WO2022239364A1 - Grinding device - Google Patents

Grinding device Download PDF

Info

Publication number
WO2022239364A1
WO2022239364A1 PCT/JP2022/007642 JP2022007642W WO2022239364A1 WO 2022239364 A1 WO2022239364 A1 WO 2022239364A1 JP 2022007642 W JP2022007642 W JP 2022007642W WO 2022239364 A1 WO2022239364 A1 WO 2022239364A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
nibs
groove group
fixed die
temperature
Prior art date
Application number
PCT/JP2022/007642
Other languages
French (fr)
Japanese (ja)
Inventor
幸治 池田
宏明 頭司
慶一 吉野
俊樹 清水
康彦 太田
クリストファー ジョージ フレックトナー
Original Assignee
Dari K株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dari K株式会社 filed Critical Dari K株式会社
Publication of WO2022239364A1 publication Critical patent/WO2022239364A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/04Apparatus specially adapted for manufacture or treatment of cocoa or cocoa products
    • A23G1/10Mixing apparatus; Roller mills for preparing chocolate
    • A23G1/12Chocolate-refining mills, i.e. roll refiners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • B02C7/11Details
    • B02C7/12Shape or construction of discs

Definitions

  • the present invention mainly relates to a grinding device that grinds cacao nibs obtained by roasting cacao beans and removing the skin.
  • Cocoa mass which is a raw material for chocolate, is produced by grinding cacao nibs to a size of about 20 ⁇ m. Comparing cacao beans with coffee beans, coffee can be extracted by grinding coffee beans to coarse grains of about 0.5 to 1 mm, but cacao beans must be ground to a size of about 20 ⁇ m.
  • cacao beans contain a large amount of cacao oils and fats, which are oil components, inside the beans. The melting point of cacao fats and oils is about 30° C. If the temperature of cacao beans drops below this melting point during grinding, the fats and oils do not melt out and become powder, not a paste with a particle size of 20 ⁇ m. Conversely, cacao fat loses its flavor if the temperature is too high.
  • Patent Document 1 describes a technology related to cocoa mass processing that can grind cacao mass into fine and uniform particle sizes without causing deterioration of flavor, and can produce high-quality chocolate that is strong even in summer and has a good texture and mellow quality.
  • Patent Literature 2 discloses a technique related to a home-use chocolate manufacturing apparatus capable of producing compact chocolate in a short period of time and realizing low manufacturing costs.
  • Patent Literature 4 discloses a technique relating to the shape of the mortar, which is capable of suppressing variations in the particle size of powder caused by differences in the size of the crushed object that has been put into the mortar.
  • the applicant is a manufacturer engaged in everything from the cultivation and procurement of cacao beans to the manufacture of chocolate.
  • the main raw material of chocolate is cocoa beans, and it is widely recognized as a fact that the quality of the raw cacao beans has a great influence on the flavor of the final product, chocolate.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a grinding apparatus capable of grinding cocoa nibs to produce cocoa mass in an extremely short period of time while having a simple structure. .
  • the grinding apparatus of the present invention comprises a nib introduction cylinder, a first transport mechanism for receiving cacao nibs supplied from the nib introduction cylinder and transporting the cacao nibs to a subsequent mechanism, and A crushing mechanism that coarsely grinds the transported cocoa nibs to produce crushed nibs, a second conveying mechanism that transports the crushed nibs produced by the crushing mechanism to a subsequent mechanism, and a supply from the second conveying mechanism.
  • a rotary mortar for further grinding the crushed nibs to produce cocoa mass
  • a fixed mortar arranged opposite to the rotary mortar and cooperating with the rotary mortar for grinding the coarsely crushed nibs to produce cocoa mass
  • a motor provided with a drive shaft for rotationally driving the first transport mechanism, the second transport mechanism and the rotary die.
  • FIG. 1 is a perspective view of a grinding device according to a first embodiment of the present invention
  • FIG. FIG. 2 is a longitudinal sectional view of the grinding device shown in FIG. 1
  • A is a top view of the grinding device shown in FIG. 1
  • B is a front view of this grinding device
  • C is a side view of this grinding device
  • D is a back view of this grinding device.
  • Fig. 2 is a longitudinal sectional view enlarging a part of the grinding device shown in Fig. 1
  • FIG. 2 is an enlarged view of a part of the grinding device shown in FIG. 1, mainly showing parts that come into direct contact with cocoa nibs and/or cocoa mass.
  • FIG. 2 is a partially exploded view of the grinding device shown in FIG.
  • A is a perspective view of a screw provided in the grinding apparatus shown in FIG. 1
  • B is a front view of this screw
  • C is a side view of this screw.
  • 4A to 4D are schematic views of the grinding apparatus shown in FIG. 1, viewed from the upper surface of the hopper, showing how a screw housed in a case is rotationally driven by a motor;
  • FIG. A is a side view of the screw and pre-plate at the 0° rotation position in the grinding device shown in FIG.
  • FIG. 2 is a side view of a screw including a partial cross-section of a pre-plate when cacao nibs pass through windows of the pre-plate in the grinding device shown in FIG. 1; A is a front view of a pre-plate provided in the grinding apparatus shown in FIG. 1, and B is a front view of a pre-plate and a propeller provided in this grinding apparatus.
  • FIG. 2 is a front view of a fixed die included in the grinding device shown in FIG.
  • FIG. 2 is a partially enlarged view of a groove formed in a fixed die of the grinding device shown in FIG. 1;
  • FIG. 2 is a diagram showing only two specific grooves of a fixed die in the grinding device shown in FIG. 1;
  • 2 is a front view of a rotary mill included in the grinding device shown in FIG. 1;
  • FIG. FIG. 2 is a partially enlarged view of a rotary mill included in the grinding device shown in FIG. 1;
  • FIG. 2 is a view of only two specific grooves of the rotary mill in the grinding device shown in FIG. 1;
  • 2A and 2B are partially enlarged views of grooves of a fixed die and a rotary die provided in the grinding apparatus shown in FIG. 1;
  • A is a partially enlarged view schematically showing the grooves on the outer periphery of the fixed die in the grinding device shown in FIG.
  • C is a partial cross-sectional view (Part 1) schematically showing the first groove group of the fixed die and the outer peripheral groove of the rotary die in this grinding apparatus
  • D is a partially enlarged view schematically showing the first groove group of the fixed die and the grooves on the outer periphery of the rotary die in this grinding apparatus (Part 2)
  • E is the first groove group of the fixed die in this grinding apparatus
  • It is a partial cross-sectional view (2) which shows typically the groove
  • channel of the outer periphery of a rotary die. 2 is a perspective view of the grinding section of the grinding device shown in FIG.
  • FIG. A is a front view of an inner disk support provided in the grinding device shown in FIG. 1
  • B is a perspective view of the inner disk support provided in this grinding device.
  • FIG. 2 is a block diagram showing the hardware configuration of a control unit included in the grinding device shown in FIG. 1;
  • FIG. 2 is a block diagram showing software functions of a control unit provided in the grinding apparatus shown in FIG. 1;
  • 2 is a flow chart showing the flow of processing of a control unit provided in the grinding apparatus shown in FIG. 1;
  • FIG. 10 is a front view of a fixed die showing a modification of transverse grooves;
  • Fig. 2 is a perspective view of a grinding device according to a second embodiment of the present invention;
  • FIG. 27 is a longitudinal sectional view of the grinding device shown in FIG. 26; A is a top view of the grinding device shown in FIG. 26, B is a front view of this grinding device, C is a side view of this grinding device, and D is a rear view of this grinding device.
  • Fig. 27 is a longitudinal sectional view enlarging a part of the grinding device shown in Fig. 26; 27 is an exploded perspective view of the grinding device shown in FIG. 26;
  • FIG. FIG. 27 is a side view of a screw included in the grinding device shown in FIG. 26; 27 is a view of the screw in the case seen through the nib introduction tube in the grinding device shown in FIG. 26.
  • FIG. 27 is a perspective view showing a pre-plate and a discharge plate included in the grinding device shown in FIG. 26;
  • A is a view of the arrangement of the screw, pre-plate, and discharge plate during the period of nib supply, viewed from the tip side of the screw, and B is a vertical cross-sectional view showing the arrangement of the screw, pre-plate, and discharge plate during the period of nib supply.
  • A is a view of the arrangement of the screw, pre-plate, and discharge plate during the nib supply interruption period as viewed from the tip side of the screw, and B is a longitudinal sectional view showing the arrangement of the screw, pre-plate, and discharge plate during the nib supply interruption period.
  • FIG. 27 is a front view of an inner disk support included in the grinding device shown in FIG. 26;
  • FIG. 27 is a perspective view of an inner disk support included in the grinding device shown in FIG. 26; 27 is a flow chart showing a method of controlling a fan by a control unit provided in the grinding device shown in FIG. 26.
  • FIG. FIG. 5 is a block diagram showing an example of control configuration of a grinding device according to a second embodiment of the present invention; A is a diagram showing the operation position of the dial knob when the user of the grinding device selects the manufacturing mode, B is a diagram showing the operation position of the dial knob in the neutral state, and C is a diagram showing the operation position of the dial knob when the user of the grinding device is in the storefront mode. It is a figure which shows the operation position of a dial knob at the time of selecting.
  • FIG. 27 is a flow chart showing an example of control processing executed by a control unit provided in the grinding device shown in FIG. 26; FIG.
  • FIG. 1 a grinding device 101 according to the first embodiment of the present invention has a substantially rectangular parallelepiped driving section 102 and a cylindrical grinding section 103.
  • a motor 201 and a control unit 202 are housed inside the driving section 102.
  • the motor 201 is supported inside the driving section 102 by a device frame 417 so that the drive shaft 201a is oriented horizontally.
  • a pot 105 for receiving cocoa mass discharged from the grinding section 103 is placed on a table 106 .
  • the grinding unit 103 has an opening 104a in the vertical direction, a hopper 104 for accumulating cocoa nibs, and a screw that constitutes a first transport mechanism that receives cocoa nibs supplied from the hopper 104 and transports the cocoa nibs to a subsequent mechanism. 401.
  • the entire surface of the grinding section 103 is covered with a unit cover 107 .
  • the grinding section 103 has a pre-plate 402 which constitutes a coarse grinding mechanism together with the screw 401 for coarsely grinding cacao nibs transported from the screw 401 to produce coarsely ground nibs.
  • the grinding section 103 has a propeller 405 that constitutes a second transport mechanism that transports the coarsely ground nibs produced by the screw 401 and the preplate 402 to the following rotary die 403 and stationary die 404 .
  • the grinding unit 103 is arranged to face a rotary mortar 403 that grinds the coarsely crushed nibs supplied from the propeller 405 to produce cacao mass, and is arranged to face the rotary mortar 403, and coarsely grinds in cooperation with the rotary mortar 403. It has a fixed mortar 404 that grinds the nibs to produce cocoa mass.
  • the screw 401, the propeller 405, and the rotary die 403 are fitted on the drive shaft 201a of the motor 201, they are integrally rotated by the drive shaft 201a.
  • Motor 201 is a common power source for screw 401 , propeller 405 , and rotary die 403 .
  • Motor 201 directly rotates screw 401, propeller 405, and rotary die 403 through drive shaft 201a.
  • the drive shaft 201a is installed horizontally, and the rotary mill 403 and fixed mill 404 are installed vertically.
  • the grinding section 103 is constructed to be extremely compact.
  • the grinding section 103 has a case 406 fixed to the device frame 417 .
  • the case 406 has a brim-shaped support plate 406a screwed to the device frame 417, a horizontally extending screw housing cylinder 406b, and a nib introduction cylinder 406c provided substantially perpendicular to the screw housing cylinder 406b. have.
  • a screw housing cylinder 406b formed in a hollow cylindrical shape houses the screw 401 therein.
  • the nib introduction tube 406c is also formed in a hollow cylindrical shape like the screw storage tube 406b.
  • An upper end opening of the nib introduction tube 406c is connected to the hopper 104 .
  • An opening portion at the lower end of the nib introduction tube 406c is connected to the screw storage tube 406b.
  • the nib introduction cylinder 406c has the role of supporting the hopper 104 and introducing the cacao nibs stored in the hopper 104 from the opening 104a of the hopper 104 into the screw storage cylinder 406b. Therefore, when looking into the opening 104a of the hopper 104, it can be seen that part of the screw 401 is exposed to the opening 104a through the nib introduction tube 406c.
  • the fixed die 404 is supported by an inner disk support 407 supported by a case 406
  • the rotary die 403 is supported by an outer disk support 408 .
  • an inner adapter 413 made of resin is interposed between the inner disk support 407 and the case 406 . This inner adapter 413 is provided to prevent the heat generated from the fixed die 404 and/or the inner disk support 407 from being conducted to the cocoa nibs housed in the screw housing cylinder 406b of the case 406 and the transport groove 401a of the screw 401.
  • the inner disk support 407 incorporates a heater 2101, which will be described later with reference to FIG. Also, when the rotary mill 403 is rotationally driven by the motor 201 , frictional heat is generated in the fixed mill 404 and the rotary mill 403 .
  • An inner adapter 413 and a support plate 412 are interposed between the inner disk support 407 and the case 406 for heat insulation.
  • a spacer 415 and an outer adapter 416 are interposed between the outer disk support 408 and rotary die 403 and the drive shaft 201a for heat insulation.
  • the outer disk support 408 is supported by the drive shaft 201a through an outer adapter 416. As shown in FIG. The rotational driving force of the motor 201 is transmitted to the rotary die 403 via the outer disk support 408 . Also, the outer disk support 408 is pressed against the fixed die 404 by a nut 409 , a clamper 414 , a spacer 415 and a disc spring 410 . A nut 409 presses the outer disk support 408 onto the fixed die 404 . When the nut 409 is tightened, the nut 409 presses the disc spring 410 through the clamper 414 and spacer 415 . Then, the force with which the disc spring 410 presses the outer disk support 408 increases. The particle size of cocoa mass is determined by the force with which the disc spring 410 presses the outer disk support 408 .
  • the rotating die 403 and the outer disk support 408 are sealed by the stationary die 404 and the disk cover 411.
  • the disk cover 411 has the role of preventing leakage of cocoa mass exuding from the peripheral edges of the fixed mill 404 and the rotary mill 403 and guiding the cocoa mass to a discharge port 411 a provided directly below the disk cover 411 .
  • the fixed die 404, the rotary die 403, the inner adapter 413, the support plate 412, the spacer 415, and the outer adapter 416 almost all of the components of the grinding unit 103 are made of SUS304, SUS430, etc., and are robust compared to their weight. It is made of stainless steel, which is resistant to rust and has high thermal conductivity. Aluminum alloys, brass, and the like are not suitable as materials for the parts to be produced by the grinding unit 103 because they lack robustness.
  • Both the fixed die 404 and the rotary die 403 are made of ceramics such as alumina, zirconia, silicon nitride, etc., which have high hardness and are resistant to wear.
  • the inner adapter 413, the retainer plate 412, the spacer 415, and the outer adapter 416 are made of synthetic resin with high heat insulation performance such as monomer cast nylon or polyacetal.
  • the motor 201 rotates the screw 401, the propeller 405 and the rotary die 403 at a low rotational speed.
  • the motor 201 is a geared motor, a large output motor and a low rotation motor driver, etc., which outputs high torque at a low rotation speed.
  • the grinding device 101 shown in FIGS. 1 to 6 has a height including the hopper 104 of about 50 cm, a driving section 102 having a height of 41 cm, a driving section 102 having a depth of about 26 cm, and a grinding section 103 having a depth of about At 16 cm, it is the same size as a well-known coffee maker.
  • This grinding device 101 is thus very compact compared to known chocolate manufacturing plants. Naturally, the cost of manufacturing the grinding device 101 is overwhelmingly lower when compared to known chocolate manufacturing plants.
  • the size of the grinding device 101 described above is the numerical value of the prototype at the time of the filing of the present patent application, and may change as the device is improved in the future. It is still an equivalent, smaller device.
  • the cocoa mass is discharged in just 30 seconds to 1 minute after the cacao nibs are put into the hopper 104. This means that it has an overwhelmingly faster cocoa mass production capacity compared to known chocolate manufacturing plants.
  • the transportation route until the cocoa nibs are ground into cocoa mass by the grinding unit 103 is about 15 cm including the hopper 104, and it reaches 10 cm if the hopper 104 is excluded. do not have.
  • This point also means that the cacao nibs are ground into cocoa mass in a short period of time via an extremely short transportation route constituted by the grinding section 103, as compared with a well-known chocolate manufacturing plant.
  • FIGS. 7 and 8 show perspective, front and side views of the screw 401, respectively.
  • 8A to 8D show views of the screw 401 housed in the case 406 being rotationally driven by the motor 201, viewed from above the hopper 104.
  • FIG. 7A, B and C show perspective, front and side views of the screw 401, respectively.
  • 8A to 8D show views of the screw 401 housed in the case 406 being rotationally driven by the motor 201, viewed from above the hopper 104.
  • the transport groove 401a of the screw 401 which is visible from the opening 104a of the hopper 104 and the nib introduction cylinder 406c of the case 406, is exposed to the nib introduction cylinder 406c by the rotational drive of the motor 201. There are times when it does (FIGS. 8B, C and D) and times when it hides without being exposed (FIG. 8A).
  • the transport groove 401a is spirally formed.
  • the cacao nibs accumulated in the hopper 104 enter the transport groove 401a of the screw 401 by gravity, but when the transport groove 401a is not exposed to the nib introduction tube 406c, the cacao nibs do not enter the transport groove 401a of the screw 401. That is, the cocoa nibs are intermittently transported to the subsequent mechanism through the transport groove 401a of the screw 401 by the rotational driving of the motor 201.
  • the rotating mill 403 and the fixed mill 404 generate cocoa mass from coarsely crushed nibs (described later in FIG. 9) obtained by coarsely crushing cacao nibs by rotating the rotating mill 403 with the motor 201 .
  • the production speed of cocoa mass by the rotary mill 403 and fixed mill 404 can be increased by increasing the rotation speed of the motor 201 .
  • the rotational speed of the rotary mill 403 is too high, the temperature of the rotary mill 403 and the fixed mill 404 will rise too much, which may hinder cocoa mass production.
  • the fact that the propeller 405 has a limited capacity to process cocoa nibs per unit time means that the propeller 405 should not be supplied with cocoa nibs that exceed its capacity to process cocoa nibs per unit time. If the hopper 104 continues to supply cocoa nibs indefinitely, the capacity of the propeller 405 to process cocoa nibs can easily be exceeded. Then, there arises a problem that unprocessed cocoa nibs are clogged in the screw 401 and the subsequent pre-plate 402 and propeller 405 .
  • a mechanism is required to limit the amount of cocoa nibs supplied from the hopper 104 per unit time so as not to exceed the cacao nibs processing capacity of the rotary mill 403, fixed mill 404, and propeller 405 per unit time.
  • a mechanism for limiting the amount of cacao nibs supplied per unit time is shown in FIG.
  • FIGS. 8A to 8D when the screw 401 is viewed from the opening 104a of the hopper 104 and the nib introduction tube 406c of the case 406, the transport groove 401a of the screw 401 is completely hidden at the time of FIG. 8A. Also, the exposed area of the transport groove 401a of the screw 401 visible from the opening 104a of the hopper 104 and the nib introduction tube 406c of the case 406 starts to increase from FIG. 8B after passing FIG. 8A. Then, it becomes maximum in FIG. 8D, and the exposed area gradually decreases.
  • cocoa nibs supplied from the hopper 104 in the direction of the transport groove 401a of the screw 401 can limit the supply of
  • the mechanism for limiting the amount of cocoa nibs supplied using the transport groove 401a of the screw 401 can be easily realized by simply adjusting the exposed area of the transport groove 401a in a state where it is exposed from the nib introduction tube 406c, so it is simple. Although it is a mechanism, it is possible to achieve a good effect.
  • the screw 401 that constitutes the first transport mechanism when transporting the cacao nibs supplied from the nib introduction cylinder 406c to the subsequent mechanism, adjusts the supply amount of cacao nibs per unit time to an appropriate amount. It has the function of limiting to
  • the final purpose of the grinding device 101 of the present embodiment is to produce cocoa mass with a size of about 20 ⁇ m from cocoa nibs.
  • the final mechanical parts for producing cocoa mass necessary for realizing this are the rotating mill 403 and the fixed mill 404 .
  • the pre-plate 402 is arranged at the terminal end of the screw 401 .
  • the pre-plate 402 is arranged close to the end of the transport groove 401a of the screw 401. As shown in FIG.
  • the pre-plate 402 is fitted in an inner adapter 413 interposed between the inner disk support 407 and the case 406.
  • a retainer plate 412 is provided on the side of the pre-plate 402 opposite to the screw 401 .
  • the support plate 412 is fitted in the center of the inner disk support 407 .
  • the retainer plate 412 is a part that holds the pre-plate 402 fitted in the inner adapter 413 from the outside so that it does not come off and prevents the heat of the inner disk support 407 from being transmitted directly to the nib.
  • the pre-plate 402 is provided with a plurality of (12 in this embodiment) windows 402a in the circumferential direction.
  • the cacao nib 1001 passes through the window 402a of the pre-plate 402 in the direction of arrow V1002.
  • the windows 402a are arranged evenly in the circumferential direction so as to surround the drive shaft 201a.
  • the window 402a is formed in a substantially right-angled trapezoidal shape, but the shape can be changed as appropriate, and for example, the window 402a may be formed in a sector shape. Also, the number of windows 402a to be formed can be changed as appropriate.
  • FIGS. 9A-D show angles at which the screw 401 is rotated 0°, 90°, 180°, and 270°, respectively.
  • the cocoa nibs 1001 stored in the transport grooves 401a of the screw 401 are pushed by the teeth 401b.
  • the frictional force generated between the cocoa nibs 1001 and the transport groove 401a of the screw 401 and the inner wall of the screw storage cylinder 406b acts as a reaction, and the cocoa nibs 1001 stored in the transport groove 401a are pushed out toward the pre-plate 402 by this reaction.
  • the extruded cacao nibs 1001 slide along the conveying groove 401 a of the screw 401 and are extruded to the end face of the screw 401 .
  • cacao nibs 1001 are pushed out by teeth 401b of screw 401 to window 402a of pre-plate 402 indicated by arrow V1002.
  • the cacao nibs 1001 pass through the window 402a, the cacao nibs 1001 come into contact with the window 402a at the peripheral portion of the window 402a, for example, the contact point P1003.
  • the cacao nibs 1001 are crushed at the contact point P1003. That is, the window 402a of the pre-plate 402 has a function of limiting the size of the cacao nibs 1001 when the cacao nibs 1001 pass through.
  • all cacao nibs 1001 become coarse nibs with a shape smaller than the window 402a.
  • the cacao nibs 1001 stored in the transport groove 401a of the screw 401 are crushed when passing through the window 402a of the pre-plate 402 as the screw 401 rotates. Then, the cacao nibs 1001 become coarsely crushed nibs that are crushed into smaller grains than when they were fed from the hopper 104 .
  • the propeller 405 that constitutes the second transport mechanism has three blades 405a, and is attached to the pre-plate 402 at a position opposite to the side facing the screw 401 of the pre-plate 402. placed in close proximity.
  • Propeller 405 is fixed to drive shaft 201a together with screw 401 and rotary mill 403 . Therefore, the propeller 405 is rotationally driven integrally with the screw 401 and rotary die 403 by the motor 201 .
  • the propeller 405 is rotationally driven to feed the coarsely crushed nibs that have passed through the window 402 a of the preplate 402 to the fixed die 404 and rotary die 403 .
  • the radial length of the blades 405a of the propeller 405 is equal to the radial length of the window 402a of the pre-plate 402. It is configured longer than Note that the number and shape of the blades 405a can be appropriately changed according to the processing speed of the coarsely crushed nibs per unit time of the fixed mill 404 and the rotary mill 403, and the like.
  • the propeller 405 that is rotationally driven by the motor 201 like the screw 401 is arranged in the immediate vicinity of the pre-plate 402 . While the propeller 405 scrapes the coarsely crushed nibs sent from the window 402 a of the preplate 402 , the coarsely crushed nibs are continuously supplied to the fixed die 404 and the rotary die 403 arranged on the periphery of the propeller 405 . .
  • the propeller 405 continuously supplies the coarsely crushed nibs sent from the window 402a of the preplate 402 to the fixed die 404 and the rotary die 403, so that the coarsely crushed nibs passing through the window 402a of the preplate 402 are transferred to the screw 401. It has a backflow prevention function that prevents backflow to the side.
  • Both the fixed die 404 and the rotary die 403 are made of ceramics having high hardness, such as alumina, zirconia, and silicon nitride. As shown in FIGS. 12 to 18, both the fixed die 404 and the rotary die 403 have grooves formed on their surfaces. Also, as shown in FIGS. 19A, 19C and 19E, the groove is formed at an angle of 90° from the surface of the die, and the periphery of the groove is formed sharp.
  • FIG. 12 is an overall view of the fixed mill 404.
  • FIG. 13 is a partially enlarged view of a groove formed in fixed die 404 shown in FIG.
  • FIG. 14 is a view of only two specific grooves extracted from the partially enlarged view of the grooves of the fixed die 404 shown in FIG.
  • the coarsely crushed nibs sent out by the propeller 405 from the window 402a of the preplate 402 stay in the space 1202 in which the propeller 405 is housed, which is the inner periphery of the fixed die 404 shown in FIG.
  • coarse nibs overflow space 1202 beyond the limit space 1202 can accommodate for coarse nibs.
  • coarse nib storage areas 1201a, 1201b, 1201c, 1201d formed near the center of the fixed die 404 shown in FIG.
  • coarse nib storage areas 1201a, 1201b, 1201c, and 1201d will be referred to as coarse nib storage areas 1201 when not distinguished from each other.
  • the coarsely crushed nib storage area 1201 is formed so that the depth gradually decreases from the center of the rotary mill 403 toward the outer circumference.
  • the surface of the fixed die 404 is circumferentially formed with a group of grooves from the inner circumference to the outer circumference.
  • a region having a plurality of grooves formed at the same inclination angle with respect to the diametrical direction in the circumferential direction will be referred to as a groove group.
  • a first groove group 1301 having a first inclination angle in the counterclockwise direction with respect to the diameter direction is formed on the outer circumference of the fixed die 404 .
  • a second groove group 1302 is formed on the inner circumference of the first groove group 1301 and has a second inclination angle in the clockwise direction, which is the opposite inclination direction to the first groove group 1301 with respect to the diametrical direction.
  • the coarsely ground nib accumulation area 1201 described above is formed on the inner periphery of the second groove group 1302 .
  • the first groove group 1301 provided on the outer peripheral side of the fixed die 404 has a first inner peripheral side sub-groove group 1303 having grooves that are partly connected continuously with the grooves of the second groove group 1302. , and a first outer peripheral side sub-groove group 1304 formed only by independent grooves that are not connected to the first inner peripheral side sub-groove group 1303 .
  • the first inner peripheral side sub-groove group 1303 is partially connected to the grooves of the second groove group 1302 as described above, and is not connected to the grooves of the second groove group 1302. It also has independent grooves.
  • FIG. 14 shows, as part of the grooves of the fixed die 404, a first outer peripheral side sub-groove 1401 forming a first outer peripheral side sub-groove group 1304, and a first inner peripheral side sub-groove forming a first inner peripheral side sub-groove group 1303.
  • Side grooves 1402, second grooves 1403 and third grooves 1404 that make up second groove group 1302 are shown.
  • Next to the first outer peripheral side sub-groove 1401 is a first outer peripheral side sub-groove 1405, next to the first inner peripheral side sub-groove 1402 and second groove 1403 is a continuous groove 1406, and next to the third groove 1404 is a continuous groove 1406. are provided with third grooves 1407 respectively.
  • arc-shaped crossing grooves 1203 are formed that cross the plurality of grooves in the circumferential direction.
  • the transverse grooves 1203 traverse the second groove group 1302 along the rotation direction of the rotary die 403 from below the second groove group 1302 in order to allow the coarsely crushed nibs to flow in the circumferential direction of the fixed die 404. It is a groove formed by the trajectory. This crossing groove 1203 evenly fixes the coarsely crushed nibs by moving the coarsely crushed nibs, which tend to accumulate on the lower side of the fixed die 404 due to gravity, to the upper side of the fixed die 404 using the rotational force of the rotary die 403. It has a role of spreading over the entire surface of the mortar 404 . Along with the flow of the crushed nibs, cocoa mass also flows into the transverse grooves 1203 as well.
  • an outer circumferential groove 1406a belonging to the first inner circumferential sub-groove group 1303 and an inner circumferential groove 1406b belonging to the second groove group 1302 are continuously connected at a bending point 1406c.
  • the outer circumferential groove 1406a and the inner circumferential groove 1406b are different in the direction of inclination with respect to the diameter direction. That is, the continuous groove 1406 is formed across the second groove group 1302 and the first inner peripheral side sub-groove group 1303 .
  • a groove in which a part of the first groove group 1301 is connected to a groove of the second groove group 1302 refers to this continuous groove 1406 .
  • the set of the first inner peripheral side secondary groove 1402 and the second groove 1403 adjacent to the continuous groove 1406 will be referred to as a set of discontinuous grooves for convenience.
  • a groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves is called an independent groove.
  • the open end 1404a of the third groove 1404 which is the diametrically inner end of the fixed die 404, is in contact with the coarsely crushed nib storage area 1201c.
  • the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation area 1201c enter the third groove 1404 from the open end 1404a.
  • the action of gravity and the interaction with the grooves formed in the rotary die 403 cause the third groove 1404 is moved in the outer peripheral direction of the fixed die 404 .
  • a crossing groove 1203 is formed at the outer peripheral end of the third groove 1404, part of the coarsely crushed nib moving in the third groove 1404 travels along the crossing groove 1203 as the rotary die 403 rotates. , moves the fixed die 404 clockwise. Since the transverse grooves 1203 have a shape that crosses the second groove group 1302, the coarsely crushed nibs flow into the grooves of the second groove group 1302 where the transverse grooves 1203 are formed. In this way, the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c travel along the third grooves 1404 and are diffused from the transverse grooves 1203 to the other second groove group 1302 as the rotary die 403 rotates.
  • a portion of the coarsely crushed nibs that have flowed into the second groove 1403 move to the end of the second groove 1403 on the outer peripheral side due to the action of gravity and interaction with the grooves formed in the rotary die 403 .
  • the open end 1407a which is the diametrically inner end of the third groove 1407, is also in contact with the coarse nib accumulation area 1201c.
  • the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation area 1201c enter the third groove 1407 from the open end 1407a.
  • the action of gravity and the interaction with the grooves formed in the rotary die 403 cause the third groove 1407 is moved in the outer peripheral direction of the fixed die 404 .
  • a crossing groove 1203 is formed at the outer peripheral end of the third groove 1407, part of the coarsely crushed nib moving in the third groove 1407 travels along the crossing groove 1203 as the rotary die 403 rotates. , moves the fixed die 404 clockwise. Since the transverse grooves 1203 have a shape that crosses the second groove group 1302, the coarsely crushed nibs flow into the grooves of the second groove group 1302 where the transverse grooves 1203 are formed. In this way, the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c travel along the third groove 1407 and are diffused from the transverse groove 1203 to the other second groove group 1302 as the rotary die 403 rotates.
  • Part of the coarsely crushed nibs that have flowed into the continuous groove 1406 reach the bending point 1406c of the continuous groove 1406 due to the action of gravity and interaction with the grooves formed in the rotary die 403 .
  • a portion of the coarsely crushed nib that has reached the bending point 1406c moves to the terminal end of the outer peripheral side groove 1406a of the continuous groove 1406. As shown in FIG.
  • the second groove 1403 allows coarsely crushed nibs remaining in the coarsely crushed nib accumulation area 1201 to quickly reach the second groove group 1302 .
  • the continuous groove 1406 not only allows the coarsely crushed nibs staying in the coarsely crushed nib accumulation region 1201 to reach the second groove group 1302 quickly, but also allows some of the coarsely crushed nibs to pass beyond the second groove group 1302 and reach the second groove group 1302. It reaches the first inner peripheral side sub-groove group 1303 which is a groove group inside the one groove group 1301 .
  • FIG. 15 is an overall view of the rotary mill 403.
  • FIG. FIG. 16 is a partially enlarged view of grooves formed in the rotary mill 403 shown in FIG.
  • FIG. 17 is a view of only two specific grooves extracted from the partially enlarged view of the grooves of the rotary mill 403 shown in FIG.
  • groups of grooves are formed in the circumferential direction from the inner periphery to the outer periphery.
  • a third groove group 1601 having a third tilt angle that is tilted counterclockwise with respect to the diameter direction is formed on the outer periphery of the rotary die 403 .
  • the third tilt angle has the same tilt angle as the first tilt angle in the first groove group 1301 of the fixed die 404 .
  • a fourth groove group 1602 is formed on the inner periphery of the third groove group 1601 and has a fourth inclination angle in the clockwise direction, which is the opposite inclination direction to the third groove group 1601 with respect to the diametrical direction. there is The fourth tilt angle is the same tilt angle as the second tilt angle of the second groove group 1302 of the fixed die 404 .
  • the rotary die 403 does not have a location corresponding to an area for accumulating coarsely crushed nibs, such as the coarsely crushed nib accumulation area 1201 .
  • the third groove group 1601 provided on the outer peripheral side of the rotary mill 403 is a second inner peripheral side sub-groove group 1603 having grooves that are partly connected continuously with the grooves of the fourth groove group 1602. , second inner peripheral side sub-groove group 1603 and second outer peripheral side sub-groove group 1604 formed only by independent grooves that are not connected to each other.
  • FIG. 17 as part of the grooves of the rotary mill 403, a second outer peripheral side sub-groove 1605 constituting a second outer peripheral side sub-groove group 1604 and a second inner peripheral side sub-groove forming a second inner peripheral side sub-groove group 1603 Side grooves 1606 and fourth grooves 1607 forming fourth groove group 1602 are shown.
  • a second outer peripheral sub-groove 1608 is provided next to the second outer peripheral sub-groove 1605, and a continuous groove 1609 is provided next to the second inner peripheral sub-groove 1606 and fourth groove 1607, respectively.
  • an outer circumferential groove 1609a belonging to the second inner circumferential sub groove group 1603 and an inner circumferential groove 1609b belonging to the fourth groove group 1602 are continuously connected at a bending point 1609c.
  • the outer peripheral groove 1609a and the inner peripheral groove 1609b are different in the direction of inclination with respect to the diameter direction. That is, the continuous groove 1609 is formed across the fourth groove group 1602 and the second inner peripheral side sub-groove group 1603 .
  • a groove in which a part of the third groove group 1601 is connected to a groove of the fourth groove group 1602 refers to this continuous groove 1609 .
  • the set of the second inner peripheral side sub-groove 1606 and the fourth groove 1607 adjacent to the continuous groove 1609 is replaced with the set of the first inner peripheral side sub-groove 1402 and the second groove 1403 in FIG. is conveniently called a set of discontinuous grooves.
  • second outer peripheral side sub-grooves 1605 and second outer peripheral side sub-grooves 1608 belonging to second outer peripheral side sub-groove group 1604 and second inner peripheral side sub-grooves 1606 belonging to second inner peripheral side sub-groove group 1603 In addition, a groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves is called an independent groove.
  • a fourth groove 1607 belonging to the fourth groove group 1602 includes a second groove 1403, a third groove 1404, a third groove 1407, and an inner circumferential groove 1406b of the continuous groove 1406 belonging to the second groove group 1302 of the fixed die 404. Cracking nibs are received from transverse grooves 1203 formed in group 4 of grooves 1602 .
  • the fourth groove 1607 transfers the accumulated coarsely crushed nibs to the second groove 1403, the third groove 1404, the third groove 1407, the inner circumferential groove 1406b of the continuous groove 1406, and the transverse groove 1203.
  • a second inner secondary groove 1606 belonging to the second inner peripheral secondary groove group 1603 is formed on the outer periphery of the first inner peripheral secondary groove 1402 and the continuous groove 1406 belonging to the first inner peripheral secondary groove group 1303 of the fixed die 404. It receives the coarsening nibs from gutter 1406a. In addition, the second inner peripheral side sub-groove 1606 transfers the accumulated coarsely crushed nibs to the first inner peripheral side sub-groove 1402 and the outer peripheral side groove 1406a.
  • the second outer peripheral side minor groove 1605 and the second outer peripheral side minor groove 1608 belonging to the second outer peripheral side minor groove group 1604 correspond to the first outer peripheral side minor groove 1401 and the second outer peripheral side minor groove belonging to the first outer peripheral side minor groove group 1304 of the fixed die 404 . It receives the coarsely crushed nib from the one outer peripheral side minor groove 1405 . In addition, the second outer peripheral side minor groove 1605 and the second outer peripheral side minor groove 1608 deliver the accumulated crushed nibs to the first outer peripheral side minor groove 1401 and the first outer peripheral side minor groove 1405 .
  • the inner circumferential groove 1609b of the continuous groove 1609 belonging to the fourth groove group 1602 is, similarly to the fourth groove 1607, the second groove 1403, the third groove 1404, and the third groove 1407 belonging to the second groove group 1302 of the fixed die 404. and the inner circumferential groove 1406 b of the continuous groove 1406 and the transverse groove 1203 formed in the fourth groove group 1602 to receive coarsely crushed nibs.
  • the inner peripheral groove 1609 b delivers the accumulated coarsely crushed nibs to the second groove 1403 , the third groove 1404 , the third groove 1407 , the inner peripheral groove 1406 b of the continuous groove 1406 and the transverse groove 1203 .
  • the inner groove 1609b is connected to the outer groove 1609a. Therefore, part of the coarsely crushed nibs that have entered the inner groove 1609b moves to the outer groove 1609a due to the centrifugal force generated as the rotary die 403 rotates.
  • the outer peripheral groove 1609a of the continuous groove 1609 belonging to the second inner peripheral side sub-groove group 1603 is, like the second inner peripheral side sub-groove 1606, the first inner peripheral side groove 1609a belonging to the first inner peripheral side sub-groove group 1303 of the fixed die 404.
  • the coarse nibs are received from the circumferential minor groove 1402 and the outer circumferential groove 1406 a of the continuous groove 1406 .
  • the second inner peripheral side sub-groove 1606 transfers the accumulated coarsely crushed nibs to the first inner peripheral side sub-groove 1402 and the outer peripheral side groove 1406a.
  • the outer groove 1609a is connected to the inner groove 1609b.
  • the outer peripheral groove 1609a receives a part of the coarsely crushed nibs that have entered the inner peripheral groove 1609b by the centrifugal force generated by the rotation of the rotary mill 403, and the part is transferred to the first inner peripheral secondary groove 1402 and the outer peripheral groove 1406a. hand over.
  • the coarse grinding nibs not only move in the grooves of the fixed die 404, but also are captured by the opposing grooves of the rotary die 403 and move together with the rotation of the rotary die 403.
  • the coarsening nibs are ground between the grooves of the fixed die 404 and the rotary die 403 as they move through the grooves of the fixed die 404 and the rotary die 403 in various paths of movement.
  • the grooves formed on the surfaces thereof are formed by alternately arranging a set of continuous grooves 1406 and discontinuous grooves to form a first inner peripheral side sub-groove group. It limits the amount of granulated nibs that are transported to the end of the 1303. Since the first inner peripheral side sub-groove 1402 belonging to the first inner peripheral side sub-groove group 1303 is an independent groove, at the stage immediately after the start-up of the grinding device 101, there is no coarsely crushed nib and it is in an empty state. be.
  • the coarsely crushed nib that has reached the end of the outer peripheral groove 1406a of the continuous groove 1406 moves through the groove of the rotary die 403, the coarsely crushed nib reaches the first inner peripheral secondary groove 1402 for the first time.
  • the independent grooves improve the grinding performance per unit area of the die and also serve as a buffer for the coarse grinding nibs to prevent clogging of the continuous grooves 1406 .
  • the ratio between the continuous groove 1406 and the set of discontinuous grooves is determined at an optimum ratio according to the grinding capabilities of the fixed die 404 and rotary die 403 . Too many continuous grooves 1406 cause clogging of the grooves. Conversely, if the number of continuous grooves 1406 is too small, the temperature will rise excessively due to friction with the fixed die 404 and rotary die 403 .
  • the fixed die 404 and the rotary die 403 according to this embodiment form a pair of one continuous groove 1406 and one discontinuous groove. This ratio is appropriately changed depending on the dimensions of the fixed die 404 and rotary die 403, the width of the groove, the rotation speed of the motor 201, and the like.
  • FIG. 18A shows, as part of the grooves of the fixed die 404, a first outer peripheral side sub-groove 1401 belonging to the first outer peripheral side sub-groove group 1304, and a first inner peripheral side sub-groove belonging to the first inner peripheral side sub-groove group 1303.
  • a groove 1402 and a second groove 1403 belonging to the second groove group 1302 are shown.
  • the first inner peripheral side sub-groove 1402 and the first outer peripheral side sub-groove 1401 are formed at the intersection of a line L1802 extending in the diametrical direction from the center point P1801 of the fixed die 404 and the first inner peripheral side sub-groove 1402 and the second groove 1403. They meet at P1803 and form a first tilt angle ⁇ 1.
  • the second groove 1403 contacts the line L1802 at the intersection point P1803 and forms a second inclination angle ⁇ 2.
  • FIG. 18B shows, as part of the grooves of the rotary mill 403, a second outer peripheral side sub-groove 1605 belonging to the second outer peripheral side sub-groove group 1604 and a second inner peripheral side sub-groove belonging to the second inner peripheral side sub-groove group 1603.
  • Groove 1606 and fourth groove 1607 belonging to fourth groove group 1602 are shown.
  • the second inner peripheral side secondary groove 1606 and the second outer peripheral side secondary groove 1605 are points of contact between a line L1812 extending diametrically from the center point P1811 of the rotary die 403 and the second inner peripheral side secondary groove 1606 and the fourth groove 1607. They meet at P1813 and form a third tilt angle ⁇ 3.
  • the fourth groove 1607 contacts the line L1812 at the point of contact P1813 and forms a fourth inclination angle ⁇ 4.
  • the second inclination angle ⁇ 2 of the grooves belonging to the second groove group 1302 is, for example, 15°.
  • the fourth inclination angle ⁇ 4 of the grooves belonging to the fourth groove group 1602 is also 15°, for example.
  • the inclination direction of the grooves belonging to the second groove group 1302 is the inclination direction along the rotation direction of the rotary mill 403 .
  • the coarsely crushed nibs that have entered the grooves of second groove group 1302 from coarsely crushed nib storage area 1201 pass through fourth groove group 1602 of rotary die 403 to fixed die 404 . It is extruded in the outer peripheral direction.
  • Some of the coarsely crushed nibs are dispersed while being crushed in the circumferential direction of rotary die 403 and fixed die 404 through arcuate transverse grooves 1203 formed in second groove group 1302 .
  • the first inclination angle ⁇ 1 of the grooves of the first groove group 1301 is, for example, 30°.
  • the third inclination angle ⁇ 3 of the grooves of the third groove group 1601 is also 30°, for example.
  • the inclination direction of the first groove group 1301 is the inclination direction opposite to the rotation direction of the rotary mill 403 .
  • first outer peripheral side sub-groove group 1304 arranged on the outermost periphery of the fixed die 404 and the second outer peripheral side minor groove group 1604 arranged on the outermost periphery of the rotary die 403 are all configured grooves. is closed. That is, it is an independent groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves.
  • First outer peripheral side sub-groove group 1304 and second outer peripheral side sub-groove group 1604 are formed by first inner peripheral side sub-groove group 1303 and second outer peripheral side sub-groove group 1604 existing inside first outer peripheral side sub-groove group 1304. From the second inner peripheral side sub-groove group 1603 existing inside, a gap is created between the fixed die 404 and the rotary die 403 to capture fragments of the coarsely crushed nib 1901 spilling out to the outer peripheral side.
  • first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604 are not provided, the first inner peripheral side sub-groove group 1303 and the second outer peripheral side sub-groove group 1604 are used to completely increase the size of the cocoa mass. Fragments of coarsely crushed nibs that are not ground into the ground enter between the fixed die 404 and the rotary die 403 . Then, while creating a gap between the fixed die 404 and the rotary die 403, the liquid spills out to the outer periphery.
  • first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604 fragments of the coarsely crushed nibs spilling out from the first inner peripheral side sub-groove group 1303 and the second outer peripheral side sub-groove group 1604 are captured.
  • grinding the cacao mass it is possible to prevent fragments of the coarsely ground nibs from being mixed into the cocoa mass and improve the grinding efficiency of the fixed mill 404 and the rotary mill 403 .
  • the first outer peripheral side sub-groove group 1304 and the second The two outer peripheral side minor groove groups 1604 are formed to have the same diameter.
  • the diameter of the inner periphery of the first outer peripheral side sub-groove group 1304 and the diameter of the inner periphery of the second outer peripheral side sub-groove group 1604 are equal.
  • the diameter of the outer periphery of the first outer peripheral side minor groove group 1304 and the diameter of the outer periphery of the second outer peripheral side minor groove group 1604 are equal.
  • the diameter of the outer periphery of the second groove group 1302 of the fixed die 404 and the diameter of the fourth groove group 1602 of the rotary die 403 The diameter of the outer periphery is also formed to be equal. Therefore, the inner peripheral side sub-groove group of the first groove group 1301 and the inner peripheral side sub-groove group of the third groove group 1601 are inevitably formed to have the same inner peripheral diameter and outer peripheral diameter.
  • the same action as scissors is generated by the second groove group 1302, which is the groove group on the inner peripheral side of the fixed die 404, and the rotary die 403. Also occurs in the fourth groove group 1602, which is the groove group on the inner peripheral side of the .
  • the inclination direction of the second groove group 1302 is opposite to that of the first groove group 1301 .
  • the inclination direction of the fourth groove group 1602 is also opposite to that of the third groove group 1601 . Therefore, the same action as scissors occurs in the opposite direction as when the grooves of first groove group 1301 and grooves of third groove group 1601 intersect.
  • the crushing nib 1901 fits into both grooves. Then, the rough nib 1901 is scraped by the grooves of the second groove group 1302 and the grooves of the fourth groove group 1602 in the same manner as the scissors, and pushed to the outer peripheral side.
  • the coarsely crushed nibs and their fragments are scraped by the peripheral edges of the grooves, on the boundary line between the first groove group 1301 and the second groove group 1302 in the fixed die 404, and on the third groove group 1601 and the second groove group in the rotary die 403. They are collected on the boundary line with the four-groove group 1602 .
  • the fragments of the coarsely crushed nib become sufficiently small and are ground to a size that allows them to flow through the gap between the fixed die 404 and the rotary die 403 without difficulty.
  • fragments of the coarsely crushed nibs that have become sufficiently small are guided to the outer periphery of the fixed mill 404 and the rotary mill 403 by gravity and the centrifugal force of the rotary mill 403, and discharged as cocoa mass from the gap between the fixed mill 404 and the rotary mill 403. .
  • the fixed mill 404 and the rotary mill 403 are installed almost vertically.
  • the inventors through trial production of grinding devices, found that placing the fixed mortar 404 and rotary mortar 403 almost vertically is ideal for stable cocoa mass production.
  • the cocoa fat contained in the coarsely ground nibs that are accumulated in the space 1202 and heated by the heater 2101 will be preheated. It flows back to screw 401 through window 402 a of plate 402 . As a result, the cocoa nibs accumulated in the transport groove 401a of the screw 401 are heated, the coefficient of friction between the screw 401 and the cocoa nibs increases, and the cacao nibs may clog the transport groove 401a of the screw 401.
  • the grinding device 101 has the fixed mortar 404 and the rotary mortar 403 installed substantially vertically. Since the fixed die 404 is installed vertically, a transverse groove 1203 is provided in order to evenly spread the crushed nibs over the entire surface of the fixed die 404 and rotary die 403 .
  • [Discharge of generated cocoa mass] 20 is a perspective view of the grinding section 103 with the unit cover 107 removed from the grinding section 103.
  • the coarsely ground nibs 1901 are ground by a rotary mill 403 and a fixed mill 404 to form cocoa mass with a particle diameter of about 20 ⁇ m, which is discharged from the outer peripheries of the rotary mill 403 and fixed mill 404 together with melted cacao oil. Cocoa mass discharged from the outer peripheries of the rotating mill 403 and the fixed mill 404 is accumulated on the outer peripheries of the rotating mill 403 and the fixed mill 404 .
  • scrapers 601a and 601b are screwed to two locations on the periphery of the outer disk support 408 to which the rotary mill 403 is fixed, in a rotationally symmetrical positional relationship.
  • the scrapers 601a and 601b will be referred to as scrapers 601 when not distinguished from each other.
  • the scraper 601 When the rotary mill 403 is rotationally driven, the scraper 601 also rotates and moves along the outer peripheral surfaces of the rotary mill 403 and fixed mill 404 . Then, the scraper 601 scrapes off cocoa mass accumulated on the outer peripheries of the rotary mill 403 and the fixed mill 404 . The cocoa mass scraped off by the scraper 601 is conveyed to a discharge port 411a provided at the bottom of the disc cover 411 and discharged from the discharge port 411a.
  • the disk cover 411 has a role of preventing cocoa mass from leaking from the rotating mill 403 and the fixed mill 404 to the outside other than the outlet 411a.
  • a pair of heaters 2101a and 2101b are fixed to the back surface of the inner disk support 407 (the surface opposite to the surface in contact with the fixed die 404) by heater fixtures 2104a and 2104b, respectively.
  • the heaters 2101a and 2101b will be referred to as heaters 2101 when they are not distinguished from each other.
  • heater fixtures 2104a and 2104b are referred to as heater fixtures 2104 when not distinguished.
  • the heater 2101 is controlled by the controller 202 to be described later, and heats the fixed die 404 and the disk cover 411 via the inner disk support 407 .
  • the heater fixture 2104 is made of metal with good thermal conductivity such as aluminum, copper, brass, etc., and efficiently transfers the heat generated from the heater 2101 to the inner disk support 407 that supports the fixed die 404 .
  • the cacao mass produced by being ground by the rotary mill 403 and the fixed mill 404 is not discharged from the discharge port 411a provided directly below the disk cover 411 unless it is liquid. Therefore, the rotating mill 403 and the fixed mill 404 must be kept at 30° C. or higher at which the cacao fat melts. However, even if the rotary mill 403 and the fixed mill 404 are warmed, if the surrounding air is cold, the cacao oil will cool and solidify. Therefore, the disk cover 411 is configured to cover the rotary mill 403 to prevent the air around the rotary mill 403 from cooling.
  • the disk cover 411 is provided to prevent cocoa mass from leaking out of the rotary mill 403 and the fixed mill 404 from places other than the outlet 411a. That is, the inside of the disc cover 411 is in a state of being coated with cacao mass. If the disk cover 411 is cold, the cacao mass will freeze and solidify inside the disk cover 411 and will not come out from the outlet 411a. There is a possibility that the cocoa mass that has cooled and solidified will press the rotary mill 403 before long. In order to prevent such a problem, the disc cover 411 must be warmed by the heater 2101 through the inner disc support 407 in the same manner as the fixed die 404 .
  • the disc cover 411 does not come into direct contact with the outside air. Therefore, the entire surface of the grinding section 103 is covered with the unit cover 107 to prevent the disk cover 411 from directly contacting the outside air.
  • the unit cover 107 is made of stainless steel like other parts. However, unlike the other parts, the unit cover 107 does not require high robustness, so it is made of a resin such as ABS resin or monomer cast nylon, giving priority to the heat insulating effect of the disk cover 411 and the like from the outside air. good too.
  • a temperature sensor 2102 and a temperature fuse 2103 are also fixed to the inner disk support 407 in addition to the heater 2101 .
  • a temperature sensor 2102 is a sensor for measuring the temperature of the fixed die 404 . Since the fixed die 404 and the inner disk support 407 are in contact (close contact) with each other, when the temperature of the fixed die 404 changes, the temperature of the inner disk support 407 also changes accordingly. Therefore, in this embodiment, as an example, the temperature sensor 2102 indirectly measures the temperature of the fixed die 404 via the inner disk support 407 .
  • the present invention is not limited to this, and a configuration in which the temperature sensor 2101 directly measures the temperature of the fixed die 404 may be employed. As shown in FIG.
  • an inner adapter 413 made of resin such as monomer cast nylon or polyacetal is sandwiched between the inner disk support 407 and the case 406 to prevent them from coming into direct contact with each other. Since the inner adapter 413 is interposed between the inner disk support 407 and the case 406, the heat of the inner disk support 407 heated by the heater 2101 is conducted to the screw housing cylinder 406b of the case 406 housing the screw 401. can be prevented. The cocoa oil is prevented from melting out of the cocoa nibs housed in the screw housing cylinder 406b and sent to the pre-plate 402 by the screw 401. ⁇
  • the grinding apparatus 101 heats the fixed die 404 and the disk cover 411 according to the surface temperature of the fixed die 404 by the heater 2101, and heats the fixed die 404 and the disk.
  • control is performed to stop driving the motor 201 in order to cool them.
  • FIG. 22 is a block diagram showing the hardware configuration of the control unit 202.
  • a CPU 2202 , a ROM 2203 and a RAM 2204 are connected to a bus 2201 in the control unit 202 made up of a well-known microcomputer.
  • Also connected to the bus 2201 are a driver 2206 that drives the drive coil L2205 of the first relay, a driver 2208 that drives the drive coil L2207 of the second relay, and the temperature sensor 2102 .
  • one end of commercial AC power supply 2209 is connected to motor 201 and heater 2101 via power switch 2210 .
  • a first relay switch 2211 and a grind switch 2212 are connected in series to the terminal of the motor 201 that is not connected to the power switch 2210 .
  • the grind switch 2212 is connected to the other end of the commercial AC power supply 2209 .
  • a second relay switch 2213 and a thermal fuse 2103 are connected in series to the terminal of the heater 2101 that is not connected to the power switch 2210 .
  • Thermal fuse 2103 is connected to the other end of commercial AC power supply 2209 .
  • the power switch 2210 and the grind switch 2212 are well-known toggle switches, rocker switches, or the like operated by humans.
  • a commercially available general temperature sensor can be used as the temperature sensor 2102 .
  • the temperature sensor 2102 can be directly connected to the bus 2201 if it has a digital output specification. If it is analog output specification, it can be connected to the bus 2201 via an A/D converter. Since many microcomputers on the market have built-in A/D converters, this may be used.
  • FIG. 23 is a block diagram showing software functions of the control unit 202. As shown in FIG. When the input/output control unit 2301 acquires temperature information of the fixed die 404 from the temperature sensor 2102 , it compares the temperature with the temperature threshold list 2302 . Then, in response to the comparison result, the input/output control unit 2301 turns on/off the first relay and the second relay.
  • FIG. 24 is a flowchart showing the processing flow of the control unit 202.
  • the input/output control unit 2301 When the processing is started by turning on the power of the microcomputer (S2401), the input/output control unit 2301 first initializes the temperature flag TFLAG to logic "false" (S2402). Next, the input/output control unit 2301 checks whether or not the temperature T of the fixed die 404 acquired by the temperature sensor 2102 has not reached the first temperature threshold value T1 (is less than T1) (S2403). The first temperature threshold T1 is, for example, 35°C. If the temperature T has not reached the first temperature threshold T1 (YES in S2403), the input/output control unit 2301 turns on the second relay to turn on the heater 2101 (S2404).
  • the input/output control unit 2301 confirms whether or not the temperature T has reached the second temperature threshold value T2 (is less than T2) (S2405).
  • the second temperature threshold T2 is, for example, 30°C. If the temperature T has not reached the second temperature threshold T2 (YES in S2405), the input/output control unit 2301 turns off the first relay to prohibit driving of the motor 201 (S2406). Then, the processing from step S2403 is repeated again.
  • the switch 2211 of the first relay is off, so even if the grind switch 2212 is on, no power is supplied to the motor 201 from the commercial AC power supply 2209, and the motor 201 is not driven. .
  • step S2403 the process flow repeats S2403, S2404, S2405, and S2406. If the temperature T reaches the second temperature threshold value T2 in step S2405 (NO in S2405), the input/output control unit 2301 turns on the first relay to permit driving of the motor 201 (S2407). Then, the processing from step S2403 is repeated again.
  • the process flow repeats S2403, S2404, S2405, and S2407. If the temperature T reaches the first temperature threshold value T1 in step S2403 (NO in S2403), the input/output control unit 2301 turns off the second relay to turn off the heater 2101 (S2408).
  • the input/output control unit 2301 confirms whether or not the temperature T exceeds the fourth temperature threshold value T4 (higher than T4) (S2409).
  • the fourth temperature threshold T4 is, for example, 45°C. If the temperature T does not exceed the fourth temperature threshold value T4 (NO in S2409), the input/output control unit 2301 checks whether the temperature flag TFLAG is logically "true” (S2410). If the temperature flag TFLAG is logically "false” (NO in S2410), the process from step S2403 is repeated.
  • step S2409 if the temperature T exceeds the fourth temperature threshold value T4 (YES in S2409), the input/output control unit 2301 next checks whether the temperature flag TFLAG is logically false ( S2411). If the temperature flag TFLAG is logically false (YES in S2411), the input/output control unit 2301 checks whether the temperature T exceeds the third temperature threshold T3 (S2412).
  • the third temperature threshold T3 is, for example, 48°C.
  • step S2412 if the temperature T exceeds the third temperature threshold value T3 (YES in S2412), the input/output control unit 2301 sets the temperature flag TFLAG to logical "true" (S2413). The input/output control unit 2301 turns off the first relay to prohibit driving of the motor 201 (S2414), and repeats the process from step S2403.
  • step S2414 the input/output control unit 2301 turns off the first relay, thereby prohibiting the driving of the motor 201 regardless of whether the grind switch 2212 is on or off. Therefore, the grinding operations of the rotary mill 403 and the fixed mill 404 are stopped. Then, the generation of frictional heat due to the grinding operation of the rotary die 403 and the fixed die 404 stops, and the rotary die 403 and the fixed die 404 are gradually cooled toward room temperature.
  • step S2413 since the temperature flag TFLAG is changed to logic true in step S2413, even if the temperature T is below the third temperature threshold T3 (YES in S2412), the temperature T exceeds the fourth temperature threshold T4. If so, the flow of processing repeats from NO in S2403 via S2408 to YES in S2409 and NO in S2411. During this time, the input/output control unit 2301 keeps prohibiting the driving of the motor 201 .
  • step S2409 if the temperature T does not exceed the fourth temperature threshold value T4 (NO in S2409), the input/output control unit 2301 checks whether the temperature flag TFLAG is logically "true” ( S2410). If the temperature flag TFLAG is logically true (YES in S2410), the input/output control unit 2301 changes the temperature flag TFLAG to logically "false" (S2415). Then, the driving of the motor 201 is permitted (S2416), and the process is repeated from step S2403.
  • the input/output control unit 2301 uses the third temperature threshold T3, the fourth temperature threshold T4, and the temperature flag TFLAG to drive the motor 201 according to the temperature of the fixed die 404. Hysteresis is given to permission/denial control.
  • a heater 2101 is incorporated in the inner disk support 407 .
  • a heater 2101 heats the fixed die 404 and rotary die 403 to a predetermined temperature through the inner disk support 407 .
  • frictional heat is generated in the fixed mill 404 and the rotary mill 403 .
  • the cacao nibs are heated to 30° C. or higher, the cacao fat melts out, and the melted cacao fat creates a large coefficient of friction when the cacao nibs are transported.
  • the temperature of the case 406, the screw 401, and the pre-plate 402 where the cacao nibs are coarsely crushed to form coarsely crushed nibs, which are the mechanical parts for storing and transporting the cacao nibs, is below 30°C. need to keep.
  • the coarsely crushed nib storage area 1201 in which the coarsely crushed nibs are stored is ground to cocoa mass by the fixed mill 404 and the rotary mill 403, and is kept at a temperature of 30° C. or higher in order to keep the cocoa mass and cacao oil and fat in a liquid state. It is desirable that it is dripping.
  • the propeller 405 when looking at the flow path of cocoa nibs and coarse nibs from the viewpoint of heat, the propeller 405 is the boundary, the upstream side where low temperature cocoa nibs and coarse nibs exist, and the high temperature coarse nibs , downstream where cocoa mass and melted cocoa fat reside.
  • Case 406 , screw 401 and pre-plate 402 correspond to upstream parts in the path along which cacao nibs and coarsely crushed nibs flow.
  • a fixed die 404 and a rotary die 403 correspond to downstream parts.
  • the heat generating sources are the heater 2101 and the fixed die 404 and rotary die 403 that generate frictional heat.
  • the inner disk support 407 has heat because it is in direct contact with the heater 2101 and the fixed die 404 .
  • the outer disk support 408 also heats up due to direct contact with the rotary die 403 . Therefore, it is necessary to devise ways to prevent the heat of these metal parts from being transferred to the case 406, the screw 401 and the pre-plate 402, which are arranged on the upstream side of the flow of cacao nibs with respect to the propeller 405.
  • the inner adapter 413 and the receptacle plate 412 made of resin such as monomer cast nylon or polyacetal.
  • the inner adapter 413 is interposed between the inner disk support 407 and the case 406 and blocks heat conduction generated from the inner disk support 407 to the case 406 with high thermal resistance.
  • the backing plate 412 is interposed between the fixed die 404 and the inner adapter 413 to reduce the exposed surface of the fixed die 404 in the coarsely crushed nib storage area 1201 of the fixed die 404 with high thermal resistance. to the pre-plate 402.
  • heat is also conducted between the rotary mill 403, the outer disk support 408 that supports it, the disk spring 410 that presses the outer disk support 408 against the fixed mill 404, and the drive shaft 201a.
  • These parts are a spacer 415 and an outer adapter 416 made of resin such as monomer cast nylon or polyacetal.
  • the spacer 415 is interposed between the clamper of the drive shaft 201a and the disc spring 410, and blocks heat conduction from the outer disk support 408 through the disc spring 410 to the drive shaft 201a with high thermal resistance.
  • the outer adapter 416 is interposed between the drive shaft 201a and the outer disk support 408 and the rotary die 403, and blocks heat conduction generated from the outer disk support 408 and the rotary die 403 to the drive shaft 201a with high thermal resistance.
  • a cooling mechanism may be added to the inner disk support 407 in order to continuously rotate the motor 201 for a long period of time.
  • a water cooling pipe or a Peltier element is attached to the inner disk support 407 .
  • the temperature sensor 2102 exceeds a fourth temperature (for example, 45° C.)
  • the cooling process is started.
  • the temperature of the rotary mill 403 can always be maintained within an appropriate temperature range, and the grinding device 101 can be operated continuously for a long period of time.
  • a mechanism for intermittently transferring cocoa nibs to a subsequent mechanism using the structure of the nib introduction cylinder 406c and the transfer groove 401a of the screw 401 can be replaced by a shutter or the like driven by a plunger solenoid or the like. That is, the first transport mechanism is not limited to screw 401 .
  • the mechanism of coarsely grinding cacao nibs to generate coarsely ground nibs 1901 using the end of screw 401 and the structure of pre-plate 402 can be substituted with various mechanisms such as well-known rollers. That is, the coarse crushing mechanism is not limited to the screw 401 and pre-plate 402 .
  • the screw 401 or the like can be substituted for the propeller 405 that continuously transports the coarsely crushed nibs 1901 accumulated in the window 402a of the preplate 402 to the following rotary die 403 and fixed die 404. That is, the second transport mechanism is not limited to propeller 405 .
  • the shape of the transverse groove 1203 is not necessarily limited to an arc shape. Since the purpose is to spread the coarsely crushed nib over the entire surface of the fixed die 404, the shape of the trajectory crossing the second groove group 1302 along the rotation direction of the rotary die 403 from the lower side of the second groove group 1302. For example, straight lines and polygonal shapes are also effective. However, as for the shape, an arc-shaped curve along the rotation of the rotary mill 403 is considered preferable.
  • the grinding device 101 has a fixed mill 404 and a rotary mill 403 arranged vertically. Therefore, a large amount of coarsely crushed nibs 1901 accumulated in the coarsely crushed nib accumulation area 1201 flows downward under the influence of gravity.
  • the transverse groove 1203 is provided to quickly spread the outflowing coarsely crushed nibs 1901 over the entire surface of the rotary die 403 and fixed die 404 along the rotational direction of the rotary die 403 .
  • FIG. 25 is a front view of fixed die 404 showing a modification of the transverse groove.
  • transverse grooves 2501 may be provided.
  • a transverse groove 2501 may be provided instead of the transverse groove 1203 .
  • the crossing groove 1203 is provided in the second groove group 1302 in FIG. However, it may be provided so as to cross the second groove group 1302 and the first inner peripheral side sub groove group 1303 of the first groove group 1301 . However, the crossing grooves should not extend to the first outer peripheral side sub-groove group 1304, as this may impair the function of collecting fragments of the coarsely crushed nibs.
  • cacao nibs are transported from some storage to the nib introduction tube 406c of the case 406 through a well-known transportation pipe or the like. Under such circumstances, the hopper 104 is not an essential requirement in the grinding device 101 .
  • the nib introduction tube 406c has been described as being a cylindrical tube, it does not necessarily have to be cylindrical, and may have a hollow shape for transporting cacao nibs to the screw 401 . For example, it may be a tube having a rectangular cross section.
  • Means for transporting food materials such as cacao nibs are not limited to screws, and there are various mechanisms such as a mechanism using compressed air. Therefore, the first transport mechanism for transporting cocoa nibs is not limited to screws.
  • the grinding device 101 according to the present invention is configured for grinding cocoa nibs into cocoa mass. However, especially the rotary mill 403 and the fixed mill 404 are functional components with extremely high versatility. Therefore, the objects to be ground by the rotary mill 403 and the fixed mill 404 are not limited to cacao nibs, and can be applied to various grains such as rice and wheat, or various food raw materials such as coffee beans.
  • a grinding device 101 is disclosed.
  • a screw 401 that constitutes the first transport mechanism has a vertical opening 104a, receives a supply of cocoa nibs from a cocoa nibs accumulating hopper 104, and intermittently transports the cocoa nibs to subsequent mechanisms.
  • the pre-plate 402 that constitutes the crushing mechanism coarsely crushes the cocoa nibs transported from the screw 401 in cooperation with the end of the screw 401 to produce coarsely crushed nibs 1901 .
  • the pre-plate 402 that constitutes the crushing mechanism coarsely crushes the cocoa nibs transported from the screw 401 in cooperation with the end of the screw 401 to produce coarsely crushed nibs 1901 .
  • the propeller 405 that constitutes the second transport mechanism continuously transports the coarsely crushed nibs 1901 produced by the pre-plate 402 to the subsequent rotary mill 403 and stationary mill 404 .
  • the propeller 405 that constitutes the second transport mechanism continuously transports the coarsely crushed nibs 1901 produced by the pre-plate 402 to the subsequent rotary mill 403 and stationary mill 404 .
  • a rotary mill 403 and a fixed mill 404 for further grinding the coarsely ground nibs 1901 supplied from the propeller 405 to produce cacao mass are arranged facing each other. Then, the rotary mill 403 and the fixed mill 404 cooperate to grind the coarsely ground nibs 1901 to produce cocoa mass. Further, the rotary mill 403 and the fixed mill 404 each have groove groups formed with the same diameter in the circumferential direction.
  • a first groove group 1301 and a second groove group 1302 are formed on the surface of the fixed die 404 .
  • the first groove group 1301 has a first inclination angle inclined in a direction opposite to the rotational direction of the rotary mill 403 with respect to the diameter direction.
  • a first groove group 1301 is formed on the outer circumference of the fixed die 404 .
  • the second groove group 1302 has a second inclination angle inclined in a direction along the rotational direction of the rotary die 403 opposite to the first groove group 1301 with respect to the diametrical direction.
  • the second groove group 1302 is formed inside the first groove group 1301 .
  • a third groove group 1601 and a fourth groove group 1602 are formed on the surface of the rotary die 403 .
  • the third groove group 1601 has a third inclination angle with respect to the diameter direction in a direction opposite to the rotational direction of the rotary die 403 .
  • a third groove group 1601 is formed on the outer circumference of the rotary mill 403 .
  • the fourth groove group 1602 has a fourth inclination angle inclined in the direction along the rotational direction of the rotary die 403 opposite to the diameter direction of the third groove group 1601 .
  • the fourth groove group 1602 is formed inside the third groove group 1601 .
  • a crossing groove 1203 is formed below the second groove group 1302 of the fixed die 404 to allow the coarsely crushed nib 1901 to flow stably in the circumferential direction of the fixed die 404 .
  • the grains of the coarsely crushed nibs move toward the stationary die 404 and the fixed die 404 as the rotary die 403 is driven to rotate. It is extruded in the outer peripheral direction of the rotary mill 403 .
  • the grains of the coarsely crushed nib move along with the rotary die 403 to rotate. 404 and rotary mill 403 are pushed back in the inner peripheral direction. Therefore, the coarsely crushed nibs are stably ground into cocoa mass without spilling from the rotary mill 403 and fixed mill 404 .
  • a first groove group 1301 provided on the outer peripheral side of the fixed die 404 includes a first inner peripheral side sub-groove group 1303 having a groove partly connected continuously with the groove of the second groove group 1302 and a second sub-groove group 1303 .
  • the first inner peripheral side sub-groove group 1303 is composed of a first outer peripheral side sub-groove group 1304 that is formed only by independent grooves that are not connected to each other.
  • a third groove group 1601 provided on the outer peripheral side of the rotary mill 403 also includes a second inner peripheral side sub-groove group 1603 having a groove partly connected continuously with the groove of the fourth groove group 1602,
  • the second inner peripheral side sub-groove group 1603 is composed of a second outer peripheral side sub-groove group 1604 which is formed only by independent grooves that are not connected to each other.
  • first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604 extend from the first inner peripheral side sub-groove group 1303 and second inner peripheral side sub-groove group 1603 to the outer peripheries of the fixed die 404 and the rotary die 403 . It captures the coarsely ground nibs spilling out to the side, prevents the coarsely ground nibs that are not sufficiently ground from leaking out of the fixed mill 404 and the rotary mill 403, and grinds all the coarsely ground nibs into cocoa nibs without leaving any residue. designed for crushing.
  • the screw 401, the propeller 405, and the rotary die 403 are integrally rotationally driven by the motor 201. Therefore, the mechanism is extremely simple and the cocoa nibs transport path is extremely short. Therefore, maintenance work such as cleaning of the equipment is easy.
  • the inventors made a prototype of the grinding device 101 and realized an overwhelmingly high-speed cocoa mass production capability, in which cacao mass is discharged in only about one minute after the cacao nibs are put into the hopper 104 . It can be said that the grinding device 101 according to the present invention has brought about a new technological innovation in chocolate production, which has a history of more than 140 years since the completion of Lindt chocolate by Rodolphe Lindt in 1879.
  • FIG. 26 is a perspective view of a grinding device according to a second embodiment of the present invention
  • FIG. 27 is a longitudinal sectional view of the grinding device shown in FIG. 26
  • FIG. 28A is a top view of the grinding device shown in FIG. 26
  • FIG. 28B is a front view of this grinding device
  • FIG. 28C is a side view of this grinding device
  • FIG. 28D is a rear view of this grinding device.
  • FIG. 29 is a longitudinal sectional view enlarging a part of the grinding device shown in FIG. 26
  • 30 is an exploded perspective view of the grinding device shown in FIG. 26;
  • FIG. 26 is a perspective view of a grinding device according to a second embodiment of the present invention
  • FIG. 27 is a longitudinal sectional view of the grinding device shown in FIG. 26
  • FIG. 28A is a top view of the grinding device shown in FIG. 26
  • FIG. 28B is a front view of this grinding device
  • FIG. 28C is a side view of this grinding device
  • the grinding device 1 includes a drive section 2, a grinding section 3, a hopper section 4, a support section 5, and a table 6.
  • the motor 7 is housed inside the driving section 2, and the parts (described later) for grinding cacao nibs are housed inside the grinding section 3.
  • a hopper 8 is accommodated inside the hopper portion 4
  • a control portion 9 is accommodated inside the strut portion 5 .
  • the control unit 9 controls the operation of the grinding device 1 in an integrated manner.
  • the control unit 9 includes a CPU, a ROM, a RAM, etc., which are computer hardware resources.
  • a pot 20 is placed on the table 6 .
  • the pot 20 is a container for receiving cocoa mass discharged from the grinding section 3 .
  • the drive unit 2 has a housing unit 10 and a maintenance cover 11.
  • the housing part 10 is a member that houses the motor 7 and other parts. Ventilation holes 10a (FIGS. 26 and 27) for exhausting air and exhausting heat are formed on both side surfaces and the rear surface of the housing part 10. As shown in FIG.
  • the maintenance cover 11 is detachably attached to the housing section 10 .
  • a touch panel 18 is accommodated inside the casing section 10 .
  • the touch panel 18 functions as a setting unit that can set driving conditions for the motor 7 .
  • the touch panel 18 is shielded from the outside when the maintenance cover 11 is attached, and is exposed to the outside when the maintenance cover 11 is removed. Therefore, the user of the grinding device 1 can operate the touch panel 18 by removing the maintenance cover 11 .
  • the grinding unit 3 has a front cover 12.
  • the front cover 12 is a cover that covers parts for grinding cacao nibs (hereinafter also referred to as "grinding parts"). The configuration of the grinding parts will be described in detail later.
  • the front cover 12 has a structure that can be opened downward.
  • the open/closed state of the front cover 12 is detected by a first sensor (not shown).
  • the control unit 9 takes in the sensor signal of the first sensor.
  • the control unit 9 determines that the front cover 12 is closed based on the sensor signal of the first sensor, the control unit 9 permits the grinding operation (such as driving the motor 7) in the grinding unit 3, and When it is determined that the cover 12 is open, the grinding operation in the grinding section 3 is prohibited or forcibly stopped.
  • vents 12a are formed for exhaust and heat exhaust.
  • a dial knob 13 as an operation unit is arranged on the front surface of the front cover 12 .
  • the dial knob 13 is a rotary knob having multiple operating positions.
  • the dial knob 13 is formed in a C shape when viewed from the front direction.
  • a discharge member 17 is arranged on the bottom surface of the front cover 12 .
  • the ejection member 17 has an ejection port 17a (FIG. 27). Cocoa mass produced by grinding the cacao nibs is discharged from the discharge port 17 a of the discharge member 17 . For this reason, the pot 20 to receive the cocoa mass is placed directly below the outlet 17a.
  • the hopper portion 4 has an outer shield 14 and a hopper cover 15.
  • a hopper 8 is accommodated in the hopper portion 4 .
  • the outer shield 14 is arranged to surround the hopper 8
  • the hopper cover 15 is arranged to close the hopper 8 from above.
  • the hopper cover 15 is provided so as to be openable and closable in the F direction around the fulcrum portion 16 .
  • a user of the grinding device 1 can put cacao nibs into the hopper 8 by opening the hopper cover 15 .
  • the installation state of the hopper 8 is detected by a second sensor (not shown).
  • the control unit 9 takes in the sensor signal of the second sensor.
  • control unit 9 determines that the hopper 8 is installed based on the sensor signal of the second sensor, it permits the grinding operation in the grinding unit 3, and if the hopper 8 is not installed. If so, the grinding operation in the grinding section 3 is prohibited or forced to stop.
  • the grinding parts mainly include a drive shaft 21, a case 22, a screw 23, a pre-plate 24, a discharge plate 25, an inner disk support 26, and a fixed die 27. , a rotary mill 28 and an outer disk support 29 .
  • the drive shaft 21 is a shaft member that is attached to the motor 7 and rotates as the motor 7 is driven. Driving of the motor 7 is controlled by the controller 9 .
  • the drive shaft 21 is coaxially connected to the output shaft (rotating shaft) of the motor 7 .
  • the drive shaft 21 rotates the screw 23, the discharge plate 25 and the rotary die 28.
  • the case 22 is fixed to the frame portion of the driving section 2 by screwing or the like. As shown in FIG. 29, the case 22 has a screw housing cylinder 22a.
  • the screw housing cylinder 22a is a portion that houses the screw 23 in a rotatable manner.
  • a nib introduction port 22b is formed in the screw housing cylinder 22a.
  • the nib inlet 22b opens upward.
  • a nib outlet 8a is formed at the bottom of the hopper 8.
  • the nib discharge port 8a and the nib introduction port 22b are connected by a nib introduction tube 30. As shown in FIG.
  • the nib introduction tube 30 is a hollow member that receives cacao nibs supplied from the hopper 8 .
  • the nib introduction tube 30 is provided with the central axis of the nib introduction tube 30 arranged vertically.
  • the cacao nibs charged into the hopper 8 are introduced through the nib discharge port 8a and the nib introduction tube 30 into the nib introduction port 22b.
  • the nib introduction cylinder 30 is provided with a shutter (not shown) for adjusting whether the cacao nibs are discharged from the hopper 8 or stopped.
  • the nib introduction tube 30 is formed separately from the hopper 8 and the case 22.
  • the nib introduction tube 30 may be formed integrally with the hopper 8. , may be formed integrally with the case 22 .
  • the screw 23 is a member that constitutes the first transport mechanism.
  • the screw 23 is rotatably supported by two bearings 31 as shown in FIG.
  • a shaft hole is provided in the radial center of the screw 23 along the central axis of the screw 23, and the drive shaft 21 is inserted into this shaft hole.
  • the screw 23 rotates together with the drive shaft 21 .
  • the screw 23, as shown in FIG. 31, has a transport groove 23a, teeth 23b, and auxiliary grooves 23c.
  • the transport groove 23a is spirally formed.
  • the screw 23 transports the cacao nibs by rotating the screw 23 while storing the cacao nibs in the transport grooves 23a.
  • the principle of transporting cacao nibs by the screw 23 is the same as in the case of the screw 401 in the first embodiment.
  • the auxiliary groove 23c is a groove narrower than the transport groove 23a.
  • the auxiliary groove 23c is spirally formed like the transport groove 23a. In the central axis direction of the screw 23, the auxiliary groove 23c is formed closer to the base end portion 23d of the screw 23 than the transport groove 23a.
  • the starting end (not shown) of the auxiliary groove 23c is arranged at the base end 23d of the screw 23, and the terminal end Pa of the auxiliary groove 23c is connected to the starting end Pb of the transport groove 23a.
  • the screw 23 integrally has a stepped portion 23g and a tubular portion 23e.
  • the stepped portion 23g protrudes toward the tip portion 23f of the screw 23 from the terminal end portion Pc of the transport groove 23a.
  • the cylindrical portion 23e has a smaller diameter than the stepped portion 23g, and extends from the stepped portion 23g toward the tip portion 23f of the screw 23. As shown in FIG.
  • the transport groove 23a of the screw 23 may or may not be exposed to the nib introduction tube 30 depending on the rotation angle of the screw 23.
  • I hide in This point is the same as the transport groove 401a of the screw 401 in the first embodiment (FIGS. 8A to 8D).
  • the auxiliary groove 23c is always exposed to the nib introduction tube 30 regardless of the rotation angle of the screw 23.
  • the auxiliary groove 23c transports cacao nibs (not shown) supplied through the nib introduction cylinder 30 toward the transport groove 23a as the screw 23 rotates. Since the width of the auxiliary grooves 23c is sufficiently narrower than the particle size of the cacao nibs, unlike the transport grooves 23a, the cacao nibs are hooked on the grooves and transported, unlike the transport grooves 23a. Further, the terminal end Pa of the auxiliary groove 23c is connected to the starting end Pb of the transport groove 23a. For this reason, the cocoa nibs stored in the transport groove 23a are not subjected to the transfer force by the auxiliary groove 23c. Therefore, cacao nibs are intermittently transported to the subsequent mechanism through the transport groove 23a of the screw 23, as in the first embodiment.
  • the pre-plate 24 is a member that constitutes a coarse crushing mechanism together with the screw 23 .
  • the pre-plate 24 is arranged close to the end of the transport groove 23 a of the screw 23 .
  • the pre-plate 24 has a window 24a in a part in the circumferential direction.
  • the discharge plate 25 is a member that constitutes the second transport mechanism.
  • the discharge plate 25 has blades 25a in a part in the circumferential direction.
  • the pre-plate 24 is a flat member.
  • a circular hole 24b is provided in the center of the pre-plate 24.
  • the inner diameter of the hole 24b is set slightly larger than the outer diameter of the stepped portion 23g of the screw 23 .
  • the pre-plate 24 is attached to an inner adapter 35 (FIG. 29) so as not to rotate together with the screw 23.
  • the inner adapter 35 is a member made of resin.
  • the inner adapter 35 is attached to the case 22 by screwing or the like. Therefore, the pre-plate 24 is fixedly supported by the case 22 via the inner adapter 35 .
  • the pre-plate 24 has a nib passing region E1 in which the window 24a is formed and a nib passing region E1 in which the window 24a is not formed in the circumferential direction along the rotation direction of the screw 23 (hereinafter also simply referred to as “circumferential direction”). and a nib non-passing area E2.
  • the nib passage area E1 is an area through which cacao nibs transported by the screw 23 are passed.
  • the nib passage area E1 is also an area that limits the size of cacao nibs that pass through.
  • a plurality of (eight in this embodiment) windows 24a are formed in the nib passing area E1. Each window 24a coarsely grinds cacao nibs to produce coarsely ground nibs on the same principle as the window 402a of the pre-plate 402 in the first embodiment.
  • a plurality of windows 24a are provided at predetermined intervals in the circumferential direction.
  • each window 24a is arranged below and in part of the center position of the hole 24b in the height direction.
  • the plurality of windows 24a are arranged mainly on the lower side when viewed from the central position of the hole 24b.
  • the plurality of windows 24a are arranged close to one side in the circumferential direction (R direction in FIG. 33).
  • the nib non-passing area E2 is an area that prevents cacao nibs from passing.
  • cacao nibs coarsely crushed nibs
  • the nib non-passing area E2 is provided in the pre-plate 24, the back flow of cacao nibs that have passed through the nib passing area E1 can be suppressed by the nib non-passing area E2.
  • the discharge plate 25 is a member that rotates in the R direction together with the screw 23.
  • a D-shaped hole 25 b is provided in the center of the discharge plate 25 .
  • the hole 25b has a stepped structure (see FIG. 29) so as to fit both the stepped portion 23g and the cylindrical portion 23e of the screw 23.
  • the discharge plate 25 is formed with a plurality of (two in this embodiment) blades 25a. In the circumferential direction along the rotation direction R of the discharge plate 25, both sides of each blade 25a are notched in a substantially V shape.
  • the discharge plate 25 transports the coarsely crushed nibs that have passed through the nib passing area E1 of the pre-plate 24 to a subsequent mechanism.
  • the timing at which the windows 24a of the pre-plate 24 and the blades 25a of the discharge plate 25 overlap with the timing at which the cacao nibs are pushed out toward the pre-plate 24 by the screws 23 are configured to synchronize. A detailed description will be given below.
  • the cacao nibs stored in the transport groove 23a are intermittently pushed out to the pre-plate 24 side in a cycle synchronized with the rotation of the screw 23. Therefore, the coarsely crushed nibs produced by the pre-plate 24 are also pushed out from the windows 24a of the pre-plate 24 in a period synchronized with the rotation of the screw 23. That is, during one rotation of the screw 23, there is a period during which the coarsely crushed nibs are extruded from the window 24a of the pre-plate 24 (hereinafter referred to as "nib supply period”) and a period during which the crushed nibs are not extruded (hereinafter referred to as "nib supply interruption period"). ) exists.
  • FIG. 34A is a view of the arrangement of the screw 23, the pre-plate 24 and the discharge plate 25 during the nib supply period as viewed from the tip side of the screw 23, and FIG. 34B is a view of the screw 23, the pre-plate 24 and the discharge during the nib supply period.
  • FIG. 3 is a vertical cross-sectional view showing an arrangement state of the discharge plate 25.
  • the discharge plate 25 rotates integrally with the screw 23 at a position adjacent to the pre-plate 24 .
  • the blades 25a of the discharge plate 25 are arranged so as to overlap the windows 24a of the pre-plate 24, as shown in FIGS. 34A and 34B. That is, the timing at which the windows 24a and the blades 25a overlap and the timing at which the screw 23 pushes out the cocoa nibs toward the pre-plate 24 are synchronized. Therefore, during the nib supply period, the window 24a of the pre-plate 24 is opened by the passage of the blade 25a. Therefore, the coarsely crushed nibs supplied from the window 24a of the pre-plate 24 are scraped off by the blades 25a of the discharge plate 25 and transferred to the following mechanism.
  • the blades 25a of the discharge plate 25 are arranged so as not to overlap the windows 24a of the pre-plate 24, as shown in FIGS. 35A and 35B. That is, the timing at which the windows 24a and the portions without the blades 25a overlap and the timing at which the cacao nibs are not pushed out toward the pre-plate 24 are synchronized. Therefore, the window 24a of the pre-plate 24 is closed by the discharge plate 25 during the nib supply interruption period. Therefore, the coarsely crushed nibs are not supplied from the window 24a of the preplate 24. As shown in FIG.
  • the fitting shape of the hole 25b of the discharge plate 25 is adjusted so that the terminal end Pc of the screw 23 and the vane 25a of the discharge plate 25 are synchronized. Therefore, the rotation of the screw 23 and the discharge plate 25 repeats the nib supply period and the nib supply interruption period, thereby intermittently supplying coarsely crushed nibs to the fixed die 27 and rotary die 28, which are subsequent mechanisms. be able to.
  • the inner disk support 26 is a member that supports the fixed die 27.
  • the inner disk support 26 is supported by the case 22 via an inner adapter 35, as shown in FIG.
  • a hole 26a (FIG. 36) is formed in the center of the inner disk support 26.
  • a hole 26 a of the inner disk support 26 is a hole for fitting an inner adapter 35 ( FIG. 29 ) to the inner disk support 26 .
  • a support plate 32 (FIG. 29) is fitted in the center of the inner disk support 26 .
  • the backing plate 32 is a member that holds the pre-plate 24 so that the pre-plate 24 does not come off.
  • the backing plate 32 also serves as a heat insulating member to prevent the heat from the inner disk support 26 and the fixed die 27 from being transmitted directly to the nib.
  • the inner adapter 35 is interposed between the case 22 and the inner disk support 26 to block the conduction of heat from the inner disk support 26 to the case 22, like the inner adapter 413 in the first embodiment.
  • the heat sink 41 is fixed to the inner disk support 26 with bolts, whereby the inner disk support 26 and the heat sink 41 are integrated.
  • a heater 36, a temperature sensor 37, a thermal fuse 38, and a fan 42 are attached to the fan bracket 43, and the fan bracket 43 is attached to the inner disk support 26 as an integrated component. Integrating the heater 36, the thermal fuse 38, and the fan 42 into the fan bracket 43 in this manner facilitates the attachment/detachment operation during cleaning, which will be described later.
  • the heat sink 41 and the fan 42 constitute the cooling mechanism 40 .
  • the heater 36 is provided for the same purpose as the heater 2101 in the first embodiment.
  • the heater 36 is installed so as to protrude from a through hole (not shown) of the fan bracket 43 and is pressed by a spring or the like so as to be in constant contact with the inner disk support 26 .
  • the heater 36 is on/off controlled by the controller 9 when the grinding apparatus 1 is operated.
  • the temperature sensor 37 is provided for the same purpose as the temperature sensor 2102 in the first embodiment, and the thermal fuse 38 is provided for the same purpose as the thermal fuse 2103 in the first embodiment.
  • the cooling mechanism 40 is a mechanism for cooling the fixed die 27 and the rotary die 28 in order to keep the temperature of the fixed die 27 and the rotary die 28 within an appropriate temperature range.
  • the cooling mechanism 40 is a mechanism for forcibly air-cooling the fixed die 27 and the rotary die 28 and includes a heat sink 41 (FIG. 37) and a fan 42 .
  • the heat sink 41 is made of a material with high thermal conductivity, such as a metal such as aluminum.
  • the heat sinks 41 are arranged one each on the left and right with the hole 26a of the inner disk support 26 interposed therebetween.
  • a plurality of fins 41a are formed on the heat sink 41 in order to secure a large surface area for heat radiation.
  • the fins 41a may have a pin shape as shown in FIG. 37, or may have a thin plate shape or other shapes (not shown).
  • the heat sink 41 is fixed to the inner disk support 26 by screws or the like. Also, the heat sink 41 absorbs and releases heat from the inner disk support 26 by bringing the surface opposite to the surface on which the fins 41 a are formed into contact with the inner disk support 26 .
  • the fan 42 is a device that blows air toward the heat sink 41. Driving of the fan 42 is controlled by the controller 9 .
  • the fan 42 is arranged so as to be close to and face the fins 41 a of the heat sink 41 .
  • the fans 42 are arranged one by one on the left and right sides, similar to the heat sink 41 .
  • Two fans 42 are attached to the inner disk support 26 via fan brackets 43 .
  • the fan bracket 43 is attached to the inner disk support 26 with two attachment knobs 44 .
  • the cooling mechanism may be configured using a water cooling pipe or a Peltier element, or may be configured by combining a Peltier element, a heat sink and a fan.
  • the mounting knob 44 has both the function of fixing the fan bracket 43 to the inner disk support 26 and the function of positioning the fan bracket 43 to the inner disk support 26 .
  • the mounting knob 44 integrally has a male threaded portion (not shown), and this male threaded portion meshes with a female threaded portion (not shown) of the inner disk support 26 .
  • the fan 42 is fixed to the fan bracket 43 with screws together with the heater 36 and the thermal fuse 38 . With such a mounting structure, the heater 36, temperature sensor 37, thermal fuse 38, fan 42 and fan bracket 43 are configured as one unit. Therefore, by loosening the two mounting knobs 44, the heater 36, the temperature sensor 37, the temperature fuse 38 and the fan 42 together with the fan bracket 43 can be removed from the inner disk support 26.
  • the cooling mechanism 40 configured as described above, when the left and right fans 42 are rotated, air is blown from each fan 42 to the heat sink 41 . Therefore, the heat transferred from the inner disk support 26 to the heat sink 41 can be removed by blowing air from the fan 42 .
  • the rotary die 28 is driven by the motor 7 to rotate and grind the coarsely crushed nibs, frictional heat is generated between the fixed die 27 and the rotary die 28, and part of this frictional heat is transferred to the stationary die. 27 to the inner disk support 26 . Therefore, by blowing air from the fan 42 to remove the heat of the inner disk support 26, the fixed die 27 and the rotary die 28 can be forcibly cooled.
  • the fixed mortar 27 and the rotary mortar 28 are driven by the motor 7 to rotate the rotary mortar 28 while the fixed mortar 27 is fixed, thereby grinding the coarsely crushed nibs to generate cocoa mass.
  • the fixed die 27 has the same groove structure (see FIGS. 12, 13 and 14) as the fixed die 404 in the first embodiment.
  • the rotary die 28 has the same groove structure (see FIGS. 15, 16 and 17) as the rotary die 403 in the first embodiment.
  • the outer disk support 29 is a member that supports the rotary mill 28. As shown in FIG. 30, scrapers 46a and 46b are screwed to the outer disk support 29 at two locations on its periphery in a rotationally symmetrical positional relationship. The scrapers 46a, 46b perform the same functions as the scrapers 601a, 601b in the first embodiment.
  • the outer disk support 29 is supported by the drive shaft 21 through the outer adapter 45 and the cylindrical portion 23e of the screw 23, as shown in FIG.
  • the outer adapter 45 is made of resin.
  • the outer adapter 45 is interposed between the outer disk support 29 and rotary die 28 and the drive shaft 21 .
  • the outer adapter 45 has the same heat insulating function as the outer adapter 416 in the first embodiment.
  • the drive shaft 21 includes two disc springs 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47b, 47a, 47b, 47a, 47b, 47b, 47a, 47b, 47b, 47b, 47b, 47b, 47a, 47b, 47b, 47b, 47a, 47b, 47d, and 77, respectively.
  • 47b, clamper 48 and nut 49 are attached.
  • the two disc springs 47a and 47b are fitted into the cylindrical portion 29a of the outer disk support 29.
  • the two disc springs 47 a and 47 b generate a biasing force for pressing the rotary die 28 against the fixed die 27 via the outer disk support 29 .
  • This biasing force is generated when the clamper 48 receives the tightening force of the nut 49 and presses the two disk springs 47a and 47b toward the rotary die 28 side.
  • the biasing force generated by the two disk springs 47a and 47b is also transmitted to the case 22 via the fixed die 27, the inner disk support 26 and the inner adapter 35. As shown in FIG.
  • the clamper 48 is a member that receives the tightening force of the nut 49 and presses the disc springs 47a and 47b.
  • the clamper 48 is in contact with the disc spring 47b via a spacer 50, as shown in FIG.
  • the spacer 50 is made of resin for heat insulation, like the spacer 415 in the first embodiment.
  • the nut 49 is a member that constitutes a tightening member.
  • the nut 49 meshes with a male threaded portion 21 a formed at the tip of the drive shaft 21 .
  • the nut 49 is tightened with a predetermined tightening torque.
  • the tightening torque of the nut 49 is preferably adjusted to a predetermined value using a torque wrench (not shown).
  • the nut 49 is used as an example of the tightening member, but the tightening member may be configured by other members.
  • the screw 23, retainer plate 32, pre-plate 24, discharge plate 25, fixed die 27, rotary die 28, outer disk support 29, disc springs 47a, 47b and clamper 48 are connected by nuts 49 tightened as described above. It is mounted around the drive shaft 21 . Therefore, by loosening the tightening of the nut 49 and removing the nut 49 from the male screw portion 21a of the drive shaft 21, the screw 23, the retainer plate 32, the pre-plate 24, the discharge plate 25, the fixed die 27, the rotary die 28, Each component of the outer disk support 29 , the disc springs 47 a and 47 b and the clamper 48 can be removed from the drive shaft 21 .
  • the main parts of the grinding section 3 can be disassembled simply by removing the nut 49. As shown in FIG. Therefore, when cleaning the main parts for grinding housed in the front cover 12, the main parts for grinding can be washed by first opening the front cover 12 downward, then loosening and removing the nut 49. Can be easily disassembled and cleaned.
  • case 22 is screwed to the frame portion of the drive section 2, and the inner disk support 26 is screwed to the case 22 via the inner adapter 35. Therefore, the case 22, the inner disk support 26 and the inner adapter 35 can also be removed from the drive shaft 21 by removing mounting screws (not shown). Therefore, the drive shaft 21, the case 22, the inner disk support 26 and the inner adapter 35 can be easily disassembled and cleaned.
  • the disc cover 33 (Figs. 27 and 30) is formed in a ring shape.
  • the disc cover 33 is a member that performs the same function as the disc cover 411 in the first embodiment. Further, the disc cover 33 is heated by the heater 36 through the inner disc support 26 in the same manner as the disc cover 411 in the first embodiment.
  • a discharge port 33a is provided at the bottom of the disc cover 33.
  • the disk cover 33 collects the cacao mass produced by the fixed mill 27 and the rotary mill 28 and guides the collected cacao mass to the outlet 33a. The cocoa mass discharged from the discharge port 33a of the disk cover 33 is injected into the pot 20 through the discharge port 17a of the discharge member 17. As shown in FIG.
  • the grinding device 1 according to the second embodiment of the present invention basically grinds cacao nibs by the same mechanism as the grinding device 101 according to the first embodiment to produce cocoa mass. Specifically, the cocoa nibs accumulated in the hopper 8 enter the transport groove 23a of the screw 23 due to their own weight, and are transported by the rotation of the screw 23 as the motor 7 is driven. At that time, the drive shaft 21 rotates as the motor 7 is driven. Also, the screw 23 , the discharge plate 25 and the rotary die 28 rotate integrally with the drive shaft 21 .
  • the cacao nibs transported by the screw 23 are granulated into granulated nibs when passing through the window 24a of the pre-plate 24.
  • the coarsely crushed nibs are scraped off by blades 25 a of the discharge plate 25 and supplied to the fixed die 27 and the rotary die 28 .
  • the supplied coarsely ground nibs are ground by the rotation of the rotary mill 28 to become cocoa mass.
  • the cocoa mass is guided to the discharge port 33a of the disc cover 33 and discharged from the discharge port 17a of the discharge member 17. As shown in FIG.
  • the controller 9 stops the fan 42 (S1).
  • the controller 9 determines whether the detected value of the temperature sensor 37 is equal to or higher than a predetermined value (34° C. in this embodiment) (S2). If the detected value of the temperature sensor 37 is less than the predetermined value, the controller 9 returns to step S1 and keeps the fan 42 stopped. Further, when the detected value of the temperature sensor 37 is equal to or higher than the predetermined value, the control unit 9 operates the fan 42 for a predetermined time (15 seconds in this embodiment) (S3). Next, the controller 9 determines whether the detected value of the temperature sensor 37 is equal to or higher than a predetermined value (34° C. in this embodiment) (S4).
  • the controller 9 If the detected value of the temperature sensor 37 is less than the predetermined value, the controller 9 returns to step S1 and stops the fan 42 . If the detected value of the temperature sensor 37 is equal to or greater than the predetermined value, the controller 9 returns to step S3 and operates the fan 42 for a predetermined time (15 seconds in this embodiment).
  • the temperature of the fixed mill 27 and the rotary mill 28 can be maintained within an appropriate temperature range.
  • the predetermined value to be compared with the detection value of the temperature sensor 37 and the predetermined time for operating the fan 42 can be set to arbitrary values by operating the touch panel 18 .
  • FIG. 39 is a block diagram showing an example of control configuration of the grinding device 1 according to the second embodiment of the present invention.
  • the dial knob 13 functions as an operation section that can select one of a plurality of grinding modes prepared in advance.
  • a manufacturing mode and a storefront mode are prepared as examples of a plurality of grinding modes.
  • the manufacturing mode is the milling mode selected if the cocoa nibs are milled regularly for a long period of time.
  • the storefront mode is the grinding mode selected when the cocoa nibs are ground irregularly for short periods of time, or when the cocoa mass needs to be topped up.
  • the dial knob 13 has three operating positions, as shown in FIGS. 40A, 40B and 40C.
  • FIG. 40A shows the operating position of the dial knob 13 when the user of the grinding device 1 selects the manufacturing mode.
  • FIG. 40B shows the operating position of the dial knob 13 in the neutral state.
  • FIG. 40C shows the operating position of the dial knob 13 when the user of the grinder 1 selects the storefront mode.
  • the dial knob 13 is formed in a C shape when viewed from the front. Further, as shown in FIG. 26, the front surface of the front cover 12 is provided with marks M1, M2 and M3 corresponding to the operation positions of the dial knob 13. As shown in FIG. Therefore, the user can recognize the operating position of the dial knob 13 depending on which of the marks M1, M2, and M3 the notch of the C-shaped portion of the dial knob 13 faces.
  • operation signal a signal corresponding to this operation (hereinafter referred to as “operation signal”) is given to the control section 9 .
  • the operation signal turns off when the dial knob 13 is set to the neutral state, and turns on when the dial knob 13 is turned in any direction from the neutral state.
  • the operation signal turns on at the first voltage level, and when the dial knob 13 is turned clockwise from the neutral state, the voltage level differs from the first voltage level. It is turned on at the second voltage level.
  • the dial knob 13 does not move even if he releases his finger from the dial knob 13.
  • the 40A operating position is maintained.
  • the operating time preset for the manufacturing mode hereinafter referred to as "manufacturing operating time"
  • grinding of cacao nibs by the grinding device 1 automatically stops.
  • the dial knob 13 may be configured to return to the neutral state manually by the user, or may be configured to automatically return to the neutral state.
  • the dial knob 13 when the user pinches the dial knob 13 with his fingers and turns it clockwise from the neutral state, that is, when he selects the storefront mode, when he releases his finger from the dial knob 13, the dial knob 13 It returns to the neutral state by an urging force such as a spring (not shown). However, grinding of the cacao nibs is continued until the operating time preset for the storefront mode (hereinafter referred to as "store operating time") has elapsed. Also, when the user keeps the dial knob 13 turned clockwise, the cacao nibs are ground only during the time that the user keeps turning the dial knob 13 clockwise. In this case, the user can release the dial knob 13 when the desired amount of cacao mass has been injected.
  • store operating time the operating time preset for the storefront mode
  • the user can return the dial knob 13 to the neutral state. Further, when the user wishes to forcibly stop the operation of the grinder 1 operating in the storefront mode, the user can turn the dial knob 13 clockwise again and release it.
  • the touch panel 18 functions as a setting unit that can set driving conditions for the motor 7 for each grinding mode.
  • a user of the grinding device 1 performs the setting operation of the driving conditions using the touch panel 18 .
  • the driving condition of the motor 7 is not limited to the operation time of the grinding device 1 for each grinding mode, and may be various values such as the above-mentioned predetermined value, predetermined time, or intermittent operation time for intermittently operating the grinding unit 3. Conditions can be applied.
  • the touch panel 18 is accommodated in the housing section 10 and covered with the maintenance cover 11, as shown in FIG. Therefore, the user can set the manufacturing operation time and store operation time by removing the maintenance cover 11 from the housing unit 10 and operating the touch panel 18 in this state.
  • the manufacturing operation time and store operation time are set to initial values.
  • Information on the manufacturing operation time and store operation time set by the user by operating the touch panel 18 is given to the control unit 9 from the touch panel 18 .
  • the control unit 9 stores the information on the manufacturing operation time and store operation time given from the touch panel 18 in the internal memory.
  • the control unit 9 also has a function of a timer capable of measuring various times including the elapsed time from the start of operation of the grinding device 1 and the operating time of the fan 42 .
  • FIG. 41 is a flow chart showing an example of control processing executed by the control unit 9. As shown in FIG. First, the control unit 9 repeatedly determines whether or not the operation signal has been turned on (S11). Then, when the operation signal is turned on, the control section 9 drives the motor 7 to start the operation of the grinding apparatus 1, and at the same time, the timer starts measuring time (S12).
  • control unit 9 determines whether or not the user has selected the manufacturing mode (S13). Specifically, if the voltage level of the operation signal turned on in step S11 is the first voltage level, the control unit 9 determines YES in step S13 and proceeds to step S14. If it is the second voltage level, it is determined as NO in step S13, and the process proceeds to step S17.
  • step S14 the control unit 9 confirms whether or not the measured value of the timer has reached the manufacturing operation time.
  • the manufacturing operation time is a time that can be set by the user operating the touch panel 18, as described above.
  • the control unit 9 stops driving the motor 7 and stops the operation of the grinding device 1 (S15). Further, when the measured value of the timer has not reached the manufacturing operation time, the control unit 9 determines whether or not a forced stop has been instructed (S16).
  • a forced stop instruction in the manufacturing mode is issued by the user returning the dial knob 13 to the neutral state.
  • the control section 9 proceeds to step S15 and stops the operation of the grinding apparatus 1 . Further, when there is no command to forcibly stop the operation, the control unit 9 returns to step S14 and continues the operation of the grinding apparatus 1 .
  • step S17 the control unit 9 determines whether or not the operation signal remains on. Then, when the operation signal is maintained in the ON state, the control section 9 determines YES in step S17 and proceeds to step S18.
  • step S18 the control unit 9 repeatedly determines whether or not the operation signal has turned off. Then, when the operation signal is turned off, the control section 9 proceeds from step S18 to step S15 and stops the operation of the grinding device 1 .
  • step S19 the controller 9 confirms whether or not the measured value of the timer has reached the store operation time.
  • the in-store operation time is a time that can be set by the user by operating the touch panel 18, as described above.
  • the control unit 9 proceeds from step S19 to step S15 and stops the operation of the grinding device 1 . Further, when the measured value of the timer has not reached the store operation time, the control unit 9 determines whether or not there is an instruction to forcibly stop (S20).
  • a forced stop instruction in the storefront mode is issued by the user turning the dial knob 13 clockwise from the neutral state.
  • the control section 9 proceeds to step S15 and stops the operation of the grinding apparatus 1 . Further, when there is no command to forcibly stop the operation, the control unit 9 returns to step S19 and continues the operation of the grinding apparatus 1 .
  • the controller 9 controls the driving (on/off) of the motor 7 based on the detected value of the temperature sensor 37, which is the same as in the first embodiment. is similar to Further, the control section 9 controls the driving of the fan 42 according to the processing procedure shown in FIG.
  • any one of a plurality of grinding modes can be selected by the dial knob 13, and the dial knob 13 is actually operated.
  • the control unit 9 controls the driving of the motor 7 according to the grinding mode selected by the above.
  • the user operates the dial knob 13 to select the manufacturing mode when he/she wants to produce a large amount of cocoa mass, and operates the dial knob 13 to select the storefront mode when he/she wants to produce a small amount of cocoa mass.
  • a desired amount of cocoa mass can be discharged from the outlet 17a. Therefore, it is possible to provide the grinding device 1 which is easy to use.
  • the user can set the manufacturing operation time and/or store operation time to a desired time by operating the touch panel 18 . Therefore, when the user selects the manufacturing mode or the storefront mode, the amount of cocoa mass generated in one run can be adjusted.
  • Embodiments of the present invention can adopt the following configurations.
  • a grinding device comprising a controller.
  • ⁇ 2> Further, when the temperature sensor detects that the temperature of the fixed die reaches a third temperature higher than the first temperature, the controller prohibits driving the motor regardless of the state of the grind switch. When the temperature sensor detects that the temperature of the fixed die is equal to or lower than a fourth temperature higher than the first temperature and lower than the third temperature, the motor is turned on and off according to the state of the grind switch.
  • the grinding device according to ⁇ 1> which permits control.
  • Embodiments of the present invention can also adopt the following configuration.
  • the fixed mortar a first groove group formed on the outer circumference of the fixed die and having a first inclination angle with respect to the diametrical direction; a second groove group formed on the inner circumference of the first groove group having a second inclination angle opposite to the direction of inclination of the first groove group with respect to the diametrical direction;
  • a grinding device comprising a coarsely ground nib storage area formed on the inner circumference of the second groove group and storing the coarsely ground nibs.
  • a crossing groove is formed below the second groove group for allowing the coarsely crushed nib and the cocoa mass to flow in the circumferential direction of the fixed die.
  • the first groove group is an inner peripheral side sub-groove group having grooves partially connected to the grooves of the second groove group;
  • the rotary mill is a third groove group formed on the outer periphery of the rotary die having a third inclination angle with respect to the diametrical direction; a fourth groove group formed on the inner periphery of the third groove group having a fourth inclination angle that is the opposite inclination direction to the third groove group with respect to the diametrical direction,
  • the third tilt angle has the same tilt angle as the first tilt angle.
  • the third groove group is an inner peripheral side sub-groove group having grooves partially connected to the grooves of the fourth groove group;

Abstract

This grinding device comprises: a first transportation mechanism that receives cacao nib supply from a nib introduction tube and transports same to a subsequent mechanism; a coarsely grinding mechanism that coarsely grinds cacao nibs to produce coarsely ground nibs; a second transportation mechanism that transports the coarsely ground nibs to a subsequent mechanism; a rotary mill that further grinds the coarsely ground nibs to produce a cacao mass; a static mill that grinds the coarsely ground nibs in cooperation with the rotary mill to produce the cacao mass; and a motor provided with a driving axis for rotationally driving the first transportation mechanism, the second transportation mechanism, and the rotary mill.

Description

磨砕装置grinder
 本発明は、主にカカオ豆を焙煎(ロースト)して薄皮を除去したカカオニブを磨砕する、磨砕装置に関する。 The present invention mainly relates to a grinding device that grinds cacao nibs obtained by roasting cacao beans and removing the skin.
 チョコレートの原料となるカカオマスは、カカオニブを約20μm程度の大きさまで磨砕することで生成される。カカオ豆をコーヒー豆と比較すると、コーヒー豆は、0.5~1mm程度の粗い粒まで磨砕すればコーヒーを抽出できるが、カカオ豆は約20μm程度の大きさまで磨砕しなければならない。
 またカカオ豆はコーヒー豆とは異なり、豆の内部に油分であるカカオ油脂を大量に含んでいる。そして、カカオ油脂の融点は30℃程度であり、磨砕時にカカオ豆の温度がこの融点を下回ると、油脂が溶け出さず粉末になり、粒子サイズ20μmのペースト状にはならない。逆に、カカオ油脂は温度が高すぎると風味が損なわれてしまう。
Cocoa mass, which is a raw material for chocolate, is produced by grinding cacao nibs to a size of about 20 μm. Comparing cacao beans with coffee beans, coffee can be extracted by grinding coffee beans to coarse grains of about 0.5 to 1 mm, but cacao beans must be ground to a size of about 20 μm.
In addition, unlike coffee beans, cacao beans contain a large amount of cacao oils and fats, which are oil components, inside the beans. The melting point of cacao fats and oils is about 30° C. If the temperature of cacao beans drops below this melting point during grinding, the fats and oils do not melt out and become powder, not a paste with a particle size of 20 μm. Conversely, cacao fat loses its flavor if the temperature is too high.
 上記以外にも、後述するような様々な問題があるため、カカオニブを磨砕する技術的障壁は極めて高い。このため、チョコレートの製造工程は殆どが大規模な工場でのみ行われており、その設備は大型で、しかも高価である。そしてカカオニブの磨砕には、数~数十時間程度の時間が必要である。
 以上の理由により、短時間で少量生産が可能なカカオマス製造装置は実現されていない。したがって、個人でカカオ豆からカカオマスを作成しようとするならば、最低でも数時間以上の磨砕作業を強いられていた。
In addition to the above, there are various problems as described later, so the technical barrier to grinding cacao nibs is extremely high. For this reason, the chocolate manufacturing process is mostly carried out only in large-scale factories, and the equipment is large and expensive. Grinding cacao nibs requires several to several tens of hours.
For the above reasons, a cocoa mass production apparatus capable of small-scale production in a short time has not been realized. Therefore, if an individual wanted to make cacao mass from cacao beans, they were forced to grind for at least several hours.
 特許文献1には、風味の劣化を来たすことなく、カカオマスを微細、かつ均一粒度に粉砕し、夏場にも強く、また舌触りの良い、まろやかな品質の高級チョコレートの製造ができるカカオマスの処理に関する技術が開示されている。
 特許文献2には、小型かつ短時間で製造でき、また低製造コストを実現可能な家庭用チョコレート製造装置に関する技術が開示されている。
Patent Document 1 describes a technology related to cocoa mass processing that can grind cacao mass into fine and uniform particle sizes without causing deterioration of flavor, and can produce high-quality chocolate that is strong even in summer and has a good texture and mellow quality. is disclosed.
Patent Literature 2 discloses a technique related to a home-use chocolate manufacturing apparatus capable of producing compact chocolate in a short period of time and realizing low manufacturing costs.
 特許文献3には、臼の形状に関し、リグノセルロース含有材料を解繊するよう企図されているリファイナーに関する技術が開示されている。
 特許文献4には、臼の形状に関し、投入された粉砕対象物の大きさの違いによって生じる粉末の粒度のバラツキを抑制することができる臼に関する技術が開示されている。
US Pat. No. 5,300,000 discloses a refiner designed to defibrate lignocellulose-containing material with respect to the shape of the mortar.
Patent Literature 4 discloses a technique relating to the shape of the mortar, which is capable of suppressing variations in the particle size of powder caused by differences in the size of the crushed object that has been put into the mortar.
特開平5-184298号公報JP-A-5-184298 特開2020-198854号公報JP 2020-198854 A 特表2006-527650号公報Japanese Patent Publication No. 2006-527650 特開2016-159234号公報JP 2016-159234 A
 出願人は、カカオ豆の栽培・調達からチョコレートの製造まで手掛けるメーカーである。
 チョコレートの主原料はカカオ豆であり、原料であるカカオ豆の品質が最終商品であるチョコレートの風味に大きな影響を与えることは事実として広く認識されている。
 また、既存のチョコレートの製造工程において、カカオニブを磨砕して口触りがなめらかなペースト状にするのに数時間から数十時間を要するが、磨砕工程にかかる時間が長いほど、口触りがなめらかになる一方でカカオ豆が持つ香りや雑味が軽減されると同時にカカオ豆が元来持つ風味は薄れ、画一的な風味のチョコレートになってしまうことも知られている。
 産地、品種、土壌、天候、収穫後の発酵によって唯一無二の固有なカカオ豆が有する特徴を最大限に活かすには、短時間での磨砕が必要であるが、短時間での磨砕では口触りが滑らかにならない、というカカオマス製造における技術的に困難な問題があった。
The applicant is a manufacturer engaged in everything from the cultivation and procurement of cacao beans to the manufacture of chocolate.
The main raw material of chocolate is cocoa beans, and it is widely recognized as a fact that the quality of the raw cacao beans has a great influence on the flavor of the final product, chocolate.
In addition, in the existing chocolate manufacturing process, it takes several hours to several tens of hours to grind cacao nibs into a paste with a smooth texture. It is also known that while it becomes smoother, the aroma and unpleasant taste of the cocoa beans are reduced, and at the same time, the original flavor of the cocoa beans is diminished, resulting in chocolate with a uniform flavor.
Grinding in a short time is necessary to make the most of the unique characteristics of cacao beans due to the production area, variety, soil, weather, and post-harvest fermentation. There was a technically difficult problem in the production of cacao mass that it did not have a smooth texture.
 本発明は係る課題に鑑みてなされたものであり、シンプルな構造でありながら、極めて短時間で、カカオニブを磨砕してカカオマスを生成することができる磨砕装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a grinding apparatus capable of grinding cocoa nibs to produce cocoa mass in an extremely short period of time while having a simple structure. .
 上記課題を解決するために、本発明の磨砕装置は、ニブ導入筒と、ニブ導入筒からカカオニブの供給を受け、カカオニブを後続の機構へ輸送する第一輸送機構と、第一輸送機構から輸送されたカカオニブを粗く磨砕して粗砕ニブを生成する粗砕機構と、粗砕機構によって生成された粗砕ニブを後続の機構へ輸送する第二輸送機構と、第二輸送機構から供給された粗砕ニブを更に磨砕してカカオマスを生成する回転臼と、回転臼と相対して配置され、回転臼と協調して粗砕ニブを磨砕してカカオマスを生成する固定臼と、第一輸送機構、第二輸送機構及び回転臼を回転駆動する、駆動軸が設けられているモータとを備える。 In order to solve the above problems, the grinding apparatus of the present invention comprises a nib introduction cylinder, a first transport mechanism for receiving cacao nibs supplied from the nib introduction cylinder and transporting the cacao nibs to a subsequent mechanism, and A crushing mechanism that coarsely grinds the transported cocoa nibs to produce crushed nibs, a second conveying mechanism that transports the crushed nibs produced by the crushing mechanism to a subsequent mechanism, and a supply from the second conveying mechanism. a rotary mortar for further grinding the crushed nibs to produce cocoa mass, a fixed mortar arranged opposite to the rotary mortar and cooperating with the rotary mortar for grinding the coarsely crushed nibs to produce cocoa mass; A motor provided with a drive shaft for rotationally driving the first transport mechanism, the second transport mechanism and the rotary die.
 本発明によれば、シンプルな構造でありながら、極めて短時間で、カカオニブを磨砕してカカオマスを生成する磨砕装置を実現することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to realize a grinding apparatus that has a simple structure and can grind cacao nibs to produce cocoa mass in an extremely short period of time.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1実施形態に係る磨砕装置の斜視図である。1 is a perspective view of a grinding device according to a first embodiment of the present invention; FIG. 図1に示す磨砕装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the grinding device shown in FIG. 1; Aは図1に示す磨砕装置の上面図、Bはこの磨砕装置の正面図、Cはこの磨砕装置の側面図、Dはこの磨砕装置の背面図である。A is a top view of the grinding device shown in FIG. 1, B is a front view of this grinding device, C is a side view of this grinding device, and D is a back view of this grinding device. 図1に示す磨砕装置の一部を拡大した縦断面図である。Fig. 2 is a longitudinal sectional view enlarging a part of the grinding device shown in Fig. 1; 図1に示す磨砕装置のうち、カカオニブ及び/又はカカオマスに直接接触する部品を中心に示す一部抜粋拡大図である。FIG. 2 is an enlarged view of a part of the grinding device shown in FIG. 1, mainly showing parts that come into direct contact with cocoa nibs and/or cocoa mass. 図1に示す磨砕装置の一部分解図である。FIG. 2 is a partially exploded view of the grinding device shown in FIG. 1; Aは図1に示す磨砕装置が備えるスクリューの斜視図、Bはこのスクリューの正面図、Cはこのスクリューの側面図である。A is a perspective view of a screw provided in the grinding apparatus shown in FIG. 1, B is a front view of this screw, and C is a side view of this screw. A~Dは図1に示す磨砕装置において、ケースに収納されているスクリューが、モータによって回転駆動される様子を、ホッパーの上面から覗いた概略図である。4A to 4D are schematic views of the grinding apparatus shown in FIG. 1, viewed from the upper surface of the hopper, showing how a screw housed in a case is rotationally driven by a motor; FIG. Aは図1に示す磨砕装置において、0°の回転位置にあるスクリューとプリプレートの側面図、Bはこの磨砕装置において、90°の回転位置にあるスクリューとプリプレートの側面図、Cはこの磨砕装置において、180°の回転位置にあるスクリューとプリプレートの側面図、Dはこの磨砕装置において、270°の回転位置にあるスクリューとプリプレートの側面図である。A is a side view of the screw and pre-plate at the 0° rotation position in the grinding device shown in FIG. 1, B is a side view of the screw and the pre-plate at the 90° rotation position, C is a side view of the screw and pre-plate at a 180° rotation position in this grinding device, and D is a side view of the screw and pre-plate at a 270° rotation position in this grinding device. 図1に示す磨砕装置において、カカオニブがプリプレートの窓を通過する際における、プリプレートの一部断面を含むスクリューの側面図である。FIG. 2 is a side view of a screw including a partial cross-section of a pre-plate when cacao nibs pass through windows of the pre-plate in the grinding device shown in FIG. 1; Aは図1に示す磨砕装置が備えるプリプレートの正面図、Bはこの磨砕装置が備えるプリプレートとプロペラの正面図である。A is a front view of a pre-plate provided in the grinding apparatus shown in FIG. 1, and B is a front view of a pre-plate and a propeller provided in this grinding apparatus. 図1に示す磨砕装置が備える固定臼の正面図である。FIG. 2 is a front view of a fixed die included in the grinding device shown in FIG. 1; 図1に示す磨砕装置の固定臼に形成されている溝の一部拡大図である。FIG. 2 is a partially enlarged view of a groove formed in a fixed die of the grinding device shown in FIG. 1; 図1に示す磨砕装置において、固定臼の特定の2本の溝のみを抜粋した図である。FIG. 2 is a diagram showing only two specific grooves of a fixed die in the grinding device shown in FIG. 1; 図1に示す磨砕装置が備える回転臼の正面図である。2 is a front view of a rotary mill included in the grinding device shown in FIG. 1; FIG. 図1に示す磨砕装置が備える回転臼の一部拡大図である。FIG. 2 is a partially enlarged view of a rotary mill included in the grinding device shown in FIG. 1; 図1に示す磨砕装置において、回転臼の特定の2本の溝のみを抜粋した図である。FIG. 2 is a view of only two specific grooves of the rotary mill in the grinding device shown in FIG. 1; A及びBは図1に示す磨砕装置が備える固定臼及び回転臼の溝の一部拡大図である。2A and 2B are partially enlarged views of grooves of a fixed die and a rotary die provided in the grinding apparatus shown in FIG. 1; FIG. Aは図1に示す磨砕装置において、固定臼の外周の溝を模式的に示す一部拡大図、Bはこの磨砕装置において、固定臼の第一溝群と回転臼の外周の溝を模式的に示す一部拡大図(その1)、Cはこの磨砕装置において、固定臼の第一溝群と回転臼の外周の溝を模式的に示す一部断面図(その1)、Dはこの磨砕装置において、固定臼の第一溝群と回転臼の外周の溝を模式的に示す一部拡大図(その2)、Eはこの磨砕装置において、固定臼の第一溝群と回転臼の外周の溝を模式的に示す一部断面図(その2)である。A is a partially enlarged view schematically showing the grooves on the outer periphery of the fixed die in the grinding device shown in FIG. Partial enlarged view (Part 1) schematically showing, C is a partial cross-sectional view (Part 1) schematically showing the first groove group of the fixed die and the outer peripheral groove of the rotary die in this grinding apparatus, D is a partially enlarged view schematically showing the first groove group of the fixed die and the grooves on the outer periphery of the rotary die in this grinding apparatus (Part 2), E is the first groove group of the fixed die in this grinding apparatus It is a partial cross-sectional view (2) which shows typically the groove|channel of the outer periphery of a rotary die. 図1に示す磨砕装置が備える磨砕部からユニットカバーを取り外した状態における、磨砕部の斜視図である。2 is a perspective view of the grinding section of the grinding device shown in FIG. 1 with a unit cover removed from the grinding section; FIG. Aは図1に示す磨砕装置が備えるインナーディスクサポートの正面図、Bはこの磨砕装置が備えるインナーディスクサポートの斜視図である。A is a front view of an inner disk support provided in the grinding device shown in FIG. 1, and B is a perspective view of the inner disk support provided in this grinding device. 図1に示す磨砕装置が備える制御部のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing the hardware configuration of a control unit included in the grinding device shown in FIG. 1; 図1に示す磨砕装置が備える制御部のソフトウェア機能を示すブロック図である。FIG. 2 is a block diagram showing software functions of a control unit provided in the grinding apparatus shown in FIG. 1; 図1に示す磨砕装置が備える制御部の処理の流れを示すフローチャートである。2 is a flow chart showing the flow of processing of a control unit provided in the grinding apparatus shown in FIG. 1; 横断溝の変形例を示す固定臼の正面図である。FIG. 10 is a front view of a fixed die showing a modification of transverse grooves; 本発明の第2実施形態に係る磨砕装置の斜視図である。Fig. 2 is a perspective view of a grinding device according to a second embodiment of the present invention; 図26に示す磨砕装置の縦断面図である。FIG. 27 is a longitudinal sectional view of the grinding device shown in FIG. 26; Aは図26に示す磨砕装置の上面図、Bはこの磨砕装置の正面図、Cはこの磨砕装置の側面図、Dはこの磨砕装置の背面図である。A is a top view of the grinding device shown in FIG. 26, B is a front view of this grinding device, C is a side view of this grinding device, and D is a rear view of this grinding device. 図26に示す磨砕装置の一部を拡大した縦断面図である。Fig. 27 is a longitudinal sectional view enlarging a part of the grinding device shown in Fig. 26; 図26に示す磨砕装置の分解斜視図である。27 is an exploded perspective view of the grinding device shown in FIG. 26; FIG. 図26に示す磨砕装置が備えるスクリューの側面図である。FIG. 27 is a side view of a screw included in the grinding device shown in FIG. 26; 図26に示す磨砕装置において、ケース内のスクリューを、ニブ導入筒を通して見た図である。27 is a view of the screw in the case seen through the nib introduction tube in the grinding device shown in FIG. 26. FIG. 図26に示す磨砕装置が備えるプリプレートとディスチャージプレートを示す斜視図である。FIG. 27 is a perspective view showing a pre-plate and a discharge plate included in the grinding device shown in FIG. 26; Aはニブ供給期間におけるスクリュー、プリプレート及びディスチャージプレートの配置状態をスクリューの先端側から見た図、Bはニブ供給期間におけるスクリュー、プリプレート及びディスチャージプレートの配置状態を示す縦断面図である。A is a view of the arrangement of the screw, pre-plate, and discharge plate during the period of nib supply, viewed from the tip side of the screw, and B is a vertical cross-sectional view showing the arrangement of the screw, pre-plate, and discharge plate during the period of nib supply. Aはニブ供給中断期間におけるスクリュー、プリプレート及びディスチャージプレートの配置状態をスクリューの先端側から見た図、Bはニブ供給中断期間におけるスクリュー、プリプレート及びディスチャージプレートの配置状態を示す縦断面図である。A is a view of the arrangement of the screw, pre-plate, and discharge plate during the nib supply interruption period as viewed from the tip side of the screw, and B is a longitudinal sectional view showing the arrangement of the screw, pre-plate, and discharge plate during the nib supply interruption period. be. 図26に示す磨砕装置が備えるインナーディスクサポートの正面図である。FIG. 27 is a front view of an inner disk support included in the grinding device shown in FIG. 26; 図26に示す磨砕装置が備えるインナーディスクサポートの斜視図である。FIG. 27 is a perspective view of an inner disk support included in the grinding device shown in FIG. 26; 図26に示す磨砕装置が備える制御部によるファンの制御方法を示すフローチャートである。27 is a flow chart showing a method of controlling a fan by a control unit provided in the grinding device shown in FIG. 26. FIG. 本発明の第2実施形態に係る磨砕装置の制御構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of control configuration of a grinding device according to a second embodiment of the present invention; Aは磨砕装置の使用者が製造モードを選択した場合のダイヤルノブの操作ポジションを示す図、Bはニュートラル状態のダイヤルノブの操作ポジションを示す図、Cは磨砕装置の使用者が店頭モードを選択した場合のダイヤルノブの操作ポジションを示す図である。A is a diagram showing the operation position of the dial knob when the user of the grinding device selects the manufacturing mode, B is a diagram showing the operation position of the dial knob in the neutral state, and C is a diagram showing the operation position of the dial knob when the user of the grinding device is in the storefront mode. It is a figure which shows the operation position of a dial knob at the time of selecting. 図26に示す磨砕装置が備える制御部によって実行される制御処理の一例を示すフローチャートである。FIG. 27 is a flow chart showing an example of control processing executed by a control unit provided in the grinding device shown in FIG. 26; FIG.
 <第1実施形態>
 [磨砕装置101:全体構成]
 以下、図1~図6を参照して本発明の第1実施形態に係る磨砕装置101の全体構成及びその機能を説明する。
 図1~図6に示すように、本発明の第1実施形態に係る磨砕装置101は、略直方体形状の駆動部102と、円筒形状の磨砕部103を有する。駆動部102の内部には、図2に示すように、モータ201と制御部202が収納されている。
 図2及び図6に示すように、モータ201は、駆動軸201aが水平方向に向くように、駆動部102の内部に装置フレーム417にて支持されている。図1に示す磨砕装置101には、磨砕部103から排出されたカカオマスを受けるポット105が台106に据え置かれている。
<First Embodiment>
[Grinding device 101: overall configuration]
Hereinafter, the overall configuration and functions of the grinding device 101 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG.
As shown in FIGS. 1 to 6, a grinding device 101 according to the first embodiment of the present invention has a substantially rectangular parallelepiped driving section 102 and a cylindrical grinding section 103. As shown in FIGS. Inside the drive unit 102, as shown in FIG. 2, a motor 201 and a control unit 202 are housed.
As shown in FIGS. 2 and 6, the motor 201 is supported inside the driving section 102 by a device frame 417 so that the drive shaft 201a is oriented horizontally. In the grinding device 101 shown in FIG. 1, a pot 105 for receiving cocoa mass discharged from the grinding section 103 is placed on a table 106 .
 図4及び図5に示すように、磨砕装置101の主要な構成部品の多くは、磨砕部103に格納されている。
 磨砕部103は、垂直方向に開口部104aを有し、カカオニブを蓄積するホッパー104と、ホッパー104からカカオニブの供給を受け、カカオニブを後続の機構へ輸送する、第一輸送機構を構成するスクリュー401を有する。磨砕部103の全面は、ユニットカバー107で覆われている。
As shown in FIGS. 4 and 5, many of the major components of grinding device 101 are housed in grinding section 103 .
The grinding unit 103 has an opening 104a in the vertical direction, a hopper 104 for accumulating cocoa nibs, and a screw that constitutes a first transport mechanism that receives cocoa nibs supplied from the hopper 104 and transports the cocoa nibs to a subsequent mechanism. 401. The entire surface of the grinding section 103 is covered with a unit cover 107 .
 次に磨砕部103は、スクリュー401から輸送されたカカオニブを粗く磨砕して粗砕ニブを生成する、スクリュー401と共に粗砕機構を構成するプリプレート402を有する。
 そして磨砕部103は、スクリュー401とプリプレート402によって生成された粗砕ニブを後続の回転臼403及び固定臼404へ輸送する、第二輸送機構を構成するプロペラ405を有する。
 更に、磨砕部103は、プロペラ405から供給された粗砕ニブを磨砕してカカオマスを生成する回転臼403と、回転臼403と相対して配置され、回転臼403と協調して粗砕ニブを磨砕してカカオマスを生成する固定臼404を有する。
Next, the grinding section 103 has a pre-plate 402 which constitutes a coarse grinding mechanism together with the screw 401 for coarsely grinding cacao nibs transported from the screw 401 to produce coarsely ground nibs.
The grinding section 103 has a propeller 405 that constitutes a second transport mechanism that transports the coarsely ground nibs produced by the screw 401 and the preplate 402 to the following rotary die 403 and stationary die 404 .
Further, the grinding unit 103 is arranged to face a rotary mortar 403 that grinds the coarsely crushed nibs supplied from the propeller 405 to produce cacao mass, and is arranged to face the rotary mortar 403, and coarsely grinds in cooperation with the rotary mortar 403. It has a fixed mortar 404 that grinds the nibs to produce cocoa mass.
 スクリュー401と、プロペラ405と、回転臼403は、モータ201の駆動軸201aに嵌め込まれているので、駆動軸201aによって一体的に回転駆動される。モータ201は、スクリュー401と、プロペラ405と、回転臼403に対する共通の動力源である。モータ201は、駆動軸201aを通じて、スクリュー401と、プロペラ405と、回転臼403を直接的に回転駆動する。駆動軸201aは水平に設置され、回転臼403及び固定臼404は垂直に設置されている。
 図4に示すように、本実施形態の磨砕装置101においては、この磨砕部103が極めてコンパクトに構成されていることが分かる。
Since the screw 401, the propeller 405, and the rotary die 403 are fitted on the drive shaft 201a of the motor 201, they are integrally rotated by the drive shaft 201a. Motor 201 is a common power source for screw 401 , propeller 405 , and rotary die 403 . Motor 201 directly rotates screw 401, propeller 405, and rotary die 403 through drive shaft 201a. The drive shaft 201a is installed horizontally, and the rotary mill 403 and fixed mill 404 are installed vertically.
As shown in FIG. 4, in the grinding device 101 of this embodiment, the grinding section 103 is constructed to be extremely compact.
 次に、磨砕部103の構成部品について簡単に説明する。図4に示すように、磨砕部103は、装置フレーム417に固定されるケース406を有している。ケース406は、鍔状に構成され、装置フレーム417にねじ止めされる支持プレート406aと、水平方向に延びるスクリュー収納筒406bと、スクリュー収納筒406bに対して略垂直に設けられるニブ導入筒406cを有する。 Next, the constituent parts of the grinding section 103 will be briefly described. As shown in FIG. 4, the grinding section 103 has a case 406 fixed to the device frame 417 . The case 406 has a brim-shaped support plate 406a screwed to the device frame 417, a horizontally extending screw housing cylinder 406b, and a nib introduction cylinder 406c provided substantially perpendicular to the screw housing cylinder 406b. have.
 中空の円筒状に形成されているスクリュー収納筒406bは、その内部にスクリュー401を収納する。
 ニブ導入筒406cも、スクリュー収納筒406bと同様に、中空の円筒状に形成されている。ニブ導入筒406cの上端の開口部分は、ホッパー104と接続される。ニブ導入筒406cの下端の開口部分は、スクリュー収納筒406bと接続されている。
A screw housing cylinder 406b formed in a hollow cylindrical shape houses the screw 401 therein.
The nib introduction tube 406c is also formed in a hollow cylindrical shape like the screw storage tube 406b. An upper end opening of the nib introduction tube 406c is connected to the hopper 104 . An opening portion at the lower end of the nib introduction tube 406c is connected to the screw storage tube 406b.
 ニブ導入筒406cは、ホッパー104を支持すると共に、ホッパー104に貯留されたカカオニブをホッパー104の開口部104aからスクリュー収納筒406bに導入する役割を有する。したがって、ホッパー104の開口部104aを覗くと、ニブ導入筒406cを通じてスクリュー401の一部分が開口部104aに露出していることが分かる。 The nib introduction cylinder 406c has the role of supporting the hopper 104 and introducing the cacao nibs stored in the hopper 104 from the opening 104a of the hopper 104 into the screw storage cylinder 406b. Therefore, when looking into the opening 104a of the hopper 104, it can be seen that part of the screw 401 is exposed to the opening 104a through the nib introduction tube 406c.
 また、固定臼404は、ケース406に支持されたインナーディスクサポート407によって支持され、回転臼403は、アウターディスクサポート408によって支持されている。詳細は後述するが、インナーディスクサポート407とケース406との間には、樹脂製のインナーアダプタ413が介在している。このインナーアダプタ413は、固定臼404及び/又はインナーディスクサポート407から発生する熱を、ケース406のスクリュー収納筒406b及びスクリュー401の輸送溝401aに収納されているカカオニブに伝導させないために設けられている。 Also, the fixed die 404 is supported by an inner disk support 407 supported by a case 406 , and the rotary die 403 is supported by an outer disk support 408 . Although details will be described later, an inner adapter 413 made of resin is interposed between the inner disk support 407 and the case 406 . This inner adapter 413 is provided to prevent the heat generated from the fixed die 404 and/or the inner disk support 407 from being conducted to the cocoa nibs housed in the screw housing cylinder 406b of the case 406 and the transport groove 401a of the screw 401. there is
 液状のカカオマスを得るには、カカオマスに含まれるカカオ油脂が30℃以上に温まっている必要がある。このため、インナーディスクサポート407には図21にて後述するヒータ2101が組み込まれており、インナーディスクサポート407を通じて固定臼404及び回転臼403、そしてディスクカバー411を所定の温度まで加熱する。また、回転臼403がモータ201によって回転駆動されると、固定臼404及び回転臼403には摩擦熱が発生する。 In order to obtain liquid cocoa mass, the cacao oil contained in the cocoa mass must be warmed to 30°C or higher. For this reason, the inner disk support 407 incorporates a heater 2101, which will be described later with reference to FIG. Also, when the rotary mill 403 is rotationally driven by the motor 201 , frictional heat is generated in the fixed mill 404 and the rotary mill 403 .
 一方、カカオニブは30℃以上になるとカカオ油脂が溶け出し、溶け出したカカオ油脂はカカオニブを輸送する際に大きな弊害になってしまう。このため、カカオニブを輸送する機構部分、すなわちケース406及びスクリュー401は、30℃を下回る温度に保つ必要がある。したがって、固定臼404を支持するインナーディスクサポート407とケース406との間には、熱の伝導を遮断する部品が必要になる。同様に、回転臼403及びこれを支持するアウターディスクサポート408と、スクリュー401が取り付けられている駆動軸201aとの間にも、熱の伝導を遮断する部品が必要になる。
 インナーディスクサポート407とケース406との間には、インナーアダプタ413とオサエプレート412が、断熱のために介在している。
 アウターディスクサポート408及び回転臼403と駆動軸201aとの間には、スペーサ415とアウターアダプタ416が、断熱のために介在している。
On the other hand, when cacao nibs are heated to 30° C. or higher, the cacao oil and fat dissolves, and the dissolved cacao oil and fat poses a serious problem when the cacao nibs are transported. For this reason, the mechanical parts that transport the cocoa nibs, namely the case 406 and the screw 401, must be kept below 30°C. Therefore, between the inner disk support 407 that supports the fixed die 404 and the case 406, a part that blocks heat conduction is required. Similarly, between the rotary die 403 and the outer disk support 408 that supports it, and the drive shaft 201a to which the screw 401 is attached, a part that blocks heat conduction is required.
An inner adapter 413 and a support plate 412 are interposed between the inner disk support 407 and the case 406 for heat insulation.
A spacer 415 and an outer adapter 416 are interposed between the outer disk support 408 and rotary die 403 and the drive shaft 201a for heat insulation.
 アウターディスクサポート408は、アウターアダプタ416を通じて駆動軸201aに支持されている。そして、モータ201の回転駆動力は、アウターディスクサポート408を経由して回転臼403に伝達される。
 また、アウターディスクサポート408は、ナット409とクランパ414とスペーサ415と皿バネ410によって固定臼404へ押圧されている。ナット409はアウターディスクサポート408を固定臼404へ押圧する。ナット409を締めると、ナット409はクランパ414とスペーサ415を通じて皿バネ410を押圧する。すると、皿バネ410がアウターディスクサポート408を押圧する力が増す。なお、カカオマスの粒子径は、皿バネ410がアウターディスクサポート408を押圧する力により決定される。
The outer disk support 408 is supported by the drive shaft 201a through an outer adapter 416. As shown in FIG. The rotational driving force of the motor 201 is transmitted to the rotary die 403 via the outer disk support 408 .
Also, the outer disk support 408 is pressed against the fixed die 404 by a nut 409 , a clamper 414 , a spacer 415 and a disc spring 410 . A nut 409 presses the outer disk support 408 onto the fixed die 404 . When the nut 409 is tightened, the nut 409 presses the disc spring 410 through the clamper 414 and spacer 415 . Then, the force with which the disc spring 410 presses the outer disk support 408 increases. The particle size of cocoa mass is determined by the force with which the disc spring 410 presses the outer disk support 408 .
 図4に示すように、回転臼403とアウターディスクサポート408は、固定臼404とディスクカバー411によって封止されている。ディスクカバー411は、固定臼404と回転臼403の周縁から染み出るカカオマスの漏出を防ぐとともに、ディスクカバー411の真下に設けられている排出口411aにカカオマスを導く役割を有する。 As shown in FIG. 4, the rotating die 403 and the outer disk support 408 are sealed by the stationary die 404 and the disk cover 411. The disk cover 411 has the role of preventing leakage of cocoa mass exuding from the peripheral edges of the fixed mill 404 and the rotary mill 403 and guiding the cocoa mass to a discharge port 411 a provided directly below the disk cover 411 .
 磨砕部103の構成部品は、固定臼404及び回転臼403と、インナーアダプタ413、オサエプレート412、スペーサ415、アウターアダプタ416を除き、殆ど全てSUS304やSUS430等の、重量に比して堅牢で、錆が生じ難く、熱伝導性が高いステンレスで構成される。アルミニウム合金や真鍮等は、堅牢性に欠けるため、磨砕部103の生成部品の材質としては適切ではない。
 固定臼404と回転臼403は、何れもアルミナ、ジルコニア、窒化ケイ素等の、高い硬度を有し摩耗に強いセラミックスで形成されている。
 インナーアダプタ413、オサエプレート412、スペーサ415及びアウターアダプタ416は、モノマーキャストナイロンやポリアセタール等の、断熱性能の高い合成樹脂で構成される。
Except for the fixed die 404, the rotary die 403, the inner adapter 413, the support plate 412, the spacer 415, and the outer adapter 416, almost all of the components of the grinding unit 103 are made of SUS304, SUS430, etc., and are robust compared to their weight. It is made of stainless steel, which is resistant to rust and has high thermal conductivity. Aluminum alloys, brass, and the like are not suitable as materials for the parts to be produced by the grinding unit 103 because they lack robustness.
Both the fixed die 404 and the rotary die 403 are made of ceramics such as alumina, zirconia, silicon nitride, etc., which have high hardness and are resistant to wear.
The inner adapter 413, the retainer plate 412, the spacer 415, and the outer adapter 416 are made of synthetic resin with high heat insulation performance such as monomer cast nylon or polyacetal.
 モータ201は、スクリュー401、プロペラ405及び回転臼403を低い回転速度にて回転駆動する。特に、回転臼403の回転駆動には、カカオニブをカカオマスまで磨り潰すに十分なトルクを要することから、モータ201はギアドモータや大出力モータと低回転モータドライバ等の、低回転速度で高トルクを出力できるモータが採用される。 The motor 201 rotates the screw 401, the propeller 405 and the rotary die 403 at a low rotational speed. In particular, since sufficient torque is required to drive the rotary mill 403 to grind cacao nibs to cacao mass, the motor 201 is a geared motor, a large output motor and a low rotation motor driver, etc., which outputs high torque at a low rotation speed. A motor that can
 図1~図6に示す磨砕装置101は、ホッパー104を含めた高さが約50cm、駆動部102の高さが41cm、駆動部102の奥行きが約26cm、磨砕部103の奥行きが約16cmという、周知のコーヒーメーカー等と変わらない大きさの装置である。すなわち、この磨砕装置101は、周知のチョコレート製造プラントと比較すると極めて小型である。当然ながら、磨砕装置101の製造に掛かる費用は、周知のチョコレート製造プラントと比較すると圧倒的に安価になる。 The grinding device 101 shown in FIGS. 1 to 6 has a height including the hopper 104 of about 50 cm, a driving section 102 having a height of 41 cm, a driving section 102 having a depth of about 26 cm, and a grinding section 103 having a depth of about At 16 cm, it is the same size as a well-known coffee maker. This grinding device 101 is thus very compact compared to known chocolate manufacturing plants. Naturally, the cost of manufacturing the grinding device 101 is overwhelmingly lower when compared to known chocolate manufacturing plants.
 なお、上述の磨砕装置101の大きさは、本件特許出願時点における試作機の数値であり、今後の装置の改良に伴い、変化する可能性があるものの、基本的に周知のコーヒーメーカー等と同等の、小型の装置であることに変わりはない。 The size of the grinding device 101 described above is the numerical value of the prototype at the time of the filing of the present patent application, and may change as the device is improved in the future. It is still an equivalent, smaller device.
 本実施形態の磨砕装置101は、一度実稼働が開始されると、カカオニブをホッパー104に投入してから僅か30秒~1分程でカカオマスを排出する。これは、周知のチョコレート製造プラントと比較すると圧倒的に高速なカカオマス生成能力を有することを意味する。 Once the grinding device 101 of the present embodiment is put into operation, the cocoa mass is discharged in just 30 seconds to 1 minute after the cacao nibs are put into the hopper 104. This means that it has an overwhelmingly faster cocoa mass production capacity compared to known chocolate manufacturing plants.
 更に、本実施形態の磨砕装置101において、磨砕部103によってカカオニブがカカオマスに磨砕されるまでの輸送経路は、ホッパー104を含めて15cm程度であり、ホッパー104を除外すると10cmにも満たない。この点も、周知のチョコレート製造プラントと比較すると、カカオニブは磨砕部103が構成する極めて短い輸送経路を経て、短時間でカカオマスに磨砕されることを意味する。 Furthermore, in the grinding device 101 of the present embodiment, the transportation route until the cocoa nibs are ground into cocoa mass by the grinding unit 103 is about 15 cm including the hopper 104, and it reaches 10 cm if the hopper 104 is excluded. do not have. This point also means that the cacao nibs are ground into cocoa mass in a short period of time via an extremely short transportation route constituted by the grinding section 103, as compared with a well-known chocolate manufacturing plant.
[第一輸送機構]
 次に、図7~図8を参照して、本実施形態の磨砕装置101に用いられる、第一輸送機構を構成するスクリュー401について説明する。
 図7A、B、Cは、それぞれスクリュー401の斜視図、正面図、側面図を示す。図8A~Dは、ケース406に収納されているスクリュー401がモータ201によって回転駆動される様子を、ホッパー104の上面から覗いた図を示している。
[First Transport Mechanism]
Next, referring to FIGS. 7 and 8, the screw 401 constituting the first transport mechanism used in the grinding device 101 of this embodiment will be described.
7A, B and C show perspective, front and side views of the screw 401, respectively. 8A to 8D show views of the screw 401 housed in the case 406 being rotationally driven by the motor 201, viewed from above the hopper 104. FIG.
 図8A~Dに示すように、ホッパー104の開口部104a及びケース406のニブ導入筒406cから見えるスクリュー401の輸送溝401aは、モータ201による回転駆動によって、輸送溝401aがニブ導入筒406cに露出するとき(図8B、C及びD)と露出せずに隠れるとき(図8A)がある。輸送溝401aは、螺旋状に形成されている。 As shown in FIGS. 8A to 8D, the transport groove 401a of the screw 401, which is visible from the opening 104a of the hopper 104 and the nib introduction cylinder 406c of the case 406, is exposed to the nib introduction cylinder 406c by the rotational drive of the motor 201. There are times when it does (FIGS. 8B, C and D) and times when it hides without being exposed (FIG. 8A). The transport groove 401a is spirally formed.
 ホッパー104に蓄積されるカカオニブは、重力によってスクリュー401の輸送溝401aに入り込むが、輸送溝401aがニブ導入筒406cに露出していないときには、カカオニブはスクリュー401の輸送溝401aには入らない。つまり、モータ201の回転駆動によって、カカオニブはスクリュー401の輸送溝401aを通じて断続的に、後続の機構へ移送される。 The cacao nibs accumulated in the hopper 104 enter the transport groove 401a of the screw 401 by gravity, but when the transport groove 401a is not exposed to the nib introduction tube 406c, the cacao nibs do not enter the transport groove 401a of the screw 401. That is, the cocoa nibs are intermittently transported to the subsequent mechanism through the transport groove 401a of the screw 401 by the rotational driving of the motor 201.
 回転臼403及び固定臼404は、モータ201が回転臼403を回転駆動することで、カカオニブが粗く破砕された粗砕ニブ(図9にて後述)からカカオマスを生成する。回転臼403及び固定臼404によるカカオマスの生成速度は、モータ201の回転速度を早くすれば高めることができる。しかし、一方で回転臼403の回転速度を早くし過ぎると、回転臼403及び固定臼404の温度が上昇し過ぎて、カカオマス生成に支障を来してしまうことがある。 The rotating mill 403 and the fixed mill 404 generate cocoa mass from coarsely crushed nibs (described later in FIG. 9) obtained by coarsely crushing cacao nibs by rotating the rotating mill 403 with the motor 201 . The production speed of cocoa mass by the rotary mill 403 and fixed mill 404 can be increased by increasing the rotation speed of the motor 201 . On the other hand, however, if the rotational speed of the rotary mill 403 is too high, the temperature of the rotary mill 403 and the fixed mill 404 will rise too much, which may hinder cocoa mass production.
 このため、回転臼403及び固定臼404によるカカオマス生成速度、言い換えると単位時間当たりのカカオニブ処理能力には限界がある。そして、後述するプロペラ405による粗砕ニブを輸送する速度も、回転臼403及び固定臼404の処理能力に合わせて構成されている。したがって、プロペラ405による粗砕ニブを輸送する速度にも限界があり、その結果、単位時間当たりのカカオニブ処理能力に限界があると言える。 For this reason, there is a limit to the cocoa mass production speed by the rotary mill 403 and the fixed mill 404, in other words, the cacao nibs processing capacity per unit time. The speed at which the coarsely crushed nibs are transported by the propeller 405, which will be described later, is also configured according to the throughput of the rotary mill 403 and fixed mill 404. FIG. Therefore, there is a limit to the speed at which the propeller 405 can transport coarsely ground nibs, and as a result, it can be said that there is a limit to the cacao nibs processing capacity per unit time.
 プロペラ405による単位時間当たりのカカオニブ処理能力に限界があるということは、単位時間当たりのカカオニブ処理能力を超えるカカオニブをプロペラ405に供給してはならないことを意味する。
 ホッパー104からカカオニブを無尽蔵に供給し続けると、プロペラ405のカカオニブ処理能力を容易に超えてしまう。すると、スクリュー401と後続のプリプレート402及びプロペラ405において処理しきれないカカオニブが詰まってしまうという問題が発生する。
The fact that the propeller 405 has a limited capacity to process cocoa nibs per unit time means that the propeller 405 should not be supplied with cocoa nibs that exceed its capacity to process cocoa nibs per unit time.
If the hopper 104 continues to supply cocoa nibs indefinitely, the capacity of the propeller 405 to process cocoa nibs can easily be exceeded. Then, there arises a problem that unprocessed cocoa nibs are clogged in the screw 401 and the subsequent pre-plate 402 and propeller 405 .
 そこで、回転臼403及び固定臼404、そしてプロペラ405の単位時間当たりのカカオニブ処理能力を超えないように、ホッパー104からカカオニブを供給する単位時間当たりの供給量を制限する仕組みが必要になる。この単位時間当たりのカカオニブ供給量を制限する仕組みは、スクリュー401の輸送溝401aの工夫として、図8に示されている。 Therefore, a mechanism is required to limit the amount of cocoa nibs supplied from the hopper 104 per unit time so as not to exceed the cacao nibs processing capacity of the rotary mill 403, fixed mill 404, and propeller 405 per unit time. A mechanism for limiting the amount of cacao nibs supplied per unit time is shown in FIG.
 図8A~Dに示すように、スクリュー401をホッパー104の開口部104a及びケース406のニブ導入筒406cから見ると、スクリュー401の輸送溝401aは、図8Aの時点において完全に隠れる。また、ホッパー104の開口部104a及びケース406のニブ導入筒406cから見えるスクリュー401の輸送溝401aの露出面積は、図8Aを過ぎて図8Bから露出面積が大きくなり始める。そして、図8Dにおいて最大になり、徐々に露出面積が小さくなる。 As shown in FIGS. 8A to 8D, when the screw 401 is viewed from the opening 104a of the hopper 104 and the nib introduction tube 406c of the case 406, the transport groove 401a of the screw 401 is completely hidden at the time of FIG. 8A. Also, the exposed area of the transport groove 401a of the screw 401 visible from the opening 104a of the hopper 104 and the nib introduction tube 406c of the case 406 starts to increase from FIG. 8B after passing FIG. 8A. Then, it becomes maximum in FIG. 8D, and the exposed area gradually decreases.
 このように、ニブ導入筒406cから露出するスクリュー401の輸送溝401aの、モータ201の1回転当たりの露出面積を制限することで、ホッパー104からスクリュー401の輸送溝401aの方向へ供給されるカカオニブの供給量を制限することができる。 In this way, by limiting the exposed area per rotation of the motor 201 of the transport groove 401a of the screw 401 exposed from the nib introduction tube 406c, cocoa nibs supplied from the hopper 104 in the direction of the transport groove 401a of the screw 401 can limit the supply of
 スクリュー401の輸送溝401aを用いたカカオニブの供給量を制限する仕組みは、輸送溝401aの、ニブ導入筒406cから露出している状態における露出面積を調節するだけで容易に実現できるので、シンプルな機構でありながら良好な効果を奏することが可能になる。
 以上の説明で明らかなように、第一輸送機構を構成するスクリュー401は、ニブ導入筒406cから供給されるカカオニブを後続の機構に輸送する際、カカオニブの単位時間当たりの供給量を適切な量に制限する機能を有する。
The mechanism for limiting the amount of cocoa nibs supplied using the transport groove 401a of the screw 401 can be easily realized by simply adjusting the exposed area of the transport groove 401a in a state where it is exposed from the nib introduction tube 406c, so it is simple. Although it is a mechanism, it is possible to achieve a good effect.
As is clear from the above description, the screw 401 that constitutes the first transport mechanism, when transporting the cacao nibs supplied from the nib introduction cylinder 406c to the subsequent mechanism, adjusts the supply amount of cacao nibs per unit time to an appropriate amount. It has the function of limiting to
[粗砕機構]
 本実施形態の磨砕装置101の最終目的は、カカオニブから約20μm程度の大きさのカカオマスを生成することである。これを実現するために必要なカカオマスを生成する最終機構部品は、回転臼403と固定臼404である。
[Crushing mechanism]
The final purpose of the grinding device 101 of the present embodiment is to produce cocoa mass with a size of about 20 μm from cocoa nibs. The final mechanical parts for producing cocoa mass necessary for realizing this are the rotating mill 403 and the fixed mill 404 .
 回転臼403と固定臼404によりカカオマスを生成する前の段階として、カカオニブをある程度の大きさまで破砕しておくことが望ましい。
 そこで、本実施形態の磨砕装置101では、スクリュー401の終端にプリプレート402を配置している。プリプレート402はスクリュー401の輸送溝401aの終端に近接して配置されている。
As a step before producing cocoa mass by the rotary mill 403 and the fixed mill 404, it is desirable to crush the cacao nibs to a certain size.
Therefore, in the grinding device 101 of this embodiment, the pre-plate 402 is arranged at the terminal end of the screw 401 . The pre-plate 402 is arranged close to the end of the transport groove 401a of the screw 401. As shown in FIG.
 図4に示すように、プリプレート402は、インナーディスクサポート407とケース406との間に介在するインナーアダプタ413にはめ込まれている。なお、プリプレート402のスクリュー401とは反対の側には、オサエプレート412が設けられている。オサエプレート412は、インナーディスクサポート407の中心にはめ込まれている。
 オサエプレート412は、インナーアダプタ413にはめ込まれたプリプレート402が外れないよう、外側から押さえると共に、インナーディスクサポート407の熱が送られるニブに直接伝わらないようにするための部品である。
As shown in FIG. 4, the pre-plate 402 is fitted in an inner adapter 413 interposed between the inner disk support 407 and the case 406. As shown in FIG. A retainer plate 412 is provided on the side of the pre-plate 402 opposite to the screw 401 . The support plate 412 is fitted in the center of the inner disk support 407 .
The retainer plate 412 is a part that holds the pre-plate 402 fitted in the inner adapter 413 from the outside so that it does not come off and prevents the heat of the inner disk support 407 from being transmitted directly to the nib.
 図11Aに示すように、プリプレート402には、円周方向に複数(本実施形態では12個)の窓402aが設けられている。
 図10に示すように、スクリュー401が回転すると、カカオニブ1001がプリプレート402の窓402aを矢印V1002の方向へ通過する。窓402aは、駆動軸201aを取り囲むように、周方向に均等に配置されている。なお、本実施形態において、窓402aは、略直角台形状に形成されているが、その形状は適宜変更可能であり、例えば、扇状に形成してもよい。また、形成する窓402aの数も適宜変更可能である。
As shown in FIG. 11A, the pre-plate 402 is provided with a plurality of (12 in this embodiment) windows 402a in the circumferential direction.
As shown in FIG. 10, when the screw 401 rotates, the cacao nib 1001 passes through the window 402a of the pre-plate 402 in the direction of arrow V1002. The windows 402a are arranged evenly in the circumferential direction so as to surround the drive shaft 201a. In the present embodiment, the window 402a is formed in a substantially right-angled trapezoidal shape, but the shape can be changed as appropriate, and for example, the window 402a may be formed in a sector shape. Also, the number of windows 402a to be formed can be changed as appropriate.
 図9に示すように、スクリュー401はモータ201によって時計回り(右回り)方向に回転駆動される。図9A~Dはそれぞれスクリュー401の回転位置が0°、90°、180°、270°の角度を示している。
 スクリュー401が回転すると、スクリュー401の輸送溝401aに貯留されているカカオニブ1001は、歯401bによって押される。すると、カカオニブ1001とスクリュー401の輸送溝401a及びスクリュー収納筒406bの内壁との間に生じる摩擦力が反作用となり、この反作用により輸送溝401aに貯留されているカカオニブ1001がプリプレート402の方向へ押し出される。そして、押し出されたカカオニブ1001はスクリュー401の輸送溝401aを滑り、スクリュー401の端面まで押し出される。
As shown in FIG. 9, the screw 401 is rotationally driven clockwise (right-handed) by the motor 201 . FIGS. 9A-D show angles at which the screw 401 is rotated 0°, 90°, 180°, and 270°, respectively.
As the screw 401 rotates, the cocoa nibs 1001 stored in the transport grooves 401a of the screw 401 are pushed by the teeth 401b. Then, the frictional force generated between the cocoa nibs 1001 and the transport groove 401a of the screw 401 and the inner wall of the screw storage cylinder 406b acts as a reaction, and the cocoa nibs 1001 stored in the transport groove 401a are pushed out toward the pre-plate 402 by this reaction. be Then, the extruded cacao nibs 1001 slide along the conveying groove 401 a of the screw 401 and are extruded to the end face of the screw 401 .
 すると、カカオニブ1001はスクリュー401の歯401bによって矢印V1002に示されるプリプレート402の窓402aへ押し出される。カカオニブ1001が窓402aを通過する際、カカオニブ1001は窓402aと窓402aの周縁部分、例えば接触点P1003で接触する。すると、カカオニブ1001は接触点P1003で破砕される。すなわち、プリプレート402の窓402aは、カカオニブ1001が通過する際にカカオニブ1001の大きさを制限する機能を有する。こうして、全てのカカオニブ1001は窓402aより小さい形状の粗砕ニブとなる。 Then, cacao nibs 1001 are pushed out by teeth 401b of screw 401 to window 402a of pre-plate 402 indicated by arrow V1002. When the cocoa nibs 1001 pass through the window 402a, the cacao nibs 1001 come into contact with the window 402a at the peripheral portion of the window 402a, for example, the contact point P1003. Then, the cacao nibs 1001 are crushed at the contact point P1003. That is, the window 402a of the pre-plate 402 has a function of limiting the size of the cacao nibs 1001 when the cacao nibs 1001 pass through. Thus, all cacao nibs 1001 become coarse nibs with a shape smaller than the window 402a.
 このように、スクリュー401が回転すると、その回転に伴ってスクリュー401の輸送溝401aに貯留されているカカオニブ1001は、プリプレート402の窓402aを通過する際に破砕される。すると、カカオニブ1001はホッパー104から投入された時点よりも粒が小さく破砕された粗砕ニブになる。 Thus, when the screw 401 rotates, the cacao nibs 1001 stored in the transport groove 401a of the screw 401 are crushed when passing through the window 402a of the pre-plate 402 as the screw 401 rotates. Then, the cacao nibs 1001 become coarsely crushed nibs that are crushed into smaller grains than when they were fed from the hopper 104 .
[第二輸送機構]
 図11Bに示すように、第二輸送機構を構成するプロペラ405は、3枚の羽根405aを有し、プリプレート402の、スクリュー401が臨む側とは反対の側の位置に、プリプレート402に近接して配置されている。
 プロペラ405は、スクリュー401及び回転臼403と共に、駆動軸201aに固定されている。したがって、プロペラ405はモータ201によってスクリュー401及び回転臼403と一体に回転駆動される。プロペラ405は、回転駆動されることにより、プリプレート402の窓402aを通過した粗砕ニブを固定臼404及び回転臼403へ送り出す。
[Second Transport Mechanism]
As shown in FIG. 11B, the propeller 405 that constitutes the second transport mechanism has three blades 405a, and is attached to the pre-plate 402 at a position opposite to the side facing the screw 401 of the pre-plate 402. placed in close proximity.
Propeller 405 is fixed to drive shaft 201a together with screw 401 and rotary mill 403 . Therefore, the propeller 405 is rotationally driven integrally with the screw 401 and rotary die 403 by the motor 201 . The propeller 405 is rotationally driven to feed the coarsely crushed nibs that have passed through the window 402 a of the preplate 402 to the fixed die 404 and rotary die 403 .
 プリプレート402の窓402aを通過した粗砕ニブを固定臼404及び回転臼403へ効率よく送り出すために、プロペラ405の羽根405aの半径方向長さは、プリプレート402の窓402aの半径方向の長さより長く構成されている。なお、羽根405aの枚数や形状は、固定臼404及び回転臼403の単位時間当たりの粗砕ニブ処理速度等に応じて、適宜変更可能である。 In order to efficiently feed the coarsely crushed nibs that have passed through the window 402a of the pre-plate 402 to the fixed die 404 and the rotary die 403, the radial length of the blades 405a of the propeller 405 is equal to the radial length of the window 402a of the pre-plate 402. It is configured longer than Note that the number and shape of the blades 405a can be appropriately changed according to the processing speed of the coarsely crushed nibs per unit time of the fixed mill 404 and the rotary mill 403, and the like.
 このように、本実施形態の磨砕装置101では、プリプレート402の直近の位置に、スクリュー401と同様にモータ201で回転駆動されるプロペラ405が配置されている。このプロペラ405でプリプレート402の窓402aから送られる粗砕ニブを掻き取りながら、プロペラ405の周縁に配置されている固定臼404及び回転臼403に、粗砕ニブを連続的に供給している。 As described above, in the grinding device 101 of the present embodiment, the propeller 405 that is rotationally driven by the motor 201 like the screw 401 is arranged in the immediate vicinity of the pre-plate 402 . While the propeller 405 scrapes the coarsely crushed nibs sent from the window 402 a of the preplate 402 , the coarsely crushed nibs are continuously supplied to the fixed die 404 and the rotary die 403 arranged on the periphery of the propeller 405 . .
 プロペラ405は、プリプレート402の窓402aから送られる粗砕ニブを、固定臼404及び回転臼403へ連続的に供給することで、プリプレート402の窓402aを通過した粗砕ニブが、スクリュー401の側に逆流することを防止する、逆流防止機能を有する。 The propeller 405 continuously supplies the coarsely crushed nibs sent from the window 402a of the preplate 402 to the fixed die 404 and the rotary die 403, so that the coarsely crushed nibs passing through the window 402a of the preplate 402 are transferred to the screw 401. It has a backflow prevention function that prevents backflow to the side.
[固定臼404と回転臼403]
 固定臼404と回転臼403は、何れもアルミナ、ジルコニア、窒化ケイ素等の高い硬度を有するセラミックスで形成されている。そして、図12~図18に示すように、固定臼404と回転臼403の何れも、その表面には溝が形成されている。また図19A、図19C及び図19Eに示すように、この溝は臼の表面から90°の角度で形成されており、溝の周縁は鋭利に形成されている。
[Fixed mill 404 and rotary mill 403]
Both the fixed die 404 and the rotary die 403 are made of ceramics having high hardness, such as alumina, zirconia, and silicon nitride. As shown in FIGS. 12 to 18, both the fixed die 404 and the rotary die 403 have grooves formed on their surfaces. Also, as shown in FIGS. 19A, 19C and 19E, the groove is formed at an angle of 90° from the surface of the die, and the periphery of the groove is formed sharp.
 図12は、固定臼404の全体図である。
 図13は、図12に示す固定臼404に形成されている溝の一部拡大図である。
 図14は、図13に示す固定臼404の溝の一部拡大図のうち、特定の2本の溝のみを抜粋した図である。
 プリプレート402の窓402aからプロペラ405によって送り出された粗砕ニブは、図12に示す固定臼404の内周の、プロペラ405が収納される空間1202に滞留する。プロペラ405が粗砕ニブを送り出し続けると、粗砕ニブは空間1202が粗砕ニブを収容する限度を超えて、空間1202から溢れる。空間1202から溢れる粗砕ニブは、図12に示す、固定臼404の中心付近に形成されている四箇所の粗砕ニブ蓄積領域1201a、1201b、1201c、1201dへ移動する。これ以降、粗砕ニブ蓄積領域1201a、1201b、1201c、1201dを区別しない場合は、粗砕ニブ蓄積領域1201と称する。粗砕ニブ蓄積領域1201は、回転臼403の中心から外周の方向に向かって、徐々に深さが浅く形成されている。
FIG. 12 is an overall view of the fixed mill 404. As shown in FIG.
FIG. 13 is a partially enlarged view of a groove formed in fixed die 404 shown in FIG.
FIG. 14 is a view of only two specific grooves extracted from the partially enlarged view of the grooves of the fixed die 404 shown in FIG.
The coarsely crushed nibs sent out by the propeller 405 from the window 402a of the preplate 402 stay in the space 1202 in which the propeller 405 is housed, which is the inner periphery of the fixed die 404 shown in FIG. As propeller 405 continues to send out coarse nibs, coarse nibs overflow space 1202 beyond the limit space 1202 can accommodate for coarse nibs. The coarsely crushed nibs overflowing from the space 1202 move to the four coarsely crushed nib storage areas 1201a, 1201b, 1201c, 1201d formed near the center of the fixed die 404 shown in FIG. Hereinafter, coarse nib storage areas 1201a, 1201b, 1201c, and 1201d will be referred to as coarse nib storage areas 1201 when not distinguished from each other. The coarsely crushed nib storage area 1201 is formed so that the depth gradually decreases from the center of the rotary mill 403 toward the outer circumference.
 図12、図13及び図14に示すように、固定臼404の表面には、内周から外周にかけて円周方向に溝の群が形成されている。なお、これ以降、直径方向に対して同じ傾斜角で形成された溝を円周方向に複数個有する領域を溝群と呼ぶ。
 固定臼404の外周には、直径方向に対し反時計回り方向に傾斜した第一の傾斜角を有する第一溝群1301が形成されている。
 第一溝群1301の内周には、直径方向に対し第一溝群1301とは逆の傾斜方向である時計回り方向に傾斜した第二の傾斜角を有する第二溝群1302が形成されている。前述の粗砕ニブ蓄積領域1201は、第二溝群1302の内周に形成されている。
As shown in FIGS. 12, 13 and 14, the surface of the fixed die 404 is circumferentially formed with a group of grooves from the inner circumference to the outer circumference. Hereinafter, a region having a plurality of grooves formed at the same inclination angle with respect to the diametrical direction in the circumferential direction will be referred to as a groove group.
A first groove group 1301 having a first inclination angle in the counterclockwise direction with respect to the diameter direction is formed on the outer circumference of the fixed die 404 .
A second groove group 1302 is formed on the inner circumference of the first groove group 1301 and has a second inclination angle in the clockwise direction, which is the opposite inclination direction to the first groove group 1301 with respect to the diametrical direction. there is The coarsely ground nib accumulation area 1201 described above is formed on the inner periphery of the second groove group 1302 .
 更に、固定臼404の外周側に設けられている第一溝群1301は、一部が第二溝群1302の溝と連続して繋がっている溝を有する第一内周側副溝群1303と、第一内周側副溝群1303とは溝が繋がっていない、独立した溝のみで形成される第一外周側副溝群1304とで構成されている。また、第一内周側副溝群1303は、上述のように一部が第二溝群1302の溝と連続して繋がっている溝の他に、第二溝群1302の溝とは繋がっていない独立した溝も有する。 Furthermore, the first groove group 1301 provided on the outer peripheral side of the fixed die 404 has a first inner peripheral side sub-groove group 1303 having grooves that are partly connected continuously with the grooves of the second groove group 1302. , and a first outer peripheral side sub-groove group 1304 formed only by independent grooves that are not connected to the first inner peripheral side sub-groove group 1303 . In addition, the first inner peripheral side sub-groove group 1303 is partially connected to the grooves of the second groove group 1302 as described above, and is not connected to the grooves of the second groove group 1302. It also has independent grooves.
 図14には、固定臼404の溝の一部として、第一外周側副溝群1304を構成する第一外周側副溝1401、第一内周側副溝群1303を構成する第一内周側副溝1402、第二溝群1302を構成する第二溝1403と第三溝1404が示されている。そして、第一外周側副溝1401の隣には第一外周側副溝1405が、第一内周側副溝1402と第二溝1403の隣には連続溝1406が、第三溝1404の隣には第三溝1407が、それぞれ設けられている。
 第二溝1403と第三溝1404の間、及び連続溝1406と第三溝1407の間には、複数の溝を円周方向に横断する円弧状の横断溝1203が形成されている。
FIG. 14 shows, as part of the grooves of the fixed die 404, a first outer peripheral side sub-groove 1401 forming a first outer peripheral side sub-groove group 1304, and a first inner peripheral side sub-groove forming a first inner peripheral side sub-groove group 1303. Side grooves 1402, second grooves 1403 and third grooves 1404 that make up second groove group 1302 are shown. Next to the first outer peripheral side sub-groove 1401 is a first outer peripheral side sub-groove 1405, next to the first inner peripheral side sub-groove 1402 and second groove 1403 is a continuous groove 1406, and next to the third groove 1404 is a continuous groove 1406. are provided with third grooves 1407 respectively.
Between the second groove 1403 and the third groove 1404 and between the continuous groove 1406 and the third groove 1407, arc-shaped crossing grooves 1203 are formed that cross the plurality of grooves in the circumferential direction.
 横断溝1203は、粗砕ニブを固定臼404の円周方向に流動させるために、第二溝群1302の下側から、回転臼403の回転方向に沿って、第二溝群1302を横断する軌跡にて形成されている溝である。
 この横断溝1203は、重力によって固定臼404の下側に溜まり易い粗砕ニブを、回転臼403の回転力を利用して、固定臼404の上側へ移動させることにより、粗砕ニブを満遍なく固定臼404の全面に行き渡らせる役割を有する。また、粗砕ニブの流れに伴い、横断溝1203にはカカオマスも同様に流れる。
The transverse grooves 1203 traverse the second groove group 1302 along the rotation direction of the rotary die 403 from below the second groove group 1302 in order to allow the coarsely crushed nibs to flow in the circumferential direction of the fixed die 404. It is a groove formed by the trajectory.
This crossing groove 1203 evenly fixes the coarsely crushed nibs by moving the coarsely crushed nibs, which tend to accumulate on the lower side of the fixed die 404 due to gravity, to the upper side of the fixed die 404 using the rotational force of the rotary die 403. It has a role of spreading over the entire surface of the mortar 404 . Along with the flow of the crushed nibs, cocoa mass also flows into the transverse grooves 1203 as well.
 連続溝1406は、第一内周側副溝群1303に属する外周側溝1406aと、第二溝群1302に属する内周側溝1406bが、屈曲点1406cで連続して繋がっている。外周側溝1406aと内周側溝1406bは、直径方向に対する傾斜方向が異なる。すなわち、連続溝1406は第二溝群1302と第一内周側副溝群1303に跨って形成されている。第一溝群1301の一部が第二溝群1302の溝と繋がっている溝とは、この連続溝1406を指す。 In the continuous groove 1406, an outer circumferential groove 1406a belonging to the first inner circumferential sub-groove group 1303 and an inner circumferential groove 1406b belonging to the second groove group 1302 are continuously connected at a bending point 1406c. The outer circumferential groove 1406a and the inner circumferential groove 1406b are different in the direction of inclination with respect to the diameter direction. That is, the continuous groove 1406 is formed across the second groove group 1302 and the first inner peripheral side sub-groove group 1303 . A groove in which a part of the first groove group 1301 is connected to a groove of the second groove group 1302 refers to this continuous groove 1406 .
 なお、これ以降、連続溝1406に対し、隣接する第一内周側副溝1402と第二溝1403の組を、便宜的に不連続溝の組と呼ぶ。また、第一外周側副溝群1304に属する第一外周側副溝1401及び第一外周側副溝1405と、第一内周側副溝群1303に属する第一内周側副溝1402のように、その形状が他の溝と繋がっておらず、それ自身が閉じて、隣接する他の溝とは独立して存在する溝を、独立溝と呼ぶ。 In addition, hereinafter, the set of the first inner peripheral side secondary groove 1402 and the second groove 1403 adjacent to the continuous groove 1406 will be referred to as a set of discontinuous grooves for convenience. Also, like the first outer peripheral side secondary groove 1401 and the first outer peripheral side secondary groove 1405 belonging to the first outer peripheral side secondary groove group 1304, and the first inner peripheral side secondary groove 1402 belonging to the first inner peripheral side secondary groove group 1303, In addition, a groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves is called an independent groove.
 図13及び図14に示されるように、第三溝1404の、固定臼404の直径方向における内周側の端である開口端1404aは、粗砕ニブ蓄積領域1201cに接する。粗砕ニブ蓄積領域1201cに蓄積される粗砕ニブは、開口端1404aから第三溝1404に入り込む。
 粗砕ニブ蓄積領域1201cに蓄積される粗砕ニブは、開口端1404aから第三溝1404に入り込むと、重力の作用と、回転臼403に形成されている溝との相互作用により、第三溝1404を固定臼404の外周方向へ移動する。第三溝1404の外周側の端は横断溝1203が形成されているので、第三溝1404を移動する粗砕ニブの一部は、回転臼403の回転に伴って、横断溝1203を伝って、固定臼404を時計回り方向へ移動する。
 横断溝1203は、第二溝群1302を横断する形状なので、第二溝群1302のうち、横断溝1203が形成されている溝の開口部分から粗砕ニブが流れ込む。こうして、粗砕ニブ蓄積領域1201cに蓄積されている粗砕ニブは、第三溝1404を伝い、回転臼403の回転に伴って横断溝1203から他の第二溝群1302へ拡散される。
As shown in FIGS. 13 and 14, the open end 1404a of the third groove 1404, which is the diametrically inner end of the fixed die 404, is in contact with the coarsely crushed nib storage area 1201c. The coarsely crushed nibs accumulated in the coarsely crushed nib accumulation area 1201c enter the third groove 1404 from the open end 1404a.
When the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c enter the third groove 1404 from the open end 1404a, the action of gravity and the interaction with the grooves formed in the rotary die 403 cause the third groove 1404 is moved in the outer peripheral direction of the fixed die 404 . Since a crossing groove 1203 is formed at the outer peripheral end of the third groove 1404, part of the coarsely crushed nib moving in the third groove 1404 travels along the crossing groove 1203 as the rotary die 403 rotates. , moves the fixed die 404 clockwise.
Since the transverse grooves 1203 have a shape that crosses the second groove group 1302, the coarsely crushed nibs flow into the grooves of the second groove group 1302 where the transverse grooves 1203 are formed. In this way, the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c travel along the third grooves 1404 and are diffused from the transverse grooves 1203 to the other second groove group 1302 as the rotary die 403 rotates.
 第三溝1404を移動する粗砕ニブの、横断溝1203へ流出しないものの一部は、第二溝1403に流れ込む。第二溝1403に流れ込んだ粗砕ニブの一部は、重力の作用と、回転臼403に形成されている溝との相互作用により、第二溝1403の外周側の終端へ移動する。 A portion of the coarsely crushed nibs moving in the third groove 1404 that do not flow out to the transverse groove 1203 flow into the second groove 1403 . A portion of the coarsely crushed nibs that have flowed into the second groove 1403 move to the end of the second groove 1403 on the outer peripheral side due to the action of gravity and interaction with the grooves formed in the rotary die 403 .
 第三溝1404と同様に、第三溝1407の、直径方向における内周側の端である開口端1407aも、粗砕ニブ蓄積領域1201cに接する。粗砕ニブ蓄積領域1201cに蓄積される粗砕ニブは、開口端1407aから第三溝1407に入り込む。
 粗砕ニブ蓄積領域1201cに蓄積される粗砕ニブは、開口端1407aから第三溝1407に入り込むと、重力の作用と、回転臼403に形成されている溝との相互作用により、第三溝1407を固定臼404の外周方向へ移動する。第三溝1407の外周側の端は横断溝1203が形成されているので、第三溝1407を移動する粗砕ニブの一部は、回転臼403の回転に伴って、横断溝1203を伝って、固定臼404を時計回り方向へ移動する。
 横断溝1203は、第二溝群1302を横断する形状なので、第二溝群1302のうち、横断溝1203が形成されている溝の開口部分から粗砕ニブが流れ込む。こうして、粗砕ニブ蓄積領域1201cに蓄積されている粗砕ニブは、第三溝1407を伝い、回転臼403の回転に伴って横断溝1203から他の第二溝群1302へ拡散される。
Similarly to the third groove 1404, the open end 1407a, which is the diametrically inner end of the third groove 1407, is also in contact with the coarse nib accumulation area 1201c. The coarsely crushed nibs accumulated in the coarsely crushed nib accumulation area 1201c enter the third groove 1407 from the open end 1407a.
When the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c enter the third groove 1407 from the open end 1407a, the action of gravity and the interaction with the grooves formed in the rotary die 403 cause the third groove 1407 is moved in the outer peripheral direction of the fixed die 404 . Since a crossing groove 1203 is formed at the outer peripheral end of the third groove 1407, part of the coarsely crushed nib moving in the third groove 1407 travels along the crossing groove 1203 as the rotary die 403 rotates. , moves the fixed die 404 clockwise.
Since the transverse grooves 1203 have a shape that crosses the second groove group 1302, the coarsely crushed nibs flow into the grooves of the second groove group 1302 where the transverse grooves 1203 are formed. In this way, the coarsely crushed nibs accumulated in the coarsely crushed nib accumulation region 1201c travel along the third groove 1407 and are diffused from the transverse groove 1203 to the other second groove group 1302 as the rotary die 403 rotates.
 第三溝1407を移動する粗砕ニブの、横断溝1203へ流出しないものの一部は、連続溝1406に流れ込む。連続溝1406に流れ込んだ粗砕ニブの一部は、重力の作用と、回転臼403に形成されている溝との相互作用により、連続溝1406の屈曲点1406cへ到達する。そして更に、屈曲点1406cへ到達した粗砕ニブの一部は、連続溝1406の外周側溝1406aの終端へ移動する。 A portion of the coarsely crushed nibs moving in the third groove 1407 that do not flow out to the transverse groove 1203 flow into the continuous groove 1406 . Part of the coarsely crushed nibs that have flowed into the continuous groove 1406 reach the bending point 1406c of the continuous groove 1406 due to the action of gravity and interaction with the grooves formed in the rotary die 403 . Further, a portion of the coarsely crushed nib that has reached the bending point 1406c moves to the terminal end of the outer peripheral side groove 1406a of the continuous groove 1406. As shown in FIG.
 第二溝1403は、粗砕ニブ蓄積領域1201に滞留する粗砕ニブを、迅速に第二溝群1302へ到達させる。
 連続溝1406は、粗砕ニブ蓄積領域1201に滞留する粗砕ニブを、迅速に第二溝群1302へ到達させるのみならず、一部の粗砕ニブについては第二溝群1302を超え、第一溝群1301の内側の溝群である第一内周側副溝群1303へ到達させる。
The second groove 1403 allows coarsely crushed nibs remaining in the coarsely crushed nib accumulation area 1201 to quickly reach the second groove group 1302 .
The continuous groove 1406 not only allows the coarsely crushed nibs staying in the coarsely crushed nib accumulation region 1201 to reach the second groove group 1302 quickly, but also allows some of the coarsely crushed nibs to pass beyond the second groove group 1302 and reach the second groove group 1302. It reaches the first inner peripheral side sub-groove group 1303 which is a groove group inside the one groove group 1301 .
 図15は、回転臼403の全体図である。
 図16は、図15に示す回転臼403に形成されている溝の一部拡大図である。
 図17は、図16に示す回転臼403の溝の一部拡大図のうち、特定の2本の溝のみを抜粋した図である。
 図15、図16及び図17に示すように、回転臼403の表面には、固定臼404と同様に、内周から外周にかけて円周方向に溝の群が形成されている。
 回転臼403の外周には、直径方向に対し反時計回り方向に傾斜した第三の傾斜角を有する第三溝群1601が形成されている。なお、第三の傾斜角は、固定臼404の第一溝群1301における第一の傾斜角と同じ傾斜角を有する。
 第三溝群1601の内周には、直径方向に対し第三溝群1601とは逆の傾斜方向である時計回り方向に傾斜した第四の傾斜角を有する第四溝群1602が形成されている。なお、第四の傾斜角は、固定臼404の第二溝群1302における第二の傾斜角と同じ傾斜角である。
 回転臼403は、固定臼404とは異なり、粗砕ニブ蓄積領域1201のような、粗砕ニブを蓄積する領域に相当する箇所が存在しない。
FIG. 15 is an overall view of the rotary mill 403. FIG.
FIG. 16 is a partially enlarged view of grooves formed in the rotary mill 403 shown in FIG.
FIG. 17 is a view of only two specific grooves extracted from the partially enlarged view of the grooves of the rotary mill 403 shown in FIG.
As shown in FIGS. 15, 16 and 17, on the surface of the rotary die 403, similarly to the fixed die 404, groups of grooves are formed in the circumferential direction from the inner periphery to the outer periphery.
A third groove group 1601 having a third tilt angle that is tilted counterclockwise with respect to the diameter direction is formed on the outer periphery of the rotary die 403 . The third tilt angle has the same tilt angle as the first tilt angle in the first groove group 1301 of the fixed die 404 .
A fourth groove group 1602 is formed on the inner periphery of the third groove group 1601 and has a fourth inclination angle in the clockwise direction, which is the opposite inclination direction to the third groove group 1601 with respect to the diametrical direction. there is The fourth tilt angle is the same tilt angle as the second tilt angle of the second groove group 1302 of the fixed die 404 .
Unlike the fixed die 404 , the rotary die 403 does not have a location corresponding to an area for accumulating coarsely crushed nibs, such as the coarsely crushed nib accumulation area 1201 .
 更に、回転臼403の外周側に設けられている第三溝群1601は、一部が第四溝群1602の溝と連続して繋がっている溝を有する第二内周側副溝群1603と、第二内周側副溝群1603とは溝が繋がっていない、独立した溝のみで形成される第二外周側副溝群1604とで構成されている。 Furthermore, the third groove group 1601 provided on the outer peripheral side of the rotary mill 403 is a second inner peripheral side sub-groove group 1603 having grooves that are partly connected continuously with the grooves of the fourth groove group 1602. , second inner peripheral side sub-groove group 1603 and second outer peripheral side sub-groove group 1604 formed only by independent grooves that are not connected to each other.
 図17には、回転臼403の溝の一部として、第二外周側副溝群1604を構成する第二外周側副溝1605、第二内周側副溝群1603を構成する第二内周側副溝1606、第四溝群1602を構成する第四溝1607が示されている。
 第二外周側副溝1605の隣には第二外周側副溝1608が、第二内周側副溝1606と第四溝1607の隣には連続溝1609が、それぞれ設けられている。
In FIG. 17, as part of the grooves of the rotary mill 403, a second outer peripheral side sub-groove 1605 constituting a second outer peripheral side sub-groove group 1604 and a second inner peripheral side sub-groove forming a second inner peripheral side sub-groove group 1603 Side grooves 1606 and fourth grooves 1607 forming fourth groove group 1602 are shown.
A second outer peripheral sub-groove 1608 is provided next to the second outer peripheral sub-groove 1605, and a continuous groove 1609 is provided next to the second inner peripheral sub-groove 1606 and fourth groove 1607, respectively.
 連続溝1609は、第二内周側副溝群1603に属する外周側溝1609aと、第四溝群1602に属する内周側溝1609bが、屈曲点1609cで連続して繋がっている。外周側溝1609aと内周側溝1609bは、直径方向に対する傾斜方向が異なる。すなわち、連続溝1609は、第四溝群1602と第二内周側副溝群1603に跨って形成されている。第三溝群1601の一部が第四溝群1602の溝と繋がっている溝とは、この連続溝1609を指す。 In the continuous groove 1609, an outer circumferential groove 1609a belonging to the second inner circumferential sub groove group 1603 and an inner circumferential groove 1609b belonging to the fourth groove group 1602 are continuously connected at a bending point 1609c. The outer peripheral groove 1609a and the inner peripheral groove 1609b are different in the direction of inclination with respect to the diameter direction. That is, the continuous groove 1609 is formed across the fourth groove group 1602 and the second inner peripheral side sub-groove group 1603 . A groove in which a part of the third groove group 1601 is connected to a groove of the fourth groove group 1602 refers to this continuous groove 1609 .
 なお、これ以降、連続溝1609に対し、隣接する第二内周側副溝1606と第四溝1607の組を、先の図14における第一内周側副溝1402と第二溝1403の組と同様に、便宜的に不連続溝の組と呼ぶ。また、第二外周側副溝群1604に属する第二外周側副溝1605及び第二外周側副溝1608と、第二内周側副溝群1603に属する第二内周側副溝1606のように、その形状が他の溝と繋がっておらず、それ自身が閉じて、隣接する他の溝とは独立して存在する溝を、独立溝と呼ぶ。 From this point on, the set of the second inner peripheral side sub-groove 1606 and the fourth groove 1607 adjacent to the continuous groove 1609 is replaced with the set of the first inner peripheral side sub-groove 1402 and the second groove 1403 in FIG. is conveniently called a set of discontinuous grooves. In addition, second outer peripheral side sub-grooves 1605 and second outer peripheral side sub-grooves 1608 belonging to second outer peripheral side sub-groove group 1604 and second inner peripheral side sub-grooves 1606 belonging to second inner peripheral side sub-groove group 1603 In addition, a groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves is called an independent groove.
 回転臼403に設けられる全ての溝は、回転臼403の回転に伴い、固定臼404の溝から、それら溝に蓄積される粗砕ニブを受け取る。
 第四溝群1602に属する第四溝1607は、固定臼404の第二溝群1302に属する第二溝1403、第三溝1404、第三溝1407及び連続溝1406の内周側溝1406bと、第四溝群1602に形成される横断溝1203から粗砕ニブを受け取る。また、第四溝1607は、蓄積した粗砕ニブを第二溝1403、第三溝1404、第三溝1407、連続溝1406の内周側溝1406b及び横断溝1203へ引き渡す。
All the grooves provided in the rotary die 403 receive coarsely ground nibs accumulated in those grooves from the grooves of the stationary die 404 as the rotary die 403 rotates.
A fourth groove 1607 belonging to the fourth groove group 1602 includes a second groove 1403, a third groove 1404, a third groove 1407, and an inner circumferential groove 1406b of the continuous groove 1406 belonging to the second groove group 1302 of the fixed die 404. Cracking nibs are received from transverse grooves 1203 formed in group 4 of grooves 1602 . In addition, the fourth groove 1607 transfers the accumulated coarsely crushed nibs to the second groove 1403, the third groove 1404, the third groove 1407, the inner circumferential groove 1406b of the continuous groove 1406, and the transverse groove 1203.
 第二内周側副溝群1603に属する第二内周側副溝1606は、固定臼404の第一内周側副溝群1303に属する第一内周側副溝1402及び連続溝1406の外周側溝1406aから粗砕ニブを受け取る。また、第二内周側副溝1606は、蓄積した粗砕ニブを第一内周側副溝1402及び外周側溝1406aへ引き渡す。 A second inner secondary groove 1606 belonging to the second inner peripheral secondary groove group 1603 is formed on the outer periphery of the first inner peripheral secondary groove 1402 and the continuous groove 1406 belonging to the first inner peripheral secondary groove group 1303 of the fixed die 404. It receives the coarsening nibs from gutter 1406a. In addition, the second inner peripheral side sub-groove 1606 transfers the accumulated coarsely crushed nibs to the first inner peripheral side sub-groove 1402 and the outer peripheral side groove 1406a.
 第二外周側副溝群1604に属する第二外周側副溝1605及び第二外周側副溝1608は、固定臼404の第一外周側副溝群1304に属する第一外周側副溝1401及び第一外周側副溝1405から粗砕ニブを受け取る。また、第二外周側副溝1605及び第二外周側副溝1608は、蓄積した粗砕ニブを第一外周側副溝1401及び第一外周側副溝1405へ引き渡す。 The second outer peripheral side minor groove 1605 and the second outer peripheral side minor groove 1608 belonging to the second outer peripheral side minor groove group 1604 correspond to the first outer peripheral side minor groove 1401 and the second outer peripheral side minor groove belonging to the first outer peripheral side minor groove group 1304 of the fixed die 404 . It receives the coarsely crushed nib from the one outer peripheral side minor groove 1405 . In addition, the second outer peripheral side minor groove 1605 and the second outer peripheral side minor groove 1608 deliver the accumulated crushed nibs to the first outer peripheral side minor groove 1401 and the first outer peripheral side minor groove 1405 .
 第四溝群1602に属する連続溝1609の内周側溝1609bは、第四溝1607と同様に、固定臼404の第二溝群1302に属する第二溝1403、第三溝1404、第三溝1407及び連続溝1406の内周側溝1406bと、第四溝群1602に形成される横断溝1203から粗砕ニブを受け取る。また、内周側溝1609bは、蓄積した粗砕ニブを第二溝1403、第三溝1404、第三溝1407、連続溝1406の内周側溝1406b及び横断溝1203へ引き渡す。
 これに加え、内周側溝1609bは、外周側溝1609aと繋がっている。このため、内周側溝1609bに入った粗砕ニブの一部は、回転臼403の回転に伴って発生する遠心力によって、外周側溝1609aへ移動する。
The inner circumferential groove 1609b of the continuous groove 1609 belonging to the fourth groove group 1602 is, similarly to the fourth groove 1607, the second groove 1403, the third groove 1404, and the third groove 1407 belonging to the second groove group 1302 of the fixed die 404. and the inner circumferential groove 1406 b of the continuous groove 1406 and the transverse groove 1203 formed in the fourth groove group 1602 to receive coarsely crushed nibs. In addition, the inner peripheral groove 1609 b delivers the accumulated coarsely crushed nibs to the second groove 1403 , the third groove 1404 , the third groove 1407 , the inner peripheral groove 1406 b of the continuous groove 1406 and the transverse groove 1203 .
In addition, the inner groove 1609b is connected to the outer groove 1609a. Therefore, part of the coarsely crushed nibs that have entered the inner groove 1609b moves to the outer groove 1609a due to the centrifugal force generated as the rotary die 403 rotates.
 第二内周側副溝群1603に属する連続溝1609の外周側溝1609aは、第二内周側副溝1606と同様に、固定臼404の第一内周側副溝群1303に属する第一内周側副溝1402及び連続溝1406の外周側溝1406aから粗砕ニブを受け取る。また、第二内周側副溝1606は、蓄積した粗砕ニブを第一内周側副溝1402及び外周側溝1406aへ引き渡す。
 これに加え、外周側溝1609aは、内周側溝1609bと繋がっている。このため、外周側溝1609aは内周側溝1609bに入った粗砕ニブの一部を、回転臼403の回転に伴って発生する遠心力によって受け取り、第一内周側副溝1402及び外周側溝1406aへ引き渡す。
The outer peripheral groove 1609a of the continuous groove 1609 belonging to the second inner peripheral side sub-groove group 1603 is, like the second inner peripheral side sub-groove 1606, the first inner peripheral side groove 1609a belonging to the first inner peripheral side sub-groove group 1303 of the fixed die 404. The coarse nibs are received from the circumferential minor groove 1402 and the outer circumferential groove 1406 a of the continuous groove 1406 . In addition, the second inner peripheral side sub-groove 1606 transfers the accumulated coarsely crushed nibs to the first inner peripheral side sub-groove 1402 and the outer peripheral side groove 1406a.
In addition, the outer groove 1609a is connected to the inner groove 1609b. For this reason, the outer peripheral groove 1609a receives a part of the coarsely crushed nibs that have entered the inner peripheral groove 1609b by the centrifugal force generated by the rotation of the rotary mill 403, and the part is transferred to the first inner peripheral secondary groove 1402 and the outer peripheral groove 1406a. hand over.
 以上に述べたように、粗砕ニブは、固定臼404の溝の中を移動するだけではなく、相対する回転臼403の溝に捉えられて、回転臼403の回転と共に移動するものもある。粗砕ニブは、固定臼404と回転臼403の溝の中を、様々な移動経路で移動する際に、固定臼404の溝と回転臼403の溝との間で磨砕される。 As described above, the coarse grinding nibs not only move in the grooves of the fixed die 404, but also are captured by the opposing grooves of the rotary die 403 and move together with the rotation of the rotary die 403. The coarsening nibs are ground between the grooves of the fixed die 404 and the rotary die 403 as they move through the grooves of the fixed die 404 and the rotary die 403 in various paths of movement.
 もし、固定臼404に形成する溝を、全て連続溝1406のように、第二溝群1302と第一内周側副溝群1303に跨って形成すると、多くの粗砕ニブは第一内周側副溝群1303の末端にまで蓄積される。すると、ニブが破砕されないまま外周側溝にいくため磨砕が適切に行われないと共に、連続溝1406の外周側溝1406aの末端に粗砕ニブが過剰に溜まり、外周側溝1406aの目詰まりを引き起こしてしまう。こうなると、粗砕ニブの流動性が失われ、固定臼404と回転臼403の協調動作による磨砕が正常に行われなくなってしまう。このため、第一内周側副溝群1303の末端にまで輸送する粗砕ニブの量は、粗砕ニブの磨砕が適切に行われる量へ制限しなければならない。 If all the grooves formed in the fixed die 404 are formed across the second groove group 1302 and the first inner peripheral side sub-groove group 1303 like the continuous groove 1406, many of the coarsely crushed nibs It accumulates to the ends of collateral grooves 1303 . Then, since the nibs go to the outer peripheral groove without being crushed, the grinding is not properly performed, and the coarsely crushed nibs are excessively accumulated at the end of the outer peripheral groove 1406a of the continuous groove 1406, causing the clogging of the outer peripheral groove 1406a. . In this case, the coarse grinding nib loses its fluidity, and grinding by the coordinated operation of the fixed die 404 and the rotary die 403 is not performed normally. Therefore, the amount of coarsely crushed nibs transported to the end of the first inner peripheral side sub-groove group 1303 must be limited to an amount that adequately grinds the coarsely crushed nibs.
 そこで、本実施形態に係る固定臼404及び回転臼403では、その表面に形成する溝を、連続溝1406と不連続溝の組とを交互に配置することで、第一内周側副溝群1303の末端へ輸送する粗砕ニブの量を制限している。
 第一内周側副溝群1303に属する第一内周側副溝1402は独立溝であるため、磨砕装置101の始動直後の段階では、粗砕ニブは入っておらず、空の状態である。連続溝1406の外周側溝1406aの終端に達した粗砕ニブが、回転臼403の溝を通じて移動することで、初めて第一内周側副溝1402に粗砕ニブが到達する。つまり、独立溝は臼の単位面積当たりの磨砕能力を向上させると共に、連続溝1406の目詰まりを防ぐ、粗砕ニブのバッファの役割を有する。
Therefore, in the fixed die 404 and the rotary die 403 according to the present embodiment, the grooves formed on the surfaces thereof are formed by alternately arranging a set of continuous grooves 1406 and discontinuous grooves to form a first inner peripheral side sub-groove group. It limits the amount of granulated nibs that are transported to the end of the 1303.
Since the first inner peripheral side sub-groove 1402 belonging to the first inner peripheral side sub-groove group 1303 is an independent groove, at the stage immediately after the start-up of the grinding device 101, there is no coarsely crushed nib and it is in an empty state. be. When the coarsely crushed nib that has reached the end of the outer peripheral groove 1406a of the continuous groove 1406 moves through the groove of the rotary die 403, the coarsely crushed nib reaches the first inner peripheral secondary groove 1402 for the first time. In other words, the independent grooves improve the grinding performance per unit area of the die and also serve as a buffer for the coarse grinding nibs to prevent clogging of the continuous grooves 1406 .
 連続溝1406と不連続溝の組との比率は、固定臼404及び回転臼403の磨砕能力に応じて、最適な比率にて決定する。連続溝1406が多すぎると溝の目詰まりを引き起こしてしまう。逆に連続溝1406が少なすぎると、固定臼404及び回転臼403との摩擦によって温度が過剰に上昇してしまう。
 本実施形態に係る固定臼404及び回転臼403は、連続溝1406と不連続溝の組を1対1にて構成している。この比率は、固定臼404及び回転臼403の寸法、溝の幅と、モータ201の回転速度等に起因して、適宜変更される。
The ratio between the continuous groove 1406 and the set of discontinuous grooves is determined at an optimum ratio according to the grinding capabilities of the fixed die 404 and rotary die 403 . Too many continuous grooves 1406 cause clogging of the grooves. Conversely, if the number of continuous grooves 1406 is too small, the temperature will rise excessively due to friction with the fixed die 404 and rotary die 403 .
The fixed die 404 and the rotary die 403 according to this embodiment form a pair of one continuous groove 1406 and one discontinuous groove. This ratio is appropriately changed depending on the dimensions of the fixed die 404 and rotary die 403, the width of the groove, the rotation speed of the motor 201, and the like.
 図18Aには、固定臼404の溝の一部として、第一外周側副溝群1304に属する第一外周側副溝1401、第一内周側副溝群1303に属する第一内周側副溝1402、第二溝群1302に属する第二溝1403が示されている。
 第一内周側副溝1402と第一外周側副溝1401は、固定臼404の中心点P1801から直径方向に延びる線L1802と、第一内周側副溝1402と第二溝1403との交点P1803において接し、第一の傾斜角θ1をなす。
 同様に、第二溝1403は、線L1802と交点P1803において接し、第二の傾斜角θ2をなす。
18A shows, as part of the grooves of the fixed die 404, a first outer peripheral side sub-groove 1401 belonging to the first outer peripheral side sub-groove group 1304, and a first inner peripheral side sub-groove belonging to the first inner peripheral side sub-groove group 1303. A groove 1402 and a second groove 1403 belonging to the second groove group 1302 are shown.
The first inner peripheral side sub-groove 1402 and the first outer peripheral side sub-groove 1401 are formed at the intersection of a line L1802 extending in the diametrical direction from the center point P1801 of the fixed die 404 and the first inner peripheral side sub-groove 1402 and the second groove 1403. They meet at P1803 and form a first tilt angle θ1.
Similarly, the second groove 1403 contacts the line L1802 at the intersection point P1803 and forms a second inclination angle θ2.
 図18Bには、回転臼403の溝の一部として、第二外周側副溝群1604に属する第二外周側副溝1605、第二内周側副溝群1603に属する第二内周側副溝1606、第四溝群1602に属する第四溝1607が示されている。
 第二内周側副溝1606と第二外周側副溝1605は、回転臼403の中心点P1811から直径方向に延びる線L1812と、第二内周側副溝1606と第四溝1607との接点P1813において接し、第三の傾斜角θ3をなす。
 同様に、第四溝1607は、線L1812と接点P1813において接し、第四の傾斜角θ4をなす。
FIG. 18B shows, as part of the grooves of the rotary mill 403, a second outer peripheral side sub-groove 1605 belonging to the second outer peripheral side sub-groove group 1604 and a second inner peripheral side sub-groove belonging to the second inner peripheral side sub-groove group 1603. Groove 1606 and fourth groove 1607 belonging to fourth groove group 1602 are shown.
The second inner peripheral side secondary groove 1606 and the second outer peripheral side secondary groove 1605 are points of contact between a line L1812 extending diametrically from the center point P1811 of the rotary die 403 and the second inner peripheral side secondary groove 1606 and the fourth groove 1607. They meet at P1813 and form a third tilt angle θ3.
Similarly, the fourth groove 1607 contacts the line L1812 at the point of contact P1813 and forms a fourth inclination angle θ4.
 図18Aに示すように、第二溝群1302に属する溝の第二の傾斜角θ2は、例えば15°である。同様に、図18Bに示すように、第四溝群1602に属する溝の第四の傾斜角θ4も、例えば15°である。
 第二溝群1302に属する溝の傾斜方向は、回転臼403の回転方向に沿った傾斜方向である。回転臼403がモータ201によって回転駆動されることにより、粗砕ニブ蓄積領域1201から第二溝群1302の溝に入り込んだ粗砕ニブは、回転臼403の第四溝群1602を通じて固定臼404の外周方向へ押し出される。そして一部の粗砕ニブは、第二溝群1302に形成された円弧状の横断溝1203を通じて、回転臼403及び固定臼404の円周方向に磨砕されながら拡散される。
As shown in FIG. 18A, the second inclination angle θ2 of the grooves belonging to the second groove group 1302 is, for example, 15°. Similarly, as shown in FIG. 18B, the fourth inclination angle θ4 of the grooves belonging to the fourth groove group 1602 is also 15°, for example.
The inclination direction of the grooves belonging to the second groove group 1302 is the inclination direction along the rotation direction of the rotary mill 403 . As rotary die 403 is rotationally driven by motor 201 , the coarsely crushed nibs that have entered the grooves of second groove group 1302 from coarsely crushed nib storage area 1201 pass through fourth groove group 1602 of rotary die 403 to fixed die 404 . It is extruded in the outer peripheral direction. Some of the coarsely crushed nibs are dispersed while being crushed in the circumferential direction of rotary die 403 and fixed die 404 through arcuate transverse grooves 1203 formed in second groove group 1302 .
 図18Aに示すように、第一溝群1301の溝の第一の傾斜角θ1は、例えば30°である。同様に、図18Bに示すように、第三溝群1601の溝の第三の傾斜角θ3も、例えば30°である。
 第一溝群1301の傾斜方向は、回転臼403の回転方向に逆らう傾斜方向である。回転臼403がモータ201によって回転駆動されることにより、第二溝群1302から外周側へ漏れ出ようとする粗砕ニブ1901は、図19B及び図19Cに示すように、第一溝群1301及び/又は第三溝群1601の溝で捕捉される。
As shown in FIG. 18A, the first inclination angle θ1 of the grooves of the first groove group 1301 is, for example, 30°. Similarly, as shown in FIG. 18B, the third inclination angle θ3 of the grooves of the third groove group 1601 is also 30°, for example.
The inclination direction of the first groove group 1301 is the inclination direction opposite to the rotation direction of the rotary mill 403 . When the rotary die 403 is rotationally driven by the motor 201, the coarsely crushed nib 1901 that is about to leak out from the second groove group 1302 to the outer peripheral side moves into the first groove group 1301 and the /or captured in grooves of third groove group 1601;
 そして、図19D及び図19Eに示すように、第一溝群1301の溝と第三溝群1601の溝が交差した時に、粗砕ニブ1901が両方の溝に嵌まり込む。すると、鋏と同じ作用で、粗砕ニブ1901は第一溝群1301の溝と第三溝群1601の溝の周縁によって削られながら、内周側へ押し込まれる。 Then, as shown in FIGS. 19D and 19E, when the grooves of the first groove group 1301 and the grooves of the third groove group 1601 intersect, the coarse nib 1901 fits into both grooves. Then, the rough nib 1901 is scraped by the peripheral edges of the grooves of the first groove group 1301 and the grooves of the third groove group 1601 by the same action as scissors, and is pushed inward.
 特に、固定臼404の最外周に配置されている第一外周側副溝群1304と、回転臼403の最外周に配置されている第二外周側副溝群1604は、構成される全ての溝が閉じている。すなわち、その形状が他の溝と繋がっておらず、それ自身が閉じて、隣接する他の溝とは独立して存在する独立溝である。
 第一外周側副溝群1304と第二外周側副溝群1604は、第一外周側副溝群1304の内側に存在する第一内周側副溝群1303及び第二外周側副溝群1604の内側に存在する第二内周側副溝群1603から、固定臼404と回転臼403に隙間を作って外周側へ零れ出る粗砕ニブ1901の破片を捕捉するために設けられている。
In particular, the first outer peripheral side sub-groove group 1304 arranged on the outermost periphery of the fixed die 404 and the second outer peripheral side minor groove group 1604 arranged on the outermost periphery of the rotary die 403 are all configured grooves. is closed. That is, it is an independent groove whose shape is not connected to other grooves, is closed by itself, and exists independently of other adjacent grooves.
First outer peripheral side sub-groove group 1304 and second outer peripheral side sub-groove group 1604 are formed by first inner peripheral side sub-groove group 1303 and second outer peripheral side sub-groove group 1604 existing inside first outer peripheral side sub-groove group 1304. From the second inner peripheral side sub-groove group 1603 existing inside, a gap is created between the fixed die 404 and the rotary die 403 to capture fragments of the coarsely crushed nib 1901 spilling out to the outer peripheral side.
 もし、第一外周側副溝群1304と第二外周側副溝群1604が設けられていないと、第一内周側副溝群1303及び第二外周側副溝群1604でカカオマスの大きさまで完全に磨砕されない粗砕ニブの破片が、固定臼404と回転臼403の間に入り込む。そして、固定臼404と回転臼403の間に隙間を作りながら外周へ零れ出てしまう。第一外周側副溝群1304と第二外周側副溝群1604を設けることで、第一内周側副溝群1303及び第二外周側副溝群1604から零れ出る粗砕ニブの破片を捕捉して、磨砕することで、カカオマスに粗砕ニブの破片が混入する不具合を防ぐと共に、固定臼404及び回転臼403の磨砕効率を向上させている。 If the first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604 are not provided, the first inner peripheral side sub-groove group 1303 and the second outer peripheral side sub-groove group 1604 are used to completely increase the size of the cocoa mass. Fragments of coarsely crushed nibs that are not ground into the ground enter between the fixed die 404 and the rotary die 403 . Then, while creating a gap between the fixed die 404 and the rotary die 403, the liquid spills out to the outer periphery. By providing the first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604, fragments of the coarsely crushed nibs spilling out from the first inner peripheral side sub-groove group 1303 and the second outer peripheral side sub-groove group 1604 are captured. By grinding the cacao mass, it is possible to prevent fragments of the coarsely ground nibs from being mixed into the cocoa mass and improve the grinding efficiency of the fixed mill 404 and the rotary mill 403 .
 そして、第一内周側副溝群1303及び第二内周側副溝群1603から外周側へ零れ出る粗砕ニブ1901を効果的に捕捉するために、第一外周側副溝群1304と第二外周側副溝群1604は、それぞれ同じ直径に形成されている。第一外周側副溝群1304の内周の直径と第二外周側副溝群1604の内周の直径は等しい。同様に、第一外周側副溝群1304の外周の直径と第二外周側副溝群1604の外周の直径は等しい。 In order to effectively catch coarsely crushed nibs 1901 leaking out from the first inner peripheral side sub-groove group 1303 and the second inner peripheral side sub-groove group 1603 to the outer peripheral side, the first outer peripheral side sub-groove group 1304 and the second The two outer peripheral side minor groove groups 1604 are formed to have the same diameter. The diameter of the inner periphery of the first outer peripheral side sub-groove group 1304 and the diameter of the inner periphery of the second outer peripheral side sub-groove group 1604 are equal. Similarly, the diameter of the outer periphery of the first outer peripheral side minor groove group 1304 and the diameter of the outer periphery of the second outer peripheral side minor groove group 1604 are equal.
 また、固定臼404の粗砕ニブ蓄積領域1201から粗砕ニブを効果的に外周へ送り出すために、固定臼404の第二溝群1302の外周の直径と回転臼403の第四溝群1602の外周の直径も等しく形成されている。このため、必然的に第一溝群1301の内周側副溝群と第三溝群1601の内周側副溝群は、互いに内周の直径及び外周の直径が等しく形成されている。 In addition, in order to effectively feed the coarsely crushed nibs from the coarsely crushed nib storage area 1201 of the fixed die 404 to the outer periphery, the diameter of the outer periphery of the second groove group 1302 of the fixed die 404 and the diameter of the fourth groove group 1602 of the rotary die 403 The diameter of the outer periphery is also formed to be equal. Therefore, the inner peripheral side sub-groove group of the first groove group 1301 and the inner peripheral side sub-groove group of the third groove group 1601 are inevitably formed to have the same inner peripheral diameter and outer peripheral diameter.
 第一溝群1301の溝と第三溝群1601の溝が交差した時に発生する、鋏と同じ作用は、固定臼404の内周側の溝群である第二溝群1302と、回転臼403の内周側の溝群である第四溝群1602においても発生する。第二溝群1302の傾斜方向は第一溝群1301と逆である。同様に、第四溝群1602の傾斜方向も、第三溝群1601と逆である。したがって、鋏と同じ作用は、第一溝群1301の溝と第三溝群1601の溝が交差した時とは逆の方向に発生する。
 第二溝群1302の溝と第四溝群1602の溝が交差した時に、粗砕ニブ1901が両方の溝に嵌まり込む。すると、鋏と同じ作用で、粗砕ニブ1901は第二溝群1302の溝と第四溝群1602の溝の周縁によって削られながら、外周側へ押し込まれる。
When the grooves of the first groove group 1301 and the grooves of the third groove group 1601 intersect, the same action as scissors is generated by the second groove group 1302, which is the groove group on the inner peripheral side of the fixed die 404, and the rotary die 403. Also occurs in the fourth groove group 1602, which is the groove group on the inner peripheral side of the . The inclination direction of the second groove group 1302 is opposite to that of the first groove group 1301 . Similarly, the inclination direction of the fourth groove group 1602 is also opposite to that of the third groove group 1601 . Therefore, the same action as scissors occurs in the opposite direction as when the grooves of first groove group 1301 and grooves of third groove group 1601 intersect.
When the grooves of the second groove group 1302 and the grooves of the fourth groove group 1602 intersect, the crushing nib 1901 fits into both grooves. Then, the rough nib 1901 is scraped by the grooves of the second groove group 1302 and the grooves of the fourth groove group 1602 in the same manner as the scissors, and pushed to the outer peripheral side.
 こうして、粗砕ニブとその破片は、溝の周縁によって削られながら、固定臼404における第一溝群1301と第二溝群1302との境界線上、及び回転臼403における第三溝群1601と第四溝群1602との境界線上へ集められる。
 やがて、粗砕ニブの破片が十分に小さくなり、固定臼404と回転臼403との隙間を無理なく流動できる程度の大きさまで磨砕される。すると、十分に小さくなった粗砕ニブの破片が重力と回転臼403の遠心力によって固定臼404と回転臼403の外周へ導かれ、固定臼404と回転臼403の隙間からカカオマスとして排出される。
In this way, the coarsely crushed nibs and their fragments are scraped by the peripheral edges of the grooves, on the boundary line between the first groove group 1301 and the second groove group 1302 in the fixed die 404, and on the third groove group 1601 and the second groove group in the rotary die 403. They are collected on the boundary line with the four-groove group 1602 .
Eventually, the fragments of the coarsely crushed nib become sufficiently small and are ground to a size that allows them to flow through the gap between the fixed die 404 and the rotary die 403 without difficulty. Then, fragments of the coarsely crushed nibs that have become sufficiently small are guided to the outer periphery of the fixed mill 404 and the rotary mill 403 by gravity and the centrifugal force of the rotary mill 403, and discharged as cocoa mass from the gap between the fixed mill 404 and the rotary mill 403. .
 これまでの説明で明らかなように、固定臼404及び回転臼403は、ほぼ垂直に設置されている。発明者らは、磨砕装置の試作を重ねることで、固定臼404及び回転臼403をほぼ垂直に設置することが、安定したカカオマスの生産に理想的であることを見出した。 As is clear from the explanation so far, the fixed mill 404 and the rotary mill 403 are installed almost vertically. The inventors, through trial production of grinding devices, found that placing the fixed mortar 404 and rotary mortar 403 almost vertically is ideal for stable cocoa mass production.
 もし、磨砕装置101の磨砕部103を駆動部102に対して上向きに傾けると、空間1202に蓄積されている、ヒータ2101によって温められた粗砕ニブに含まれているカカオ油脂が、プリプレート402の窓402aを通じてスクリュー401へ逆流する。すると、スクリュー401の輸送溝401aに蓄積されているカカオニブが温まり、スクリュー401とカカオニブの摩擦係数が増大し、カカオニブがスクリュー401の輸送溝401aで詰まってしまうおそれがある。 If the grinding unit 103 of the grinding device 101 is tilted upward with respect to the drive unit 102, the cocoa fat contained in the coarsely ground nibs that are accumulated in the space 1202 and heated by the heater 2101 will be preheated. It flows back to screw 401 through window 402 a of plate 402 . As a result, the cocoa nibs accumulated in the transport groove 401a of the screw 401 are heated, the coefficient of friction between the screw 401 and the cocoa nibs increases, and the cacao nibs may clog the transport groove 401a of the screw 401.
 逆に、磨砕装置101の磨砕部103を駆動部102に対して下向きに傾けると、上向きに傾ける場合とは異なり、カカオ油脂の逆流に起因する不具合は発生しないものの、スクリュー401からプリプレート402へ輸送される粗砕ニブの供給量が、重力の影響を受けて過大になってしまう虞がある。 Conversely, if the grinding unit 103 of the grinding device 101 is tilted downward with respect to the drive unit 102, unlike the case of tilting it upward, problems due to the backflow of cacao fats and oils do not occur, but the screw 401 does not reach the pre-plate. The supply of coarse nibs transported to 402 may become too large due to the effects of gravity.
 以上の結果を鑑みて、本実施形態に係る磨砕装置101は、固定臼404及び回転臼403をほぼ垂直に設置している。そして、固定臼404を垂直に設置していることに起因して、粗砕ニブを固定臼404及び回転臼403の全面に満遍なく拡散させるために、横断溝1203を設けている。 In view of the above results, the grinding device 101 according to this embodiment has the fixed mortar 404 and the rotary mortar 403 installed substantially vertically. Since the fixed die 404 is installed vertically, a transverse groove 1203 is provided in order to evenly spread the crushed nibs over the entire surface of the fixed die 404 and rotary die 403 .
[生成されたカカオマスの排出]
 図20は、磨砕部103からユニットカバー107を取り外した状態における、磨砕部103の斜視図である。
 粗砕ニブ1901は、回転臼403と固定臼404によって磨砕され、粒子の直径が約20μmのカカオマスとなって、溶融したカカオ油脂と共に回転臼403と固定臼404の外周から排出される。回転臼403と固定臼404の外周から排出されるカカオマスは、回転臼403と固定臼404の外周に蓄積される。
 一方、回転臼403を固定するアウターディスクサポート408の周縁2箇所には、スクレーパ601a、601bが回転対称な位置関係でネジ止めされている。なお、これ以降、スクレーパ601a、601bを区別しない時はスクレーパ601と呼ぶ。
[Discharge of generated cocoa mass]
20 is a perspective view of the grinding section 103 with the unit cover 107 removed from the grinding section 103. FIG.
The coarsely ground nibs 1901 are ground by a rotary mill 403 and a fixed mill 404 to form cocoa mass with a particle diameter of about 20 μm, which is discharged from the outer peripheries of the rotary mill 403 and fixed mill 404 together with melted cacao oil. Cocoa mass discharged from the outer peripheries of the rotating mill 403 and the fixed mill 404 is accumulated on the outer peripheries of the rotating mill 403 and the fixed mill 404 .
On the other hand, scrapers 601a and 601b are screwed to two locations on the periphery of the outer disk support 408 to which the rotary mill 403 is fixed, in a rotationally symmetrical positional relationship. Hereinafter, the scrapers 601a and 601b will be referred to as scrapers 601 when not distinguished from each other.
 回転臼403が回転駆動されると、このスクレーパ601も回転し、回転臼403及び固定臼404の外周面に沿って移動する。すると、スクレーパ601は回転臼403と固定臼404の外周に蓄積されたカカオマスを削ぎ取る。
 スクレーパ601によって削ぎ取られたカカオマスは、ディスクカバー411の下部に設けられた排出口411aに運ばれ、排出口411aから排出される。ディスクカバー411は、回転臼403と固定臼404からカカオマスが排出口411a以外の外部へ漏出する事故を防ぐ役割を有する。
When the rotary mill 403 is rotationally driven, the scraper 601 also rotates and moves along the outer peripheral surfaces of the rotary mill 403 and fixed mill 404 . Then, the scraper 601 scrapes off cocoa mass accumulated on the outer peripheries of the rotary mill 403 and the fixed mill 404 .
The cocoa mass scraped off by the scraper 601 is conveyed to a discharge port 411a provided at the bottom of the disc cover 411 and discharged from the discharge port 411a. The disk cover 411 has a role of preventing cocoa mass from leaking from the rotating mill 403 and the fixed mill 404 to the outside other than the outlet 411a.
[ヒータ2101によって温められる部品]
 図21に示すように、インナーディスクサポート407の裏面(固定臼404と接触する面と反対の面)には、一対のヒータ2101a、2101bが、それぞれヒータ固定具2104a、2104bによって固定されている。なお、これ以降、ヒータ2101a、2101bを特に区別しないときはヒータ2101と称する。同様に、ヒータ固定具2104a、2104bを特に区別しないときはヒータ固定具2104と称する。
 ヒータ2101は、後述する制御部202によって制御され、インナーディスクサポート407を介して固定臼404とディスクカバー411を加熱する。
 ヒータ固定具2104は、アルミニウム、銅、真鍮等の、熱伝導性の良い金属で構成されており、ヒータ2101から発生する熱を、固定臼404を支持するインナーディスクサポート407に効率的に伝える。
[Parts heated by heater 2101]
As shown in FIG. 21, a pair of heaters 2101a and 2101b are fixed to the back surface of the inner disk support 407 (the surface opposite to the surface in contact with the fixed die 404) by heater fixtures 2104a and 2104b, respectively. Hereinafter, the heaters 2101a and 2101b will be referred to as heaters 2101 when they are not distinguished from each other. Similarly, heater fixtures 2104a and 2104b are referred to as heater fixtures 2104 when not distinguished.
The heater 2101 is controlled by the controller 202 to be described later, and heats the fixed die 404 and the disk cover 411 via the inner disk support 407 .
The heater fixture 2104 is made of metal with good thermal conductivity such as aluminum, copper, brass, etc., and efficiently transfers the heat generated from the heater 2101 to the inner disk support 407 that supports the fixed die 404 .
 回転臼403と固定臼404によって磨砕されて生成されるカカオマスは、液状になっていないと、ディスクカバー411の真下に設けられている排出口411aから吐出されない。したがって、回転臼403と固定臼404は、カカオ油脂が溶ける30℃以上に保たれている必要がある。
 しかし、回転臼403と固定臼404が温められていても、その周囲の空気が冷えていては、カカオ油脂が冷え固まってしまう。このため、ディスクカバー411が回転臼403を覆うように構成され、回転臼403の周囲の空気が冷えるのを防いでいる。
The cacao mass produced by being ground by the rotary mill 403 and the fixed mill 404 is not discharged from the discharge port 411a provided directly below the disk cover 411 unless it is liquid. Therefore, the rotating mill 403 and the fixed mill 404 must be kept at 30° C. or higher at which the cacao fat melts.
However, even if the rotary mill 403 and the fixed mill 404 are warmed, if the surrounding air is cold, the cacao oil will cool and solidify. Therefore, the disk cover 411 is configured to cover the rotary mill 403 to prevent the air around the rotary mill 403 from cooling.
 前述のように、ディスクカバー411は、回転臼403と固定臼404からカカオマスが排出口411a以外の箇所から漏出させないために設けられている。すなわち、ディスクカバー411の内側は、カカオマスに塗れた状態である。もし、ディスクカバー411が冷えていると、カカオマスがディスクカバー411の内側で冷え固まり、排出口411aから出てこなくなる。そして冷え固まったカカオマスは、やがて回転臼403を圧迫する、という不具合が生じる可能性がある。このような不具合を防ぐために、ディスクカバー411は固定臼404と同様に、インナーディスクサポート407を通じてヒータ2101によって温められる必要がある。 As described above, the disk cover 411 is provided to prevent cocoa mass from leaking out of the rotary mill 403 and the fixed mill 404 from places other than the outlet 411a. That is, the inside of the disc cover 411 is in a state of being coated with cacao mass. If the disk cover 411 is cold, the cacao mass will freeze and solidify inside the disk cover 411 and will not come out from the outlet 411a. There is a possibility that the cocoa mass that has cooled and solidified will press the rotary mill 403 before long. In order to prevent such a problem, the disc cover 411 must be warmed by the heater 2101 through the inner disc support 407 in the same manner as the fixed die 404 .
 また、ディスクカバー411が冷えないためにも、ディスクカバー411が外気に直接接触しない構成が望ましい。このため、磨砕部103の全面は、ディスクカバー411を外気に直接接触させないために、ユニットカバー107で覆われている。ユニットカバー107は、他の部品と同様に、ステンレスで形成される。但し、ユニットカバー107は他の部品とは異なり、高い堅牢性を必要としないので、ディスクカバー411等における外気との断熱効果を優先して、ABS樹脂やモノマーキャストナイロン等の樹脂で構成してもよい。 Also, in order to keep the disc cover 411 cool, it is desirable that the disc cover 411 does not come into direct contact with the outside air. Therefore, the entire surface of the grinding section 103 is covered with the unit cover 107 to prevent the disk cover 411 from directly contacting the outside air. The unit cover 107 is made of stainless steel like other parts. However, unlike the other parts, the unit cover 107 does not require high robustness, so it is made of a resin such as ABS resin or monomer cast nylon, giving priority to the heat insulating effect of the disk cover 411 and the like from the outside air. good too.
 インナーディスクサポート407には、ヒータ2101の他に、温度センサ2102と、温度ヒューズ2103も固定されている。温度センサ2102は、固定臼404の温度を計測するためのセンサである。固定臼404とインナーディスクサポート407は互いに接触(密着)しているため、固定臼404の温度が変化すると、これに応じてインナーディスクサポート407の温度も変化する。このため、本実施形態においては、一例として、温度センサ2102が、インナーディスクサポート407を介して固定臼404の温度を間接的に計測する構成を採用している。ただし、本発明はこれに限らず、温度センサ2101が固定臼404の温度を直接計測する構成を採用してもよい。また、図4に示すように、インナーディスクサポート407とケース406の間には、これらが直接接触しないように、モノマーキャストナイロンやポリアセタール等の樹脂で形成されたインナーアダプタ413が挟み込まれている。
 インナーアダプタ413がインナーディスクサポート407とケース406の間に介在していることにより、ヒータ2101に加熱されたインナーディスクサポート407の熱がスクリュー401を収容するケース406のスクリュー収納筒406bに伝導することを防止できる。そして、スクリュー収納筒406bに収容されてスクリュー401によりプリプレート402へ送られるカカオニブからカカオ油脂が溶けだすことを防止している。
A temperature sensor 2102 and a temperature fuse 2103 are also fixed to the inner disk support 407 in addition to the heater 2101 . A temperature sensor 2102 is a sensor for measuring the temperature of the fixed die 404 . Since the fixed die 404 and the inner disk support 407 are in contact (close contact) with each other, when the temperature of the fixed die 404 changes, the temperature of the inner disk support 407 also changes accordingly. Therefore, in this embodiment, as an example, the temperature sensor 2102 indirectly measures the temperature of the fixed die 404 via the inner disk support 407 . However, the present invention is not limited to this, and a configuration in which the temperature sensor 2101 directly measures the temperature of the fixed die 404 may be employed. As shown in FIG. 4, an inner adapter 413 made of resin such as monomer cast nylon or polyacetal is sandwiched between the inner disk support 407 and the case 406 to prevent them from coming into direct contact with each other.
Since the inner adapter 413 is interposed between the inner disk support 407 and the case 406, the heat of the inner disk support 407 heated by the heater 2101 is conducted to the screw housing cylinder 406b of the case 406 housing the screw 401. can be prevented. The cocoa oil is prevented from melting out of the cocoa nibs housed in the screw housing cylinder 406b and sent to the pre-plate 402 by the screw 401.例文帳に追加
[制御部202]
 次に、図21、図22、図23及び図24を参照して、本実施形態に係る磨砕装置101の制御動作について説明する。
 本実施形態に係る磨砕装置101は、常時良好な磨砕性能を維持するため、固定臼404の表面温度に応じて固定臼404とディスクカバー411をヒータ2101で温める他、固定臼404とディスクカバー411が過熱された場合には、これらを冷却するためにモータ201の駆動を停止する制御を行う。
[Control unit 202]
Next, with reference to FIGS. 21, 22, 23 and 24, the control operation of the grinding device 101 according to this embodiment will be described.
The grinding apparatus 101 according to this embodiment heats the fixed die 404 and the disk cover 411 according to the surface temperature of the fixed die 404 by the heater 2101, and heats the fixed die 404 and the disk. When the cover 411 is overheated, control is performed to stop driving the motor 201 in order to cool them.
 図22は、制御部202のハードウェア構成を示すブロック図である。
 周知のマイコンよりなる制御部202は、バス2201に、CPU2202、ROM2203、RAM2204が接続されている。バス2201には更に、第一リレーの駆動コイルL2205を駆動するドライバ2206と、第二リレーの駆動コイルL2207を駆動するドライバ2208と、温度センサ2102が接続されている。
 一方、商用交流電源2209の一端は、パワースイッチ2210を介してモータ201とヒータ2101に接続されている。
FIG. 22 is a block diagram showing the hardware configuration of the control unit 202. As shown in FIG.
A CPU 2202 , a ROM 2203 and a RAM 2204 are connected to a bus 2201 in the control unit 202 made up of a well-known microcomputer. Also connected to the bus 2201 are a driver 2206 that drives the drive coil L2205 of the first relay, a driver 2208 that drives the drive coil L2207 of the second relay, and the temperature sensor 2102 .
On the other hand, one end of commercial AC power supply 2209 is connected to motor 201 and heater 2101 via power switch 2210 .
 モータ201の、パワースイッチ2210に接続されていない側の端子には、第一リレーのスイッチ2211とグラインドスイッチ2212が直列に接続されている。グラインドスイッチ2212は商用交流電源2209の他端に接続されている。
 ヒータ2101の、パワースイッチ2210に接続されていない側の端子には、第二リレーのスイッチ2213と温度ヒューズ2103が直列に接続されている。温度ヒューズ2103は商用交流電源2209の他端に接続されている。
 パワースイッチ2210とグラインドスイッチ2212は、人が操作する周知のトグルスイッチやロッカースイッチ等である。
A first relay switch 2211 and a grind switch 2212 are connected in series to the terminal of the motor 201 that is not connected to the power switch 2210 . The grind switch 2212 is connected to the other end of the commercial AC power supply 2209 .
A second relay switch 2213 and a thermal fuse 2103 are connected in series to the terminal of the heater 2101 that is not connected to the power switch 2210 . Thermal fuse 2103 is connected to the other end of commercial AC power supply 2209 .
The power switch 2210 and the grind switch 2212 are well-known toggle switches, rocker switches, or the like operated by humans.
 温度センサ2102としては、市販の一般的な温度センサが利用可能である。温度センサ2102は、デジタル出力の仕様であれば、そのままバス2201に接続可能である。アナログ出力の仕様であれば、A/D変換器を介してバス2201に接続可能である。市場に流通する多くのマイコンは、A/D変換器を内蔵するものが多いので、これを利用してもよい。 A commercially available general temperature sensor can be used as the temperature sensor 2102 . The temperature sensor 2102 can be directly connected to the bus 2201 if it has a digital output specification. If it is analog output specification, it can be connected to the bus 2201 via an A/D converter. Since many microcomputers on the market have built-in A/D converters, this may be used.
 図23は、制御部202のソフトウェア機能を示すブロック図である。
 入出力制御部2301は、温度センサ2102から固定臼404の温度の情報を取得すると、その温度を温度閾値リスト2302と比較する。そして、その比較結果に呼応して、入出力制御部2301は第一リレー及び第二リレーをオン/オフ制御する。
FIG. 23 is a block diagram showing software functions of the control unit 202. As shown in FIG.
When the input/output control unit 2301 acquires temperature information of the fixed die 404 from the temperature sensor 2102 , it compares the temperature with the temperature threshold list 2302 . Then, in response to the comparison result, the input/output control unit 2301 turns on/off the first relay and the second relay.
 図24は、制御部202の処理の流れを示すフローチャートである。
 マイコンの電源オンによって処理を開始すると(S2401)、入出力制御部2301は先ず、温度フラグTFLAGを論理の「偽」に初期化する(S2402)。
 次に入出力制御部2301は、温度センサ2102によって取得した固定臼404の温度Tが、第一の温度閾値T1に達していない(T1未満である)か否かを確認する(S2403)。第一の温度閾値T1は、例えば35℃である。
 温度Tが第一の温度閾値T1に達していないならば(S2403のYES)、入出力制御部2301は第二リレーをオン制御して、ヒータ2101をオン制御する(S2404)。
FIG. 24 is a flowchart showing the processing flow of the control unit 202. As shown in FIG.
When the processing is started by turning on the power of the microcomputer (S2401), the input/output control unit 2301 first initializes the temperature flag TFLAG to logic "false" (S2402).
Next, the input/output control unit 2301 checks whether or not the temperature T of the fixed die 404 acquired by the temperature sensor 2102 has not reached the first temperature threshold value T1 (is less than T1) (S2403). The first temperature threshold T1 is, for example, 35°C.
If the temperature T has not reached the first temperature threshold T1 (YES in S2403), the input/output control unit 2301 turns on the second relay to turn on the heater 2101 (S2404).
 次に、入出力制御部2301は、温度Tが第二の温度閾値T2に達していない(T2未満である)か否かを確認する(S2405)。第二の温度閾値T2は、例えば30℃である。
 温度Tが第二の温度閾値T2に達していないならば(S2405のYES)、入出力制御部2301は第一リレーをオフ制御して、モータ201の駆動を禁止する(S2406)。そして、再びステップS2403からの処理を繰り返す。
Next, the input/output control unit 2301 confirms whether or not the temperature T has reached the second temperature threshold value T2 (is less than T2) (S2405). The second temperature threshold T2 is, for example, 30°C.
If the temperature T has not reached the second temperature threshold T2 (YES in S2405), the input/output control unit 2301 turns off the first relay to prohibit driving of the motor 201 (S2406). Then, the processing from step S2403 is repeated again.
 この時点では、第一リレーのスイッチ2211がオフになっているため、グラインドスイッチ2212がオン状態になっていても、モータ201には商用交流電源2209から電力が供給されず、モータ201は駆動されない。 At this time, the switch 2211 of the first relay is off, so even if the grind switch 2212 is on, no power is supplied to the motor 201 from the commercial AC power supply 2209, and the motor 201 is not driven. .
 温度Tが第二の温度閾値T2に達していないままでは、処理の流れはS2403、S2404、S2405、S2406を繰り返す。
 もし、ステップS2405において、温度Tが第二の温度閾値T2に達したら(S2405のNO)、入出力制御部2301は第一リレーをオン制御して、モータ201の駆動を許可する(S2407)。そして、再びステップS2403からの処理を繰り返す。
As long as the temperature T has not reached the second temperature threshold T2, the process flow repeats S2403, S2404, S2405, and S2406.
If the temperature T reaches the second temperature threshold value T2 in step S2405 (NO in S2405), the input/output control unit 2301 turns on the first relay to permit driving of the motor 201 (S2407). Then, the processing from step S2403 is repeated again.
 温度Tが第二の温度閾値T2に達しており、かつ、第一の温度閾値T1に達していない状態では、処理の流れはS2403、S2404、S2405、S2407を繰り返す。
 もし、ステップS2403において、温度Tが第一の温度閾値T1に達したら(S2403のNO)、入出力制御部2301は第二リレーをオフ制御して、ヒータ2101をオフ制御する(S2408)。
When the temperature T has reached the second temperature threshold T2 and has not reached the first temperature threshold T1, the process flow repeats S2403, S2404, S2405, and S2407.
If the temperature T reaches the first temperature threshold value T1 in step S2403 (NO in S2403), the input/output control unit 2301 turns off the second relay to turn off the heater 2101 (S2408).
 次に、入出力制御部2301は、温度Tが第四の温度閾値T4を超えている(T4より高い)か否かを確認する(S2409)。第四の温度閾値T4は、例えば45℃である。
 温度Tが第四の温度閾値T4を超えていないならば(S2409のNO)、入出力制御部2301は、温度フラグTFLAGが論理の「真」であるか否かを確認する(S2410)。温度フラグTFLAGが論理の「偽」であれば(S2410のNO)、再びステップS2403からの処理を繰り返す。
Next, the input/output control unit 2301 confirms whether or not the temperature T exceeds the fourth temperature threshold value T4 (higher than T4) (S2409). The fourth temperature threshold T4 is, for example, 45°C.
If the temperature T does not exceed the fourth temperature threshold value T4 (NO in S2409), the input/output control unit 2301 checks whether the temperature flag TFLAG is logically "true" (S2410). If the temperature flag TFLAG is logically "false" (NO in S2410), the process from step S2403 is repeated.
 温度Tが第一の温度閾値T1に達しており、かつ、第四の温度閾値T4を超えていない状態では、処理の流れはS2403、S2408、S2409、S2410のNOを繰り返す。
 ステップS2409において、温度Tが第四の温度閾値T4を超えているならば(S2409のYES)、入出力制御部2301は次に、温度フラグTFLAGが論理の偽であるか否かを確認する(S2411)。
 温度フラグTFLAGが論理の偽であるならば(S2411のYES)、入出力制御部2301は、温度Tが第三の温度閾値T3を超えているか否かを確認する(S2412)。第三の温度閾値T3は、例えば48℃である。
When the temperature T has reached the first temperature threshold T1 and has not exceeded the fourth temperature threshold T4, the process flow repeats NO in S2403, S2408, S2409, and S2410.
In step S2409, if the temperature T exceeds the fourth temperature threshold value T4 (YES in S2409), the input/output control unit 2301 next checks whether the temperature flag TFLAG is logically false ( S2411).
If the temperature flag TFLAG is logically false (YES in S2411), the input/output control unit 2301 checks whether the temperature T exceeds the third temperature threshold T3 (S2412). The third temperature threshold T3 is, for example, 48°C.
 温度Tが第四の温度閾値T4を超えており、かつ、温度フラグTFLAGが論理の偽であり、かつ、第三の温度閾値T3を超えていない状態では、処理の流れはS2403のNOから、S2408を経由して、S2409のYES、S2411のYES、S2412のNOを繰り返す。
 ステップS2412において、温度Tが第三の温度閾値T3を超えているならば(S2412のYES)、入出力制御部2301は、温度フラグTFLAGを論理の「真」に設定する(S2413)。そして入出力制御部2301は、第一リレーをオフ制御して、モータ201の駆動を禁止し(S2414)、再びステップS2403からの処理を繰り返す。
When the temperature T exceeds the fourth temperature threshold T4, the temperature flag TFLAG is logically false, and the third temperature threshold T3 is not exceeded, the process flow proceeds from NO in S2403 to YES in S2409, YES in S2411, and NO in S2412 are repeated via S2408.
In step S2412, if the temperature T exceeds the third temperature threshold value T3 (YES in S2412), the input/output control unit 2301 sets the temperature flag TFLAG to logical "true" (S2413). The input/output control unit 2301 turns off the first relay to prohibit driving of the motor 201 (S2414), and repeats the process from step S2403.
 ステップS2414において、入出力制御部2301が第一リレーをオフ制御することで、グラインドスイッチ2212がオン又はオフの状態にかかわらず、モータ201の駆動が禁止される。このため、回転臼403及び固定臼404の磨砕動作は停止する。すると、回転臼403及び固定臼404の磨砕動作に伴う摩擦熱の発生は止まり、回転臼403及び固定臼404は次第に室温に向かって冷却される。 In step S2414, the input/output control unit 2301 turns off the first relay, thereby prohibiting the driving of the motor 201 regardless of whether the grind switch 2212 is on or off. Therefore, the grinding operations of the rotary mill 403 and the fixed mill 404 are stopped. Then, the generation of frictional heat due to the grinding operation of the rotary die 403 and the fixed die 404 stops, and the rotary die 403 and the fixed die 404 are gradually cooled toward room temperature.
 しかし、ステップS2413において温度フラグTFLAGが論理の真に転換しているので、温度Tが第三の温度閾値T3を下回っても(S2412のYES)、温度Tが第四の温度閾値T4を超えていれば、処理の流れは、S2403のNOから、S2408を経由して、S2409のYES、S2411のNOを繰り返す。この間、入出力制御部2301はモータ201の駆動を禁止し続ける。 However, since the temperature flag TFLAG is changed to logic true in step S2413, even if the temperature T is below the third temperature threshold T3 (YES in S2412), the temperature T exceeds the fourth temperature threshold T4. If so, the flow of processing repeats from NO in S2403 via S2408 to YES in S2409 and NO in S2411. During this time, the input/output control unit 2301 keeps prohibiting the driving of the motor 201 .
 回転臼403及び固定臼404の冷却が進行すると、温度Tが第四の温度閾値T4を下回る。ステップS2409において、温度Tが第四の温度閾値T4を超えていないならば(S2409のNO)、入出力制御部2301は、温度フラグTFLAGが論理の「真」であるか否かを確認する(S2410)。
 温度フラグTFLAGが論理の真であるならば(S2410のYES)、入出力制御部2301は、温度フラグTFLAGを論理の「偽」に転換させる(S2415)。そして、モータ201の駆動を許可し(S2416)、再びステップS2403から処理を繰り返す。
As the cooling of rotary mill 403 and fixed mill 404 progresses, temperature T falls below fourth temperature threshold T4. In step S2409, if the temperature T does not exceed the fourth temperature threshold value T4 (NO in S2409), the input/output control unit 2301 checks whether the temperature flag TFLAG is logically "true" ( S2410).
If the temperature flag TFLAG is logically true (YES in S2410), the input/output control unit 2301 changes the temperature flag TFLAG to logically "false" (S2415). Then, the driving of the motor 201 is permitted (S2416), and the process is repeated from step S2403.
 以上の説明より明らかなように、入出力制御部2301は、第三の温度閾値T3、第四の温度閾値T4及び温度フラグTFLAGを用いることで、固定臼404の温度に応じたモータ201の駆動許否制御にヒステリシスを持たせている。 As is clear from the above description, the input/output control unit 2301 uses the third temperature threshold T3, the fourth temperature threshold T4, and the temperature flag TFLAG to drive the motor 201 according to the temperature of the fixed die 404. Hysteresis is given to permission/denial control.
[断熱機能を有する樹脂部品]
 前述の通り、本実施形態に係る磨砕装置101において液状のカカオマスを得るには、カカオマスに含まれるカカオ油脂が30℃以上に温まっている必要がある。このため、インナーディスクサポート407にはヒータ2101が組み込まれている。ヒータ2101は、インナーディスクサポート407を通じて固定臼404及び回転臼403を所定の温度まで加熱する。また、回転臼403がモータ201によって回転駆動されると、固定臼404及び回転臼403には摩擦熱が発生する。
 一方、カカオニブは、30℃以上になるとカカオ油脂が溶け出し、溶け出したカカオ油脂は、カカオニブを輸送する際に大きな摩擦係数を生み出してしまう。
[Resin parts with heat insulating function]
As described above, in order to obtain liquid cocoa mass in the grinding device 101 according to the present embodiment, the cacao oil contained in the cocoa mass must be warmed to 30° C. or higher. Therefore, a heater 2101 is incorporated in the inner disk support 407 . A heater 2101 heats the fixed die 404 and rotary die 403 to a predetermined temperature through the inner disk support 407 . Also, when the rotary mill 403 is rotationally driven by the motor 201 , frictional heat is generated in the fixed mill 404 and the rotary mill 403 .
On the other hand, when the cacao nibs are heated to 30° C. or higher, the cacao fat melts out, and the melted cacao fat creates a large coefficient of friction when the cacao nibs are transported.
 以上のことから、カカオニブが貯留されると共にカカオニブを輸送する機構部分である、ケース406、スクリュー401、そしてカカオニブが粗く破砕されて粗砕ニブとなるプリプレート402までは、30℃を下回る温度に保つ必要がある。
 一方、粗砕ニブが貯留される粗砕ニブ蓄積領域1201は、固定臼404及び回転臼403によってカカオマスへ磨砕されるため、カカオマスとカカオ油脂を液状に保つために30℃以上の温度に保たれていることが望ましい。
 これらの事象を総合すると、熱の観点でカカオニブ及び粗砕ニブが流れる経路を見ると、プロペラ405を境界として、低い温度のカカオニブ及び粗砕ニブが存在する上流側と、高い温度の粗砕ニブ、カカオマス及び溶融したカカオ油脂が存在する下流側に、分けることができる。
 カカオニブ及び粗砕ニブが流れる経路における上流側の部品は、ケース406、スクリュー401及びプリプレート402が該当する。
 下流側の部品は、固定臼404及び回転臼403が該当する。
From the above, the temperature of the case 406, the screw 401, and the pre-plate 402 where the cacao nibs are coarsely crushed to form coarsely crushed nibs, which are the mechanical parts for storing and transporting the cacao nibs, is below 30°C. need to keep.
On the other hand, the coarsely crushed nib storage area 1201 in which the coarsely crushed nibs are stored is ground to cocoa mass by the fixed mill 404 and the rotary mill 403, and is kept at a temperature of 30° C. or higher in order to keep the cocoa mass and cacao oil and fat in a liquid state. It is desirable that it is dripping.
Summarizing these events, when looking at the flow path of cocoa nibs and coarse nibs from the viewpoint of heat, the propeller 405 is the boundary, the upstream side where low temperature cocoa nibs and coarse nibs exist, and the high temperature coarse nibs , downstream where cocoa mass and melted cocoa fat reside.
Case 406 , screw 401 and pre-plate 402 correspond to upstream parts in the path along which cacao nibs and coarsely crushed nibs flow.
A fixed die 404 and a rotary die 403 correspond to downstream parts.
 前述の通り、熱の発生源は、ヒータ2101と、摩擦熱が発生する固定臼404及び回転臼403である。また、インナーディスクサポート407は、ヒータ2101及び固定臼404に直接接触するため熱を持つ。同様に、アウターディスクサポート408も、回転臼403に直接接触するため熱を持つ。
 したがって、これら金属部品の熱を、プロペラ405を境としてカカオニブの流れの上流側に配置される、ケース406、スクリュー401及びプリプレート402に伝えないように工夫しなければならない。
As described above, the heat generating sources are the heater 2101 and the fixed die 404 and rotary die 403 that generate frictional heat. Also, the inner disk support 407 has heat because it is in direct contact with the heater 2101 and the fixed die 404 . Similarly, the outer disk support 408 also heats up due to direct contact with the rotary die 403 .
Therefore, it is necessary to devise ways to prevent the heat of these metal parts from being transferred to the case 406, the screw 401 and the pre-plate 402, which are arranged on the upstream side of the flow of cacao nibs with respect to the propeller 405.
 図4に示すように、先ず、固定臼404と、これを支持するインナーディスクサポート407とケース406との間には、熱の伝導を遮断する部品が必要になる。この部品が、モノマーキャストナイロンやポリアセタール等の樹脂で形成されたインナーアダプタ413とオサエプレート412である。
 インナーアダプタ413は、インナーディスクサポート407とケース406との間に介在して、高い熱抵抗を以てインナーディスクサポート407からケース406へ発生する熱伝導を遮断する。
 オサエプレート412は、固定臼404とインナーアダプタ413との間に介在して、高い熱抵抗を以て固定臼404の、粗砕ニブ蓄積領域1201における固定臼404の露出面を減らすと同時に、回転臼403からプリプレート402への熱移動を妨げる。
As shown in FIG. 4, first, between the fixed die 404 and the inner disk support 407 and the case 406 that support it, a part for blocking heat conduction is required. These parts are the inner adapter 413 and the receptacle plate 412 made of resin such as monomer cast nylon or polyacetal.
The inner adapter 413 is interposed between the inner disk support 407 and the case 406 and blocks heat conduction generated from the inner disk support 407 to the case 406 with high thermal resistance.
The backing plate 412 is interposed between the fixed die 404 and the inner adapter 413 to reduce the exposed surface of the fixed die 404 in the coarsely crushed nib storage area 1201 of the fixed die 404 with high thermal resistance. to the pre-plate 402.
 図4に示すように、回転臼403と、これを支持するアウターディスクサポート408、そしてアウターディスクサポート408を固定臼404へ圧迫する皿バネ410と駆動軸201aとの間にも、熱の伝導を遮断する部品が必要になる。この部品が、モノマーキャストナイロンやポリアセタール等の樹脂で形成されたスペーサ415とアウターアダプタ416である。
 スペーサ415は、駆動軸201aのクランパと皿バネ410との間に介在して、高い熱抵抗を以てアウターディスクサポート408から皿バネ410を通じて駆動軸201aへ発生する熱伝導を遮断する。
 アウターアダプタ416は、駆動軸201aとアウターディスクサポート408及び回転臼403との間に介在して、高い熱抵抗を以てアウターディスクサポート408及び回転臼403から駆動軸201aへ発生する熱伝導を遮断する。
As shown in FIG. 4, heat is also conducted between the rotary mill 403, the outer disk support 408 that supports it, the disk spring 410 that presses the outer disk support 408 against the fixed mill 404, and the drive shaft 201a. You will need a breaker part. These parts are a spacer 415 and an outer adapter 416 made of resin such as monomer cast nylon or polyacetal.
The spacer 415 is interposed between the clamper of the drive shaft 201a and the disc spring 410, and blocks heat conduction from the outer disk support 408 through the disc spring 410 to the drive shaft 201a with high thermal resistance.
The outer adapter 416 is interposed between the drive shaft 201a and the outer disk support 408 and the rotary die 403, and blocks heat conduction generated from the outer disk support 408 and the rotary die 403 to the drive shaft 201a with high thermal resistance.
 以上説明した実施形態には、例えば以下のような変形例を採りうる。
(1)制御部202の説明にて明らかなように、磨砕部103の、固定臼404及び回転臼403の温度が高温になり過ぎると、カカオマス生成処理に支障を来すため、制御部202の処理には、モータ201の回転駆動を強制的に停止して、冷却する処理(図24のステップS2409~S2416)が含まれている。
For example, the following modifications can be adopted in the embodiment described above.
(1) As is clear from the description of the control unit 202, if the temperature of the fixed mill 404 and the rotary mill 403 of the grinding unit 103 becomes too high, the cocoa mass production process will be hindered. includes a cooling process (steps S2409 to S2416 in FIG. 24) by forcibly stopping the rotation of the motor 201.
 モータ201の回転駆動を長時間に渡って連続稼働させるため、インナーディスクサポート407に冷却機構を追加することが考えられる。例えば、インナーディスクサポート407に水冷パイプ又はペルチェ素子を付着させる。そして、温度センサ2102が第四の温度(例えば45℃)を超えたら冷却処理を開始し、温度センサ2102で温度をモニタしながら冷却処理の稼働と停止を繰り返す処理を追加すれば、固定臼404及び回転臼403の温度を常に適切な温度範囲に保ち、磨砕装置101の長時間連続稼働を実現することが可能になる。 A cooling mechanism may be added to the inner disk support 407 in order to continuously rotate the motor 201 for a long period of time. For example, a water cooling pipe or a Peltier element is attached to the inner disk support 407 . Then, when the temperature sensor 2102 exceeds a fourth temperature (for example, 45° C.), the cooling process is started. And, the temperature of the rotary mill 403 can always be maintained within an appropriate temperature range, and the grinding device 101 can be operated continuously for a long period of time.
(2)ニブ導入筒406cとスクリュー401の輸送溝401aの構造を利用した、カカオニブを断続的に後続の機構へ移送する仕組みは、プランジャソレノイド等で駆動されるシャッタ等で代用が可能である。すなわち、第一輸送機構はスクリュー401に限られない。
(3)スクリュー401の終端とプリプレート402の構造を利用した、カカオニブを粗く磨砕して粗砕ニブ1901を生成する仕組みは、周知のローラー等の様々な機構で代用が可能である。すなわち、粗砕機構はスクリュー401とプリプレート402に限られない。
(2) A mechanism for intermittently transferring cocoa nibs to a subsequent mechanism using the structure of the nib introduction cylinder 406c and the transfer groove 401a of the screw 401 can be replaced by a shutter or the like driven by a plunger solenoid or the like. That is, the first transport mechanism is not limited to screw 401 .
(3) The mechanism of coarsely grinding cacao nibs to generate coarsely ground nibs 1901 using the end of screw 401 and the structure of pre-plate 402 can be substituted with various mechanisms such as well-known rollers. That is, the coarse crushing mechanism is not limited to the screw 401 and pre-plate 402 .
(4)プリプレート402の窓402aに蓄積された粗砕ニブ1901を後続の回転臼403及び固定臼404へ連続的に輸送するプロペラ405は、スクリュー401等で代用が可能である。すなわち、第二輸送機構はプロペラ405に限られない。
(5)横断溝1203の形状は、必ずしも円弧状に限定されない。粗砕ニブを固定臼404の全面に行き渡らせることが目的なので、第二溝群1302の下側から、回転臼403の回転方向に沿って、第二溝群1302を横断する軌跡の形状であれば、例えば直線や多角形状でも効果がある。但し、形状としては、回転臼403の回転に沿う、円弧状曲線の方が好ましいと思われる。
(4) The screw 401 or the like can be substituted for the propeller 405 that continuously transports the coarsely crushed nibs 1901 accumulated in the window 402a of the preplate 402 to the following rotary die 403 and fixed die 404. That is, the second transport mechanism is not limited to propeller 405 .
(5) The shape of the transverse groove 1203 is not necessarily limited to an arc shape. Since the purpose is to spread the coarsely crushed nib over the entire surface of the fixed die 404, the shape of the trajectory crossing the second groove group 1302 along the rotation direction of the rotary die 403 from the lower side of the second groove group 1302. For example, straight lines and polygonal shapes are also effective. However, as for the shape, an arc-shaped curve along the rotation of the rotary mill 403 is considered preferable.
 本実施形態に係る磨砕装置101は、固定臼404と回転臼403を縦に設置している。このため、粗砕ニブ蓄積領域1201に蓄積されている粗砕ニブ1901は、重力の影響を受けて下方向に多く流出する。横断溝1203は、この流出する粗砕ニブ1901を、回転臼403の回転方向に沿って迅速に回転臼403及び固定臼404の全面へ行き渡らせるために設けられている。
 図25は、横断溝の変形例を示す固定臼404の正面図である。横断溝1203に加えて、横断溝2501を設けてもよい。また、横断溝1203の代わりに横断溝2501を設けてもよい。
 また、図示はしていないが、図12において横断溝1203を第二溝群1302に設けていたが、横断溝は第一溝群1301の第一内周側副溝群1303に設けてもよいし、第二溝群1302と第一溝群1301の第一内周側副溝群1303を横断するように設けてもよい。但し、粗砕ニブの破片を回収する機能を損なう可能性が考えられるため、横断溝が第一外周側副溝群1304に及んではいけない。
The grinding device 101 according to this embodiment has a fixed mill 404 and a rotary mill 403 arranged vertically. Therefore, a large amount of coarsely crushed nibs 1901 accumulated in the coarsely crushed nib accumulation area 1201 flows downward under the influence of gravity. The transverse groove 1203 is provided to quickly spread the outflowing coarsely crushed nibs 1901 over the entire surface of the rotary die 403 and fixed die 404 along the rotational direction of the rotary die 403 .
FIG. 25 is a front view of fixed die 404 showing a modification of the transverse groove. In addition to the transverse grooves 1203, transverse grooves 2501 may be provided. Also, a transverse groove 2501 may be provided instead of the transverse groove 1203 .
Further, although not shown, the crossing groove 1203 is provided in the second groove group 1302 in FIG. However, it may be provided so as to cross the second groove group 1302 and the first inner peripheral side sub groove group 1303 of the first groove group 1301 . However, the crossing grooves should not extend to the first outer peripheral side sub-groove group 1304, as this may impair the function of collecting fragments of the coarsely crushed nibs.
(6)本発明に係る磨砕装置101を大型プラント等に組み込む場合、何らかの貯蔵庫からカカオニブが周知の輸送パイプ等を通じてケース406のニブ導入筒406cへ輸送される。このような状況において、磨砕装置101においてホッパー104は必須要件ではない。また、ニブ導入筒406cは円筒形状の筒である旨説明したが、必ずしも円筒形状である必要はなく、カカオニブをスクリュー401へ輸送するために中空形状であればよい。例えば断面が四角形形状の筒であってもよい。 (6) When the grinding apparatus 101 according to the present invention is installed in a large plant or the like, cacao nibs are transported from some storage to the nib introduction tube 406c of the case 406 through a well-known transportation pipe or the like. Under such circumstances, the hopper 104 is not an essential requirement in the grinding device 101 . Also, although the nib introduction tube 406c has been described as being a cylindrical tube, it does not necessarily have to be cylindrical, and may have a hollow shape for transporting cacao nibs to the screw 401 . For example, it may be a tube having a rectangular cross section.
(7)カカオニブ等の食品原料を輸送する手段はスクリューに限られず、圧縮空気を利用する機構など、様々な機構が存在する。したがって、カカオニブを輸送する第一輸送機構は、スクリューに限られない。
(8)本発明に係る磨砕装置101は、カカオニブをカカオマスに磨砕するために構成した。しかしながら、特に回転臼403及び固定臼404は、極めて汎用性が高い機能部品である。したがって、回転臼403及び固定臼404が磨砕する対象はカカオニブに限られず、米、麦等の種々の穀物、あるいはコーヒー豆等、様々な食品原料に適用可能である。
(7) Means for transporting food materials such as cacao nibs are not limited to screws, and there are various mechanisms such as a mechanism using compressed air. Therefore, the first transport mechanism for transporting cocoa nibs is not limited to screws.
(8) The grinding device 101 according to the present invention is configured for grinding cocoa nibs into cocoa mass. However, especially the rotary mill 403 and the fixed mill 404 are functional components with extremely high versatility. Therefore, the objects to be ground by the rotary mill 403 and the fixed mill 404 are not limited to cacao nibs, and can be applied to various grains such as rice and wheat, or various food raw materials such as coffee beans.
 本発明の実施形態においては、磨砕装置101を開示した。
 第一輸送機構を構成するスクリュー401は、垂直方向に開口部104aを有し、カカオニブを蓄積するホッパー104からカカオニブの供給を受け、カカオニブを後続の機構へ断続的に輸送する。開口部104aから見えるスクリュー401の輸送溝401aの、スクリュー401の1回転当たりの露出面積を制限することで、カカオニブの供給過多を防ぐことができる。
In embodiments of the present invention, a grinding device 101 is disclosed.
A screw 401 that constitutes the first transport mechanism has a vertical opening 104a, receives a supply of cocoa nibs from a cocoa nibs accumulating hopper 104, and intermittently transports the cocoa nibs to subsequent mechanisms. By limiting the exposed area of the conveying groove 401a of the screw 401 visible from the opening 104a per one rotation of the screw 401, it is possible to prevent excessive cacao nibs from being supplied.
 粗砕機構を構成するプリプレート402は、スクリュー401から輸送されたカカオニブを、スクリュー401の末端と協調することで粗く磨砕して粗砕ニブ1901を生成する。後続の固定臼404及び回転臼403にカカオニブを供給する前の段階で、予めカカオニブを破砕して粗砕ニブ1901を生成することで、固定臼404及び回転臼403の負荷を軽減すると共に、カカオマスの生成効率を高めることができる。 The pre-plate 402 that constitutes the crushing mechanism coarsely crushes the cocoa nibs transported from the screw 401 in cooperation with the end of the screw 401 to produce coarsely crushed nibs 1901 . By crushing the cocoa nibs in advance to generate coarsely ground nibs 1901 before supplying the cacao nibs to the subsequent fixed mill 404 and rotary mill 403, the load on the fixed mill 404 and the rotary mill 403 is reduced, and the cacao mass is reduced. generation efficiency can be increased.
 第二輸送機構を構成するプロペラ405は、プリプレート402によって生成された粗砕ニブ1901を後続の回転臼403及び固定臼404へ連続的に輸送する。スクリュー401によって断続的に移送されるカカオニブに対し、粗砕ニブ1901を回転臼403及び固定臼404へ連続的に輸送することで、カカオマスの生成効率を高めることができる。 The propeller 405 that constitutes the second transport mechanism continuously transports the coarsely crushed nibs 1901 produced by the pre-plate 402 to the subsequent rotary mill 403 and stationary mill 404 . By continuously transporting the coarsely ground nibs 1901 to the rotary mill 403 and the fixed mill 404 as opposed to the cocoa nibs that are intermittently transported by the screw 401, the production efficiency of cocoa mass can be enhanced.
 プロペラ405から供給された粗砕ニブ1901を更に磨砕してカカオマスを生成する回転臼403と固定臼404は、相対して配置されている。そして、回転臼403と固定臼404は、協調して粗砕ニブ1901を磨砕してカカオマスを生成する。また、回転臼403と固定臼404は、それぞれ互いに円周方向に同じ直径で形成される溝群を有する。 A rotary mill 403 and a fixed mill 404 for further grinding the coarsely ground nibs 1901 supplied from the propeller 405 to produce cacao mass are arranged facing each other. Then, the rotary mill 403 and the fixed mill 404 cooperate to grind the coarsely ground nibs 1901 to produce cocoa mass. Further, the rotary mill 403 and the fixed mill 404 each have groove groups formed with the same diameter in the circumferential direction.
 固定臼404の表面には、第一溝群1301と第二溝群1302とが形成されている。第一溝群1301は、直径方向に対し回転臼403の回転方向に逆らう方向に傾斜した第一の傾斜角を有している。第一溝群1301は、固定臼404の外周に形成されている。第二溝群1302は、直径方向に対し第一溝群1301とは逆の、回転臼403の回転方向に沿う方向に傾斜した第二の傾斜角を有している。第二溝群1302は、第一溝群1301の内周に形成されている。 A first groove group 1301 and a second groove group 1302 are formed on the surface of the fixed die 404 . The first groove group 1301 has a first inclination angle inclined in a direction opposite to the rotational direction of the rotary mill 403 with respect to the diameter direction. A first groove group 1301 is formed on the outer circumference of the fixed die 404 . The second groove group 1302 has a second inclination angle inclined in a direction along the rotational direction of the rotary die 403 opposite to the first groove group 1301 with respect to the diametrical direction. The second groove group 1302 is formed inside the first groove group 1301 .
 回転臼403の表面には、第三溝群1601と第四溝群1602とが形成されている。第三溝群1601は、直径方向に対し回転臼403の回転方向に逆らう方向に傾斜した第三の傾斜角を有している。第三溝群1601は、回転臼403の外周に形成されている。第四溝群1602は、直径方向に対し第三溝群1601とは逆の、回転臼403の回転方向に沿う方向に傾斜した第四の傾斜角を有している。第四溝群1602は、第三溝群1601の内周に形成されている。
 更に、固定臼404の第二溝群1302の下側には、粗砕ニブ1901を固定臼404の円周方向に安定的に流動させるために、横断溝1203が形成されている。
A third groove group 1601 and a fourth groove group 1602 are formed on the surface of the rotary die 403 . The third groove group 1601 has a third inclination angle with respect to the diameter direction in a direction opposite to the rotational direction of the rotary die 403 . A third groove group 1601 is formed on the outer circumference of the rotary mill 403 . The fourth groove group 1602 has a fourth inclination angle inclined in the direction along the rotational direction of the rotary die 403 opposite to the diameter direction of the third groove group 1601 . The fourth groove group 1602 is formed inside the third groove group 1601 .
Further, a crossing groove 1203 is formed below the second groove group 1302 of the fixed die 404 to allow the coarsely crushed nib 1901 to flow stably in the circumferential direction of the fixed die 404 .
 粗砕ニブの粒子は、回転臼403の回転方向に沿う方向に傾斜している第二溝群1302及び第四溝群1602にあっては、回転臼403の回転駆動に伴い、固定臼404及び回転臼403の外周方向へ押し出される。
 また、粗砕ニブの粒子は、回転臼403の回転方向に逆らう方向に傾斜している第一溝群1301及び第三溝群1601にあっては、回転臼403の回転駆動に伴い、固定臼404及び回転臼403の内周方向へ押し戻される。
 したがって、粗砕ニブは回転臼403及び固定臼404から零れることなく、カカオマスへと安定して磨砕される。
In the second groove group 1302 and the fourth groove group 1602, which are inclined in the direction along the rotational direction of the rotary die 403, the grains of the coarsely crushed nibs move toward the stationary die 404 and the fixed die 404 as the rotary die 403 is driven to rotate. It is extruded in the outer peripheral direction of the rotary mill 403 .
In addition, in the first groove group 1301 and the third groove group 1601, which are inclined in the direction opposite to the rotational direction of the rotary die 403, the grains of the coarsely crushed nib move along with the rotary die 403 to rotate. 404 and rotary mill 403 are pushed back in the inner peripheral direction.
Therefore, the coarsely crushed nibs are stably ground into cocoa mass without spilling from the rotary mill 403 and fixed mill 404 .
 固定臼404の外周側に設けられている第一溝群1301は、一部が第二溝群1302の溝と連続して繋がっている溝を有する第一内周側副溝群1303と、第一内周側副溝群1303とは溝が繋がっていない、独立した溝のみで形成される第一外周側副溝群1304とで構成されている。
 回転臼403の外周側に設けられている第三溝群1601も、一部が第四溝群1602の溝と連続して繋がっている溝を有する第二内周側副溝群1603と、第二内周側副溝群1603とは溝が繋がっていない、独立した溝のみで形成される第二外周側副溝群1604とで構成されている。
A first groove group 1301 provided on the outer peripheral side of the fixed die 404 includes a first inner peripheral side sub-groove group 1303 having a groove partly connected continuously with the groove of the second groove group 1302 and a second sub-groove group 1303 . The first inner peripheral side sub-groove group 1303 is composed of a first outer peripheral side sub-groove group 1304 that is formed only by independent grooves that are not connected to each other.
A third groove group 1601 provided on the outer peripheral side of the rotary mill 403 also includes a second inner peripheral side sub-groove group 1603 having a groove partly connected continuously with the groove of the fourth groove group 1602, The second inner peripheral side sub-groove group 1603 is composed of a second outer peripheral side sub-groove group 1604 which is formed only by independent grooves that are not connected to each other.
 特に第一外周側副溝群1304と、第二外周側副溝群1604は、第一内周側副溝群1303及び第二内周側副溝群1603から固定臼404及び回転臼403の外周側へ零れ出る粗砕ニブを捕捉し、十分に磨砕されていない粗砕ニブが固定臼404及び回転臼403から漏れ出ることを防ぐと共に、全ての粗砕ニブを余すことなくカカオニブへと磨砕するために設けられている。 In particular, the first outer peripheral side sub-groove group 1304 and the second outer peripheral side sub-groove group 1604 extend from the first inner peripheral side sub-groove group 1303 and second inner peripheral side sub-groove group 1603 to the outer peripheries of the fixed die 404 and the rotary die 403 . It captures the coarsely ground nibs spilling out to the side, prevents the coarsely ground nibs that are not sufficiently ground from leaking out of the fixed mill 404 and the rotary mill 403, and grinds all the coarsely ground nibs into cocoa nibs without leaving any residue. designed for crushing.
 スクリュー401と、プロペラ405と、回転臼403は、モータ201によって一体的に回転駆動される。このため、機構は極めてシンプルであり、カカオニブの移送経路は極めて短い。したがって、機器の洗浄等のメンテナンス作業も容易である。 The screw 401, the propeller 405, and the rotary die 403 are integrally rotationally driven by the motor 201. Therefore, the mechanism is extremely simple and the cocoa nibs transport path is extremely short. Therefore, maintenance work such as cleaning of the equipment is easy.
 発明者らは、磨砕装置101を試作して、カカオニブをホッパー104に投入してから僅か1分程でカカオマスが排出されるという、圧倒的に高速なカカオマス生成能力を実現した。
 本発明に係る磨砕装置101は、1879年のロドルフ・リンツによるリンツチョコレートの完成以来、140年以上の歴史を有するチョコレートの製造に、新たな技術革新をもたらしたといえよう。
The inventors made a prototype of the grinding device 101 and realized an overwhelmingly high-speed cocoa mass production capability, in which cacao mass is discharged in only about one minute after the cacao nibs are put into the hopper 104 .
It can be said that the grinding device 101 according to the present invention has brought about a new technological innovation in chocolate production, which has a history of more than 140 years since the completion of Lindt chocolate by Rodolphe Lindt in 1879.
 <第2実施形態>
 続いて、本発明の第2実施形態に係る磨砕装置の構成ついて、図26~図30を参照して説明する。
 図26は、本発明の第2実施形態に係る磨砕装置の斜視図である。図27は、図26に示す磨砕装置の縦断面図である。図28Aは、図26に示す磨砕装置の上面図、図28Bはこの磨砕装置の正面図、図28Cはこの磨砕装置の側面図、図28Dはこの磨砕装置の背面図である。図29は、図26に示す磨砕装置の一部を拡大した縦断面図である。
図30は、図26に示す磨砕装置の分解斜視図である。
<Second embodiment>
Next, the configuration of the grinding device according to the second embodiment of the present invention will be explained with reference to FIGS. 26 to 30. FIG.
26 is a perspective view of a grinding device according to a second embodiment of the present invention; FIG. 27 is a longitudinal sectional view of the grinding device shown in FIG. 26; FIG. 28A is a top view of the grinding device shown in FIG. 26, FIG. 28B is a front view of this grinding device, FIG. 28C is a side view of this grinding device, and FIG. 28D is a rear view of this grinding device. FIG. 29 is a longitudinal sectional view enlarging a part of the grinding device shown in FIG. 26;
30 is an exploded perspective view of the grinding device shown in FIG. 26; FIG.
 図26~図30に示すように、本発明の第2実施形態に係る磨砕装置1は、駆動部2と、磨砕部3と、ホッパー部4と、支柱部5と、台6とを備えている。図27に示すように、駆動部2の内部にはモータ7が収納され、磨砕部3の内部にはカカオニブを磨砕するための部品(後述)が収納されている。また、ホッパー部4の内部にはホッパー8が収納され、支柱部5の内部には制御部9が収納されている。制御部9は、磨砕装置1の動作を統括的に制御する。制御部9は、上記第1実施形態における制御部202と同様に、コンピュータのハードウェア資源であるCPU、ROM、RAM等を備えている。台6にはポット20が置かれている。ポット20は、磨砕部3から排出されるカカオマスを受けるための容器である。 As shown in FIGS. 26 to 30, the grinding device 1 according to the second embodiment of the present invention includes a drive section 2, a grinding section 3, a hopper section 4, a support section 5, and a table 6. I have. As shown in FIG. 27, the motor 7 is housed inside the driving section 2, and the parts (described later) for grinding cacao nibs are housed inside the grinding section 3. As shown in FIG. A hopper 8 is accommodated inside the hopper portion 4 , and a control portion 9 is accommodated inside the strut portion 5 . The control unit 9 controls the operation of the grinding device 1 in an integrated manner. Like the control unit 202 in the first embodiment, the control unit 9 includes a CPU, a ROM, a RAM, etc., which are computer hardware resources. A pot 20 is placed on the table 6 . The pot 20 is a container for receiving cocoa mass discharged from the grinding section 3 .
 駆動部2は、筐体部10と、メンテナンスカバー11と、を有している。筐体部10は、モータ7や他の部品を収容する部材である。筐体部10の両側面及び背面には、排気及び排熱のための通気口10a(図26、図27)が形成されている。メンテナンスカバー11は、筐体部10に対して着脱自在に取り付けられている。 The drive unit 2 has a housing unit 10 and a maintenance cover 11. The housing part 10 is a member that houses the motor 7 and other parts. Ventilation holes 10a (FIGS. 26 and 27) for exhausting air and exhausting heat are formed on both side surfaces and the rear surface of the housing part 10. As shown in FIG. The maintenance cover 11 is detachably attached to the housing section 10 .
 図27に示すように、筐体部10の内部には、タッチパネル18が収容されている。タッチパネル18は、モータ7の駆動条件を設定可能な設定部として機能する。タッチパネル18は、メンテナンスカバー11を取り付けた状態では外部から遮蔽され、メンテナンスカバー11を取り外した状態では外部に露出する。このため、磨砕装置1の使用者は、メンテナンスカバー11を取り外すことで、タッチパネル18を操作することができる。 As shown in FIG. 27 , a touch panel 18 is accommodated inside the casing section 10 . The touch panel 18 functions as a setting unit that can set driving conditions for the motor 7 . The touch panel 18 is shielded from the outside when the maintenance cover 11 is attached, and is exposed to the outside when the maintenance cover 11 is removed. Therefore, the user of the grinding device 1 can operate the touch panel 18 by removing the maintenance cover 11 .
 磨砕部3はフロントカバー12を有している。フロントカバー12は、カカオニブを磨砕するための部品(以下、「磨砕用部品」ともいう。)を覆うカバーである。磨砕用部品の構成については後段で詳しく説明する。フロントカバー12は、図30に示すように、下向きに開けることができる構造になっている。フロントカバー12の開閉状態は、図示しない第1センサによって検出される。制御部9は、第1センサのセンサ信号を取り込む。そして、制御部9は、第1センサのセンサ信号を基に、フロントカバー12が閉じていると判断した場合は、磨砕部3における磨砕動作(モータ7の駆動など)を許可し、フロントカバー12が開いていると判断した場合は、磨砕部3における磨砕動作を禁止又は強制停止する。 The grinding unit 3 has a front cover 12. The front cover 12 is a cover that covers parts for grinding cacao nibs (hereinafter also referred to as "grinding parts"). The configuration of the grinding parts will be described in detail later. As shown in FIG. 30, the front cover 12 has a structure that can be opened downward. The open/closed state of the front cover 12 is detected by a first sensor (not shown). The control unit 9 takes in the sensor signal of the first sensor. When the control unit 9 determines that the front cover 12 is closed based on the sensor signal of the first sensor, the control unit 9 permits the grinding operation (such as driving the motor 7) in the grinding unit 3, and When it is determined that the cover 12 is open, the grinding operation in the grinding section 3 is prohibited or forcibly stopped.
 フロントカバー12の両側面には、排気及び排熱のための通気口12a(図26)が形成されている。フロントカバー12の前面部には、操作部としてのダイヤルノブ13が配置されている。ダイヤルノブ13は、複数の操作ポジションを有する回転式のノブである。ダイヤルノブ13は、正面方向から見てC字形に形成されている。フロントカバー12の底面部には排出部材17が配置されている。排出部材17は排出口17a(図27)を有している。カカオニブを磨砕することで生成されるカカオマスは、排出部材17の排出口17aから排出される。このため、カカオマスを受けるポット20は排出口17aの真下に置かれる。 On both side surfaces of the front cover 12, vents 12a (Fig. 26) are formed for exhaust and heat exhaust. A dial knob 13 as an operation unit is arranged on the front surface of the front cover 12 . The dial knob 13 is a rotary knob having multiple operating positions. The dial knob 13 is formed in a C shape when viewed from the front direction. A discharge member 17 is arranged on the bottom surface of the front cover 12 . The ejection member 17 has an ejection port 17a (FIG. 27). Cocoa mass produced by grinding the cacao nibs is discharged from the discharge port 17 a of the discharge member 17 . For this reason, the pot 20 to receive the cocoa mass is placed directly below the outlet 17a.
 ホッパー部4は、アウターシールド14と、ホッパーカバー15と、を有している。ホッパー部4には、ホッパー8が収容されている。アウターシールド14は、ホッパー8の周囲を囲むように配置され、ホッパーカバー15は、ホッパー8の上方を閉じるように配置される。ホッパーカバー15は、図27に示すように、支点部16を中心にF方向に開閉可能に設けられている。磨砕装置1の使用者は、ホッパーカバー15を開けることで、ホッパー8にカカオニブを投入することができる。ホッパー8の設置状態は、図示しない第2センサによって検出される。制御部9は、第2センサのセンサ信号を取り込む。そして、制御部9は、第2センサのセンサ信号を基に、ホッパー8が設置されていると判断した場合は、磨砕部3における磨砕動作を許可し、ホッパー8が設置されていないと判断した場合は、磨砕部3における磨砕動作を禁止又は強制停止する。 The hopper portion 4 has an outer shield 14 and a hopper cover 15. A hopper 8 is accommodated in the hopper portion 4 . The outer shield 14 is arranged to surround the hopper 8 , and the hopper cover 15 is arranged to close the hopper 8 from above. As shown in FIG. 27, the hopper cover 15 is provided so as to be openable and closable in the F direction around the fulcrum portion 16 . A user of the grinding device 1 can put cacao nibs into the hopper 8 by opening the hopper cover 15 . The installation state of the hopper 8 is detected by a second sensor (not shown). The control unit 9 takes in the sensor signal of the second sensor. When the control unit 9 determines that the hopper 8 is installed based on the sensor signal of the second sensor, it permits the grinding operation in the grinding unit 3, and if the hopper 8 is not installed. If so, the grinding operation in the grinding section 3 is prohibited or forced to stop.
 続いて、磨砕用部品の構成について詳しく説明する。
 磨砕用部品は、図29及び図30に示すように、主として、駆動軸21と、ケース22と、スクリュー23と、プリプレート24と、ディスチャージプレート25と、インナーディスクサポート26と、固定臼27と、回転臼28と、アウターディスクサポート29と、を含む。
Next, the configuration of the grinding parts will be described in detail.
As shown in FIGS. 29 and 30, the grinding parts mainly include a drive shaft 21, a case 22, a screw 23, a pre-plate 24, a discharge plate 25, an inner disk support 26, and a fixed die 27. , a rotary mill 28 and an outer disk support 29 .
 駆動軸21は、モータ7に付属し、モータ7の駆動にしたがって回転する軸部材である。モータ7の駆動は、制御部9によって制御される。駆動軸21は、モータ7の出力軸(回転軸)に同軸に連結される。駆動軸21は、スクリュー23、ディスチャージプレート25及び回転臼28を回転駆動する The drive shaft 21 is a shaft member that is attached to the motor 7 and rotates as the motor 7 is driven. Driving of the motor 7 is controlled by the controller 9 . The drive shaft 21 is coaxially connected to the output shaft (rotating shaft) of the motor 7 . The drive shaft 21 rotates the screw 23, the discharge plate 25 and the rotary die 28.
 ケース22は、駆動部2のフレーム部分にネジ止め等によって固定される。図29に示すように、ケース22は、スクリュー収納筒22aを有している。スクリュー収納筒22aは、スクリュー23を回転自在に収納する部分である。スクリュー収納筒22aにはニブ導入口22bが形成されている。ニブ導入口22bは上向きに開口している。これに対して、ホッパー8の底部にはニブ排出口8aが形成されている。ニブ排出口8aとニブ導入口22bは、ニブ導入筒30によって接続されている。 The case 22 is fixed to the frame portion of the driving section 2 by screwing or the like. As shown in FIG. 29, the case 22 has a screw housing cylinder 22a. The screw housing cylinder 22a is a portion that houses the screw 23 in a rotatable manner. A nib introduction port 22b is formed in the screw housing cylinder 22a. The nib inlet 22b opens upward. On the other hand, a nib outlet 8a is formed at the bottom of the hopper 8. As shown in FIG. The nib discharge port 8a and the nib introduction port 22b are connected by a nib introduction tube 30. As shown in FIG.
 ニブ導入筒30は、ホッパー8からカカオニブの供給を受ける中空の部材である。ニブ導入筒30は、ニブ導入筒30の中心軸を垂直に配置した状態に設けられている。これにより、ホッパー8に投入されたカカオニブは、ニブ排出口8a及びニブ導入筒30を通してニブ導入口22bに導入される。また、ニブ導入筒30には、カカオニブをホッパー8から排出するか止めるかを調整するシャッター(不図示)が設けられている。なお、本実施形態においては、ホッパー8及びケース22と別体でニブ導入筒30を形成しているが、これに限らず、ニブ導入筒30は、ホッパー8と一体に形成してもよいし、ケース22と一体に形成してもよい。 The nib introduction tube 30 is a hollow member that receives cacao nibs supplied from the hopper 8 . The nib introduction tube 30 is provided with the central axis of the nib introduction tube 30 arranged vertically. As a result, the cacao nibs charged into the hopper 8 are introduced through the nib discharge port 8a and the nib introduction tube 30 into the nib introduction port 22b. Further, the nib introduction cylinder 30 is provided with a shutter (not shown) for adjusting whether the cacao nibs are discharged from the hopper 8 or stopped. In this embodiment, the nib introduction tube 30 is formed separately from the hopper 8 and the case 22. However, the nib introduction tube 30 may be formed integrally with the hopper 8. , may be formed integrally with the case 22 .
 スクリュー23は、第一輸送機構を構成する部材である。スクリュー23は、図29に示すように、2つの軸受31によって回転自在に支持されている。スクリュー23の径方向の中心には、スクリュー23の中心軸に沿って軸孔が設けられ、この軸孔に駆動軸21が挿入されている。スクリュー23は、駆動軸21と一体に回転する。スクリュー23は、図31に示すように、輸送溝23aと、歯23bと、補助溝23cと、を有している。輸送溝23aは、螺旋状に形成されている。スクリュー23は、カカオニブを輸送溝23aに貯留しながら、スクリュー23の回転によってカカオニブを輸送する。スクリュー23によるカカオニブの輸送原理は、上記第1実施形態におけるスクリュー401の場合と同様である。 The screw 23 is a member that constitutes the first transport mechanism. The screw 23 is rotatably supported by two bearings 31 as shown in FIG. A shaft hole is provided in the radial center of the screw 23 along the central axis of the screw 23, and the drive shaft 21 is inserted into this shaft hole. The screw 23 rotates together with the drive shaft 21 . The screw 23, as shown in FIG. 31, has a transport groove 23a, teeth 23b, and auxiliary grooves 23c. The transport groove 23a is spirally formed. The screw 23 transports the cacao nibs by rotating the screw 23 while storing the cacao nibs in the transport grooves 23a. The principle of transporting cacao nibs by the screw 23 is the same as in the case of the screw 401 in the first embodiment.
 補助溝23cは、輸送溝23aよりも細い溝である。補助溝23cは、輸送溝23aと同様に螺旋状に形成されている。スクリュー23の中心軸方向において、補助溝23cは、輸送溝23aよりもスクリュー23の基端部23d側に形成されている。また、補助溝23cの始端部(図示せず)はスクリュー23の基端部23dに配置され、補助溝23cの終端部Paは輸送溝23aの始端部Pbに接続されている。また、スクリュー23は、段付き部23gと筒部23eを一体に有している。段付き部23gは、輸送溝23aの終端部Pcからスクリュー23の先端部23f側に突出している。筒部23eは、段付き部23gよりも小径に形成され、段付き部23gからスクリュー23の先端部23fに向かって延在している。 The auxiliary groove 23c is a groove narrower than the transport groove 23a. The auxiliary groove 23c is spirally formed like the transport groove 23a. In the central axis direction of the screw 23, the auxiliary groove 23c is formed closer to the base end portion 23d of the screw 23 than the transport groove 23a. The starting end (not shown) of the auxiliary groove 23c is arranged at the base end 23d of the screw 23, and the terminal end Pa of the auxiliary groove 23c is connected to the starting end Pb of the transport groove 23a. Further, the screw 23 integrally has a stepped portion 23g and a tubular portion 23e. The stepped portion 23g protrudes toward the tip portion 23f of the screw 23 from the terminal end portion Pc of the transport groove 23a. The cylindrical portion 23e has a smaller diameter than the stepped portion 23g, and extends from the stepped portion 23g toward the tip portion 23f of the screw 23. As shown in FIG.
 図32に示すように、ニブ導入筒30を通してケース22内のスクリュー23を見た場合、スクリュー23の輸送溝23aは、スクリュー23の回転角度によって、ニブ導入筒30に露出するときと露出せずに隠れるときがある。この点は、上記第1実施形態におけるスクリュー401の輸送溝401aと同様である(図8A~図8D)。これに対し、補助溝23cは、スクリュー23の回転角度によらず、ニブ導入筒30に常に露出した状態になる。 As shown in FIG. 32, when the screw 23 in the case 22 is viewed through the nib introduction tube 30, the transport groove 23a of the screw 23 may or may not be exposed to the nib introduction tube 30 depending on the rotation angle of the screw 23. Sometimes I hide in This point is the same as the transport groove 401a of the screw 401 in the first embodiment (FIGS. 8A to 8D). On the other hand, the auxiliary groove 23c is always exposed to the nib introduction tube 30 regardless of the rotation angle of the screw 23. As shown in FIG.
 補助溝23cは、ニブ導入筒30を通して供給されるカカオニブ(図示せず)を、スクリュー23の回転により輸送溝23aに向けて移送する。補助溝23cの幅は、カカオニブの粒径に比べて十分に細いため、輸送溝23aのようにカカオニブを溝内に貯留することはなく、カカオニブを溝に引っ掛けて移送する。また、補助溝23cの終端部Paは輸送溝23aの始端部Pbにつながっている。このため、輸送溝23aに貯留された後のカカオニブには、補助溝23cによる移送力が加わらない。したがって、カカオニブは、上記第1実施形態の場合と同様に、スクリュー23の輸送溝23aを通じて断続的に後続の機構へ移送される。 The auxiliary groove 23c transports cacao nibs (not shown) supplied through the nib introduction cylinder 30 toward the transport groove 23a as the screw 23 rotates. Since the width of the auxiliary grooves 23c is sufficiently narrower than the particle size of the cacao nibs, unlike the transport grooves 23a, the cacao nibs are hooked on the grooves and transported, unlike the transport grooves 23a. Further, the terminal end Pa of the auxiliary groove 23c is connected to the starting end Pb of the transport groove 23a. For this reason, the cocoa nibs stored in the transport groove 23a are not subjected to the transfer force by the auxiliary groove 23c. Therefore, cacao nibs are intermittently transported to the subsequent mechanism through the transport groove 23a of the screw 23, as in the first embodiment.
 プリプレート24は、スクリュー23と共に粗砕機構を構成する部材である。プリプレート24は、スクリュー23の輸送溝23aの終端に近接して配置されている。また、プリプレート24は、円周方向の一部に窓24aを有している。ディスチャージプレート25は、第二輸送機構を構成する部材である。ディスチャージプレート25は、円周方向の一部に羽根25aを有している。 The pre-plate 24 is a member that constitutes a coarse crushing mechanism together with the screw 23 . The pre-plate 24 is arranged close to the end of the transport groove 23 a of the screw 23 . In addition, the pre-plate 24 has a window 24a in a part in the circumferential direction. The discharge plate 25 is a member that constitutes the second transport mechanism. The discharge plate 25 has blades 25a in a part in the circumferential direction.
 ここで、プリプレート24とディスチャージプレート25の構成について、図33を参照して詳しく説明する。
 図33に示すように、プリプレート24は、平板状の部材である。プリプレート24の中心部には円形の孔24bが設けられている。孔24bの内径は、スクリュー23の段付き部23gの外径よりも少し大きく設定されている。プリプレート24は、スクリュー23と一緒に回転しないよう、インナーアダプタ35(図29)に取り付けられている。インナーアダプタ35は、樹脂製の部材である。インナーアダプタ35は、ネジ止め等によってケース22に取り付けられる。このため、プリプレート24は、インナーアダプタ35を介してケース22に固定状態に支持される。
Here, the configurations of the pre-plate 24 and the discharge plate 25 will be described in detail with reference to FIG.
As shown in FIG. 33, the pre-plate 24 is a flat member. A circular hole 24b is provided in the center of the pre-plate 24. As shown in FIG. The inner diameter of the hole 24b is set slightly larger than the outer diameter of the stepped portion 23g of the screw 23 . The pre-plate 24 is attached to an inner adapter 35 (FIG. 29) so as not to rotate together with the screw 23. The inner adapter 35 is a member made of resin. The inner adapter 35 is attached to the case 22 by screwing or the like. Therefore, the pre-plate 24 is fixedly supported by the case 22 via the inner adapter 35 .
 プリプレート24は、スクリュー23の回転方向に沿う円周方向(以下、単に「円周方向」ともいう。)において、窓24aが形成されているニブ通過領域E1と、窓24aが形成されていないニブ非通過領域E2とを有している。 The pre-plate 24 has a nib passing region E1 in which the window 24a is formed and a nib passing region E1 in which the window 24a is not formed in the circumferential direction along the rotation direction of the screw 23 (hereinafter also simply referred to as “circumferential direction”). and a nib non-passing area E2.
 ニブ通過領域E1は、スクリュー23によって輸送されたカカオニブを通過させる領域である。また、ニブ通過領域E1は、通過するカカオニブの大きさを制限する領域でもある。ニブ通過領域E1には複数(本実施形態では8個)の窓24aが形成されている。各々の窓24aは、上記第1実施形態におけるプリプレート402の窓402aと同様の原理で、カカオニブを粗く磨砕して粗砕ニブを生成する。複数の窓24aは、円周方向に所定の間隔で設けられている。 The nib passage area E1 is an area through which cacao nibs transported by the screw 23 are passed. The nib passage area E1 is also an area that limits the size of cacao nibs that pass through. A plurality of (eight in this embodiment) windows 24a are formed in the nib passing area E1. Each window 24a coarsely grinds cacao nibs to produce coarsely ground nibs on the same principle as the window 402a of the pre-plate 402 in the first embodiment. A plurality of windows 24a are provided at predetermined intervals in the circumferential direction.
 また、各々の窓24aは、高さ方向で孔24bの中心位置より下側でかつ一部分に配置されている。具体的には、複数の窓24aは、孔24bの中心位置から見て主に下側に配置されている。また、複数の窓24aは、円周方向の片側(図33のR方向)に寄せて配置されている。このように複数の窓24aをニブ通過領域E1(プリプレート402の下端よりR方向)に配置することにより、カカオニブの粗砕を効率良く行うことができる。その理由は主に2つある。第1の理由は、スクリュー収納筒22aの内部でスクリュー23の輸送溝23aによって移送されるカカオニブが重力の作用によって下側に集まるからである。第2の理由は、重力の作用によって下側に集まったカカオニブがスクリュー23の回転によって円周方向の片側に寄せられるからである。 In addition, each window 24a is arranged below and in part of the center position of the hole 24b in the height direction. Specifically, the plurality of windows 24a are arranged mainly on the lower side when viewed from the central position of the hole 24b. In addition, the plurality of windows 24a are arranged close to one side in the circumferential direction (R direction in FIG. 33). By arranging a plurality of windows 24a in the nib passage area E1 (in the R direction from the lower end of the pre-plate 402) in this way, cocoa nibs can be efficiently crushed. There are mainly two reasons for this. The first reason is that the cocoa nibs transported by the transport groove 23a of the screw 23 inside the screw housing cylinder 22a are gathered downward by the action of gravity. The second reason is that the cacao nibs gathered at the bottom due to the action of gravity are moved to one side in the circumferential direction by the rotation of the screw 23 .
 ニブ非通過領域E2は、カカオニブの通過を阻止する領域である。プリプレート24の円周方向の全域をニブ通過領域E1とした場合は、ニブ通過領域E1を通過したカカオニブ(粗砕ニブ)がいずれかの窓24aを通って輸送溝23a側に戻る現象、すなわちカカオニブの逆流が発生しやすくなる。これに対し、プリプレート24にニブ非通過領域E2を設けた場合は、ニブ通過領域E1を通過したカカオニブの逆流をニブ非通過領域E2によって抑制することができる。 The nib non-passing area E2 is an area that prevents cacao nibs from passing. When the entire circumferential region of the pre-plate 24 is defined as the nib passage area E1, cacao nibs (coarsely crushed nibs) that have passed through the nib passage area E1 return to the transport groove 23a through one of the windows 24a. Regurgitation of cocoa nibs is more likely to occur. On the other hand, when the nib non-passing area E2 is provided in the pre-plate 24, the back flow of cacao nibs that have passed through the nib passing area E1 can be suppressed by the nib non-passing area E2.
 ディスチャージプレート25は、スクリュー23と共にR方向に回転する部材である。ディスチャージプレート25の中心部にはD字形状の孔25bが設けられている。孔25bは、スクリュー23の段付き部23gと筒部23eの両方に嵌合するように段付き構造(図29参照)になっている。ディスチャージプレート25には複数(本実施形態では2つ)の羽根25aが形成されている。ディスチャージプレート25の回転方向Rに沿う円周方向において、各々の羽根25aの両側は、略V字形に切り欠かれている。ディスチャージプレート25は、プリプレート24のニブ通過領域E1を通過した粗砕ニブを後続の機構へ輸送する。その際、ディスチャージプレート25の羽根25aは、プリプレート24の窓24aから押し出される粗砕ニブを掻き取ると共に、掻き取った粗砕ニブを、固定臼27の粗砕ニブ蓄積領域1201a~1201d(図12参照)に供給する。 The discharge plate 25 is a member that rotates in the R direction together with the screw 23. A D-shaped hole 25 b is provided in the center of the discharge plate 25 . The hole 25b has a stepped structure (see FIG. 29) so as to fit both the stepped portion 23g and the cylindrical portion 23e of the screw 23. As shown in FIG. The discharge plate 25 is formed with a plurality of (two in this embodiment) blades 25a. In the circumferential direction along the rotation direction R of the discharge plate 25, both sides of each blade 25a are notched in a substantially V shape. The discharge plate 25 transports the coarsely crushed nibs that have passed through the nib passing area E1 of the pre-plate 24 to a subsequent mechanism. At this time, the vanes 25a of the discharge plate 25 scrape off the coarsely crushed nibs pushed out from the windows 24a of the preplate 24, and the scraped coarsely crushed nibs are transferred to the coarsely crushed nib storage areas 1201a to 1201d (Fig. 12).
 本実施形態においては、プリプレート24の窓24aとディスチャージプレート25の羽根25aが重なり合うタイミングと、スクリュー23によってカカオニブがプリプレート24の側に押し出されるタイミングとが同期するように構成されている。以下、詳しく説明する。 In this embodiment, the timing at which the windows 24a of the pre-plate 24 and the blades 25a of the discharge plate 25 overlap with the timing at which the cacao nibs are pushed out toward the pre-plate 24 by the screws 23 are configured to synchronize. A detailed description will be given below.
 まず、ケース22のスクリュー収納筒22a内でスクリュー23が回転すると、輸送溝23aに貯留されているカカオニブは、スクリュー23の回転に同期した周期でプリプレート24の側に断続的に押し出される。このため、プリプレート24によって生成される粗砕ニブも、スクリュー23の回転に同期した周期でプリプレート24の窓24aから押し出される。つまり、スクリュー23が1回転する間には、プリプレート24の窓24aから粗砕ニブが押し出される期間(以下、「ニブ供給期間」という。)と押し出されない期間(以下、「ニブ供給中断期間」という。)が存在する。 First, when the screw 23 rotates within the screw storage cylinder 22a of the case 22, the cacao nibs stored in the transport groove 23a are intermittently pushed out to the pre-plate 24 side in a cycle synchronized with the rotation of the screw 23. Therefore, the coarsely crushed nibs produced by the pre-plate 24 are also pushed out from the windows 24a of the pre-plate 24 in a period synchronized with the rotation of the screw 23. That is, during one rotation of the screw 23, there is a period during which the coarsely crushed nibs are extruded from the window 24a of the pre-plate 24 (hereinafter referred to as "nib supply period") and a period during which the crushed nibs are not extruded (hereinafter referred to as "nib supply interruption period"). ) exists.
 図34Aは、ニブ供給期間におけるスクリュー23、プリプレート24及びディスチャージプレート25の配置状態をスクリュー23の先端側から見た図であり、図34Bは、ニブ供給期間におけるスクリュー23、プリプレート24及びディスチャージプレート25の配置状態を示す縦断面図である。図35Aは、ニブ供給中断期間におけるスクリュー23、プリプレート24及びディスチャージプレート25の配置状態をスクリュー23の先端側から見た図であり、図35Bは、ニブ供給中断期間におけるスクリュー23、プリプレート24及びディスチャージプレート25の配置状態を示す縦断面図である。 34A is a view of the arrangement of the screw 23, the pre-plate 24 and the discharge plate 25 during the nib supply period as viewed from the tip side of the screw 23, and FIG. 34B is a view of the screw 23, the pre-plate 24 and the discharge during the nib supply period. FIG. 3 is a vertical cross-sectional view showing an arrangement state of a plate 25; 35A is a view of the arrangement of the screw 23, the pre-plate 24 and the discharge plate 25 during the nib supply interruption period as viewed from the tip side of the screw 23, and FIG. 3 is a vertical cross-sectional view showing an arrangement state of the discharge plate 25. FIG.
 ディスチャージプレート25は、プリプレート24と隣接する位置で、スクリュー23と一体に回転する。そして、ニブ供給期間においては、図34A及び図34Bに示すように、ディスチャージプレート25の羽根25aが、プリプレート24の窓24aと重なり合うように配置される。つまり、窓24aと羽根25aが重なり合うタイミングと、スクリュー23がカカオニブをプリプレート24の側に押し出すタイミングとが同期する。このため、ニブ供給期間では、プリプレート24の窓24aが羽根25aの通過によって開いた状態となる。したがって、プリプレート24の窓24aから供給される粗砕ニブは、ディスチャージプレート25の羽根25aによって掻き取られて後続の機構へ移送される。 The discharge plate 25 rotates integrally with the screw 23 at a position adjacent to the pre-plate 24 . During the nib supply period, the blades 25a of the discharge plate 25 are arranged so as to overlap the windows 24a of the pre-plate 24, as shown in FIGS. 34A and 34B. That is, the timing at which the windows 24a and the blades 25a overlap and the timing at which the screw 23 pushes out the cocoa nibs toward the pre-plate 24 are synchronized. Therefore, during the nib supply period, the window 24a of the pre-plate 24 is opened by the passage of the blade 25a. Therefore, the coarsely crushed nibs supplied from the window 24a of the pre-plate 24 are scraped off by the blades 25a of the discharge plate 25 and transferred to the following mechanism.
 これに対して、ニブ供給中断期間においては、図35A及び図35Bに示すように、ディスチャージプレート25の羽根25aが、プリプレート24の窓24aと重なり合わないように配置される。つまり、窓24aと羽根25aがない部分が重なり合うタイミングと、カカオニブがプリプレート24の側に押し出されないタイミングとが同期する。このため、ニブ供給中断期間では、プリプレート24の窓24aがディスチャージプレート25によって閉じられた状態となる。したがって、プリプレート24の窓24aから粗砕ニブが供給されることがない。 On the other hand, during the nib supply interruption period, the blades 25a of the discharge plate 25 are arranged so as not to overlap the windows 24a of the pre-plate 24, as shown in FIGS. 35A and 35B. That is, the timing at which the windows 24a and the portions without the blades 25a overlap and the timing at which the cacao nibs are not pushed out toward the pre-plate 24 are synchronized. Therefore, the window 24a of the pre-plate 24 is closed by the discharge plate 25 during the nib supply interruption period. Therefore, the coarsely crushed nibs are not supplied from the window 24a of the preplate 24. As shown in FIG.
 このように本実施形態においては、スクリュー23の終端部Pcとディスチャージプレート25の羽根25aが同期するように、ディスチャージプレート25の孔25bの勘合形状を調整している。このため、スクリュー23及びディスチャージプレート25の回転によってニブ供給期間とニブ供給中断期間が繰り返されることにより、後続の機構である固定臼27及び回転臼28に対し、粗砕ニブを断続的に供給することができる。 As described above, in this embodiment, the fitting shape of the hole 25b of the discharge plate 25 is adjusted so that the terminal end Pc of the screw 23 and the vane 25a of the discharge plate 25 are synchronized. Therefore, the rotation of the screw 23 and the discharge plate 25 repeats the nib supply period and the nib supply interruption period, thereby intermittently supplying coarsely crushed nibs to the fixed die 27 and rotary die 28, which are subsequent mechanisms. be able to.
 インナーディスクサポート26は、固定臼27を支持する部材である。インナーディスクサポート26は、図29に示すように、インナーアダプタ35を介してケース22に支持されている。インナーディスクサポート26の中心部には孔26a(図36)が形成されている。インナーディスクサポート26の孔26aは、インナーアダプタ35(図29)をインナーディスクサポート26に嵌合させるための孔である。 The inner disk support 26 is a member that supports the fixed die 27. The inner disk support 26 is supported by the case 22 via an inner adapter 35, as shown in FIG. A hole 26a (FIG. 36) is formed in the center of the inner disk support 26. As shown in FIG. A hole 26 a of the inner disk support 26 is a hole for fitting an inner adapter 35 ( FIG. 29 ) to the inner disk support 26 .
 また、インナーディスクサポート26の中心部には、オサエプレート32(図29)が嵌め込まれている。オサエプレート32は、プリプレート24が外れないよう、プリプレート24を押さえる部材である。また、オサエプレート32は、インナーディスクサポート26と固定臼27の熱がニブに直接伝わらないように断熱する部材でもある。インナーアダプタ35は、上記第1実施形態におけるインナーアダプタ413と同様に、ケース22とインナーディスクサポート26との間に介在し、ケース22に対してインナーディスクサポート26の熱の伝導を遮断する。 A support plate 32 (FIG. 29) is fitted in the center of the inner disk support 26 . The backing plate 32 is a member that holds the pre-plate 24 so that the pre-plate 24 does not come off. The backing plate 32 also serves as a heat insulating member to prevent the heat from the inner disk support 26 and the fixed die 27 from being transmitted directly to the nib. The inner adapter 35 is interposed between the case 22 and the inner disk support 26 to block the conduction of heat from the inner disk support 26 to the case 22, like the inner adapter 413 in the first embodiment.
 図36及び図37に示すように、インナーディスクサポート26には、ヒートシンク41がボルトで固定され、これによってインナーディスクサポート26とヒートシンク41が一体化されている。また、ファンブラケット43には、ヒータ36と温度センサ37と温度ヒューズ38とファン42が取り付けられ、このファンブラケット43が一体化部品となってインナーディスクサポート26に取り付けられている。このようにファンブラケット43にヒータ36、温度ヒューズ38、ファン42を集約することで、後述する洗浄時の脱着作業が容易になる。ヒートシンク41及びファン42は、冷却機構40を構成する。ヒータ36は、上記第1実施形態におけるヒータ2101と同様の目的で設けられている。ヒータ36は、ファンブラケット43の貫通孔(不図示)から突き出すように設置され、インナーディスクサポート26に常に接触するようにバネ等で押さえつけられている。ヒータ36は、磨砕装置1を運転する場合に制御部9によってオンオフ制御される。温度センサ37は、上記第1実施形態における温度センサ2102と同様の目的で設けられ、温度ヒューズ38は、上記第1実施形態における温度ヒューズ2103と同様の目的で設けられている。 As shown in FIGS. 36 and 37, the heat sink 41 is fixed to the inner disk support 26 with bolts, whereby the inner disk support 26 and the heat sink 41 are integrated. A heater 36, a temperature sensor 37, a thermal fuse 38, and a fan 42 are attached to the fan bracket 43, and the fan bracket 43 is attached to the inner disk support 26 as an integrated component. Integrating the heater 36, the thermal fuse 38, and the fan 42 into the fan bracket 43 in this manner facilitates the attachment/detachment operation during cleaning, which will be described later. The heat sink 41 and the fan 42 constitute the cooling mechanism 40 . The heater 36 is provided for the same purpose as the heater 2101 in the first embodiment. The heater 36 is installed so as to protrude from a through hole (not shown) of the fan bracket 43 and is pressed by a spring or the like so as to be in constant contact with the inner disk support 26 . The heater 36 is on/off controlled by the controller 9 when the grinding apparatus 1 is operated. The temperature sensor 37 is provided for the same purpose as the temperature sensor 2102 in the first embodiment, and the thermal fuse 38 is provided for the same purpose as the thermal fuse 2103 in the first embodiment.
 冷却機構40は、固定臼27及び回転臼28の温度を適切な温度範囲に保つために、固定臼27及び回転臼28を冷却する機構である。冷却機構40は、固定臼27及び回転臼28を強制空冷する機構であって、ヒートシンク41(図37)及びファン42を備えている。ヒートシンク41は、熱伝導率が高い材料、例えばアルミニウムなどの金属によって構成される。ヒートシンク41は、インナーディスクサポート26の孔26aを間に挟んで左右に1つずつ配置されている。 The cooling mechanism 40 is a mechanism for cooling the fixed die 27 and the rotary die 28 in order to keep the temperature of the fixed die 27 and the rotary die 28 within an appropriate temperature range. The cooling mechanism 40 is a mechanism for forcibly air-cooling the fixed die 27 and the rotary die 28 and includes a heat sink 41 (FIG. 37) and a fan 42 . The heat sink 41 is made of a material with high thermal conductivity, such as a metal such as aluminum. The heat sinks 41 are arranged one each on the left and right with the hole 26a of the inner disk support 26 interposed therebetween.
 ヒートシンク41には、放熱ための表面積を広く確保するために複数のフィン41aが形成されている。フィン41aは、図37に示すようなピン形状でもよいし、図示はしないが薄板形状でもその他の形状でもよい。ヒートシンク41は、ネジ止め等によってインナーディスクサポート26に固定されている。また、ヒートシンク41は、フィン41aが形成されている面と反対側の面をインナーディスクサポート26に接触させることにより、インナーディスクサポート26から熱を吸収して放出する。 A plurality of fins 41a are formed on the heat sink 41 in order to secure a large surface area for heat radiation. The fins 41a may have a pin shape as shown in FIG. 37, or may have a thin plate shape or other shapes (not shown). The heat sink 41 is fixed to the inner disk support 26 by screws or the like. Also, the heat sink 41 absorbs and releases heat from the inner disk support 26 by bringing the surface opposite to the surface on which the fins 41 a are formed into contact with the inner disk support 26 .
 ファン42は、ヒートシンク41に向けて送風する機器である。ファン42の駆動は、制御部9によって制御される。ファン42は、ヒートシンク41のフィン41aと近接かつ対向するように配置されている。ファン42は、ヒートシンク41と同様に左右に1つずつ配置されている。2つのファン42は、ファンブラケット43を介してインナーディスクサポート26に取り付けられている。ファンブラケット43は、2つの取付ツマミ44によってインナーディスクサポート26に取り付けられている。なお、冷却機構については種々の構成を採用することができる。例えば、冷却機構は、水冷パイプ又はペルチェ素子を用いた構成でもよいし、ペルチェ素子とヒートシンクとファンを組み合わせた構成でもよい。 The fan 42 is a device that blows air toward the heat sink 41. Driving of the fan 42 is controlled by the controller 9 . The fan 42 is arranged so as to be close to and face the fins 41 a of the heat sink 41 . The fans 42 are arranged one by one on the left and right sides, similar to the heat sink 41 . Two fans 42 are attached to the inner disk support 26 via fan brackets 43 . The fan bracket 43 is attached to the inner disk support 26 with two attachment knobs 44 . Various configurations can be adopted for the cooling mechanism. For example, the cooling mechanism may be configured using a water cooling pipe or a Peltier element, or may be configured by combining a Peltier element, a heat sink and a fan.
 取付ツマミ44は、ファンブラケット43をインナーディスクサポート26に固定する機能と、ファンブラケット43をインナーディスクサポート26に位置決めする機能を兼ね備えている。取付ツマミ44は雄ネジ部(図示せず)を一体に有し、この雄ネジ部が、インナーディスクサポート26の雌ネジ部(図示せず)に噛み合っている。ファン42は、ヒータ36及び温度ヒューズ38と共に、ファンブラケット43にネジ止めによって固定されている。このような取付構造により、ヒータ36、温度センサ37、温度ヒューズ38、ファン42及びファンブラケット43は、1つのユニットとして構成されている。このため、2つの取付ツマミ44を緩めることにより、ファンブラケット43と一緒にヒータ36、温度センサ37、温度ヒューズ38及びファン42を、インナーディスクサポート26から取り外すことができる。 The mounting knob 44 has both the function of fixing the fan bracket 43 to the inner disk support 26 and the function of positioning the fan bracket 43 to the inner disk support 26 . The mounting knob 44 integrally has a male threaded portion (not shown), and this male threaded portion meshes with a female threaded portion (not shown) of the inner disk support 26 . The fan 42 is fixed to the fan bracket 43 with screws together with the heater 36 and the thermal fuse 38 . With such a mounting structure, the heater 36, temperature sensor 37, thermal fuse 38, fan 42 and fan bracket 43 are configured as one unit. Therefore, by loosening the two mounting knobs 44, the heater 36, the temperature sensor 37, the temperature fuse 38 and the fan 42 together with the fan bracket 43 can be removed from the inner disk support 26. FIG.
 上記構成からなる冷却機構40においては、左右のファン42を回転させた場合に、各々のファン42からヒートシンク41に風が吹き付けられる。このため、インナーディスクサポート26からヒートシンク41に伝わった熱をファン42からの送風によって取り除くことができる。一方、モータ7の駆動により回転臼28を回転させて粗砕ニブを磨砕する場合は、固定臼27と回転臼28との間に摩擦熱が発生し、この摩擦熱の一部が固定臼27からインナーディスクサポート26に伝えられる。このため、ファン42からの送風によってインナーディスクサポート26の熱を取り除くことにより、固定臼27及び回転臼28を強制的に冷却することができる。 In the cooling mechanism 40 configured as described above, when the left and right fans 42 are rotated, air is blown from each fan 42 to the heat sink 41 . Therefore, the heat transferred from the inner disk support 26 to the heat sink 41 can be removed by blowing air from the fan 42 . On the other hand, when the rotary die 28 is driven by the motor 7 to rotate and grind the coarsely crushed nibs, frictional heat is generated between the fixed die 27 and the rotary die 28, and part of this frictional heat is transferred to the stationary die. 27 to the inner disk support 26 . Therefore, by blowing air from the fan 42 to remove the heat of the inner disk support 26, the fixed die 27 and the rotary die 28 can be forcibly cooled.
 固定臼27及び回転臼28は、固定臼27を固定したまま、モータ7の駆動により回転臼28を回転させることで、粗砕ニブを磨砕してカカオマスを生成する。固定臼27は、上記第1実施形態における固定臼404と同様の溝構造(図12、図13及び図14を参照)を有する。回転臼28は、上記第1実施形態における回転臼403と同様の溝構造(図15、図16及び図17を参照)を有する。 The fixed mortar 27 and the rotary mortar 28 are driven by the motor 7 to rotate the rotary mortar 28 while the fixed mortar 27 is fixed, thereby grinding the coarsely crushed nibs to generate cocoa mass. The fixed die 27 has the same groove structure (see FIGS. 12, 13 and 14) as the fixed die 404 in the first embodiment. The rotary die 28 has the same groove structure (see FIGS. 15, 16 and 17) as the rotary die 403 in the first embodiment.
 アウターディスクサポート29は、回転臼28を支持する部材である。アウターディスクサポート29の周縁2箇所には、図30に示すように、スクレーパ46a、46bが回転対称な位置関係でネジ止めされている。スクレーパ46a、46bは、上記第1実施形態におけるスクレーパ601a、601bと同様の機能を果たす。 The outer disk support 29 is a member that supports the rotary mill 28. As shown in FIG. 30, scrapers 46a and 46b are screwed to the outer disk support 29 at two locations on its periphery in a rotationally symmetrical positional relationship. The scrapers 46a, 46b perform the same functions as the scrapers 601a, 601b in the first embodiment.
 アウターディスクサポート29は、図29に示すように、アウターアダプタ45及びスクリュー23の筒部23eを通じて駆動軸21に支持されている。アウターアダプタ45は、樹脂によって形成されている。アウターアダプタ45は、アウターディスクサポート29及び回転臼28と駆動軸21との間に介在している。アウターアダプタ45は、上記第1実施形態におけるアウターアダプタ416と同様の断熱機能を果たす。 The outer disk support 29 is supported by the drive shaft 21 through the outer adapter 45 and the cylindrical portion 23e of the screw 23, as shown in FIG. The outer adapter 45 is made of resin. The outer adapter 45 is interposed between the outer disk support 29 and rotary die 28 and the drive shaft 21 . The outer adapter 45 has the same heat insulating function as the outer adapter 416 in the first embodiment.
 更に、駆動軸21には、図29及び図30に示すように、上述したスクリュー23、ディスチャージプレート25、固定臼27、回転臼28、アウターディスクサポート29等の他に、2つの皿バネ47a,47bと、クランパ48と、ナット49とが取り付けられる。 Further, as shown in FIGS. 29 and 30, the drive shaft 21 includes two disc springs 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47a, 47b, 47a, 47b, 47a, 47b, 47b, 47a, 47b, 47b, 47b, 47b, 47b, 47b, 47a, 47b, 47a, 47d, and 77, respectively. 47b, clamper 48 and nut 49 are attached.
 2つの皿バネ47a,47bは、アウターディスクサポート29の筒部29aに嵌め込まれている。2つの皿バネ47a,47bは、アウターディスクサポート29を介して回転臼28を固定臼27に押し付けるための付勢力を発生させる。この付勢力は、ナット49の締め付け力を受けてクランパ48が2つの皿バネ47a,47bを回転臼28側に押し付けることによって発生する。また、2つの皿バネ47a,47bが発生する付勢力は、固定臼27、インナーディスクサポート26及びインナーアダプタ35を介してケース22にも伝達される。 The two disc springs 47a and 47b are fitted into the cylindrical portion 29a of the outer disk support 29. The two disc springs 47 a and 47 b generate a biasing force for pressing the rotary die 28 against the fixed die 27 via the outer disk support 29 . This biasing force is generated when the clamper 48 receives the tightening force of the nut 49 and presses the two disk springs 47a and 47b toward the rotary die 28 side. The biasing force generated by the two disk springs 47a and 47b is also transmitted to the case 22 via the fixed die 27, the inner disk support 26 and the inner adapter 35. As shown in FIG.
 クランパ48は、ナット49の締め付け力を受けて皿バネ47a,47bを押さえる部材である。クランパ48は、図29に示すように、スペーサ50を介して皿バネ47bに接触している。スペーサ50は、上記第1実施形態におけるスペーサ415と同様に、断熱のために樹脂によって形成されている。 The clamper 48 is a member that receives the tightening force of the nut 49 and presses the disc springs 47a and 47b. The clamper 48 is in contact with the disc spring 47b via a spacer 50, as shown in FIG. The spacer 50 is made of resin for heat insulation, like the spacer 415 in the first embodiment.
 ナット49は、締め付け部材を構成する部材である。ナット49は、駆動軸21の先端部に形成された雄ネジ部分21aに噛み合っている。ナット49は、所定の締め付けトルクで締め付けられる。ナット49の締め付けトルクは、図示しないトルクレンチで所定値に合わせることが好ましい。本実施形態では、締め付け部材としてナット49を例に挙げているが、これ以外の部材によって締め付け部材を構成してもよい。 The nut 49 is a member that constitutes a tightening member. The nut 49 meshes with a male threaded portion 21 a formed at the tip of the drive shaft 21 . The nut 49 is tightened with a predetermined tightening torque. The tightening torque of the nut 49 is preferably adjusted to a predetermined value using a torque wrench (not shown). In this embodiment, the nut 49 is used as an example of the tightening member, but the tightening member may be configured by other members.
 ここで、スクリュー23、オサエプレート32、プリプレート24、ディスチャージプレート25、固定臼27、回転臼28、アウターディスクサポート29、皿バネ47a,47b及びクランパ48は、上述のように締め付けられるナット49によって駆動軸21の軸周りに取り付けられている。このため、ナット49の締め付けを緩めて、駆動軸21の雄ネジ部分21aからナット49を取り外すことにより、スクリュー23、オサエプレート32、プリプレート24、ディスチャージプレート25、固定臼27、回転臼28、アウターディスクサポート29、皿バネ47a,47b及びクランパ48の各部品を駆動軸21から取り外すことができる。つまり、磨砕部3の主要な部品は、ナット49を取り外すだけで分解可能になっている。このため、フロントカバー12に収容されている磨砕用の主要部品を洗浄する場合は、まず、フロントカバー12を下向きに開け、次いでナット49を緩めて取り外すだけで、磨砕用の主要部品を簡単に分解して洗浄することができる。 Here, the screw 23, retainer plate 32, pre-plate 24, discharge plate 25, fixed die 27, rotary die 28, outer disk support 29, disc springs 47a, 47b and clamper 48 are connected by nuts 49 tightened as described above. It is mounted around the drive shaft 21 . Therefore, by loosening the tightening of the nut 49 and removing the nut 49 from the male screw portion 21a of the drive shaft 21, the screw 23, the retainer plate 32, the pre-plate 24, the discharge plate 25, the fixed die 27, the rotary die 28, Each component of the outer disk support 29 , the disc springs 47 a and 47 b and the clamper 48 can be removed from the drive shaft 21 . In other words, the main parts of the grinding section 3 can be disassembled simply by removing the nut 49. As shown in FIG. Therefore, when cleaning the main parts for grinding housed in the front cover 12, the main parts for grinding can be washed by first opening the front cover 12 downward, then loosening and removing the nut 49. Can be easily disassembled and cleaned.
 また、ケース22は、駆動部2のフレーム部分にネジ止めされ、インナーディスクサポート26は、インナーアダプタ35を介してケース22にネジ止めされている。このため、ケース22、インナーディスクサポート26及びインナーアダプタ35についても、図示しない取付ネジを取り外すことによって、駆動軸21から取り外すことができる。したがって、駆動軸21、ケース22、インナーディスクサポート26及びインナーアダプタ35の分解洗浄にも容易に対応することができる。 Further, the case 22 is screwed to the frame portion of the drive section 2, and the inner disk support 26 is screwed to the case 22 via the inner adapter 35. Therefore, the case 22, the inner disk support 26 and the inner adapter 35 can also be removed from the drive shaft 21 by removing mounting screws (not shown). Therefore, the drive shaft 21, the case 22, the inner disk support 26 and the inner adapter 35 can be easily disassembled and cleaned.
 ディスクカバー33(図27、図30)は、リング状に形成されている。ディスクカバー33は、上記第1実施形態におけるディスクカバー411と同様の機能を果たす部材である。また、ディスクカバー33は、上記第1実施形態におけるディスクカバー411と同様に、インナーディスクサポート26を通じてヒータ36によって温められる。ディスクカバー33の最下部には排出口33aが設けられている。ディスクカバー33は、固定臼27と回転臼28によって生成されるカカオマスを収集すると共に、収集したカカオマスを排出口33aに導く。ディスクカバー33の排出口33aから排出されるカカオマスは、排出部材17の排出口17aを通してポット20に注入される。 The disc cover 33 (Figs. 27 and 30) is formed in a ring shape. The disc cover 33 is a member that performs the same function as the disc cover 411 in the first embodiment. Further, the disc cover 33 is heated by the heater 36 through the inner disc support 26 in the same manner as the disc cover 411 in the first embodiment. A discharge port 33a is provided at the bottom of the disc cover 33. As shown in FIG. The disk cover 33 collects the cacao mass produced by the fixed mill 27 and the rotary mill 28 and guides the collected cacao mass to the outlet 33a. The cocoa mass discharged from the discharge port 33a of the disk cover 33 is injected into the pot 20 through the discharge port 17a of the discharge member 17. As shown in FIG.
 本発明の第2実施形態に係る磨砕装置1は、基本的に、上記第1実施形態に係る磨砕装置101と同様のメカニズムによってカカオニブを磨砕し、カカオマスを生成する。具体的には、ホッパー8に蓄積されたカカオニブは、自重によってスクリュー23の輸送溝23aに入り込み、モータ7の駆動にともなうスクリュー23の回転によって輸送される。その際、駆動軸21は、モータ7の駆動にしたがって回転する。また、スクリュー23、ディスチャージプレート25及び回転臼28は、駆動軸21と一体に回転する。 The grinding device 1 according to the second embodiment of the present invention basically grinds cacao nibs by the same mechanism as the grinding device 101 according to the first embodiment to produce cocoa mass. Specifically, the cocoa nibs accumulated in the hopper 8 enter the transport groove 23a of the screw 23 due to their own weight, and are transported by the rotation of the screw 23 as the motor 7 is driven. At that time, the drive shaft 21 rotates as the motor 7 is driven. Also, the screw 23 , the discharge plate 25 and the rotary die 28 rotate integrally with the drive shaft 21 .
 次に、スクリュー23によって輸送されたカカオニブは、プリプレート24の窓24aを通過するときに粗砕されて粗砕ニブになる。粗砕ニブは、ディスチャージプレート25の羽根25aによって掻き取られ、固定臼27と回転臼28に供給される。供給された粗砕ニブは、回転臼28の回転により磨砕されてカカオマスになる。カカオマスは、ディスクカバー33の排出口33aに導かれ、排出部材17の排出口17aから排出される。 Next, the cacao nibs transported by the screw 23 are granulated into granulated nibs when passing through the window 24a of the pre-plate 24. The coarsely crushed nibs are scraped off by blades 25 a of the discharge plate 25 and supplied to the fixed die 27 and the rotary die 28 . The supplied coarsely ground nibs are ground by the rotation of the rotary mill 28 to become cocoa mass. The cocoa mass is guided to the discharge port 33a of the disc cover 33 and discharged from the discharge port 17a of the discharge member 17. As shown in FIG.
 続いて、制御部9によるファン42の制御方法について図38を参照して説明する。
 まず、制御部9は、ファン42を停止した状態とする(S1)。
 次に、制御部9は、温度センサ37の検出値が所定値(本実施形態では34℃)以上であるか否かを判断する(S2)。そして、制御部9は、温度センサ37の検出値が所定値未満である場合は、ステップS1に戻ってファン42を停止した状態に維持する。また、制御部9は、温度センサ37の検出値が所定値以上である場合は、ファン42を所定時間(本実施形態では15秒)だけ稼働させる(S3)。
 次に、制御部9は、温度センサ37の検出値が所定値(本実施形態では34℃)以上であるか否かを判断する(S4)。そして、制御部9は、温度センサ37の検出値が所定値未満である場合は、ステップS1に戻ってファン42を停止した状態とする。また、制御部9は、温度センサ37の検出値が所定値以上である場合は、ステップS3に戻ってファン42を所定時間(本実施形態では15秒)だけ稼働させる。
Next, a method of controlling the fan 42 by the controller 9 will be described with reference to FIG.
First, the controller 9 stops the fan 42 (S1).
Next, the controller 9 determines whether the detected value of the temperature sensor 37 is equal to or higher than a predetermined value (34° C. in this embodiment) (S2). If the detected value of the temperature sensor 37 is less than the predetermined value, the controller 9 returns to step S1 and keeps the fan 42 stopped. Further, when the detected value of the temperature sensor 37 is equal to or higher than the predetermined value, the control unit 9 operates the fan 42 for a predetermined time (15 seconds in this embodiment) (S3).
Next, the controller 9 determines whether the detected value of the temperature sensor 37 is equal to or higher than a predetermined value (34° C. in this embodiment) (S4). If the detected value of the temperature sensor 37 is less than the predetermined value, the controller 9 returns to step S1 and stops the fan 42 . If the detected value of the temperature sensor 37 is equal to or greater than the predetermined value, the controller 9 returns to step S3 and operates the fan 42 for a predetermined time (15 seconds in this embodiment).
 このように制御部9が温度センサ37の検出値に基づいてファン42の駆動を制御することにより、固定臼27及び回転臼28の温度を適切な温度範囲に保つことができる。
 なお、温度センサ37の検出値と比較される所定値、及び、ファン42を稼働させる所定時間については、タッチパネル18を操作することによって任意の値に設定することが可能である。
By controlling the driving of the fan 42 based on the detected value of the temperature sensor 37 in this manner, the temperature of the fixed mill 27 and the rotary mill 28 can be maintained within an appropriate temperature range.
The predetermined value to be compared with the detection value of the temperature sensor 37 and the predetermined time for operating the fan 42 can be set to arbitrary values by operating the touch panel 18 .
 図39は、本発明の第2実施形態に係る磨砕装置1の制御構成の一例を示すブロック図である。
 図39に示すように、制御部9には、ダイヤルノブ13、タッチパネル18及びモータ7が電気的に接続されている。ダイヤルノブ13は、予め用意された複数の磨砕モードの中からいずれか一つを選択可能な操作部として機能する。本実施形態においては、複数の磨砕モードの一例として、製造モードと店頭モードが用意されている。製造モードは、カカオニブを定期的に長時間磨砕する場合に選択される磨砕モードである。店頭モードは、カカオニブを不定期に短時間磨砕する場合、あるいはカカオマスを注ぎ足したい場合に選択される磨砕モードである。
FIG. 39 is a block diagram showing an example of control configuration of the grinding device 1 according to the second embodiment of the present invention.
As shown in FIG. 39 , the dial knob 13 , the touch panel 18 and the motor 7 are electrically connected to the controller 9 . The dial knob 13 functions as an operation section that can select one of a plurality of grinding modes prepared in advance. In this embodiment, a manufacturing mode and a storefront mode are prepared as examples of a plurality of grinding modes. The manufacturing mode is the milling mode selected if the cocoa nibs are milled regularly for a long period of time. The storefront mode is the grinding mode selected when the cocoa nibs are ground irregularly for short periods of time, or when the cocoa mass needs to be topped up.
 ダイヤルノブ13は、図40A、図40B及び図40Cに示すように、3つの操作ポジションを有する。図40Aは、磨砕装置1の使用者が製造モードを選択した場合のダイヤルノブ13の操作ポジションを示している。図40Bは、ニュートラル状態のダイヤルノブ13の操作ポジションを示している。図40Cは、磨砕装置1の使用者が店頭モードを選択した場合のダイヤルノブ13の操作ポジションを示している。ダイヤルノブ13は、正面から見てC字形に形成されている。また、図26に示すように、フロントカバー12の前面には、ダイヤルノブ13の操作ポジションに対応してマークM1,M2,M3が付されている。このため、使用者は、ダイヤルノブ13のC字形部分の切り欠き箇所が、いずれのマークM1,M2,M3を向いているかによって、ダイヤルノブ13の操作ポジションを認識することができる。 The dial knob 13 has three operating positions, as shown in FIGS. 40A, 40B and 40C. FIG. 40A shows the operating position of the dial knob 13 when the user of the grinding device 1 selects the manufacturing mode. FIG. 40B shows the operating position of the dial knob 13 in the neutral state. FIG. 40C shows the operating position of the dial knob 13 when the user of the grinder 1 selects the storefront mode. The dial knob 13 is formed in a C shape when viewed from the front. Further, as shown in FIG. 26, the front surface of the front cover 12 is provided with marks M1, M2 and M3 corresponding to the operation positions of the dial knob 13. As shown in FIG. Therefore, the user can recognize the operating position of the dial knob 13 depending on which of the marks M1, M2, and M3 the notch of the C-shaped portion of the dial knob 13 faces.
 カカオニブの磨砕は、使用者がダイヤルノブ13を操作して製造モード又は店頭モードを選択した場合に行われる。また、使用者がダイヤルノブ13を操作すると、この操作に応じた信号(以下、「操作信号」という。)が制御部9に与えられる。操作信号は、ダイヤルノブ13をニュートラル状態にするとオフ状態となり、ダイヤルノブ13をニュートラル状態からいずれかの方向に回すとオン状態になる。また、操作信号は、ダイヤルノブ13をニュートラル状態から反時計方向に回すと第1の電圧レベルでオン状態となり、ダイヤルノブ13をニュートラル状態から時計方向に回すと上記第1の電圧レベルとは異なる第2の電圧レベルでオン状態となる。以下に、ダイヤルノブ13を用いた具体的な操作方法について説明する。 Grinding of cacao nibs is performed when the user operates the dial knob 13 to select the manufacturing mode or the storefront mode. Further, when the user operates the dial knob 13 , a signal corresponding to this operation (hereinafter referred to as “operation signal”) is given to the control section 9 . The operation signal turns off when the dial knob 13 is set to the neutral state, and turns on when the dial knob 13 is turned in any direction from the neutral state. When the dial knob 13 is turned counterclockwise from the neutral state, the operation signal turns on at the first voltage level, and when the dial knob 13 is turned clockwise from the neutral state, the voltage level differs from the first voltage level. It is turned on at the second voltage level. A specific operation method using the dial knob 13 will be described below.
 まず、使用者がダイヤルノブ13を指でつまんでニュートラル状態から反時計方向に回した場合、すなわち製造モードを選択した場合は、その後、ダイヤルノブ13から指を離しても、ダイヤルノブ13は図40Aの操作ポジションに維持される。そして、製造モード用に予め設定された運転時間(以下、「製造運転時間」という。)が経過すると、磨砕装置1によるカカオニブの磨砕が自動的に停止する。このとき、ダイヤルノブ13については、使用者の手でニュートラル状態に戻す構成になっていてもよいし、自動的にニュートラル状態に戻る構成になっていてもよい。 First, when the user pinches the dial knob 13 with his fingers and turns it counterclockwise from the neutral state, that is, when he selects the manufacturing mode, the dial knob 13 does not move even if he releases his finger from the dial knob 13. The 40A operating position is maintained. When the operating time preset for the manufacturing mode (hereinafter referred to as "manufacturing operating time") elapses, grinding of cacao nibs by the grinding device 1 automatically stops. At this time, the dial knob 13 may be configured to return to the neutral state manually by the user, or may be configured to automatically return to the neutral state.
 これに対し、使用者がダイヤルノブ13を指でつまんでニュートラル状態から時計方向に回した場合、すなわち店頭モードを選択した場合は、その後、ダイヤルノブ13から指を離すと、ダイヤルノブ13は、図示しないバネ等の付勢力によってニュートラル状態に戻る。ただし、カカオニブの磨砕は、店頭モード用に予め設定された運転時間(以下、「店頭運転時間」という。)が経過するまで継続される。また、使用者がダイヤルノブ13を時計方向に回したままの状態に維持すると、その状態を維持している時間だけカカオニブの磨砕が行われる。この場合、使用者は、所望の量のカカオマスが注入された段階でダイヤルノブ13から手を離せばよい。 On the other hand, when the user pinches the dial knob 13 with his fingers and turns it clockwise from the neutral state, that is, when he selects the storefront mode, when he releases his finger from the dial knob 13, the dial knob 13 It returns to the neutral state by an urging force such as a spring (not shown). However, grinding of the cacao nibs is continued until the operating time preset for the storefront mode (hereinafter referred to as "store operating time") has elapsed. Also, when the user keeps the dial knob 13 turned clockwise, the cacao nibs are ground only during the time that the user keeps turning the dial knob 13 clockwise. In this case, the user can release the dial knob 13 when the desired amount of cacao mass has been injected.
 なお、製造モードで動作している磨砕装置1の運転を強制的に停止したい場合、使用者は、ダイヤルノブ13をニュートラル状態に戻せばよい。また、店頭モードで動作している磨砕装置1の運転を強制的に停止したい場合、使用者は、再度、ダイヤルノブ13を時計方向に回して手を離せばよい。 If the user wishes to forcibly stop the operation of the grinding device 1 operating in the production mode, the user can return the dial knob 13 to the neutral state. Further, when the user wishes to forcibly stop the operation of the grinder 1 operating in the storefront mode, the user can turn the dial knob 13 clockwise again and release it.
 タッチパネル18は、磨砕モードごとにモータ7の駆動条件を設定可能な設定部として機能する。タッチパネル18を用いた駆動条件の設定操作は、磨砕装置1の使用者によって行われる。本実施形態においては、モータ7の駆動条件の一例として、製造運転時間及び店頭運転時間を設定する場合について説明する。ただし、モータ7の駆動条件は、磨砕モードごとの磨砕装置1の運転時間に限らず、前述した所定値や所定時間、あるいは磨砕部3を間欠動作させるための間欠動作時間など種々の条件を適用することが可能である。 The touch panel 18 functions as a setting unit that can set driving conditions for the motor 7 for each grinding mode. A user of the grinding device 1 performs the setting operation of the driving conditions using the touch panel 18 . In the present embodiment, as an example of the drive conditions for the motor 7, a case will be described in which the manufacturing operation time and the store operation time are set. However, the driving condition of the motor 7 is not limited to the operation time of the grinding device 1 for each grinding mode, and may be various values such as the above-mentioned predetermined value, predetermined time, or intermittent operation time for intermittently operating the grinding unit 3. Conditions can be applied.
 タッチパネル18は、図27に示すように、筐体部10に収容されてメンテナンスカバー11によって覆われている。このため、使用者は、筐体部10からメンテナンスカバー11を取り外し、その状態でタッチパネル18を操作することにより、製造運転時間や店頭運転時間を設定することができる。使用者がタッチパネル18を操作する前は、製造運転時間及び店頭運転時間がそれぞれ初期値に設定されている。使用者がタッチパネル18を操作して設定した製造運転時間や店頭運転時間の情報は、タッチパネル18から制御部9に与えられる。制御部9は、タッチパネル18から与えられる製造運転時間や店頭運転時間の情報を内部メモリに記憶する。また、制御部9は、磨砕装置1の運転開始からの経過時間、及び、ファン42の稼働時間を含む、各種の時間を計測可能なタイマーの機能を有する。 The touch panel 18 is accommodated in the housing section 10 and covered with the maintenance cover 11, as shown in FIG. Therefore, the user can set the manufacturing operation time and store operation time by removing the maintenance cover 11 from the housing unit 10 and operating the touch panel 18 in this state. Before the user operates the touch panel 18, the manufacturing operation time and store operation time are set to initial values. Information on the manufacturing operation time and store operation time set by the user by operating the touch panel 18 is given to the control unit 9 from the touch panel 18 . The control unit 9 stores the information on the manufacturing operation time and store operation time given from the touch panel 18 in the internal memory. The control unit 9 also has a function of a timer capable of measuring various times including the elapsed time from the start of operation of the grinding device 1 and the operating time of the fan 42 .
 図41は、制御部9によって実行される制御処理の一例を示すフローチャートである。
 まず、制御部9は、操作信号がオンしたか否かを繰り返し判断する(S11)。そして、操作信号がオンすると、制御部9は、モータ7を駆動して磨砕装置1の運転を開始し、これと同時にタイマーによる時間計測を開始する(S12)。
FIG. 41 is a flow chart showing an example of control processing executed by the control unit 9. As shown in FIG.
First, the control unit 9 repeatedly determines whether or not the operation signal has been turned on (S11). Then, when the operation signal is turned on, the control section 9 drives the motor 7 to start the operation of the grinding apparatus 1, and at the same time, the timer starts measuring time (S12).
 次に、制御部9は、使用者が製造モードを選択したか否かを判断する(S13)。具体的には、制御部9は、ステップS11でオン状態になった操作信号の電圧レベルが第1の電圧レベルであれば、ステップS13でYESと判断してステップS14に進み、それ以外、つまり第2の電圧レベルであれば、ステップS13でNOと判断してステップS17に移行する。 Next, the control unit 9 determines whether or not the user has selected the manufacturing mode (S13). Specifically, if the voltage level of the operation signal turned on in step S11 is the first voltage level, the control unit 9 determines YES in step S13 and proceeds to step S14. If it is the second voltage level, it is determined as NO in step S13, and the process proceeds to step S17.
 ステップS14において、制御部9は、タイマーの計測値が製造運転時間に達したか否かを確認する。製造運転時間は、前述したとおり、使用者がタッチパネル18を操作することによって設定可能な時間である。制御部9は、タイマーの計測値が製造運転時間に達すると、モータ7の駆動を停止して磨砕装置1の運転を停止する(S15)。また、制御部9は、タイマーの計測値が製造運転時間に達していない場合は、強制停止の指示があったか否かを判断する(S16)。 In step S14, the control unit 9 confirms whether or not the measured value of the timer has reached the manufacturing operation time. The manufacturing operation time is a time that can be set by the user operating the touch panel 18, as described above. When the measured value of the timer reaches the manufacturing operation time, the control unit 9 stops driving the motor 7 and stops the operation of the grinding device 1 (S15). Further, when the measured value of the timer has not reached the manufacturing operation time, the control unit 9 determines whether or not a forced stop has been instructed (S16).
 製造モードにおける強制停止の指示は、使用者がダイヤルノブ13をニュートラル状態に戻すことによって発せられる。制御部9は、強制停止の指示があった場合は、ステップS15に移行して磨砕装置1の運転を停止する。また、制御部9は、強制停止の指示がなかった場合は、ステップS14に戻って磨砕装置1の運転を継続する。 A forced stop instruction in the manufacturing mode is issued by the user returning the dial knob 13 to the neutral state. When the forced stop is instructed, the control section 9 proceeds to step S15 and stops the operation of the grinding apparatus 1 . Further, when there is no command to forcibly stop the operation, the control unit 9 returns to step S14 and continues the operation of the grinding apparatus 1 .
 一方、ステップS17において、制御部9は、操作信号がオン状態に維持されたままであるか否かを判断する。そして、制御部9は、操作信号がオン状態に維持されている場合は、ステップS17でYESと判断してステップS18に進む。 On the other hand, in step S17, the control unit 9 determines whether or not the operation signal remains on. Then, when the operation signal is maintained in the ON state, the control section 9 determines YES in step S17 and proceeds to step S18.
 ステップS18において、制御部9は、操作信号がオフ状態になったか否かを繰り返し判断する。そして、操作信号がオフ状態になると、制御部9は、ステップS18からステップS15に移行して磨砕装置1の運転を停止する。 In step S18, the control unit 9 repeatedly determines whether or not the operation signal has turned off. Then, when the operation signal is turned off, the control section 9 proceeds from step S18 to step S15 and stops the operation of the grinding device 1 .
 また、制御部9は、操作信号がオン状態に維持されていない場合は、ステップS17からステップS19に移行する。ステップS19において、制御部9は、タイマーの計測値が店頭運転時間に達したか否かを確認する。店頭運転時間は、前述したとおり、使用者がタッチパネル18を操作することによって設定可能な時間である。制御部9は、タイマーの計測値が店頭運転時間に達すると、ステップS19からステップS15に移行して磨砕装置1の運転を停止する。また、制御部9は、タイマーの計測値が店頭運転時間に達していない場合は、強制停止の指示があったか否かを判断する(S20)。 Also, when the operation signal is not maintained in the ON state, the control unit 9 proceeds from step S17 to step S19. In step S19, the controller 9 confirms whether or not the measured value of the timer has reached the store operation time. The in-store operation time is a time that can be set by the user by operating the touch panel 18, as described above. When the measured value of the timer reaches the store operation time, the control unit 9 proceeds from step S19 to step S15 and stops the operation of the grinding device 1 . Further, when the measured value of the timer has not reached the store operation time, the control unit 9 determines whether or not there is an instruction to forcibly stop (S20).
 店頭モードにおける強制停止の指示は、使用者がダイヤルノブ13をニュートラル状態から時計方向に回すことによって発せられる。制御部9は、強制停止の指示があった場合は、ステップS15に移行して磨砕装置1の運転を停止する。また、制御部9は、強制停止の指示がなかった場合は、ステップS19に戻って磨砕装置1の運転を継続する。 A forced stop instruction in the storefront mode is issued by the user turning the dial knob 13 clockwise from the neutral state. When the forced stop is instructed, the control section 9 proceeds to step S15 and stops the operation of the grinding apparatus 1 . Further, when there is no command to forcibly stop the operation, the control unit 9 returns to step S19 and continues the operation of the grinding apparatus 1 .
 なお、製造モード又は店頭モードで磨砕装置1を運転させる場合、制御部9が温度センサ37の検出値に基づいてモータ7の駆動(オンオフ)を制御する点は、上記第1実施形態の場合と同様である。また、制御部9は、製造モード又は店頭モードで磨砕装置1を運転させる場合に、上記図38に示す処理手順でファン42の駆動を制御する。 When the grinding apparatus 1 is operated in the manufacturing mode or the storefront mode, the controller 9 controls the driving (on/off) of the motor 7 based on the detected value of the temperature sensor 37, which is the same as in the first embodiment. is similar to Further, the control section 9 controls the driving of the fan 42 according to the processing procedure shown in FIG.
 このように本実施形態に係る磨砕装置1においては、複数の磨砕モード(製造モード、店頭モード)の中からいずれか1つをダイヤルノブ13によって選択可能とし、実際にダイヤルノブ13を操作して選択した磨砕モードにしたがって制御部9がモータ7の駆動を制御する。これにより、使用者は、多量のカカオマスを生成したい場合はダイヤルノブ13を操作して製造モードを選択し、少量のカカオマスを生成したい場合はダイヤルノブ13を操作して店頭モードを選択することにより、所望の量のカカオマスを排出口17aから排出させることができる。このため、使い勝手のよい磨砕装置1を提供することができる。また、使用者は、タッチパネル18を操作することによって製造運転時間及び/又は店頭運転時間を所望の時間に設定することができる。このため、使用者が製造モード又は店頭モードを選択した場合に、1回の運転で生成されるカカオマスの量を調整することができる。 As described above, in the grinding device 1 according to the present embodiment, any one of a plurality of grinding modes (manufacturing mode, storefront mode) can be selected by the dial knob 13, and the dial knob 13 is actually operated. The control unit 9 controls the driving of the motor 7 according to the grinding mode selected by the above. As a result, the user operates the dial knob 13 to select the manufacturing mode when he/she wants to produce a large amount of cocoa mass, and operates the dial knob 13 to select the storefront mode when he/she wants to produce a small amount of cocoa mass. , a desired amount of cocoa mass can be discharged from the outlet 17a. Therefore, it is possible to provide the grinding device 1 which is easy to use. Further, the user can set the manufacturing operation time and/or store operation time to a desired time by operating the touch panel 18 . Therefore, when the user selects the manufacturing mode or the storefront mode, the amount of cocoa mass generated in one run can be adjusted.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、他の変形例、応用例を含む。たとえば、上述した実施形態では、本発明の内容を理解しやすいように詳細に説明しているが、本発明は、上述した実施形態で説明したすべての構成を必ずしも備えるものに限定されない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能である。また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、これを削除し、又は他の構成を追加し、あるいは他の構成に置換することも可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and other modifications and applications can be made without departing from the gist of the present invention described in the scope of claims. include. For example, in the above-described embodiments, the details of the present invention have been described for easy understanding, but the present invention is not necessarily limited to having all the configurations described in the above-described embodiments. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to delete a part of the configuration of each embodiment, add another configuration, or replace it with another configuration.
 本発明の実施形態は、以下のような構成を採ることができる。
 <1>
 カカオニブを粗く磨砕することで生成される粗砕ニブを更に磨砕してカカオマスを生成する磨砕装置であって、
 中心側から供給される前記粗砕ニブを更に磨砕してカカオマスを生成する回転臼と、
 前記回転臼と相対して配置され、前記回転臼と協調して前記粗砕ニブを磨砕して前記カカオマスを生成する固定臼と、
 前記回転臼を回転駆動する、駆動軸が水平方向に設けられているモータと、
 前記固定臼を温めるヒータと、
 前記固定臼の温度を計測する温度センサと、
 前記モータをオンオフ制御するグラインドスイッチと、
 前記固定臼の温度が第一の温度に達していないことを前記温度センサから検出したら、前記ヒータをオン制御し、前記固定臼の温度が前記第一の温度以上に達していることを前記温度センサから検出したら、前記ヒータをオフ制御し、前記固定臼の温度が前記第一の温度より低い第二の温度に達していないことを前記温度センサから検出したら、前記グラインドスイッチの状態にかかわらず前記モータの駆動を禁止し、前記固定臼の温度が前記第二の温度以上に達していることを前記温度センサから検出したら、前記グラインドスイッチの状態に応じて前記モータのオンオフ制御を許可する、制御部と
を具備する、磨砕装置。
Embodiments of the present invention can adopt the following configurations.
<1>
A grinding device for producing cocoa mass by further grinding coarsely ground nibs produced by coarsely grinding cacao nibs,
a rotary mill for further grinding the coarsely ground nibs supplied from the center side to produce cocoa mass;
a stationary die arranged opposite to the rotary die and cooperating with the rotary die to grind the coarsely ground nibs to produce the cocoa mass;
a motor having a horizontal drive shaft for rotationally driving the rotary mill;
a heater for warming the fixed die;
a temperature sensor for measuring the temperature of the fixed die;
a grind switch for on/off controlling the motor;
When the temperature sensor detects that the temperature of the fixed die has not reached the first temperature, the heater is turned on, and the temperature sensor detects that the temperature of the fixed die has reached the first temperature or higher. If the sensor detects this, the heater is turned off, and if the temperature sensor detects that the temperature of the fixed die has not reached a second temperature lower than the first temperature, regardless of the state of the grind switch. prohibiting the driving of the motor, and permitting on/off control of the motor according to the state of the grind switch when the temperature sensor detects that the temperature of the fixed die has reached the second temperature or higher; A grinding device comprising a controller.
 <2>
 前記制御部は更に、前記固定臼の温度が前記第一の温度より高い第三の温度以上に達したことを前記温度センサから検出したら、前記グラインドスイッチの状態にかかわらず前記モータの駆動を禁止し、前記固定臼の温度が前記第一の温度より高く前記第三の温度より低い第四の温度以下であることを前記温度センサから検出したら、前記グラインドスイッチの状態に応じて前記モータのオンオフ制御を許可する、<1>に記載の磨砕装置。
<2>
Further, when the temperature sensor detects that the temperature of the fixed die reaches a third temperature higher than the first temperature, the controller prohibits driving the motor regardless of the state of the grind switch. When the temperature sensor detects that the temperature of the fixed die is equal to or lower than a fourth temperature higher than the first temperature and lower than the third temperature, the motor is turned on and off according to the state of the grind switch. The grinding device according to <1>, which permits control.
 本発明の実施形態は、以下のような構成も採ることができる。
 <1>
 カカオニブを粗く磨砕することで生成される粗砕ニブを更に磨砕してカカオマスを生成する磨砕装置であって、
 中心側から供給される前記粗砕ニブを更に磨砕してカカオマスを生成する回転臼と、
 前記回転臼と相対して配置され、前記回転臼と協調して前記粗砕ニブを磨砕して前記カカオマスを生成する固定臼と、
 前記回転臼を回転駆動する、駆動軸が水平方向に設けられているモータと
を具備し、
 前記固定臼は、
 直径方向に対し第一の傾斜角を有して、前記固定臼の外周に形成される第一溝群と、
 直径方向に対し前記第一溝群とは逆の傾斜方向である第二の傾斜角を有して、前記第一溝群の内周に形成される第二溝群と、
 前記第二溝群の内周に形成され、前記粗砕ニブを蓄積する粗砕ニブ蓄積領域と
を具備する、磨砕装置。
 <2>
 前記第二溝群の下側に、前記粗砕ニブ及び前記カカオマスを前記固定臼の円周方向に流動させる横断溝が形成されている、
<1>に記載の磨砕装置。
 <3>
 前記第一溝群は、
 部分的に前記第二溝群の溝と接続されている溝を有する、内周側副溝群と、
 前記内周側副溝群とは溝が接続されていない、独立した溝のみで形成される、外周側副溝群と
を具備する、<2>に記載の磨砕装置。
 <4>
 前記回転臼は、
 直径方向に対し第三の傾斜角を有して、前記回転臼の外周に形成される第三溝群と、
 直径方向に対し前記第三溝群とは逆の傾斜方向である第四の傾斜角を有して、前記第三溝群の内周に形成される第四溝群と
を具備し、
 前記モータは、前記回転臼を前記第三溝群の傾斜方向に回転駆動する、<3>に記載の磨砕装置。
 <5>
 前記第三の傾斜角は、前記第一の傾斜角と同じ傾斜角を有する、<4>に記載の磨砕装置。
 <6>
 前記第三溝群は、
 部分的に前記第四溝群の溝と接続されている溝を有する、内周側副溝群と、
 前記内周側副溝群とは溝が接続されていない、独立した溝のみで形成される、外周側副溝群と
を具備する、<5>に記載の磨砕装置。
Embodiments of the present invention can also adopt the following configuration.
<1>
A grinding device for producing cocoa mass by further grinding coarsely ground nibs produced by coarsely grinding cacao nibs,
a rotary mill for further grinding the coarsely ground nibs supplied from the center side to produce cocoa mass;
a stationary die arranged opposite to the rotary die and cooperating with the rotary die to grind the coarsely ground nibs to produce the cocoa mass;
a motor having a horizontal drive shaft for rotationally driving the rotary mill;
The fixed mortar,
a first groove group formed on the outer circumference of the fixed die and having a first inclination angle with respect to the diametrical direction;
a second groove group formed on the inner circumference of the first groove group having a second inclination angle opposite to the direction of inclination of the first groove group with respect to the diametrical direction;
A grinding device comprising a coarsely ground nib storage area formed on the inner circumference of the second groove group and storing the coarsely ground nibs.
<2>
A crossing groove is formed below the second groove group for allowing the coarsely crushed nib and the cocoa mass to flow in the circumferential direction of the fixed die.
The grinding device according to <1>.
<3>
The first groove group is
an inner peripheral side sub-groove group having grooves partially connected to the grooves of the second groove group;
The grinding device according to <2>, further comprising an outer peripheral sub-groove group formed of independent grooves that are not connected to the inner peripheral sub-groove group.
<4>
The rotary mill is
a third groove group formed on the outer periphery of the rotary die having a third inclination angle with respect to the diametrical direction;
a fourth groove group formed on the inner periphery of the third groove group having a fourth inclination angle that is the opposite inclination direction to the third groove group with respect to the diametrical direction,
The grinding device according to <3>, wherein the motor rotates the rotary mill in the tilt direction of the third groove group.
<5>
The grinding device according to <4>, wherein the third tilt angle has the same tilt angle as the first tilt angle.
<6>
The third groove group is
an inner peripheral side sub-groove group having grooves partially connected to the grooves of the fourth groove group;
The grinding device according to <5>, further comprising an outer peripheral side sub-groove group formed only by independent grooves that are not connected to the inner peripheral side sub-groove group.
 1,101…磨砕装置、2,102…駆動部、3,103…磨砕部、8,104…ホッパー、20,105…ポット、6,106…台、107…ユニットカバー、7,201…モータ、21,201a…駆動軸、9,202…制御部、13…ダイヤルノブ(操作部)、18…タッチパネル(設定部)、23,401…スクリュー(第一輸送機構)、23a,401a…輸送溝、23c…補助溝、24,402…プリプレート(粗砕機構)、24a,402a…窓、28,403…回転臼、25…ディスチャージプレート(第二輸送機構)、25a…羽根、27,404…固定臼、405…プロペラ(第二輸送機構)、22,406…ケース、30,406c…ニブ導入筒、26,407…インナーディスクサポート、29,408…アウターディスクサポート、40…冷却機構、41…ヒートシンク、41a…フィン、42…ファン、49,409…ナット、47a,47b,410…皿バネ、33,411…ディスクカバー、32,412…オサエプレート、413…インナーアダプタ、48,414…クランパ、50,415…スペーサ、45,416…アウターアダプタ、417…装置フレーム、46a,46b,601…スクレーパ、1001…カカオニブ、1201…粗砕ニブ蓄積領域、1202…空間、1203…横断溝、1301…第一溝群、1302…第二溝群、1303…第一内周側副溝群、1304…第一外周側副溝群、1401、1405…第一外周側副溝、1402…第一内周側副溝、1403…第二溝、1404、1407…第三溝、1406、1609…連続溝、1601…第三溝群、1602…第四溝群、1603…第二内周側副溝群、1604…第二外周側副溝群、1605、1608…第二外周側副溝、1606…第二内周側副溝、1607…第四溝、1901…粗砕ニブ、36,2101…ヒータ、37,2102…温度センサ、38,2103…温度ヒューズ、2104…ヒータ固定具、2201…バス、2202…CPU、2203…ROM、2204…RAM、L2205、L2207…駆動コイル、2206、2208…ドライバ、2209…商用交流電源、2210…パワースイッチ、2211、2213…スイッチ、2212…グラインドスイッチ、2301…入出力制御部、2302…温度閾値リスト、2501…横断溝、E1…ニブ通過領域、E2…ニブ非通過領域 DESCRIPTION OF SYMBOLS 1,101... Grinding apparatus, 2,102... Drive part, 3,103... Grinding part, 8,104... Hopper, 20, 105... Pot, 6,106... Base, 107... Unit cover, 7,201... Motor 21, 201a Drive shaft 9, 202 Control unit 13 Dial knob (operation unit) 18 Touch panel (setting unit) 23, 401 Screw (first transportation mechanism) 23a, 401a Transportation Groove 23c... Auxiliary groove 24,402... Pre-plate (coarse crushing mechanism) 24a, 402a... Window 28,403... Rotary mill 25... Discharge plate (second transport mechanism) 25a... Blade 27,404 ... Fixed mill 405 ... Propeller (second transportation mechanism) 22, 406 ... Case 30, 406c ... Nib introduction tube 26, 407 ... Inner disk support 29, 408 ... Outer disk support 40 ... Cooling mechanism 41 Heat sink 41a Fin 42 Fan 49, 409 Nut 47a, 47b, 410 Disc spring 33, 411 Disk cover 32, 412 Backing plate 413 Inner adapter 48, 414 Clamper , 50, 415... Spacer 45, 416... Outer adapter 417... Apparatus frame 46a, 46b, 601... Scraper 1001... Cacao nibs 1201... Coarsely crushed nibs storage area 1202... Space 1203... Cross groove 1301... First groove group 1302... Second groove group 1303... First inner peripheral side sub-groove group 1304... First outer peripheral side sub-groove group 1401, 1405... First outer peripheral side sub-groove 1402... First inner peripheral side Side sub grooves 1403 Second grooves 1404, 1407 Third grooves 1406, 1609 Continuous grooves 1601 Third groove group 1602 Fourth groove group 1603 Second inner peripheral side sub groove group 1604... Second outer peripheral side sub-groove group 1605, 1608... Second outer peripheral side sub-groove 1606... Second inner peripheral side sub-groove 1607... Fourth groove 1901... Cough nib 36, 2101... Heater 37 , 2102... Temperature sensor 38, 2103... Thermal fuse 2104... Heater fixture 2201... Bus 2202... CPU 2203... ROM 2204... RAM L2205, L2207... Drive coil 2206, 2208... Driver 2209... Commercial AC power supply 2210 Power switch 2211, 2213 Switch 2212 Grind switch 2301 Input/output control unit 2302 Temperature threshold list 2501 Traversing groove E1 Nib passing area E2 Nib non-passing area region

Claims (21)

  1.  ニブ導入筒と、
     前記ニブ導入筒からカカオニブの供給を受け、前記カカオニブを後続の機構へ輸送する第一輸送機構と、
     前記第一輸送機構から輸送された前記カカオニブを粗く磨砕して粗砕ニブを生成する粗砕機構と、
     前記粗砕機構によって生成された前記粗砕ニブを後続の機構へ輸送する第二輸送機構と、
     垂直に配置され、前記第二輸送機構から供給された前記粗砕ニブを更に磨砕する回転臼と、
     前記回転臼と相対して配置され、前記回転臼と協調して前記粗砕ニブを磨砕してカカオマスを生成する固定臼と、
     前記第一輸送機構、前記第二輸送機構及び前記回転臼を回転駆動する、駆動軸が設けられているモータと
    を具備する、磨砕装置。
    a nib introduction tube;
    a first transport mechanism that receives cacao nibs supplied from the nib introduction tube and transports the cacao nibs to a subsequent mechanism;
    a crushing mechanism for coarsely crushing the cocoa nibs transported from the first transport mechanism to produce coarsely crushed nibs;
    a second transport mechanism for transporting the coarsening nibs produced by the coarsening mechanism to a subsequent mechanism;
    a rotary die arranged vertically for further grinding the coarse nibs supplied from the second transport mechanism;
    a fixed die arranged opposite to the rotary die and cooperating with the rotary die to grind the coarsely ground nibs to produce cocoa mass;
    A grinding device comprising a motor provided with a drive shaft for rotationally driving the first transport mechanism, the second transport mechanism and the rotary die.
  2.  前記固定臼の表面は、
     直径方向に対し第一の傾斜角を有して、前記固定臼の外周に形成される第一溝群と、
     直径方向に対し前記第一溝群とは逆の傾斜方向である第二の傾斜角を有して、前記第一溝群の内周に形成される第二溝群と、
     前記第二溝群の内周に形成され、前記粗砕ニブを蓄積する粗砕ニブ蓄積領域と
    を具備する、請求項1に記載の磨砕装置。
    The surface of the fixed die is
    a first groove group formed on the outer circumference of the fixed die and having a first inclination angle with respect to the diametrical direction;
    a second groove group formed on the inner circumference of the first groove group having a second inclination angle opposite to the direction of inclination of the first groove group with respect to the diametrical direction;
    2. The grinding device according to claim 1, further comprising: a coarse nib storage area formed on the inner circumference of said second groove group and storing said coarse nib.
  3.  前記第一溝群は、一部が前記第二溝群の溝と連続して繋がっている溝を有する第一内周側副溝群と、前記第一内周側副溝群とは溝が繋がっていない、独立した溝のみで形成される第一外周側副溝群とで構成されており、
     前記固定臼の表面は、
     前記第二溝群及び/又は前記第一内周側副溝群の下側から、前記回転臼の回転方向に沿って、前記第二溝群及び/又は前記第一内周側副溝群を横断する軌跡にて形成される横断溝を有する、
    請求項2に記載の磨砕装置。
    The first groove group includes a first inner peripheral side sub-groove group having grooves partially connected to the grooves of the second groove group, and the first inner peripheral side sub-groove group. It is composed of a first outer peripheral side sub-groove group formed only by independent grooves that are not connected,
    The surface of the fixed die is
    From the lower side of the second groove group and/or the first inner peripheral side sub-groove group, along the rotation direction of the rotary die, the second groove group and/or the first inner peripheral side sub-groove group having transverse grooves formed by transverse trajectories,
    A grinding device according to claim 2.
  4.  前記第一溝群は、
     一部が前記第二溝群の溝と連続して繋がっている溝を有する内周側副溝群と、
     前記内周側副溝群とは溝が繋がっていない、独立した溝のみで形成される外周側副溝群と
    を具備する、請求項3に記載の磨砕装置。
    The first groove group is
    an inner peripheral side sub-groove group having grooves partially connected to the grooves of the second groove group;
    4. The grinding device according to claim 3, further comprising an outer peripheral sub-groove group formed of independent grooves that are not connected to the inner peripheral sub-groove group.
  5.  前記第一輸送機構は、前記モータによって回転駆動されることにより、前記ニブ導入筒において断続的に露出する輸送溝を有するスクリューである、
    請求項1に記載の磨砕装置。
    The first transport mechanism is a screw having a transport groove that is intermittently exposed in the nib introduction tube by being rotationally driven by the motor.
    Grinding device according to claim 1.
  6.  前記粗砕機構は、前記スクリューの前記輸送溝の終端に近接して配置され、前記カカオニブが通過する際に前記カカオニブの大きさを制限する窓を有するプリプレートを含む、
    請求項5に記載の磨砕装置。
    The crushing mechanism includes a pre-plate positioned proximate to an end of the transport groove of the screw and having a window that limits the size of the cocoa nibs as they pass through.
    Grinding device according to claim 5.
  7.  前記第二輸送機構は、前記プリプレートの、前記スクリューが臨む側とは反対の側と面するプロペラである、
    請求項6に記載の磨砕装置。
    The second transport mechanism is a propeller facing the side of the pre-plate opposite to the side facing the screw.
    Grinding device according to claim 6.
  8.  更に、
     前記固定臼を支持するインナーディスクサポートと、
     前記インナーディスクサポートに取り付けられ、前記固定臼を温めるヒータと、
     前記スクリューを収納するケースと、
     前記ケースと前記インナーディスクサポートとの間に介在し、前記ケースに対して前記インナーディスクサポートの熱の伝導を遮断する、樹脂で形成されたインナーアダプタとを具備する、請求項7に記載の磨砕装置。
    Furthermore,
    an inner disk support that supports the fixed die;
    a heater attached to the inner disk support for warming the fixed die;
    a case for housing the screw;
    8. The polishing device according to claim 7, further comprising an inner adapter made of resin interposed between the case and the inner disk support and blocking heat conduction from the inner disk support to the case. Crushing device.
  9.  更に、
     前記回転臼を支持するアウターディスクサポートと、
     前記駆動軸と前記アウターディスクサポート及び前記回転臼との間に介在して、前記アウターディスクサポート及び前記回転臼から前記駆動軸へ発生する熱伝導を遮断する、樹脂で形成されたアウターアダプタと、
     前記アウターディスクサポートを前記固定臼へ押圧するためのナットと、
     前記ナットと前記アウターディスクサポートとの間に介在して、前記アウターディスクサポートから前記駆動軸へ発生する熱伝導を遮断する、樹脂で形成されたスペーサと
    を具備する、請求項8に記載の磨砕装置。
    Furthermore,
    an outer disk support that supports the rotary mill;
    an outer adapter made of resin interposed between the drive shaft and the outer disk support and the rotary die to cut off heat conduction generated from the outer disk support and the rotary die to the drive shaft;
    a nut for pressing the outer disk support against the fixed die;
    9. The abrasive according to claim 8, further comprising a spacer made of resin interposed between said nut and said outer disk support and blocking heat conduction generated from said outer disk support to said drive shaft. Crushing device.
  10.  更に、
     前記固定臼を温めるヒータと、
     前記固定臼の温度を計測する温度センサと、
     前記モータをオンオフ制御するグラインドスイッチと、
     前記固定臼の温度が第一の温度に達していないことを前記温度センサから検出したら、前記ヒータをオン制御し、前記固定臼の温度が前記第一の温度以上に達していることを前記温度センサから検出したら、前記ヒータをオフ制御し、前記固定臼の温度が前記第一の温度より低い第二の温度に達していないことを前記温度センサから検出したら、前記グラインドスイッチの状態にかかわらず前記モータの駆動を禁止し、前記固定臼の温度が前記第二の温度以上に達していることを前記温度センサから検出したら、前記グラインドスイッチによる前記モータのオンオフ制御を許可する、制御部と
    を具備する、請求項1に記載の磨砕装置。
    Furthermore,
    a heater for warming the fixed die;
    a temperature sensor for measuring the temperature of the fixed die;
    a grind switch for on/off controlling the motor;
    When the temperature sensor detects that the temperature of the fixed die has not reached the first temperature, the heater is turned on, and the temperature sensor detects that the temperature of the fixed die has reached the first temperature or higher. If the sensor detects this, the heater is turned off, and if the temperature sensor detects that the temperature of the fixed die has not reached a second temperature lower than the first temperature, regardless of the state of the grind switch. a control unit that prohibits driving of the motor and permits on/off control of the motor by the grind switch when the temperature sensor detects that the temperature of the fixed die reaches the second temperature or higher; 2. The grinding device of claim 1, comprising:
  11.  前記制御部は更に、前記固定臼の温度が前記第一の温度より高い第三の温度以上に達したことを前記温度センサから検出したら、前記グラインドスイッチの状態にかかわらず前記モータの駆動を禁止し、前記固定臼の温度が前記第三の温度以上に達した後、前記第一の温度より高く前記第三の温度より低い第四の温度以下に下がったことを前記温度センサから検出したら、前記グラインドスイッチによる前記モータのオンオフ制御を許可する、請求項10に記載の磨砕装置。 Further, when the temperature sensor detects that the temperature of the fixed die reaches a third temperature higher than the first temperature, the controller prohibits driving the motor regardless of the state of the grind switch. When the temperature sensor detects that the temperature of the fixed die has reached the third temperature or higher and then dropped to a fourth temperature that is higher than the first temperature and lower than the third temperature, 11. The grinding device of claim 10, wherein the grind switch allows on/off control of the motor.
  12.  前記固定臼及び前記回転臼を冷却する冷却機構を備える、
    請求項1に記載の磨砕装置。
    A cooling mechanism for cooling the fixed die and the rotary die,
    Grinding device according to claim 1.
  13.  前記冷却機構は、前記固定臼を支持するインナーディスクサポートに取り付けられている、
    請求項12に記載の磨砕装置。
    The cooling mechanism is attached to an inner disk support that supports the fixed die,
    Grinding device according to claim 12.
  14.  前記冷却機構は、前記インナーディスクサポートから熱を吸収して放出するヒートシンクと、前記ヒートシンクに向けて送風するファンと、を備える、
    請求項13に記載の磨砕装置。
    The cooling mechanism includes a heat sink that absorbs and releases heat from the inner disk support, and a fan that blows air toward the heat sink.
    14. Grinding device according to claim 13.
  15.  前記スクリューは、前記輸送溝よりも細い溝であって、前記カカオニブを前記輸送溝に向けて移送する補助溝を有する、
    請求項5に記載の磨砕装置。
    The screw has an auxiliary groove that is narrower than the transport groove and transports the cacao nibs toward the transport groove,
    Grinding device according to claim 5.
  16.  前記プリプレートは、前記スクリューの回転方向に沿う円周方向において、前記窓が形成されているニブ通過領域と、前記窓が形成されていないニブ非通過領域とを有し、
     前記第二輸送機構は、前記プリプレートの、前記スクリューが臨む側とは反対の側と面するディスチャージプレートである、
    請求項6に記載の磨砕装置。
    The pre-plate has a nib passing region in which the window is formed and a nib non-passing region in which the window is not formed in the circumferential direction along the rotation direction of the screw,
    The second transport mechanism is a discharge plate facing a side of the pre-plate opposite to the side facing the screw.
    Grinding device according to claim 6.
  17.  前記ディスチャージプレートは、前記スクリューの回転方向に沿う円周方向の一部に羽根を有し、
     前記プリプレートの前記窓と前記ディスチャージプレートの前記羽根が重なり合うタイミングと、前記スクリューが前記カカオニブを前記プリプレートの側に押し出すタイミングとが同期するように構成されている、
    請求項16に記載の磨砕装置。
    The discharge plate has blades in a portion of the circumference along the direction of rotation of the screw,
    The timing at which the window of the pre-plate and the vane of the discharge plate overlap with the timing at which the screw pushes out the cocoa nibs toward the pre-plate are configured to synchronize.
    17. Grinding device according to claim 16.
  18.  前記第一輸送機構、前記粗砕機構、前記第二輸送機構、前記回転臼及び前記固定臼は、締め付け部材によって前記駆動軸の軸周りに取り付けられ、且つ前記締め付け部材を取り外すことによって前記駆動軸から取り外し可能に構成されている
     請求項1に記載の磨砕装置。
    The first transport mechanism, the crushing mechanism, the second transport mechanism, the rotary die and the fixed die are mounted around the axis of the drive shaft by a clamping member, and removed from the drive shaft by removing the clamping member. The grinding device according to claim 1, which is configured to be removable from.
  19.  前記モータの駆動条件が異なる複数の磨砕モードを有する制御部と、
     前記複数の磨砕モードの中からいずれか1つを選択可能な操作部と、を備え、
     前記制御部は、前記操作部によって選択された前記磨砕モードにしたがって前記モータの駆動を制御する、
    請求項1に記載の磨砕装置。
    a control unit having a plurality of grinding modes with different drive conditions for the motor;
    and an operation unit that can select one of the plurality of grinding modes,
    The control unit controls driving of the motor according to the grinding mode selected by the operation unit.
    Grinding device according to claim 1.
  20.  前記モータの駆動条件を設定可能な設定部を更に備える、
    請求項19に記載の磨砕装置。
    further comprising a setting unit capable of setting driving conditions of the motor;
    20. A grinding device according to claim 19.
  21.  前記固定臼を支持するインナーディスクサポートと、
     前記固定臼を温めるヒータと、
     前記固定臼の温度を計測する温度センサと、
     前記固定臼及び前記回転臼を冷却する冷却機構と
     を備え、
     前記ヒータ、前記温度センサ及び前記冷却機構は、前記インナーディスクサポートに取り付けられている
     請求項1に記載の磨砕装置。
    an inner disk support that supports the fixed die;
    a heater for warming the fixed die;
    a temperature sensor for measuring the temperature of the fixed die;
    A cooling mechanism for cooling the fixed die and the rotary die,
    The grinding device according to claim 1, wherein the heater, the temperature sensor and the cooling mechanism are attached to the inner disk support.
PCT/JP2022/007642 2021-05-12 2022-02-24 Grinding device WO2022239364A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080730 2021-05-12
JP2021080730 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239364A1 true WO2022239364A1 (en) 2022-11-17

Family

ID=84029063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007642 WO2022239364A1 (en) 2021-05-12 2022-02-24 Grinding device

Country Status (1)

Country Link
WO (1) WO2022239364A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069136A (en) * 2016-10-26 2018-05-10 パナソニックIpマネジメント株式会社 Electric milling machine
WO2019235445A1 (en) * 2018-06-08 2019-12-12 シャープ株式会社 Pulverizer
WO2020203451A1 (en) * 2019-03-29 2020-10-08 シャープ株式会社 Pulverizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069136A (en) * 2016-10-26 2018-05-10 パナソニックIpマネジメント株式会社 Electric milling machine
WO2019235445A1 (en) * 2018-06-08 2019-12-12 シャープ株式会社 Pulverizer
WO2020203451A1 (en) * 2019-03-29 2020-10-08 シャープ株式会社 Pulverizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUTIERREZ TOMY J.: " State-of-the-Art Chocolate Manufacture: A Review", COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, vol. 16, 12 September 2017 (2017-09-12), pages 1313 - 1344, XP093003914, DOI: 10.1111/1541-4337.12301 *

Similar Documents

Publication Publication Date Title
JP6990846B2 (en) Electric flour grinder
US7631596B2 (en) Screw device
JP7282762B2 (en) Crusher
JP2009248072A (en) Grain mill
US20150201785A1 (en) Method for operating food mill
US4634061A (en) Method and apparatus for grinding kernels of grain, coffee beans, and the like in a food processor
JP2007185557A (en) Electric milling machine
JP2010094662A (en) Pulverizing screw, pulverizing casing and pulverizer for food waste treatment apparatus having the same
WO2022239364A1 (en) Grinding device
WO2015029814A1 (en) Grinding type vertical grain milling machine
CA1132514A (en) Food retailing grinding machine
JP2017074530A (en) Pulverizing mill
US4109873A (en) Grinding mill
JP3544240B2 (en) Granulator
JP7474244B2 (en) Crusher
TWI840368B (en) Crusher
TWI828878B (en) (無)
JP7276796B2 (en) Media agitating pulverizer
KR200289824Y1 (en) Food pulverrizer
KR200188586Y1 (en) A grain grinding machine
WO2021015150A1 (en) Pulverizing system
WO2021015151A1 (en) Grinding apparatus
KR101706715B1 (en) Grinding apparatus
WO2020241462A1 (en) Grinding device
JP2008149271A (en) Grinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE