WO2022239081A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2022239081A1
WO2022239081A1 PCT/JP2021/017760 JP2021017760W WO2022239081A1 WO 2022239081 A1 WO2022239081 A1 WO 2022239081A1 JP 2021017760 W JP2021017760 W JP 2021017760W WO 2022239081 A1 WO2022239081 A1 WO 2022239081A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
domain window
pusch
transmission
channel
Prior art date
Application number
PCT/JP2021/017760
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
大輔 栗田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/017760 priority Critical patent/WO2022239081A1/en
Publication of WO2022239081A1 publication Critical patent/WO2022239081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a terminal and wireless communication method compatible with coverage extension.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 For example, in 3GPP Release-17, it was agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • TDD time division duplex
  • UL channel Physical Uplink Shared Channel
  • DMRS demodulation reference signal
  • the following disclosure is made in view of this situation, and a terminal and a radio that can more efficiently perform channel estimation of uplink channels such as PUSCH using DMRS that can exist in multiple slots
  • the purpose is to provide a base station.
  • One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and using the specific period as an interval for determining the transmission power of the uplink channel.
  • One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and determining a timing to apply timing information received from a network based on the specific time period.
  • One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and determining an interval for hopping the uplink channel in the frequency direction based on whether or not all repeated transmissions of the uplink channel are included in the specific period.
  • One aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and using the specific period as an interval for determining the transmission power of the uplink channel.
  • the gist is that it comprises:
  • One aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and determining a timing to apply timing information received from a network based on the specific period. and the step of:
  • An aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and determining whether all repeated transmissions of the uplink channel are included in the specific period. and determining an interval for hopping the uplink channel in the frequency direction based on.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining joint channel estimation.
  • FIG. 7 is a diagram for explaining Operation Example 4.
  • FIG. FIG. 8 is a diagram for explaining Operation Example 5.
  • FIG. FIG. 9 is a diagram for explaining Operation Example 5.
  • FIG. FIG. 10 is a diagram for explaining Operation Example 6.
  • FIG. FIG. 10 is a diagram for explaining Operation Example 6.
  • FIG. 11 is a diagram for explaining Operation Example 6.
  • FIG. FIG. 12 is a diagram for explaining Operation Example 6.
  • FIG. 13 is a diagram for explaining Operation Example 6.
  • FIG. FIG. 14 is a diagram for explaining Operation Example 7.
  • FIG. 15 is a diagram for explaining Operation Example 8.
  • FIG. 16 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for PDSCH Physical Downlink Shared Channel
  • an uplink data channel specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
  • DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation.
  • DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
  • a DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • the radio communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100.
  • Coverage enhancement may provide mechanisms for increasing the success rate of reception of various physical channels.
  • gNB 100 can support repeated transmission of PDSCH (Physical Downlink Shared Channel), and UE 200 can support repeated transmission of PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a time division duplex (TDD) slot configuration pattern may be set.
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • D indicates a slot containing all DL symbols
  • S indicates a slot containing a mixture of DL, UL, and guard symbols (G).
  • U indicates a slot containing all UL symbols.
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • the UE 200 can transmit DMRS assigned to (spanning) multiple slots so that the gNB 100 can perform joint channel estimation using DMRS.
  • TB processing over multi-slot PUSCH which processes transport blocks (TB) via PUSCHs assigned to multiple slots, may be applied for coverage extension.
  • the number of allocated symbols can be the same in each slot as in PUSCH Repetition type A Time Domain Resource Allocation (TDRA), or it can be the same in each slot as in PUSCH Repetition type B TDRA.
  • TDRA Time Domain Resource Allocation
  • the number of assigned symbols can be different.
  • TDRA may be interpreted as resource allocation in the PUSCH time domain specified in 3GPP TS38.214.
  • the PUSCH TDRA may be interpreted as defined by a radio resource control layer (RRC) information element (IE), specifically PDSCH-Config or PDSCH-ConfigCommon.
  • RRC radio resource control layer
  • TDRA may also be interpreted as resource allocation in the time domain of PUSCH specified by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the radio signal transmitting/receiving unit 210 may transmit a physical uplink shared channel.
  • the radio signal transceiver 210 may constitute a transmitter.
  • the radio signal transmitting/receiving unit 210 may transmit PUSCH toward the network (gNB 100).
  • the radio signal transmitting/receiving unit 210 may support repeated transmission (Repetition) of PUSCH.
  • the uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a shared channel may also be referred to as a data channel.
  • Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. That is, PUSCH is 14 symbols or less, and there is no possibility of being allocated across multiple slots (adjacent slots).
  • Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
  • a specific period of multiple slots or more may be interpreted as a period related to PUSCH (or PUCCH) repetition.
  • the specific period may be indicated by the number of Repetitions, or may be the time during which a specified number of Repetitions are executed.
  • the specified time period may be interpreted as the time period over which the joint channel estimation is applied.
  • the UE 200 may not be able to receive a downlink channel (DL channel) during a specific period.
  • DL channel downlink channel
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit the UL channel a specific number of times. Specifically, radio signal transmitting/receiving section 210 may repeatedly transmit PUSCH (or PUCCH) multiple times.
  • the specific period and/or the specific number of times may be indicated by signaling from the network (the upper layer of RRC or the lower layer such as DCI, the same applies hereinafter), or may be preset in the UE 200. .
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • a data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the controller 270 may constitute a controller that controls transmission of UL channels (eg, PUSCH and PUCCH).
  • control unit 270 may set the specific period based on two or more specific methods.
  • a specific time period may be referred to as a Time domain window. How to set the time domain window will be described later.
  • the control unit 270 may determine the allocation of DMRS transmitted on the UL channel, specifically the PUSCH, based on the PUSCH repetition state, that is, the number of repetitions, the repetition period, and the like.
  • control unit 270 may transmit the same DMRS symbol (OFDM symbol) for each predetermined number of repetitions. Also, the control unit 270 may set a DMRS symbol (OFDM symbol) to be used for each predetermined number of repetitions.
  • OFDM symbol DMRS symbol
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive UL signals via UL channels such as PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitter 120 may transmit a DL signal via a DL channel such as PDCCH or PDSCH.
  • the control unit 130 controls the gNB100.
  • the control unit 130 may perform joint channel estimation of UL channels allocated to multiple slots, eg, PUSCH, using DMRS allocated to multiple slots.
  • Control section 130 may perform initial access of UE 200, specifically, joint channel estimation of the UL channel in a random access procedure, using DMRSs assigned to multiple slots.
  • joint channel estimation will be described below. As described above, joint channel estimation may be interpreted as a technique of performing channel estimation based on (assigned) DMRS present in multiple slots.
  • the UE 200 may transmit DMRS symbols between specific PUSCHs, between PUCCHs, or between PUSCHs and PUCCHs so that the gNB 100 can perform joint channel estimation.
  • the UE 200 may transmit DMRS symbols whose transmission power, phase, and transmission timing do not change between slots.
  • DMRSs may be arranged in DMRS resources allocated to each PUSCH before the PUSCHs are integrated. DMRSs may be transmitted (arranged) at equal intervals within resources to which channel estimation using multiple slots is applied.
  • Operation example 1 will be described below. In operation example 1, a method for setting a specific period (Time domain window) will be described.
  • the Time domain window may be set by an information element included in a radio resource control message (RRC message).
  • RRC message is an example of a message containing information elements received from NG RAN 20 .
  • the RRC message may be at least one of PUCCH-Config, PUSCH-Config, and PUSCH-Config common.
  • An RRC message may contain information elements that set more than one time domain window. In such cases, for applicable resources such as joint channel estimation between PUSCHs with different TB, channel estimation between PUSCH repetition type A, joint channel estimation between PUSCH repetition type B, joint channel estimation between PUCCH, etc.
  • Information elements that set different time domain windows may be included in the RRC message accordingly.
  • the RRC message may be interpreted as containing an information element that sets the Time domain window to Semi-static.
  • the information element may include an information element indicating the Time domain window, an information element indicating the Time domain window size, and an information element indicating the unit of the Time domain window size (Repetition, number of slots, etc.).
  • the information element may contain an information element indicating the use (different TB (Transport Block)s, TBoMS, Repetition, etc.) to which the Time domain window applies.
  • the UE 200 may apply a Time domain window for each PUCCH resource out of two or more Time domain windows, or may apply a Time domain window for each PUCCH resource format.
  • UE200 When UE200 does not receive an information element specifying a time domain window to be applied to UE200 from among two or more time domain windows, UE200 selects a time domain window (Default time domain window) may be determined.
  • the predetermined rule may be a rule that applies the Time domain window with the smallest Index as the Default time domain window on the premise that the Time domain window is associated with the Index.
  • the predetermined rule may be a rule that applies the time domain window specified in the upper layer as the Default time domain window.
  • the predetermined rule may be a rule that applies the time domain window predetermined in the wireless communication system 10 as the Default time domain window. In such cases, two or more Time domain windows may not be set by RRC messages.
  • the Time domain window may be set by an information element included in the media access control message (MAC CE message).
  • a MAC CE message is an example of a message containing information elements received from NG RAN 20 .
  • a MAC CE message may be interpreted as containing an information element that sets the Time domain window to Semi-persistent.
  • the information element may include an information element indicating the Time domain window, may include an information element indicating the start timing of the Time domain window, may include an information element indicating the Time domain window size, and may include an information element indicating the Time domain window size. (Repetition, number of slots, etc.) may be included, and an information element indicating the use (different TBs, TBoMS, Repetition, etc.) to which the Time domain window is applied may be included.
  • a MAC CE message may include an information element that sets (activates) one or more Time domain windows.
  • the MAC CE message may include an information element specifying one or more time domain windows to be activated from two or more time domain windows set by the RRC message.
  • a MAC CE message may contain an information element that deactivates the Time domain window.
  • the UE 200 may deactivate the time domain window after applying the time domain window for a certain period of time.
  • a certain period of time may be measured by a timer that is started upon receipt of a MAC CE message.
  • the certain period of time may be set by an RRC message, may be set by a MAC CE message, or may be predetermined in the wireless communication system 10 . If timers are used, the information element that deactivates the Time domain window need not be defined.
  • the MAC CE message may contain information elements that specify one or more Time domain window sizes.
  • the MAC CE message may contain an information element specifying the Time domain window size for the Time domain window set by the RRC message.
  • a Time domain window applied to the UE 200 may be specified by a Time domain window size.
  • a MAC CE message may contain an information element that activates the Time domain window size.
  • a MAC CE message may contain an information element that deactivates the Time domain window size.
  • the UE 200 may deactivate the time domain window size after applying the time domain window size for a certain period of time.
  • a certain period of time may be measured by a timer that is started upon receipt of a MAC CE message.
  • the certain period of time may be set by an RRC message, may be set by a MAC CE message, or may be predetermined in the wireless communication system 10 . If timers are used, the information element deactivating Time domain window size may not be defined.
  • the minimum interval may be defined as the interval from receiving the MAC CE message to starting the Time domain window size.
  • the minimum interval may be predetermined in the wireless communication system 10, configured by an RRC message, or configured by a MAC CE message.
  • Operation example 2 Operation example 1 will be described below. In operation example 1, a method for setting a specific period (Time domain window) will be described.
  • the Time domain window may be set by an information element included in downlink control information (DCI).
  • DCI is an example of a message containing information elements received from NG RAN 20 .
  • DCI may be interpreted as containing an information element that sets the Time domain window to Dynamic.
  • the information element may include an information element indicating the Time domain window, may include an information element indicating the start timing of the Time domain window, may include an information element indicating the Time domain window size, and may include an information element indicating the Time domain window size. (Repetition, number of slots, etc.) may be included, and an information element indicating the use (different TBs, TBoMS, Repetition, etc.) to which the Time domain window is applied may be included.
  • DCI may include an information element that specifies a time domain window to apply to UE 200 from among two or more time domain windows set (activated) by an RRC message or MAC CE message.
  • the UE 200 may apply the time domain window for a certain period of time when receiving DCI including an information element that applies the time domain window.
  • a certain period of time may be measured by a timer that is started upon reception of DCI.
  • the certain period of time may be set by an RRC message, may be set by a MAC CE message, may be set by DCI, or may be predetermined in the wireless communication system 10 .
  • the DCI may contain information elements that specify one or more Time domain window sizes.
  • the DCI may contain an information element specifying the time domain window size for the time domain window set (activated) by the RRC message or MAC CE message.
  • a Time domain window applied to the UE 200 may be specified by a Time domain window size.
  • the UE 200 may apply the time domain window size for a certain period of time.
  • a certain period of time may be measured by a timer that is started upon reception of DCI.
  • the certain period of time may be set by an RRC message, may be set by a MAC CE message, may be set by DCI, or may be predetermined in the wireless communication system 10 .
  • the UE200 may identify the DCI addressed to the UE200 based on the RNTI used in DCI scrambling.
  • the RNTI used for DCI scrambling may be an RNTI (eg, C-RNTI) associated with one UE200.
  • the RNTI used in DCI scrambling may be an RNTI associated with two or more UEs 200 (for example, a group RNTI).
  • the group (two or more UEs 200) to which the group RNTI is applied may be set by RRC, and the UE 200 may identify the DCI addressed to the UE 200 based on the group RNTI.
  • a group (two or more UEs 200) to which DCI is applied may be set for each DCI format, and UE 200 may specify DCI for UE 200 based on DCI format and RNTI.
  • the minimum interval may be defined as the interval from receiving DCI to starting the Time domain window size.
  • the minimum interval may be predetermined in the wireless communication system 10, configured by an RRC message, or configured by a MAC CE message.
  • Operation example 3 will be described below. In operation example 3, a method for setting a specific period (Time domain window) will be described.
  • the time domain window is set based on the timing of hopping the UL channel in the frequency direction.
  • UE 200 may transmit DMRS symbols such that transmission power, phase, and transmission timing do not change between slots.
  • the time domain window may start/end at the timing of hopping the UL channel in the frequency direction.
  • the Time domain window may be a period during which the UL channel is not hopped in the frequency direction.
  • Operation example 4 will be described below.
  • operation example 4 when two or more specifying methods for setting a specific period (time domain window) are defined, a case will be illustrated in which the time domain window is applied based on two or more specifying methods.
  • the specifying method is one or more methods selected from the operation examples 1 to 3 described above.
  • Time domain window #A may be the Time domain window set by the RRC message
  • Time domain window #B may be the Time domain window set by DCI.
  • Time domain window #A may be the Time domain window set based on the slot format
  • Time domain window #B may be the Time domain window set based on the allocated resources. good. In such cases, the following options may be adopted.
  • Time domain window #B is Time domain window #B
  • Time domain window #A may be applied as another Time domain window in intervals that do not overlap with .
  • Time domain window #B as one Time domain window in the section where Time domain window #A overlaps Time domain window #B, and Time domain window #A is Time domain window #B Time domain window need not be applied in intervals that do not overlap with .
  • Options 1 and 2 are options that prioritize Time domain window #B over Time domain window #A.
  • the time domain window set (designated) by DCI has priority over the time domain window set by the RRC message.
  • the UE 200 may integrate Time domain window #A and Time domain window #B and apply the integrated section as one Time domain window.
  • Operation example 5 describes the transmission power of the UL channel transmitted in the Time domain window.
  • the UL channel may include PUCCH and may include PUSCH.
  • the UE 200 determines the transmission power of the UL channel in the slot used for PUSCH Repetition type B or non-nominal repetition for PUSCH Repetition type B for each transmission occasion.
  • operation example 5 when a time domain window is set, the UE 200 determines the transmission power of UL channels transmitted on transmission occasions within the time domain window for each time domain window. In other words, UE 200 uses the time domain window as the interval for determining the transmission power of the UL channel.
  • the transmission power of PUSCH transmitted within the time domain window may be determined as follows.
  • PUSCH transmission occurrences included in the Time domain window may be treated as one transmission occurrence. That is, the transmission power of two PUSCHs is determined for each Time domain window. In such cases, the power (terms) dependent on the MCS and TPC of each PUSCH may be calculated based on the MCS and TPC of any one PUSCH included in the Time domain window.
  • Any one PUSCH included in the Time domain window may be the first PUSCH included in the Time domain window or the last PUSCH included in the Time domain window (option 1-1).
  • Any one PUSCH included in the time domain window may be the PUSCH that requires the maximum transmission power or the PUSCH that requires the minimum transmission power among the PUSCHs included in the time domain window (option 1- 2).
  • Any one PUSCH included in the time domain window may be the PUSCH having the maximum symbol length or the PUSCH having the minimum symbol length among the PUSCHs included in the time domain window (option 1- 3).
  • Any one PUSCH included in the time domain window may be the PUSCH with the maximum TBS or the PUSCH with the minimum TBS among the PUSCHs included in the time domain window (option 1-4) .
  • the PUSCH transmission power determined for each time domain window may be the transmission power of any one transmission occurrence (PUSCH) included in the time domain window.
  • the transmission power of any one transmission occurrence included in the time domain window is used as the transmission power of other transmission occurrences.
  • Any one transmission occurrence included in the time domain window may be the first transmission occurrence included in the time domain window or the last transmission occurrence included in the time domain window (option 2-1 ).
  • Any one transmission occurrence included in the time domain window may be the transmission occurrence requiring the maximum transmission power or the transmission occurrence requiring the minimum transmission power among the transmission occurrences included in the time domain window. (Option 2-2).
  • Any one transmission occurrence included in the time domain window may be the transmission occurrence with the maximum symbol length or the transmission occurrence with the minimum symbol length among the transmission occurrences included in the time domain window. (Option 2-3).
  • Any one transmission occurrence included in the time domain window may be the transmission occurrence with the maximum TBS or the transmission occurrence with the minimum TBS among the transmission occurrences included in the time domain window (optional 2-4).
  • the PUSCH transmission power determined for each time domain window may be determined based on the transmission power of each transmission occurrence included in the time domain window.
  • the PUSCH transmission power determined for each time domain window may be the average value, the minimum value, or the maximum value of the transmission power of each transmission occurrence.
  • Operation example 6 will be described below. In operation example 6, closed-loop power control in a case where a time domain window is set will be described.
  • the UE 200 when the Time domain window is set, the UE 200 cannot receive the DL channel (here, PDCCH#B) within the Time domain window. cannot receive TPC commands (see Figure 11) that
  • UE 200 executes closed-loop power control of the UL channel (here, PUSCH) based on the TPC commands included in PDCCH#A and PDCCH#B.
  • the TPC Command Field is associated with Accumulated TPC Command values (eg, ⁇ PUSCH,b,f,c , ⁇ SRS,b,f,c ).
  • Operation Example 6 introduces a new Accumulated TPC Command value that is used when a Time domain window is set.
  • the following options are conceivable for the newly introduced Accumulated TPC Command values.
  • a new table may be defined for use in cases where a time domain window is set, in addition to the existing table shown in FIG.
  • the number of values that the TPC Command Field shown in FIG. 12 can specify may be the same as the number of values that the existing TPC Command Field shown in FIG. 11 can specify.
  • the maximum Accumulated TPC Command value (eg, 4) shown in FIG. 12 may be greater than the existing maximum Accumulated TPC Command value (eg, 3) shown in FIG.
  • the minimum Accumulated TPC Command value (eg, -4) shown in FIG. 12 may be smaller than the existing minimum Accumulated TPC Command value (eg, -3) shown in FIG.
  • the existing table shown in FIG. 11 may be extended as shown in FIG.
  • the number of values that can be specified by the TPC Command Field shown in FIG. 13 is greater than the number of values that can be specified by the existing TPC Command Field shown in FIG. wider than the range of existing Accumulated TPC Command values shown in .
  • the Accumulated TPC Command values shown in FIG. 13 include the existing Accumulated TPC Command values shown in FIG. 11 (for example, -1, 0, 1, 3) and values other than the existing Accumulated TPC Command values shown in FIG. (e.g. -4, -3, 4, 5).
  • the conditions for applying the Accumulated TPC Command value related to Option 1 or Option 2 are the following applicable conditions.
  • the applicable conditions may include conditions under which the table shown in FIG. 12 or 13 is set by an RRC message or MAC CE message.
  • Applicability conditions may include conditions under which the Time domain window is set.
  • the application condition may be a condition that the position of the first bit of the TPC Command is a position that refers to the table shown in FIG. 12 or 13 . In other words, the position of the first bit of TPC Command may indicate whether to refer to the table shown in FIG. 12 or 13 .
  • the format of DCI including such TPC commands may be DCI_format 2_2 or DCI_format 2_3.
  • the table shown in FIG. 12 or 13 may be predetermined in the wireless communication system 10, or may be set by an RRC message.
  • the RRC message may include an information element indicating the correspondence between the TPC Command Field and the Accumulated TPC Command value.
  • Operation example 7 will be described below. In operation example 7, application of a TA (Timing Advance) Command in a case where a Time domain window is set will be described.
  • TA Timing Advance
  • the UE 200 determines the timing to apply the timing information (TA Command) based on the Time domain window.
  • n+k+1 is the existing timing to apply TA Command, defined in 3GPP TS38.213.
  • the UE 200 determines the timing to apply the TA Command based on the Time domain window. decide. In Option 1, the UE 200 may determine the end timing of the Time domain window as the timing to apply the TA Command. In Option 2, the UE 200 may determine the end timing of the slot (slot#n+3 in FIG. 14) including the end timing of the Time domain window as the timing to apply the TA Command.
  • Operation example 8 will be described below. In operation example 8, the duration per hop at which the UL channel is hopped in the frequency direction when a time domain window is set will be described.
  • the UE 200 determines the duration per hop of the UL channel in the frequency direction based on whether all repeated transmissions of the UL channel are included in the Time domain window. For example, a case where PUSCH repetition is 6 times will be illustrated.
  • the UE 200 may decide to hop the UL channel in the frequency direction at the start timing or end timing of the time domain window.
  • the Time domain window may be determined as duration per hop.
  • the UE 200 may determine the duration per hop based on the number of PUSCH repetitions.
  • the first hopping duration may be specified by a function of floor(number of PUSCH repetitions/2) and may be specified by a function of ceil(number of PUSCH repetitions/2).
  • the UE 200 may determine the duration per hop based on the number of time resources assigned PUSCH repetition.
  • a time resource may be a slot or a symbol.
  • the UE 200 may determine the duration per hop based on the actually allocatable time resources for the PUSCH repetition. In such cases, the UE 200 may determine the actually allocatable time resources for PUSCH repetition based on the collision reason.
  • the UE 200 considers collision reasons such as TDD pattern, SS/PBCH block symbol, etc., and excludes resources such as TDD pattern, SS/PBCH block symbol from the actually allocatable time resources for PUSCH repetition. may On the other hand, the UE 200 does not consider the collision reasons such as SFI, CI, and PUCCH, and does not exclude resources such as SFI, CI, and PUCCH from the time resources that can actually be allocated for PUSCH repetition. good.
  • collision reasons such as TDD pattern, SS/PBCH block symbol, etc.
  • resources such as TDD pattern, SS/PBCH block symbol from the actually allocatable time resources for PUSCH repetition.
  • the UE 200 does not consider the collision reasons such as SFI, CI, and PUCCH, and does not exclude resources such as SFI, CI, and PUCCH from the time resources that can actually be allocated for PUSCH repetition. good.
  • Operation example 9 Operation example 9 will be described below.
  • UE Capability regarding joint channel estimation will be described.
  • UE200 transmits UE Capability to NG RAN20.
  • the UE Capability may be reported separately for each UL channel type (PUSCH/PUCCH), or may be collectively reported as a UL channel regardless of the UL channel type.
  • UE Capability may include an information element indicating the number of Time domain windows that the UE 200 can set.
  • UE Capability may include an information element indicating whether or not the UE 200 supports Option 3 of Operation Example 4. As described above, option 3 of operation example 4 integrates two or more time domain windows and applies the integrated section as one time domain window when two or more time domain windows are set. Optional.
  • the UE Capability may include an information element indicating whether or not the UE 200 supports the MAC CE message of operation example 1.
  • the MAC CE message of Operation Example 1 is a message that activates (or deactivates) one or more Time domain windows.
  • UE Capability may include an information element indicating whether or not the UE 200 supports DCI in operation example 2.
  • the DCI of Operation Example 2 is a message that includes an information element that sets the Time domain window to Dynamic.
  • UE Capability may include an information element indicating whether or not the UE 200 supports the Time domain window of operation example 3. As described above, the time domain window of operation example 3 is set based on the timing of hopping the UL channel in the frequency direction.
  • the E Capability may include an information element indicating whether or not the UE 200 supports the transmission power of the UL channel transmitted in the Time domain window of Operation Example 5. As described above, the transmission power of the UL channel in Operation Example 5 is determined for each Time domain window.
  • UE Capability may include an information element indicating whether or not the UE 200 supports the Accumulated TPC Command value of Operation Example 6.
  • the Accumulated TPC Command value in Operation Example 6 is a value that is used when an applicable condition such as a Time domain window is set is satisfied.
  • UE Capability may include an information element indicating whether or not the UE 200 supports the application timing of the TA command in Operation Example 7.
  • the application timing of the TA command in Operation Example 7 may be the end timing of the Time domain window (option 1) or the end timing of the slot including the end timing of the Time domain window ( Option 2).
  • UE Capability may include an information element indicating whether Option 1 is supported, and may include an information element indicating whether Option 2 is supported.
  • UE Capability may include an information element indicating whether or not the UE 200 supports the duration per hop of operation example 8.
  • the duration per hop of Operational Example 8 is determined based on whether all repeated transmissions of the UL channel are included in the Time domain window.
  • UE Capability may include an information element indicating whether the UE 200 supports each of the various options described in Operation Example 1 to Operation Example 8.
  • the UE 200 may report the UE Capability based on the frequency supported by the UE 200.
  • UE200 may report UE Capability as UE200 regardless of the frequency that UE200 supports.
  • UE 200 may report UE Capability for each frequency that UE 200 supports.
  • UE 200 may report UE Capability for each frequency range (for example, FR1/FR2) that UE 200 supports.
  • UE 200 may report UE Capability for each SCS that UE 200 supports.
  • UE 200 may report UE Capability based on the duplex scheme (TDD/FDD) that UE 200 supports.
  • UE 200 may report UE Capability as UE 200 regardless of the duplex scheme that UE 200 supports.
  • UE 200 may report UE Capability for each duplex scheme (TDD/FDD) that UE 200 supports.
  • the UE 200 may apply the time domain window based on two or more specifying methods. According to such a configuration, when assuming a case where two or more time domain windows are set by two or more identification methods, the time domain window to be applied by the UE 200 can be appropriately determined.
  • the UE 200 may use the time domain window as the interval for determining the transmission power of the UL channel. According to such a configuration, assuming joint channel estimation in gNB 100, the transmission power of the UL channel does not change within the time domain window, so joint channel estimation can be performed appropriately.
  • the UE 200 may use the newly introduced Accumulated TPC Command value when the Time domain window is set. According to such a configuration, closed-loop power control can be executed appropriately when assuming a case where the TPC command reception interval is extended.
  • the UE 200 may determine the timing of applying the TA Command based on the Time domain window. According to such a configuration, the TA Command can be reflected at appropriate timing.
  • the UE 200 may determine the duration per hop for the UL channel based on whether all repeated transmissions of the UL channel are included in the Time domain window. According to such a configuration, assuming joint channel estimation in gNB 100, duration per hop can be determined appropriately, and joint channel estimation can be performed appropriately.
  • PUSCH repetition has been mainly described in the above disclosure, the above disclosure is not limited to this.
  • the above disclosure can be applied to UL channels where joint channel estimation is applied.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention comprises: a transmission unit that repeatedly transmits an uplink channel in a specific period of not less than a plurality of slots; and a control unit that controls transmission of the uplink channel, wherein the control unit uses the specific period as an interval at which the transmission power of the uplink channel is determined.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、カバレッジ拡張に対応した端末及び無線通信方法に関する。 The present disclosure relates to a terminal and wireless communication method compatible with coverage extension.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)について検討することが合意されている(非特許文献1)。 For example, in 3GPP Release-17, it was agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
 時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)としては、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定されており、Sスロットが10D+2G+2Uの場合、時間方向において連続した2シンボル(2U)と1スロット(14シンボル)とをULに利用、つまり、連続した複数スロットをULに利用することができる。 DDDSU (D: downlink (DL) symbol, S: DL/uplink (UL) or guard symbol, U: UL symbol) is specified as a slot configuration pattern for time division duplex (TDD). If the S slot is 10D+2G+2U, 2 consecutive symbols (2U) and 1 slot (14 symbols) are used for UL in the time direction, that is, multiple consecutive slots are used for UL. can be done.
 そこで、このような場合において、複数スロットに存在し得る復調用参照信号(DMRS)を用いたPUSCH(Physical Uplink Shared Channel)などの上りリンクチャネル(ULチャネル)のチャネル推定(Joint channel estimationと呼ばれてもよい)が検討されている。 Therefore, in such a case, channel estimation of an uplink channel (UL channel) such as PUSCH (Physical Uplink Shared Channel) using a demodulation reference signal (DMRS) that can exist in multiple slots is called joint channel estimation. ) are being considered.
 しかしながら、このようなチャネル推定(Joint channel estimation)を適用する場合、上りリンクチャネルの送信方法については、改善の余地が考えられる。 However, when such joint channel estimation is applied, there is room for improvement in the uplink channel transmission method.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、複数スロットに存在し得るDMRSを用いたPUSCHなどの上りリンクチャネルのチャネル推定をさらに効率的に実行し得る端末及び無線基地局の提供を目的とする。 Therefore, the following disclosure is made in view of this situation, and a terminal and a radio that can more efficiently perform channel estimation of uplink channels such as PUSCH using DMRS that can exist in multiple slots The purpose is to provide a base station.
 開示の一態様は、端末であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、前記上りリンクチャネルの送信を制御する制御部と、を備え、前記制御部は、前記上りリンクチャネルの送信電力を決定する間隔として前記特定期間を用いる、ことを要旨とする。 One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and using the specific period as an interval for determining the transmission power of the uplink channel.
 開示の一態様は、端末であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、前記上りリンクチャネルの送信を制御する制御部と、を備え、前記制御部は、前記特定期間に基づいて、ネットワークから受信するタイミング情報を適用するタイミングを決定する、ことを要旨とする。 One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and determining a timing to apply timing information received from a network based on the specific time period.
 開示の一態様は、端末であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、前記上りリンクチャネルの送信を制御する制御部と、を備え、前記制御部は、前記上りリンクチャネルの全ての繰り返し送信が前記特定期間に含まれるか否かに基づいて、前記上りリンクチャネルを周波数方向においてホッピングさせる間隔を決定する、ことを要旨とする。 One aspect of the disclosure is a terminal, comprising: a transmission unit that repeatedly transmits an uplink channel in a specific period of a plurality of slots or more; and a control unit that controls transmission of the uplink channel, wherein the control unit comprises and determining an interval for hopping the uplink channel in the frequency direction based on whether or not all repeated transmissions of the uplink channel are included in the specific period.
 開示の一態様は、無線通信方法であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、前記上りリンクチャネルの送信電力を決定する間隔として前記特定期間を用いるステップと、を備える、ことを要旨とする。 One aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and using the specific period as an interval for determining the transmission power of the uplink channel. The gist is that it comprises:
 開示の一態様は、無線通信方法であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、前記特定期間に基づいて、ネットワークから受信するタイミング情報を適用するタイミングを決定するステップと、を備える、ことを要旨とする。 One aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and determining a timing to apply timing information received from a network based on the specific period. and the step of:
 開示の一態様は、無線通信方法であって、複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、前記上りリンクチャネルの全ての繰り返し送信が前記特定期間に含まれるか否かに基づいて、前記上りリンクチャネルを周波数方向においてホッピングさせる間隔を決定するステップと、を備える、ことを要旨とする。 An aspect of the disclosure is a wireless communication method, comprising: repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more; and determining whether all repeated transmissions of the uplink channel are included in the specific period. and determining an interval for hopping the uplink channel in the frequency direction based on.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10. As shown in FIG. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. As shown in FIG. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of UE200. 図5は、gNB100の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of gNB100. 図6は、Joint channel estimationについて説明するための図である。FIG. 6 is a diagram for explaining joint channel estimation. 図7は、動作例4について説明するための図である。FIG. 7 is a diagram for explaining Operation Example 4. FIG. 図8は、動作例5について説明するための図である。FIG. 8 is a diagram for explaining Operation Example 5. FIG. 図9は、動作例5について説明するための図である。FIG. 9 is a diagram for explaining Operation Example 5. FIG. 図10は、動作例6について説明するための図である。FIG. 10 is a diagram for explaining Operation Example 6. FIG. 図11は、動作例6について説明するための図である。FIG. 11 is a diagram for explaining Operation Example 6. FIG. 図12は、動作例6について説明するための図である。FIG. 12 is a diagram for explaining Operation Example 6. FIG. 図13は、動作例6について説明するための図である。FIG. 13 is a diagram for explaining Operation Example 6. FIG. 図14は、動作例7について説明するための図である。FIG. 14 is a diagram for explaining Operation Example 7. FIG. 図15は、動作例8について説明するための図である。FIG. 15 is a diagram for explaining Operation Example 8. FIG. 図16は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 16 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B). Note that the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200. gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 Also, the wireless communication system 10 supports multiple frequency ranges (FR). FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
In FR1, a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz may be used and a bandwidth (BW) of 5-100 MHz may be used. FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 It should be noted that SCS may be interpreted as numerology. numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like. Also, the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a type of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel). However, an uplink data channel, specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation. DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 A DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 In addition, DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
 無線通信システム10は、gNB100が形成するセル(或いは物理チャネルでもよい)のカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートできる。カバレッジ拡張では、各種の物理チャネルの受信成功率を高めるための仕組みが提供されてよい。 The radio communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100. Coverage enhancement may provide mechanisms for increasing the success rate of reception of various physical channels.
 例えば、gNB100は、PDSCH(Physical Downlink Shared Channel)の繰り返し送信に対応でき、UE200は、PUSCH(Physical Uplink Shared Channel)の繰り返し送信に対応できる。 For example, gNB 100 can support repeated transmission of PDSCH (Physical Downlink Shared Channel), and UE 200 can support repeated transmission of PUSCH (Physical Uplink Shared Channel).
 無線通信システム10では、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定(3GPP TS38.101-4参照)されてよい。 In the radio communication system 10, a time division duplex (TDD) slot configuration pattern may be set. For example, DDDSU (D: downlink (DL) symbol, S: DL/uplink (UL) or guard symbol, U: UL symbol) may be specified (see 3GPP TS38.101-4).
 「D」は、全てDLシンボルを含むスロットを示し、「S」は、DL、UL、及びガードシンボル(G)が混在するスロットを示す。「U」は、全てULシンボルを含むスロットを示す。 "D" indicates a slot containing all DL symbols, and "S" indicates a slot containing a mixture of DL, UL, and guard symbols (G). "U" indicates a slot containing all UL symbols.
 また、無線通信システム10では、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。 Further, in the radio communication system 10, channel estimation of PUSCH (or PUCCH (Physical Uplink Control Channel)) can be performed using a demodulation reference signal (DMRS) for each slot. can be used to perform channel estimation for PUSCH (or PUCCH). Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
 UE200は、gNB100がDMRSを用いたJoint channel estimationを実行できるように、複数スロットに割り当てられた(跨がった)DMRSを送信できる。 The UE 200 can transmit DMRS assigned to (spanning) multiple slots so that the gNB 100 can perform joint channel estimation using DMRS.
 また、無線通信システム10では、カバレッジ拡張に関して、複数スロットに割り当てられたPUSCHを介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)が適用されてもよい。 Also, in the radio communication system 10, TB processing over multi-slot PUSCH (TBoMS), which processes transport blocks (TB) via PUSCHs assigned to multiple slots, may be applied for coverage extension.
 TBoMSでは、PUSCHのRepetition type AのTime Domain Resource Allocation(TDRA)のように、割り当てられたシンボルの数は、各スロットにおいて同じでもよいし、PUSCHのRepetition type BのTDRAのように、各スロットに割り当てられたシンボルの数は異なっていてもよい。 In TBoMS, the number of allocated symbols can be the same in each slot as in PUSCH Repetition type A Time Domain Resource Allocation (TDRA), or it can be the same in each slot as in PUSCH Repetition type B TDRA. The number of assigned symbols can be different.
 TDRAは、3GPP TS38.214において規定されているPUSCHの時間ドメインにおけるリソース割り当てと解釈されてよい。PUSCHのTDRAは、無線リソース制御レイヤ(RRC)の情報要素(IE)、具体的には、PDSCH-ConfigまたはPDSCH-ConfigCommonによって規定されると解釈されてもよい。 TDRA may be interpreted as resource allocation in the PUSCH time domain specified in 3GPP TS38.214. The PUSCH TDRA may be interpreted as defined by a radio resource control layer (RRC) information element (IE), specifically PDSCH-Config or PDSCH-ConfigCommon.
 また、TDRAは、下りリンク制御情報(DCI:Downlink Control Information)によって指定されるPUSCHの時間ドメインにおけるリソース割り当てと解釈されてもよい。  TDRA may also be interpreted as resource allocation in the time domain of PUSCH specified by Downlink Control Information (DCI).
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described.
 第1に、UE200の機能ブロック構成について説明する。 First, the functional block configuration of the UE200 will be explained.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block diagram of the UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR. The radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 ここで、無線信号送受信部210は、物理上りリンク共有チャネルを送信してよい。実施形態において、無線信号送受信部210は、送信部を構成してよい。 Here, the radio signal transmitting/receiving unit 210 may transmit a physical uplink shared channel. In the embodiment, the radio signal transceiver 210 may constitute a transmitter.
 具体的には、無線信号送受信部210は、PUSCHをネットワーク(gNB100)に向けて送信してよい。無線信号送受信部210は、PUSCHの繰り返し送信(Repetition)をサポートしてよい。上りリンクチャネルには、物理上りリンク共有チャネル(PUSCH)及び物理上りリンク制御チャネル(PUCCH)が含まれてよい。共有チャネルは、データチャネルと呼ばれてもよい。 Specifically, the radio signal transmitting/receiving unit 210 may transmit PUSCH toward the network (gNB 100). The radio signal transmitting/receiving unit 210 may support repeated transmission (Repetition) of PUSCH. The uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH). A shared channel may also be referred to as a data channel.
 PUSCHの繰り返し送信は、複数の種類が規定されてよい。具体的には、Repetition type A及びRepetition type Bが規定されてよい。Repetition type Aは、スロット内に割り当てられたPUSCHが繰り返し送信される形態と解釈されてよい。つまり、PUSCHは、14シンボル以下であり、複数スロット(隣接スロット)に跨がって割り当てられる可能性はない。 Multiple types of repeated transmission of PUSCH may be defined. Specifically, Repetition type A and Repetition type B may be defined. Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. That is, PUSCH is 14 symbols or less, and there is no possibility of being allocated across multiple slots (adjacent slots).
 一方、Repetition type Bは、15シンボル以上のPUSCHが割り当てられる可能性があるPUSCHの繰り返し送信と解釈されてよい。本実施形態では、このようなPUSCHを複数スロットに跨がって割り当てることが許容されてよい。 On the other hand, Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
 複数スロット以上の特定期間とは、PUSCH(またはPUCCH)のRepetitionに関する期間と解釈されてよい。例えば、特定期間とは、Repetitionの数によって示されてもよいし、規定された数のRepetitionが実行される時間であってもよい。実施形態では、特定期間は、Joint channel estimationが適用される期間と解釈されてもよい。特定期間において、UE200は、下りリンクチャネル(DLチャネル)を受信できなくてもよい。 A specific period of multiple slots or more may be interpreted as a period related to PUSCH (or PUCCH) repetition. For example, the specific period may be indicated by the number of Repetitions, or may be the time during which a specified number of Repetitions are executed. In embodiments, the specified time period may be interpreted as the time period over which the joint channel estimation is applied. The UE 200 may not be able to receive a downlink channel (DL channel) during a specific period.
 或いは、無線信号送受信部210は、ULチャネルを特定回数、繰り返し送信してもよい。具体的には、無線信号送受信部210は、PUSCH(またはPUCCH)を、複数回数、繰り返し送信してよい。 Alternatively, the radio signal transmitting/receiving unit 210 may repeatedly transmit the UL channel a specific number of times. Specifically, radio signal transmitting/receiving section 210 may repeatedly transmit PUSCH (or PUCCH) multiple times.
 特定期間及び/または特定回数は、ネットワークからのシグナリング(RRCの上位レイヤでもよいし、DCIなどの下位レイヤでもよい、以下同)によって指示されてもよいし、UE200に予め設定されていてもよい。 The specific period and/or the specific number of times may be indicated by signaling from the network (the upper layer of RRC or the lower layer such as DCI, the same applies hereinafter), or may be preset in the UE 200. .
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Also, the channel includes a control channel and a data channel. Control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. A data channel may be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal/reference signal processing unit 240 may receive downlink control information (DCI). DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the DCI format. The value stored in the CI field is an information element that specifies the CC to which DCI is applied. The value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies. The BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied. A frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies. The time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message. A time-domain resource may be identified by a value stored in the TDRA field and a default table. The value stored in the MCS field is an information element that specifies the MCS to which DCI applies. The MCS is specified by the values stored in the MCS and the MCS table. The MCS table may be specified by RRC messages or identified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied. The value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data. The value stored in the RV field is an information element that specifies the data redundancy to which DCI is applied.
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、ULチャネル(例えば、PUSCH及びPUCCH)の送信を制御する制御部を構成してもよい。 The control unit 270 controls each functional block that configures the UE200. In embodiments, the controller 270 may constitute a controller that controls transmission of UL channels (eg, PUSCH and PUCCH).
 例えば、制御部270は、特定期間を設定する2以上の特定方法が定義される場合において、2以上の特定方法に基づいて特定期間を設定してもよい。特定期間は、Time domain windowと称されてもよい。Time domain windowの設定方法については後述する。 For example, when two or more specifying methods for setting a specific period are defined, the control unit 270 may set the specific period based on two or more specific methods. A specific time period may be referred to as a Time domain window. How to set the time domain window will be described later.
 制御部270は、ULチャネル、具体的には、PUSCH上において送信されるDMRSの割り当てを、PUSCHの繰り返しの状態、つまり、Repetition数、Repetition期間などに基づいて決定してもよい。 The control unit 270 may determine the allocation of DMRS transmitted on the UL channel, specifically the PUSCH, based on the PUSCH repetition state, that is, the number of repetitions, the repetition period, and the like.
 具体的には、制御部270は、所定数のRepetition毎に、同一のDMRS用のシンボル(OFDMシンボル)を送信してもよい。また、制御部270は、所定数のRepetition毎に、使用するDMRS用のシンボル(OFDMシンボル)をそれぞれ設定してもよい。 Specifically, the control unit 270 may transmit the same DMRS symbol (OFDM symbol) for each predetermined number of repetitions. Also, the control unit 270 may set a DMRS symbol (OFDM symbol) to be used for each predetermined number of repetitions.
 第2に、gNB100の機能ブロック構成について説明する。 Second, the functional block configuration of gNB100 will be explained.
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。 FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHなどのULチャネルを介してUL信号を受信してもよい。 The receiving unit 110 receives various signals from the UE200. The receiver 110 may receive UL signals via UL channels such as PUCCH or PUSCH.
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHなどのDLチャネルを介してDL信号を送信してもよい。 The transmission unit 120 transmits various signals to the UE200. Transmitter 120 may transmit a DL signal via a DL channel such as PDCCH or PDSCH.
 制御部130は、gNB100を制御する。制御部130は、複数のスロットに割り当てられたDMRSを用いて、複数のスロットに割り当てられたULチャネル、例えば、PUSCHのチャネル推定(Joint channel estimation)を実行してもよい。制御部130は、複数のスロットに割り当てられたDMRSを用いて、UE200の初期アクセス、具体的には、ランダムアクセス手順におけるULチャネルの(Joint channel estimation)を実行してもよい。 The control unit 130 controls the gNB100. The control unit 130 may perform joint channel estimation of UL channels allocated to multiple slots, eg, PUSCH, using DMRS allocated to multiple slots. Control section 130 may perform initial access of UE 200, specifically, joint channel estimation of the UL channel in a random access procedure, using DMRSs assigned to multiple slots.
 (3)Joint channel estimation
 以下において、Joint channel estimationについて説明する。上述したように、Joint channel estimationは、複数のスロットに存在する(割り当てられた)DMRSに基づいてチャネル推定を行う技術と解釈されてよい。
(3) Joint channel estimation
Joint channel estimation will be described below. As described above, joint channel estimation may be interpreted as a technique of performing channel estimation based on (assigned) DMRS present in multiple slots.
 図6に示すように、UE200は、特定のPUSCH間、PUCCH間、或いはPUSCHとPUCCHと間において、gNB100がJoint channel estimationが実行できるように、DMRSシンボルを送信してよい。UE200は、送信電力、位相及び送信タイミングがスロット間で変化しないようなDMRSシンボルを送信してよい。 As shown in FIG. 6, the UE 200 may transmit DMRS symbols between specific PUSCHs, between PUCCHs, or between PUSCHs and PUCCHs so that the gNB 100 can perform joint channel estimation. The UE 200 may transmit DMRS symbols whose transmission power, phase, and transmission timing do not change between slots.
 例えば、PUSCHが統合される前の各PUSCHに割り当てられるDMRSリソースにDMRSが配置されてよい。複数スロットによるチャネル推定が適用されるリソース内において、DMRSが等間隔に送信(配置)されてよい。 For example, DMRSs may be arranged in DMRS resources allocated to each PUSCH before the PUSCHs are integrated. DMRSs may be transmitted (arranged) at equal intervals within resources to which channel estimation using multiple slots is applied.
 (4)動作例
 (4.1)動作例1
 以下において、動作例1について説明する。動作例1では、特定期間(Time domain window)の設定方法について説明する。
(4) Operation example (4.1) Operation example 1
Operation example 1 will be described below. In operation example 1, a method for setting a specific period (Time domain window) will be described.
 第1に、Time domain windowは、無線リソース制御メッセージ(RRCメッセージ)に含まれる情報要素によって設定されてもよい。RRCメッセージは、NG RAN20から受信する情報要素を含むメッセージの一例である。RRCメッセージは、PUCCH-Config、PUSCH-Config、PUSCH-Config commonの少なくともいずれか1つであってもよい。RRCメッセージは、2以上のTime domain windowを設定する情報要素を含んでもよい。このようなケースにおいて、異なるTBを含んだPUSCH同士のJoint channel estimation、 PUSCH repetition type A間のchannel estimation、PUSCH repetition type B間のJoint channel estimation、PUCCH間のJoint channel estimationなどの適用されるリソースに応じて、別々のTime domain windowを設定する情報要素がRRCメッセージに含まれてもよい。 First, the Time domain window may be set by an information element included in a radio resource control message (RRC message). An RRC message is an example of a message containing information elements received from NG RAN 20 . The RRC message may be at least one of PUCCH-Config, PUSCH-Config, and PUSCH-Config common. An RRC message may contain information elements that set more than one time domain window. In such cases, for applicable resources such as joint channel estimation between PUSCHs with different TB, channel estimation between PUSCH repetition type A, joint channel estimation between PUSCH repetition type B, joint channel estimation between PUCCH, etc. Information elements that set different time domain windows may be included in the RRC message accordingly.
 RRCメッセージは、Time domain windowをSemi-staticに設定する情報要素を含むと解釈されてもよい。情報要素は、Time domain windowを示す情報要素を含んでもよく、Time domain window sizeを示す情報要素を含んでもよく、Time domain window sizeの単位(Repetition、スロット数など)を示す情報要素を含んでもよく、Time domain windowを適用する用途(異なるTB(Transport Block)s、TBoMS、Repetitionなど)を示す情報要素を含んでもよい。 The RRC message may be interpreted as containing an information element that sets the Time domain window to Semi-static. The information element may include an information element indicating the Time domain window, an information element indicating the Time domain window size, and an information element indicating the unit of the Time domain window size (Repetition, number of slots, etc.). , may contain an information element indicating the use (different TB (Transport Block)s, TBoMS, Repetition, etc.) to which the Time domain window applies.
 UE200は、2以上のTime domain windowの中から、PUCCH resource毎にTime domain windowを適用してもよく、PUCCH resource format毎にTime domain windowを適用してもよい。 The UE 200 may apply a Time domain window for each PUCCH resource out of two or more Time domain windows, or may apply a Time domain window for each PUCCH resource format.
 UE200は、2以上のTime domain windowの中からUE200に適用するTime domain windowを指定する情報要素を受信していない場合に、予め定められたルールに基づいて、UE200に適用するTime domain window(Default time domain window)を決定してもよい。 When UE200 does not receive an information element specifying a time domain window to be applied to UE200 from among two or more time domain windows, UE200 selects a time domain window (Default time domain window) may be determined.
 予め定められたルールは、Time domain windowがIndexと対応付けられる前提下において、最も小さいIndexを有するTime domain windowをDefault time domain windowとして適用するルールであってもよい。 The predetermined rule may be a rule that applies the Time domain window with the smallest Index as the Default time domain window on the premise that the Time domain window is associated with the Index.
 予め定められたルールは、上位レイヤで指定されたTime domain windowをDefault time domain windowとして適用するルールであってもよい。 The predetermined rule may be a rule that applies the time domain window specified in the upper layer as the Default time domain window.
 予め定められたルールは、無線通信システム10で予め定められたTime domain windowをDefault time domain windowとして適用するルールであってもよい。このようなケースにおいて、2以上のTime domain windowがRRCメッセージによって設定されていなくてもよい。 The predetermined rule may be a rule that applies the time domain window predetermined in the wireless communication system 10 as the Default time domain window. In such cases, two or more Time domain windows may not be set by RRC messages.
 第2に、Time domain windowは、メディアアクセス制御メッセージ(MAC CEメッセージ)に含まれる情報要素によって設定されてもよい。MAC CEメッセージは、NG RAN20から受信する情報要素を含むメッセージの一例である。 Second, the Time domain window may be set by an information element included in the media access control message (MAC CE message). A MAC CE message is an example of a message containing information elements received from NG RAN 20 .
 MAC CEメッセージは、Time domain windowをSemi-persistentに設定する情報要素を含むと解釈されてもよい。情報要素は、Time domain windowを示す情報要素を含んでもよく、Time domain windowの開始タイミングを示す情報要素を含んでもよく、Time domain window sizeを示す情報要素を含んでもよく、Time domain window sizeの単位(Repetition、スロット数など)を示す情報要素を含んでもよく、Time domain windowを適用する用途(異なるTBs、TBoMS、Repetitionなど)を示す情報要素を含んでもよい。 A MAC CE message may be interpreted as containing an information element that sets the Time domain window to Semi-persistent. The information element may include an information element indicating the Time domain window, may include an information element indicating the start timing of the Time domain window, may include an information element indicating the Time domain window size, and may include an information element indicating the Time domain window size. (Repetition, number of slots, etc.) may be included, and an information element indicating the use (different TBs, TBoMS, Repetition, etc.) to which the Time domain window is applied may be included.
 例えば、MAC CEメッセージは、1以上のTime domain windowを設定(活性化)する情報要素を含んでもよい。MAC CEメッセージは、RRCメッセージによって設定された2以上のTime domain windowの中から活性化する1以上のTime domain windowを指定する情報要素を含んでもよい。MAC CEメッセージは、Time domain windowを非活性化する情報要素を含んでもよい。 For example, a MAC CE message may include an information element that sets (activates) one or more Time domain windows. The MAC CE message may include an information element specifying one or more time domain windows to be activated from two or more time domain windows set by the RRC message. A MAC CE message may contain an information element that deactivates the Time domain window.
 UE200は、Time domain windowを活性化する情報要素を含むMAC CEメッセージを受信した場合に、Time domain windowを一定期間に亘って適用した後に、Time domain windowを非活性化してもよい。一定期間は、MAC CEメッセージの受信によって起動するタイマによって計測されてもよい。一定期間は、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよく、無線通信システム10で予め定められていてもよい。タイマが用いられる場合には、Time domain windowを非活性化する情報要素は定義されなくてもよい。 When the UE 200 receives a MAC CE message containing an information element that activates the time domain window, the UE 200 may deactivate the time domain window after applying the time domain window for a certain period of time. A certain period of time may be measured by a timer that is started upon receipt of a MAC CE message. The certain period of time may be set by an RRC message, may be set by a MAC CE message, or may be predetermined in the wireless communication system 10 . If timers are used, the information element that deactivates the Time domain window need not be defined.
 或いは、MAC CEメッセージは、1以上のTime domain window sizeを指定する情報要素を含んでもよい。MAC CEメッセージは、RRCメッセージによって設定されたTime domain windowについて、Time domain window sizeを指定する情報要素を含んでもよい。UE200に適用されるTime domain windowは、Time domain window sizeによって特定されてもよい。MAC CEメッセージは、Time domain window sizeを活性化する情報要素を含んでもよい。MAC CEメッセージは、Time domain window sizeを非活性化する情報要素を含んでもよい。 Alternatively, the MAC CE message may contain information elements that specify one or more Time domain window sizes. The MAC CE message may contain an information element specifying the Time domain window size for the Time domain window set by the RRC message. A Time domain window applied to the UE 200 may be specified by a Time domain window size. A MAC CE message may contain an information element that activates the Time domain window size. A MAC CE message may contain an information element that deactivates the Time domain window size.
 UE200は、Time domain window sizeを活性化する情報要素を含むMAC CEメッセージを受信した場合に、Time domain window sizeを一定期間に亘って適用した後に、Time domain window sizeを非活性化してもよい。一定期間は、MAC CEメッセージの受信によって起動するタイマによって計測されてもよい。一定期間は、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよく、無線通信システム10で予め定められていてもよい。タイマが用いられる場合には、Time domain window sizeを非活性化する情報要素は定義されなくてもよい。 When the UE 200 receives a MAC CE message containing an information element that activates the time domain window size, the UE 200 may deactivate the time domain window size after applying the time domain window size for a certain period of time. A certain period of time may be measured by a timer that is started upon receipt of a MAC CE message. The certain period of time may be set by an RRC message, may be set by a MAC CE message, or may be predetermined in the wireless communication system 10 . If timers are used, the information element deactivating Time domain window size may not be defined.
 このようなケースにおいて、MAC CEメッセージを受信してからTime domain window sizeを開始するまでの間隔として最小間隔が定義されてもよい。最小間隔は、無線通信システム10で予め定められていてもよく、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよい。 In such cases, the minimum interval may be defined as the interval from receiving the MAC CE message to starting the Time domain window size. The minimum interval may be predetermined in the wireless communication system 10, configured by an RRC message, or configured by a MAC CE message.
 (4.2)動作例2
 以下において、動作例1について説明する。動作例1では、特定期間(Time domain window)の設定方法について説明する。
(4.2) Operation example 2
Operation example 1 will be described below. In operation example 1, a method for setting a specific period (Time domain window) will be described.
 第1に、Time domain windowは、下りリンク制御情報(DCI)に含まれる情報要素によって設定されてもよい。DCIは、NG RAN20から受信する情報要素を含むメッセージの一例である。 First, the Time domain window may be set by an information element included in downlink control information (DCI). DCI is an example of a message containing information elements received from NG RAN 20 .
 DCIは、Time domain windowをDynamicに設定する情報要素を含むと解釈されてもよい。情報要素は、Time domain windowを示す情報要素を含んでもよく、Time domain windowの開始タイミングを示す情報要素を含んでもよく、Time domain window sizeを示す情報要素を含んでもよく、Time domain window sizeの単位(Repetition、スロット数など)を示す情報要素を含んでもよく、Time domain windowを適用する用途(異なるTBs、TBoMS、Repetitionなど)を示す情報要素を含んでもよい。 DCI may be interpreted as containing an information element that sets the Time domain window to Dynamic. The information element may include an information element indicating the Time domain window, may include an information element indicating the start timing of the Time domain window, may include an information element indicating the Time domain window size, and may include an information element indicating the Time domain window size. (Repetition, number of slots, etc.) may be included, and an information element indicating the use (different TBs, TBoMS, Repetition, etc.) to which the Time domain window is applied may be included.
 例えば、DCIは、RRCメッセージ又はMAC CEメッセージによって設定(活性化)された2以上のTime domain windowの中から、UE200に適用するTime domain windowを指定する情報要素を含んでもよい。 For example, DCI may include an information element that specifies a time domain window to apply to UE 200 from among two or more time domain windows set (activated) by an RRC message or MAC CE message.
 UE200は、Time domain windowを適用する情報要素を含むDCIを受信した場合に、Time domain windowを一定期間に亘って適用してもよい。一定期間は、DCIの受信によって起動するタイマによって計測されてもよい。一定期間は、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよく、DCIによって設定されてもよく、無線通信システム10で予め定められていてもよい。 The UE 200 may apply the time domain window for a certain period of time when receiving DCI including an information element that applies the time domain window. A certain period of time may be measured by a timer that is started upon reception of DCI. The certain period of time may be set by an RRC message, may be set by a MAC CE message, may be set by DCI, or may be predetermined in the wireless communication system 10 .
 或いは、DCIは、1以上のTime domain window sizeを指定する情報要素を含んでもよい。DCIは、RRCメッセージ又はMAC CEメッセージによって設定(活性化)されたTime domain windowについて、Time domain window sizeを指定する情報要素を含んでもよい。UE200に適用されるTime domain windowは、Time domain window sizeによって特定されてもよい。 Alternatively, the DCI may contain information elements that specify one or more Time domain window sizes. The DCI may contain an information element specifying the time domain window size for the time domain window set (activated) by the RRC message or MAC CE message. A Time domain window applied to the UE 200 may be specified by a Time domain window size.
 UE200は、Time domain window sizeを活性化する情報要素を含むDCIを受信した場合に、Time domain window sizeを一定期間に亘って適用してもよい。一定期間は、DCIの受信によって起動するタイマによって計測されてもよい。一定期間は、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよく、DCIによって設定されてもよく、無線通信システム10で予め定められていてもよい。 When the UE 200 receives DCI including an information element that activates the time domain window size, the UE 200 may apply the time domain window size for a certain period of time. A certain period of time may be measured by a timer that is started upon reception of DCI. The certain period of time may be set by an RRC message, may be set by a MAC CE message, may be set by DCI, or may be predetermined in the wireless communication system 10 .
 第2に、UE200は、DCIのスクランブリングで用いるRNTIに基づいて、UE200宛のDCIを特定してもよい。 Second, the UE200 may identify the DCI addressed to the UE200 based on the RNTI used in DCI scrambling.
 DCIのスクランブリングで用いるRNTIは、1つのUE200と対応付けられたRNTI(例えば、C-RNTI)であってもよい。 The RNTI used for DCI scrambling may be an RNTI (eg, C-RNTI) associated with one UE200.
 或いは、DCIのスクランブリングで用いるRNTIは、2以上のUE200と対応付けられたRNTI(例えば、グループ用RNTI)であってもよい。このようなケースにおいて、グループ用RNTIが適用されるグループ(2以上のUE200)はRRCによって設定され、UE200は、グループ用RNTIに基づいてUE200宛のDCIを特定してもよい。或いは、DCIが適用されるグループ(2以上のUE200)はDCI format毎に設定され、UE200は、DCI format及びRNTIに基づいてUE200宛のDCIを特定してもよい。 Alternatively, the RNTI used in DCI scrambling may be an RNTI associated with two or more UEs 200 (for example, a group RNTI). In such a case, the group (two or more UEs 200) to which the group RNTI is applied may be set by RRC, and the UE 200 may identify the DCI addressed to the UE 200 based on the group RNTI. Alternatively, a group (two or more UEs 200) to which DCI is applied may be set for each DCI format, and UE 200 may specify DCI for UE 200 based on DCI format and RNTI.
 このようなケースにおいて、DCIを受信してからTime domain window sizeを開始するまでの間隔として最小間隔が定義されてもよい。最小間隔は、無線通信システム10で予め定められていてもよく、RRCメッセージによって設定されてもよく、MAC CEメッセージによって設定されてもよい。 In such cases, the minimum interval may be defined as the interval from receiving DCI to starting the Time domain window size. The minimum interval may be predetermined in the wireless communication system 10, configured by an RRC message, or configured by a MAC CE message.
 (4.3)動作例3
 以下において、動作例3について説明する。動作例3では、特定期間(Time domain window)の設定方法について説明する。
(4.3) Operation example 3
Operation example 3 will be described below. In operation example 3, a method for setting a specific period (Time domain window) will be described.
 Time domain windowは、ULチャネルを周波数方向においてホッピングするタイミングに基づいて設定される。上述したように、UE200は、送信電力、位相及び送信タイミングがスロット間で変化しないようなDMRSシンボルを送信してよい。 The time domain window is set based on the timing of hopping the UL channel in the frequency direction. As described above, UE 200 may transmit DMRS symbols such that transmission power, phase, and transmission timing do not change between slots.
 例えば、Time domain windowは、ULチャネルを周波数方向においてホッピングするタイミングで開始/終了してもよい。言い換えると、Time domain windowは、ULチャネルを周波数方向においてホッピングされない期間であってもよい。 For example, the time domain window may start/end at the timing of hopping the UL channel in the frequency direction. In other words, the Time domain window may be a period during which the UL channel is not hopped in the frequency direction.
 (4.4)動作例4
 以下において、動作例4について説明する。動作例4では、特定期間(Time domain window)を設定する2以上の特定方法が定義される場合において、2以上の特定方法に基づいてTime domain windowを適用するケースについて例示する。特定方法は、上述した動作例1~動作例3の中から選択された1以上の方法である。
(4.4) Operation example 4
Operation example 4 will be described below. In operation example 4, when two or more specifying methods for setting a specific period (time domain window) are defined, a case will be illustrated in which the time domain window is applied based on two or more specifying methods. The specifying method is one or more methods selected from the operation examples 1 to 3 described above.
 例えば、図7に示すように、Time domain window #A及びTime domain window #Bが設定されるケースについて考える。Time domain window #Aは、RRCメッセージによって設定されたTime domain windowであってもよく、Time domain window #Bは、DCIによって設定されたTime domain windowであってもよい。或いは、Time domain window #Aは、スロットフォーマットに基づいて設定されたTime domain windowであってもよく、Time domain window #Bは、割り当てられたリソースに基づいて設定されたTime domain windowであってもよい。このようなケースにおいて、以下のようなオプションが採用されてもよい。 For example, consider a case where Time domain window #A and Time domain window #B are set as shown in FIG. Time domain window #A may be the Time domain window set by the RRC message, and Time domain window #B may be the Time domain window set by DCI. Alternatively, Time domain window #A may be the Time domain window set based on the slot format, and Time domain window #B may be the Time domain window set based on the allocated resources. good. In such cases, the following options may be adopted.
 オプション1では、UE200は、Time domain window #AがTime domain window #Bと重複する区間においてはTime domain window #Bを1つのTime domain windowとして適用し、Time domain window #AがTime domain window #Bと重複しない区間においてはTime domain window #Aを別のTime domain windowとして適用してもよい。 In option 1, UE200 applies Time domain window #B as one Time domain window in the section where Time domain window #A overlaps Time domain window #B, and Time domain window #A is Time domain window #B Time domain window #A may be applied as another Time domain window in intervals that do not overlap with .
 オプション2では、UE200は、Time domain window #AがTime domain window #Bと重複する区間においてはTime domain window #Bを1つのTime domain windowとして適用し、Time domain window #AがTime domain window #Bと重複しない区間においてはTime domain windowを適用しなくてもよい。 In option 2, UE200 applies Time domain window #B as one Time domain window in the section where Time domain window #A overlaps Time domain window #B, and Time domain window #A is Time domain window #B Time domain window need not be applied in intervals that do not overlap with .
 オプション1及びオプション2は、Time domain window #AよりもTime domain window #Bを優先するオプションである。言い換えると、RRCメッセージによって設定されたTime domain windowよりも、DCIで設定(指定)されたTime domain windowが優先される。 Options 1 and 2 are options that prioritize Time domain window #B over Time domain window #A. In other words, the time domain window set (designated) by DCI has priority over the time domain window set by the RRC message.
 オプション3では、UE200は、Time domain window #A及びTime domain window #Bを統合して、統合された区間を1つのTime domain windowとして適用してもよい。 In Option 3, the UE 200 may integrate Time domain window #A and Time domain window #B and apply the integrated section as one Time domain window.
 (4.5)動作例5
 以下において、動作例5について説明する。動作例5では、Time domain windowで送信されるULチャネルの送信電力について説明する。ULチャネルは、PUCCHを含んでもよく、PUSCHを含んでもよい。
(4.5) Operation example 5
Operation example 5 will be described below. Operation example 5 describes the transmission power of the UL channel transmitted in the Time domain window. The UL channel may include PUCCH and may include PUSCH.
 従来技術では、UE200は、PUSCH Repetition type B又はPUSCH Repetition type B用のnominal repetition以外で用いるslot内のULチャネルの送信電力を送信機会(transmission occasion)毎に決定する。これに対して、動作例5では、UE200は、Time domain windowが設定されている場合に、Time domain window内のtransmission occasionで送信されるULチャネルの送信電力をTime domain window毎に決定する。言い換えると、UE200は、ULチャネルの送信電力を決定する間隔としてTime domain windowを用いる。 In the conventional technology, the UE 200 determines the transmission power of the UL channel in the slot used for PUSCH Repetition type B or non-nominal repetition for PUSCH Repetition type B for each transmission occasion. On the other hand, in operation example 5, when a time domain window is set, the UE 200 determines the transmission power of UL channels transmitted on transmission occasions within the time domain window for each time domain window. In other words, UE 200 uses the time domain window as the interval for determining the transmission power of the UL channel.
 以下において、Time domain windowにおいて2回のPUSCHの繰り返し送信が行われるケースについて例示する。このような前提下において、Time domain window内において送信されるPUSCHの送信電力は、以下のように決定されてもよい。 In the following, a case in which PUSCH is repeatedly transmitted twice in the Time domain window will be illustrated. Under this premise, the transmission power of PUSCH transmitted within the time domain window may be determined as follows.
 オプション1では、図8に示すように、Time domain windowに含まれるPUSCHのtransmission occasionは、1つのtransmission occasionとして扱われてもよい。すなわち、2つのPUSCHの送信電力は、Time domain window毎に決定される。このようなケースにおいて、各PUSCHのMCS及びTPCに依存する電力(の項)は、Time domain windowに含まれるいずれか1つのPUSCHのMCS及びTPCに基づいて計算されてもよい。 In Option 1, as shown in FIG. 8, PUSCH transmission occurrences included in the Time domain window may be treated as one transmission occurrence. That is, the transmission power of two PUSCHs is determined for each Time domain window. In such cases, the power (terms) dependent on the MCS and TPC of each PUSCH may be calculated based on the MCS and TPC of any one PUSCH included in the Time domain window.
 Time domain windowに含まれるいずれか1つのPUSCHは、Time domain windowに含まれる最初のPUSCHであってもよく、Time domain windowに含まれる最後のPUSCHであってもよい(オプション1-1)。 Any one PUSCH included in the Time domain window may be the first PUSCH included in the Time domain window or the last PUSCH included in the Time domain window (option 1-1).
 Time domain windowに含まれるいずれか1つのPUSCHは、Time domain windowに含まれるPUSCHのうち、最大送信電力を要するPUSCHであってもよく、最小送信電力を要するPUSCHであってもよい(オプション1-2)。 Any one PUSCH included in the time domain window may be the PUSCH that requires the maximum transmission power or the PUSCH that requires the minimum transmission power among the PUSCHs included in the time domain window (option 1- 2).
 Time domain windowに含まれるいずれか1つのPUSCHは、Time domain windowに含まれるPUSCHのうち、最大シンボル長を有するPUSCHであってもよく、最小シンボル長を有するPUSCHであってもよい(オプション1-3)。 Any one PUSCH included in the time domain window may be the PUSCH having the maximum symbol length or the PUSCH having the minimum symbol length among the PUSCHs included in the time domain window (option 1- 3).
 Time domain windowに含まれるいずれか1つのPUSCHは、Time domain windowに含まれるPUSCHのうち、最大TBSを有するPUSCHであってもよく、最小TBSを有するPUSCHであってもよい(オプション1-4)。 Any one PUSCH included in the time domain window may be the PUSCH with the maximum TBS or the PUSCH with the minimum TBS among the PUSCHs included in the time domain window (option 1-4) .
 オプション2では、図9に示すように、Time domain window毎に決定されるPUSCHの送信電力は、Time domain windowに含まれるいずれか1つのtransmission occasion(PUSCH)の送信電力であってもよい。Time domain windowに含まれるいずれか1つのtransmission occasionの送信電力は、他のtransmission occasionの送信電力として用いられる。 In option 2, as shown in FIG. 9, the PUSCH transmission power determined for each time domain window may be the transmission power of any one transmission occurrence (PUSCH) included in the time domain window. The transmission power of any one transmission occurrence included in the time domain window is used as the transmission power of other transmission occurrences.
 Time domain windowに含まれるいずれか1つのtransmission occasionは、Time domain windowに含まれる最初のtransmission occasionであってもよく、Time domain windowに含まれる最後のtransmission occasionであってもよい(オプション2-1)。 Any one transmission occurrence included in the time domain window may be the first transmission occurrence included in the time domain window or the last transmission occurrence included in the time domain window (option 2-1 ).
 Time domain windowに含まれるいずれか1つのtransmission occasionは、Time domain windowに含まれるtransmission occasionのうち、最大送信電力を要するtransmission occasionであってもよく、最小送信電力を要するtransmission occasionであってもよい(オプション2-2)。 Any one transmission occurrence included in the time domain window may be the transmission occurrence requiring the maximum transmission power or the transmission occurrence requiring the minimum transmission power among the transmission occurrences included in the time domain window. (Option 2-2).
 Time domain windowに含まれるいずれか1つのtransmission occasionは、Time domain windowに含まれるtransmission occasionのうち、最大シンボル長を有するtransmission occasionであってもよく、最小シンボル長を有するtransmission occasionであってもよい(オプション2-3)。 Any one transmission occurrence included in the time domain window may be the transmission occurrence with the maximum symbol length or the transmission occurrence with the minimum symbol length among the transmission occurrences included in the time domain window. (Option 2-3).
 Time domain windowに含まれるいずれか1つのtransmission occasionは、Time domain windowに含まれるtransmission occasionのうち、最大TBSを有するtransmission occasionであってもよく、最小TBSを有するtransmission occasionであってもよい(オプション2-4)。 Any one transmission occurrence included in the time domain window may be the transmission occurrence with the maximum TBS or the transmission occurrence with the minimum TBS among the transmission occurrences included in the time domain window (optional 2-4).
 オプション3では、Time domain window毎に決定されるPUSCHの送信電力は、Time domain windowに含まれる各transmission occasionの送信電力に基づいて決定されてもよい。Time domain window毎に決定されるPUSCHの送信電力は、各transmission occasionの送信電力の平均値であってもよく、最小値であってもよく、最大値であってもよい。 In option 3, the PUSCH transmission power determined for each time domain window may be determined based on the transmission power of each transmission occurrence included in the time domain window. The PUSCH transmission power determined for each time domain window may be the average value, the minimum value, or the maximum value of the transmission power of each transmission occurrence.
 (4.6)動作例6
 以下において、動作例6について説明する。動作例6では、Time domain windowが設定されるケースにおけるClosed-loop電力制御について説明する。
(4.6) Operation example 6
Operation example 6 will be described below. In operation example 6, closed-loop power control in a case where a time domain window is set will be described.
 図10に示すように、Time domain windowが設定されている場合には、UE200は、Time domain window内においてDLチャネル(ここでは、PDCCH#B)を受信することができず、PDCCH#Bに含まれるTPCコマンド(図11を参照)を受信することができない。 As shown in FIG. 10, when the Time domain window is set, the UE 200 cannot receive the DL channel (here, PDCCH#B) within the Time domain window. cannot receive TPC commands (see Figure 11) that
 従って、UE200は、PDCCH#A及びPDCCH#Bに含まれるTPCコマンドに基づいて、ULチャネル(ここでは、PUSCH)のClosed-loop電力制御を実行する。しかしながら、TPCコマンドの受信間隔が延びるため、図11に示す既存のTPCコマンドでは、Closed-loop電力制御を適切に実行することができない可能性がある。図11に示すように、TPC Command Fieldは、Accumulated TPC Command value(例えば、σPUSCH,b,f,c、σSRS,b,f,c)と対応付けられている。 Therefore, UE 200 executes closed-loop power control of the UL channel (here, PUSCH) based on the TPC commands included in PDCCH#A and PDCCH#B. However, since the reception interval of the TPC command is extended, there is a possibility that the existing TPC command shown in FIG. 11 cannot perform the closed-loop power control appropriately. As shown in FIG. 11, the TPC Command Field is associated with Accumulated TPC Command values (eg, σPUSCH,b,f,c , σSRS,b,f,c ).
 このような背景下において、動作例6では、Time domain windowが設定されるケースで用いるAccumulated TPC Command valueを新たに導入する。新たに導入されるAccumulated TPC Command valueとしては、以下に示すオプションが考えられる。 Against this background, Operation Example 6 introduces a new Accumulated TPC Command value that is used when a Time domain window is set. The following options are conceivable for the newly introduced Accumulated TPC Command values.
 オプション1では、図12に示すように、図11に示す既存のtableとは別に、Time domain windowが設定されるケースで用いるtableが新たに定義されてもよい。図12に示すTPC Command Fieldが指定し得る値の数は、図11に示す既存のTPC Command Fieldが指定し得る値の数と同じであってもよい。図12に示すAccumulated TPC Command valueの最大値(例えば、4)は、図11に示す既存のAccumulated TPC Command valueの最大値(例えば、3)よりも大きくてもよい。図12に示すAccumulated TPC Command valueの最小値(例えば、-4)は、図11に示す既存のAccumulated TPC Command valueの最小値(例えば、-3)よりも小さくてもよい。 In option 1, as shown in FIG. 12, a new table may be defined for use in cases where a time domain window is set, in addition to the existing table shown in FIG. The number of values that the TPC Command Field shown in FIG. 12 can specify may be the same as the number of values that the existing TPC Command Field shown in FIG. 11 can specify. The maximum Accumulated TPC Command value (eg, 4) shown in FIG. 12 may be greater than the existing maximum Accumulated TPC Command value (eg, 3) shown in FIG. The minimum Accumulated TPC Command value (eg, -4) shown in FIG. 12 may be smaller than the existing minimum Accumulated TPC Command value (eg, -3) shown in FIG.
 オプション2では、図13に示すように、図11に示す既存のtableが拡張されてもよい。図13に示すTPC Command Fieldが指定し得る値の数は、図11に示す既存のTPC Command Fieldが指定し得る値の数よりも多く、図13に示すAccumulated TPC Command valueの範囲は、図11に示す既存のAccumulated TPC Command valueの範囲よりも広い。図13に示すAccumulated TPC Command valueは、図11に示す既存のAccumulated TPC Command value(例えば、-1, 0, 1, 3)を含み、かつ、図11に示す既存のAccumulated TPC Command value以外の値(例えば、-4, -3, 4, 5)を含んでもよい。 In option 2, the existing table shown in FIG. 11 may be extended as shown in FIG. The number of values that can be specified by the TPC Command Field shown in FIG. 13 is greater than the number of values that can be specified by the existing TPC Command Field shown in FIG. wider than the range of existing Accumulated TPC Command values shown in . The Accumulated TPC Command values shown in FIG. 13 include the existing Accumulated TPC Command values shown in FIG. 11 (for example, -1, 0, 1, 3) and values other than the existing Accumulated TPC Command values shown in FIG. (e.g. -4, -3, 4, 5).
 ここで、オプション1又はオプション2に関するAccumulated TPC Command valueを適用する条件としては、以下に示す適用条件が考えられる。適用条件は、図12又は図13に示すtableがRRCメッセージ又はMAC CEメッセージによって設定される条件を含んでもよい。適用条件は、Time domain windowが設定される条件を含んでもよい。適用条件は、TPC Commandのfirst bitの位置が図12又は図13に示すtableを参照する位置である条件であってもよい。言い換えると、TPC Commandのfirst bitの位置は、図12又は図13に示すtableを参照するか否かを表してもよい。このようなTPCコマンドを含むDCIのフォーマットは、DCI_format 2_2であってもよく、DCI_format 2_3であってもよい。 Here, the conditions for applying the Accumulated TPC Command value related to Option 1 or Option 2 are the following applicable conditions. The applicable conditions may include conditions under which the table shown in FIG. 12 or 13 is set by an RRC message or MAC CE message. Applicability conditions may include conditions under which the Time domain window is set. The application condition may be a condition that the position of the first bit of the TPC Command is a position that refers to the table shown in FIG. 12 or 13 . In other words, the position of the first bit of TPC Command may indicate whether to refer to the table shown in FIG. 12 or 13 . The format of DCI including such TPC commands may be DCI_format 2_2 or DCI_format 2_3.
 図12又は図13に示すtableは、無線通信システム10で予め定められていてもよく、RRCメッセージによって設定されてもよい。例えば、RRCメッセージは、TPC Command FieldとAccumulated TPC Command valueとの対応関係を示す情報要素を含んでもよい。 The table shown in FIG. 12 or 13 may be predetermined in the wireless communication system 10, or may be set by an RRC message. For example, the RRC message may include an information element indicating the correspondence between the TPC Command Field and the Accumulated TPC Command value.
 (4.7)動作例7
 以下において、動作例7について説明する。動作例7では、Time domain windowが設定されるケースにおけるTA(Timing Advance) Commandの適用について説明する。
(4.7) Operation example 7
Operation example 7 will be described below. In operation example 7, application of a TA (Timing Advance) Command in a case where a Time domain window is set will be described.
 動作例7では、UE200は、Time domain windowが設定される場合に、Time domain windowに基づいて、タイミング情報(TA Command)を適用するタイミングを決定する。 In Operation Example 7, when the Time domain window is set, the UE 200 determines the timing to apply the timing information (TA Command) based on the Time domain window.
 具体的には、図14に示すように、slot#nでTA Commandを受信した場合に、Time domain windowが設定されていなければ、TA Commandを適用するタイミングは、n+k+1のスロットの開始タイミングによって定義される。n+k+1は、TA Commandを適用する既存のタイミングであり、3GPP TS38.213で定義される。 Specifically, as shown in FIG. 14, when a TA Command is received at slot #n, if the Time domain window is not set, the timing to apply the TA Command is Defined by start timing. n+k+1 is the existing timing to apply TA Command, defined in 3GPP TS38.213.
 動作例7では、UE200は、n+k+1のスロット(図14では、slot#n+2)においてTime domain windowが設定される場合に、Time domain windowに基づいてTA Commandを適用するタイミングを決定する。オプション1では、UE200は、Time domain windowの終了タイミングをTA Commandを適用するタイミングとして決定してもよい。オプション2では、UE200は、Time domain windowの終了タイミングを含むスロット(図14では、slot#n+3)の終了タイミングをTA Commandを適用するタイミングとして決定してもよい。 In operation example 7, when the Time domain window is set in slot n+k+1 (slot#n+2 in FIG. 14), the UE 200 determines the timing to apply the TA Command based on the Time domain window. decide. In Option 1, the UE 200 may determine the end timing of the Time domain window as the timing to apply the TA Command. In Option 2, the UE 200 may determine the end timing of the slot (slot#n+3 in FIG. 14) including the end timing of the Time domain window as the timing to apply the TA Command.
 (4.8)動作例8
 以下において、動作例8について説明する。動作例8では、Time domain windowが設定されるケースにおいて、ULチャネルを周波数方向においてホッピングさせる間隔(duration per hop)について説明する。
(4.8) Operation example 8
Operation example 8 will be described below. In operation example 8, the duration per hop at which the UL channel is hopped in the frequency direction when a time domain window is set will be described.
 動作例8では、UE200は、ULチャネルの全ての繰り返し送信がTime domain windowに含まれるか否かに基づいて、ULチャネルを周波数方向においてホッピングさせる間隔(duration per hop)を決定する。例えば、PUSCH repetitionが6回であるケースについて例示する。 In Operation Example 8, the UE 200 determines the duration per hop of the UL channel in the frequency direction based on whether all repeated transmissions of the UL channel are included in the Time domain window. For example, a case where PUSCH repetition is 6 times will be illustrated.
 第1に、図15の上段(ケース1)に示すように、全てのPUSCH repetitionが1つのTime domain windowに含まれないケースについて説明する。このようなケースにおいて、duration per hopを決定する方法として以下に示すオプションが考えられる。 First, as shown in the upper part of FIG. 15 (Case 1), the case where all PUSCH repetitions are not included in one Time domain window will be described. In such cases, the following options are conceivable as a method of determining the duration per hop.
 オプション1では、UE200は、Time domain windowの開始タイミング又は終了タイミングでULチャネルを周波数方向においてホッピングさせると決定してもよい。オプション2では、Time domain windowをduration per hopとして決定してもよい。 In option 1, the UE 200 may decide to hop the UL channel in the frequency direction at the start timing or end timing of the time domain window. In Option 2, the Time domain window may be determined as duration per hop.
 第2に、図15の下段(ケース2)に示すように、全てのPUSCH repetitionが1つのTime domain windowに含まれるケースについて説明する。このようなケースにおいて、duration per hopを決定する方法として以下に示すオプションが考えられる。 Second, as shown in the lower part of FIG. 15 (Case 2), the case where all PUSCH repetitions are included in one Time domain window will be described. In such cases, the following options are conceivable as a method of determining the duration per hop.
 オプション1では、UE200は、PUSCH repetitionの回数に基づいてduration per hopを決定してもよい。例えば、first hopping durationは、floor(PUSCH repetition回数/2)の関数によって特定されてもよく、ceil(PUSCH repetition回数/2)の関数によって特定されてもよい。オプション2では、UE200は、PUSCH repetitionが割り当てられた時間リソースの数に基づいてduration per hopを決定してもよい。時間リソースは、スロットであってもよく、シンボルであってもよい。このようなオプション2において、UE200は、PUSCH repetitionに対して実際に割当可能な時間リソースに基づいて、duration per hopを決定してもよい。このようなケースにおいて、UE200は、衝突理由に基づいて、PUSCH repetitionに対して実際に割当可能な時間リソースを決定してもよい。例えば、UE200は、TDD pattern, SS/PBCH block symbolなどの衝突理由については考慮し、TDD pattern, SS/PBCH block symbolなどのリソースを、PUSCH repetitionに対して実際に割当可能な時間リソースから除外してもよい。一方で、UE200は、SFI, CI, PUCCHなどの衝突理由については考慮せずに、SFI, CI, PUCCHなどのリソースを、PUSCH repetitionに対して実際に割当可能な時間リソースから除外しなくてもよい。 In Option 1, the UE 200 may determine the duration per hop based on the number of PUSCH repetitions. For example, the first hopping duration may be specified by a function of floor(number of PUSCH repetitions/2) and may be specified by a function of ceil(number of PUSCH repetitions/2). In option 2, the UE 200 may determine the duration per hop based on the number of time resources assigned PUSCH repetition. A time resource may be a slot or a symbol. In Option 2 like this, the UE 200 may determine the duration per hop based on the actually allocatable time resources for the PUSCH repetition. In such cases, the UE 200 may determine the actually allocatable time resources for PUSCH repetition based on the collision reason. For example, the UE 200 considers collision reasons such as TDD pattern, SS/PBCH block symbol, etc., and excludes resources such as TDD pattern, SS/PBCH block symbol from the actually allocatable time resources for PUSCH repetition. may On the other hand, the UE 200 does not consider the collision reasons such as SFI, CI, and PUCCH, and does not exclude resources such as SFI, CI, and PUCCH from the time resources that can actually be allocated for PUSCH repetition. good.
 (4.9)動作例9
 以下において、動作例9について説明する。動作例9では、Joint channel estimationに関するUE Capabilityについて説明する。UE200は、UE CapabilityをNG RAN20に送信する。UE Capabilityは、ULチャネルの種類(PUSCH/PUCCH)毎に別々に報告されてもよく、ULチャネルの種類によらずにULチャネルとして纏めて報告されてもよい。
(4.9) Operation example 9
Operation example 9 will be described below. In operation example 9, UE Capability regarding joint channel estimation will be described. UE200 transmits UE Capability to NG RAN20. The UE Capability may be reported separately for each UL channel type (PUSCH/PUCCH), or may be collectively reported as a UL channel regardless of the UL channel type.
 UE Capabilityは、UE200が設定可能なTime domain windowの数を示す情報要素を含んでもよい。  UE Capability may include an information element indicating the number of Time domain windows that the UE 200 can set.
 UE Capabilityは、動作例4のオプション3にUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例4のオプション3は、2以上のTime domain windowが設定された場合に、2以上のTime domain windowを統合して、統合された区間を1つのTime domain windowとして適用するオプションである。  UE Capability may include an information element indicating whether or not the UE 200 supports Option 3 of Operation Example 4. As described above, option 3 of operation example 4 integrates two or more time domain windows and applies the integrated section as one time domain window when two or more time domain windows are set. Optional.
 UE Capabilityは、動作例1のMAC CEメッセージにUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例1のMAC CEメッセージは、1以上のTime domain windowを活性化(又は非活性化)するメッセージである。  UE Capability may include an information element indicating whether or not the UE 200 supports the MAC CE message of operation example 1. As described above, the MAC CE message of Operation Example 1 is a message that activates (or deactivates) one or more Time domain windows.
 UE Capabilityは、動作例2のDCIにUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例2のDCIは、Time domain windowをDynamicに設定する情報要素を含むメッセージである。  UE Capability may include an information element indicating whether or not the UE 200 supports DCI in operation example 2. As described above, the DCI of Operation Example 2 is a message that includes an information element that sets the Time domain window to Dynamic.
 UE Capabilityは、動作例3のTime domain windowにUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例3のTime domain windowは、ULチャネルを周波数方向においてホッピングするタイミングに基づいて設定される。  UE Capability may include an information element indicating whether or not the UE 200 supports the Time domain window of operation example 3. As described above, the time domain window of operation example 3 is set based on the timing of hopping the UL channel in the frequency direction.
 E Capabilityは、動作例5のTime domain windowで送信されるULチャネルの送信電力にUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例5のULチャネルの送信電力はTime domain window毎に決定される。 The E Capability may include an information element indicating whether or not the UE 200 supports the transmission power of the UL channel transmitted in the Time domain window of Operation Example 5. As described above, the transmission power of the UL channel in Operation Example 5 is determined for each Time domain window.
 UE Capabilityは、動作例6のAccumulated TPC Command valueにUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例6のAccumulated TPC Command valueは、Time domain windowが設定されているなどの適用条件が満たされた場合に用いる値である。  UE Capability may include an information element indicating whether or not the UE 200 supports the Accumulated TPC Command value of Operation Example 6. As described above, the Accumulated TPC Command value in Operation Example 6 is a value that is used when an applicable condition such as a Time domain window is set is satisfied.
 UE Capabilityは、動作例7のTA commandの適用タイミングにUE200が対応しているか否かを示す情報要素を含んでもよい。上述したように、動作例7のTA commandの適用タイミングは、Time domain windowの終了タイミングであってもよく(オプション1)、Time domain windowの終了タイミングを含むスロットの終了タイミングであってもよい(オプション2)。UE Capabilityは、オプション1に対応しているか否かを示す情報要素を含んでもよく、オプション2に対応しているか否かを示す情報要素を含んでもよい。  UE Capability may include an information element indicating whether or not the UE 200 supports the application timing of the TA command in Operation Example 7. As described above, the application timing of the TA command in Operation Example 7 may be the end timing of the Time domain window (option 1) or the end timing of the slot including the end timing of the Time domain window ( Option 2). UE Capability may include an information element indicating whether Option 1 is supported, and may include an information element indicating whether Option 2 is supported.
 UE Capabilityは、動作例8のduration per hopにUE200が対応しているか否かを示す情報要素を含んでもよい。動作例8のduration per hopは、ULチャネルの全ての繰り返し送信がTime domain windowに含まれるか否かに基づいて決定される。  UE Capability may include an information element indicating whether or not the UE 200 supports the duration per hop of operation example 8. The duration per hop of Operational Example 8 is determined based on whether all repeated transmissions of the UL channel are included in the Time domain window.
 UE Capabilityは、動作例1~動作例8で説明した様々なオプション毎にUE200が対応しているか否かを示す情報要素を含んでもよい。  UE Capability may include an information element indicating whether the UE 200 supports each of the various options described in Operation Example 1 to Operation Example 8.
 ここで、UE200は、UE200が対応する周波数を基準としてUE Capabilityを報告してもよい。UE200は、UE200が対応する周波数によらずにUE200としてUE Capabilityを報告してもよい。UE200は、UE200が対応する周波数毎にUE Capabilityを報告してもよい。UE200は、UE200が対応する周波数レンジ(例えば、FR1/FR2)毎にUE Capabilityを報告してもよい。UE200は、UE200が対応するSCS毎にUE Capabilityを報告してもよい。 Here, the UE 200 may report the UE Capability based on the frequency supported by the UE 200. UE200 may report UE Capability as UE200 regardless of the frequency that UE200 supports. UE 200 may report UE Capability for each frequency that UE 200 supports. UE 200 may report UE Capability for each frequency range (for example, FR1/FR2) that UE 200 supports. UE 200 may report UE Capability for each SCS that UE 200 supports.
 UE200は、UE200が対応する複式方式(TDD/FDD)を基準としてUE Capabilityを報告してもよい。UE200は、UE200は、UE200が対応する複式方式によらずにUE200としてUE Capabilityを報告してもよい。UE200は、UE200が対応する複式方式(TDD/FDD)毎にUE Capabilityを報告してもよい。  UE 200 may report UE Capability based on the duplex scheme (TDD/FDD) that UE 200 supports. UE 200 may report UE Capability as UE 200 regardless of the duplex scheme that UE 200 supports. UE 200 may report UE Capability for each duplex scheme (TDD/FDD) that UE 200 supports.
 (5)作用・効果
 実施形態では、UE200は、Time domain windowを設定する2以上の特定方法が定義される場合において、2以上の特定方法に基づいてTime domain windowを適用してもよい。このような構成によれば、2以上の特定方法によって2以上のTime domain windowが設定されるケースを想定した場合に、UE200が適用するTime domain windowを適切に決定することができる。
(5) Functions and effects In the embodiment, when two or more specifying methods for setting the time domain window are defined, the UE 200 may apply the time domain window based on two or more specifying methods. According to such a configuration, when assuming a case where two or more time domain windows are set by two or more identification methods, the time domain window to be applied by the UE 200 can be appropriately determined.
 実施形態では、UE200は、ULチャネルの送信電力を決定する間隔としてTime domain windowを用いてもよい。このような構成によれば、gNB100におけるJoint channel estimationを想定した場合に、Time domain window内でULチャネルの送信電力が変わらないため、Joint channel estimationを適切に実行することができる。 In the embodiment, the UE 200 may use the time domain window as the interval for determining the transmission power of the UL channel. According to such a configuration, assuming joint channel estimation in gNB 100, the transmission power of the UL channel does not change within the time domain window, so joint channel estimation can be performed appropriately.
 実施形態では、UE200は、Time domain windowが設定される場合において、新たに導入されたAccumulated TPC Command valueを用いてもよい。このような構成によれば、TPCコマンドの受信間隔が延びるケースを想定した場合に、Closed-loop電力制御を適切に実行することができる。 In the embodiment, the UE 200 may use the newly introduced Accumulated TPC Command value when the Time domain window is set. According to such a configuration, closed-loop power control can be executed appropriately when assuming a case where the TPC command reception interval is extended.
 実施形態では、UE200は、Time domain windowが設定される場合に、Time domain windowに基づいて、TA Commandを適用するタイミングを決定してもよい。このような構成によれば、TA Commandを適切なタイミングで反映させることができる。 In the embodiment, when the Time domain window is set, the UE 200 may determine the timing of applying the TA Command based on the Time domain window. According to such a configuration, the TA Command can be reflected at appropriate timing.
 実施形態では、UE200は、ULチャネルの全ての繰り返し送信がTime domain windowに含まれるか否かに基づいて、ULチャネルに関するduration per hopを決定してもよい。このような構成によれば、gNB100におけるJoint channel estimationを想定した場合に、duration per hopを適切に決定することができ、Joint channel estimationを適切に実行することができる。 In an embodiment, the UE 200 may determine the duration per hop for the UL channel based on whether all repeated transmissions of the UL channel are included in the Time domain window. According to such a configuration, assuming joint channel estimation in gNB 100, duration per hop can be determined appropriately, and joint channel estimation can be performed appropriately.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments Although the contents of the present invention have been described in accordance with the embodiments, it should be understood that the present invention is not limited to these descriptions and that various modifications and improvements are possible. self-evident to the trader.
 上述した開示では、PUSCH repetitionについて主として説明したが、上述した開示はこれに限定されるものではない。上述した開示は、Joint channel estimationが適用されるULチャネルに適用することができる。 Although PUSCH repetition has been mainly described in the above disclosure, the above disclosure is not limited to this. The above disclosure can be applied to UL channels where joint channel estimation is applied.
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 4 and 5) used to describe the above-described embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、当該装置のハードウェア構成の一例を示す図である。図16に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 16 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 16, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Furthermore, the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, a mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first", "second", etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
110 receiver 120 transmitter 130 controller 200 UE
210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (6)

  1.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、
     前記上りリンクチャネルの送信を制御する制御部と、を備え、
     前記制御部は、前記上りリンクチャネルの送信電力を決定する間隔として前記特定期間を用いる、端末。
    a transmission unit that repeatedly transmits an uplink channel in a specific period of multiple slots or more;
    A control unit that controls transmission of the uplink channel,
    The terminal, wherein the control unit uses the specific period as an interval for determining the transmission power of the uplink channel.
  2.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、
     前記上りリンクチャネルの送信を制御する制御部と、を備え、
     前記制御部は、前記特定期間に基づいて、ネットワークから受信するタイミング情報を適用するタイミングを決定する、端末。
    a transmission unit that repeatedly transmits an uplink channel in a specific period of multiple slots or more;
    A control unit that controls transmission of the uplink channel,
    The terminal, wherein the control unit determines timing to apply timing information received from a network based on the specific period.
  3.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信する送信部と、
     前記上りリンクチャネルの送信を制御する制御部と、を備え、
     前記制御部は、前記上りリンクチャネルの全ての繰り返し送信が前記特定期間に含まれるか否かに基づいて、前記上りリンクチャネルを周波数方向においてホッピングさせる間隔を決定する、端末。
    a transmission unit that repeatedly transmits an uplink channel in a specific period of multiple slots or more;
    A control unit that controls transmission of the uplink channel,
    The terminal, wherein the control unit determines an interval for hopping the uplink channel in the frequency direction based on whether or not all repeated transmissions of the uplink channel are included in the specific period.
  4.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、
     前記上りリンクチャネルの送信電力を決定する間隔として前記特定期間を用いるステップと、を備える、無線通信方法。
    a step of repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more;
    and using the specific period as an interval for determining the transmission power of the uplink channel.
  5.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、
     前記特定期間に基づいて、ネットワークから受信するタイミング情報を適用するタイミングを決定するステップと、を備える、無線通信方法。
    a step of repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more;
    determining when to apply timing information received from a network based on the specified period of time.
  6.  複数スロット以上の特定期間において、上りリンクチャネルを繰り返し送信するステップと、
     前記上りリンクチャネルの全ての繰り返し送信が前記特定期間に含まれるか否かに基づいて、前記上りリンクチャネルを周波数方向においてホッピングさせる間隔を決定するステップと、を備える、無線通信方法。
    a step of repeatedly transmitting an uplink channel in a specific period of a plurality of slots or more;
    determining an interval for hopping the uplink channel in the frequency direction based on whether or not all repeated transmissions of the uplink channel are included in the specific period.
PCT/JP2021/017760 2021-05-10 2021-05-10 Terminal and wireless communication method WO2022239081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017760 WO2022239081A1 (en) 2021-05-10 2021-05-10 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017760 WO2022239081A1 (en) 2021-05-10 2021-05-10 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022239081A1 true WO2022239081A1 (en) 2022-11-17

Family

ID=84028525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017760 WO2022239081A1 (en) 2021-05-10 2021-05-10 Terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2022239081A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198075A (en) * 2018-05-10 2019-11-14 エルジー エレクトロニクス インコーポレイティド Method for transmitting and receiving random access preamble in radio communication system and device therefor
WO2020218529A1 (en) * 2019-04-25 2020-10-29 シャープ株式会社 Base station device, terminal device, and communication method
JP2021500822A (en) * 2018-04-05 2021-01-07 エルジー エレクトロニクス インコーポレイティド A method of transmitting or receiving signals in a wireless communication system and a device for that purpose.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021500822A (en) * 2018-04-05 2021-01-07 エルジー エレクトロニクス インコーポレイティド A method of transmitting or receiving signals in a wireless communication system and a device for that purpose.
JP2019198075A (en) * 2018-05-10 2019-11-14 エルジー エレクトロニクス インコーポレイティド Method for transmitting and receiving random access preamble in radio communication system and device therefor
WO2020218529A1 (en) * 2019-04-25 2020-10-29 シャープ株式会社 Base station device, terminal device, and communication method

Similar Documents

Publication Publication Date Title
JP7499384B2 (en) Terminal
WO2022201403A1 (en) Terminal and wireless communication method
WO2022149270A1 (en) Terminal, base station and radio communication method
WO2022079876A1 (en) Terminal
JP7477523B2 (en) Terminal
WO2022244496A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022201401A1 (en) Terminal and radio base station
WO2022239082A1 (en) Terminal and wireless communication method
WO2022162749A1 (en) Terminal, base station, and wireless communication method
WO2022239081A1 (en) Terminal and wireless communication method
WO2022239080A1 (en) Terminal and radio communication method
WO2022244097A1 (en) Terminal and wireless communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022195787A1 (en) Terminal, wireless communication system and wireless communication method
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190377A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022201404A1 (en) Terminal
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244497A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022208878A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023022184A1 (en) Terminal and wireless communication method
WO2022215272A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2023026968A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP