.
  • the output of the voltage dividing circuit of the thermistor T4 and the resistor Rt4 is connected to the non-inverting input terminal of the operational amplifier OP3, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP3.
  • the output of the pressure circuit Pe may be connected.
  • a resistor R1 is connected to the output terminal of the operational amplifier OP2.
  • a cathode of a diode D1 is connected to the resistor R1.
  • the anode of the diode D1 is connected to the output terminal of the operational amplifier OP3, the D terminal of the FF17, and the CLR ( ⁇ ) terminal of the FF17.
  • a connection line between the resistor R1 and the diode D1 is connected to a resistor R2 connected to the power supply line PL1. Also, the CLR ( ⁇ ) terminal of the FF 16 is connected to this connection line.
  • resistor R3 One end of a resistor R3 is connected to the connection line between the anode of the diode D1 and the output terminal of the operational amplifier OP3 and the D terminal of the FF17.
  • the other end of resistor R3 is connected to power supply line PL2.
  • the anode of the diode D2 connected to the notification terminal 12a of the fuel gauge IC12, the anode of the diode D3, and the CLR ( ⁇ ) terminal of the FF 17 are connected to this connection line.
  • the cathode of diode D3 is connected to terminal P5 of MCU1.
  • the FF16 When the temperature of the heater HTR becomes excessive and the signal output from the operational amplifier OP2 becomes low and the signal input to the CLR ( ⁇ ) terminal becomes low level, the FF16 outputs a high level signal from the Q ( ⁇ ) terminal. Input to terminal P11 of MCU1. A high-level system power supply voltage Vcc1 is supplied from the power supply line PL1 to the D terminal of the FF16. Therefore, in the FF 16, a low level signal continues to be output from the Q ( ⁇ ) terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
  • the signal input to the CLR ( ⁇ ) terminal of the FF 17 is when the temperature of the heater HTR becomes excessive, when the temperature of the case 110 becomes excessive, and when an abnormality is detected from the notification terminal 12a of the fuel gauge IC 12.
  • the low-level signal shown When the low-level signal shown is output, it becomes low-level.
  • the FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR ( ⁇ ) terminal becomes low level.
  • This low-level signal is input to terminal P10 of MCU1, the gate terminal of switch S6, the enable terminal EN of boost DC/DC converter 9, and the base terminal of bipolar transistor S1 connected to charging IC2. be.
  • the CE ( ⁇ ) terminal of the charging IC2 is of negative logic, the charging of the power source BAT is stopped. As a result, the heating of the heater HTR and the charging of the power supply BAT are stopped. Even if the MCU1 attempts to output a low-level enable signal from the terminal P22 to the charge enable terminal CE ( ⁇ ) of the charging IC2, when the bipolar transistor S1 is turned on, the amplified current is transferred from the collector terminal to the MCU1 and the charge enable terminal CE ( ⁇ ) of the charge IC2. Note that a high level signal is input to the charge enable terminal CE ( ⁇ ) of the charge IC2.
  • a high-level system power supply voltage Vcc2 is supplied from the power supply line PL2 to the D terminal of the FF17. Therefore, the FF 17 continues to output a high level signal from the Q terminal unless the signal input to the CLR ( ⁇ ) terminal operating in negative logic becomes low level.
  • a low level signal is output from the output terminal of the operational amplifier OP3
  • a low level signal is input to the CLR ( ⁇ ) terminal of the FF17 regardless of the level of the signal output from the output terminal of the operational amplifier OP2.
  • the low level signal output from the output terminal of the operational amplifier OP3 is not affected by the high level signal due to the diode D1. sea bream.
  • the high level signal is passed through the diode D1. signal.
  • the power line PL2 is further branched from the MCU mounting board 161 toward the LED mounting board 163 and the Hall IC mounting board 164 side.
  • the power terminal VDD of the hall IC 13, the power terminal VCC of the communication IC 15, and the power terminal VDD of the hall IC 14 are connected to the branched power line PL2.
  • the output terminal OUT of the Hall IC 13 is connected to the terminal P3 of the MCU1 and the terminal SW2 of the switch driver 7. When the outer panel 115 is removed, a low level signal is output from the output terminal OUT of the Hall IC 13 .
  • the MCU 1 determines whether or not the outer panel 115 is attached based on the signal input to the terminal P3.
  • a series circuit (a series circuit of a resistor and a capacitor) connected to the operation switch OPS is provided on the LED mounting board 163 .
  • This series circuit is connected to power supply line PL2.
  • a connection point between the resistor and the capacitor in this series circuit is connected to the terminal P4 of the MCU 1, the operation switch OPS, and the terminal SW1 of the switch driver 7.
  • FIG. When the operation switch OPS is not pressed, the operation switch OPS is not conductive, and the signals input to the terminal P4 of the MCU1 and the terminal SW1 of the switch driver 7 are at a high level due to the system power supply voltage Vcc2.
  • the operation switch OPS When the operation switch OPS is pressed and turned on, the signals input to the terminal P4 of the MCU 1 and the terminal SW1 of the switch driver 7 are connected to the ground line, and thus become low level.
  • the MCU1 detects the operation of the operation switch OPS from the signal input to the terminal P4.
  • the switch driver 7 is provided with a reset input terminal RSTB.
  • the reset input terminal RSTB is connected to the control terminal ON of LSW4.
  • the switch driver 7 By outputting a low level signal from the reset input terminal RSTB, the output operation of LSW4 is stopped.
  • the operation switch OPS which is originally pushed down via the pressing portion 117 of the outer panel 115, is directly pushed down by the user with the outer panel 115 removed, the signal is input to the terminals SW1 and SW2 of the switch driver 7. become low level.
  • FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
  • FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
  • FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
  • FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
  • FIG. 17 is a diagram for explaining the operation of the electric circuit when the temperature of the heater HTR is detected in the heating mode.
  • FIG. 18 is a diagram for explaining the operation of the electric circuit in charging mode.
  • FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode.
  • FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode.
  • FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode.
  • FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode.
  • FIG. 17 is a diagram for explaining the operation
  • FIGS. 13 to 19 are diagrams for explaining the operation of the electric circuit when the MCU 1 is reset (restarted).
  • the terminals surrounded by dashed ellipses have inputs or outputs such as the power supply voltage V BAT , the USB voltage V USB , and the system power supply voltage. It shows the terminals that have been made.
  • the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
  • FIG. 1 the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2.
  • MCU1 enables the V BAT power pass function of charging IC2 and disables the OTG function and charging function. Since the USB voltage VUSB is not input to the input terminal VBUS of the charging IC2, the VBAT power pass function of the charging IC2 is enabled. Since the signal for enabling the OTG function is not output from the MCU1 to the charging IC2 from the communication line LN, the OTG function is disabled. Therefore, the charging IC2 generates the system power supply voltage Vcc0 from the power supply voltage VBAT input to the charging terminal bat, and outputs it from the output terminal SYS.
  • the system power supply voltage Vcc0 output from the output terminal SYS is input to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 .
  • the buck-boost DC/DC converter 8 is enabled by inputting a high-level system power supply voltage Vcc0 to an enable terminal EN of positive logic, generates a system power supply voltage Vcc1 from the system power supply voltage Vcc0, and outputs it to an output terminal VOUT.
  • Output from The system power supply voltage Vcc1 output from the output terminal VOUT of the buck-boost DC/DC converter 8 is applied to the input terminal VIN of the LSW4, the control terminal ON of the LSW4, the input terminal VIN of the switch driver 7, the power supply terminal VCC of the FF16, and the D terminal and , respectively.
  • the LSW4 When the system power supply voltage Vcc1 is input to the control terminal ON, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN as the system power supply voltage Vcc2 from the output terminal VOUT.
  • the system power supply voltage Vcc2 output from the LSW4 is applied to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the Hall IC 13, the power supply terminal VCC of the communication IC 15, and the power supply terminal VDD of the Hall IC 14. is entered.
  • the system power supply voltage Vcc2 is the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM 6, the resistor Rc and the bipolar transistor S1 connected to the charge enable terminal CE ( ⁇ ) of the charging IC2, and the FF17. They are supplied to the power supply terminal VCC, the positive power supply terminal of the operational amplifier OP3, the voltage dividing circuit Pe, the positive power supply terminal of the operational amplifier OP2, and the voltage dividing circuit Pd.
  • the bipolar transistor S1 connected to the charging IC2 is off unless a low level signal is output from the Q terminal of the FF17. Therefore, the system power supply voltage Vcc2 generated by the LSW4 is also input to the charging enable terminal CE ( ⁇ ) of the charging IC2. Since the charge enable terminal CE ( ⁇ ) of the charge IC2 is of negative logic, the charge function of the charge IC2 is turned off in this state.
  • LSW 5 stops outputting system power supply voltage Vcc3, so power supply to electronic components connected to power supply line PL3 is stopped. Also, in the sleep mode, the OTG function of the charging IC 2 is stopped, so power supply to the LEDs L1 to L8 is stopped.
  • Fig. 14> When the MCU 1 detects that the signal input to the terminal P8 becomes high level from the sleep mode state of FIG. 13 and the slider 119 is opened, it inputs a high level signal from the terminal P23 to the control terminal ON of the LSW5. . As a result, the LSW 5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT as the system power supply voltage Vcc3. The system power supply voltage Vcc3 output from the output terminal VOUT of the LSW5 is supplied to the thermistor T2, the thermistor T3, and the thermistor T4.
  • the MCU1 detects that the slider 119 is opened, the MCU1 enables the OTG function of the charging IC2 via the communication line LN.
  • the charging IC2 outputs from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input from the charging terminal bat.
  • the system power supply voltage Vcc4 output from the input terminal VBUS is It is fed to the LEDs L1-L8.
  • Fig. 15> From the state of FIG. 14, when the signal input to the terminal P4 becomes low level (the operation switch OPS is pressed), the MCU1 performs various settings necessary for heating, and then boosts the voltage from the terminal P14. A high-level enable signal is input to the enable terminal EN of the DC/DC converter 9 . As a result, the step-up DC/DC converter 9 outputs the driving voltage V bst obtained by stepping up the power supply voltage V BAT from the output terminal VOUT. The drive voltage Vbst is supplied to switch S3 and switch S4. In this state, the switches S3 and S4 are off. Also, the switch S6 is turned on by the high-level enable signal output from the terminal P14.
  • the negative terminal of the heater HTR is connected to the ground line, and the heater HTR can be heated by turning on the switch S3.
  • the mode shifts to the heating mode.
  • Fig. 16> In the state of FIG. 15, the MCU1 starts switching control of the switch S3 connected to the terminal P16 and switching control of the switch S4 connected to the terminal P15. These switching controls may be automatically started when the heating initial setting mode described above is completed, or may be started by further pressing the operation switch OPS. Specifically, as shown in FIG. 16, the MCU 1 turns on the switch S3 and turns off the switch S4 to supply the driving voltage Vbst to the heater HTR to heat the heater HTR for generating aerosol. and temperature detection control for detecting the temperature of the heater HTR by turning off the switch S3 and turning on the switch S4 as shown in FIG.
  • the driving voltage Vbst is also supplied to the gate of the switch S5 to turn on the switch S5. Further, during heating control, the drive voltage Vbst that has passed through the switch S3 is also input to the positive power supply terminal of the operational amplifier OP1 via the resistor Rs.
  • the resistance value of the resistor Rs is negligibly small compared to the internal resistance value of the operational amplifier OP1. Therefore, during heating control, the voltage input to the positive power supply terminal of the operational amplifier OP1 is approximately equal to the drive voltage Vbst .
  • the resistance value of the resistor R4 is greater than the ON resistance value of the switch S5.
  • the switch S5 is turned on during heating control.
  • the output voltage of the operational amplifier OP1 is divided by the voltage dividing circuit of the resistor R4 and the switch S5 and input to the terminal P9 of the MCU1. Since the resistance value of the resistor R4 is higher than the ON resistance value of the switch S5, the voltage input to the terminal P9 of the MCU1 is sufficiently reduced. This can prevent a large voltage from being input from the operational amplifier OP1 to the MCU1.
  • Fig. 17> As shown in FIG. 17, during temperature detection control, the driving voltage Vbst is input to the positive power supply terminal of the operational amplifier OP1 and also to the voltage dividing circuit Pb. The voltage divided by the voltage dividing circuit Pb is input to the terminal P18 of the MCU1. Based on the voltage input to the terminal P18, the MCU1 acquires the reference voltage V temp applied to the series circuit of the resistor Rs and the heater HTR during temperature detection control.
  • the driving voltage V bst (reference voltage V temp ) is supplied to the series circuit of the resistor Rs and the heater HTR.
  • a voltage V heat obtained by dividing the driving voltage V bst (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1. Since the resistance value of the resistor Rs is sufficiently higher than the resistance value of the heater HTR, the voltage V heat is sufficiently lower than the driving voltage V bst .
  • the switch S5 is turned off by supplying the low voltage V heat to the gate terminal of the switch S5.
  • the operational amplifier OP1 amplifies and outputs the difference between the voltage input to the inverting input terminal and the voltage V heat input to the non-inverting input terminal.
  • the output signal of operational amplifier OP1 is input to terminal P9 of MCU1.
  • the MCU1 obtains the temperature of the heater HTR based on the signal input to the terminal P9, the reference voltage V temp obtained based on the input voltage of the terminal P18, and the known electrical resistance value of the resistor Rs. . Based on the acquired temperature of the heater HTR, the MCU 1 performs heating control of the heater HTR (for example, control so that the temperature of the heater HTR becomes a target temperature).
  • the MCU 1 can obtain the temperature of the heater HTR even during periods when the switches S3 and S4 are turned off (periods when the heater HTR is not energized). Specifically, the MCU1 obtains the temperature of the heater HTR based on the voltage input to the terminal P13 (the output voltage of the voltage dividing circuit composed of the thermistor T3 and the resistor Rt3).
  • the MCU 1 can acquire the temperature of the case 110 at any timing. Specifically, the MCU1 obtains the temperature of the case 110 based on the voltage input to the terminal P12 (the output voltage of the voltage dividing circuit composed of the thermistor T4 and the resistor Rt4).
  • FIG. 18 exemplifies a case where a USB connection is made in sleep mode.
  • the USB voltage VUSB is input to the input terminal VIN of LSW3 via the overvoltage protection IC11.
  • the USB voltage V USB is also supplied to a voltage dividing circuit Pf connected to the input terminal VIN of LSW3. Since the bipolar transistor S2 is ON immediately after the USB connection is made, the signal input to the control terminal ON of the LSW3 remains at a low level.
  • the USB voltage V USB is also supplied to the voltage dividing circuit Pc connected to the terminal P17 of the MCU1, and the voltage divided by this voltage dividing circuit Pc is input to the terminal P17.
  • the MCU1 detects that the USB connection has been made based on the voltage input to the terminal P17.
  • the MCU1 When the MCU1 detects that the USB connection has been made, the MCU1 turns off the bipolar transistor S2 connected to the terminal P19.
  • the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3.
  • a high-level signal is input to the control terminal ON of LSW3, and LSW3 outputs the USB voltage VUSB from the output terminal VOUT.
  • the USB voltage VUSB output from LSW3 is input to the input terminal VBUS of charging IC2.
  • the USB voltage V_USB output from LSW3 is directly supplied to LEDs L1 to L8 as system power supply voltage Vcc4.
  • the MCU1 When the MCU1 detects that the USB connection has been established, the MCU1 further outputs a low-level enable signal from the terminal P22 to the charge enable terminal CE( ⁇ ) of the charge IC2. As a result, the charging IC 2 enables the charging function of the power supply BAT, and starts charging the power supply BAT with the USB voltage VUSB input to the input terminal VBUS.
  • the MCU1 When the USB connection is made in the active mode, when the MCU1 detects that the USB connection is made, it turns off the bipolar transistor S2 connected to the terminal P19. A low-level enable signal is output to the charge enable terminal CE ( ⁇ ) of , and the OTG function of the charge IC 2 is turned off by serial communication using the communication line LN. As a result, the system power supply voltage Vcc4 supplied to the LEDs L1 to L8 is switched from the voltage generated by the OTG function of the charging IC 2 (voltage based on the power supply voltage VBAT) to the USB voltage VUSB output from the LSW3. . The LEDs L1 to L8 do not operate unless the MCU1 turns on the built-in transistors. This prevents an unstable voltage from being supplied to the LEDs L1-L8 during the on-to-off transition of the OTG function.
  • the supply state of the system power supply voltage in the charge mode is the same as in the sleep mode. However, it is preferable that the supply state of the system power supply voltage in the charge mode be the same as in the active mode shown in FIG. That is, in the charging mode, it is preferable that the system power supply voltage Vcc3 is supplied to the thermistors T2 to T4 for temperature control, which will be described later.
  • the switch driver 7 outputs a low-level signal from the reset input terminal RSTB when it reaches a predetermined time, or when the signal input to either the terminal SW1 or the terminal SW2 becomes high level, the reset input terminal RSTB is output. return the signal output from to high level. As a result, the control terminal ON of LSW4 becomes high level, and the state in which the system power supply voltage Vcc2 is supplied to each part is restored.
  • the thermistor T1 described above is also referred to as the power supply thermistor T1
  • the thermistor T2 described above is referred to as the puff thermistor T2
  • the thermistor T3 described above is also referred to as the heater thermistor T3.
  • the thermistor T4 that has been formed is also described as a case thermistor T4.
  • FIG. 20 is a schematic diagram for explaining the suction operation detection process by the MCU 1 using the puff thermistor T2.
  • the MCU 1 includes an operational amplifier 1A, an analog-to-digital converter (ADC) 1B, a filter circuit 1C, a delay circuit 1D, a subtractor 1E, and a comparator 1F. ing.
  • ADC analog-to-digital converter
  • a non-inverting input terminal of the operational amplifier 1A is connected to the terminal P21.
  • a reference voltage V Ref is input to the inverting input terminal of the operational amplifier 1A.
  • the reference voltage V Ref may be generated from the system power supply voltage Vcc2 input to the power supply terminal VDD of the MCU1.
  • the puff thermistor T2 is assumed to have NTC characteristics in the example of FIG. A signal obtained by dividing the system power supply voltage Vcc3 by the puff thermistor T2 and the resistor Rt2 is input to the terminal P21. Therefore, the higher the temperature of the puff thermistor T2, the larger the value of the signal input to the terminal P21.
  • the operational amplifier 1A amplifies and outputs the voltage applied to the puff thermistor T2.
  • ADC 1B converts the output signal of operational amplifier 1A into a digital value.
  • the filter circuit 1C performs filtering such as a high-pass filter, a low-pass filter, and a band-pass filter on the digital signal output from the ADC 1B.
  • the digital signal filtered by the filter circuit 1C is input to the + side of the subtractor 1E. This digital signal is delayed by the delay circuit 1D and input to the minus side of the subtractor 1E. Therefore, from the subtractor 1E, a digital signal corresponding to the temperature of the puff thermistor T2 obtained at an arbitrary time t(n) and a digital signal obtained at time t(n-1), which is the delay time before time t(n).
  • a difference value from the digital signal corresponding to the temperature of the puff thermistor T2 is output.
  • the output value of the subtractor 1E becomes a negative value and the output of the comparator 1F becomes low level.
  • the output value of the subtractor 1E becomes a positive value and the output of the comparator 1F becomes high level.
  • the MCU 1 When shifting from the initial heating setting mode to the heating mode, the MCU 1 starts preheating the heater HTR. As shown in FIGS. 6 and 7, the puff thermistor T2 is arranged near the heating section 170. As shown in FIG. Therefore, when the temperature of the heater HTR rises due to this preheating, the temperature of the puff thermistor T2 also rises accordingly. When the user inhales in this state, the temperature of the puff thermistor T2 is slightly lowered due to the gas flow inside the case 110 . That is, when the suction is performed during preheating of the heater HTR, the output of the subtractor 1E becomes a negative value, and a low level signal is output from the comparator 1F. The MCU 1 determines that a suction operation has been performed when a low level signal is output from the comparator 1F.
  • the temperature of the power supply BAT (hereinafter referred to as power supply temperature TBAT) can be obtained from the resistance value (output value) of the power supply thermistor T1
  • the temperature of the heater HTR can be obtained from the resistance value (output value) of the heater thermistor T3.
  • a temperature (hereinafter referred to as heater temperature THTR ) can be obtained
  • a temperature of the case 110 (hereinafter referred to as case temperature T CASE ) can be obtained from the resistance value (output value) of the case thermistor T4.
  • the aspirator 100 when at least one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE becomes far from the value under the recommended environment in which the aspirator 100 is used, the aspirator 100 , and protection control to prohibit charging of the power source BAT and discharging from the power source BAT to the heater HTR (hereinafter also referred to as charging and discharging) to enhance safety.
  • This protection control is performed by MCU1 and FF17.
  • Protection control that prohibits charging/discharging refers to controlling an electronic component so that charging/discharging is disabled.
  • a low level signal is input to the enable terminal EN of the boost DC/DC converter 9 (or the potential of the enable terminal EN is made unfixed) to start the boost operation.
  • a low level signal is input to the gate terminal of the switch S6 (or the potential of the gate terminal is made unfixed) to cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground.
  • the operation mode is further restricted when protection control is performed.
  • the operation mode is limited when protection control is performed.
  • the operation mode since the operation mode is managed by the MCU1, the operation mode need not be restricted when the MCU1 is not operating for some reason.
  • the protection control performed in the aspirator 100 includes manual return protection control that can be terminated by resetting the MCU 1 by user operation, and automatic recovery control that does not require resetting the MCU 1 and can be automatically terminated by improving the temperature environment. automatic revertive protection control and non-terminating non-revertive protection control.
  • the operating modes of the suction device 100 include an error mode and a permanent error mode in addition to those described with reference to FIG. In this specification, when we refer to "all operating modes of the aspirator", we mean all operating modes (all operating modes shown in FIG. 9) except for these error modes and permanent error modes.
  • the aspirator 100 shifts to error mode and cannot shift to other operation modes.
  • the state of the power supply voltage supply state of the system power supply voltage
  • the functions that can be executed in the previous operation mode for example, acquisition of temperature information, etc.
  • the functions that can be executed in the previous operation mode for example, acquisition of temperature information, etc.
  • the operation mode can be changed by user operation or the like.
  • the aspirator 100 shifts to permanent error mode.
  • permanent error mode all functions of the aspirator 100 are disabled and the aspirator 100 must be repaired or scrapped.
  • the MCU 1 outputs a low level signal from the terminal P14 to stop the boosting operation of the boost DC/DC converter 9 and cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. Protection control is performed by outputting a level signal and stopping the charging operation of the charging IC2. When only charging is prohibited, there is no need to output a low level signal from the terminal P14, and when only discharging is prohibited, there is no need to output a high level signal from the terminal P22.
  • the FF 17 outputs a low level signal from the Q terminal to stop the boost operation of the boost DC/DC converter 9, cut off the connection between the heater connector Cn (-) on the negative electrode side and the ground, and turn on the bipolar transistor S1. By stopping the charging operation of the charging IC 2 , protection control is performed without going through the MCU 1 .
  • the FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR ( ⁇ ) terminal switches from high level to low level. This low level signal is also input to the P10 terminal of MCU1. While the low level signal is input to the terminal P10, the MCU1 does not switch the signal input to the CLK terminal (not shown) of the FF17 from low level to high level. In other words, the CLK signal of FF17 does not rise while the low level signal is being input to the terminal P10. Further, when the MCU 1 is frozen, for example, the signal input to the CLK terminal (not shown) of the FF 17 remains at low level.
  • the MCU1 regardless of whether the MCU1 is in a normal operating state or a frozen state, after a low level signal is output from the Q terminal of FF17, it is input to the CLR ( ⁇ ) terminal of FF17. A low level signal continues to be output from the Q terminal of FF 17 even if the signal on the output switches from low level to high level.
  • the FF17 is restarted (the system power supply voltage Vcc2 is turned on again). Since the reset MCU1 operates in the sleep mode, the system power supply voltage Vcc3 is not applied to the heater thermistor T3 and the case thermistor T4, and the outputs of the operational amplifiers OP2 and OP3 both become high level.
  • a high level signal is input to the D terminal and the CLR ( ⁇ ) terminal of the FF17.
  • the MCU1 causes the CLK signal of FF17 to rise.
  • the output of the Q terminal of FF17 can be returned to high level.
  • the output of the Q terminal of FF17 returns to high level, thereby ending the protection control by FF17.
  • the signal output from the Q terminal of FF17 is also input to terminal P10 of MCU1. Therefore, the MCU1 can detect that the FF17 has performed the protection control from the low-level signal input to the terminal P10.
  • the MCU1 preferably causes the notification unit 180 to notify the reset request of the MCU1 and shifts to the error mode.
  • thresholds for temperature determination are set as follows. Numerical values and magnitude relationships in parentheses for each temperature threshold indicate preferred examples, and are not limited to these. The following description assumes that each temperature threshold is a value in parentheses.
  • Temperature threshold THH0 (340°C) Temperature threshold THH1 (85°C) Temperature threshold THH2 (65°C) Temperature threshold THH3 (60°C) Temperature threshold THH4 (55°C) Temperature threshold THH5 (51°C) Temperature threshold THH6 (48°C) Temperature threshold THH7 (47°C) Temperature threshold THH8 (45°C) Temperature threshold THL1 (0°C) Temperature threshold THL2 (-5°C)
  • FIG. 21 is a circuit diagram of a main part of the electrical circuit shown in FIG. 10, showing the main electronic components related to the thermistors T1 to T4.
  • FIG. 22 is a diagram showing an extracted portion of range AR surrounded by broken lines in FIG.
  • FIG. 22 shows LSW5 for generating system power supply voltage Vcc3 as an electronic component not shown in FIG.
  • FIG. 21 shows, as electronic components and nodes not shown in FIG. , and node Nb are shown.
  • the capacitor Cu, the capacitor Ct3, the resistor Rh, the capacitor Ct4, the capacitor Ch, and the capacitor Ct2 are provided for the purpose of reducing noise (smoothing the signal).
  • the notification terminal 12a of the fuel gauge IC 12, which is a single terminal in FIG. 10, is divided into a first notification terminal 12aa and a second notification terminal 12ab in FIG.
  • the node Nu connects the output terminal VOUT of the LSW 5 and the positive side of the connector Cn(t2) to which the puff thermistor T2 is connected.
  • One end of the capacitor Cu is connected to the connection line between the node Nu and the output terminal VOUT of the LSW5.
  • the other end of the capacitor Cu is connected to the ground.
  • the capacitance of the capacitor Cu is 1 ⁇ F.
  • the positive side of a connector Cn(t4) to which the case thermistor T4 is connected and the positive side of a connector Cn(t3) to which the heater thermistor T3 is connected are connected to the node Nu.
  • the node Nt2 connects the negative electrode side of the connector Cn(t2) and one end of the resistor Rt2. The other end of resistor Rt2 is connected to ground.
  • One end of the capacitor Ct2 is connected to the connection line between the node Nt2 and the negative electrode side of the connector Cn(t2). The other end of the capacitor Ct2 is connected to the ground.
  • the capacitance of the capacitor Ct2 is 0.01 ⁇ F.
  • Node Nt2 is connected to terminal P21 of MCU1.
  • the node Nt4 connects the negative electrode side of the connector Cn(t4) and one end of the resistor Rt4. The other end of resistor Rt4 is connected to ground.
  • One end of the capacitor Ct4 is connected to the connection line between the node Nt4 and the negative electrode side of the connector Cn(t4). The other end of the capacitor Ct4 is connected to ground.
  • the capacitance of the capacitor Ct4 is 0.1 ⁇ F.
  • Node Nt4 is connected to terminal P12 of MCU1.
  • the connection line between the node Nt4 and the terminal P12 of the MCU1 is connected to the inverting input terminal of the operational amplifier OP3.
  • the node Nt3 connects the negative electrode side of the connector Cn(t3) and one end of the resistor Rt3.
  • the other end of resistor Rt3 is connected to ground.
  • One end of the capacitor Ct3 is connected to the connection line between the node Nt3 and the negative electrode side of the connector Cn(t3).
  • the other end of the capacitor Ct3 is connected to the ground.
  • the capacitance of the capacitor Ct3 is 0.1 ⁇ F.
  • One end of a resistor Rh is connected to the node Nt3.
  • the other end of resistor Rh is connected to terminal P13 of MCU1.
  • One end of the capacitor Ch is connected to the connection line between the other end of the resistor Rh and the terminal P13 of the MCU1.
  • the other end of capacitor Ch is connected to the ground.
  • the capacitance of the capacitor Ch is 0.01 ⁇ F.
  • a resistor Rh and a capacitor Ch constitute a filter circuit RC1 by a primary RC series circuit.
  • the node Nb connects one end of the resistor Rh and the node Nt3.
  • An inverting input terminal of the operational amplifier OP2 is connected to the node Nb.
  • the capacity of the capacitor Cu is larger than the capacity of each of the capacitors Ct3, Ct4, and Ct2. As shown in FIG. It is provided on the upstream side (high potential side) of the three voltage dividing circuits, that is, the voltage dividing circuit of the case thermistor T4 and the resistor Rt4 and the voltage dividing circuit of the heater thermistor T3 and the resistor Rt3.
  • the presence of the large-capacity capacitor Cu at this position makes it difficult for unstable power to be supplied to each voltage dividing circuit. can be done.
  • the large-capacity capacitor Cu exists on the upstream side, the capacities of the capacitors Ct2, Ct3, and Ct4 provided on the downstream side can be reduced.
  • the area of the circuit board can be effectively used, and the cost and size of the suction device 100 can be reduced.
  • the capacitor Cu it is also possible to obtain the effect of smoothing the transient voltage that may occur when the LSW 5 is intermittently turned ON/OFF according to the opening/closing of the slider 119, the reset of the MCU 1, or the like.
  • the capacitance of the capacitor Ct2 is smaller than the capacitance of each of the capacitors Ct3 and Ct4. Filter processing is performed only on the , as described with reference to FIG. 20 . Also, the MCU 1 detects a suction operation based on a change in the signal input to the terminal P21. Therefore, it is not preferable that the signal input to the terminal P21 is largely smoothed before it is input. By reducing the capacitance of the capacitor Ct2, it is possible to moderately remove noise from the output of the puff thermistor T2 while making it less likely to affect the result of filtering. As a result, suction detection can be performed with high accuracy.
  • Capacitance of Capacitor Ch is Smaller than Capacitance of Capacitor Ct3
  • the RC filter circuit RC1 plays an auxiliary role of the capacitor Ct3, but by using a capacitor having a smaller capacity than the capacitor Ct3 for such an auxiliary RC filter circuit RC1, the heater by the RC filter circuit RC1 A delay in the output signal of the thermistor T3 can be suppressed.
  • the MCU 1 can acquire the heater temperature THTR at high speed and with low noise.
  • the output signal of the heater thermistor T3 is also input to the operational amplifier OP2, and the input terminal of the operational amplifier OP2 is connected between the node Nt3 and the RC filter circuit RC1. Therefore, the output signal of the heater thermistor T3 input to the operational amplifier OP2 is prevented from being delayed by the RC filter circuit RC1.
  • the first notification terminal 12aa of the fuel gauge IC12 is connected to the cathode of the diode D2.
  • a second notification terminal 12ab of the fuel gauge IC12 is connected to a terminal P6 of the MCU1.
  • the fuel gauge IC 12 obtains the power supply temperature T BAT at regular timing (for example, every second) and stores it in an internal register.
  • the fuel gauge IC12 can mutually communicate with the MCU1 through the communication line LN in operation modes other than the sleep mode in which the MCU1 attempts to save power.
  • the fuel gauge IC12 receives a transmission request for the power supply temperature T BAT from the MCU1 via the communication line LN, it transmits the power supply temperature T BAT to the MCU1 in response to the transmission request.
  • the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the high temperature condition (the condition that the temperature threshold THH1 (85° C.) or higher continues multiple times) (the output value of the power supply thermistor T1 is abnormal). ), the high temperature notification signal SIG2a is output from the second notification terminal 12ab.
  • the high temperature notification signal SIG2a can also be said to be an interrupt signal for the MCU1.
  • the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the low temperature condition (the temperature threshold THL2 ( ⁇ 5° C.) or less) (when the output value of the power supply thermistor T1 is abnormal). ), the low temperature notification signal SIG2b is output from the second notification terminal 12ab. In all operation modes, the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the low temperature release condition (the temperature threshold THL1 (0° C.) or higher) (when the output value of the power supply thermistor T1 is normal). ), the low temperature release notification signal SIG2c is output from the second notification terminal 12ab. In FIG.
  • the high temperature notification signal SIG2a, the low temperature notification signal SIG2b, and the low temperature cancellation notification signal SIG2c are collectively referred to as a notification signal SIG2.
  • the low temperature notification signal SIG2b and the low temperature release notification signal SIG2c are output without waiting for a request from the MCU1 through the communication line LN.
  • the low temperature notification signal SIG2b and the low temperature release notification signal SIG2c can also be said to be interrupt signals for the MCU1.
  • the MCU 1 operating in the sleep mode has functions such as operation detection of the operation switch OPS, detection of the opening of the slider 119, detection of attachment/detachment of the outer panel 115, detection of USB connection, and detection of notification from the fuel gauge IC 12. , and execution of protection control based on notification from the fuel gauge IC 12, etc., thereby saving energy.
  • the MCU 1 operating in sleep mode is activated (all functions are enabled) when the slider 119 is opened, and the operation mode of the aspirator 100 is shifted to the active mode.
  • the MCU 1 is also activated when the high temperature notification signal SIG2a is received from the fuel gauge IC 12 at the terminal P6 (when the output value of the power supply thermistor T1 is abnormal). Change the operation mode to active mode.
  • the MCU1 executes automatic recovery protection control, The operation mode of the aspirator 100 is shifted to the error mode. After executing this automatic return protection control, when the MCU 1 receives the low temperature release notification signal SIG2c at the terminal P6 (when the output value of the power supply thermistor T1 is normal), the MCU 1 ends the automatic return protection control, Return to sleep mode.
  • the fuel gauge IC12 turns to low level.
  • a high temperature notification signal SIG1 is output from the first notification terminal 12aa.
  • the CLR ( ⁇ ) terminal of the FF 17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the high temperature notification signal SIG1 can be executed in all operation modes.
  • the voltage dividing circuit Pd connected to the non-inverting input terminal of the operational amplifier OP2 A resistance value is determined so that the output of the operational amplifier OP2 becomes low level. It is in the heating mode that the temperature of the heater thermistor T3 reaches a high temperature close to the temperature threshold THH0 (340° C.). Therefore, in the heating mode, when a low level signal is output from the operational amplifier OP2, the CLR ( ⁇ ) terminal of the FF17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the output of the operational amplifier OP2 can be executed in an operation mode in which power is supplied to the heater thermistor T3 (in other words, an operation mode other than the sleep mode).
  • the voltage dividing circuit Pe connected to the non-inverting input terminal of the operational amplifier OP3 A resistance value is determined so that the output of the operational amplifier OP3 becomes low level.
  • the CLR ( ⁇ ) terminal of the FF17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the output of the operational amplifier OP3 can be executed in an operation mode in which power is supplied to the case thermistor T4 (in other words, an operation mode other than the sleep mode).
  • the FF 17 can execute protection control without involving the MCU 1, even if the MCU 1 is in sleep mode to save power or the MCU 1 is not operating normally for some reason, Also, charging and discharging can be prohibited based on any one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE . Thereby, the safety of the suction device 100 can be improved.
  • the power supply voltage (system power supply voltage Vcc3) is not supplied to the thermistors T2 to T4. Therefore, the FF 17 cannot prohibit charging/discharging based on either the heater temperature T HTR or the case temperature T CASE .
  • the power supply thermistor T1 is supplied with the power supply voltage in all operation modes. Therefore, protection control can be executed by the FF 17 in all operation modes.
  • FIG. 23 is a diagram summarizing specific examples of protection control patterns performed in the suction device 100 .
  • FIG. 23 also shows the relationship between the temperature in the figure and the temperature threshold.
  • patterns PT1 to PT4 exist in the protection control performed based only on the power supply temperature TBAT .
  • a pattern PT5 exists in the protection control performed based only on the heater temperature THTR .
  • Pattern PT6 and pattern PT7 exist in protection control performed based only on the case temperature T CASE .
  • a pattern PT8 exists in the protection control performed based on the power supply temperature T BAT and the case temperature T CASE . Each pattern will be described below.
  • the MCU 1 executes protection control, and the type of protection control is automatic return protection control.
  • the MCU 1 can execute automatic return protection control in the transition period from the sleep mode to the active mode (the period until the activation process for enabling all functions is completed) and in the heating initial setting mode.
  • the MCU 1 periodically requests the fuel gauge IC 12 to acquire the power supply temperature TBAT via the communication line LN in each of the transition period and the heating initial setting mode.
  • the power supply temperature TBAT transmitted from the fuel gauge IC 12 in response to this acquisition request becomes equal to or higher than the temperature threshold THH5 (51° C.) on the high temperature side, the MCU 1 determines that the output value of the power supply thermistor T1 is abnormal.
  • the MCU1 changes the output value of the power supply thermistor T1. It judges that it is normal, terminates the automatic return protection control, and shifts to sleep mode.
  • the MCU 1 executes protection control, and the type of protection control is manual return protection control.
  • the MCU 1 can execute manual return protection control in each of the heating mode and charging mode.
  • the MCU 1 periodically requests the fuel gauge IC 12 to acquire the power supply temperature TBAT via the communication line LN.
  • the MCU 1 operating in the heating mode detects that the output value of the power supply thermistor T1 is abnormal. Then, manual return protection control is performed.
  • the MCU 1 operating in the charge mode detects the power supply temperature T BAT sent from the fuel gauge IC 12 .
  • THL1 the temperature threshold
  • FF17 that executes protection control, and the type of protection control is manual return protection control. FF17 can execute manual return protection control in all operation modes.
  • SIG1 signal indicating that the power supply temperature T BAT has reached or exceeded the temperature threshold THH3 (60° C.)
  • THH3 60° C.
  • manual return protection control is performed.
  • the MCU 1 executes protection control, and the type of protection control is automatic return protection control.
  • the MCU 1 can perform automatic return protection control in all operating modes.
  • the MCU1 determines that the output value of the power supply thermistor T1 is abnormal, and executes automatic protection control.
  • the MCU 1 receives the low temperature release notification signal SIG2c at the terminal P6, it determines that the output value of the power supply thermistor T1 is normal, and terminates the automatic protection control.
  • the FF 17 executes protection control, and the type of protection control is manual return protection control.
  • the FF 17 can execute manual return protection control in operation modes other than the sleep mode.
  • the FF17 receives a low level signal from the operational amplifier OP2 at the CLR ( ⁇ ) terminal (when the output value of the heater thermistor T3 is abnormal), it performs manual return protection control.
  • the possibility that the temperature of the heater thermistor T3 approaches the temperature threshold THH0 (340° C.) is extremely low. Therefore, in FIG. 23, only the heating mode is shown as the operation mode in which this manual return protection control is performed.
  • the MCU 1 executes protection control, and the type of protection control is automatic return protection control.
  • the MCU 1 can perform automatic recovery protection control in the active mode and heating initialization mode.
  • the case temperature T CASE based on the signal input to the terminal P12 (the signal corresponding to the resistance value of the case thermistor T4) is equal to or higher than the temperature threshold THH6 (48° C.)
  • the MCU 1 operating in these operation modes It judges that the output value of case thermistor T4 is abnormal, and executes automatic recovery protection control.
  • the MCU1 controls the output value of the case thermistor T4 when the case temperature T CASE based on the signal input to the terminal P12 becomes equal to or lower than the temperature threshold THH7 (47° C.) which is less than the temperature threshold THH6. is normal, and the automatic return protection control is ended.
  • protection control is disabled in the charging mode and heating mode, but protection control may be enabled in one of them.
  • the FF 17 executes protection control, and the type of protection control is manual return protection control.
  • the FF 17 can execute manual return protection control in operation modes other than the sleep mode. In these operation modes, when the FF17 receives a low-level signal (signal indicating that the case temperature TCASE is equal to or higher than the temperature threshold THH3 (60°C)) from the operational amplifier OP3 at the CLR ( ⁇ ) terminal (case thermistor T4 output is abnormal), perform manual recovery protection control.
  • the MCU 1 executes protection control, and the type of protection control is non-recovery protection control.
  • the non-recovery protection control can be executed in the sleep mode when the fuel gauge IC 12 outputs the high temperature notification signal SIG2a.
  • the MCU1 operating in the sleep mode receives the high temperature notification signal SIG2a, it shifts to the active mode and performs a primary check to determine whether the output values of the power supply thermistor T1 and the case thermistor T4 are abnormal. Run.
  • the MCU1 receives the signal input to the terminal P12.
  • the case temperature T CASE based on (signal corresponding to the resistance value of the case thermistor T4) is equal to or higher than the temperature threshold THH2 (65°C)
  • the output values of the power supply thermistor T1 and the case thermistor T4 are determined to be abnormal. to execute non-revertive protection control.
  • protection control of pattern PT8 is non-recovery protection control, it may be replaced with manual recovery protection control.
  • a situation in which the output values of the power supply thermistor T1 and the case thermistor T4 are abnormal is a situation in which it is assumed that the suction device 100 is highly abnormal. In such a situation, the safety of the aspirator 100 can be improved by preventing the automatic termination of the protection control by the non-reset protection control or the manual return protection control.
  • FIG. 24 is a flowchart for explaining an example of the operation of the fuel gauge IC12 and the MCU1 when the high temperature notification signal SIG2a is output from the fuel gauge IC12 in the sleep mode.
  • the fuel gauge IC 12 acquires the power supply temperature T BAT at intervals of, for example, one second and stores it in the built-in register (step S1). In parallel with the processing of step S1, the fuel gauge IC 12 performs an abnormality determination of the power supply temperature TBAT , for example, at intervals of one minute. Specifically, the fuel gauge IC 12 determines whether or not one minute has passed since the last abnormality determination was made (step S2). If the determination in step S2 is yes, the fuel gauge IC 12 determines whether or not the latest power supply temperature TBAT stored in the built-in register is equal to or higher than the temperature threshold THH1 (85° C.) (step S3). If the determination in step S3 is no, the fuel gauge IC 12 resets the value n of the built-in counter to the initial value of 0 (step S4), and returns the process to step S2.
  • step S3 If the determination in step S3 is yes, the remaining amount gauge IC 12 increases the value n of the built-in counter by one (step S5). After that, if the numerical value n is less than 2 (step S6: no), the fuel gauge IC 12 returns the process to step S2, and if the numerical value n is 2 or more (step S6: yes), the high temperature notification signal SIG2a is output. It is transmitted to MCU1 (step S7).
  • the MCU 1 operating in the sleep mode Upon receiving the high temperature notification signal SIG2a transmitted in step S7 (step S11), the MCU 1 operating in the sleep mode resets the value m of the built-in counter to the initial value of 0 (step S12), and changes the operation mode. The mode is changed to active mode (step S13). After that, the MCU 1 starts abnormality determination of the power supply temperature T BAT and the case temperature T CASE .
  • step S14 when one second has passed (step S14: yes), the MCU 1 requests the fuel gauge IC 12 to transmit the power supply temperature T BAT via the communication line LN (step S15).
  • step S8 When the fuel gauge IC 12 receives this request (step S8), it acquires the power supply temperature T BAT and transmits it to the MCU 1 via the communication line LN (step S9).
  • step S9 The MCU 1 receives and acquires the power supply temperature T BAT transmitted from the fuel gauge IC 12 in step S9 (step S16).
  • the MCU 1 performs the process of step S17 in parallel with the processes of steps S15 and S16.
  • the MCU1 acquires the case temperature T CASE based on the signal input to the terminal P12.
  • the MCU 1 confirms that the power supply temperature T BAT acquired in step S16 is equal to or higher than the temperature threshold THH1 (85° C.), and that the case temperature T CASE acquired in step S17 is the temperature threshold THH2 ( 65° C.) or higher (step S18).
  • protection control is executed in multiple patterns such as In this way, protection control can be executed appropriately according to the temperature measurement object and the situation, so the safety of the suction device 100 can be improved.
  • the protection control of the pattern PT8 is triggered by the high temperature notification signal SIG2a output from the fuel gauge IC12.
  • the protection control of the pattern PT8 may be executed without being triggered by the high temperature notification signal SIG2a.
  • the MCU 1 is set to a state where the power supply temperature T BAT is on the high temperature side.
  • Non-recovery protection control may be executed when the temperature threshold THH1 (85° C.) or higher and the case temperature T CASE is higher than the temperature threshold THH2 (65° C.).
  • Such protection control of pattern PT8 is realized by omitting steps S2 to S7 and steps S11 to S13 in the flowchart shown in FIG.
  • FIG. 25 and 26 are cross-sectional views of the suction device 100 shown in FIG. 1 taken through the case thermistor T4.
  • FIG. 25 is a cross-sectional view taken along a cutting plane perpendicular to the front-rear direction.
  • FIG. 26 is a cross-sectional view taken along a cutting plane perpendicular to the vertical direction.
  • a heating unit 170 including a heater HTR, a power supply BAT, and a case thermistor T4 are fixed to the chassis 150 inside the case 110 .
  • the heating unit 170 and the power supply BAT are arranged side by side in the front-rear direction, and the case thermistor T4 is fixed to the chassis 150 so as to be positioned between the heating unit 170 and the power supply BAT in the front-rear direction.
  • the chassis 150 includes a portion Pb located between the power supply BAT and the case thermistor T4, and a portion Pa located between the heating portion 170 and the case thermistor T4.
  • the case thermistor T4 is fixed in position by the chassis 150 used to fix other electronic components. Therefore, the case thermistor T4 can accurately obtain the temperature of the case 110 while avoiding an increase in the manufacturing cost of the suction device 100 . Further, as shown in FIG. 26, since the case thermistor T4 is not positioned toward the end in the front-rear direction, the heat of the user's hand when holding the case 110 is less likely to affect the case thermistor T4. Further, the existence of the portion Pa and the portion Pb makes it difficult for the heat generated by the power source BAT and the heater HTR to be transmitted to the case thermistor T4. Therefore, the environment in which the suction device 100 is placed can be more accurately grasped from the output value of the case thermistor T4.
  • the existence of the other of the portions Pa and Pb can provide an effect that the heat generated by the power source BAT or the heater HTR is less likely to be transmitted to the case thermistor T4. can do.
  • both the power supply temperature and the case temperature show abnormal values, at least one of charging the power supply and discharging the power supply to the heater is prohibited.
  • the state of the aerosol generating device can be grasped more accurately, and situations where charging and discharging are prohibited due to erroneous detection or the like can be suppressed.
  • the protection control permanently prohibits one or both of the charging and the discharging, Power supply unit for the aerosol generator.
  • the protection control can be terminated only based on the user's operation, Power supply unit for the aerosol generator.
  • a power supply unit for an aerosol generator according to any one of (1) to (3),
  • the controller (remaining amount gauge IC 12) Before executing the primary check, executing a zero-order check (steps S2 to S6 in FIG. 24) for determining whether the output value of the first sensor is abnormal, When it is determined that the output value of the first sensor is abnormal in the 0th order check (when the process of step S7 in FIG. 24 is performed), the 1st order check is performed. Power supply unit for the aerosol generator.
  • abnormality determination based on power supply temperature is performed before abnormality determination using two sensors. Therefore, the state of the aerosol generating device can be more accurately grasped, and the situation where charging and discharging is prohibited due to erroneous detection or the like can be suppressed.
  • the power supply unit of the aerosol generator is configured to be unable to acquire the output value of the second sensor when executing the zero-order check (during sleep mode). Power supply unit for the aerosol generator.
  • the power supply unit of the aerosol generator includes an MCU (MCU1), When performing the 0th order check, the MCU is configured to operate in sleep mode. Power supply unit for the aerosol generator.
  • the power consumption of the MCU can be reduced during the zero-order check based on the power supply temperature, so the power consumption of the aerosol generator can be reduced while ensuring safety.
  • the second sensor is powered on in advance before performing the primary check, so the primary check can be performed immediately after the zero-order check.
  • the safety of the aerosol generator can be secured more quickly. Also, in the zero-order check based on the power supply temperature, there is no need to consume the power required to acquire the case temperature.
  • the power unit of the aerosol generator according to any one of (4) to (7),
  • the controller comprises an MCU (MCU1) and a fuel gauge IC (fuel gauge IC12) configured to be capable of acquiring the remaining amount of the power supply and the output value of the first sensor,
  • the 0th order check is executed by the fuel gauge IC out of the MCU and the fuel gauge IC, Power supply unit for the aerosol generator.
  • the burden on the MCU can be reduced because the MCU does not need to perform the 0th order check.
  • the accuracy of other controls executed by the MCU can be improved, and power consumption and cost of the MCU can be reduced.
  • a power supply unit for an aerosol generator includes an MCU (MCU1) configured to be able to perform the primary check,
  • the MCU includes a first terminal (terminal P6) connected to the first sensor and a second terminal (terminal P12) connected to the second sensor, a first circuit electrically connecting the first sensor and the first terminal; a second circuit that electrically connects the second sensor and the second terminal;
  • the first circuit includes an electronic component (fuel gauge IC 12) of a type not included in the second circuit. Power supply unit for the aerosol generator.
  • the power supply temperature which is a more important parameter than the case temperature, can be obtained with higher accuracy using more electronic components. Therefore, the state of the aerosol generating device can be more accurately grasped, and the situation where charging and discharging is prohibited due to erroneous detection or the like can be suppressed.
  • a power supply unit for an aerosol generator according to any one of (1) to (8),
  • the controller includes an MCU (MCU1) configured to be able to perform the primary check,
  • MCU MCU1
  • the above MCU Acquiring the output value of the first sensor by a digital signal, Configured to acquire the output value of the second sensor by an analog signal, Power supply unit for the aerosol generator.
  • the load associated with A/D conversion inside the MCU is reduced compared to the case where the MCU acquires both the output values of the two sensors as analog signals. Therefore, the safety of the aerosol generator can be secured more quickly.
  • a power supply unit for an aerosol generator according to any one of (1) to (8),
  • the controller includes an MCU (MCU1) configured to be able to perform the primary check,
  • a fuel gauge IC fuel gauge IC 12
  • the fuel gauge IC is converting the output value of the first sensor into a digital signal indicating the temperature of the power supply; transmitting the digital signal to the MCU; Power supply unit for the aerosol generator.
  • the load associated with the A/D conversion of the MCU is reduced compared to the case where the MCU acquires both the output values of the two sensors as analog signals for the primary check. Therefore, the safety of the aerosol generator can be secured more quickly.

Abstract

Provided is an aerosol generation device having improved safety. An inhaler (100) is provided with: a heater connector Cn to which a heater HTR for heating a rod (500) by consuming power supplied from a power supply BAT is connected; a thermistor T1 disposed in the vicinity of the power supply BAT to output a value related to the temperature of the power supply BAT; a thermistor T4 disposed in the vicinity of a case (110) to output a value related to the temperature of the case (110); and an MCU 1. The MCU 1 performs a primary check to determine whether the output value of the thermistor T1 and the output value of the thermistor T4 are abnormal. If it is determined in the primary check that the output value of the thermistor T1 and the output value of the thermistor T4 are abnormal, the MCU 1 prohibits charging of the power supply BAT and discharge from the power supply BAT to the heater HTR.

Description

エアロゾル生成装置の電源ユニットPower supply unit for aerosol generator
 本発明は、エアロゾル生成装置の電源ユニットに関する。 The present invention relates to a power supply unit for an aerosol generator.
 特許文献1には、電池及びエアロゾル発生要素を含むエアロゾル発生装置と、携帯用充電器と、を備える装置が記載されている。この装置では、携帯用充電器がエアロゾル発生装置のハウジングの温度を検知するサーミスタを有し、このサーミスタによって検知された温度が10℃より低下すると、エアロゾル発生装置の電池の周囲にあるコイルを動作させて、この電池の温度が10℃に低下することを防いでいる。 Patent Document 1 describes a device comprising an aerosol generator including a battery and an aerosol-generating element, and a portable charger. In this device, the portable charger has a thermistor that senses the temperature of the housing of the aerosol generator, and when the temperature sensed by the thermistor falls below 10°C, it activates a coil around the battery of the aerosol generator. This prevents the temperature of the battery from dropping to 10°C.
 特許文献2には、コンパレータを用いて、過電流や過電圧の保護を図る装置が記載されている。 Patent Document 2 describes a device that uses a comparator to protect against overcurrent and overvoltage.
日本国特表2019-525737号公報Japanese special table 2019-525737 米国特許出願公開第2020/0000146号U.S. Patent Application Publication No. 2020/0000146
 エアロゾルを吸引可能に構成したエアロゾル生成装置は、その筐体内に電源やヒータ等の発熱する部品が設けられる。こういった部品が高温環境下で発熱しないようにすることが、安全性を高めるうえで重要である。 An aerosol generator configured to be able to inhale aerosols has heat-generating parts such as a power supply and a heater in its housing. It is important for safety to ensure that these parts do not generate heat in high temperature environments.
 本発明の目的は、安全性を高めたエアロゾル生成装置を提供することにある。 The purpose of the present invention is to provide an aerosol generator with enhanced safety.
 本発明の一態様のエアロゾル生成装置の電源ユニットは、前記電源ユニットの表面を構成するケースと、電源と、前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるコネクタと、前記電源の近傍に配置され、前記電源の温度に関する値を出力する第1センサと、前記ケースの近傍に配置され、前記ケースの温度に関する値を出力する第2センサと、コントローラと、を備え、前記コントローラは、前記第1センサの出力値と前記第2センサの出力値が異常であるか否かを判断する1次チェックを実行し、前記1次チェックにおいて前記第1センサの出力値と前記第2センサの出力値が異常であると判断される場合、前記電源の充電と前記電源から前記ヒータへの放電の一方又は両方を禁止する保護制御を実行するように構成される、ものである。 A power supply unit of an aerosol generating apparatus according to one aspect of the present invention includes a case forming the surface of the power supply unit, a power supply, and a connector connected to a heater that consumes the power supplied from the power supply and heats the aerosol source. a first sensor arranged near the power supply for outputting a value related to the temperature of the power supply; a second sensor arranged near the case for outputting a value related to the temperature of the case; and a controller. The controller performs a primary check to determine whether the output value of the first sensor and the output value of the second sensor are abnormal, and the output value of the first sensor is determined in the primary check. and when it is determined that the output value of the second sensor is abnormal, protection control is performed to prohibit one or both of charging of the power supply and discharging from the power supply to the heater is.
 本発明によれば、安全性を高めたエアロゾル生成装置を提供することができる。 According to the present invention, it is possible to provide an aerosol generator with improved safety.
非燃焼式吸引器の斜視図である。1 is a perspective view of a non-combustion inhaler; FIG. ロッドを装着した状態を示す非燃焼式吸引器の斜視図である。1 is a perspective view of a non-combustion inhaler showing a state in which a rod is attached; FIG. 非燃焼式吸引器の他の斜視図である。Fig. 10 is another perspective view of a non-combustion type inhaler; 非燃焼式吸引器の分解斜視図である。1 is an exploded perspective view of a non-combustion inhaler; FIG. 非燃焼式吸引器の内部ユニットの斜視図である。Fig. 3 is a perspective view of the internal unit of the non-combustion inhaler; 図5の内部ユニットの分解斜視図である。FIG. 6 is an exploded perspective view of the internal unit of FIG. 5; 電源及びシャーシを取り除いた内部ユニットの斜視図である。FIG. 3 is a perspective view of the internal unit with the power supply and chassis removed; 電源及びシャーシを取り除いた内部ユニットの他の斜視図である。FIG. 11 is another perspective view of the internal unit with the power supply and chassis removed; 吸引器の動作モードを説明するための模式図である。It is a schematic diagram for demonstrating the operation mode of an aspirator. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. 内部ユニットの電気回路の概略構成を示す図である。It is a figure which shows schematic structure of the electric circuit of an internal unit. スリープモードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of an electric circuit in sleep mode; アクティブモードにおける電気回路の動作を説明するための図である。It is a figure for demonstrating the operation|movement of the electric circuit in active mode. 加熱初期設定モードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode; 加熱モードにおけるヒータの加熱時の電気回路の動作を説明するための図である。It is a figure for demonstrating the operation|movement of the electric circuit at the time of the heating of the heater in heating mode. 加熱モードにおけるヒータの温度検出時の電気回路の動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the electric circuit when detecting the temperature of the heater in the heating mode; 充電モードにおける電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of the electric circuit in charging mode; MCUのリセット(再起動)時の電気回路の動作を説明するための図である。FIG. 4 is a diagram for explaining the operation of an electric circuit when an MCU is reset (restarted); パフサーミスタを用いたMCUによる吸引動作の検知処理を説明するための模式図である。FIG. 10 is a schematic diagram for explaining suction operation detection processing by an MCU using a puff thermistor; 図10に示す電気回路のうち、サーミスタと関係のある主要な電子部品を抜き出して示した要部回路図である。FIG. 11 is a circuit diagram of a main part of the electric circuit shown in FIG. 10, showing the main electronic components related to the thermistor. 図21における破線で囲まれた範囲ARの部分を抽出して示した図である。FIG. 22 is a diagram extracting and showing a portion of a range AR surrounded by a dashed line in FIG. 21; 吸引器にて行われる保護制御のパターンの具体例をまとめた図である。It is a figure which put together the specific example of the pattern of the protection control performed in an aspirator. スリープモードの状態で残量計ICから高温通知信号が出力される場合の残量計IC及びMCUの動作の一例を説明するためのフローチャートである。5 is a flowchart for explaining an example of operations of the fuel gauge IC and the MCU when a high temperature notification signal is output from the fuel gauge IC in a sleep mode; 図1に示す吸引器のケースサーミスタT4を通る切断面での断面図である。Figure 2 is a cross-sectional view in a plane through case thermistor T4 of the suction device shown in Figure 1; 図1に示す吸引器のケースサーミスタT4を通る切断面での断面図である。Figure 2 is a cross-sectional view in a plane through case thermistor T4 of the suction device shown in Figure 1;
 以下、本発明におけるエアロゾル生成装置の一実施形態である吸引システムについて図面を参照しながら説明する。この吸引システムは、本発明の電源ユニットの一実施形態である非燃焼式吸引器100(以下、単に、「吸引器100」ともいう)と、吸引器100によって加熱されるロッド500と、を備える。以下の説明では、吸引器100が、加熱部を着脱不能に収容した構成を例に説明する。しかし、吸引器100に対し加熱部が着脱自在に構成されていてもよい。例えば、ロッド500と加熱部が一体化されたものを、吸引器100に着脱自在に構成したものであってもよい。つまり、エアロゾル生成装置の電源ユニットは、構成要素として加熱部を含まない構成であってもよい。なお、着脱不能とは、想定される用途の限りにおいて、取外しが行えないような態様を指すものとする。または、吸引器100に設けられる誘導加熱用コイルと、ロッド500に内蔵されるサセプタが協働して加熱部を構成してもよい。 A suction system, which is one embodiment of the aerosol generator of the present invention, will be described below with reference to the drawings. This suction system includes a non-combustion type suction device 100 (hereinafter also simply referred to as "suction device 100"), which is an embodiment of the power supply unit of the present invention, and a rod 500 heated by the suction device 100. . In the following description, a configuration in which the suction device 100 accommodates the heating unit in a non-detachable manner will be described as an example. However, the heating unit may be detachably attached to the aspirator 100 . For example, the rod 500 and the heating unit may be integrated and detachably attached to the aspirator 100 . In other words, the power supply unit of the aerosol generator may have a configuration that does not include the heating section as a component. It should be noted that "non-detachable" refers to a mode in which detachment is not possible as far as the intended use is concerned. Alternatively, an induction heating coil provided in the aspirator 100 and a susceptor built in the rod 500 may cooperate to form a heating unit.
 図1は、吸引器100の全体構成を示す斜視図である。図2は、ロッド500を装着した状態を示す吸引器100の斜視図である。図3は、吸引器100の他の斜視図である。図4は、吸引器100の分解斜視図である。また、以下の説明では、互いに直交する3方向を、便宜上、前後方向、左右方向、上下方向とした、3次元空間の直交座標系を用いて説明する。図中、前方をFr、後方をRr、右側をR、左側をL、上方をU、下方をD、として示す。 FIG. 1 is a perspective view showing the overall configuration of the aspirator 100. FIG. FIG. 2 is a perspective view of the suction device 100 showing a state in which the rod 500 is attached. FIG. 3 is another perspective view of the suction device 100. FIG. FIG. 4 is an exploded perspective view of the aspirator 100. FIG. Also, in the following description, for the sake of convenience, the orthogonal coordinate system of a three-dimensional space is used, in which the three mutually orthogonal directions are the front-back direction, the left-right direction, and the up-down direction. In the figure, the front is indicated by Fr, the rear by Rr, the right by R, the left by L, the upper by U, and the lower by D.
 吸引器100は、エアロゾル源及び香味源を含む充填物などを有する香味成分生成基材の一例としての細長い略円柱状のロッド500(図2参照)を加熱することによって、香味を含むエアロゾルを生成するように構成される。 The inhaler 100 generates flavor-containing aerosol by heating an elongated, substantially cylindrical rod 500 (see FIG. 2) as an example of a flavor component-generating base having a filling containing an aerosol source and a flavor source. configured to
<香味成分生成基材(ロッド)>
 ロッド500は、所定温度で加熱されてエアロゾルを生成するエアロゾル源を含有する充填物を含む。
<Flavor component-generating base material (rod)>
Rod 500 includes a fill containing an aerosol source that is heated at a predetermined temperature to produce an aerosol.
 エアロゾル源の種類は、特に限定されず、用途に応じて種々の天然物からの抽出物質及び/又はそれらの構成成分を選択することができる。エアロゾル源は、固体であってもよいし、例えば、グリセリン、プロピレングリコールといった多価アルコールや、水などの液体であってもよい。エアロゾル源は、加熱することによって香味成分を放出するたばこ原料やたばこ原料由来の抽出物等の香味源を含んでいてもよい。香味成分が付加される気体はエアロゾルに限定されず、例えば不可視の蒸気が生成されてもよい。 The type of aerosol source is not particularly limited, and extracts from various natural products and/or their constituent components can be selected according to the application. The aerosol source may be solid or liquid, for example polyhydric alcohols such as glycerin, propylene glycol, or water. The aerosol source may include a flavor source such as a tobacco material or an extract derived from the tobacco material that releases flavor components upon heating. The gas to which the flavor component is added is not limited to an aerosol, and for example an invisible vapor may be generated.
 ロッド500の充填物は、香味源としてたばこ刻みを含有し得る。たばこ刻みの材料は特に限定されず、ラミナや中骨等の公知の材料を用いることができる。充填物は、1種又は2種以上の香料を含んでいてもよい。当該香料の種類は特に限定されないが、良好な喫味の付与の観点から、好ましくはメンソールである。香味源は、たばこ以外の植物(例えば、ミント、漢方、又はハーブ等)を含有し得る。用途によっては、ロッド500は香味源を含まなくてもよい。 The filling of rod 500 may contain tobacco shreds as a flavor source. Materials for shredded tobacco are not particularly limited, and known materials such as lamina and backbone can be used. The filling may contain one or more perfumes. The type of flavoring agent is not particularly limited, but menthol is preferable from the viewpoint of imparting a good smoking taste. Flavor sources may contain plants other than tobacco, such as mints, herbal medicines, or herbs. Depending on the application, rod 500 may not contain a flavor source.
<非燃焼式吸引器の全体構成>
 続いて、吸引器100の全体構成について、図1~図4を参照しながら説明する。
 吸引器100は、前面、後面、左面、右面、上面、及び下面を備える略直方体形状のケース110を備える。ケース110は、前面、後面、上面、下面、及び右面が一体に形成された有底筒状のケース本体112と、ケース本体112の開口部114(図4参照)を封止し左面を構成するアウターパネル115及びインナーパネル118と、スライダ119と、を備える。
<Overall configuration of non-combustion type aspirator>
Next, the overall configuration of the suction device 100 will be described with reference to FIGS. 1 to 4. FIG.
The suction device 100 includes a substantially rectangular parallelepiped case 110 having a front surface, a rear surface, a left surface, a right surface, an upper surface, and a lower surface. The case 110 comprises a bottomed cylindrical case body 112 in which front, rear, top, bottom, and right surfaces are integrally formed, and a left surface that seals an opening 114 (see FIG. 4) of the case body 112. It has an outer panel 115 , an inner panel 118 , and a slider 119 .
 インナーパネル118は、ケース本体112にボルト120で固定される。アウターパネル115は、ケース本体112に収容された後述するシャーシ150(図5参照)に保持されたマグネット124によって、インナーパネル118の外面を覆うようにケース本体112に固定される。アウターパネル115が、マグネット124によって固定されることで、ユーザは好みに合わせてアウターパネル115を取り替えることが可能となっている。 The inner panel 118 is fixed to the case body 112 with bolts 120 . The outer panel 115 is fixed to the case body 112 so as to cover the outer surface of the inner panel 118 by a magnet 124 held by a chassis 150 (see FIG. 5) housed in the case body 112 and described later. Since the outer panel 115 is fixed by the magnet 124, the user can replace the outer panel 115 according to his or her preference.
 インナーパネル118には、マグネット124が貫通するように形成された2つの貫通孔126が設けられる。インナーパネル118には、上下に配置された2つの貫通孔126の間に、さらに縦長の長孔127及び円形の丸孔128が設けられる。この長孔127は、ケース本体112に内蔵された8つのLED(Light Emitting Diode) L1~L8から出射される光を透過させるためのものである。丸孔128には、ケース本体112に内蔵されたボタン式の操作スイッチOPSが貫通する。これにより、ユーザは、アウターパネル115のLED窓116を介して8つのLED L1~L8から出射される光を検知することができる。また、ユーザは、アウターパネル115の押圧部117を介して操作スイッチOPSを押し下げることができる。 The inner panel 118 is provided with two through holes 126 through which the magnets 124 pass. The inner panel 118 is further provided with a longitudinally elongated hole 127 and a circular round hole 128 between the two vertically arranged through holes 126 . This long hole 127 is for transmitting light emitted from eight LEDs (Light Emitting Diodes) L1 to L8 built in the case body 112 . A button-type operation switch OPS built in the case body 112 passes through the round hole 128 . Thereby, the user can detect the light emitted from the eight LEDs L1 to L8 through the LED window 116 of the outer panel 115. FIG. Also, the user can press down the operation switch OPS via the pressing portion 117 of the outer panel 115 .
 図2に示すように、ケース本体112の上面には、ロッド500を挿入可能な開口132が設けられる。スライダ119は、開口132を閉じる位置(図1参照)と開口132を開放する位置(図2参照)との間を、前後方向に移動可能にケース本体112に結合される。 As shown in FIG. 2, the upper surface of the case body 112 is provided with an opening 132 into which the rod 500 can be inserted. The slider 119 is coupled to the case body 112 so as to be movable in the front-rear direction between a position for closing the opening 132 (see FIG. 1) and a position for opening the opening 132 (see FIG. 2).
 操作スイッチOPSは、吸引器100の各種操作を行うために使用される。例えば、ユーザは、図2に示すようにロッド500を開口132に挿入して装着した状態で、押圧部117を介して操作スイッチOPSを操作する。これにより、加熱部170(図5参照)によって、ロッド500を燃焼させずに加熱する。ロッド500が加熱されると、ロッド500に含まれるエアロゾル源からエアロゾルが生成され、ロッド500に含まれる香味源の香味が当該エアロゾルに付加される。ユーザは、開口132から突出したロッド500の吸口502を咥えて吸引することにより、香味を含むエアロゾルを吸引することができる。 The operation switch OPS is used to perform various operations of the aspirator 100. For example, the user operates the operation switch OPS via the pressing portion 117 while inserting the rod 500 into the opening 132 as shown in FIG. Thus, the heating unit 170 (see FIG. 5) heats the rod 500 without burning it. When the rod 500 is heated, an aerosol is generated from the aerosol source contained in the rod 500 and the flavor of the flavor source contained in the rod 500 is added to the aerosol. The user can inhale the flavor-containing aerosol by holding the mouthpiece 502 of the rod 500 projecting from the opening 132 and inhaling.
 ケース本体112の下面には、図3に示すように、コンセントやモバイルバッテリ等の外部電源と電気的に接続して電力供給を受けるための充電端子134が設けられている。本実施形態において、充電端子134は、USB(Universal Serial Bus) Type-C形状のレセプタクルとしているが、これに限定されるものではない。充電端子134を、以下では、レセプタクルRCPとも記載する。  On the bottom surface of the case main body 112, as shown in Fig. 3, a charging terminal 134 is provided for receiving power supply by being electrically connected to an external power source such as an outlet or a mobile battery. In this embodiment, the charging terminal 134 is a USB (Universal Serial Bus) Type-C receptacle, but is not limited to this. Charging terminal 134 is hereinafter also referred to as receptacle RCP.
 なお、充電端子134は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。別の一例として、充電端子134は、各種USB端子等が接続可能であり、且つ上述した受電コイルを有していてもよい。 It should be noted that the charging terminal 134 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply. The wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type. As another example, the charging terminal 134 can be connected to various USB terminals or the like, and may have the power receiving coil described above.
 図1~図4に示される吸引器100の構成は一例にすぎない。吸引器100は、ロッド500を保持して例えば加熱等の作用を加えることで、ロッド500から香味成分が付与された気体を生成させ、生成された気体をユーザが吸引することができるような、様々な形態で構成することができる。 The configuration of the aspirator 100 shown in FIGS. 1-4 is merely an example. The inhaler 100 holds the rod 500 and applies an action such as heating to generate gas to which a flavor component is added from the rod 500, and the user can inhale the generated gas. It can be configured in various forms.
<非燃焼式吸引器の内部構成>
 吸引器100の内部ユニット140について図5~図8を参照しながら説明する。
 図5は、吸引器100の内部ユニット140の斜視図である。図6は、図5の内部ユニット140の分解斜視図である。図7は、電源BAT及びシャーシ150を取り除いた内部ユニット140の斜視図である。図8は、電源BAT及びシャーシ150を取り除いた内部ユニット140の他の斜視図である。
<Internal configuration of non-combustion type aspirator>
The internal unit 140 of the suction device 100 will be described with reference to FIGS. 5-8.
FIG. 5 is a perspective view of the internal unit 140 of the suction device 100. FIG. 6 is an exploded perspective view of the internal unit 140 of FIG. 5. FIG. FIG. 7 is a perspective view of internal unit 140 with power supply BAT and chassis 150 removed. FIG. 8 is another perspective view of the internal unit 140 with the power supply BAT and chassis 150 removed.
 ケース110の内部空間に収容される内部ユニット140は、シャーシ150と、電源BATと、回路部160と、加熱部170と、通知部180と、各種センサと、を備える。 The internal unit 140 housed in the internal space of the case 110 includes a chassis 150, a power supply BAT, a circuit section 160, a heating section 170, a notification section 180, and various sensors.
 シャーシ150は、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ前後方向に延設された板状のシャーシ本体151と、前後方向においてケース110の内部空間の略中央に配置され上下方向且つ左右方向に延びる板状の前後分割壁152と、上下方向において前後分割壁152の略中央から前方に延びる板状の上下分割壁153と、前後分割壁152及びシャーシ本体151の上縁部から後方に延びる板状のシャーシ上壁154と、前後分割壁152及びシャーシ本体151の下縁部から後方に延びる板状のシャーシ下壁155と、を備える。シャーシ本体151の左面は、前述したケース110のインナーパネル118及びアウターパネル115に覆われる。 The chassis 150 includes a plate-shaped chassis body 151 arranged substantially in the center of the interior space of the case 110 in the front-rear direction and extending in the vertical and front-rear directions, and a chassis body 151 disposed substantially in the center of the interior space of the case 110 in the front-rear direction. A plate-shaped front and rear dividing wall 152 extending in the vertical and horizontal directions, a plate-shaped upper and lower dividing wall 153 extending forward from substantially the center of the front and rear dividing wall 152 in the vertical direction, the front and rear dividing wall 152 and the upper edges of the chassis body 151 and a plate-shaped chassis lower wall 155 extending rearward from the front-rear dividing wall 152 and the lower edge of the chassis body 151 . The left surface of the chassis body 151 is covered with the inner panel 118 and the outer panel 115 of the case 110 described above.
 ケース110の内部空間は、シャーシ150により前方上部に加熱部収容領域142が区画形成され、前方下部に基板収容領域144が区画形成され、後方に上下方向に亘って電源収容空間146が区画形成されている。 The internal space of the case 110 is defined by a chassis 150 such that a heating unit housing area 142 is defined in the upper front, a board housing area 144 is defined in the lower front, and a power supply housing space 146 is defined in the rear to extend vertically. ing.
 加熱部収容領域142に収容される加熱部170は、複数の筒状の部材から構成され、これらが同心円状に配置されることで、全体として筒状体をなしている。加熱部170は、その内部にロッド500の一部を収納可能なロッド収容部172と、ロッド500を外周または中心から加熱するヒータHTR(図10~図19参照)と、を有する。ロッド収容部172が断熱材で構成される、又は、ロッド収容部172の内部に断熱材が設けられることで、ロッド収容部172の表面とヒータHTRは断熱されることが好ましい。ヒータHTRは、ロッド500を加熱可能な素子であればよい。ヒータHTRは、例えば、発熱素子である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。ヒータHTRとしては、例えば、温度の増加に伴って抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが好ましく用いられる。これに代えて、温度の増加に伴って抵抗値が低下するNTC(Negative Temperature Coefficient)特性を有するヒータHTRを用いてもよい。加熱部170は、ロッド500へ供給する空気の流路を画定する機能、及びロッド500を加熱する機能を有する。ケース110には、空気を流入させるための通気口(不図示)が形成され、加熱部170に空気が流入できるように構成される。 The heating part 170 housed in the heating part housing area 142 is composed of a plurality of tubular members, which are concentrically arranged to form a tubular body as a whole. The heating section 170 has a rod housing section 172 capable of housing a portion of the rod 500 therein, and a heater HTR (see FIGS. 10 to 19) that heats the rod 500 from its outer circumference or center. Preferably, the surface of the rod housing portion 172 and the heater HTR are insulated by forming the rod housing portion 172 from a heat insulating material or providing a heat insulating material inside the rod housing portion 172 . The heater HTR may be any element that can heat the rod 500 . The heater HTR is, for example, a heating element. Heating elements include heating resistors, ceramic heaters, induction heaters, and the like. As the heater HTR, for example, one having a PTC (Positive Temperature Coefficient) characteristic in which the resistance value increases as the temperature increases is preferably used. Alternatively, a heater HTR having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used. The heating part 170 has a function of defining a flow path of air to be supplied to the rod 500 and a function of heating the rod 500 . The case 110 is formed with a vent (not shown) for introducing air, and is configured to allow air to enter the heating unit 170 .
 電源収容空間146に収容される電源BATは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源BATの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。 The power supply BAT housed in the power supply housing space 146 is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery. The electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
 通知部180は、電源BATの充電状態を示すSOC(State Of Charge)、吸引時の予熱時間、吸引可能期間等の各種情報を通知する。本実施形態の通知部180は、8つのLED L1~L8と、振動モータMと、を含む。通知部180は、LED L1~L8のような発光素子によって構成されていてもよく、振動モータMのような振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。通知部180は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。 The notification unit 180 notifies various information such as the SOC (State Of Charge) indicating the state of charge of the power supply BAT, the preheating time during suction, and the suction possible period. The notification unit 180 of this embodiment includes eight LEDs L1 to L8 and a vibration motor M. The notification unit 180 may be composed of light emitting elements such as LEDs L1 to L8, may be composed of vibrating elements such as the vibration motor M, or may be composed of sound output elements. The notification unit 180 may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
 各種センサは、ユーザのパフ動作(吸引動作)を検出する吸気センサ、電源BATの温度を検出する電源温度センサ、ヒータHTRの温度を検出するヒータ温度センサ、ケース110の温度を検出するケース温度センサ、スライダ119の位置を検出するカバー位置センサ、及びアウターパネル115の着脱を検出するパネル検出センサ等を含む。 Various sensors include an intake air sensor that detects the user's puff action (sucking action), a power supply temperature sensor that detects the temperature of the power supply BAT, a heater temperature sensor that detects the temperature of the heater HTR, and a case temperature sensor that detects the temperature of the case 110. , a cover position sensor that detects the position of the slider 119, a panel detection sensor that detects attachment/detachment of the outer panel 115, and the like.
 吸気センサは、例えば、開口132の近傍に配置されたサーミスタT2を主体に構成される。電源温度センサは、例えば、電源BATの近傍に配置されたサーミスタT1を主体に構成される。ヒータ温度センサは、例えば、ヒータHTRの近傍に配置されたサーミスタT3を主体に構成される。上述した通り、ロッド収容部172はヒータHTRから断熱されることが好ましい。この場合において、サーミスタT3は、ロッド収容部172の内部において、ヒータHTRと接する又は近接することが好ましい。ヒータHTRがPTC特性やNTC特性を有する場合、ヒータHTRそのものをヒータ温度センサに用いてもよい。ケース温度センサは、例えば、ケース110の左面の近傍に配置されたサーミスタT4を主体に構成される。サーミスタT4は、ケース110と接する又は近接することが好ましい。カバー位置センサは、スライダ119の近傍に配置されたホール素子を含むホールIC14を主体に構成される。パネル検出センサは、インナーパネル118の内側の面の近傍に配置されたホール素子を含むホールIC13を主体に構成される。 The intake sensor is mainly composed of a thermistor T2 arranged near the opening 132, for example. The power supply temperature sensor is mainly composed of, for example, a thermistor T1 arranged near the power supply BAT. The heater temperature sensor is mainly composed of, for example, a thermistor T3 arranged near the heater HTR. As described above, the rod housing portion 172 is preferably insulated from the heater HTR. In this case, the thermistor T3 is preferably in contact with or close to the heater HTR inside the rod housing portion 172 . If the heater HTR has PTC characteristics or NTC characteristics, the heater HTR itself may be used as the heater temperature sensor. The case temperature sensor is mainly composed of, for example, a thermistor T4 arranged near the left surface of the case 110 . Thermistor T4 is preferably in contact with or in close proximity to case 110 . The cover position sensor is mainly composed of a Hall IC 14 including a Hall element arranged near the slider 119 . The panel detection sensor is mainly composed of a Hall IC 13 including a Hall element arranged near the inner surface of the inner panel 118 .
 回路部160は、4つの回路基板と、複数のIC(Integrate Circuit)と、複数の素子と、を備える。4つの回路基板は、主に後述のMCU(Micro Controller Unit)1及び充電IC2が配置されたMCU搭載基板161と、主に充電端子134が配置されたレセプタクル搭載基板162と、操作スイッチOPS、LED L1~L8、及び後述の通信IC15が配置されたLED搭載基板163と、カバー位置センサを構成するホール素子を含む後述のホールIC14が配置されたホールIC搭載基板164と、を備える。 The circuit section 160 includes four circuit boards, multiple ICs (Integrate Circuits), and multiple elements. The four circuit boards are an MCU-mounted board 161 on which an MCU (Micro Controller Unit) 1 and a charging IC 2, which will be described later, are mainly arranged, a receptacle-mounted board 162 mainly on which charging terminals 134 are arranged, an operation switch OPS, and an LED An LED mounting substrate 163 on which L1 to L8 and a communication IC 15 described later are arranged, and a Hall IC mounting substrate 164 on which a Hall IC 14 including a Hall element constituting a cover position sensor is arranged.
 MCU搭載基板161及びレセプタクル搭載基板162は、基板収容領域144において互いに平行に配置される。具体的に説明すると、MCU搭載基板161及びレセプタクル搭載基板162は、それぞれの素子配置面が左右方向及び上下方向に沿って配置され、MCU搭載基板161がレセプタクル搭載基板162よりも前方に配置される。MCU搭載基板161及びレセプタクル搭載基板162には、それぞれ開口部が設けられる。MCU搭載基板161及びレセプタクル搭載基板162は、これら開口部の周縁部同士の間に円筒状のスペーサ173を介在させた状態で前後分割壁152の基板固定部156にボルト136で締結される。即ち、スペーサ173は、ケース110の内部におけるMCU搭載基板161及びレセプタクル搭載基板162の位置を固定し、且つ、MCU搭載基板161とレセプタクル搭載基板162とを機械的に接続する。これにより、MCU搭載基板161とレセプタクル搭載基板162が接触し、これらの間で短絡電流が生じることを抑制できる。 The MCU mounting board 161 and the receptacle mounting board 162 are arranged parallel to each other in the board accommodation area 144 . More specifically, the MCU mounting board 161 and the receptacle mounting board 162 are arranged such that their element mounting surfaces are arranged along the horizontal direction and the vertical direction, and the MCU mounting board 161 is arranged in front of the receptacle mounting board 162. . The MCU mounting board 161 and the receptacle mounting board 162 are each provided with openings. The MCU mounting board 161 and the receptacle mounting board 162 are fastened with bolts 136 to the board fixing portion 156 of the front/rear dividing wall 152 with a cylindrical spacer 173 interposed between the peripheral edges of these openings. That is, the spacer 173 fixes the positions of the MCU mounting board 161 and the receptacle mounting board 162 inside the case 110 and mechanically connects the MCU mounting board 161 and the receptacle mounting board 162 . As a result, it is possible to prevent the MCU mounting board 161 and the receptacle mounting board 162 from coming into contact with each other and causing a short-circuit current between them.
 便宜上、MCU搭載基板161及びレセプタクル搭載基板162の前方を向く面を、それぞれの主面161a、162aとし、主面161a、162aの反対面をそれぞれの副面161b、162bとすると、MCU搭載基板161の副面161bと、レセプタクル搭載基板162の主面162aとが、所定の隙間を介して対向する。MCU搭載基板161の主面161aはケース110の前面と対向し、レセプタクル搭載基板162の副面162bは、シャーシ150の前後分割壁152と対向する。MCU搭載基板161及びレセプタクル搭載基板162に搭載される素子及びICについては後述する。 For the sake of convenience, the MCU mounting board 161 and the receptacle mounting board 162 have main surfaces 161a and 162a that face forward, and secondary surfaces 161b and 162b that are opposite to the main surfaces 161a and 162a. and the main surface 162a of the receptacle mounting substrate 162 face each other with a predetermined gap therebetween. A main surface 161 a of the MCU mounting board 161 faces the front surface of the case 110 , and a secondary surface 162 b of the receptacle mounting board 162 faces the front and rear dividing walls 152 of the chassis 150 . Elements and ICs mounted on the MCU mounting board 161 and the receptacle mounting board 162 will be described later.
 LED搭載基板163は、シャーシ本体151の左側面、且つ上下に配置された2つのマグネット124の間に配置される。LED搭載基板163の素子配置面は、上下方向及び前後方向に沿って配置されている。換言すると、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交している。このように、MCU搭載基板161及びレセプタクル搭載基板162それぞれの素子配置面と、LED搭載基板163の素子配置面とは、直交に限らず、交差している(非平行である)ことが好ましい。なお、LED L1~L8とともに通知部180を構成する振動モータMは、シャーシ下壁155の下面に固定され、MCU搭載基板161に電気的に接続される。 The LED mounting board 163 is arranged on the left side of the chassis body 151 and between the two magnets 124 arranged vertically. The element mounting surface of the LED mounting substrate 163 is arranged along the vertical direction and the front-rear direction. In other words, the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 are orthogonal to the element mounting surface of the LED mounting board 163 . In this way, the element mounting surfaces of the MCU mounting board 161 and the receptacle mounting board 162 and the element mounting surface of the LED mounting board 163 are not limited to being orthogonal, but preferably intersect (non-parallel). The vibration motor M, which forms the notification unit 180 together with the LEDs L1 to L8, is fixed to the bottom surface of the chassis bottom wall 155 and electrically connected to the MCU mounting board 161. FIG.
 ホールIC搭載基板164は、シャーシ上壁154の上面に配置される。 The Hall IC mounting board 164 is arranged on the upper surface of the chassis upper wall 154 .
<吸引器の動作モード>
 図9は、吸引器100の動作モードを説明するための模式図である。図9に示すように、吸引器100の動作モードには、充電モード、スリープモード、アクティブモード、加熱初期設定モード、加熱モード、及び加熱終了モードが含まれる。
<Operation mode of the aspirator>
FIG. 9 is a schematic diagram for explaining the operation modes of the aspirator 100. As shown in FIG. As shown in FIG. 9, the operating modes of the suction device 100 include charging mode, sleep mode, active mode, heating initialization mode, heating mode, and heating termination mode.
 スリープモードは、主にヒータHTRの加熱制御に必要な電子部品への電力供給を停止して省電力化を図るモードである。 The sleep mode is a mode for saving power by stopping the power supply to the electronic parts required for heating control of the heater HTR.
 アクティブモードは、ヒータHTRの加熱制御を除くほとんどの機能が有効になるモードである。吸引器100は、スリープモードにて動作している状態にて、スライダ119が開かれると、動作モードをアクティブモードに切り替える。吸引器100は、アクティブモードにて動作している状態にて、スライダ119が閉じられたり、操作スイッチOPSの無操作時間が所定時間に達したりすると、動作モードをスリープモードに切り替える。 The active mode is a mode in which most functions except heating control of the heater HTR are enabled. When the slider 119 is opened while the suction device 100 is operating in the sleep mode, the operation mode is switched to the active mode. When the slider 119 is closed or the non-operating time of the operation switch OPS reaches a predetermined time while the aspirator 100 is operating in the active mode, the operating mode is switched to the sleep mode.
 加熱初期設定モードは、ヒータHTRの加熱制御を開始するための制御パラメータ等の初期設定を行うモードである。吸引器100は、アクティブモードにて動作している状態にて、操作スイッチOPSの操作を検出すると、動作モードを加熱初期設定モードに切り替え、初期設定が終了すると、動作モードを加熱モードに切り替える。 The heating initial setting mode is a mode for initializing control parameters and the like for starting heating control of the heater HTR. When the aspirator 100 detects the operation of the operation switch OPS while operating in the active mode, it switches the operation mode to the heating initial setting mode, and when the initial setting is completed, switches the operation mode to the heating mode.
 加熱モードは、ヒータHTRの加熱制御(エアロゾル生成のための加熱制御と、温度検出のための加熱制御)を実行するモードである。吸引器100は、動作モードが加熱モードに切り替わると、ヒータHTRの加熱制御を開始する。 The heating mode is a mode that executes heating control of the heater HTR (heating control for aerosol generation and heating control for temperature detection). The aspirator 100 starts heating control of the heater HTR when the operation mode is switched to the heating mode.
 加熱終了モードは、ヒータHTRの加熱制御の終了処理(加熱履歴の記憶処理等)を実行するモードである。吸引器100は、加熱モードにて動作している状態にて、ヒータHTRへの通電時間又はユーザの吸引回数が上限に達したり、スライダ119が閉じられたりすると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードをアクティブモードに切り替える。吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モードに切り替え、終了処理が終了すると、動作モードを充電モードに切り替える。図9に示したように、この場合において、動作モードを充電モードに切り替える前に、動作モードをアクティブモードへ切り替えてもよい。換言すれば、吸引器100は、加熱モードにて動作している状態にて、USB接続がなされると、動作モードを加熱終了モード、アクティブモード、充電モードの順に切り替えてもよい。 The heating end mode is a mode for executing heating control end processing (heating history storage processing, etc.) of the heater HTR. In a state in which the suction device 100 is operating in the heating mode, when the energization time of the heater HTR or the number of times of suction by the user reaches the upper limit, or when the slider 119 is closed, the operation mode is switched to the heating end mode. , when the termination process is completed, the operation mode is switched to the active mode. When the USB connection is established while the aspirator 100 is operating in the heating mode, the operating mode is switched to the heating end mode, and when the end processing is completed, the operating mode is switched to the charging mode. As shown in FIG. 9, in this case, the operating mode may be switched to the active mode before switching the operating mode to the charging mode. In other words, the aspirator 100 may switch the operation mode in order of the heating end mode, the active mode, and the charging mode when the USB connection is made while operating in the heating mode.
 充電モードは、レセプタクルRCPに接続された外部電源から供給される電力により、電源BATの充電を行うモードである。吸引器100は、スリープモード又はアクティブモードにて動作している状態にて、レセプタクルRCPに外部電源が接続(USB接続)されると、動作モードを充電モードに切り替える。吸引器100は、充電モードにて動作している状態にて、電源BATの充電が完了したり、レセプタクルRCPと外部電源との接続が解除されたりすると、動作モードをスリープモードに切り替える。 The charging mode is a mode in which the power supply BAT is charged with power supplied from an external power supply connected to the receptacle RCP. The aspirator 100 switches the operation mode to the charge mode when an external power source is connected (USB connection) to the receptacle RCP while operating in sleep mode or active mode. The aspirator 100 switches the operation mode to the sleep mode when the charging of the power supply BAT is completed or the connection between the receptacle RCP and the external power supply is released while operating in the charging mode.
<内部ユニットの回路の概略>
 図10、図11、及び図12は、内部ユニット140の電気回路の概略構成を示す図である。図11は、図10に示す電気回路のうち、MCU搭載基板161に搭載される範囲161A(太い破線で囲まれた範囲)と、LED搭載基板163に搭載される範囲163A(太い実線で囲まれた範囲)とを追加した点を除いては、図10と同じである。図12は、図10に示す電気回路のうち、レセプタクル搭載基板162に搭載される範囲162Aと、ホールIC搭載基板164に搭載される範囲164Aとを追加した点を除いては、図10と同じである。
<Outline of internal unit circuit>
10, 11, and 12 are diagrams showing the schematic configuration of the electric circuit of the internal unit 140. FIG. 11 shows a range 161A mounted on the MCU mounting board 161 (range surrounded by thick dashed lines) and a range 163A mounted on the LED mounting board 163 (range surrounded by thick solid lines) in the electric circuit shown in FIG. It is the same as FIG. 12 is the same as FIG. 10 except that a range 162A mounted on the receptacle mounting board 162 and a range 164A mounted on the Hall IC mounting board 164 are added to the electric circuit shown in FIG. is.
 図10において太い実線で示した配線は、内部ユニット140の基準となる電位(グランド電位)と同電位となる配線(内部ユニット140に設けられたグランドに接続される配線)であり、この配線を以下ではグランドラインと記載する。図10では、複数の回路素子をチップ化した電子部品を矩形で示しており、この矩形の内側に各種端子の符号を記載している。チップに搭載される電源端子VCC及び電源端子VDDは、それぞれ、高電位側の電源端子を示す。チップに搭載される電源端子VSS及びグランド端子GNDは、それぞれ、低電位側(基準電位側)の電源端子を示す。チップ化された電子部品は、高電位側の電源端子の電位と低電位側の電源端子の電位の差分が、電源電圧となる。チップ化された電子部品は、この電源電圧を用いて、各種機能を実行する。 The wiring indicated by the thick solid line in FIG. 10 is the wiring (the wiring connected to the ground provided in the internal unit 140) that has the same potential as the reference potential (ground potential) of the internal unit 140. It is described as a ground line below. In FIG. 10, an electronic component in which a plurality of circuit elements are chipped is indicated by a rectangle, and the symbols of various terminals are indicated inside the rectangle. A power supply terminal VCC and a power supply terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively. A power supply terminal VSS and a ground terminal GND mounted on the chip indicate power supply terminals on the low potential side (reference potential side). In a chipped electronic component, the power supply voltage is the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side. Chipped electronic components use this power supply voltage to perform various functions.
 図11に示すように、MCU搭載基板161(範囲161A)には、主要な電子部品として、吸引器100の全体を統括制御するMCU1と、電源BATの充電制御を行う充電IC2と、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ(以下、LSW)3,4,5と、ROM(Read Only Memory)6と、スイッチドライバ7と、昇降圧DC/DCコンバータ8(図では、昇降圧DC/DC8と記載)と、オペアンプOP2と、オペアンプOP3と、フリップフロップ(以下、FF)16,17と、吸気センサを構成するサーミスタT2と電気的に接続されるコネクタCn(t2)(図では、このコネクタに接続されたサーミスタT2を記載)と、ヒータ温度センサを構成するサーミスタT3と電気的に接続されるコネクタCn(t3)(図では、このコネクタに接続されたサーミスタT3を記載)と、ケース温度センサを構成するサーミスタT4と電気的に接続されるコネクタCn(t4)(図では、このコネクタに接続されたサーミスタT4を記載)と、USB接続検出用の分圧回路Pcと、が設けられている。 As shown in FIG. 11, the MCU-mounted board 161 (range 161A) includes, as main electronic components, an MCU1 that controls the entire sucker 100, a charging IC2 that controls charging of the power source BAT, a capacitor, a resistor load switches (hereinafter referred to as LSW) 3, 4, 5, a ROM (Read Only Memory) 6, a switch driver 7, and a step-up/step-down DC/DC converter 8 (in the figure, buck-boost DC/DC 8), operational amplifier OP2, operational amplifier OP3, flip-flops (FF) 16, 17, connector Cn (t2) (which is electrically connected to thermistor T2 constituting an intake sensor) ( The figure shows the thermistor T2 connected to this connector), and a connector Cn(t3) electrically connected to the thermistor T3 constituting the heater temperature sensor (the figure shows the thermistor T3 connected to this connector). ), a connector Cn (t4) electrically connected to the thermistor T4 constituting the case temperature sensor (in the drawing, the thermistor T4 connected to this connector is shown), and a voltage dividing circuit Pc for detecting USB connection. , is provided.
 充電IC2、LSW3、LSW4、LSW5、スイッチドライバ7、昇降圧DC/DCコンバータ8、FF16、及びFF17の各々のグランド端子GNDは、グランドラインに接続されている。ROM6の電源端子VSSは、グランドラインに接続されている。オペアンプOP2及びオペアンプOP3の各々の負電源端子は、グランドラインに接続されている。 A ground terminal GND of each of the charging IC 2, LSW3, LSW4, LSW5, switch driver 7, step-up/step-down DC/DC converter 8, FF16, and FF17 is connected to a ground line. A power terminal VSS of the ROM 6 is connected to the ground line. A negative power supply terminal of each of the operational amplifiers OP2 and OP3 is connected to the ground line.
 図11に示すように、LED搭載基板163(範囲163A)には、主要な電子部品として、パネル検出センサを構成するホール素子を含むホールIC13と、LED L1~L8と、操作スイッチOPSと、通信IC15と、が設けられている。通信IC15は、スマートフォン等の電子機器との通信を行うための通信モジュールである。ホールIC13の電源端子VSS及び通信IC15のグランド端子GNDの各々は、グランドラインに接続されている。通信IC15とMCU1は、通信線LNによって通信可能に構成されている。操作スイッチOPSの一端はグランドラインに接続され、操作スイッチOPSの他端はMCU1の端子P4に接続されている。 As shown in FIG. 11, the LED mounting board 163 (area 163A) has, as main electronic components, a Hall IC 13 including a Hall element constituting a panel detection sensor, LEDs L1 to L8, an operation switch OPS, a communication IC 15 and are provided. The communication IC 15 is a communication module for communicating with electronic devices such as smartphones. A power supply terminal VSS of the Hall IC 13 and a ground terminal GND of the communication IC 15 are each connected to a ground line. Communication IC 15 and MCU 1 are configured to be communicable via communication line LN. One end of the operation switch OPS is connected to the ground line, and the other end of the operation switch OPS is connected to the terminal P4 of the MCU1.
 図12に示すように、レセプタクル搭載基板162(範囲162A)には、主要な電子部品として、電源BATと電気的に接続される電源コネクタ(図では、この電源コネクタに接続された電源BATを記載)と、電源温度センサを構成するサーミスタT1と電気的に接続されるコネクタ(図では、このコネクタに接続されたサーミスタT1を記載)と、昇圧DC/DCコンバータ9(図では、昇圧DC/DC9と記載)と、保護IC10と、過電圧保護IC11と、残量計IC12と、レセプタクルRCPと、MOSFETで構成されたスイッチS3~スイッチS6と、オペアンプOP1と、ヒータHTRと電気的に接続される一対(正極側と負極側)のヒータコネクタCnと、が設けられている。 As shown in FIG. 12, the receptacle mounting board 162 (range 162A) includes a power connector electrically connected to the power supply BAT as a main electronic component (in the figure, the power supply BAT connected to this power connector is shown). ), a connector electrically connected to a thermistor T1 constituting a power supply temperature sensor (in the figure, the thermistor T1 connected to this connector is shown), and a boost DC/DC converter 9 (in the figure, a boost DC/DC 9 ), the protection IC 10, the overvoltage protection IC 11, the fuel gauge IC 12, the receptacle RCP, the switches S3 to S6 configured by MOSFETs, the operational amplifier OP1, and the heater HTR. (positive electrode side and negative electrode side) heater connectors Cn are provided.
 レセプタクルRCPの2つのグランド端子GNDと、昇圧DC/DCコンバータ9のグランド端子GNDと、保護IC10の電源端子VSSと、残量計IC12の電源端子VSSと、過電圧保護IC11のグランド端子GNDと、オペアンプOP1の負電源端子は、それぞれ、グランドラインに接続されている。 Two ground terminals GND of receptacle RCP, ground terminal GND of step-up DC/DC converter 9, power supply terminal VSS of protection IC 10, power supply terminal VSS of fuel gauge IC 12, ground terminal GND of overvoltage protection IC 11, and operational amplifier The negative power supply terminals of OP1 are each connected to the ground line.
 図12に示すように、ホールIC搭載基板164(範囲164A)には、カバー位置センサを構成するホール素子を含むホールIC14が設けられている。ホールIC14の電源端子VSSは、グランドラインに接続されている。ホールIC14の出力端子OUTは、MCU1の端子P8に接続されている。MCU1は、端子P8に入力される信号により、スライダ119の開閉を検出する。 As shown in FIG. 12, the Hall IC mounting substrate 164 (area 164A) is provided with a Hall IC 14 including a Hall element that constitutes a cover position sensor. A power terminal VSS of the Hall IC 14 is connected to the ground line. The output terminal OUT of the Hall IC 14 is connected to the terminal P8 of the MCU1. The MCU1 detects opening/closing of the slider 119 from a signal input to the terminal P8.
 図11に示すように、振動モータMと電気的に接続されるコネクタは、MCU搭載基板161に設けられている。 As shown in FIG. 11, a connector electrically connected to the vibration motor M is provided on the MCU mounting board 161 .
<内部ユニットの回路の詳細>
 以下、図10を参照しながら各電子部品の接続関係等について説明する。
<Details of internal unit circuit>
The connection relationship and the like of each electronic component will be described below with reference to FIG. 10 .
 レセプタクルRCPの2つの電源入力端子VBUSは、それぞれ、ヒューズFsを介して、過電圧保護IC11の入力端子INに接続されている。レセプタクルRCPにUSBプラグが接続され、このUSBプラグを含むUSBケーブルが外部電源に接続されると、レセプタクルRCPの2つの電源入力端子VBUSにUSB電圧VUSBが供給される。 The two power supply input terminals V BUS of the receptacle RCP are each connected to the input terminal IN of the overvoltage protection IC11 via a fuse Fs. When a USB plug is connected to the receptacle RCP and a USB cable including this USB plug is connected to an external power supply, the USB voltage V USB is supplied to the two power input terminals V BUS of the receptacle RCP.
 過電圧保護IC11の入力端子INには、2つの抵抗器の直列回路からなる分圧回路Paの一端が接続されている。分圧回路Paの他端はグランドラインに接続されている。分圧回路Paを構成する2つの抵抗器の接続点は、過電圧保護IC11の電圧検出端子OVLoに接続されている。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値未満の状態では、入力端子INに入力された電圧を出力端子OUTから出力する。過電圧保護IC11は、電圧検出端子OVLoに入力される電圧が閾値以上(過電圧)となった場合には、出力端子OUTからの電圧出力を停止(LSW3とレセプタクルRCPとの電気的な接続を遮断)することで、過電圧保護IC11よりも下流の電子部品の保護を図る。過電圧保護IC11の出力端子OUTは、LSW3の入力端子VINと、MCU1に接続された分圧回路Pc(2つの抵抗器の直列回路)の一端と、に接続されている。分圧回路Pcの他端はグランドラインに接続されている。分圧回路Pcを構成する2つの抵抗器の接続点は、MCU1の端子P17に接続されている。 An input terminal IN of the overvoltage protection IC 11 is connected to one end of a voltage dividing circuit Pa consisting of a series circuit of two resistors. The other end of the voltage dividing circuit Pa is connected to the ground line. A connection point between the two resistors forming the voltage dividing circuit Pa is connected to the voltage detection terminal OVLo of the overvoltage protection IC11. The overvoltage protection IC 11 outputs the voltage input to the input terminal IN from the output terminal OUT when the voltage input to the voltage detection terminal OVLo is less than the threshold. The overvoltage protection IC 11 stops voltage output from the output terminal OUT (cuts off the electrical connection between the LSW3 and the receptacle RCP) when the voltage input to the voltage detection terminal OVLo exceeds the threshold (overvoltage). By doing so, the electronic components downstream of the overvoltage protection IC 11 are protected. The output terminal OUT of the overvoltage protection IC11 is connected to the input terminal VIN of the LSW3 and one end of the voltage dividing circuit Pc (series circuit of two resistors) connected to the MCU1. The other end of the voltage dividing circuit Pc is connected to the ground line. A connection point of the two resistors forming the voltage dividing circuit Pc is connected to the terminal P17 of the MCU1.
 LSW3の入力端子VINには、2つの抵抗器の直列回路からなる分圧回路Pfの一端が接続されている。分圧回路Pfの他端はグランドラインに接続されている。分圧回路Pfを構成する2つの抵抗器の接続点は、LSW3の制御端子ONに接続されている。LSW3の制御端子ONには、バイポーラトランジスタS2のコレクタ端子が接続されている。バイポーラトランジスタS2のエミッタ端子はグランドラインに接続されている。バイポーラトランジスタS2のベース端子は、MCU1の端子P19に接続されている。LSW3は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力された電圧を出力端子VOUTから出力する。LSW3の出力端子VOUTは、充電IC2の入力端子VBUSに接続されている。MCU1は、USB接続がなされていない間は、バイポーラトランジスタS2をオンにする。これにより、LSW3の制御端子ONはバイポーラトランジスタS2を介してグランドラインへ接続されるため、LSW3の制御端子ONにはローレベルの信号が入力される。
 LSW3に接続されたバイポーラトランジスタS2は、USB接続がなされると、MCU1によってオフされる。バイポーラトランジスタS2がオフすることで、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。このため、USB接続がなされ且つバイポーラトランジスタS2がオフされると、LSW3の制御端子ONには、ハイレベルの信号が入力される。これにより、LSW3は、USBケーブルから供給されるUSB電圧VUSBを出力端子VOUTから出力する。なお、バイポーラトランジスタS2がオフされていない状態でUSB接続がなされても、LSW3の制御端子ONは、バイポーラトランジスタS2を介してグランドラインへ接続されている。このため、MCU1がバイポーラトランジスタS2をオフしない限り、LSW3の制御端子ONにはローレベルの信号が入力され続ける点に留意されたい。
An input terminal VIN of LSW3 is connected to one end of a voltage dividing circuit Pf consisting of a series circuit of two resistors. The other end of the voltage dividing circuit Pf is connected to the ground line. A connection point between the two resistors forming the voltage dividing circuit Pf is connected to the control terminal ON of the LSW3. The collector terminal of the bipolar transistor S2 is connected to the control terminal ON of LSW3. The emitter terminal of the bipolar transistor S2 is connected to the ground line. The base terminal of bipolar transistor S2 is connected to terminal P19 of MCU1. When the signal input to the control terminal ON becomes high level, the LSW3 outputs the voltage input to the input terminal VIN from the output terminal VOUT. The output terminal VOUT of LSW3 is connected to the input terminal VBUS of charging IC2. The MCU1 turns on the bipolar transistor S2 while the USB connection is not made. As a result, the control terminal ON of LSW3 is connected to the ground line via the bipolar transistor S2, so that a low level signal is input to the control terminal ON of LSW3.
The bipolar transistor S2 connected to LSW3 is turned off by MCU1 when the USB connection is made. By turning off the bipolar transistor S2, the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. Therefore, when the USB connection is made and the bipolar transistor S2 is turned off, a high level signal is input to the control terminal ON of the LSW3. As a result, the LSW 3 outputs the USB voltage VUSB supplied from the USB cable from the output terminal VOUT. Even if the USB connection is made while the bipolar transistor S2 is not turned off, the control terminal ON of the LSW3 is connected to the ground line via the bipolar transistor S2. Therefore, it should be noted that a low level signal continues to be input to the control terminal ON of LSW3 unless MCU1 turns off bipolar transistor S2.
 電源BATの正極端子は、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batと、に接続されている。したがって、電源BATの電源電圧VBATは、保護IC10と、充電IC2と、昇圧DC/DCコンバータ9とに供給される。電源BATの負極端子には、抵抗器Raと、MOSFETで構成されたスイッチSaと、MOSFETで構成されたスイッチSbと、抵抗器Rbと、がこの順に直列接続されている。抵抗器RaとスイッチSaの接続点には、保護IC10の電流検出端子CSが接続されている。スイッチSaとスイッチSbの各々の制御端子は、保護IC10に接続されている。抵抗器Rbの両端は、残量計IC12に接続されている。 The positive terminal of the power supply BAT is connected to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC2. Therefore, the power supply voltage V BAT of the power supply BAT is supplied to the protection IC 10 , the charging IC 2 and the step-up DC/DC converter 9 . A resistor Ra, a switch Sa composed of a MOSFET, a switch Sb composed of a MOSFET, and a resistor Rb are connected in series in this order to the negative terminal of the power supply BAT. A current detection terminal CS of the protection IC 10 is connected to a connection point between the resistor Ra and the switch Sa. Control terminals of the switches Sa and Sb are connected to the protection IC 10 . Both ends of the resistor Rb are connected to the fuel gauge IC12.
 保護IC10は、電流検出端子CSに入力される電圧から、電源BATの充放電時において抵抗器Raに流れる電流値を取得し、この電流値が過大になった場合(過電流)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの充電時に過大な電流値を取得した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの放電時に過大な電流値を取得した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。また、保護IC10は、電源端子VDDに入力される電圧から、電源BATの電圧値が異常になった場合(過充電又は過電圧の場合)に、スイッチSaとスイッチSbの開閉制御を行って、電源BATの充電又は放電を停止させることで、電源BATの保護を図る。より具体的には、保護IC10は、電源BATの過充電を検知した場合には、スイッチSbをオフすることで、電源BATの充電を停止させる。保護IC10は、電源BATの過放電を検知した場合には、スイッチSaをオフすることで、電源BATの放電を停止させる。 The protection IC 10 acquires the value of the current flowing through the resistor Ra during charging and discharging of the power supply BAT from the voltage input to the current detection terminal CS, and when this current value becomes excessive (overcurrent), the switch Sa , the switch Sb is controlled to open and close to stop the charging or discharging of the power source BAT, thereby protecting the power source BAT. More specifically, when the protection IC 10 acquires an excessive current value while charging the power supply BAT, it stops charging the power supply BAT by turning off the switch Sb. When the protection IC 10 acquires an excessive current value during discharging of the power supply BAT, the protection IC 10 stops discharging the power supply BAT by turning off the switch Sa. In addition, when the voltage value of the power supply BAT becomes abnormal from the voltage input to the power supply terminal VDD (in the case of overcharge or overvoltage), the protection IC 10 performs opening/closing control of the switch Sa and the switch Sb to The power supply BAT is protected by stopping the charging or discharging of BAT. More specifically, when the protection IC 10 detects that the power supply BAT is overcharged, the protection IC 10 stops charging the power supply BAT by turning off the switch Sb. When detecting overdischarge of the power supply BAT, the protection IC 10 turns off the switch Sa to stop the discharge of the power supply BAT.
 電源BATの近傍に配置されたサーミスタT1と接続されるコネクタには抵抗器Rt1が接続されている。抵抗器Rt1とサーミスタT1の直列回路は、グランドラインと、残量計IC12のレギュレータ端子TREGとに接続されている。サーミスタT1と抵抗器Rt1の接続点は、残量計IC12のサーミスタ端子THMに接続されている。サーミスタT1は、温度の増加に従い抵抗値が増大するPTC(Positive Temperature Coefficient)サーミスタであってもよいし、温度の増加に従い抵抗値が減少するNTC(Negative Temperature Coefficient)サーミスタでもよい。 A resistor Rt1 is connected to a connector connected to the thermistor T1 arranged near the power supply BAT. A series circuit of the resistor Rt1 and the thermistor T1 is connected to the ground line and the regulator terminal TREG of the fuel gauge IC12. A connection point between the thermistor T1 and the resistor Rt1 is connected to a thermistor terminal THM of the fuel gauge IC12. The thermistor T1 may be a PTC (Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature increases, or an NTC (Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature increases.
 残量計IC12は、抵抗器Rbに流れる電流を検出し、検出した電流値に基づいて、電源BATの残容量、充電状態を示すSOC(State Of Charge)、及び健全状態を示すSOH(State Of Health)等のバッテリ情報を導出する。残量計IC12は、レギュレータ端子TREGに接続される内蔵レギュレータから、サーミスタT1と抵抗器Rt1の分圧回路に電圧を供給する。残量計IC12は、この分圧回路によって分圧された電圧をサーミスタ端子THMから取得し、この電圧に基づいて、電源BATの温度に関する温度情報を取得する。残量計IC12は、シリアル通信を行うための通信線LNによってMCU1と接続されており、MCU1と通信可能に構成されている。残量計IC12は、導出したバッテリ情報と、取得した電源BATの温度情報を、MCU1からの要求に応じて、MCU1に送信する。なお、シリアル通信を行うためには、データ送信用のデータラインや同期用のクロックラインなどの複数の信号線が必要になる。図10-図19では、簡略化のため、1本の信号線のみが図示されている点に留意されたい。 The fuel gauge IC 12 detects the current flowing through the resistor Rb, and based on the detected current value, indicates the remaining capacity of the power supply BAT, SOC (State Of Charge) indicating the state of charge, and SOH (State Of Charge) indicating the state of health. Health) and other battery information. The fuel gauge IC12 supplies a voltage to the voltage dividing circuit of the thermistor T1 and the resistor Rt1 from the built-in regulator connected to the regulator terminal TREG. The fuel gauge IC 12 acquires the voltage divided by this voltage dividing circuit from the thermistor terminal THM, and acquires temperature information regarding the temperature of the power supply BAT based on this voltage. The fuel gauge IC12 is connected to the MCU1 via a communication line LN for serial communication, and is configured to be able to communicate with the MCU1. The fuel gauge IC12 transmits the derived battery information and the acquired temperature information of the power supply BAT to the MCU1 in response to a request from the MCU1. Note that serial communication requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that only one signal line is shown in FIGS. 10-19 for simplicity.
 残量計IC12は、通知端子12aを備えている。通知端子12aは、MCU1の端子P6と、後述するダイオードD2のカソードと、に接続されている。残量計IC12は、電源BATの温度が過大になった等の異常を検出すると、通知端子12aからローレベルの信号を出力することで、その異常発生をMCU1に通知する。このローレベルの信号は、ダイオードD2を経由して、FF17のCLR( ̄)端子にも入力される。 The fuel gauge IC 12 has a notification terminal 12a. The notification terminal 12a is connected to the terminal P6 of the MCU1 and the cathode of a diode D2, which will be described later. When the fuel gauge IC 12 detects an abnormality such as an excessive temperature of the power supply BAT, it notifies the MCU 1 of the occurrence of the abnormality by outputting a low-level signal from the notification terminal 12a. This low level signal is also input to the CLR (~) terminal of the FF 17 via the diode D2.
 昇圧DC/DCコンバータ9のスイッチング端子SWには、リアクトルLcの一端が接続されている。このリアクトルLcの他端は昇圧DC/DCコンバータ9の入力端子VINに接続されている。昇圧DC/DCコンバータ9は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、入力された電圧を昇圧して、出力端子VOUTから出力する。なお、昇圧DC/DCコンバータ9の入力端子VINは、昇圧DC/DCコンバータ9の高電位側の電源端子を構成している。昇圧DC/DCコンバータ9は、イネーブル端子ENに入力される信号がハイレベルとなっている場合に、昇圧動作を行う。USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号は、MCU1によってローレベルに制御されてもよい。若しくは、USB接続されている状態においては、昇圧DC/DCコンバータ9のイネーブル端子ENに入力される信号をMCU1が制御しないことで、イネーブル端子ENの電位を不定にしてもよい。 One end of the reactor Lc is connected to the switching terminal SW of the step-up DC/DC converter 9 . The other end of this reactor Lc is connected to the input terminal VIN of the step-up DC/DC converter 9 . The step-up DC/DC converter 9 performs on/off control of the built-in transistor connected to the switching terminal SW to step up the input voltage and output it from the output terminal VOUT. The input terminal VIN of the step-up DC/DC converter 9 constitutes a power supply terminal of the step-up DC/DC converter 9 on the high potential side. The boost DC/DC converter 9 performs a boost operation when the signal input to the enable terminal EN is at high level. In the USB-connected state, the signal input to the enable terminal EN of the boost DC/DC converter 9 may be controlled to be low level by the MCU1. Alternatively, in the USB-connected state, the MCU 1 does not control the signal input to the enable terminal EN of the boost DC/DC converter 9, so that the potential of the enable terminal EN may be made indefinite.
 昇圧DC/DCコンバータ9の出力端子VOUTには、Pチャネル型MOSFETにより構成されたスイッチS4のソース端子が接続されている。スイッチS4のゲート端子は、MCU1の端子P15と接続されている。スイッチS4のドレイン端子には、抵抗器Rsの一端が接続されている。抵抗器Rsの他端は、ヒータHTRの一端と接続される正極側のヒータコネクタCnに接続されている。スイッチS4と抵抗器Rsの接続点には、2つの抵抗器からなる分圧回路Pbが接続されている。分圧回路Pbを構成する2つの抵抗器の接続点は、MCU1の端子P18と接続されている。スイッチS4と抵抗器Rsの接続点は、更に、オペアンプOP1の正電源端子と接続されている。 The output terminal VOUT of the step-up DC/DC converter 9 is connected to the source terminal of the switch S4 composed of a P-channel MOSFET. The gate terminal of switch S4 is connected to terminal P15 of MCU1. One end of the resistor Rs is connected to the drain terminal of the switch S4. The other end of the resistor Rs is connected to a positive heater connector Cn connected to one end of the heater HTR. A voltage dividing circuit Pb consisting of two resistors is connected to the connection point between the switch S4 and the resistor Rs. A connection point of the two resistors forming the voltage dividing circuit Pb is connected to the terminal P18 of the MCU1. A connection point between the switch S4 and the resistor Rs is further connected to the positive power supply terminal of the operational amplifier OP1.
 昇圧DC/DCコンバータ9の出力端子VOUTとスイッチS4のソース端子との接続ラインには、Pチャネル型MOSFETにより構成されたスイッチS3のソース端子が接続されている。スイッチS3のゲート端子は、MCU1の端子P16と接続されている。スイッチS3のドレイン端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。このように、昇圧DC/DCコンバータ9の出力端子VOUTとヒータコネクタCnの正極側との間には、スイッチS3を含む回路と、スイッチS4及び抵抗器Rsを含む回路とが並列接続されている。スイッチS3を含む回路は、抵抗器を有さないため、スイッチS4及び抵抗器Rsを含む回路よりも低抵抗の回路である。 A connection line between the output terminal VOUT of the step-up DC/DC converter 9 and the source terminal of the switch S4 is connected to the source terminal of the switch S3 composed of a P-channel MOSFET. The gate terminal of switch S3 is connected to terminal P16 of MCU1. A drain terminal of the switch S3 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side. Thus, a circuit including the switch S3 and a circuit including the switch S4 and the resistor Rs are connected in parallel between the output terminal VOUT of the boost DC/DC converter 9 and the positive electrode side of the heater connector Cn. . Since the circuit including the switch S3 does not have a resistor, it has a lower resistance than the circuit including the switch S4 and the resistor Rs.
 オペアンプOP1の非反転入力端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。オペアンプOP1の反転入力端子は、ヒータHTRの他端と接続される負極側のヒータコネクタCnと、Nチャネル型MOSFETにより構成されたスイッチS6のドレイン端子と、に接続されている。スイッチS6のソース端子はグランドラインに接続されている。スイッチS6のゲート端子は、MCU1の端子P14と、ダイオードD4のアノードと、昇圧DC/DCコンバータ9のイネーブル端子ENと、に接続されている。ダイオードD4のカソードは、FF17のQ端子と接続されている。オペアンプOP1の出力端子には抵抗器R4の一端が接続されている。抵抗器R4の他端は、MCU1の端子P9と、Nチャネル型MOSFETにより構成されたスイッチS5のドレイン端子と、に接続されている。スイッチS5のソース端子は、グランドラインに接続されている。スイッチS5のゲート端子は、抵抗器Rsと正極側のヒータコネクタCnとの接続ラインに接続されている。 The non-inverting input terminal of the operational amplifier OP1 is connected to the connection line between the resistor Rs and the heater connector Cn on the positive electrode side. The inverting input terminal of the operational amplifier OP1 is connected to the negative heater connector Cn connected to the other end of the heater HTR and to the drain terminal of the switch S6 composed of an N-channel MOSFET. The source terminal of switch S6 is connected to the ground line. A gate terminal of the switch S6 is connected to the terminal P14 of the MCU1, the anode of the diode D4, and the enable terminal EN of the step-up DC/DC converter 9. The cathode of diode D4 is connected to the Q terminal of FF17. One end of a resistor R4 is connected to the output terminal of the operational amplifier OP1. The other end of the resistor R4 is connected to the terminal P9 of the MCU1 and the drain terminal of the switch S5 composed of an N-channel MOSFET. A source terminal of the switch S5 is connected to the ground line. A gate terminal of the switch S5 is connected to a connection line between the resistor Rs and the heater connector Cn on the positive electrode side.
 充電IC2の入力端子VBUSは、LED L1~L8の各々のアノードに接続されている。LED L1~L8の各々のカソードは、電流制限ための抵抗器を介して、MCU1の制御端子PD1~PD8に接続されている。すなわち、入力端子VBUSには、LED L1~L8が並列接続されている。LED L1~L8は、レセプタクルRCPに接続されたUSBケーブルから供給されるUSB電圧VUSBと、電源BATから充電IC2を経由して供給される電圧と、のそれぞれによって動作可能に構成されている。MCU1には、制御端子PD1~制御端子PD8の各々とグランド端子GNDとに接続されたトランジスタ(スイッチング素子)が内蔵されている。MCU1は、制御端子PD1と接続されたトランジスタをオンすることでLED L1に通電してこれを点灯させ、制御端子PD1と接続されたトランジスタをオフすることでLED L1を消灯させる。制御端子PD1と接続されたトランジスタのオンとオフを高速で切り替えることで、LED L1の輝度や発光パターンを動的に制御できる。LED L2~L8についても同様にMCU1によって点灯制御される。 The input terminal VBUS of charging IC2 is connected to the anode of each of LEDs L1-L8. The cathodes of the LEDs L1-L8 are connected to the control terminals PD1-PD8 of the MCU1 via current limiting resistors. That is, LEDs L1 to L8 are connected in parallel to the input terminal VBUS. The LEDs L1 to L8 are operable by the USB voltage V USB supplied from the USB cable connected to the receptacle RCP and the voltage supplied from the power supply BAT via the charging IC2. The MCU 1 incorporates transistors (switching elements) connected to each of the control terminals PD1 to PD8 and the ground terminal GND. The MCU1 turns on the transistor connected to the control terminal PD1 to energize the LED L1 to light it, and turns off the transistor connected to the control terminal PD1 to turn off the LED L1. By switching on and off the transistor connected to the control terminal PD1 at high speed, the brightness and light emission pattern of the LED L1 can be dynamically controlled. LEDs L2 to L8 are similarly controlled by the MCU1.
 充電IC2は、入力端子VBUSに入力されるUSB電圧VUSBに基づいて電源BATを充電する充電機能を備える。充電IC2は、不図示の端子や配線から、電源BATの充電電流や充電電圧を取得し、これらに基づいて、電源BATの充電制御(充電端子batから電源BATへの電力供給制御)を行う。また、充電IC2は、残量計IC12からMCU1に送信された電源BATの温度情報を、通信線LNを利用したシリアル通信によってMCU1から取得し、充電制御に利用してもよい。 The charging IC2 has a charging function of charging the power supply BAT based on the USB voltage VUSB input to the input terminal VBUS. The charging IC 2 acquires the charging current and charging voltage of the power supply BAT from terminals and wiring (not shown), and based on these, performs charging control of the power supply BAT (power supply control from the charging terminal bat to the power supply BAT). Also, the charging IC 2 may acquire the temperature information of the power supply BAT transmitted from the fuel gauge IC 12 to the MCU 1 from the MCU 1 through serial communication using the communication line LN, and use it for charging control.
 充電IC2は、更に、VBATパワーパス機能と、OTG機能とを備える。VBATパワーパス機能は、充電端子batに入力される電源電圧VBATと略一致するシステム電源電圧Vcc0を、出力端子SYSから出力する機能である。OTG機能は、充電端子batに入力される電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する機能である。充電IC2のOTG機能のオンオフは、通信線LNを利用したシリアル通信によって、MCU1により制御される。なお、OTG機能においては、充電端子batに入力される電源電圧VBATを、入力端子VBUSからそのまま出力してもよい。この場合において、電源電圧VBATとシステム電源電圧Vcc4は略一致する。 The charging IC2 further comprises a V BAT power pass function and an OTG function. The V BAT power pass function is a function of outputting from the output terminal SYS a system power supply voltage Vcc0 substantially matching the power supply voltage V BAT input to the charging terminal bat. The OTG function is a function for outputting from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input to the charging terminal bat. ON/OFF of the OTG function of the charging IC 2 is controlled by the MCU 1 through serial communication using the communication line LN. In addition, in the OTG function, the power supply voltage V BAT input to the charging terminal bat may be directly output from the input terminal VBUS. In this case, power supply voltage VBAT and system power supply voltage Vcc4 are substantially the same.
 充電IC2の出力端子SYSは、昇降圧DC/DCコンバータ8の入力端子VINに接続されている。充電IC2のスイッチング端子SWにはリアクトルLaの一端が接続されている。リアクトルLaの他端は、充電IC2の出力端子SYSに接続されている。充電IC2の充電イネーブル端子CE( ̄)は、抵抗器を介して、MCU1の端子P22に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、バイポーラトランジスタS1のコレクタ端子が接続されている。バイポーラトランジスタS1のエミッタ端子は、後述のLSW4の出力端子VOUTに接続されている。バイポーラトランジスタS1のベース端子は、FF17のQ端子に接続されている。更に、充電IC2の充電イネーブル端子CE( ̄)には、抵抗器Rcの一端が接続されている。抵抗器Rcの他端は、LSW4の出力端子VOUTに接続されている。 The output terminal SYS of the charging IC 2 is connected to the input terminal VIN of the step-up/step-down DC/DC converter 8 . One end of a reactor La is connected to the switching terminal SW of the charging IC2. The other end of the reactor La is connected to the output terminal SYS of the charging IC2. A charge enable terminal CE (~) of the charge IC2 is connected to a terminal P22 of the MCU1 via a resistor. Furthermore, the collector terminal of the bipolar transistor S1 is connected to the charge enable terminal CE (~) of the charge IC2. The emitter terminal of the bipolar transistor S1 is connected to the output terminal VOUT of the LSW4 which will be described later. The base terminal of bipolar transistor S1 is connected to the Q terminal of FF17. Furthermore, one end of a resistor Rc is connected to the charge enable terminal CE (~) of the charge IC2. The other end of the resistor Rc is connected to the output terminal VOUT of LSW4.
 昇降圧DC/DCコンバータ8の入力端子VINとイネーブル端子ENには抵抗器が接続されている。充電IC2の出力端子SYSから、昇降圧DC/DCコンバータ8の入力端子VINにシステム電源電圧Vcc0が入力されることで、昇降圧DC/DCコンバータ8のイネーブル端子ENに入力される信号はハイレベルとなり、昇降圧DC/DCコンバータ8は昇圧動作又は降圧動作を開始する。昇降圧DC/DCコンバータ8は、リアクトルLbに接続された内蔵トランジスタのスイッチング制御により、入力端子VINに入力されたシステム電源電圧Vcc0を昇圧又は降圧してシステム電源電圧Vcc1を生成し、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTは、昇降圧DC/DCコンバータ8のフィードバック端子FBと、LSW4の入力端子VINと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、に接続されている。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されるシステム電源電圧Vcc1が供給される配線を電源ラインPL1と記載する。 A resistor is connected to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 . By inputting the system power supply voltage Vcc0 from the output terminal SYS of the charging IC 2 to the input terminal VIN of the step-up/step-down DC/DC converter 8, the signal input to the enable terminal EN of the step-up/step-down DC/DC converter 8 is at a high level. Then, the step-up/step-down DC/DC converter 8 starts step-up operation or step-down operation. The step-up/step-down DC/DC converter 8 steps up or steps down the system power supply voltage Vcc0 input to the input terminal VIN by switching control of the built-in transistor connected to the reactor Lb to generate the system power supply voltage Vcc1, and the output terminal VOUT. Output from The output terminal VOUT of the buck-boost DC/DC converter 8 includes the feedback terminal FB of the buck-boost DC/DC converter 8, the input terminal VIN of the LSW 4, the input terminal VIN of the switch driver 7, the power supply terminal VCC and the D terminal of the FF 16. and connected to A wiring to which system power supply voltage Vcc1 output from output terminal VOUT of step-up/step-down DC/DC converter 8 is supplied is referred to as power supply line PL1.
 LSW4は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc1を出力端子VOUTから出力する。LSW4の制御端子ONと電源ラインPL1は、抵抗器を介して接続されている。このため、電源ラインPL1にシステム電源電圧Vcc1が供給されることで、LSW4の制御端子ONにはハイレベルの信号が入力される。LSW4が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc1と同一であるが、システム電源電圧Vcc1と区別するために、LSW4の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc2と記載する。 When the signal input to the control terminal ON becomes high level, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN from the output terminal VOUT. The control terminal ON of LSW4 and the power supply line PL1 are connected via a resistor. Therefore, by supplying the system power supply voltage Vcc1 to the power supply line PL1, a high level signal is input to the control terminal ON of the LSW4. The voltage output from LSW4 is the same as the system power supply voltage Vcc1 if wiring resistance and the like are ignored. Described as voltage Vcc2.
 LSW4の出力端子VOUTは、MCU1の電源端子VDDと、LSW5の入力端子VINと、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、バイポーラトランジスタS1のエミッタ端子と、抵抗器Rcと、FF17の電源端子VCCと、に接続されている。LSW4の出力端子VOUTから出力されるシステム電源電圧Vcc2が供給される配線を電源ラインPL2と記載する。 The output terminal VOUT of the LSW4 is connected to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM6, the emitter terminal of the bipolar transistor S1, and the resistor Rc. , and the power supply terminal VCC of the FF 17 . A wiring to which system power supply voltage Vcc2 output from output terminal VOUT of LSW4 is supplied is referred to as power supply line PL2.
 LSW5は、制御端子ONに入力される信号がハイレベルになると、入力端子VINに入力されているシステム電源電圧Vcc2を出力端子VOUTから出力する。LSW5の制御端子ONは、MCU1の端子P23と接続されている。LSW5が出力する電圧は、配線抵抗等を無視すればシステム電源電圧Vcc2と同一であるが、システム電源電圧Vcc2と区別するために、LSW5の出力端子VOUTから出力される電圧を、以下ではシステム電源電圧Vcc3と記載する。LSW5の出力端子VOUTから出力されるシステム電源電圧Vcc3が供給される配線を電源ラインPL3と記載する。 When the signal input to the control terminal ON becomes high level, the LSW5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT. A control terminal ON of LSW5 is connected to terminal P23 of MCU1. The voltage output from LSW5 is the same as the system power supply voltage Vcc2 if wiring resistance and the like are ignored. Described as voltage Vcc3. A wiring to which system power supply voltage Vcc3 output from output terminal VOUT of LSW5 is supplied is referred to as power supply line PL3.
 電源ラインPL3には、サーミスタT2と抵抗器Rt2の直列回路が接続され、抵抗器Rt2はグランドラインに接続されている。サーミスタT2と抵抗器Rt2は分圧回路を構成しており、これらの接続点は、MCU1の端子P21と接続されている。MCU1は、端子P21に入力される電圧に基づいて、サーミスタT2の温度変動(抵抗値変動)を検出し、その温度変動量によって、パフ動作の有無を判定する。 A series circuit of a thermistor T2 and a resistor Rt2 is connected to the power supply line PL3, and the resistor Rt2 is connected to the ground line. The thermistor T2 and the resistor Rt2 form a voltage dividing circuit, and their connection point is connected to the terminal P21 of the MCU1. The MCU1 detects the temperature variation (resistance value variation) of the thermistor T2 based on the voltage input to the terminal P21, and determines the presence or absence of the puff operation based on the amount of temperature variation.
 電源ラインPL3には、サーミスタT3と抵抗器Rt3の直列回路が接続され、抵抗器Rt3はグランドラインに接続されている。サーミスタT3と抵抗器Rt3は分圧回路を構成しており、これらの接続点は、MCU1の端子P13と、オペアンプOP2の反転入力端子と、に接続されている。MCU1は、端子P13に入力される電圧に基づいて、サーミスタT3の温度(ヒータHTRの温度に相当)を検出する。 A series circuit of a thermistor T3 and a resistor Rt3 is connected to the power supply line PL3, and the resistor Rt3 is connected to the ground line. The thermistor T3 and the resistor Rt3 form a voltage dividing circuit, and their connection point is connected to the terminal P13 of the MCU1 and the inverting input terminal of the operational amplifier OP2. The MCU1 detects the temperature of the thermistor T3 (corresponding to the temperature of the heater HTR) based on the voltage input to the terminal P13.
 電源ラインPL3には、サーミスタT4と抵抗器Rt4の直列回路が接続され、抵抗器Rt4はグランドラインに接続されている。サーミスタT4と抵抗器Rt4は分圧回路を構成しており、これらの接続点は、MCU1の端子P12と、オペアンプOP3の反転入力端子と、に接続されている。MCU1は、端子P12に入力される電圧に基づいて、サーミスタT4の温度(ケース110の温度に相当)を検出する。 A series circuit of a thermistor T4 and a resistor Rt4 is connected to the power supply line PL3, and the resistor Rt4 is connected to the ground line. The thermistor T4 and the resistor Rt4 form a voltage dividing circuit, and the connection point between them is connected to the terminal P12 of the MCU1 and the inverting input terminal of the operational amplifier OP3. The MCU1 detects the temperature of the thermistor T4 (corresponding to the temperature of the case 110) based on the voltage input to the terminal P12.
 電源ラインPL2には、MOSFETにより構成されたスイッチS7のソース端子が接続されている。スイッチS7のゲート端子は、MCU1の端子P20に接続されている。スイッチS7のドレイン端子は、振動モータMが接続される一対のコネクタの一方に接続されている。この一対のコネクタの他方はグランドラインに接続されている。MCU1は、端子P20の電位を操作することでスイッチS7の開閉を制御し、振動モータMを特定のパターンで振動させることができる。スイッチS7に代えて、専用のドライバICを用いてもよい。 A source terminal of a switch S7 composed of a MOSFET is connected to the power supply line PL2. The gate terminal of switch S7 is connected to terminal P20 of MCU1. A drain terminal of the switch S7 is connected to one of a pair of connectors to which the vibration motor M is connected. The other of the pair of connectors is connected to the ground line. The MCU1 can control the opening/closing of the switch S7 by manipulating the potential of the terminal P20, and vibrate the vibration motor M in a specific pattern. A dedicated driver IC may be used instead of the switch S7.
 電源ラインPL2には、オペアンプOP2の正電源端子と、オペアンプOP2の非反転入力端子に接続されている分圧回路Pd(2つの抵抗器の直列回路)と、が接続されている。分圧回路Pdを構成する2つの抵抗器の接続点は、オペアンプOP2の非反転入力端子に接続されている。オペアンプOP2は、ヒータHTRの温度に応じた信号(サーミスタT3の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT3としてNTC特性を持つものを用いているため、ヒータHTRの温度(サーミスタT3の温度)が高いほど、オペアンプOP2の出力電圧は低くなる。これは、オペアンプOP2の負電源端子はグランドラインへ接続されており、オペアンプOP2の反転入力端子に入力される電圧値(サーミスタT3と抵抗器Rt3による分圧値)が、オペアンプOP2の非反転入力端子に入力される電圧値(分圧回路Pdによる分圧値)より高くなると、オペアンプOP2の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、ヒータHTRの温度(サーミスタT3の温度)が高温になると、オペアンプOP2の出力電圧はローレベルになる。
 なお、サーミスタT3としてPTC特性を持つものを用いる場合には、オペアンプOP2の非反転入力端子に、サーミスタT3及び抵抗器Rt3の分圧回路の出力を接続し、オペアンプOP2の反転入力端子に、分圧回路Pdの出力を接続すればよい。
A positive power supply terminal of the operational amplifier OP2 and a voltage dividing circuit Pd (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP2 are connected to the power supply line PL2. A connection point between the two resistors forming the voltage dividing circuit Pd is connected to the non-inverting input terminal of the operational amplifier OP2. The operational amplifier OP2 outputs a signal corresponding to the temperature of the heater HTR (signal corresponding to the resistance value of the thermistor T3). In this embodiment, since the thermistor T3 has the NTC characteristic, the higher the temperature of the heater HTR (the temperature of the thermistor T3), the lower the output voltage of the operational amplifier OP2. This is because the negative power supply terminal of operational amplifier OP2 is connected to the ground line, and the voltage value input to the inverting input terminal of operational amplifier OP2 (divided voltage value by thermistor T3 and resistor Rt3) is the non-inverting input of operational amplifier OP2. This is because the value of the output voltage of the operational amplifier OP2 becomes substantially equal to the value of the ground potential when it becomes higher than the voltage value input to the terminal (divided voltage value by the voltage dividing circuit Pd). That is, when the temperature of the heater HTR (the temperature of the thermistor T3) becomes high, the output voltage of the operational amplifier OP2 becomes low level.
When a thermistor T3 having a PTC characteristic is used, the output of the voltage dividing circuit of the thermistor T3 and the resistor Rt3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP2. The output of the pressure circuit Pd may be connected.
 電源ラインPL2には、オペアンプOP3の正電源端子と、オペアンプOP3の非反転入力端子に接続されている分圧回路Pe(2つの抵抗器の直列回路)と、が接続されている。分圧回路Peを構成する2つの抵抗器の接続点は、オペアンプOP3の非反転入力端子に接続されている。オペアンプOP3は、ケース110の温度に応じた信号(サーミスタT4の抵抗値に応じた信号)を出力する。本実施形態では、サーミスタT4としてNTC特性を持つものを用いているため、ケース110の温度が高いほど、オペアンプOP3の出力電圧は低くなる。これは、オペアンプOP3の負電源端子はグランドラインへ接続されており、オペアンプOP3の反転入力端子に入力される電圧値(サーミスタT4と抵抗器Rt4による分圧値)が、オペアンプOP3の非反転入力端子に入力される電圧値(分圧回路Peによる分圧値)より高くなると、オペアンプOP3の出力電圧の値は、グランド電位の値と略等しくなるためである。つまり、サーミスタT4の温度が高温になると、オペアンプOP3の出力電圧が、ローレベルになる。
 なお、サーミスタT4としてPTC特性を持つものを用いる場合には、オペアンプOP3の非反転入力端子に、サーミスタT4及び抵抗器Rt4の分圧回路の出力を接続し、オペアンプOP3の反転入力端子に、分圧回路Peの出力を接続すればよい。
A positive power supply terminal of the operational amplifier OP3 and a voltage dividing circuit Pe (a series circuit of two resistors) connected to the non-inverting input terminal of the operational amplifier OP3 are connected to the power supply line PL2. A connection point between the two resistors forming the voltage dividing circuit Pe is connected to the non-inverting input terminal of the operational amplifier OP3. The operational amplifier OP3 outputs a signal corresponding to the temperature of the case 110 (a signal corresponding to the resistance value of the thermistor T4). In this embodiment, the thermistor T4 having the NTC characteristic is used, so the higher the temperature of the case 110, the lower the output voltage of the operational amplifier OP3. This is because the negative power supply terminal of operational amplifier OP3 is connected to the ground line, and the voltage value input to the inverting input terminal of operational amplifier OP3 (divided voltage value by thermistor T4 and resistor Rt4) is the non-inverting input of operational amplifier OP3. This is because the value of the output voltage of the operational amplifier OP3 becomes substantially equal to the value of the ground potential when it becomes higher than the voltage value input to the terminal (divided voltage value by the voltage dividing circuit Pe). That is, when the temperature of the thermistor T4 becomes high, the output voltage of the operational amplifier OP3 becomes low level.
When a thermistor T4 having a PTC characteristic is used, the output of the voltage dividing circuit of the thermistor T4 and the resistor Rt4 is connected to the non-inverting input terminal of the operational amplifier OP3, and the dividing circuit is connected to the inverting input terminal of the operational amplifier OP3. The output of the pressure circuit Pe may be connected.
 オペアンプOP2の出力端子には抵抗器R1が接続されている。抵抗器R1には、ダイオードD1のカソードが接続されている。ダイオードD1のアノードは、オペアンプOP3の出力端子と、FF17のD端子と、FF17のCLR( ̄)端子と、に接続されている。抵抗器R1とダイオードD1との接続ラインには、電源ラインPL1に接続された抵抗器R2が接続されている。また、この接続ラインには、FF16のCLR( ̄)端子が接続されている。 A resistor R1 is connected to the output terminal of the operational amplifier OP2. A cathode of a diode D1 is connected to the resistor R1. The anode of the diode D1 is connected to the output terminal of the operational amplifier OP3, the D terminal of the FF17, and the CLR (~) terminal of the FF17. A connection line between the resistor R1 and the diode D1 is connected to a resistor R2 connected to the power supply line PL1. Also, the CLR (~) terminal of the FF 16 is connected to this connection line.
 ダイオードD1のアノード及びオペアンプOP3の出力端子の接続点と、FF17のD端子との接続ラインには、抵抗器R3の一端が接続されている。抵抗器R3の他端は電源ラインPL2に接続されている。更に、この接続ラインには、残量計IC12の通知端子12aと接続されているダイオードD2のアノードと、ダイオードD3のアノードと、FF17のCLR( ̄)端子と、が接続されている。ダイオードD3のカソードは、MCU1の端子P5に接続されている。 One end of a resistor R3 is connected to the connection line between the anode of the diode D1 and the output terminal of the operational amplifier OP3 and the D terminal of the FF17. The other end of resistor R3 is connected to power supply line PL2. Furthermore, the anode of the diode D2 connected to the notification terminal 12a of the fuel gauge IC12, the anode of the diode D3, and the CLR (~) terminal of the FF 17 are connected to this connection line. The cathode of diode D3 is connected to terminal P5 of MCU1.
 FF16は、ヒータHTRの温度が過大となり、オペアンプOP2から出力される信号が小さくなって、CLR( ̄)端子に入力される信号がローレベルになると、Q( ̄)端子からハイレベルの信号をMCU1の端子P11に入力する。FF16のD端子には電源ラインPL1からハイレベルのシステム電源電圧Vcc1が供給されている。このため、FF16では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q( ̄)端子からはローレベルの信号が出力され続ける。 When the temperature of the heater HTR becomes excessive and the signal output from the operational amplifier OP2 becomes low and the signal input to the CLR (~) terminal becomes low level, the FF16 outputs a high level signal from the Q (~) terminal. Input to terminal P11 of MCU1. A high-level system power supply voltage Vcc1 is supplied from the power supply line PL1 to the D terminal of the FF16. Therefore, in the FF 16, a low level signal continues to be output from the Q (~) terminal unless the signal input to the CLR (~) terminal operating in negative logic becomes low level.
 FF17のCLR( ̄)端子に入力される信号は、ヒータHTRの温度が過大となった場合と、ケース110の温度が過大となった場合と、残量計IC12の通知端子12aから異常検出を示すローレベルの信号が出力された場合のいずれかの場合に、ローレベルとなる。FF17は、CLR( ̄)端子に入力される信号がローレベルになると、Q端子からローレベルの信号を出力する。このローレベルの信号は、MCU1の端子P10と、スイッチS6のゲート端子と、昇圧DC/DCコンバータ9のイネーブル端子ENと、充電IC2に接続されたバイポーラトランジスタS1のベース端子と、にそれぞれ入力される。スイッチS6のゲート端子にローレベルの信号が入力されると、スイッチS6を構成するNチャネル型MOSFETのゲート-ソース間電圧が閾値電圧未満となるため、スイッチS6がオフになる。昇圧DC/DCコンバータ9のイネーブル端子ENにローレベルの信号が入力されると、昇圧DC/DCコンバータ9のイネーブル端子ENは正論理であるため、昇圧動作が停止する。バイポーラトランジスタS1のベース端子にローレベルの信号が入力されると、バイポーラトランジスタS1がオンになる(コレクタ端子から増幅された電流が出力される)。バイポーラトランジスタS1がオンになると、充電IC2のCE( ̄)端子にバイポーラトランジスタS1を介してハイレベルのシステム電源電圧Vcc2が入力される。充電IC2のCE( ̄)端子は負論理であるため、電源BATの充電が停止される。これらにより、ヒータHTRの加熱と電源BATの充電が停止される。なお、MCU1が端子P22から充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力しようとしても、バイポーラトランジスタS1がオンされると、増幅された電流が、コレクタ端子からMCU1の端子P22および充電IC2の充電イネーブル端子CE( ̄)に入力される。これにより、充電IC2の充電イネーブル端子CE( ̄)にはハイレベルの信号が入力される点に留意されたい。 The signal input to the CLR (~) terminal of the FF 17 is when the temperature of the heater HTR becomes excessive, when the temperature of the case 110 becomes excessive, and when an abnormality is detected from the notification terminal 12a of the fuel gauge IC 12. When the low-level signal shown is output, it becomes low-level. The FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR (~) terminal becomes low level. This low-level signal is input to terminal P10 of MCU1, the gate terminal of switch S6, the enable terminal EN of boost DC/DC converter 9, and the base terminal of bipolar transistor S1 connected to charging IC2. be. When a low level signal is input to the gate terminal of the switch S6, the gate-source voltage of the N-channel MOSFET constituting the switch S6 becomes less than the threshold voltage, so the switch S6 is turned off. When a low level signal is input to the enable terminal EN of the boost DC/DC converter 9, the boost operation stops because the enable terminal EN of the boost DC/DC converter 9 is positive logic. When a low level signal is input to the base terminal of the bipolar transistor S1, the bipolar transistor S1 is turned on (amplified current is output from the collector terminal). When the bipolar transistor S1 is turned on, the high level system power supply voltage Vcc2 is input to the CE (~) terminal of the charging IC2 through the bipolar transistor S1. Since the CE (~) terminal of the charging IC2 is of negative logic, the charging of the power source BAT is stopped. As a result, the heating of the heater HTR and the charging of the power supply BAT are stopped. Even if the MCU1 attempts to output a low-level enable signal from the terminal P22 to the charge enable terminal CE (~) of the charging IC2, when the bipolar transistor S1 is turned on, the amplified current is transferred from the collector terminal to the MCU1 and the charge enable terminal CE (~) of the charge IC2. Note that a high level signal is input to the charge enable terminal CE (~) of the charge IC2.
 FF17のD端子には電源ラインPL2からハイレベルのシステム電源電圧Vcc2が供給されている。このため、FF17では、負論理で動作するCLR( ̄)端子に入力される信号がローレベルにならない限り、Q端子からハイレベルの信号が出力され続ける。オペアンプOP3の出力端子からローレベルの信号が出力されると、オペアンプOP2の出力端子から出力される信号のレベルに拠らず、FF17のCLR( ̄)端子にはローレベルの信号が入力される。オペアンプOP2の出力端子からハイレベルの信号が出力される場合には、オペアンプOP3の出力端子から出力されるローレベルの信号は、ダイオードD1によってこのハイレベルの信号の影響を受けない点に留意されたい。また、オペアンプOP2の出力端子からローレベルの信号が出力される場合には、オペアンプOP3の出力端子からハイレベルの信号が出力されたとしても、ダイオードD1を介してこのハイレベルの信号はローレベルの信号に置き換わる。 A high-level system power supply voltage Vcc2 is supplied from the power supply line PL2 to the D terminal of the FF17. Therefore, the FF 17 continues to output a high level signal from the Q terminal unless the signal input to the CLR (~) terminal operating in negative logic becomes low level. When a low level signal is output from the output terminal of the operational amplifier OP3, a low level signal is input to the CLR (~) terminal of the FF17 regardless of the level of the signal output from the output terminal of the operational amplifier OP2. . Note that when a high level signal is output from the output terminal of the operational amplifier OP2, the low level signal output from the output terminal of the operational amplifier OP3 is not affected by the high level signal due to the diode D1. sea bream. Further, when a low level signal is output from the output terminal of the operational amplifier OP2, even if a high level signal is output from the output terminal of the operational amplifier OP3, the high level signal is passed through the diode D1. signal.
 電源ラインPL2は、MCU搭載基板161からLED搭載基板163及びホールIC搭載基板164側に向けて更に分岐している。この分岐した電源ラインPL2には、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、が接続されている。 The power line PL2 is further branched from the MCU mounting board 161 toward the LED mounting board 163 and the Hall IC mounting board 164 side. The power terminal VDD of the hall IC 13, the power terminal VCC of the communication IC 15, and the power terminal VDD of the hall IC 14 are connected to the branched power line PL2.
 ホールIC13の出力端子OUTは、MCU1の端子P3と、スイッチドライバ7の端子SW2と、に接続されている。アウターパネル115が外れると、ホールIC13の出力端子OUTからローレベルの信号が出力される。MCU1は、端子P3に入力される信号により、アウターパネル115の装着有無を判定する。 The output terminal OUT of the Hall IC 13 is connected to the terminal P3 of the MCU1 and the terminal SW2 of the switch driver 7. When the outer panel 115 is removed, a low level signal is output from the output terminal OUT of the Hall IC 13 . The MCU 1 determines whether or not the outer panel 115 is attached based on the signal input to the terminal P3.
 LED搭載基板163には、操作スイッチOPSと接続された直列回路(抵抗器とコンデンサの直列回路)が設けられている。この直列回路は、電源ラインPL2に接続されている。この直列回路の抵抗器とコンデンサの接続点は、MCU1の端子P4と、操作スイッチOPSと、スイッチドライバ7の端子SW1と、に接続されている。操作スイッチOPSが押下されていない状態では、操作スイッチOPSは導通せず、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、システム電源電圧Vcc2によりハイレベルとなる。操作スイッチOPSが押下されて操作スイッチOPSが導通状態になると、MCU1の端子P4とスイッチドライバ7の端子SW1にそれぞれ入力される信号は、グランドラインへ接続されるためローレベルとなる。MCU1は、端子P4に入力される信号により、操作スイッチOPSの操作を検出する。 A series circuit (a series circuit of a resistor and a capacitor) connected to the operation switch OPS is provided on the LED mounting board 163 . This series circuit is connected to power supply line PL2. A connection point between the resistor and the capacitor in this series circuit is connected to the terminal P4 of the MCU 1, the operation switch OPS, and the terminal SW1 of the switch driver 7. FIG. When the operation switch OPS is not pressed, the operation switch OPS is not conductive, and the signals input to the terminal P4 of the MCU1 and the terminal SW1 of the switch driver 7 are at a high level due to the system power supply voltage Vcc2. When the operation switch OPS is pressed and turned on, the signals input to the terminal P4 of the MCU 1 and the terminal SW1 of the switch driver 7 are connected to the ground line, and thus become low level. The MCU1 detects the operation of the operation switch OPS from the signal input to the terminal P4.
 スイッチドライバ7には、リセット入力端子RSTBが設けられている。リセット入力端子RSTBは、LSW4の制御端子ONに接続されている。スイッチドライバ7は、端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルとなった場合(アウターパネル115が外されており、且つ、操作スイッチOPSが押下された状態)には、リセット入力端子RSTBからローレベルの信号を出力することで、LSW4の出力動作を停止させる。つまり、本来はアウターパネル115の押圧部117を介して押し下げられる操作スイッチOPSが、アウターパネル115が外れた状態でユーザによって直接押し下げられると、スイッチドライバ7の端子SW1と端子SW2に入力される信号のレベルがいずれもローレベルになる。 The switch driver 7 is provided with a reset input terminal RSTB. The reset input terminal RSTB is connected to the control terminal ON of LSW4. When the levels of the signals input to the terminals SW1 and SW2 are both low (the outer panel 115 is removed and the operation switch OPS is pressed), the switch driver 7 By outputting a low level signal from the reset input terminal RSTB, the output operation of LSW4 is stopped. In other words, when the operation switch OPS, which is originally pushed down via the pressing portion 117 of the outer panel 115, is directly pushed down by the user with the outer panel 115 removed, the signal is input to the terminals SW1 and SW2 of the switch driver 7. become low level.
<吸引器の動作モード毎の動作>
 以下、図13~図19を参照して、図10に示す電気回路の動作を説明する。図13は、スリープモードにおける電気回路の動作を説明するための図である。図14は、アクティブモードにおける電気回路の動作を説明するための図である。図15は、加熱初期設定モードにおける電気回路の動作を説明するための図である。図16は、加熱モードにおけるヒータHTRの加熱時の電気回路の動作を説明するための図である。図17は、加熱モードにおけるヒータHTRの温度検出時の電気回路の動作を説明するための図である。図18は、充電モードにおける電気回路の動作を説明するための図である。図19は、MCU1のリセット(再起動)時の電気回路の動作を説明するための図である。図13~図19の各々において、チップ化された電子部品の端子のうち、破線の楕円で囲まれた端子は、電源電圧VBAT、USB電圧VUSB、及びシステム電源電圧等の入力又は出力がなされている端子を示している。
<Operation for each operating mode of the aspirator>
The operation of the electric circuit shown in FIG. 10 will be described below with reference to FIGS. 13 to 19. FIG. FIG. 13 is a diagram for explaining the operation of the electric circuit in sleep mode. FIG. 14 is a diagram for explaining the operation of the electric circuit in active mode. FIG. 15 is a diagram for explaining the operation of the electric circuit in the heating initial setting mode. FIG. 16 is a diagram for explaining the operation of the electric circuit during heating of the heater HTR in the heating mode. FIG. 17 is a diagram for explaining the operation of the electric circuit when the temperature of the heater HTR is detected in the heating mode. FIG. 18 is a diagram for explaining the operation of the electric circuit in charging mode. FIG. 19 is a diagram for explaining the operation of the electric circuit when the MCU 1 is reset (restarted). In each of FIGS. 13 to 19, among the terminals of the chipped electronic component, the terminals surrounded by dashed ellipses have inputs or outputs such as the power supply voltage V BAT , the USB voltage V USB , and the system power supply voltage. It shows the terminals that have been made.
 いずれの動作モードにおいても、電源電圧VBATは、保護IC10の電源端子VDDと、昇圧DC/DCコンバータ9の入力端子VINと、充電IC2の充電端子batに入力されている。 In any operation mode, the power supply voltage V BAT is input to the power supply terminal VDD of the protection IC 10, the input terminal VIN of the step-up DC/DC converter 9, and the charging terminal bat of the charging IC 2. FIG.
<スリープモード:図13>
 MCU1は、充電IC2のVBATパワーパス機能を有効とし、OTG機能と充電機能を無効とする。充電IC2の入力端子VBUSにUSB電圧VUSBが入力されないことで、充電IC2のVBATパワーパス機能は有効になる。通信線LNからOTG機能を有効にするための信号がMCU1から充電IC2へ出力されないため、OTG機能は無効になる。このため、充電IC2は、充電端子batに入力された電源電圧VBATからシステム電源電圧Vcc0を生成して、出力端子SYSから出力する。出力端子SYSから出力されたシステム電源電圧Vcc0は、昇降圧DC/DCコンバータ8の入力端子VIN及びイネーブル端子ENに入力される。昇降圧DC/DCコンバータ8は、正論理であるイネーブル端子ENにハイレベルのシステム電源電圧Vcc0が入力されることでイネーブルとなり、システム電源電圧Vcc0からシステム電源電圧Vcc1を生成して、出力端子VOUTから出力する。昇降圧DC/DCコンバータ8の出力端子VOUTから出力されたシステム電源電圧Vcc1は、LSW4の入力端子VINと、LSW4の制御端子ONと、スイッチドライバ7の入力端子VINと、FF16の電源端子VCC及びD端子と、にそれぞれ供給される。
<Sleep mode: Fig. 13>
MCU1 enables the V BAT power pass function of charging IC2 and disables the OTG function and charging function. Since the USB voltage VUSB is not input to the input terminal VBUS of the charging IC2, the VBAT power pass function of the charging IC2 is enabled. Since the signal for enabling the OTG function is not output from the MCU1 to the charging IC2 from the communication line LN, the OTG function is disabled. Therefore, the charging IC2 generates the system power supply voltage Vcc0 from the power supply voltage VBAT input to the charging terminal bat, and outputs it from the output terminal SYS. The system power supply voltage Vcc0 output from the output terminal SYS is input to the input terminal VIN and enable terminal EN of the step-up/step-down DC/DC converter 8 . The buck-boost DC/DC converter 8 is enabled by inputting a high-level system power supply voltage Vcc0 to an enable terminal EN of positive logic, generates a system power supply voltage Vcc1 from the system power supply voltage Vcc0, and outputs it to an output terminal VOUT. Output from The system power supply voltage Vcc1 output from the output terminal VOUT of the buck-boost DC/DC converter 8 is applied to the input terminal VIN of the LSW4, the control terminal ON of the LSW4, the input terminal VIN of the switch driver 7, the power supply terminal VCC of the FF16, and the D terminal and , respectively.
 LSW4は、制御端子ONにシステム電源電圧Vcc1が入力されることで、入力端子VINに入力されたシステム電源電圧Vcc1を、出力端子VOUTからシステム電源電圧Vcc2として出力する。LSW4から出力されたシステム電源電圧Vcc2は、MCU1の電源端子VDDと、LSW5の入力端子VINと、ホールIC13の電源端子VDDと、通信IC15の電源端子VCCと、ホールIC14の電源端子VDDと、に入力される。更に、システム電源電圧Vcc2は、残量計IC12の電源端子VDDと、ROM6の電源端子VCCと、充電IC2の充電イネーブル端子CE( ̄)に接続された抵抗器Rc及びバイポーラトランジスタS1と、FF17の電源端子VCCと、オペアンプOP3の正電源端子と、分圧回路Peと、オペアンプOP2の正電源端子と、分圧回路Pdと、にそれぞれ供給される。充電IC2に接続されているバイポーラトランジスタS1は、FF17のQ端子からローレベルの信号が出力されない限りはオフとなっている。そのため、LSW4で生成されたシステム電源電圧Vcc2は、充電IC2の充電イネーブル端子CE( ̄)にも入力される。充電IC2の充電イネーブル端子CE( ̄)は負論理のため、この状態では、充電IC2による充電機能はオフとなる。 When the system power supply voltage Vcc1 is input to the control terminal ON, the LSW4 outputs the system power supply voltage Vcc1 input to the input terminal VIN as the system power supply voltage Vcc2 from the output terminal VOUT. The system power supply voltage Vcc2 output from the LSW4 is applied to the power supply terminal VDD of the MCU1, the input terminal VIN of the LSW5, the power supply terminal VDD of the Hall IC 13, the power supply terminal VCC of the communication IC 15, and the power supply terminal VDD of the Hall IC 14. is entered. Furthermore, the system power supply voltage Vcc2 is the power supply terminal VDD of the fuel gauge IC12, the power supply terminal VCC of the ROM 6, the resistor Rc and the bipolar transistor S1 connected to the charge enable terminal CE (~) of the charging IC2, and the FF17. They are supplied to the power supply terminal VCC, the positive power supply terminal of the operational amplifier OP3, the voltage dividing circuit Pe, the positive power supply terminal of the operational amplifier OP2, and the voltage dividing circuit Pd. The bipolar transistor S1 connected to the charging IC2 is off unless a low level signal is output from the Q terminal of the FF17. Therefore, the system power supply voltage Vcc2 generated by the LSW4 is also input to the charging enable terminal CE (~) of the charging IC2. Since the charge enable terminal CE (~) of the charge IC2 is of negative logic, the charge function of the charge IC2 is turned off in this state.
 このように、スリープモードにおいては、LSW5はシステム電源電圧Vcc3の出力を停止しているため、電源ラインPL3に接続される電子部品への電力供給は停止される。また、スリープモードにおいては、充電IC2のOTG機能は停止しているため、LED L1~L8への電力供給は停止される。 Thus, in the sleep mode, LSW 5 stops outputting system power supply voltage Vcc3, so power supply to electronic components connected to power supply line PL3 is stopped. Also, in the sleep mode, the OTG function of the charging IC 2 is stopped, so power supply to the LEDs L1 to L8 is stopped.
<アクティブモード:図14>
 MCU1は、図13のスリープモードの状態から、端子P8に入力される信号がハイレベルとなり、スライダ119が開いたことを検出すると、端子P23からLSW5の制御端子ONにハイレベルの信号を入力する。これにより、LSW5は入力端子VINに入力されているシステム電源電圧Vcc2を、システム電源電圧Vcc3として、出力端子VOUTから出力する。LSW5の出力端子VOUTから出力されたシステム電源電圧Vcc3は、サーミスタT2と、サーミスタT3と、サーミスタT4と、に供給される。
<Active mode: Fig. 14>
When the MCU 1 detects that the signal input to the terminal P8 becomes high level from the sleep mode state of FIG. 13 and the slider 119 is opened, it inputs a high level signal from the terminal P23 to the control terminal ON of the LSW5. . As a result, the LSW 5 outputs the system power supply voltage Vcc2 input to the input terminal VIN from the output terminal VOUT as the system power supply voltage Vcc3. The system power supply voltage Vcc3 output from the output terminal VOUT of the LSW5 is supplied to the thermistor T2, the thermistor T3, and the thermistor T4.
 更に、MCU1は、スライダ119が開いたことを検出すると、通信線LNを介して、充電IC2のOTG機能を有効化する。これにより、充電IC2は、充電端子batから入力された電源電圧VBATを昇圧して得られるシステム電源電圧Vcc4を、入力端子VBUSから出力する。入力端子VBUSから出力されたシステム電源電圧Vcc4は、
LED L1~L8に供給される。
Further, when the MCU1 detects that the slider 119 is opened, the MCU1 enables the OTG function of the charging IC2 via the communication line LN. As a result, the charging IC2 outputs from the input terminal VBUS a system power supply voltage Vcc4 obtained by boosting the power supply voltage VBAT input from the charging terminal bat. The system power supply voltage Vcc4 output from the input terminal VBUS is
It is fed to the LEDs L1-L8.
<加熱初期設定モード:図15>
 図14の状態から、端子P4に入力される信号がローレベルになる(操作スイッチOPSの押下がなされる)と、MCU1は、加熱に必要な各種の設定を行った後、端子P14から、昇圧DC/DCコンバータ9のイネーブル端子ENにハイレベルのイネーブル信号を入力する。これにより、昇圧DC/DCコンバータ9は、電源電圧VBATを昇圧して得られる駆動電圧Vbstを出力端子VOUTから出力する。駆動電圧Vbstは、スイッチS3とスイッチS4に供給される。この状態では、スイッチS3とスイッチS4はオフとなっている。また、端子P14から出力されたハイレベルのイネーブル信号によってスイッチS6はオンされる。これにより、ヒータHTRの負極側端子がグランドラインに接続されて、スイッチS3をONにすればヒータHTRを加熱可能な状態になる。MCU1の端子P14からハイレベルの信号のイネーブル信号が出力された後、加熱モードに移行する。
<Heating initial setting mode: Fig. 15>
From the state of FIG. 14, when the signal input to the terminal P4 becomes low level (the operation switch OPS is pressed), the MCU1 performs various settings necessary for heating, and then boosts the voltage from the terminal P14. A high-level enable signal is input to the enable terminal EN of the DC/DC converter 9 . As a result, the step-up DC/DC converter 9 outputs the driving voltage V bst obtained by stepping up the power supply voltage V BAT from the output terminal VOUT. The drive voltage Vbst is supplied to switch S3 and switch S4. In this state, the switches S3 and S4 are off. Also, the switch S6 is turned on by the high-level enable signal output from the terminal P14. As a result, the negative terminal of the heater HTR is connected to the ground line, and the heater HTR can be heated by turning on the switch S3. After a high-level enable signal is output from the terminal P14 of the MCU1, the mode shifts to the heating mode.
<加熱モード時のヒータ加熱:図16>
 図15の状態において、MCU1は、端子P16に接続されたスイッチS3のスイッチング制御と、端子P15に接続されたスイッチS4のスイッチング制御を開始する。これらスイッチング制御は、上述した加熱初期設定モードが完了すれば自動的に開始されてもよいし、さらなる操作スイッチOPSの押下によって開始されてもよい。具体的には、MCU1は、図16のように、スイッチS3をオンし、スイッチS4をオフして、駆動電圧VbstをヒータHTRに供給し、エアロゾル生成のためのヒータHTRの加熱を行う加熱制御と、図17のように、スイッチS3をオフし、スイッチS4をオンして、ヒータHTRの温度を検出する温度検出制御と、を行う。
<Heater heating in heating mode: Fig. 16>
In the state of FIG. 15, the MCU1 starts switching control of the switch S3 connected to the terminal P16 and switching control of the switch S4 connected to the terminal P15. These switching controls may be automatically started when the heating initial setting mode described above is completed, or may be started by further pressing the operation switch OPS. Specifically, as shown in FIG. 16, the MCU 1 turns on the switch S3 and turns off the switch S4 to supply the driving voltage Vbst to the heater HTR to heat the heater HTR for generating aerosol. and temperature detection control for detecting the temperature of the heater HTR by turning off the switch S3 and turning on the switch S4 as shown in FIG.
 図16に示すように、加熱制御時においては、駆動電圧Vbstは、スイッチS5のゲートにも供給されて、スイッチS5がオンとなる。また、加熱制御時には、スイッチS3を通過した駆動電圧Vbstが、抵抗器Rsを介して、オペアンプOP1の正電源端子にも入力される。抵抗器Rsの抵抗値は、オペアンプOP1の内部抵抗値と比べると無視できるほど小さい。そのため、加熱制御時において、オペアンプOP1の正電源端子に入力される電圧は、駆動電圧Vbstとほぼ同等になる。 As shown in FIG. 16, during heating control, the driving voltage Vbst is also supplied to the gate of the switch S5 to turn on the switch S5. Further, during heating control, the drive voltage Vbst that has passed through the switch S3 is also input to the positive power supply terminal of the operational amplifier OP1 via the resistor Rs. The resistance value of the resistor Rs is negligibly small compared to the internal resistance value of the operational amplifier OP1. Therefore, during heating control, the voltage input to the positive power supply terminal of the operational amplifier OP1 is approximately equal to the drive voltage Vbst .
 なお、抵抗器R4の抵抗値は、スイッチS5のオン抵抗値よりも大きくなっている。加熱制御時にもオペアンプOP1は動作するが、加熱制御時にはスイッチS5がオンになる。スイッチS5がオンの状態では、オペアンプOP1の出力電圧が、抵抗器R4とスイッチS5の分圧回路によって分圧されて、MCU1の端子P9に入力される。抵抗器R4の抵抗値がスイッチS5のオン抵抗値よりも大きくなっていることで、MCU1の端子P9に入力される電圧は十分に小さくなる。これにより、オペアンプOP1からMCU1に対して大きな電圧が入力されるのを防ぐことができる。 It should be noted that the resistance value of the resistor R4 is greater than the ON resistance value of the switch S5. Although the operational amplifier OP1 operates during heating control, the switch S5 is turned on during heating control. When the switch S5 is on, the output voltage of the operational amplifier OP1 is divided by the voltage dividing circuit of the resistor R4 and the switch S5 and input to the terminal P9 of the MCU1. Since the resistance value of the resistor R4 is higher than the ON resistance value of the switch S5, the voltage input to the terminal P9 of the MCU1 is sufficiently reduced. This can prevent a large voltage from being input from the operational amplifier OP1 to the MCU1.
<加熱モード時のヒータ温度検出:図17>
 図17に示すように、温度検出制御時には、駆動電圧VbstがオペアンプOP1の正電源端子に入力されると共に、分圧回路Pbに入力される。分圧回路Pbによって分圧された電圧は、MCU1の端子P18に入力される。MCU1は、端子P18に入力される電圧に基づいて、温度検出制御時における抵抗器RsとヒータHTRの直列回路に印加される基準電圧Vtempを取得する。
<Heater temperature detection in heating mode: Fig. 17>
As shown in FIG. 17, during temperature detection control, the driving voltage Vbst is input to the positive power supply terminal of the operational amplifier OP1 and also to the voltage dividing circuit Pb. The voltage divided by the voltage dividing circuit Pb is input to the terminal P18 of the MCU1. Based on the voltage input to the terminal P18, the MCU1 acquires the reference voltage V temp applied to the series circuit of the resistor Rs and the heater HTR during temperature detection control.
 また、温度検出制御時には、駆動電圧Vbst(基準電圧Vtemp)が、抵抗器RsとヒータHTRの直列回路に供給される。そして、この駆動電圧Vbst(基準電圧Vtemp)を抵抗器RsとヒータHTRによって分圧した電圧Vheatが、オペアンプOP1の非反転入力端子に入力される。抵抗器Rsの抵抗値はヒータHTRの抵抗値よりも十分に大きいため、電圧Vheatは、駆動電圧Vbstよりも十分に低い値である。温度検出制御時には、この低い電圧VheatがスイッチS5のゲート端子にも供給されることで、スイッチS5はオフされる。オペアンプOP1は、反転入力端子に入力される電圧と非反転入力端子に入力される電圧Vheatの差を増幅して出力する。 Further, during temperature detection control, the driving voltage V bst (reference voltage V temp ) is supplied to the series circuit of the resistor Rs and the heater HTR. A voltage V heat obtained by dividing the driving voltage V bst (reference voltage V temp ) by the resistor Rs and the heater HTR is input to the non-inverting input terminal of the operational amplifier OP1. Since the resistance value of the resistor Rs is sufficiently higher than the resistance value of the heater HTR, the voltage V heat is sufficiently lower than the driving voltage V bst . During temperature detection control, the switch S5 is turned off by supplying the low voltage V heat to the gate terminal of the switch S5. The operational amplifier OP1 amplifies and outputs the difference between the voltage input to the inverting input terminal and the voltage V heat input to the non-inverting input terminal.
 オペアンプOP1の出力信号は、MCU1の端子P9に入力される。MCU1は、端子P9に入力された信号と、端子P18の入力電圧に基づいて取得した基準電圧Vtempと、既知の抵抗器Rsの電気抵抗値と、に基づいて、ヒータHTRの温度を取得する。MCU1は、取得したヒータHTRの温度に基づいて、ヒータHTRの加熱制御(例えばヒータHTRの温度が目標温度となるような制御)を行う。 The output signal of operational amplifier OP1 is input to terminal P9 of MCU1. The MCU1 obtains the temperature of the heater HTR based on the signal input to the terminal P9, the reference voltage V temp obtained based on the input voltage of the terminal P18, and the known electrical resistance value of the resistor Rs. . Based on the acquired temperature of the heater HTR, the MCU 1 performs heating control of the heater HTR (for example, control so that the temperature of the heater HTR becomes a target temperature).
 なお、MCU1は、スイッチS3とスイッチS4をそれぞれオフにしている期間(ヒータHTRへの通電を行っていない期間)においても、ヒータHTRの温度を取得することができる。具体的には、MCU1は、端子P13に入力される電圧(サーミスタT3と抵抗器Rt3から構成される分圧回路の出力電圧)に基づいて、ヒータHTRの温度を取得する。 Note that the MCU 1 can obtain the temperature of the heater HTR even during periods when the switches S3 and S4 are turned off (periods when the heater HTR is not energized). Specifically, the MCU1 obtains the temperature of the heater HTR based on the voltage input to the terminal P13 (the output voltage of the voltage dividing circuit composed of the thermistor T3 and the resistor Rt3).
 また、MCU1は、任意のタイミングにて、ケース110の温度の取得も可能である。具体的には、MCU1は、端子P12に入力される電圧(サーミスタT4と抵抗器Rt4から構成される分圧回路の出力電圧)に基づいて、ケース110の温度を取得する。 Also, the MCU 1 can acquire the temperature of the case 110 at any timing. Specifically, the MCU1 obtains the temperature of the case 110 based on the voltage input to the terminal P12 (the output voltage of the voltage dividing circuit composed of the thermistor T4 and the resistor Rt4).
<充電モード:図18>
 図18は、スリープモードの状態でUSB接続がなされた場合を例示している。USB接続がなされると、USB電圧VUSBが過電圧保護IC11を介してLSW3の入力端子VINに入力される。USB電圧VUSBは、LSW3の入力端子VINに接続された分圧回路Pfにも供給される。USB接続がなされた直後の時点では、バイポーラトランジスタS2がオンとなっているため、LSW3の制御端子ONに入力される信号はローレベルのままとなる。USB電圧VUSBは、MCU1の端子P17に接続された分圧回路Pcにも供給され、この分圧回路Pcで分圧された電圧が端子P17に入力される。MCU1は、端子P17に入力された電圧に基づいて、USB接続がなされたことを検出する。
<Charging mode: Fig. 18>
FIG. 18 exemplifies a case where a USB connection is made in sleep mode. When the USB connection is made, the USB voltage VUSB is input to the input terminal VIN of LSW3 via the overvoltage protection IC11. The USB voltage V USB is also supplied to a voltage dividing circuit Pf connected to the input terminal VIN of LSW3. Since the bipolar transistor S2 is ON immediately after the USB connection is made, the signal input to the control terminal ON of the LSW3 remains at a low level. The USB voltage V USB is also supplied to the voltage dividing circuit Pc connected to the terminal P17 of the MCU1, and the voltage divided by this voltage dividing circuit Pc is input to the terminal P17. The MCU1 detects that the USB connection has been made based on the voltage input to the terminal P17.
 MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフする。バイポーラトランジスタS2のゲート端子にローレベルの信号を入力すると、分圧回路Pfによって分圧されたUSB電圧VUSBがLSW3の制御端子ONに入力される。これにより、LSW3の制御端子ONにハイレベルの信号が入力されて、LSW3は、USB電圧VUSBを出力端子VOUTから出力する。LSW3から出力されたUSB電圧VUSBは、充電IC2の入力端子VBUSに入力される。また、LSW3から出力されたUSB電圧VUSBは、そのままシステム電源電圧Vcc4として、LED L1~L8に供給される。 When the MCU1 detects that the USB connection has been made, the MCU1 turns off the bipolar transistor S2 connected to the terminal P19. When a low level signal is input to the gate terminal of the bipolar transistor S2, the USB voltage VUSB divided by the voltage dividing circuit Pf is input to the control terminal ON of the LSW3. As a result, a high-level signal is input to the control terminal ON of LSW3, and LSW3 outputs the USB voltage VUSB from the output terminal VOUT. The USB voltage VUSB output from LSW3 is input to the input terminal VBUS of charging IC2. In addition, the USB voltage V_USB output from LSW3 is directly supplied to LEDs L1 to L8 as system power supply voltage Vcc4.
 MCU1は、USB接続がなされたことを検出すると、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力する。これにより、充電IC2は、電源BATの充電機能を有効化し、入力端子VBUSに入力されるUSB電圧VUSBによる電源BATの充電を開始する。 When the MCU1 detects that the USB connection has been established, the MCU1 further outputs a low-level enable signal from the terminal P22 to the charge enable terminal CE(~) of the charge IC2. As a result, the charging IC 2 enables the charging function of the power supply BAT, and starts charging the power supply BAT with the USB voltage VUSB input to the input terminal VBUS.
 なお、アクティブモードの状態でUSB接続がなされた場合には、MCU1は、USB接続がなされたことを検出すると、端子P19に接続されたバイポーラトランジスタS2をオフし、更に、端子P22から、充電IC2の充電イネーブル端子CE( ̄)に対してローレベルのイネーブル信号を出力し、更に、通信線LNを利用したシリアル通信によって、充電IC2のOTG機能をオフする。これにより、LED L1~L8に供給されるシステム電源電圧Vcc4は、充電IC2のOTG機能で生成されていた電圧(電源電圧VBATに基づく電圧)から、LSW3から出力されたUSB電圧VUSBに切り替わる。LED L1~L8は、MCU1によって内蔵トランジスタのオン制御がなされない限りは作動しない。このため、OTG機能のオンからオフへの過渡期における不安定な電圧がLED L1~L8に供給されるのは防がれる。 When the USB connection is made in the active mode, when the MCU1 detects that the USB connection is made, it turns off the bipolar transistor S2 connected to the terminal P19. A low-level enable signal is output to the charge enable terminal CE (~) of , and the OTG function of the charge IC 2 is turned off by serial communication using the communication line LN. As a result, the system power supply voltage Vcc4 supplied to the LEDs L1 to L8 is switched from the voltage generated by the OTG function of the charging IC 2 (voltage based on the power supply voltage VBAT) to the USB voltage VUSB output from the LSW3. . The LEDs L1 to L8 do not operate unless the MCU1 turns on the built-in transistors. This prevents an unstable voltage from being supplied to the LEDs L1-L8 during the on-to-off transition of the OTG function.
 図18では、充電モードにおけるシステム電源電圧の供給状態は、スリープモードと同じとしている。しかし、充電モードにおけるシステム電源電圧の供給状態は、図14に示したアクティブモードと同じにすることが好ましい。すなわち、充電モードにおいては、後述する温度管理のために、サーミスタT2~T4にシステム電源電圧Vcc3が供給された状態となっていることが好ましい。  In FIG. 18, the supply state of the system power supply voltage in the charge mode is the same as in the sleep mode. However, it is preferable that the supply state of the system power supply voltage in the charge mode be the same as in the active mode shown in FIG. That is, in the charging mode, it is preferable that the system power supply voltage Vcc3 is supplied to the thermistors T2 to T4 for temperature control, which will be described later.
<MCUのリセット:図19>
 アウターパネル115が外されてホールIC13の出力がローレベルとなり、操作スイッチOPSのオン操作がなされてMCU1の端子P4に入力される信号がローレベルになると、スイッチドライバ7の端子SW1と端子SW2が共にローレベルとなる。これにより、スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力する。リセット入力端子RSTBから出力されたローレベルの信号はLSW4の制御端子ONに入力される。これにより、LSW4は、出力端子VOUTからのシステム電源電圧Vcc2の出力を停止する。システム電源電圧Vcc2の出力が停止されることで、MCU1の電源端子VDDにシステム電源電圧Vcc2が入力されなくなるため、MCU1は停止する。
<Reset MCU: Fig. 19>
When the outer panel 115 is removed, the output of the hall IC 13 becomes low level, and the signal input to the terminal P4 of the MCU 1 becomes low level by turning on the operation switch OPS, the terminals SW1 and SW2 of the switch driver 7 are turned on. Both become low level. As a result, the switch driver 7 outputs a low level signal from the reset input terminal RSTB. A low-level signal output from the reset input terminal RSTB is input to the control terminal ON of LSW4. As a result, LSW4 stops outputting system power supply voltage Vcc2 from output terminal VOUT. Since the output of the system power supply voltage Vcc2 is stopped, the system power supply voltage Vcc2 is no longer input to the power supply terminal VDD of the MCU1, so the MCU1 is stopped.
 スイッチドライバ7は、リセット入力端子RSTBからローレベルの信号を出力している時間が既定時間に達するか、端子SW1と端子SW2のいずれかに入力される信号がハイレベルになると、リセット入力端子RSTBから出力する信号をハイレベルに戻す。これにより、LSW4の制御端子ONがハイレベルとなり、システム電源電圧Vcc2が各部に供給される状態に復帰する。 The switch driver 7 outputs a low-level signal from the reset input terminal RSTB when it reaches a predetermined time, or when the signal input to either the terminal SW1 or the terminal SW2 becomes high level, the reset input terminal RSTB is output. return the signal output from to high level. As a result, the control terminal ON of LSW4 becomes high level, and the state in which the system power supply voltage Vcc2 is supplied to each part is restored.
 以下では理解を容易にするために、前述してきたサーミスタT1を電源サーミスタT1とも記載し、前述してきたサーミスタT2をパフサーミスタT2とも記載し、前述してきたサーミスタT3をヒータサーミスタT3とも記載し、前述してきたサーミスタT4をケースサーミスタT4とも記載する。 In the following, for ease of understanding, the thermistor T1 described above is also referred to as the power supply thermistor T1, the thermistor T2 described above is referred to as the puff thermistor T2, and the thermistor T3 described above is also referred to as the heater thermistor T3. The thermistor T4 that has been formed is also described as a case thermistor T4.
(吸引検知の詳細)
 図20は、パフサーミスタT2を用いたMCU1による吸引動作の検知処理を説明するための模式図である。図20に示すように、MCU1の内部には、オペアンプ1Aと、アナログデジタル変換器(ADC)1Bと、フィルタ回路1Cと、遅延回路1Dと、減算器1Eと、比較器1Fと、が設けられている。
(Details of suction detection)
FIG. 20 is a schematic diagram for explaining the suction operation detection process by the MCU 1 using the puff thermistor T2. As shown in FIG. 20, the MCU 1 includes an operational amplifier 1A, an analog-to-digital converter (ADC) 1B, a filter circuit 1C, a delay circuit 1D, a subtractor 1E, and a comparator 1F. ing.
 オペアンプ1Aの非反転入力端子は端子P21に接続されている。オペアンプ1Aの反転入力端子には基準電圧VRefが入力される。基準電圧VRefは、MCU1の電源端子VDDに入力されるシステム電源電圧Vcc2から生成されてよい。パフサーミスタT2は、図20の例ではNTC特性を持つものとしている。端子P21には、システム電源電圧Vcc3をパフサーミスタT2と抵抗器Rt2で分圧した信号が入力される。したがって、端子P21に入力される信号は、パフサーミスタT2の温度が高いほど、大きい値となる。オペアンプ1Aは、パフサーミスタT2に印加された電圧を増幅して出力する。ADC1Bは、オペアンプ1Aの出力信号をデジタル値に変換する。フィルタ回路1Cは、ADC1Bから出力されたデジタル信号にハイパスフィルタやローパスフィルタやバンドパスフィルタ等のフィルタ処理を施す。フィルタ回路1Cでフィルタ処理後のデジタル信号は、減算器1Eの+側に入力される。このデジタル信号は、遅延回路1Dで遅延されて減算器1Eの-側に入力される。したがって、減算器1Eからは、任意の時刻t(n)で得られたパフサーミスタT2の温度に相当するデジタル信号と、時刻t(n)の遅延時間前の時刻t(n-1)で得られたパフサーミスタT2の温度に相当するデジタル信号との差分値が出力される。時刻t(n-1)から時刻t(n)にかけてパフサーミスタT2の温度が低下した場合には、減算器1Eの出力値が負の値となって比較器1Fの出力がローレベルとなる。時刻t(n-1)から時刻t(n)にかけてパフサーミスタT2の温度が増加した場合には、減算器1Eの出力値は正の値となって、比較器1Fの出力がハイレベルとなる。 A non-inverting input terminal of the operational amplifier 1A is connected to the terminal P21. A reference voltage V Ref is input to the inverting input terminal of the operational amplifier 1A. The reference voltage V Ref may be generated from the system power supply voltage Vcc2 input to the power supply terminal VDD of the MCU1. The puff thermistor T2 is assumed to have NTC characteristics in the example of FIG. A signal obtained by dividing the system power supply voltage Vcc3 by the puff thermistor T2 and the resistor Rt2 is input to the terminal P21. Therefore, the higher the temperature of the puff thermistor T2, the larger the value of the signal input to the terminal P21. The operational amplifier 1A amplifies and outputs the voltage applied to the puff thermistor T2. ADC 1B converts the output signal of operational amplifier 1A into a digital value. The filter circuit 1C performs filtering such as a high-pass filter, a low-pass filter, and a band-pass filter on the digital signal output from the ADC 1B. The digital signal filtered by the filter circuit 1C is input to the + side of the subtractor 1E. This digital signal is delayed by the delay circuit 1D and input to the minus side of the subtractor 1E. Therefore, from the subtractor 1E, a digital signal corresponding to the temperature of the puff thermistor T2 obtained at an arbitrary time t(n) and a digital signal obtained at time t(n-1), which is the delay time before time t(n). A difference value from the digital signal corresponding to the temperature of the puff thermistor T2 is output. When the temperature of the puff thermistor T2 decreases from time t(n-1) to time t(n), the output value of the subtractor 1E becomes a negative value and the output of the comparator 1F becomes low level. When the temperature of the puff thermistor T2 increases from time t(n-1) to time t(n), the output value of the subtractor 1E becomes a positive value and the output of the comparator 1F becomes high level. .
 加熱初期設定モードから加熱モードに移行すると、MCU1は、ヒータHTRの予熱を開始する。図6及び図7に示したように、パフサーミスタT2は加熱部170の近傍に配置されている。したがって、この予熱によってヒータHTRの温度が上昇すると、パフサーミスタT2の温度もそれに合わせて上昇することになる。この状態で、ユーザが吸引を行うと、ケース110内部の気体の流れによって、パフサーミスタT2の温度が若干低下する。つまり、ヒータHTRの予熱中に吸引が行われると、減算器1Eの出力が負の値となり、比較器1Fからローレベルの信号が出力される。MCU1は、比較器1Fからローレベルの信号が出力された場合に、吸引動作がなされたと判定する。 When shifting from the initial heating setting mode to the heating mode, the MCU 1 starts preheating the heater HTR. As shown in FIGS. 6 and 7, the puff thermistor T2 is arranged near the heating section 170. As shown in FIG. Therefore, when the temperature of the heater HTR rises due to this preheating, the temperature of the puff thermistor T2 also rises accordingly. When the user inhales in this state, the temperature of the puff thermistor T2 is slightly lowered due to the gas flow inside the case 110 . That is, when the suction is performed during preheating of the heater HTR, the output of the subtractor 1E becomes a negative value, and a low level signal is output from the comparator 1F. The MCU 1 determines that a suction operation has been performed when a low level signal is output from the comparator 1F.
(保護制御)
 吸引器100では、電源サーミスタT1の抵抗値(出力値)によって電源BATの温度(以下、電源温度TBATと記載)を取得可能であり、ヒータサーミスタT3の抵抗値(出力値)によってヒータHTRの温度(以下、ヒータ温度THTRと記載)を取得可能であり、ケースサーミスタT4の抵抗値(出力値)によってケース110の温度(以下、ケース温度TCASEと記載)を取得可能である。そして、吸引器100は、電源温度TBAT、ヒータ温度THTR、及びケース温度TCASEの少なくともいずれかが、吸引器100の使用される推奨環境下での値とかけ離れた状態になった場合に、電源BATの充電及び電源BATからヒータHTRへの放電(以下、充放電とも記載)を禁止する保護制御を実行して、安全性を高めるように構成されている。この保護制御は、MCU1とFF17によって行われる。
(protective control)
In the aspirator 100, the temperature of the power supply BAT (hereinafter referred to as power supply temperature TBAT) can be obtained from the resistance value (output value) of the power supply thermistor T1, and the temperature of the heater HTR can be obtained from the resistance value (output value) of the heater thermistor T3. A temperature (hereinafter referred to as heater temperature THTR ) can be obtained, and a temperature of the case 110 (hereinafter referred to as case temperature T CASE ) can be obtained from the resistance value (output value) of the case thermistor T4. Then, when at least one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE becomes far from the value under the recommended environment in which the aspirator 100 is used, the aspirator 100 , and protection control to prohibit charging of the power source BAT and discharging from the power source BAT to the heater HTR (hereinafter also referred to as charging and discharging) to enhance safety. This protection control is performed by MCU1 and FF17.
 充放電を禁止する保護制御とは、充放電が不可となるように電子部品を制御することを言う。電源BATからヒータHTRへの放電を不可とするためには、昇圧DC/DCコンバータ9のイネーブル端子ENにローレベルの信号を入力して(或いはイネーブル端子ENの電位を不定にして)昇圧動作を停止させ、且つ、スイッチS6のゲート端子にローレベルの信号を入力して(或いはゲート端子の電位を不定にして)負極側のヒータコネクタCn(-)とグランドとの接続を遮断すればよい。なお、昇圧DC/DCコンバータ9の昇圧動作の停止と、ヒータコネクタCn(-)とグランドとの接続遮断のうち一方のみを行うことでも、電源BATからヒータHTRへの放電を不可とすることは可能である。電源BATの充電を不可とするためには、充電IC2の充電イネーブル端子CE( ̄)にハイレベルの信号が入力されるようにして、充電IC2の充電動作を停止させればよい。
 以下では、保護制御として充放電を禁止する例を説明するが、保護制御は、安全性の向上という観点から、充電のみを禁止する制御としてもよいし、放電のみを禁止する制御としてもよい。
Protection control that prohibits charging/discharging refers to controlling an electronic component so that charging/discharging is disabled. In order to disable discharge from the power supply BAT to the heater HTR, a low level signal is input to the enable terminal EN of the boost DC/DC converter 9 (or the potential of the enable terminal EN is made unfixed) to start the boost operation. Then, a low level signal is input to the gate terminal of the switch S6 (or the potential of the gate terminal is made unfixed) to cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. It is also possible to disable discharge from the power supply BAT to the heater HTR by performing only one of stopping the step-up operation of the step-up DC/DC converter 9 and cutting off the connection between the heater connector Cn(-) and the ground. It is possible. In order to disable the charging of the power supply BAT, the charging operation of the charging IC2 should be stopped by inputting a high level signal to the charging enable terminal CE(~) of the charging IC2.
An example of prohibiting charging and discharging as protection control will be described below, but from the viewpoint of improving safety, protection control may be control that prohibits only charging, or control that prohibits only discharging.
 保護制御が行われた場合に、動作モードの制限が更に行われることが好ましい。以下では、保護制御が行われると、動作モードが制限されるものとする。ただし、動作モードの管理はMCU1が行うため、MCU1が何らかの理由で作動していない状態においては、動作モードの制限は行われなくてもよい。 It is preferable that the operation mode is further restricted when protection control is performed. In the following, it is assumed that the operation mode is limited when protection control is performed. However, since the operation mode is managed by the MCU1, the operation mode need not be restricted when the MCU1 is not operating for some reason.
 吸引器100にて行われる保護制御には、ユーザ操作によってMCU1のリセットがなされることで終了可能な手動復帰保護制御と、MCU1のリセットを必要とせず、温度環境の改善によって自動的に終了可能な自動復帰保護制御と、終了不能な非復帰保護制御と、が含まれる。吸引器100の動作モードには、図9にて説明したものに加えて、エラーモードと、永久エラーモードと、がある。本明細書において、”吸引器の全ての動作モード“と記載するときは、これらエラーモードと永久エラーモードを除く全ての動作モード(図9に示した全ての動作モード)のことを意味する。 The protection control performed in the aspirator 100 includes manual return protection control that can be terminated by resetting the MCU 1 by user operation, and automatic recovery control that does not require resetting the MCU 1 and can be automatically terminated by improving the temperature environment. automatic revertive protection control and non-terminating non-revertive protection control. The operating modes of the suction device 100 include an error mode and a permanent error mode in addition to those described with reference to FIG. In this specification, when we refer to "all operating modes of the aspirator", we mean all operating modes (all operating modes shown in FIG. 9) except for these error modes and permanent error modes.
 手動復帰保護制御又は自動復帰保護制御が行われた場合には、吸引器100はエラーモードに移行し、他の動作モードへの移行は不可となる。なお、エラーモードでは、直前の動作モードにおける電源電圧の状態(システム電源電圧の供給状態)が維持されるものとする。すなわち、エラーモードにおいては、充放電を除く、直前の動作モードにて実行可能な機能(例えば温度情報の取得等)が実行可能となる。エラーモードにおいて、MCU1のリセットがなされると、手動復帰保護制御は終了される。エラーモードにおいて、温度環境の改善がなされると、自動復帰保護制御は終了される。手動復帰保護制御又は自動復帰保護制御が終了されると、動作モードの制限は解除され、動作モードはスリープモードに移行する。それ以降は、ユーザ操作等による動作モードの変更が可能となる。 When manual return protection control or automatic return protection control is performed, the aspirator 100 shifts to error mode and cannot shift to other operation modes. In the error mode, the state of the power supply voltage (supply state of the system power supply voltage) in the immediately preceding operation mode is maintained. That is, in the error mode, the functions that can be executed in the previous operation mode (for example, acquisition of temperature information, etc.) can be executed except for charging and discharging. In error mode, when the MCU1 is reset, the manual return protection control is terminated. In the error mode, when the temperature environment is improved, the automatic recovery protection control is terminated. When the manual return protection control or the automatic return protection control is terminated, the operating mode restriction is lifted and the operating mode shifts to the sleep mode. After that, the operation mode can be changed by user operation or the like.
 非復帰保護制御が行われた場合には、吸引器100は永久エラーモードに移行する。永久エラーモードでは、吸引器100のすべての機能が使用不可となり、吸引器100は、修理又は廃棄が必要になる。 When non-recovery protection control is performed, the aspirator 100 shifts to permanent error mode. In permanent error mode, all functions of the aspirator 100 are disabled and the aspirator 100 must be repaired or scrapped.
 MCU1は、端子P14からローレベルの信号を出力して、昇圧DC/DCコンバータ9の昇圧動作の停止及び負極側のヒータコネクタCn(-)とグランドとの接続遮断を行うと共に、端子P22からハイレベルの信号を出力して、充電IC2の充電動作を停止することで、保護制御を行う。充電のみ禁止する場合には端子P14からローレベルの信号を出力する必要はなく、放電のみ禁止する場合には端子P22からハイレベルの信号を出力する必要はない。 The MCU 1 outputs a low level signal from the terminal P14 to stop the boosting operation of the boost DC/DC converter 9 and cut off the connection between the heater connector Cn(-) on the negative electrode side and the ground. Protection control is performed by outputting a level signal and stopping the charging operation of the charging IC2. When only charging is prohibited, there is no need to output a low level signal from the terminal P14, and when only discharging is prohibited, there is no need to output a high level signal from the terminal P22.
 FF17は、Q端子からローレベルの信号を出力して、昇圧DC/DCコンバータ9の昇圧動作の停止、負極側のヒータコネクタCn(-)とグランドとの接続遮断、及びバイポーラトランジスタS1のオンによる充電IC2の充電動作の停止を行うことで、MCU1を介さずに、保護制御を行う。 The FF 17 outputs a low level signal from the Q terminal to stop the boost operation of the boost DC/DC converter 9, cut off the connection between the heater connector Cn (-) on the negative electrode side and the ground, and turn on the bipolar transistor S1. By stopping the charging operation of the charging IC 2 , protection control is performed without going through the MCU 1 .
 FF17は、CLR( ̄)端子に入力される信号がハイレベルからローレベルに切り替わると、Q端子からローレベルの信号を出力する。このローレベル信号は、MCU1のP10端子にも入力される。端子P10にローレベル信号が入力されている間は、MCU1はFF17の不図示のCLK端子に入力される信号をローレベルからハイレベルに切替えない。換言すれば、端子P10にローレベル信号が入力されている間は、FF17のCLK信号が立ち上がらない。また、MCU1が例えばフリーズしている状態では、FF17の不図示のCLK端子に入力される信号はローレベルのままとなる。したがって、MCU1が正常動作している状態とフリーズしている状態のどちらの状態であっても、FF17のQ端子からローレベルの信号が出力された後、FF17のCLR( ̄)端子に入力される信号がローレベルからハイレベルに切り替わっても、FF17のQ端子からはローレベルの信号が出力され続ける。図19にて説明したようにMCU1のリセットを行うと、FF17が再起動する(システム電源電圧Vcc2の再投入が行われる)。リセットされたMCU1はスリープモードで動作するため、ヒータサーミスタT3及びケースサーミスタT4にはシステム電源電圧Vcc3が投入されず、オペアンプOP2の出力とオペアンプOP3の出力が共にハイレベルになる。これにより、FF17のD端子とCLR( ̄)端子にはハイレベルの信号が入力される。このタイミングにおいては、FF17の再起動によって、端子P10にローレベルの信号が入力されていないため、MCU1は、FF17のCLK信号を立ち上がらせる。これにより、FF17のQ端子の出力をハイレベルに戻すことが可能である。FF17のQ端子の出力がハイレベルに戻ることで、FF17による保護制御は終了される。 The FF 17 outputs a low level signal from the Q terminal when the signal input to the CLR (~) terminal switches from high level to low level. This low level signal is also input to the P10 terminal of MCU1. While the low level signal is input to the terminal P10, the MCU1 does not switch the signal input to the CLK terminal (not shown) of the FF17 from low level to high level. In other words, the CLK signal of FF17 does not rise while the low level signal is being input to the terminal P10. Further, when the MCU 1 is frozen, for example, the signal input to the CLK terminal (not shown) of the FF 17 remains at low level. Therefore, regardless of whether the MCU1 is in a normal operating state or a frozen state, after a low level signal is output from the Q terminal of FF17, it is input to the CLR (~) terminal of FF17. A low level signal continues to be output from the Q terminal of FF 17 even if the signal on the output switches from low level to high level. When the MCU1 is reset as described with reference to FIG. 19, the FF17 is restarted (the system power supply voltage Vcc2 is turned on again). Since the reset MCU1 operates in the sleep mode, the system power supply voltage Vcc3 is not applied to the heater thermistor T3 and the case thermistor T4, and the outputs of the operational amplifiers OP2 and OP3 both become high level. As a result, a high level signal is input to the D terminal and the CLR (~) terminal of the FF17. At this timing, since a low level signal is not input to the terminal P10 due to the restart of FF17, the MCU1 causes the CLK signal of FF17 to rise. As a result, the output of the Q terminal of FF17 can be returned to high level. The output of the Q terminal of FF17 returns to high level, thereby ending the protection control by FF17.
 上述した通り、FF17のQ端子から出力された信号は、MCU1の端子P10にも入力される。このため、MCU1は、端子P10に入力されたローレベルの信号によって、FF17が保護制御を行ったことを検知可能である。MCU1は、FF17が保護制御を行ったことを検知すると、MCU1のリセット要求通知を通知部180に行わせて、エラーモードに移行することが好ましい。 As described above, the signal output from the Q terminal of FF17 is also input to terminal P10 of MCU1. Therefore, the MCU1 can detect that the FF17 has performed the protection control from the low-level signal input to the terminal P10. When the MCU1 detects that the FF 17 has performed the protection control, the MCU1 preferably causes the notification unit 180 to notify the reset request of the MCU1 and shifts to the error mode.
 吸引器100では、温度判定のための閾値(以下、温度閾値と記載)として、下記に示すものが設定されている。この各温度閾値における括弧内の数値及び大小関係は、好ましい例を示しており、これに限定されるものではない。以下では、各温度閾値が括弧内の値であるものとして説明する。
 温度閾値THH0(340℃)
 温度閾値THH1(85℃)
 温度閾値THH2(65℃)
 温度閾値THH3(60℃)
 温度閾値THH4(55℃)
 温度閾値THH5(51℃)
 温度閾値THH6(48℃)
 温度閾値THH7(47℃)
 温度閾値THH8(45℃)
 温度閾値THL1(0℃)
 温度閾値THL2(-5℃)
In the aspirator 100, thresholds for temperature determination (hereinafter referred to as temperature thresholds) are set as follows. Numerical values and magnitude relationships in parentheses for each temperature threshold indicate preferred examples, and are not limited to these. The following description assumes that each temperature threshold is a value in parentheses.
Temperature threshold THH0 (340°C)
Temperature threshold THH1 (85°C)
Temperature threshold THH2 (65°C)
Temperature threshold THH3 (60°C)
Temperature threshold THH4 (55°C)
Temperature threshold THH5 (51°C)
Temperature threshold THH6 (48°C)
Temperature threshold THH7 (47°C)
Temperature threshold THH8 (45°C)
Temperature threshold THL1 (0°C)
Temperature threshold THL2 (-5°C)
 次に、保護制御の説明に必要な回路構成について説明する。
 図21は、図10に示す電気回路のうち、サーミスタT1~T4と関係のある主要な電子部品を抜き出して示した要部回路図である。図22は、図21における破線で囲まれた範囲ARの部分を抽出して示した図である。なお、図22には、図21では図示されていなかった電子部品として、システム電源電圧Vcc3を生成するLSW5が示されている。
Next, a circuit configuration necessary for explaining protection control will be explained.
FIG. 21 is a circuit diagram of a main part of the electrical circuit shown in FIG. 10, showing the main electronic components related to the thermistors T1 to T4. FIG. 22 is a diagram showing an extracted portion of range AR surrounded by broken lines in FIG. FIG. 22 shows LSW5 for generating system power supply voltage Vcc3 as an electronic component not shown in FIG.
 図21には、図10では図示を省略していた電子部品及びノードとして、コンデンサCu、コンデンサCt3、抵抗器Rh、コンデンサCt4、コンデンサCh、コンデンサCt2、ノードNu、ノードNt2、ノードNt3、ノードNt4、及びノードNbが示されている。コンデンサCu、コンデンサCt3、抵抗器Rh、コンデンサCt4、コンデンサCh、及びコンデンサCt2は、それぞれ、ノイズを低減(信号を平滑化)する目的で設けられている。また、図10では単一の端子とされていた残量計IC12の通知端子12aが、図21では、第一通知端子12aaと第二通知端子12abとで分けて図示されている。 FIG. 21 shows, as electronic components and nodes not shown in FIG. , and node Nb are shown. The capacitor Cu, the capacitor Ct3, the resistor Rh, the capacitor Ct4, the capacitor Ch, and the capacitor Ct2 are provided for the purpose of reducing noise (smoothing the signal). Also, the notification terminal 12a of the fuel gauge IC 12, which is a single terminal in FIG. 10, is divided into a first notification terminal 12aa and a second notification terminal 12ab in FIG.
 図22に示すように、ノードNuは、LSW5の出力端子VOUTと、パフサーミスタT2が接続されるコネクタCn(t2)の正極側とを接続している。ノードNuとLSW5の出力端子VOUTとの接続ラインには、コンデンサCuの一端が接続されている。コンデンサCuの他端はグランドに接続されている。コンデンサCuの容量は一例として1μFである。ノードNuには、ケースサーミスタT4が接続されるコネクタCn(t4)の正極側と、ヒータサーミスタT3が接続されるコネクタCn(t3)の正極側とがそれぞれ接続されている。 As shown in FIG. 22, the node Nu connects the output terminal VOUT of the LSW 5 and the positive side of the connector Cn(t2) to which the puff thermistor T2 is connected. One end of the capacitor Cu is connected to the connection line between the node Nu and the output terminal VOUT of the LSW5. The other end of the capacitor Cu is connected to the ground. As an example, the capacitance of the capacitor Cu is 1 μF. The positive side of a connector Cn(t4) to which the case thermistor T4 is connected and the positive side of a connector Cn(t3) to which the heater thermistor T3 is connected are connected to the node Nu.
 ノードNt2は、コネクタCn(t2)の負極側と、抵抗器Rt2の一端とを接続している。抵抗器Rt2の他端はグランドに接続されている。ノードNt2とコネクタCn(t2)の負極側との接続ラインには、コンデンサCt2の一端が接続されている。コンデンサCt2の他端は、グランドに接続されている。コンデンサCt2の容量は一例として0.01μFである。ノードNt2は、MCU1の端子P21に接続されている。 The node Nt2 connects the negative electrode side of the connector Cn(t2) and one end of the resistor Rt2. The other end of resistor Rt2 is connected to ground. One end of the capacitor Ct2 is connected to the connection line between the node Nt2 and the negative electrode side of the connector Cn(t2). The other end of the capacitor Ct2 is connected to the ground. As an example, the capacitance of the capacitor Ct2 is 0.01 μF. Node Nt2 is connected to terminal P21 of MCU1.
 ノードNt4は、コネクタCn(t4)の負極側と、抵抗器Rt4の一端とを接続している。抵抗器Rt4の他端はグランドに接続されている。ノードNt4とコネクタCn(t4)の負極側との接続ラインには、コンデンサCt4の一端が接続されている。コンデンサCt4の他端は、グランドに接続されている。コンデンサCt4の容量は一例として0.1μFである。ノードNt4は、MCU1の端子P12に接続されている。ノードNt4とMCU1の端子P12との接続ラインには、オペアンプOP3の反転入力端子が接続されている。 The node Nt4 connects the negative electrode side of the connector Cn(t4) and one end of the resistor Rt4. The other end of resistor Rt4 is connected to ground. One end of the capacitor Ct4 is connected to the connection line between the node Nt4 and the negative electrode side of the connector Cn(t4). The other end of the capacitor Ct4 is connected to ground. As an example, the capacitance of the capacitor Ct4 is 0.1 μF. Node Nt4 is connected to terminal P12 of MCU1. The connection line between the node Nt4 and the terminal P12 of the MCU1 is connected to the inverting input terminal of the operational amplifier OP3.
 ノードNt3は、コネクタCn(t3)の負極側と、抵抗器Rt3の一端とを接続している。抵抗器Rt3の他端はグランドに接続されている。ノードNt3とコネクタCn(t3)の負極側との接続ラインには、コンデンサCt3の一端が接続されている。コンデンサCt3の他端は、グランドに接続されている。コンデンサCt3の容量は一例として0.1μFである。ノードNt3には、抵抗器Rhの一端が接続されている。抵抗器Rhの他端は、MCU1の端子P13に接続されている。抵抗器Rhの他端とMCU1の端子P13との接続ラインには、コンデンサChの一端が接続されている。コンデンサChの他端はグランドに接続されている。コンデンサChの容量は一例として0.01μFである。抵抗器RhとコンデンサChは、一次RC直列回路によるフィルタ回路RC1を構成している。 The node Nt3 connects the negative electrode side of the connector Cn(t3) and one end of the resistor Rt3. The other end of resistor Rt3 is connected to ground. One end of the capacitor Ct3 is connected to the connection line between the node Nt3 and the negative electrode side of the connector Cn(t3). The other end of the capacitor Ct3 is connected to the ground. As an example, the capacitance of the capacitor Ct3 is 0.1 μF. One end of a resistor Rh is connected to the node Nt3. The other end of resistor Rh is connected to terminal P13 of MCU1. One end of the capacitor Ch is connected to the connection line between the other end of the resistor Rh and the terminal P13 of the MCU1. The other end of capacitor Ch is connected to the ground. As an example, the capacitance of the capacitor Ch is 0.01 μF. A resistor Rh and a capacitor Ch constitute a filter circuit RC1 by a primary RC series circuit.
 ノードNbは、抵抗器Rhの一端とノードNt3とを接続している。ノードNbには、オペアンプOP2の反転入力端子が接続されている。 The node Nb connects one end of the resistor Rh and the node Nt3. An inverting input terminal of the operational amplifier OP2 is connected to the node Nb.
(コンデンサの好ましい構成)
 コンデンサCu、コンデンサCt3、コンデンサCt4、コンデンサCh、及びコンデンサCt2の容量は、次の(A)~(C)の関係になっていることが望ましい。
(preferred configuration of the capacitor)
It is desirable that the capacitances of the capacitor Cu, the capacitor Ct3, the capacitor Ct4, the capacitor Ch, and the capacitor Ct2 satisfy the following relationships (A) to (C).
(A)コンデンサCuの容量は、コンデンサCt3、コンデンサCt4、及びコンデンサCt2のそれぞれの容量よりも大きい
 図22に示したように、コンデンサCuは、パフサーミスタT2及び抵抗器Rt2の分圧回路と、ケースサーミスタT4及び抵抗器Rt4の分圧回路と、ヒータサーミスタT3及び抵抗器Rt3の分圧回路との3つの分圧回路よりも上流側(高電位側)に設けられる。この位置に大容量のコンデンサCuがあることで、各分圧回路に不安的な電源が供給されにくくなるため、サーミスタT2~T4の出力信号を安定にし、吸引器100を安定的に動作させることができる。また、大容量のコンデンサCuが上流側に存在することで、下流側に設けられるコンデンサCt2、コンデンサCt3、及びコンデンサCt4の容量を下げることができる。このため、回路基板の面積を有効活用でき、吸引器100のコストやサイズを低減できる。なお、コンデンサCuを設けることで、スライダ119の開閉やMCU1のリセット等に応じて間欠的にONされるLSW5のON/OFF時に生じ得る過渡的な電圧を平滑化する効果も得られる。
(A) The capacity of the capacitor Cu is larger than the capacity of each of the capacitors Ct3, Ct4, and Ct2. As shown in FIG. It is provided on the upstream side (high potential side) of the three voltage dividing circuits, that is, the voltage dividing circuit of the case thermistor T4 and the resistor Rt4 and the voltage dividing circuit of the heater thermistor T3 and the resistor Rt3. The presence of the large-capacity capacitor Cu at this position makes it difficult for unstable power to be supplied to each voltage dividing circuit. can be done. In addition, since the large-capacity capacitor Cu exists on the upstream side, the capacities of the capacitors Ct2, Ct3, and Ct4 provided on the downstream side can be reduced. Therefore, the area of the circuit board can be effectively used, and the cost and size of the suction device 100 can be reduced. By providing the capacitor Cu, it is also possible to obtain the effect of smoothing the transient voltage that may occur when the LSW 5 is intermittently turned ON/OFF according to the opening/closing of the slider 119, the reset of the MCU 1, or the like.
(B)コンデンサCt2の容量は、コンデンサCt3及びコンデンサCt4のそれぞれの容量よりも小さい
 MCU1は、端子P21、端子P12、及び端子P13のそれぞれに入力される信号のうち、端子P21に入力される信号に対してのみ、図20にて説明したように、フィルタ処理を実行する。また、MCU1は、端子P21に入力される信号の変化に基づいて、吸引動作の検知を行う。したがって、端子P21に入力される信号がその入力前に大きく平滑化されるのは好ましくない。コンデンサCt2の容量を小さくすることで、パフサーミスタT2の出力から適度にノイズを除去しつつ、フィルタ処理の結果に影響を与えにくくなる。これにより吸引検知を高精度に行うことができる。
 一方、コンデンサCt3とコンデンサCt4については、大きめの容量とすることで、十分に平滑化された信号をオペアンプOP2とオペアンプOP3に入力可能となる。これにより、オペアンプOP2とオペアンプOP3が誤動作する虞が低減し、ヒータサーミスタT3とケースサーミスタT4の出力値をMCU1が高精度に取得可能となる。
(B) The capacitance of the capacitor Ct2 is smaller than the capacitance of each of the capacitors Ct3 and Ct4. Filter processing is performed only on the , as described with reference to FIG. 20 . Also, the MCU 1 detects a suction operation based on a change in the signal input to the terminal P21. Therefore, it is not preferable that the signal input to the terminal P21 is largely smoothed before it is input. By reducing the capacitance of the capacitor Ct2, it is possible to moderately remove noise from the output of the puff thermistor T2 while making it less likely to affect the result of filtering. As a result, suction detection can be performed with high accuracy.
On the other hand, by setting the capacitors Ct3 and Ct4 to have relatively large capacitances, sufficiently smoothed signals can be input to the operational amplifiers OP2 and OP3. This reduces the risk of malfunction of the operational amplifiers OP2 and OP3, and enables the MCU 1 to obtain the output values of the heater thermistor T3 and the case thermistor T4 with high accuracy.
(C)コンデンサChの容量は、コンデンサCt3の容量よりも小さい
 RCフィルタ回路RC1を設けることで、コンデンサCt3で平滑化しきれなかったスパイクノイズを除去する効果を得られる。つまり、RCフィルタ回路RC1は、コンデンサCt3の補助的な役割を果たすが、このような補助的なRCフィルタ回路RC1に、コンデンサCt3よりも小容量のコンデンサを用いることで、RCフィルタ回路RC1によるヒータサーミスタT3の出力信号の遅延を抑制できる。この結果、MCU1は、ヒータ温度THTRの取得を高速且つ低ノイズで行うことができる。
 なお、ヒータサーミスタT3の出力信号は、オペアンプOP2にも入力されるが、オペアンプOP2の入力端子は、ノードNt3とRCフィルタ回路RC1の間に接続されている。このため、オペアンプOP2に入力されるヒータサーミスタT3の出力信号がRCフィルタ回路RC1によって遅延されることは防がれる。
(C) Capacitance of Capacitor Ch is Smaller than Capacitance of Capacitor Ct3 By providing the RC filter circuit RC1, it is possible to obtain the effect of removing spike noise that has not been smoothed by the capacitor Ct3. That is, the RC filter circuit RC1 plays an auxiliary role of the capacitor Ct3, but by using a capacitor having a smaller capacity than the capacitor Ct3 for such an auxiliary RC filter circuit RC1, the heater by the RC filter circuit RC1 A delay in the output signal of the thermistor T3 can be suppressed. As a result, the MCU 1 can acquire the heater temperature THTR at high speed and with low noise.
The output signal of the heater thermistor T3 is also input to the operational amplifier OP2, and the input terminal of the operational amplifier OP2 is connected between the node Nt3 and the RC filter circuit RC1. Therefore, the output signal of the heater thermistor T3 input to the operational amplifier OP2 is prevented from being delayed by the RC filter circuit RC1.
 図21に示すように、残量計IC12の第一通知端子12aaは、ダイオードD2のカソードに接続されている。残量計IC12の第二通知端子12abは、MCU1の端子P6に接続されている。 As shown in FIG. 21, the first notification terminal 12aa of the fuel gauge IC12 is connected to the cathode of the diode D2. A second notification terminal 12ab of the fuel gauge IC12 is connected to a terminal P6 of the MCU1.
 残量計IC12は、電源温度TBATを定期的なタイミング(例えば1秒毎)で取得して内蔵レジスタに保持する。残量計IC12は、MCU1が省電力化を図っているスリープモード以外の動作モードにおいては、通信線LNによってMCU1と相互通信可能である。残量計IC12は、通信線LNを介してMCU1から電源温度TBATの送信要求を受けると、その送信要求に応じて、電源温度TBATをMCU1に送信する。 The fuel gauge IC 12 obtains the power supply temperature T BAT at regular timing (for example, every second) and stores it in an internal register. The fuel gauge IC12 can mutually communicate with the MCU1 through the communication line LN in operation modes other than the sleep mode in which the MCU1 attempts to save power. When the fuel gauge IC12 receives a transmission request for the power supply temperature T BAT from the MCU1 via the communication line LN, it transmits the power supply temperature T BAT to the MCU1 in response to the transmission request.
 残量計IC12は、スリープモードにおいては、電源温度TBATが高温条件(温度閾値THH1(85℃)以上の状態が複数回連続するという条件)を満たした場合(電源サーミスタT1の出力値が異常である場合)に、高温通知信号SIG2aを第二通知端子12abから出力する。スリープモードにおいては、MCU1は通信線LNによって残量計IC12とは相互通信不能である。従って、高温通知信号SIG2aは、MCU1に対する割込み信号ともいえる。 In the sleep mode, the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the high temperature condition (the condition that the temperature threshold THH1 (85° C.) or higher continues multiple times) (the output value of the power supply thermistor T1 is abnormal). ), the high temperature notification signal SIG2a is output from the second notification terminal 12ab. In sleep mode, MCU 1 cannot communicate with fuel gauge IC 12 through communication line LN. Therefore, the high temperature notification signal SIG2a can also be said to be an interrupt signal for the MCU1.
 残量計IC12は、全ての動作モードにおいて、電源温度TBATが低温条件(温度閾値THL2(-5℃)以下になるという条件)を満たした場合(電源サーミスタT1の出力値が異常である場合)に、低温通知信号SIG2bを第二通知端子12abから出力する。残量計IC12は、全ての動作モードにおいて、電源温度TBATが低温解除条件(温度閾値THL1(0℃)以上になるという条件)を満たした場合(電源サーミスタT1の出力値が正常である場合)に、低温解除通知信号SIG2cを第二通知端子12abから出力する。図21では、高温通知信号SIG2aと低温通知信号SIG2bと低温解除通知信号SIG2cを併せて通知信号SIG2と表記している。低温通知信号SIG2bと低温解除通知信号SIG2cは、通信線LNによるMCU1からの要求を待たずに出力される。低温通知信号SIG2bと低温解除通知信号SIG2cも、MCU1に対する割込み信号ともいえる。 In all operation modes, the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the low temperature condition (the temperature threshold THL2 (−5° C.) or less) (when the output value of the power supply thermistor T1 is abnormal). ), the low temperature notification signal SIG2b is output from the second notification terminal 12ab. In all operation modes, the fuel gauge IC 12 operates when the power supply temperature T BAT satisfies the low temperature release condition (the temperature threshold THL1 (0° C.) or higher) (when the output value of the power supply thermistor T1 is normal). ), the low temperature release notification signal SIG2c is output from the second notification terminal 12ab. In FIG. 21, the high temperature notification signal SIG2a, the low temperature notification signal SIG2b, and the low temperature cancellation notification signal SIG2c are collectively referred to as a notification signal SIG2. The low temperature notification signal SIG2b and the low temperature release notification signal SIG2c are output without waiting for a request from the MCU1 through the communication line LN. The low temperature notification signal SIG2b and the low temperature release notification signal SIG2c can also be said to be interrupt signals for the MCU1.
 スリープモードで動作している状態のMCU1は、その機能を、操作スイッチOPSの操作検知、スライダ119の開検知、アウターパネル115の脱着検知、USB接続の検知、残量計IC12からの通知の検知、及び残量計IC12からの通知に基づく保護制御の実行等に絞ることで省エネ化を図っている。 The MCU 1 operating in the sleep mode has functions such as operation detection of the operation switch OPS, detection of the opening of the slider 119, detection of attachment/detachment of the outer panel 115, detection of USB connection, and detection of notification from the fuel gauge IC 12. , and execution of protection control based on notification from the fuel gauge IC 12, etc., thereby saving energy.
 スリープモードで動作中のMCU1は、スライダ119が開いたことを契機として起動(全ての機能を有効化)し、吸引器100の動作モードをアクティブモードに移行させるのは前述したとおりである。これに加え、MCU1は、スリープモードにおいて、高温通知信号SIG2aを残量計IC12から端子P6にて受信した場合(電源サーミスタT1の出力値が異常である場合)にも起動し、吸引器100の動作モードをアクティブモードに移行させる。 As described above, the MCU 1 operating in sleep mode is activated (all functions are enabled) when the slider 119 is opened, and the operation mode of the aspirator 100 is shifted to the active mode. In addition, in the sleep mode, the MCU 1 is also activated when the high temperature notification signal SIG2a is received from the fuel gauge IC 12 at the terminal P6 (when the output value of the power supply thermistor T1 is abnormal). Change the operation mode to active mode.
 また、MCU1は、スリープモードにおいて、低温通知信号SIG2bを残量計IC12から端子P6にて受信した場合(電源サーミスタT1の出力値が異常である場合)には、自動復帰保護制御を実行し、吸引器100の動作モードをエラーモードに移行させる。この自動復帰保護制御の実行後、MCU1は、低温解除通知信号SIG2cを端子P6にて受信した場合(電源サーミスタT1の出力値が正常である場合)には、自動復帰保護制御を終了して、スリープモードに戻る。 Further, when the MCU1 receives the low temperature notification signal SIG2b from the fuel gauge IC12 at the terminal P6 in the sleep mode (when the output value of the power supply thermistor T1 is abnormal), the MCU1 executes automatic recovery protection control, The operation mode of the aspirator 100 is shifted to the error mode. After executing this automatic return protection control, when the MCU 1 receives the low temperature release notification signal SIG2c at the terminal P6 (when the output value of the power supply thermistor T1 is normal), the MCU 1 ends the automatic return protection control, Return to sleep mode.
 残量計IC12は、電源温度TBATが高温条件(温度閾値THH3(60℃)以上になるという条件)を満たした場合(電源サーミスタT1の出力値が異常である場合)には、ローレベルの高温通知信号SIG1を第一通知端子12aaから出力する。第一通知端子12aaからローレベルの高温通知信号SIG1が出力されると、FF17のCLR( ̄)端子がローレベルとなる。つまり、FF17のQ端子の出力がローレベルになって、手動復帰保護制御が実行されることになる。高温通知信号SIG1に基づく保護制御の実行が可能なのは、全ての動作モードである。 When the power supply temperature T BAT satisfies the high temperature condition (the condition that the temperature threshold THH3 (60° C.) or higher) is satisfied (when the output value of the power supply thermistor T1 is abnormal), the fuel gauge IC12 turns to low level. A high temperature notification signal SIG1 is output from the first notification terminal 12aa. When the low-level high temperature notification signal SIG1 is output from the first notification terminal 12aa, the CLR (~) terminal of the FF 17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the high temperature notification signal SIG1 can be executed in all operation modes.
 オペアンプOP2の非反転入力端子に接続される分圧回路Pdは、ヒータサーミスタT3の温度が温度閾値THH0(340℃)以上になった場合(ヒータサーミスタT3の出力値が異常である場合)に、オペアンプOP2の出力がローレベルとなるよう、抵抗値が決められている。ヒータサーミスタT3の温度が温度閾値THH0(340℃)に近い高温になるのは加熱モードのときである。したがって、加熱モードにおいて、オペアンプOP2からローレベルの信号が出力されると、FF17のCLR( ̄)端子がローレベルとなる。つまり、FF17のQ端子の出力がローレベルとなって、手動復帰保護制御が実行されることになる。オペアンプOP2の出力に基づく保護制御の実行が可能なのは、ヒータサーミスタT3に電源が供給されている動作モード(換言すると、スリープモード以外の動作モード)である。 When the temperature of the heater thermistor T3 reaches or exceeds the temperature threshold THH0 (340° C.) (when the output value of the heater thermistor T3 is abnormal), the voltage dividing circuit Pd connected to the non-inverting input terminal of the operational amplifier OP2 A resistance value is determined so that the output of the operational amplifier OP2 becomes low level. It is in the heating mode that the temperature of the heater thermistor T3 reaches a high temperature close to the temperature threshold THH0 (340° C.). Therefore, in the heating mode, when a low level signal is output from the operational amplifier OP2, the CLR (~) terminal of the FF17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the output of the operational amplifier OP2 can be executed in an operation mode in which power is supplied to the heater thermistor T3 (in other words, an operation mode other than the sleep mode).
 オペアンプOP3の非反転入力端子に接続される分圧回路Peは、ケースサーミスタT4の温度が温度閾値THH3(60℃)以上になった場合(ケースサーミスタT4の出力値が異常である場合)に、オペアンプOP3の出力がローレベルとなるよう、抵抗値が決められている。オペアンプOP3からローレベルの信号が出力されると、FF17のCLR( ̄)端子がローレベルとなる。つまり、FF17のQ端子の出力がローレベルになって、手動復帰保護制御が実行されることになる。オペアンプOP3の出力に基づく保護制御の実行が可能なのは、ケースサーミスタT4に電源が供給されている動作モード(換言すると、スリープモード以外の動作モード)である。 When the temperature of the case thermistor T4 reaches or exceeds the temperature threshold THH3 (60° C.) (when the output value of the case thermistor T4 is abnormal), the voltage dividing circuit Pe connected to the non-inverting input terminal of the operational amplifier OP3 A resistance value is determined so that the output of the operational amplifier OP3 becomes low level. When a low level signal is output from the operational amplifier OP3, the CLR (~) terminal of the FF17 becomes low level. That is, the output of the Q terminal of FF17 becomes low level, and the manual return protection control is executed. Protection control based on the output of the operational amplifier OP3 can be executed in an operation mode in which power is supplied to the case thermistor T4 (in other words, an operation mode other than the sleep mode).
 このように、FF17は、MCU1を介さずに保護制御を実行できるため、MCU1がスリープモードにて省電力化を図っていたり、MCU1が何らかの理由で正常に動作していなかったりした場合であっても、電源温度TBAT、ヒータ温度THTR、及びケース温度TCASEのいずれかの温度に基づいて、充放電を禁止することができる。これにより吸引器100の安全性を高めることができる。 In this way, since the FF 17 can execute protection control without involving the MCU 1, even if the MCU 1 is in sleep mode to save power or the MCU 1 is not operating normally for some reason, Also, charging and discharging can be prohibited based on any one of the power supply temperature T BAT , the heater temperature T HTR , and the case temperature T CASE . Thereby, the safety of the suction device 100 can be improved.
 なお、スリープモードにおいては、サーミスタT2~T4には電源電圧(システム電源電圧Vcc3)が供給されていない。このため、FF17は、ヒータ温度THTR及びケース温度TCASEのいずれかの温度に基づく充放電の禁止を行うことはできない。これに対し、電源サーミスタT1には、全ての動作モードにおいて電源電圧が供給されている。このため、全ての動作モードにおいて、FF17による保護制御の実行は可能である。 In the sleep mode, the power supply voltage (system power supply voltage Vcc3) is not supplied to the thermistors T2 to T4. Therefore, the FF 17 cannot prohibit charging/discharging based on either the heater temperature T HTR or the case temperature T CASE . On the other hand, the power supply thermistor T1 is supplied with the power supply voltage in all operation modes. Therefore, protection control can be executed by the FF 17 in all operation modes.
 MCU1は、主に、スリープモード以外の動作モードにおいて保護制御を行う。以下、図23を参照して具体的に説明する。図23は、吸引器100にて行われる保護制御のパターンの具体例をまとめた図である。図23には、理解のために、図中の温度と温度閾値との関係を併記している。 The MCU 1 mainly performs protection control in operation modes other than sleep mode. A specific description will be given below with reference to FIG. FIG. 23 is a diagram summarizing specific examples of protection control patterns performed in the suction device 100 . For the sake of understanding, FIG. 23 also shows the relationship between the temperature in the figure and the temperature threshold.
(保護制御のパターン)
 図23に示すように、電源温度TBATのみに基づいて行われる保護制御にはパターンPT1~PT4が存在する。ヒータ温度THTRのみに基づいて行われる保護制御にはパターンPT5が存在する。ケース温度TCASEのみに基づいて行われる保護制御にはパターンPT6とパターンPT7が存在する。電源温度TBAT及びケース温度TCASEに基づいて行われる保護制御にはパターンPT8が存在する。以下、各パターンについて説明する。
(protective control pattern)
As shown in FIG. 23, patterns PT1 to PT4 exist in the protection control performed based only on the power supply temperature TBAT . A pattern PT5 exists in the protection control performed based only on the heater temperature THTR . Pattern PT6 and pattern PT7 exist in protection control performed based only on the case temperature T CASE . A pattern PT8 exists in the protection control performed based on the power supply temperature T BAT and the case temperature T CASE . Each pattern will be described below.
(パターンPT1)
 保護制御を実行するのはMCU1であり、保護制御の種別は自動復帰保護制御である。MCU1は、スリープモードからアクティブモードへの移行期間(すべての機能を有効化する起動処理が終了するまでの期間)と加熱初期設定モードのそれぞれで自動復帰保護制御を実行可能である。MCU1は、上記移行期間と加熱初期設定モードのそれぞれにおいて、通信線LNを介して、残量計IC12に電源温度TBATの取得要求を定期的に行う。MCU1は、この取得要求に応じて残量計IC12から送信されてきた電源温度TBATが高温側の温度閾値THH5(51℃)以上となった場合には、電源サーミスタT1の出力値が異常であると判断して、自動復帰保護制御を実行する。自動復帰保護制御を実行した後、MCU1は、残量計IC12から送信されてきた電源温度TBATが、温度閾値THH5未満の温度閾値THH8(45℃)以下になると、電源サーミスタT1の出力値が正常であると判断して、自動復帰保護制御を終了し、スリープモードへと移行する。
(Pattern PT1)
The MCU 1 executes protection control, and the type of protection control is automatic return protection control. The MCU 1 can execute automatic return protection control in the transition period from the sleep mode to the active mode (the period until the activation process for enabling all functions is completed) and in the heating initial setting mode. The MCU 1 periodically requests the fuel gauge IC 12 to acquire the power supply temperature TBAT via the communication line LN in each of the transition period and the heating initial setting mode. When the power supply temperature TBAT transmitted from the fuel gauge IC 12 in response to this acquisition request becomes equal to or higher than the temperature threshold THH5 (51° C.) on the high temperature side, the MCU 1 determines that the output value of the power supply thermistor T1 is abnormal. It judges that there is, and executes the automatic return protection control. After executing the automatic return protection control, when the power supply temperature TBAT transmitted from the fuel gauge IC12 becomes equal to or lower than the temperature threshold THH8 (45°C), which is less than the temperature threshold THH5, the MCU1 changes the output value of the power supply thermistor T1. It judges that it is normal, terminates the automatic return protection control, and shifts to sleep mode.
(パターンPT2)
 保護制御を実行するのはMCU1であり、保護制御の種別は手動復帰保護制御である。MCU1は、加熱モードと充電モードのそれぞれで手動復帰保護制御を実行可能である。MCU1は、加熱モードと充電モードのそれぞれにおいて、通信線LNを介して、残量計IC12に電源温度TBATの取得要求を定期的に行う。加熱モードにて動作中のMCU1は、残量計IC12から送信されてきた電源温度TBATが高温側の温度閾値THH4(55℃)以上となった場合には、電源サーミスタT1の出力値が異常であると判断して、手動復帰保護制御を行う。充電モードにて動作中のMCU1は、残量計IC12から送信されてきた電源温度TBATが温度閾値THH4(55℃)以上になった場合と、残量計IC12から送信されてきた電源温度TBATが低温側の温度閾値THL1(0℃)未満になった場合のいずれかの場合に、電源サーミスタT1の出力値が異常であると判断して、手動復帰保護制御を行う。
(Pattern PT2)
The MCU 1 executes protection control, and the type of protection control is manual return protection control. The MCU 1 can execute manual return protection control in each of the heating mode and charging mode. In each of the heating mode and the charging mode, the MCU 1 periodically requests the fuel gauge IC 12 to acquire the power supply temperature TBAT via the communication line LN. When the power supply temperature TBAT transmitted from the fuel gauge IC 12 reaches or exceeds the temperature threshold THH4 (55°C) on the high temperature side, the MCU 1 operating in the heating mode detects that the output value of the power supply thermistor T1 is abnormal. Then, manual return protection control is performed. When the power supply temperature T BAT sent from the fuel gauge IC 12 becomes equal to or higher than the temperature threshold THH4 (55° C.), the MCU 1 operating in the charge mode detects the power supply temperature T BAT sent from the fuel gauge IC 12 . When BAT becomes less than the temperature threshold THL1 (0° C.) on the low temperature side, it is determined that the output value of the power supply thermistor T1 is abnormal, and manual return protection control is performed.
(パターンPT3)
 保護制御を実行するのはFF17であり、保護制御の種別は手動復帰保護制御である。FF17は、全ての動作モードにおいて手動復帰保護制御を実行可能である。FF17は、全ての動作モードにおいて、残量計IC12からの通知信号SIG1(電源温度TBATが温度閾値THH3(60℃)以上になったことを示す信号)をCLR端子( ̄)にて受けると(電源サーミスタT1の出力値が異常である場合)、手動復帰保護制御を行う。
(Pattern PT3)
It is FF17 that executes protection control, and the type of protection control is manual return protection control. FF17 can execute manual return protection control in all operation modes. When the FF 17 receives the notification signal SIG1 (signal indicating that the power supply temperature T BAT has reached or exceeded the temperature threshold THH3 (60° C.)) from the fuel gauge IC 12 at the CLR terminal (~) in all operating modes, (When the output value of the power supply thermistor T1 is abnormal), manual return protection control is performed.
(パターンPT4)
 保護制御を実行するのはMCU1であり、保護制御の種別は自動復帰保護制御である。MCU1は、全ての動作モードにおいて自動復帰保護制御を実行可能である。MCU1は、低温通知信号SIG2bを残量計IC12から端子P6にて受信した場合に、電源サーミスタT1の出力値が異常であると判断して、自動保護制御を実行する。この自動復帰保護制御の実行後、MCU1は、低温解除通知信号SIG2cを端子P6にて受信した場合に、電源サーミスタT1の出力値が正常であると判断して、自動保護制御を終了する。
(Pattern PT4)
The MCU 1 executes protection control, and the type of protection control is automatic return protection control. The MCU 1 can perform automatic return protection control in all operating modes. When receiving the low temperature notification signal SIG2b from the fuel gauge IC12 at the terminal P6, the MCU1 determines that the output value of the power supply thermistor T1 is abnormal, and executes automatic protection control. After executing this automatic return protection control, when the MCU 1 receives the low temperature release notification signal SIG2c at the terminal P6, it determines that the output value of the power supply thermistor T1 is normal, and terminates the automatic protection control.
(パターンPT5)
 保護制御を実行するのはFF17であり、保護制御の種別は手動復帰保護制御である。FF17は、スリープモード以外の動作モードにおいて手動復帰保護制御を実行可能である。FF17は、オペアンプOP2からローレベルの信号をCLR( ̄)端子にて受けると(ヒータサーミスタT3の出力値が異常である場合)、手動復帰保護制御を行う。加熱モード以外の動作モードにおいては、ヒータサーミスタT3の温度が温度閾値THH0(340℃)に近くなる可能性は極めて低い。このため、図23では、この手動復帰保護制御が行われる動作モードを加熱モードのみとして示している。
(Pattern PT5)
It is FF17 that executes protection control, and the type of protection control is manual return protection control. The FF 17 can execute manual return protection control in operation modes other than the sleep mode. When the FF17 receives a low level signal from the operational amplifier OP2 at the CLR (~) terminal (when the output value of the heater thermistor T3 is abnormal), it performs manual return protection control. In operation modes other than the heating mode, the possibility that the temperature of the heater thermistor T3 approaches the temperature threshold THH0 (340° C.) is extremely low. Therefore, in FIG. 23, only the heating mode is shown as the operation mode in which this manual return protection control is performed.
(パターンPT6)
 保護制御を実行するのはMCU1であり、保護制御の種別は自動復帰保護制御である。MCU1は、アクティブモードと加熱初期設定モードにおいて自動復帰保護制御を実行可能である。これら動作モードにて動作中のMCU1は、端子P12に入力される信号(ケースサーミスタT4の抵抗値に応じた信号)に基づくケース温度TCASEが温度閾値THH6(48℃)以上である場合に、ケースサーミスタT4の出力値が異常であると判断して、自動復帰保護制御を実行する。自動復帰保護制御の実行後、MCU1は、端子P12に入力される信号に基づくケース温度TCASEが温度閾値THH6未満の温度閾値THH7(47℃)以下になった場合に、ケースサーミスタT4の出力値が正常であると判断して、自動復帰保護制御を終了する。
 なお、パターンPT6では充電モードと加熱モードで保護制御が実行不能になっているが、どちらか一方では保護制御を実行可能にしてもよい。
(Pattern PT6)
The MCU 1 executes protection control, and the type of protection control is automatic return protection control. The MCU 1 can perform automatic recovery protection control in the active mode and heating initialization mode. When the case temperature T CASE based on the signal input to the terminal P12 (the signal corresponding to the resistance value of the case thermistor T4) is equal to or higher than the temperature threshold THH6 (48° C.), the MCU 1 operating in these operation modes It judges that the output value of case thermistor T4 is abnormal, and executes automatic recovery protection control. After execution of the automatic return protection control, the MCU1 controls the output value of the case thermistor T4 when the case temperature T CASE based on the signal input to the terminal P12 becomes equal to or lower than the temperature threshold THH7 (47° C.) which is less than the temperature threshold THH6. is normal, and the automatic return protection control is ended.
In pattern PT6, protection control is disabled in the charging mode and heating mode, but protection control may be enabled in one of them.
(パターンPT7)
 保護制御を実行するのはFF17であり、保護制御の種別は手動復帰保護制御である。FF17は、スリープモード以外の動作モードにおいて手動復帰保護制御を実行可能である。FF17は、これら動作モードにおいて、オペアンプOP3からローレベルの信号(ケース温度TCASEが温度閾値THH3(60℃)以上であることを示す信号)をCLR( ̄)端子にて受けると(ケースサーミスタT4の出力が異常である場合)、手動復帰保護制御を行う。
(Pattern PT7)
It is FF17 that executes protection control, and the type of protection control is manual return protection control. The FF 17 can execute manual return protection control in operation modes other than the sleep mode. In these operation modes, when the FF17 receives a low-level signal (signal indicating that the case temperature TCASE is equal to or higher than the temperature threshold THH3 (60°C)) from the operational amplifier OP3 at the CLR (~) terminal (case thermistor T4 output is abnormal), perform manual recovery protection control.
(パターンPT8)
 保護制御を実行するのはMCU1であり、保護制御の種別は非復帰保護制御である。非復帰保護制御は、スリープモードにおいて、残量計IC12から高温通知信号SIG2aが出力された場合に実行可能となる。スリープモードにて動作中のMCU1は、高温通知信号SIG2aを受信すると、アクティブモードに移行し、電源サーミスタT1とケースサーミスタT4のそれぞれの出力値が異常であるか否かを判断する1次チェックを実行する。具体的には、MCU1は、通信線LNを介して残量計IC12から送信されてきた電源温度TBATが高温側の温度閾値THH1(85℃)以上となり、且つ、端子P12に入力される信号(ケースサーミスタT4の抵抗値に応じた信号)に基づくケース温度TCASEが温度閾値THH2(65℃)以上である場合に、電源サーミスタT1とケースサーミスタT4のそれぞれの出力値が異常であると判断して、非復帰保護制御を実行する。
(Pattern PT8)
The MCU 1 executes protection control, and the type of protection control is non-recovery protection control. The non-recovery protection control can be executed in the sleep mode when the fuel gauge IC 12 outputs the high temperature notification signal SIG2a. When the MCU1 operating in the sleep mode receives the high temperature notification signal SIG2a, it shifts to the active mode and performs a primary check to determine whether the output values of the power supply thermistor T1 and the case thermistor T4 are abnormal. Run. Specifically, when the power supply temperature TBAT transmitted from the fuel gauge IC12 via the communication line LN becomes equal to or higher than the temperature threshold THH1 (85° C.) on the high temperature side, the MCU1 receives the signal input to the terminal P12. When the case temperature T CASE based on (signal corresponding to the resistance value of the case thermistor T4) is equal to or higher than the temperature threshold THH2 (65°C), the output values of the power supply thermistor T1 and the case thermistor T4 are determined to be abnormal. to execute non-revertive protection control.
 なお、パターンPT8の保護制御は非復帰保護制御としているが、これに代えて手動復帰保護制御としてもよい。電源サーミスタT1とケースサーミスタT4のそれぞれの出力値が異常である状況は、吸引器100に異常が強く生じていると推定される状況である。このような状況では、非復帰保護制御や手動復帰保護制御によって、保護制御が自動的に終了されないようにすることで、吸引器100の安全性を向上させることができる。 Although the protection control of pattern PT8 is non-recovery protection control, it may be replaced with manual recovery protection control. A situation in which the output values of the power supply thermistor T1 and the case thermistor T4 are abnormal is a situation in which it is assumed that the suction device 100 is highly abnormal. In such a situation, the safety of the aspirator 100 can be improved by preventing the automatic termination of the protection control by the non-reset protection control or the manual return protection control.
 図24は、スリープモードの状態で残量計IC12から高温通知信号SIG2aが出力される場合の残量計IC12及びMCU1の動作の一例を説明するためのフローチャートである。 FIG. 24 is a flowchart for explaining an example of the operation of the fuel gauge IC12 and the MCU1 when the high temperature notification signal SIG2a is output from the fuel gauge IC12 in the sleep mode.
 残量計IC12は、例えば1秒間隔で電源温度TBATを取得して内蔵レジスタへ格納する(ステップS1)。残量計IC12は、ステップS1の処理と並行して、例えば1分間隔で電源温度TBATの異常判定を行う。具体的には、残量計IC12は、最後の異常判定を行ってから1分が経過したか否かを判定する(ステップS2)。残量計IC12は、ステップS2の判定がyesであれば、内蔵レジスタに格納されている最新の電源温度TBATが温度閾値THH1(85℃)以上か否かを判定する(ステップS3)。残量計IC12は、ステップS3の判定がnoであれば、内蔵カウンタの数値nを初期値の0にリセットし(ステップS4)、ステップS2に処理を戻す。 The fuel gauge IC 12 acquires the power supply temperature T BAT at intervals of, for example, one second and stores it in the built-in register (step S1). In parallel with the processing of step S1, the fuel gauge IC 12 performs an abnormality determination of the power supply temperature TBAT , for example, at intervals of one minute. Specifically, the fuel gauge IC 12 determines whether or not one minute has passed since the last abnormality determination was made (step S2). If the determination in step S2 is yes, the fuel gauge IC 12 determines whether or not the latest power supply temperature TBAT stored in the built-in register is equal to or higher than the temperature threshold THH1 (85° C.) (step S3). If the determination in step S3 is no, the fuel gauge IC 12 resets the value n of the built-in counter to the initial value of 0 (step S4), and returns the process to step S2.
 残量計IC12は、ステップS3の判定がyesであれば、内蔵カウンタの数値nを1つ増やす(ステップS5)。その後、残量計IC12は、数値nが2未満であれば(ステップS6:no)、ステップS2に処理を戻し、数値nが2以上であれば(ステップS6:yes)、高温通知信号SIG2aをMCU1に送信する(ステップS7)。なお、ステップS6における判定閾値(=2)は一例に過ぎず、1以上の自然数であれば任意のものを用いてよい。 If the determination in step S3 is yes, the remaining amount gauge IC 12 increases the value n of the built-in counter by one (step S5). After that, if the numerical value n is less than 2 (step S6: no), the fuel gauge IC 12 returns the process to step S2, and if the numerical value n is 2 or more (step S6: yes), the high temperature notification signal SIG2a is output. It is transmitted to MCU1 (step S7). Note that the determination threshold value (=2) in step S6 is merely an example, and any natural number of 1 or more may be used.
 スリープモードで動作中のMCU1は、ステップS7にて送信された高温通知信号SIG2aを受信する(ステップS11)と、内蔵カウンタの数値mを初期値の0にリセットし(ステップS12)、動作モードをアクティブモードに変更する(ステップS13)。その後、MCU1は、電源温度TBATとケース温度TCASEの異常判定を開始する。 Upon receiving the high temperature notification signal SIG2a transmitted in step S7 (step S11), the MCU 1 operating in the sleep mode resets the value m of the built-in counter to the initial value of 0 (step S12), and changes the operation mode. The mode is changed to active mode (step S13). After that, the MCU 1 starts abnormality determination of the power supply temperature T BAT and the case temperature T CASE .
 具体的には、MCU1は、1秒が経過すると(ステップS14:yes)、通信線LNを介して、残量計IC12に対し、電源温度TBATの送信を要求する(ステップS15)。残量計IC12は、この要求を受信する(ステップS8)と、電源温度TBATを取得し、通信線LNを介してMCU1に送信する(ステップS9)。MCU1は、ステップS9にて残量計IC12から送信された電源温度TBATを受信して取得する(ステップS16)。 Specifically, when one second has passed (step S14: yes), the MCU 1 requests the fuel gauge IC 12 to transmit the power supply temperature T BAT via the communication line LN (step S15). When the fuel gauge IC 12 receives this request (step S8), it acquires the power supply temperature T BAT and transmits it to the MCU 1 via the communication line LN (step S9). The MCU 1 receives and acquires the power supply temperature T BAT transmitted from the fuel gauge IC 12 in step S9 (step S16).
 MCU1は、ステップS15及びステップS16の処理と並行して、ステップS17の処理を行う。ステップS17において、MCU1は、端子P12に入力される信号に基づいて、ケース温度TCASEを取得する。ステップS16及びステップS17の後、MCU1は、ステップS16にて取得した電源温度TBATが温度閾値THH1(85℃)以上であり、且つ、ステップS17にて取得したケース温度TCASEが温度閾値THH2(65℃)以上であるか否かを判定する(ステップS18)。 The MCU 1 performs the process of step S17 in parallel with the processes of steps S15 and S16. At step S17, the MCU1 acquires the case temperature T CASE based on the signal input to the terminal P12. After steps S16 and S17, the MCU 1 confirms that the power supply temperature T BAT acquired in step S16 is equal to or higher than the temperature threshold THH1 (85° C.), and that the case temperature T CASE acquired in step S17 is the temperature threshold THH2 ( 65° C.) or higher (step S18).
 MCU1は、ステップS18の判定がnoの場合には、ステップS14に処理を戻す。若しくは、MCU1は、ステップS18の判定がnoの場合には、処理を終了してもよい。MCU1は、ステップS18の判定がyesの場合には、数値mを1つ増やす(ステップS19)。その後、MCU1は、数値mが5以上か否かを判定する(ステップS20)。MCU1は、ステップS20の判定がnoの場合には、ステップS14に処理を戻す。MCU1は、ステップS20の判定がyesの場合には、端子P14からローレベルの信号を出力し且つ端子P22からハイレベルの信号を出力して充放電を禁止する保護制御を行う(ステップS21)。ステップS21の後、MCU1は、動作モードを永久エラーモードに遷移させる(ステップS22)。なお、ステップS20における判定閾値(=5)は一例に過ぎず、1以上の自然数であれば任意のものを用いてよい。 When the determination in step S18 is no, the MCU 1 returns the process to step S14. Alternatively, the MCU 1 may terminate the process if the determination in step S18 is no. If the determination in step S18 is yes, the MCU 1 increments the numerical value m by 1 (step S19). After that, the MCU 1 determines whether or not the numerical value m is 5 or more (step S20). MCU1 returns a process to step S14, when determination of step S20 is no. When the determination in step S20 is yes, the MCU 1 outputs a low-level signal from the terminal P14 and outputs a high-level signal from the terminal P22 to perform protection control to prohibit charging and discharging (step S21). After step S21, the MCU 1 changes the operation mode to permanent error mode (step S22). Note that the determination threshold value (=5) in step S20 is merely an example, and any natural number of 1 or more may be used.
 図23に示したように、吸引器100では、保護制御の主体が異なったり、保護制御種別が異なったり、保護制御の実行判定に使用する信号の種類が異なったり、実行可能な動作モードが異なったりする複数のパターンで保護制御が実行される。このように、温度測定対象や状況に応じて適切に保護制御を実行できるため、吸引器100の安全性を向上させることができる。 As shown in FIG. 23, in the aspirator 100, the subject of protection control is different, the protection control type is different, the type of signal used to determine the execution of protection control is different, and the executable operation mode is different. Protection control is executed in multiple patterns such as In this way, protection control can be executed appropriately according to the temperature measurement object and the situation, so the safety of the suction device 100 can be improved.
 上述した実施形態においては、パターンPT8の保護制御は、残量計IC12から出力される高温通知信号SIG2aを契機として実行された。本実施形態に代えて、パターンPT8の保護制御は、高温通知信号SIG2aを契機とせずに実行されてもよい。つまり、レセプタクルRCPに外部電源が接続(USB接続)されたり、スライダ119が開かれたりすることで、スリープモードから他のモードへ正常に遷移した後、MCU1は、電源温度TBATが高温側の温度閾値THH1(85℃)以上となり、且つ、ケース温度TCASEが温度閾値THH2(65℃)以上である場合に、非復帰保護制御を実行してもよい。このようなパターンPT8の保護制御は、図24に示されるフローチャートにおいて、ステップS2からS7とステップS11からS13を省略することで実現される。 In the embodiment described above, the protection control of the pattern PT8 is triggered by the high temperature notification signal SIG2a output from the fuel gauge IC12. Instead of the present embodiment, the protection control of the pattern PT8 may be executed without being triggered by the high temperature notification signal SIG2a. In other words, after a normal transition from the sleep mode to another mode is made by connecting an external power supply (USB connection) to the receptacle RCP or opening the slider 119, the MCU 1 is set to a state where the power supply temperature T BAT is on the high temperature side. Non-recovery protection control may be executed when the temperature threshold THH1 (85° C.) or higher and the case temperature T CASE is higher than the temperature threshold THH2 (65° C.). Such protection control of pattern PT8 is realized by omitting steps S2 to S7 and steps S11 to S13 in the flowchart shown in FIG.
(ケースサーミスタT4の好ましい配置)
 図25及び図26は、図1に示す吸引器100のケースサーミスタT4を通る切断面での断面図である。図25は、前後方向に垂直な切断面での断面図である。図26は、上下方向に垂直な切断面での断面図である。
(Preferred placement of case thermistor T4)
25 and 26 are cross-sectional views of the suction device 100 shown in FIG. 1 taken through the case thermistor T4. FIG. 25 is a cross-sectional view taken along a cutting plane perpendicular to the front-rear direction. FIG. 26 is a cross-sectional view taken along a cutting plane perpendicular to the vertical direction.
 ケース110内部のシャーシ150には、ヒータHTRを含む加熱部170と、電源BATと、ケースサーミスタT4とが固定されている。図26に示すように、加熱部170と電源BATは前後方向に並んで配置されており、ケースサーミスタT4は、前後方向において、加熱部170と電源BATの間に位置するようにシャーシ150へ固定されている。図25及び図26に示すように、シャーシ150は、電源BATとケースサーミスタT4の間に位置する部分Pbと、加熱部170とケースサーミスタT4の間に位置する部分Paと、を含む。 A heating unit 170 including a heater HTR, a power supply BAT, and a case thermistor T4 are fixed to the chassis 150 inside the case 110 . As shown in FIG. 26, the heating unit 170 and the power supply BAT are arranged side by side in the front-rear direction, and the case thermistor T4 is fixed to the chassis 150 so as to be positioned between the heating unit 170 and the power supply BAT in the front-rear direction. It is As shown in FIGS. 25 and 26, the chassis 150 includes a portion Pb located between the power supply BAT and the case thermistor T4, and a portion Pa located between the heating portion 170 and the case thermistor T4.
 このように、ケースサーミスタT4は、別の電子部品を固定するために用いているシャーシ150によって位置が固定される。このため、吸引器100の製造コストの増大を回避しつつ、ケースサーミスタT4がケース110の温度を正確に取得できるようになる。また、図26に示すように、前後方向における端の方へケースサーミスタT4が位置しないことで、ケース110をユーザが把持した際のユーザの手の熱がケースサーミスタT4に影響を与えにくくなる。また、部分Paや部分Pbの存在により、電源BATやヒータHTRで発生した熱がケースサーミスタT4に伝わりにくくなる。このため、ケースサーミスタT4の出力値から、吸引器100が置かれている環境をより正確に把握できるようになる。 Thus, the case thermistor T4 is fixed in position by the chassis 150 used to fix other electronic components. Therefore, the case thermistor T4 can accurately obtain the temperature of the case 110 while avoiding an increase in the manufacturing cost of the suction device 100 . Further, as shown in FIG. 26, since the case thermistor T4 is not positioned toward the end in the front-rear direction, the heat of the user's hand when holding the case 110 is less likely to affect the case thermistor T4. Further, the existence of the portion Pa and the portion Pb makes it difficult for the heat generated by the power source BAT and the heater HTR to be transmitted to the case thermistor T4. Therefore, the environment in which the suction device 100 is placed can be more accurately grasped from the output value of the case thermistor T4.
 なお、シャーシ150の部分Paと部分Pbの一方を省略しても、部分Paと部分Pbの他方の存在によって、電源BAT又はヒータHTRで発生した熱がケースサーミスタT4に伝わりにくくなる効果を得ることはできる。 Even if one of the portions Pa and Pb of the chassis 150 is omitted, the existence of the other of the portions Pa and Pb can provide an effect that the heat generated by the power source BAT or the heater HTR is less likely to be transmitted to the case thermistor T4. can do.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood.
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。 At least the following matters are described in this specification. In addition, although the parenthesis shows the components corresponding to the above-described embodiment, the present invention is not limited to this.
(1)
 エアロゾル生成装置の電源ユニット(吸引器100)であって、
 上記電源ユニットの表面を構成するケース(ケース110)と、
 電源(電源BAT)と、
 上記電源から供給される電力を消費してエアロゾル源を加熱するヒータ(ヒータHTR)が接続されるコネクタ(ヒータコネクタCn)と、
 上記電源の近傍に配置され、上記電源の温度に関する値を出力する第1センサ(電源サーミスタT1)と、
 上記ケースの近傍に配置され、上記ケースの温度に関する値を出力する第2センサ(ケースサーミスタT4)と、
 コントローラ(MCU1及び残量計IC12)と、を備え、
 上記コントローラは、
  上記第1センサの出力値と上記第2センサの出力値が異常であるか否かを判断する1次チェックを実行し、
  上記1次チェックにおいて上記第1センサの出力値と上記第2センサの出力値が異常であると判断される場合、上記電源の充電と上記電源から上記ヒータへの放電の一方又は両方を禁止する保護制御(非復帰保護制御又は手動復帰保護制御)を実行するように構成される、
 エアロゾル生成装置の電源ユニット。
(1)
A power supply unit (inhaler 100) of an aerosol generator,
a case (case 110) forming the surface of the power supply unit;
a power supply (power supply BAT);
a connector (heater connector Cn) to which a heater (heater HTR) that consumes power supplied from the power source and heats the aerosol source is connected;
a first sensor (power supply thermistor T1) arranged near the power supply and outputting a value related to the temperature of the power supply;
a second sensor (case thermistor T4) disposed near the case and outputting a value related to the temperature of the case;
A controller (MCU 1 and fuel gauge IC 12),
The above controller is
performing a primary check to determine whether the output value of the first sensor and the output value of the second sensor are abnormal;
If the primary check determines that the output value of the first sensor and the output value of the second sensor are abnormal, one or both of charging of the power source and discharging from the power source to the heater are prohibited. configured to perform protection control (non-revertive protection control or manual revertive protection control),
Power supply unit for the aerosol generator.
 (1)によれば、電源温度とケース温度が共に異常値を示すと、電源の充電とヒータへの電源の放電の少なくとも一方が禁止されるので、いずれか一方の温度のみを検知する場合に比べて、エアロゾル生成装置の状態をより正確に把握でき、誤検知などにより充放電が禁止される事態が抑制される。 According to (1), if both the power supply temperature and the case temperature show abnormal values, at least one of charging the power supply and discharging the power supply to the heater is prohibited. In comparison, the state of the aerosol generating device can be grasped more accurately, and situations where charging and discharging are prohibited due to erroneous detection or the like can be suppressed.
(2)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記保護制御(非復帰保護制御)は、上記充電と上記放電の一方又は両方を永久的に禁止する、
 エアロゾル生成装置の電源ユニット。
(2)
(1) The power supply unit of the aerosol generator,
The protection control (non-revertive protection control) permanently prohibits one or both of the charging and the discharging,
Power supply unit for the aerosol generator.
 (2)によれば、2つのセンサの出力値が異常であるという、エアロゾル生成装置に異常が生じていると強く推定される状況では、電源の充電とヒータへの電源の放電の少なくとも一方を永久に禁止するので、エアロゾル生成装置の安全性を向上させることができる。 According to (2), in a situation where the output values of the two sensors are abnormal and it is strongly presumed that an abnormality has occurred in the aerosol generator, at least one of charging the power supply and discharging the power supply to the heater is performed. A permanent ban would improve the safety of the aerosol generator.
(3)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記保護制御(手動復帰保護制御)は、ユーザによる操作に基づいてのみ終了可能である、
 エアロゾル生成装置の電源ユニット。
(3)
(1) The power supply unit of the aerosol generator,
The protection control (manual return protection control) can be terminated only based on the user's operation,
Power supply unit for the aerosol generator.
 (3)によれば、2つのセンサの出力値が異常であるという、エアロゾル生成装置に異常が生じていると強く推定される状況では、電源の充電とヒータへの電源の放電の少なくとも一方の禁止が自動的に終了されないため、エアロゾル生成装置の安全性を向上させることができる。 According to (3), in a situation where it is strongly presumed that an abnormality has occurred in the aerosol generator, that is, when the output values of the two sensors are abnormal, at least one of charging the power supply and discharging the power supply to the heater is performed. The safety of the aerosol generating device can be improved because the ban is not automatically terminated.
(4)
 (1)から(3)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラ(残量計IC12)は、
  上記1次チェックを実行する前に、上記第1センサの出力値が異常であるか否かを判断する0次チェック(図24のステップS2~ステップS6)を実行し、
  上記0次チェックにおいて上記第1センサの出力値が異常であると判断される場合(図24のステップS7の処理が行われた場合)、上記1次チェックを実行するように構成される、
 エアロゾル生成装置の電源ユニット。
(4)
A power supply unit for an aerosol generator according to any one of (1) to (3),
The controller (remaining amount gauge IC 12)
Before executing the primary check, executing a zero-order check (steps S2 to S6 in FIG. 24) for determining whether the output value of the first sensor is abnormal,
When it is determined that the output value of the first sensor is abnormal in the 0th order check (when the process of step S7 in FIG. 24 is performed), the 1st order check is performed.
Power supply unit for the aerosol generator.
 (4)によれば、2つのセンサを用いた異常判断の前に、電源温度に基づく異常判断が行われる。このため、エアロゾル生成装置の状態をより正確に把握でき、誤検知などにより充放電が禁止される事態が抑制される。 According to (4), abnormality determination based on power supply temperature is performed before abnormality determination using two sensors. Therefore, the state of the aerosol generating device can be more accurately grasped, and the situation where charging and discharging is prohibited due to erroneous detection or the like can be suppressed.
(5)
 (4)に記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラ(MCU1)は、上記0次チェックを実行する時(スリープモード時)は、上記第2センサの出力値を取得不能に構成される、
 エアロゾル生成装置の電源ユニット。
(5)
(4) The power supply unit of the aerosol generator,
The controller (MCU1) is configured to be unable to acquire the output value of the second sensor when executing the zero-order check (during sleep mode).
Power supply unit for the aerosol generator.
 (5)によれば、電源温度に基づく0次チェックの際には、ケース温度を取得するために必要な電力を消費しなくて済むので、安全性を担保しつつ、エアロゾル生成装置の省電力を図れる。 According to (5), when the zero-order check based on the power supply temperature is performed, the power required to obtain the case temperature does not need to be consumed, so the power consumption of the aerosol generator is reduced while ensuring safety. can be achieved.
(6)
 (4)に記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、MCU(MCU1)を含み、
 上記0次チェックを実行する時、上記MCUはスリープモードで動作するように構成される、
 エアロゾル生成装置の電源ユニット。
(6)
(4) The power supply unit of the aerosol generator,
The controller includes an MCU (MCU1),
When performing the 0th order check, the MCU is configured to operate in sleep mode.
Power supply unit for the aerosol generator.
 (6)によれば、電源温度に基づく0次チェックの際には、MCUの消費電力を低減できるので、安全性を担保しつつ、エアロゾル生成装置の省電力化を図れる。 According to (6), the power consumption of the MCU can be reduced during the zero-order check based on the power supply temperature, so the power consumption of the aerosol generator can be reduced while ensuring safety.
(7)
 (4)から(6)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記0次チェックにおいて上記第1センサの出力値が異常であると判断された場合に、上記第2センサには、上記ケースの温度に関する値を出力するために必要な電力が供給される、
 エアロゾル生成装置の電源ユニット。
(7)
The power unit of the aerosol generator according to any one of (4) to (6),
When the output value of the first sensor is determined to be abnormal in the zero-order check, the second sensor is supplied with power necessary to output a value related to the temperature of the case.
Power supply unit for the aerosol generator.
 (7)によれば、第2センサには、1次チェックを行う前に予め電源が投入されるため、0次チェック後にすぐに1次チェックを実行できる。これにより、エアロゾル生成装置の安全確保をより早く実現できる。また、電源温度に基づく0次チェックの際には、ケース温度を取得するために必要な電力を消費しなくて済む。 According to (7), the second sensor is powered on in advance before performing the primary check, so the primary check can be performed immediately after the zero-order check. As a result, the safety of the aerosol generator can be secured more quickly. Also, in the zero-order check based on the power supply temperature, there is no need to consume the power required to acquire the case temperature.
(8)
 (4)から(7)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、MCU(MCU1)と、上記電源の残量と上記第1センサの出力値を取得可能に構成される残量計IC(残量計IC12)と、を備え、
 上記0次チェックは、上記MCUと上記残量計ICのうち上記残量計ICによって実行される、
 エアロゾル生成装置の電源ユニット。
(8)
The power unit of the aerosol generator according to any one of (4) to (7),
The controller comprises an MCU (MCU1) and a fuel gauge IC (fuel gauge IC12) configured to be capable of acquiring the remaining amount of the power supply and the output value of the first sensor,
The 0th order check is executed by the fuel gauge IC out of the MCU and the fuel gauge IC,
Power supply unit for the aerosol generator.
 (8)によれば、MCUが0次チェックを実行せずにすむことから、MCUの負担を下げられる。この結果、MCUが実行する他の制御の精度を向上させたり、MCUの消費電力やコストを低減させたりできる。 According to (8), the burden on the MCU can be reduced because the MCU does not need to perform the 0th order check. As a result, the accuracy of other controls executed by the MCU can be improved, and power consumption and cost of the MCU can be reduced.
(9)
 (1)から(8)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、上記1次チェックを実行可能に構成されるMCU(MCU1)を含み、
 上記MCUは、上記第1センサへ接続される第1端子(端子P6)と、上記第2センサへ接続される第2端子(端子P12)と、を含み、
 上記第1センサと上記第1端子とを電気的に接続する第1回路と、
 上記第2センサと上記第2端子とを電気的に接続する第2回路と、を備え、
 上記第1回路は、上記第2回路に含まれない種類の電子部品(残量計IC12)を含む、
 エアロゾル生成装置の電源ユニット。
(9)
A power supply unit for an aerosol generator according to any one of (1) to (8),
The controller includes an MCU (MCU1) configured to be able to perform the primary check,
The MCU includes a first terminal (terminal P6) connected to the first sensor and a second terminal (terminal P12) connected to the second sensor,
a first circuit electrically connecting the first sensor and the first terminal;
a second circuit that electrically connects the second sensor and the second terminal;
The first circuit includes an electronic component (fuel gauge IC 12) of a type not included in the second circuit.
Power supply unit for the aerosol generator.
 (9)によれば、ケース温度に比べてより重要なパラメータである電源温度を、より多くの電子部品によってより高精度に取得できる。このため、エアロゾル生成装置の状態をより正確に把握でき、誤検知などにより充放電が禁止される事態が抑制される。 According to (9), the power supply temperature, which is a more important parameter than the case temperature, can be obtained with higher accuracy using more electronic components. Therefore, the state of the aerosol generating device can be more accurately grasped, and the situation where charging and discharging is prohibited due to erroneous detection or the like can be suppressed.
(10)
 (1)から(8)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、上記1次チェックを実行可能に構成されるMCU(MCU1)を含み、
 上記MCUは、
  上記第1センサの出力値をデジタル信号によって取得し、
  上記第2センサの出力値をアナログ信号によって取得するように構成される、
 エアロゾル生成装置の電源ユニット。
(10)
A power supply unit for an aerosol generator according to any one of (1) to (8),
The controller includes an MCU (MCU1) configured to be able to perform the primary check,
The above MCU
Acquiring the output value of the first sensor by a digital signal,
Configured to acquire the output value of the second sensor by an analog signal,
Power supply unit for the aerosol generator.
 (10)によれば、MCUが2つのセンサの出力値を共にアナログ信号で取得する場合に比べて、MCU内部でのA/D変換に伴う負荷が低減される。このため、エアロゾル生成装置の安全確保をより早く実現できる。 According to (10), the load associated with A/D conversion inside the MCU is reduced compared to the case where the MCU acquires both the output values of the two sensors as analog signals. Therefore, the safety of the aerosol generator can be secured more quickly.
(11)
 (1)から(8)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記コントローラは、上記1次チェックを実行可能に構成されるMCU(MCU1)を含み、
 上記電源の残量と上記第1センサの出力値を取得可能に構成される残量計IC(残量計IC12)を備え、
 上記残量計ICは、
  上記第1センサの出力値を上記電源の温度を示すデジタル信号へ変換し、
  上記デジタル信号を上記MCUへ送信する、
 エアロゾル生成装置の電源ユニット。
(11)
A power supply unit for an aerosol generator according to any one of (1) to (8),
The controller includes an MCU (MCU1) configured to be able to perform the primary check,
A fuel gauge IC (fuel gauge IC 12) configured to be able to acquire the remaining amount of the power supply and the output value of the first sensor,
The fuel gauge IC is
converting the output value of the first sensor into a digital signal indicating the temperature of the power supply;
transmitting the digital signal to the MCU;
Power supply unit for the aerosol generator.
 (11)によれば、MCUが1次チェックのために2つのセンサの出力値を共にアナログ信号で取得する場合に比べて、MCUのA/D変換に伴う負荷が低減される。このため、エアロゾル生成装置の安全確保をより早く実現できる。 According to (11), the load associated with the A/D conversion of the MCU is reduced compared to the case where the MCU acquires both the output values of the two sensors as analog signals for the primary check. Therefore, the safety of the aerosol generator can be secured more quickly.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.
 なお、本出願は、2021年5月10日出願の日本特許出願(特願2021-079894)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-079894) filed on May 10, 2021, the content of which is incorporated herein by reference.
100 吸引器
110 ケース
119 スライダ
150 シャーシ
170 加熱部
1 MCU
2 充電IC
9 昇圧DC/DCコンバータ
12 残量計IC
17 フリップフロップ
HTR ヒータ
BAT 電源
Cn ヒータコネクタ
T1 電源サーミスタ
T2 パフサーミスタ
T3 ヒータサーミスタ
T4 ケースサーミスタ
Ch、Cu、Ct2、Ct3、Ct4 コンデンサ
Nt1、Nt2、Nt3、Nt4、Nu、Nb ノード
OPS 操作スイッチ
PT1~PT8 パターン
100 Suction Device 110 Case 119 Slider 150 Chassis 170 Heating Unit 1 MCU
2 charging IC
9 step-up DC/DC converter 12 fuel gauge IC
17 Flip-flop HTR Heater BAT Power supply Cn Heater connector T1 Power supply thermistor T2 Puff thermistor T3 Heater thermistor T4 Case thermistor Ch, Cu, Ct2, Ct3, Ct4 Capacitors Nt1, Nt2, Nt3, Nt4, Nu, Nb Node OPS Operation switches PT1 to PT8 pattern

Claims (11)

  1.  エアロゾル生成装置の電源ユニットであって、
     前記電源ユニットの表面を構成するケースと、
     電源と、
     前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるコネクタと、
     前記電源の近傍に配置され、前記電源の温度に関する値を出力する第1センサと、
     前記ケースの近傍に配置され、前記ケースの温度に関する値を出力する第2センサと、
     コントローラと、を備え、
     前記コントローラは、
      前記第1センサの出力値と前記第2センサの出力値が異常であるか否かを判断する1次チェックを実行し、
      前記1次チェックにおいて前記第1センサの出力値と前記第2センサの出力値が異常であると判断される場合、前記電源の充電と前記電源から前記ヒータへの放電の一方又は両方を禁止する保護制御を実行するように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator,
    a case forming a surface of the power supply unit;
    a power supply;
    a connector connected to a heater that consumes the power supplied from the power source and heats the aerosol source;
    a first sensor disposed near the power source and outputting a value related to the temperature of the power source;
    a second sensor disposed near the case and outputting a value related to the temperature of the case;
    a controller;
    The controller is
    performing a primary check to determine whether the output value of the first sensor and the output value of the second sensor are abnormal;
    If the primary check determines that the output value of the first sensor and the output value of the second sensor are abnormal, one or both of charging the power source and discharging from the power source to the heater is prohibited. configured to perform protective control,
    Power supply unit for the aerosol generator.
  2.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記保護制御は、前記充電と前記放電の一方又は両方を永久的に禁止する、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 1,
    said protective control permanently inhibits one or both of said charging and said discharging;
    Power supply unit for the aerosol generator.
  3.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記保護制御は、ユーザによる操作に基づいてのみ終了可能である、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 1,
    The protective control can only be terminated based on user operation.
    Power supply unit for the aerosol generator.
  4.  請求項1から3のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、
      前記1次チェックを実行する前に、前記第1センサの出力値が異常であるか否かを判断する0次チェックを実行し、
      前記0次チェックにおいて前記第1センサの出力値が異常であると判断される場合、前記1次チェックを実行するように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 1 to 3,
    The controller is
    Before executing the primary check, executing a zero-order check for determining whether the output value of the first sensor is abnormal;
    When the output value of the first sensor is determined to be abnormal in the zero-order check, the first-order check is configured to be performed,
    Power supply unit for the aerosol generator.
  5.  請求項4に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、前記0次チェックを実行する時は、前記第2センサの出力値を取得不能に構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 4,
    The controller is configured to disable acquisition of the output value of the second sensor when performing the zero-order check.
    Power supply unit for the aerosol generator.
  6.  請求項4に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、MCUを含み、
     前記0次チェックを実行する時、前記MCUはスリープモードで動作するように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit of the aerosol generator according to claim 4,
    the controller includes an MCU;
    The MCU is configured to operate in sleep mode when performing the 0th order check;
    Power supply unit for the aerosol generator.
  7.  請求項4から6のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記0次チェックにおいて前記第1センサの出力値が異常であると判断された場合に、前記第2センサには、前記ケースの温度に関する値を出力するために必要な電力が供給される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 4 to 6,
    When the output value of the first sensor is determined to be abnormal in the zero-order check, the second sensor is supplied with power necessary to output a value related to the temperature of the case.
    Power supply unit for the aerosol generator.
  8.  請求項4から7のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、MCUと、前記電源の残量と前記第1センサの出力値を取得可能に構成される残量計ICと、を備え、
     前記0次チェックは、前記MCUと前記残量計ICのうち前記残量計ICによって実行される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 4 to 7,
    The controller comprises an MCU, and a fuel gauge IC configured to be capable of acquiring the remaining amount of the power supply and the output value of the first sensor,
    The zero-order check is performed by the fuel gauge IC out of the MCU and the fuel gauge IC,
    Power supply unit for the aerosol generator.
  9.  請求項1から8のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、前記1次チェックを実行可能に構成されるMCUを含み、
     前記MCUは、前記第1センサへ接続される第1端子と、前記第2センサへ接続される第2端子と、を含み、
     前記第1センサと前記第1端子とを電気的に接続する第1回路と、
     前記第2センサと前記第2端子とを電気的に接続する第2回路と、を備え、
     前記第1回路は、前記第2回路に含まれない種類の電子部品を含む、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 1 to 8,
    the controller includes an MCU configured to perform the primary check;
    the MCU includes a first terminal connected to the first sensor and a second terminal connected to the second sensor;
    a first circuit electrically connecting the first sensor and the first terminal;
    a second circuit that electrically connects the second sensor and the second terminal;
    the first circuit includes electronic components of a type not included in the second circuit;
    Power supply unit for the aerosol generator.
  10.  請求項1から8のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、前記1次チェックを実行可能に構成されるMCUを含み、
     前記MCUは、
      前記第1センサの出力値をデジタル信号によって取得し、
      前記第2センサの出力値をアナログ信号によって取得するように構成される、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 1 to 8,
    the controller includes an MCU configured to perform the primary check;
    The MCU is
    Acquiring the output value of the first sensor as a digital signal,
    Configured to acquire the output value of the second sensor by an analog signal,
    Power supply unit for the aerosol generator.
  11.  請求項1から8のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記コントローラは、前記1次チェックを実行可能に構成されるMCUを含み、
     前記電源の残量と前記第1センサの出力値を取得可能に構成される残量計ICを備え、
     前記残量計ICは、
      前記第1センサの出力値を前記電源の温度を示すデジタル信号へ変換し、
      前記デジタル信号を前記MCUへ送信する、
     エアロゾル生成装置の電源ユニット。
    A power supply unit for an aerosol generator according to any one of claims 1 to 8,
    the controller includes an MCU configured to perform the primary check;
    A fuel gauge IC configured to be able to acquire the remaining amount of the power supply and the output value of the first sensor,
    The fuel gauge IC
    converting the output value of the first sensor into a digital signal indicating the temperature of the power supply;
    transmitting the digital signal to the MCU;
    Power supply unit for the aerosol generator.
PCT/JP2022/007923 2021-05-10 2022-02-25 Power supply unit for aerosol generation device WO2022239372A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079894 2021-05-10
JP2021-079894 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239372A1 true WO2022239372A1 (en) 2022-11-17

Family

ID=84029085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007923 WO2022239372A1 (en) 2021-05-10 2022-02-25 Power supply unit for aerosol generation device

Country Status (1)

Country Link
WO (1) WO2022239372A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207885663U (en) * 2017-12-29 2018-09-21 河南中烟工业有限责任公司 A kind of band radiator fan and sealing thermal insulation cylinder low-temperature bake smoking set
JP2020141705A (en) * 2019-08-20 2020-09-10 日本たばこ産業株式会社 Aerosol generation device, control unit for aerosol generation device, method, and program
WO2020256341A1 (en) * 2019-06-17 2020-12-24 Kt&G Corporation Aerosol generating device and aerosol generating article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207885663U (en) * 2017-12-29 2018-09-21 河南中烟工业有限责任公司 A kind of band radiator fan and sealing thermal insulation cylinder low-temperature bake smoking set
WO2020256341A1 (en) * 2019-06-17 2020-12-24 Kt&G Corporation Aerosol generating device and aerosol generating article
JP2020141705A (en) * 2019-08-20 2020-09-10 日本たばこ産業株式会社 Aerosol generation device, control unit for aerosol generation device, method, and program

Similar Documents

Publication Publication Date Title
WO2022239372A1 (en) Power supply unit for aerosol generation device
WO2022239370A1 (en) Power supply unit for aerosol generation device
JP7066927B1 (en) Power supply unit for aerosol generator
JP7336624B2 (en) Power supply unit for aerosol generator
WO2022239371A1 (en) Power supply unit for aerosol generation device
WO2022239409A1 (en) Power supply unit for aerosol generation apparatus
WO2022239373A1 (en) Power supply unit for aerosol generation device
WO2022239390A1 (en) Power supply unit for aerosol generation device
WO2022239413A1 (en) Power supply unit of aerosol generation device
WO2022239410A1 (en) Power supply unit for aerosol generation device
WO2022239414A1 (en) Power source unit for aerosol generation device
WO2022239374A1 (en) Power supply unit of aerosol generation device
WO2022239384A1 (en) Power supply unit for aerosol generation device
WO2022239385A1 (en) Power supply unit for aerosol generation device
WO2022239407A1 (en) Power supply unit for aerosol generation device
WO2022239382A1 (en) Power supply unit for aerosol generation device
JP7085705B1 (en) Power supply unit for aerosol generator
WO2022239383A1 (en) Power supply unit for aerosol generation device
WO2022239405A1 (en) Power supply unit of aerosol generator
EP4338615A1 (en) Power supply unit for aerosol generation device
JP7467770B2 (en) Aerosol generator power supply unit
WO2022239389A1 (en) Power supply unit for aerosol generation device
WO2022239408A1 (en) Power supply unit for aerosol generation device
WO2022239396A1 (en) Power supply unit for aerosol generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE