WO2022195787A1 - Terminal, wireless communication system and wireless communication method - Google Patents

Terminal, wireless communication system and wireless communication method Download PDF

Info

Publication number
WO2022195787A1
WO2022195787A1 PCT/JP2021/010946 JP2021010946W WO2022195787A1 WO 2022195787 A1 WO2022195787 A1 WO 2022195787A1 JP 2021010946 W JP2021010946 W JP 2021010946W WO 2022195787 A1 WO2022195787 A1 WO 2022195787A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
pucch
carrier
pusch
phr
Prior art date
Application number
PCT/JP2021/010946
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/010946 priority Critical patent/WO2022195787A1/en
Publication of WO2022195787A1 publication Critical patent/WO2022195787A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a terminal, a base station, and a wireless communication method that perform wireless communication, and particularly to a terminal, a wireless communication system, and a wireless communication method related to reporting of power reserve information.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • 3GPP Release 15 supports simultaneous transmission of two or more uplink channels (PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel)) transmitted in the same slot.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • Non-Patent Document 1 it was agreed to support simultaneous transmission of PUCCH or PUSCH for traffic with different priorities (for example, Non-Patent Document 1).
  • the present invention has been made in view of such circumstances, and a terminal and a radio communication system that can appropriately calculate power reserve information in simultaneous transmission of a signal via PUCCH and a signal via PUSCH. and to provide a wireless communication method.
  • the present disclosure is a terminal, comprising a control unit that performs simultaneous transmission of a signal via a first uplink channel of a first carrier and a signal via two or more second uplink channels of a second carrier. , wherein, in the simultaneous transmission, the control unit calculates power reserve information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels and
  • the present disclosure is a wireless communication system comprising a terminal and a base station, wherein the terminal transmits a signal via a first uplink channel of a first carrier and two or more second uplink channels of a second carrier. wherein the control unit performs simultaneous transmission with the signal selected based on a specific criterion from among the signals transmitted through the two or more second uplink channels in the simultaneous transmission.
  • the gist is to calculate the power reserve information based on the above.
  • the present disclosure is a wireless communication method comprising the steps of performing simultaneous transmission of signals over a first uplink channel of a first carrier and signals over two or more second uplink channels of a second carrier; , in the simultaneous transmission, calculating power margin information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels. do.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining the PHR.
  • FIG. 7 is a diagram for explaining the PHR.
  • FIG. 8 is a diagram for explaining the first method.
  • FIG. 9 is a diagram for explaining the first method.
  • FIG. 10 is a diagram for explaining the second method.
  • FIG. 11 is a diagram for explaining the second method.
  • FIG. 12 is a diagram for explaining the third method.
  • FIG. 13 is a diagram for explaining the wireless communication method.
  • FIG. 14 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for PDSCH Physical Downlink Shared Channel
  • an uplink data channel specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
  • DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation.
  • DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
  • a DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • a data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 combines a signal via a first uplink channel (hereinafter referred to as a first UL channel) on a first carrier (hereinafter referred to as a first CC) and two or more second carriers (hereinafter referred to as a second CC).
  • a first uplink channel hereinafter referred to as a first UL channel
  • a first CC first carrier
  • second CC 2 uplink channel
  • the first UL channel may be PUCCH and the second UL channel may be PUSCH.
  • the first UL channel may be PUSCH and the second UL channel may be PUCCH.
  • the priority of signals over the first UL channel (e.g. UCI) may be the same as the priority of signals over the second UL channel (e.g. UCI) and the priority of signals over the second UL channel (e.g. UCI) priority may be different.
  • PUCCH may be used synonymously with a signal (eg, UCI) transmitted via PUCCH.
  • PUSCH may be used synonymously with signals (eg, UCI or data) transmitted over PUSCH.
  • Simultaneous transmission may be read as simultaneous transmission of PUCCH and PUSCH. Simultaneous transmission may be that PUCCH and PUSCH are transmitted separately and simultaneously without multiplexing PUCCH and PUSCH.
  • control unit 270 calculates power margin information (hereinafter referred to as PH; Power Headroom) based on a signal selected based on a specific criterion from among signals via two or more second UL channels.
  • PH power margin information
  • control unit 270 controls the above-described control signal/reference signal processing unit 240, and the control signal/reference signal processing unit 240 generates a report including the calculated PH (hereinafter referred to as PHR; Power Headroom Report). Send to NG RAN20.
  • PHR Power Headroom Report
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive the UL signal via PUCCH or PUSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
  • the control unit 130 controls the gNB100.
  • the control unit 130 expects to receive PHR for PH calculated based on signals over a second UL channel selected based on certain criteria.
  • PHR The PHR of the embodiment will be described below. As for PHR, the calculation method of PH will be described later.
  • PH may be associated with Index ("PH" in FIG. 6) for each level ("Power Headroom Level” in FIG. 6).
  • the UE 200 may identify the level corresponding to the calculated PH and transmit the PHR including the index associated with the identified level.
  • a PHR may be a MAC CE message.
  • the level is associated with the calculated PH range (Measured quality value).
  • Such a correspondence relationship may be predetermined in the wireless communication system 10.
  • simultaneous transmission may mean that the first UL channel and the second UL channel overlap in time. More specifically, simultaneous transmission may mean that the assigned Slot of the first UL channel overlaps in time with the assigned Slot of the second UL channel.
  • the priority of the first UL channel is different from the priority of the second UL channel, and the SCS of the first CC is the same as the SCS of the second CC.
  • the first UL channel is LP (Low Priority) PUSCH and the second UL channel is HP (High Priority) PUCCH will be exemplified. In such cases, the following options can be considered as specific criteria.
  • the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 8, when the SCS (eg, 15 kHz) of the first CC (b 1 ) and the SCS (eg, 15 kHz) of the second CC (b 2 ) are the same, LP PUSCH and 2 or more HP In the case where PUCCH simultaneous transmission is performed, the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 8) is the first HP PUCCH allocated to the slot of the second CC.
  • the specific criteria for the first option may be read as follows.
  • UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 )
  • UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ).
  • the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs. Any HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH.
  • the specific criterion may be a criterion for selecting an HP PUCCH with the highest transmission power among two or more HP PUCCHs. For example, as shown in FIG.
  • the HP PUCCH used for PH calculation is the HP PUCCH with the maximum transmission power included in the slot of the second CC.
  • the specific criteria for the second option may be read as follows.
  • UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 )
  • UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ).
  • the first UL channel is HP PUCCH and the second UL channel is LP PUSCH. That is, a case where the SCS for HP PUCCH is lower than the SCS for LP PUSCH will be exemplified. In such cases, the following options can be considered as specific criteria.
  • the specific criterion may be a criterion for selecting the LP PUSCH that is temporally earliest among two or more LP PUSCHs. For example, as shown in FIG. 10, when the SCS (eg, 15 kHz) of the first CC (b 1 ) is lower than the SCS (eg, 60 kHz) of the second CC (b 2 ), HP PUCCH and two or more LP PUSCHs , the LP PUSCH used for PH calculation (LP PUSCH for PHR in FIG. 10) is the first LP PUSCH assigned to two or more slots of the second CC.
  • the SCS eg, 15 kHz
  • the SCS eg, 60 kHz
  • the first HP PUCCH may be used to calculate PH and any HP PUCCH may be used to calculate PH.
  • the specific criteria for the first option may be read as follows.
  • the UE 200 provides the PHR for HP PUCCH in the Slot on the active UL BWP (b 1 )
  • the UE 200 provides the PHR on the active UL BWP (b 2 ) temporally overlapping with the Slot on the active UL BWP (b 1 ).
  • PHR is provided based on the first LP PUSCH in two or more Slots of .
  • the specific criterion may be a criterion for selecting any LP PUSCH from two or more LP PUSCHs. Any LP PUSCH may be determined based on the transmission power of the LP PUSCH, the symbols assigned to the LP PUSCH, and the RBs assigned to the LP PUSCH. For example, the specific criterion may be a criterion for selecting the LP PUSCH with the highest transmission power among two or more LP PUSCHs.
  • the specific criteria for the second option may be read as follows.
  • the UE 200 provides the PHR for HP PUCCH in the Slot on the active UL BWP (b 1 )
  • the UE 200 provides the PHR on the active UL BWP (b 2 ) temporally overlapping with the Slot on the active UL BWP (b 1 ).
  • PHR is provided based on any LP PUSCH in two or more slots of .
  • the first UL channel is LP PUSCH and the second UL channel is HP PUCCH. That is, a case where the SCS for HP PUCCH is higher than the SCS for LP PUSCH will be exemplified. In such cases, the following options can be considered as specific criteria.
  • the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 11, when the SCS (eg, 15 kHz) of the first CC (b 1 ) is lower than the SCS (eg, 60 kHz) of the second CC (b 2 ), LP PUSCH and two or more HP PUCCH , the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 11) is the first HP PUCCH allocated to the slot of the second CC.
  • the specific criteria for the first option may be read as follows.
  • UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 )
  • UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ).
  • PHR is provided based on the first HP PUCCH in two or more Slots of .
  • the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs.
  • HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH.
  • the specific criterion may be a criterion for selecting the HP PUCCH with the highest transmission power among two or more HP PUCCHs.
  • the specific criteria for the second option may be read as follows.
  • UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 )
  • UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ).
  • the second method will exemplify a case where the priority of the first UL channel is different from the priority of the second UL channel, and the SCS of the first CC is different from the SCS of the second CC. Specifically, a case where the SCS of the first CC is lower than the SCS of the second CC will be illustrated. Furthermore, a case where the first UL channel is LP PUSCH and repetition transmission (hereinafter referred to as nominal repetition) across two or more slots is applied to LP PUSCH will be exemplified. The nominal repetition may be PUSCH repetition Type B.
  • the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 12, when the SCS of the first CC (b 1 ) (eg, 30 kHz) is lower than the SCS of the second CC (b 2 ) (eg, 60 kHz), the nominal repetition of PUSCH repetition Type B is In the case where simultaneous transmission of the applied LP PUSCH and two or more HP PUCCH is performed, the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 12) is the first HP assigned to the slot of the second CC. PUCCH.
  • the specific criteria for the first option may be read as follows.
  • UE 200 uses active UL BWP (b 1 ) provides PHR based on the first HP PUCCH in two or more slots on the active UL BWP (b 2 ) that temporally overlaps two or more slots on the nominal repetition above.
  • the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs.
  • HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH.
  • the specific criterion may be a criterion for selecting the HP PUCCH with the highest transmission power among two or more HP PUCCHs.
  • the specific criteria for the second option may be read as follows.
  • UE 200 uses active UL BWP (b 1 ) provides PHR based on any HP PUCCH in two or more slots on the active UL BWP (b 2 ) temporally overlapping with two or more slots on the nominal repetition above.
  • PH calculation method An example of a PH calculation method in a case where simultaneous transmission of PUCCH and PUSCH is performed will be described below. At least one of PUCCH and PUSCH is a UL channel selected based on the specific criteria described above.
  • the UE 200 calculates PH based on the formula shown below.
  • a PHR related to PH calculated based on the first method may be called a type 4 PHR to distinguish it from existing PHR types (Type 1 PH report to Type 3 PH report).
  • the downlink pathloss estimate may be path loss related to PUCCH or path loss related to PUSCH.
  • PUCCH-related pathloss may be used for PUCCH transmission power
  • PUSCH-related pathloss may be used for PUSCH transmission power.
  • the details of each term may be interpreted based on the descriptions in ⁇ 7.1.1, ⁇ 7.2.1, ⁇ 7.7, etc. of 3GPP TS38.213 v16.4.0.
  • the UE 200 calculates PH based on the maximum transmission (output) power of the UE 200, PUSCH transmission power, and PUCCH transmission power.
  • the UE 200 receives the RRC message from the NG RAN 20.
  • the RRC message may contain parameters related to PHR. Parameters for PHR may be referred to as phr-Config.
  • the phr-Config may contain parameters to set phr-PeriodicTimer, phr-ProhibitTimer, phr-Tx-PowerFactorChange, etc.
  • phr-PeriodicTimer is a timer that measures the time to transmit PHR.
  • phr-ProhibitTimer is a timer that measures the time period during which PHR transmission is prohibited.
  • phr-Tx-PowerFactorChange is a threshold for determining a change in path loss.
  • the UE 200 calculates PH. As described above, the UE 200 calculates PH based on UL channels selected based on certain criteria.
  • a trigger may be the expiration of a phr-PeriodicTimer.
  • the trigger may be that phr-ProhibitTimer expires and pathloss changes more than phr-Tx-PowerFactorChange.
  • step S13 the UE 200 transmits the PHR.
  • the PHR may include an Index associated with the PH level.
  • the UE 200 performs simultaneous transmission of the first UL channel of the first CC and two or more second UL channels of the second CC in the simultaneous transmission. Calculate PH based on the second UL channel. According to such a configuration, PH can be calculated appropriately even when simultaneous transmission of PUCCH and PUSCH is newly assumed.
  • the second UL channel used for PH calculation is selected from among two or more second UL channels based on a specific criterion.
  • embodiments are not so limited.
  • the first UL channel used for PH calculation is also selected from among the two or more first UL channels based on a specific criterion. good too.
  • the identification criterion for the first UL channel the identification criterion for the second UL channel described above may be used.
  • simultaneous transmission of PUCCH and PUSCH is defined based on Slots.
  • embodiments are not so limited.
  • Simultaneous transmission of PUCCH and PUSCH may be defined based on Sub-slots. In such cases, Slot may be read as Sub-slot.
  • simultaneous transmission of PUCCH and PUSCH may be defined based on specific time units, such as one or more symbols. In such a case, Slot may be read as a specific time unit.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal equipped with a control unit for simultaneously transmitting a signal via a first uplink channel of a first carrier and a signal via two or more second uplink channels of a second carrier, wherein the control unit calculates power headroom information on the basis of the signal which is selected on the basis of a specific standard from among the signals transmitted via the two or more second uplink channels during the simultaneous transmission.

Description

端末、無線通信システム及び無線通信方法Terminal, wireless communication system and wireless communication method
 本開示は、無線通信を実行する端末、基地局及び無線通信方法、特に、電力余力情報の報告に関連する端末、無線通信システム及び無線通信方法に関する。 The present disclosure relates to a terminal, a base station, and a wireless communication method that perform wireless communication, and particularly to a terminal, a wireless communication system, and a wireless communication method related to reporting of power reserve information.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 3GPPのRelease 15では、同一スロット送信される2以上の上りリンクチャネル(PUCCH(Physical Uplink Control Channel)及びPUSCH(Physical Uplink Shared Channel))の同時送信がサポートされる。  3GPP Release 15 supports simultaneous transmission of two or more uplink channels (PUCCH (Physical Uplink Control Channel) and PUSCH (Physical Uplink Shared Channel)) transmitted in the same slot.
 さらに、3GPPのRelease 17では、異なる優先度を有するトラフィックに関するPUCCH又はPUSCHの同時送信をサポートすることが合意された(例えば、非特許文献1)。 Furthermore, in Release 17 of 3GPP, it was agreed to support simultaneous transmission of PUCCH or PUSCH for traffic with different priorities (for example, Non-Patent Document 1).
 このような背景下において、発明者等は、鋭意検討の結果、PUCCHを介した信号とPUSCHを介した信号との同時送信において、電力余力情報(Power Headroom)を適切に計算する仕組みを導入する必要性を見出した。 Against this background, the inventors, as a result of intensive studies, introduced a mechanism for appropriately calculating power headroom information in simultaneous transmission of a signal via PUCCH and a signal via PUSCH. found the need.
 そこで、本発明は、このような状況に鑑みてなされたものであり、PUCCHを介した信号とPUSCHを介した信号との同時送信において、電力余力情報を適切に計算し得る端末、無線通信システム及び無線通信方法の提供を目的とする。 Therefore, the present invention has been made in view of such circumstances, and a terminal and a radio communication system that can appropriately calculate power reserve information in simultaneous transmission of a signal via PUCCH and a signal via PUSCH. and to provide a wireless communication method.
 本開示は、端末であって、第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行する制御部を備え、前記制御部は、前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算する、ことを要旨とする。 The present disclosure is a terminal, comprising a control unit that performs simultaneous transmission of a signal via a first uplink channel of a first carrier and a signal via two or more second uplink channels of a second carrier. , wherein, in the simultaneous transmission, the control unit calculates power reserve information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels and
 本開示は、端末と基地局とを備える無線通信システムであって、前記端末は、第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行する制御部を備え、前記制御部は、前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算する、ことを要旨とする。 The present disclosure is a wireless communication system comprising a terminal and a base station, wherein the terminal transmits a signal via a first uplink channel of a first carrier and two or more second uplink channels of a second carrier. wherein the control unit performs simultaneous transmission with the signal selected based on a specific criterion from among the signals transmitted through the two or more second uplink channels in the simultaneous transmission. The gist is to calculate the power reserve information based on the above.
 本開示は、無線通信方法であって、第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行するステップと、前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算するステップと、を備えることを要旨とする。 The present disclosure is a wireless communication method comprising the steps of performing simultaneous transmission of signals over a first uplink channel of a first carrier and signals over two or more second uplink channels of a second carrier; , in the simultaneous transmission, calculating power margin information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels. do.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10. As shown in FIG. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. As shown in FIG. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of UE200. 図5は、gNB100の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of gNB100. 図6は、PHRを説明するための図である。FIG. 6 is a diagram for explaining the PHR. 図7は、PHRを説明するための図である。FIG. 7 is a diagram for explaining the PHR. 図8は、第1方法を説明するための図である。FIG. 8 is a diagram for explaining the first method. 図9は、第1方法を説明するための図である。FIG. 9 is a diagram for explaining the first method. 図10は、第2方法を説明するための図である。FIG. 10 is a diagram for explaining the second method. 図11は、第2方法を説明するための図である。FIG. 11 is a diagram for explaining the second method. 図12は、第3方法を説明するための図である。FIG. 12 is a diagram for explaining the third method. 図13は、無線通信方法を説明するための図である。FIG. 13 is a diagram for explaining the wireless communication method. 図14は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 14 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B). Note that the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200. gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 Also, the wireless communication system 10 supports multiple frequency ranges (FR). FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
In FR1, a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz may be used and a bandwidth (BW) of 5-100 MHz may be used. FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 It should be noted that SCS may be interpreted as numerology. numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth part)などと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like. Also, the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a type of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel). However, an uplink data channel, specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation. DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 A DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 In addition, DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described.
 第1に、UE200の機能ブロック構成について説明する。 First, the functional block configuration of the UE200 will be explained.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block diagram of the UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR. The radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Also, the channel includes a control channel and a data channel. Control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. A data channel may be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Allocation)、TDRA(Time Domain Resource Allocation)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal/reference signal processing unit 240 may receive downlink control information (DCI). DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Allocation), TDRA (Time Domain Resource Allocation), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the DCI format. The value stored in the CI field is an information element that specifies the CC to which DCI is applied. The value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies. The BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied. A frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies. The time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message. A time-domain resource may be identified by a value stored in the TDRA field and a default table. The value stored in the MCS field is an information element that specifies the MCS to which DCI applies. The MCS is specified by the values stored in the MCS and the MCS table. The MCS table may be specified by RRC messages or identified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied. The value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data. The value stored in the RV field is an information element that specifies the data redundancy to which DCI is applied.
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、第1キャリア(以下、第1CC)の第1上りリンクチャネル(以下、第1ULチャネル)を介した信号と第2キャリア(以下、第2CC)の2以上の第2上りリンクチャネル(以下、第2ULチャネル)を介した信号との同時送信を実行する制御部を構成する。 The control unit 270 controls each functional block that configures the UE200. In the embodiment, the control unit 270 combines a signal via a first uplink channel (hereinafter referred to as a first UL channel) on a first carrier (hereinafter referred to as a first CC) and two or more second carriers (hereinafter referred to as a second CC). 2 uplink channel (hereinafter, referred to as a second UL channel) to perform simultaneous transmission with a signal.
 ここで、第1ULチャネルがPUCCHであり、第2ULチャネルがPUSCHであってもよい。或いは、第1ULチャネルがPUSCHであり、第2ULチャネルがPUCCHであってもよい。第1ULチャネルを介した信号(例えば、UCI)の優先度は、第2ULチャネルを介した信号(例えば、UCI)の優先度と同じであってもよく、第2ULチャネルを介した信号(例えば、UCI)の優先度と異なってもよい。 Here, the first UL channel may be PUCCH and the second UL channel may be PUSCH. Alternatively, the first UL channel may be PUSCH and the second UL channel may be PUCCH. The priority of signals over the first UL channel (e.g. UCI) may be the same as the priority of signals over the second UL channel (e.g. UCI) and the priority of signals over the second UL channel (e.g. UCI) priority may be different.
 以下において、PUCCHは、PUCCHを介して送信される信号(例えば、UCI)と同義で用いられてもよい。PUSCHは、PUSCHを介して送信される信号(例えば、UCI又はデータ)と同義で用いられてもよい。同時送信は、PUCCH及びPUSCHの同時送信であると読み替えてもよい。同時送信は、PUCCH及びPUSCHが多重されずに、PUCCH及びPUSCHが別々かつ同時に送信されることであってもよい。 In the following, PUCCH may be used synonymously with a signal (eg, UCI) transmitted via PUCCH. PUSCH may be used synonymously with signals (eg, UCI or data) transmitted over PUSCH. Simultaneous transmission may be read as simultaneous transmission of PUCCH and PUSCH. Simultaneous transmission may be that PUCCH and PUSCH are transmitted separately and simultaneously without multiplexing PUCCH and PUSCH.
 制御部270は、同時送信において、2以上の第2ULチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報(以下、PH; Power Headroom)を計算する。 In simultaneous transmission, the control unit 270 calculates power margin information (hereinafter referred to as PH; Power Headroom) based on a signal selected based on a specific criterion from among signals via two or more second UL channels.
 なお、制御部270は、上述した制御信号・参照信号処理部240を制御しており、制御信号・参照信号処理部240は、計算されたPHを含む報告(以下、PHR; Power Headroom Report)をNG RAN20に送信する。 Note that the control unit 270 controls the above-described control signal/reference signal processing unit 240, and the control signal/reference signal processing unit 240 generates a report including the calculated PH (hereinafter referred to as PHR; Power Headroom Report). Send to NG RAN20.
 第2に、gNB100の機能ブロック構成について説明する。 Second, the functional block configuration of gNB100 will be explained.
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。 FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。 The receiving unit 110 receives various signals from the UE200. The receiver 110 may receive the UL signal via PUCCH or PUSCH.
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。 The transmission unit 120 transmits various signals to the UE200. Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
 制御部130は、gNB100を制御する。制御部130は、特定基準に基づいて選択された第2ULチャネルを介した信号に基づいて計算されたPHに関するPHRの受信を想定する。 The control unit 130 controls the gNB100. The control unit 130 expects to receive PHR for PH calculated based on signals over a second UL channel selected based on certain criteria.
 (3)PHR
 以下において、実施形態のPHRについて説明する。PHRについては、PHの計算方法については後述する。
(3) PHR
The PHR of the embodiment will be described below. As for PHR, the calculation method of PH will be described later.
 例えば、図6に示すように、PHは、レベル(図6では”Power Headroom Level”)毎にIndex(図6では”PH”)と対応付けられてもよい。UE200は、計算されたPHと対応するレベルを特定し、特定されたレベルと対応付けられたIndexを含むPHRを送信してもよい。PHRはMAC CEメッセージであってもよい。 For example, as shown in FIG. 6, PH may be associated with Index ("PH" in FIG. 6) for each level ("Power Headroom Level" in FIG. 6). The UE 200 may identify the level corresponding to the calculated PH and transmit the PHR including the index associated with the identified level. A PHR may be a MAC CE message.
 図7に示すように、レベル(Reported value)は、計算されたPHの範囲(Measured quality value)と対応付けられる。このような対応関係は、無線通信システム10で予め定められていてもよい。 As shown in FIG. 7, the level (Reported value) is associated with the calculated PH range (Measured quality value). Such a correspondence relationship may be predetermined in the wireless communication system 10. FIG.
 (4)特定基準
 以下において、実施形態の特定基準の詳細について説明する。以下において、同時送信は、第1ULチャネル及び第2ULチャネルが時間的に重なることを意味してもよい。さらに、詳細には、同時送信は、第1ULチャネルの割り当てられるSlotが第2ULチャネルの割り当てられるSlotと時間的に重なることを意味してもよい。
(4) Specific Criteria Details of the specific criteria of the embodiment will be described below. In the following, simultaneous transmission may mean that the first UL channel and the second UL channel overlap in time. More specifically, simultaneous transmission may mean that the assigned Slot of the first UL channel overlaps in time with the assigned Slot of the second UL channel.
 (4.1)第1方法
 第1方法では、第1ULチャネルの優先度が第2ULチャネルの優先度と異なり、第1CCのSCSが第2CCのSCSが同じであるケースについて例示する。具体的には、第1ULチャネルがLP(Low Priority) PUSCHであり、第2ULチャネルがHP(High Priority) PUCCHであるケースについて例示する。このようなケースにおいて、特定基準としては、以下に示すオプションが考えられる。
(4.1) First Method In the first method, the priority of the first UL channel is different from the priority of the second UL channel, and the SCS of the first CC is the same as the SCS of the second CC. Specifically, a case where the first UL channel is LP (Low Priority) PUSCH and the second UL channel is HP (High Priority) PUCCH will be exemplified. In such cases, the following options can be considered as specific criteria.
 第1オプションでは、特定基準は、2以上のHP PUCCHの中で時間的に最も早いHP PUCCHを選択する基準であってもよい。例えば、図8に示すように、第1CC(b1)のSCS(例えば、15kHz)及び第2CC(b2)のSCS(例えば、15kHz)が同じである場合に、LP PUSCH及び2以上のHP PUCCHの同時送信が実行されるケースにおいて、PHの計算に用いるHP PUCCH(図8では、HP PUCCH for PHR)は、第2CCのSlotに割り当てられる最初のHP PUCCHである。 In a first option, the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 8, when the SCS (eg, 15 kHz) of the first CC (b 1 ) and the SCS (eg, 15 kHz) of the second CC (b 2 ) are the same, LP PUSCH and 2 or more HP In the case where PUCCH simultaneous transmission is performed, the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 8) is the first HP PUCCH allocated to the slot of the second CC.
 第1オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上のSlot内の最初のHP PUCCHに基づいてPHRを提供する。 The specific criteria for the first option may be read as follows. When UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 ), UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ). provide PHR based on the first HP PUCCH in the Slot.
 第2オプションでは、特定基準は、2以上のHP PUCCHのいずれかのHP PUCCHを選択する基準であってもよい。いずれかのHP PUCCHは、HP PUCCHの送信電力、HP PUCCHに割り当てられるシンボル、HP PUCCHに割り当てられるRBsに基づいて決定されてもよい。例えば、特定基準は、2以上のHP PUCCHの中で送信電力が最も大きいHP PUCCHを選択する基準であってもよい。例えば、図9に示すように、第1CC(b1)のSCS(例えば、15kHz)及び第2CC(b2)のSCS(例えば、15kHz)が同じである場合に、LP PUSCH及び2以上のHP PUCCHの同時送信が実行されるケースにおいて、PHの計算に用いるHP PUCCH(図9では、HP PUCCH for PHR)は、第2CCのSlotに含まれる最大送信電力のHP PUCCHである。 In a second option, the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs. Any HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH. For example, the specific criterion may be a criterion for selecting an HP PUCCH with the highest transmission power among two or more HP PUCCHs. For example, as shown in FIG. 9, when the SCS (eg, 15 kHz) of the first CC (b 1 ) and the SCS (eg, 15 kHz) of the second CC (b 2 ) are the same, LP PUSCH and two or more HP In the case where simultaneous transmission of PUCCHs is performed, the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 9) is the HP PUCCH with the maximum transmission power included in the slot of the second CC.
 第2オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上のSlot内のいずれかのHP PUCCHに基づいてPHRを提供する。 The specific criteria for the second option may be read as follows. When UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 ), UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ). Provide PHR based on any HP PUCCH in this Slot.
 (4.2)第2方法
 第2方法では、第1ULチャネルの優先度が第2ULチャネルの優先度と異なり、第1CCのSCSが第2CCのSCSが異なるケースについて例示する。具体的には、第1CCのSCSが第2CCのSCSよりも低いケースについて例示する。
(4.2) Second Method In the second method, the case where the priority of the first UL channel is different from the priority of the second UL channel and the SCS of the first CC is different from the SCS of the second CC will be illustrated. Specifically, a case where the SCS of the first CC is lower than the SCS of the second CC will be illustrated.
 第1に、第1ULチャネルがHP PUCCHであり、第2ULチャネルがLP PUSCHであるケースについて例示する。すなわち、HP PUCCHに関するSCSがLP PUSCHに関するSCSよりも低いケースについて例示する。このようなケースにおいて、特定基準としては、以下に示すオプションが考えられる。 First, a case is illustrated where the first UL channel is HP PUCCH and the second UL channel is LP PUSCH. That is, a case where the SCS for HP PUCCH is lower than the SCS for LP PUSCH will be exemplified. In such cases, the following options can be considered as specific criteria.
 第1オプションでは、特定基準は、2以上のLP PUSCHの中で時間的に最も早いLP PUSCHを選択する基準であってもよい。例えば、図10に示すように、第1CC(b1)のSCS(例えば、15kHz)が第2CC(b2)のSCS(例えば、60kHz)よりも低い場合に、HP PUCCH及び2以上のLP PUSCHの同時送信が実行されるケースにおいて、PHの計算に用いるLP PUSCH(図10では、LP PUSCH for PHR)は、第2CCの2以上のSlotに割り当てられる最初のLP PUSCHである。 In a first option, the specific criterion may be a criterion for selecting the LP PUSCH that is temporally earliest among two or more LP PUSCHs. For example, as shown in FIG. 10, when the SCS (eg, 15 kHz) of the first CC (b 1 ) is lower than the SCS (eg, 60 kHz) of the second CC (b 2 ), HP PUCCH and two or more LP PUSCHs , the LP PUSCH used for PH calculation (LP PUSCH for PHR in FIG. 10) is the first LP PUSCH assigned to two or more slots of the second CC.
 なお、図10では、第1CCのSlotにおいて2つのHP PUCCHが割り当てられている。このようなケースにおいて、最初のHP PUCCHがPHの計算に用いられてもよく、いずれかのHP PUCCHがPHの計算に用いられてもよい。 Note that in FIG. 10, two HP PUCCHs are assigned to the first CC slot. In such cases, the first HP PUCCH may be used to calculate PH and any HP PUCCH may be used to calculate PH.
 第1オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のHP PUCCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上の2以上のSlot内の最初のLP PUSCHに基づいてPHRを提供する。 The specific criteria for the first option may be read as follows. When the UE 200 provides the PHR for HP PUCCH in the Slot on the active UL BWP (b 1 ), the UE 200 provides the PHR on the active UL BWP (b 2 ) temporally overlapping with the Slot on the active UL BWP (b 1 ). PHR is provided based on the first LP PUSCH in two or more Slots of .
 第2オプションでは、特定基準は、2以上のLP PUSCHのいずれかのLP PUSCHを選択する基準であってもよい。いずれかのLP PUSCHは、LP PUSCHの送信電力、LP PUSCHに割り当てられるシンボル、LP PUSCHに割り当てられるRBsに基づいて決定されてもよい。例えば、特定基準は、2以上のLP PUSCHの中で送信電力が最も大きいLP PUSCHを選択する基準であってもよい。 In the second option, the specific criterion may be a criterion for selecting any LP PUSCH from two or more LP PUSCHs. Any LP PUSCH may be determined based on the transmission power of the LP PUSCH, the symbols assigned to the LP PUSCH, and the RBs assigned to the LP PUSCH. For example, the specific criterion may be a criterion for selecting the LP PUSCH with the highest transmission power among two or more LP PUSCHs.
 第2オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のHP PUCCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上の2以上のSlot内のいずれかのLP PUSCHに基づいてPHRを提供する。 The specific criteria for the second option may be read as follows. When the UE 200 provides the PHR for HP PUCCH in the Slot on the active UL BWP (b 1 ), the UE 200 provides the PHR on the active UL BWP (b 2 ) temporally overlapping with the Slot on the active UL BWP (b 1 ). PHR is provided based on any LP PUSCH in two or more slots of .
 第2に、第1ULチャネルがLP PUSCHであり、第2ULチャネルがHP PUCCHであるケースについて例示する。すなわち、HP PUCCHに関するSCSがLP PUSCHに関するSCSよりも高いケースについて例示する。このようなケースにおいて、特定基準としては、以下に示すオプションが考えられる。 Second, exemplify the case where the first UL channel is LP PUSCH and the second UL channel is HP PUCCH. That is, a case where the SCS for HP PUCCH is higher than the SCS for LP PUSCH will be exemplified. In such cases, the following options can be considered as specific criteria.
 第1オプションでは、特定基準は、2以上のHP PUCCHの中で時間的に最も早いHP PUCCHを選択する基準であってもよい。例えば、図11に示すように、第1CC(b1)のSCS(例えば、15kHz)が第2CC(b2)のSCS(例えば、60kHz)よりも低い場合に、LP PUSCH及び2以上のHP PUCCHの同時送信が実行されるケースにおいて、PHの計算に用いるHP PUCCH(図11では、HP PUCCH for PHR)は、第2CCのSlotに割り当てられる最初のHP PUCCHである。 In a first option, the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 11, when the SCS (eg, 15 kHz) of the first CC (b 1 ) is lower than the SCS (eg, 60 kHz) of the second CC (b 2 ), LP PUSCH and two or more HP PUCCH , the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 11) is the first HP PUCCH allocated to the slot of the second CC.
 第1オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上の2以上のSlot内の最初のHP PUCCHに基づいてPHRを提供する。 The specific criteria for the first option may be read as follows. When UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 ), UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ). PHR is provided based on the first HP PUCCH in two or more Slots of .
 第2オプションでは、特定基準は、2以上のHP PUCCHのいずれかのHP PUCCHを選択する基準であってもよい。いずれかのHP PUCCHは、HP PUCCHの送信電力、HP PUCCHに割り当てられるシンボル、HP PUCCHに割り当てられるRBsに基づいて決定されてもよい。例えば、特定基準は、2以上のHP PUCCHの中で送信電力が最も大きいHP PUCCHを選択する基準であってもよい。 In the second option, the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs. Either HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH. For example, the specific criterion may be a criterion for selecting the HP PUCCH with the highest transmission power among two or more HP PUCCHs.
 第2オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上のSlot内のLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のSlotと時間的に重なるactive UL BWP(b2)上のSlot内のいずれかのHP PUCCHに基づいてPHRを提供する。 The specific criteria for the second option may be read as follows. When UE 200 provides PHR for LP PUSCH in Slot on active UL BWP (b 1 ), UE 200 provides PHR on active UL BWP (b 2 ) temporally overlapping with Slot on active UL BWP (b 1 ). Provide PHR based on any HP PUCCH in this Slot.
 (4.3)第3方法
 第2方法では、第1ULチャネルの優先度が第2ULチャネルの優先度と異なり、第1CCのSCSが第2CCのSCSが異なるケースについて例示する。具体的には、第1CCのSCSが第2CCのSCSよりも低いケースについて例示する。さらに、第1ULチャネルがLP PUSCHであり、2以上のSlotに跨がる繰り返し送信(以下、nominal repetition)がLP PUSCHに適用されるケースについて例示する。nominal repetitionは、PUSCH repetition Type Bであってもよい。
(4.3) Third Method The second method will exemplify a case where the priority of the first UL channel is different from the priority of the second UL channel, and the SCS of the first CC is different from the SCS of the second CC. Specifically, a case where the SCS of the first CC is lower than the SCS of the second CC will be illustrated. Furthermore, a case where the first UL channel is LP PUSCH and repetition transmission (hereinafter referred to as nominal repetition) across two or more slots is applied to LP PUSCH will be exemplified. The nominal repetition may be PUSCH repetition Type B.
 第1オプションでは、特定基準は、2以上のHP PUCCHの中で時間的に最も早いHP PUCCHを選択する基準であってもよい。例えば、図12に示すように、第1CC(b1)のSCS(例えば、30kHz)が第2CC(b2)のSCS(例えば、60kHz)よりも低い場合に、PUSCH repetition Type Bのnominal repetitionが適用されるLP PUSCH及び2以上のHP PUCCHの同時送信が実行されるケースにおいて、PHの計算に用いるHP PUCCH(図12では、HP PUCCH for PHR)は、第2CCのSlotに割り当てられる最初のHP PUCCHである。 In a first option, the specific criterion may be a criterion for selecting the earliest HP PUCCH among two or more HP PUCCHs. For example, as shown in FIG. 12, when the SCS of the first CC (b 1 ) (eg, 30 kHz) is lower than the SCS of the second CC (b 2 ) (eg, 60 kHz), the nominal repetition of PUSCH repetition Type B is In the case where simultaneous transmission of the applied LP PUSCH and two or more HP PUCCH is performed, the HP PUCCH used for PH calculation (HP PUCCH for PHR in FIG. 12) is the first HP assigned to the slot of the second CC. PUCCH.
 第1オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上の2以上のSlotに跨がってPUSCH repetition Type Bのnominal repetitionが適用されるLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のnominal repetitionに関する2以上のSlotと時間的に重なるactive UL BWP(b2)上の2以上のSlot内の最初のHP PUCCHに基づいてPHRを提供する。 The specific criteria for the first option may be read as follows. When UE 200 provides PHR related to LP PUSCH to which nominal repetition of PUSCH repetition Type B is applied across two or more slots on active UL BWP (b 1 ), UE 200 uses active UL BWP (b 1 ) provides PHR based on the first HP PUCCH in two or more slots on the active UL BWP (b 2 ) that temporally overlaps two or more slots on the nominal repetition above.
 第2オプションでは、特定基準は、2以上のHP PUCCHのいずれかのHP PUCCHを選択する基準であってもよい。いずれかのHP PUCCHは、HP PUCCHの送信電力、HP PUCCHに割り当てられるシンボル、HP PUCCHに割り当てられるRBsに基づいて決定されてもよい。例えば、特定基準は、2以上のHP PUCCHの中で送信電力が最も大きいHP PUCCHを選択する基準であってもよい。 In the second option, the specific criteria may be criteria for selecting any HP PUCCH from two or more HP PUCCHs. Either HP PUCCH may be determined based on the transmit power of the HP PUCCH, the symbols assigned to the HP PUCCH, and the RBs assigned to the HP PUCCH. For example, the specific criterion may be a criterion for selecting the HP PUCCH with the highest transmission power among two or more HP PUCCHs.
 第2オプションの特定基準は、以下のように読み替えてもよい。active UL BWP(b1)上の2以上のSlotに跨がってPUSCH repetition Type Bのnominal repetitionが適用されるLP PUSCHに関するPHRをUE200が提供する場合に、UE200は、active UL BWP(b1)上のnominal repetitionに関する2以上のSlotと時間的に重なるactive UL BWP(b2)上の2以上のSlot内のいずれかのHP PUCCHに基づいてPHRを提供する。 The specific criteria for the second option may be read as follows. When UE 200 provides PHR related to LP PUSCH to which nominal repetition of PUSCH repetition Type B is applied across two or more slots on active UL BWP (b 1 ), UE 200 uses active UL BWP (b 1 ) provides PHR based on any HP PUCCH in two or more slots on the active UL BWP (b 2 ) temporally overlapping with two or more slots on the nominal repetition above.
 (5)PHの計算方法
 以下において、PUCCH及びPUSCHの同時送信が実行されるケースにおけるPHの計算方法の一例について説明する。PUCCH及びPUSCHの少なくともいずれか1つは、上述した特定基準に基づいて選択されるULチャネルである。
(5) PH calculation method An example of a PH calculation method in a case where simultaneous transmission of PUCCH and PUSCH is performed will be described below. At least one of PUCCH and PUSCH is a UL channel selected based on the specific criteria described above.
 このようなケースにおいて、UE200は、以下に示す式に基づいてPHを計算する。第1方法に基づいて計算されるPHに関するPHRは、既存のPHRのタイプ(Type 1 PH report~Type 3 PH report)と区別して、type 4 PHRと呼称されてもよい。 In such cases, the UE 200 calculates PH based on the formula shown below. A PHR related to PH calculated based on the first method may be called a type 4 PHR to distinguish it from existing PHR types (Type 1 PH report to Type 3 PH report).
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
 なお、downlink pathloss estimateについては、PUCCHに関するパスロスであってもよく、PUSCHに関するパスロスであってもよい。或いは、downlink pathloss estimateとして、PUCCHの送信電力についてPUCCHに関するパスロスが用いられ、PUSCHの送信電力についてPUSCHに関するパスロスが用いられてもよい。なお、各用語の詳細については、3GPP TS38.213 v16.4.0の§7.1.1、§7.2.1、§7.7などの記載に基づいて解釈されてもよい。 Note that the downlink pathloss estimate may be path loss related to PUCCH or path loss related to PUSCH. Alternatively, as the downlink pathloss estimate, PUCCH-related pathloss may be used for PUCCH transmission power, and PUSCH-related pathloss may be used for PUSCH transmission power. The details of each term may be interpreted based on the descriptions in §7.1.1, §7.2.1, §7.7, etc. of 3GPP TS38.213 v16.4.0.
 上述したように、UE200は、第1方法において、UE200の最大送信(出力)電力、PUSCHの送信電力及びPUCCHの送信電力に基づいてPHを計算する。 As described above, in the first method, the UE 200 calculates PH based on the maximum transmission (output) power of the UE 200, PUSCH transmission power, and PUCCH transmission power.
 (6)無線通信方法
 以下において、実施形態の無線通信方法について説明する。
(6) Wireless Communication Method A wireless communication method according to the embodiment will be described below.
 図8に示すように、ステップS10において、UE200は、RRCメッセージをNG RAN20から受信する。RRCメッセージは、PHRに関するパラメータを含んでもよい。PHRに関するパラメータは、phr-Configと称されてもよい。phr-Configは、phr-PeriodicTimer、phr-ProhibitTimer、phr-Tx-PowerFactorChangeなどを設定するパラメータを含んでもよい。phr-PeriodicTimerは、PHRを送信する時間を計測するタイマである。phr-ProhibitTimerは、PHRの送信が禁止される時間を計測するタイマである。phr-Tx-PowerFactorChangeは、パスロスの変化を判定するための閾値である。  As shown in FIG. 8, in step S10, the UE 200 receives the RRC message from the NG RAN 20. The RRC message may contain parameters related to PHR. Parameters for PHR may be referred to as phr-Config. The phr-Config may contain parameters to set phr-PeriodicTimer, phr-ProhibitTimer, phr-Tx-PowerFactorChange, etc. phr-PeriodicTimer is a timer that measures the time to transmit PHR. phr-ProhibitTimer is a timer that measures the time period during which PHR transmission is prohibited. phr-Tx-PowerFactorChange is a threshold for determining a change in path loss.
 ステップS11において、UE200は、PHを計算する。上述したように、UE200は、特定基準に基づいて選択されたULチャネルに基づいてPHを計算する。 At step S11, the UE 200 calculates PH. As described above, the UE 200 calculates PH based on UL channels selected based on certain criteria.
 ステップS12において、UE200は、PHRを送信するトリガを検出する。例えば、トリガは、phr-PeriodicTimerの満了であってもよい。トリガは、phr-ProhibitTimerが満了し、かつ、パスロスがphr-Tx-PowerFactorChangeよりも変化することであってもよい。 At step S12, the UE 200 detects a trigger for transmitting PHR. For example, a trigger may be the expiration of a phr-PeriodicTimer. The trigger may be that phr-ProhibitTimer expires and pathloss changes more than phr-Tx-PowerFactorChange.
 ステップS13において、UE200は、PHRを送信する。上述したように、PHRは、PHのレベルと対応付けられたIndexを含んでもよい。  In step S13, the UE 200 transmits the PHR. As described above, the PHR may include an Index associated with the PH level.
 (7)作用及び効果
 実施形態では、UE200は、同時送信において、第1CCの第1ULチャネル及び第2CCの2以上の第2ULチャネルの同時送信を実行する場合に、特定基準に基づいて選択された第2ULチャネルに基づいてPHを計算する。このような構成によれば、PUCCHとPUSCHとの同時送信を新たに想定した場合であっても、適切にPHを計算することができる。
(7) Actions and effects In the embodiment, the UE 200 performs simultaneous transmission of the first UL channel of the first CC and two or more second UL channels of the second CC in the simultaneous transmission. Calculate PH based on the second UL channel. According to such a configuration, PH can be calculated appropriately even when simultaneous transmission of PUCCH and PUSCH is newly assumed.
 (8)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(8) Other Embodiments Although the contents of the present invention have been described in accordance with the embodiments, it should be understood that the present invention is not limited to these descriptions, and that various modifications and improvements are possible. self-evident to the trader.
 上述した実施形態では、HP PUCCH及びLP PUSCHの同時送信について説明した。しかしながら、上述した実施形態はこれに限定されるものではない。実施形態は、LP PUCCH及びHP PUSCHの同時送信に適用されてもよい。実施形態は、同じ優先度を有するPUCCH及びPUSCHの同時送信に適用されてもよい。 In the above-described embodiment, simultaneous transmission of HP PUCCH and LP PUSCH has been described. However, the embodiments described above are not limited to this. Embodiments may be applied to simultaneous transmission of LP PUCCH and HP PUSCH. Embodiments may be applied to simultaneous transmission of PUCCH and PUSCH with the same priority.
 上述した実施形態では、2以上の第2ULチャネルの中から、PHの計算に用いる第2ULチャネルを特定基準に基づいて選択するケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。実施形態は、2以上の第1ULチャネルが第1CCのSlot内に存在する場合において、PHの計算に用いる第1ULチャネルについても、2以上の第1ULチャネルの中から特定基準に基づいて選択されてもよい。第1ULチャネルに関する特定基準としては、上述した第2ULチャネルに関する特定基準が用いられてもよい。 In the above-described embodiment, a case was illustrated in which the second UL channel used for PH calculation is selected from among two or more second UL channels based on a specific criterion. However, embodiments are not so limited. In the embodiment, when two or more first UL channels exist in the slot of the first CC, the first UL channel used for PH calculation is also selected from among the two or more first UL channels based on a specific criterion. good too. As the identification criterion for the first UL channel, the identification criterion for the second UL channel described above may be used.
 上述した実施形態では、PUCCH及びPUSCHの同時送信がSlotに基づいて定義されるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。PUCCH及びPUSCHの同時送信がSub-slotに基づいて定義されてもよい。このようなケースにおいて、SlotはSub-slotと読み替えられてもよい。同様に、PUCCH及びPUSCHの同時送信は、1又は複数のシンボルなどの特定時間単位に基づいて定義されてもよい。このようなケースにおいて、Slotは特定時間単位と読み替えられてもよい。 In the above-described embodiment, a case has been illustrated in which simultaneous transmission of PUCCH and PUSCH is defined based on Slots. However, embodiments are not so limited. Simultaneous transmission of PUCCH and PUSCH may be defined based on Sub-slots. In such cases, Slot may be read as Sub-slot. Similarly, simultaneous transmission of PUCCH and PUSCH may be defined based on specific time units, such as one or more symbols. In such a case, Slot may be read as a specific time unit.
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 4 and 5) used to describe the above-described embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、当該装置のハードウェア構成の一例を示す図である。図14に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 14, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Furthermore, the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, a mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first", "second", etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
110 receiver 120 transmitter 130 controller 200 UE
210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (5)

  1.  第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行する制御部を備え、
     前記制御部は、前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算する、端末。
    A control unit for performing simultaneous transmission of a signal via a first uplink channel of a first carrier and a signal via two or more second uplink channels of a second carrier,
    The terminal, wherein, in the simultaneous transmission, the control unit calculates power margin information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels.
  2.  前記特定基準は、前記2以上の第2上りリンクチャネルの中で時間的に最も早い第2上りリンクチャネルを介した信号を選択する基準である、請求項1に記載の端末。 The terminal according to claim 1, wherein the specific criterion is a criterion for selecting a signal via the second uplink channel that is temporally earliest among the two or more second uplink channels.
  3.  前記第1キャリアのサブキャリア間隔は、前記第2キャリアのサブキャリア間隔と異なる、請求項1又は請求項2に記載の端末。 The terminal according to claim 1 or 2, wherein the subcarrier spacing of the first carrier is different from the subcarrier spacing of the second carrier.
  4.  端末と基地強とを備え、
     前記端末は、第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行する制御部を備え、
     前記制御部は、前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算する、無線通信システム。
    Equipped with a terminal and a base,
    The terminal comprises a control unit that performs simultaneous transmission of a signal via a first uplink channel of a first carrier and a signal via two or more second uplink channels of a second carrier,
    The wireless communication system, wherein, in the simultaneous transmission, the control unit calculates remaining power information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels.
  5.  第1キャリアの第1上りリンクチャネルを介した信号と第2キャリアの2以上の第2上りリンクチャネルを介した信号との同時送信を実行するステップと、
     前記同時送信において、前記2以上の第2上りリンクチャネルを介した信号の中から特定基準に基づいて選択された信号に基づいて、電力余力情報を計算する第1キャリアの個別物理上りリンク制御チャネルを介した信号と第2キャリアの個別物理上りリンク共有チャネルを介した信号との同時送信を実行するステップと、を備える無線通信方法。
    performing simultaneous transmission of signals over a first uplink channel of a first carrier and signals over two or more second uplink channels of a second carrier;
    In the simultaneous transmission, a dedicated physical uplink control channel of the first carrier for calculating power margin information based on a signal selected based on a specific criterion from among signals transmitted through the two or more second uplink channels. and performing simultaneous transmission of signals over a second carrier and signals over a dedicated physical uplink shared channel of a second carrier.
PCT/JP2021/010946 2021-03-17 2021-03-17 Terminal, wireless communication system and wireless communication method WO2022195787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010946 WO2022195787A1 (en) 2021-03-17 2021-03-17 Terminal, wireless communication system and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010946 WO2022195787A1 (en) 2021-03-17 2021-03-17 Terminal, wireless communication system and wireless communication method

Publications (1)

Publication Number Publication Date
WO2022195787A1 true WO2022195787A1 (en) 2022-09-22

Family

ID=83322067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010946 WO2022195787A1 (en) 2021-03-17 2021-03-17 Terminal, wireless communication system and wireless communication method

Country Status (1)

Country Link
WO (1) WO2022195787A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131675A1 (en) * 2017-01-12 2018-07-19 株式会社Nttドコモ User terminal and radio communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131675A1 (en) * 2017-01-12 2018-07-19 株式会社Nttドコモ User terminal and radio communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on UL power control for NR", 3GPP DRAFT; R1-1715902 NR UL PC_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339361 *

Similar Documents

Publication Publication Date Title
WO2022163840A1 (en) Terminal and wireless communication system
WO2022162749A1 (en) Terminal, base station, and wireless communication method
WO2022195787A1 (en) Terminal, wireless communication system and wireless communication method
WO2022190377A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244097A1 (en) Terminal and wireless communication method
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026968A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215272A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022244496A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022239080A1 (en) Terminal and radio communication method
WO2022239081A1 (en) Terminal and wireless communication method
WO2022239078A1 (en) Terminal, radio communication system, and radio communication method
WO2022244497A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026941A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022162745A1 (en) Terminal, base station, and wireless communication method
WO2022162746A1 (en) Terminal, base station, and wireless communication method
WO2022185497A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022201462A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022162742A1 (en) Terminal, base station, and wireless communication method
WO2022249749A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022162743A1 (en) Terminal, base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP