WO2022201404A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2022201404A1
WO2022201404A1 PCT/JP2021/012423 JP2021012423W WO2022201404A1 WO 2022201404 A1 WO2022201404 A1 WO 2022201404A1 JP 2021012423 W JP2021012423 W JP 2021012423W WO 2022201404 A1 WO2022201404 A1 WO 2022201404A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical uplink
pusch
channel
uci
shared channel
Prior art date
Application number
PCT/JP2021/012423
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
浩樹 原田
大輔 栗田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/012423 priority Critical patent/WO2022201404A1/en
Publication of WO2022201404A1 publication Critical patent/WO2022201404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This disclosure relates to a terminal compatible with coverage extension.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 For example, in 3GPP Release-17, it was agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
  • Non-Patent Document 2 the time resource of TB processing over multi-slot PUSCH (TBoMS) for processing transport blocks (TB) via Physical Uplink Shared Channel (PUSCH) allocated to multiple slots It has been agreed to consider the determination method of (Non-Patent Document 2).
  • 3GPP Release-15 16 specifies the multiplexing of Physical Uplink Control Channel (PUCCH) on the time resources assigned to PUSCH, but these rules are applied to TBoMS as they are. However, it may not always be efficient.
  • PUCCH Physical Uplink Control Channel
  • a terminal that can more efficiently realize TBoMS that processes transport blocks (TB) via a physical uplink shared channel (PUSCH) for the purpose of providing
  • TB transport blocks
  • PUSCH physical uplink shared channel
  • One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A terminal (UE 200) comprising a control unit (control unit 270) that divides and allocates transport blocks transmitted via the physical uplink shared channel in the time domain when the uplink shared channel overlaps in the time domain. is.
  • One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A terminal (UE 200) comprising a control unit (control unit 270) that suspends transmission in at least a part of the physical uplink shared channel in the time domain when the physical uplink shared channel overlaps the physical uplink shared channel in the time domain.
  • radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A terminal (UE 200) comprising a control unit (control unit 270) that suspends transmission in at least a part of the physical uplink shared channel in the time domain when the physical uplink shared channel overlaps the physical uplink shared channel in the time domain.
  • One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A control unit (control unit 270) that transmits control information to be transmitted through the physical uplink control channel through the physical uplink shared channel when the uplink shared channel overlaps in the time domain.
  • a terminal UE 200
  • One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical When the uplink shared channel overlaps in the time domain, the number of symbols for control information transmitted over the physical uplink control channel is determined based on the time resources allocated to the physical uplink shared channel.
  • a terminal UE 200 including a control unit (control unit 270).
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • FIG. 4 is a diagram showing an example of PUSCH allocation by TBoMS.
  • FIG. 5 is a diagram showing an example of multiplexing PUCCH to PUSCH (Case 2, 3).
  • FIG. 6 is a diagram showing an example of allocation of TB (PUSCH) and PUCCH according to operation example 1-1 (Opt 1).
  • FIG. 7 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 1).
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 3 is a functional block configuration diagram of gNB
  • FIG. 8 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 2).
  • FIG. 9 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 3).
  • FIG. 10 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 4).
  • FIG. 11 is a diagram illustrating an example of a UCI transmission pattern according to Operation Example 2 (Alt 5).
  • FIG. 12 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 6).
  • FIG. 13 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 7).
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and terminals 200 (User Equipment 200, hereinafter UE 200).
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE 200 User Equipment 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100 (hereinafter gNB 100).
  • gNB 100 radio base station 100
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • the gNB100 is an NR-compliant radio base station and performs NR-compliant radio communication with the UE200.
  • gNB100 and UE200 control radio signals transmitted from multiple antenna elements to generate beams with higher directivity Massive MIMO, carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle, And dual connectivity (DC) in which communication is performed simultaneously between the UE and multiple NG-RAN Nodes, etc., can be supported.
  • Massive MIMO Massive MIMO
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is a higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • the wireless communication system 10 may also support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
  • FIG. 2 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). Note that the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS. Additionally, the SCS may be wider than 240kHz (eg, 480kHz, 960kHz, as shown in Figure 2).
  • time direction (t) shown in FIG. 2 may also be referred to as the time domain, time domain, symbol period, symbol time, or the like.
  • the frequency direction may also be called frequency domain, frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and the like.
  • the radio communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100.
  • Coverage enhancement may provide mechanisms for increasing the success rate of reception of various physical channels.
  • gNB 100 can support repeated transmission of PDSCH (Physical Downlink Shared Channel), and UE 200 can support repeated transmission of PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • a time division duplex (TDD) slot configuration pattern may be set.
  • DDDSU downlink (DL) symbol
  • S DL/uplink (UL) or guard symbol
  • U UL symbol
  • D indicates a slot containing all DL symbols
  • S indicates a slot containing a mixture of DL, UL, and guard symbols (G).
  • U indicates a slot containing all UL symbols. For example, when the S slot is 10D+2G+2U, 2 consecutive symbols (2U) and 1 slot (14 symbols) in the time direction can be used for UL, that is, multiple consecutive slots can be used for UL. .
  • channel estimation of PUSCH can be performed using a demodulation reference signal (DMRS) for each slot.
  • DMRS demodulation reference signal
  • Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
  • the UE 200 can transmit DMRS assigned to (spanning) multiple slots so that the gNB 100 can perform joint channel estimation using DMRS.
  • TB processing over multi-slot PUSCH which processes transport blocks (TB) via PUSCHs assigned to multiple slots, may be applied for coverage extension.
  • the number of allocated symbols can be the same in each slot, as in Time Domain Resource Allocation (TDRA) of PUSCH Repetition type A (details below), or PUSCH Repetition type B (details below) ), the number of symbols allocated to each slot may be different.
  • TDRA Time Domain Resource Allocation
  • TDRA may be interpreted as resource allocation in the PUSCH time domain specified in 3GPP TS38.214.
  • the PUSCH TDRA may be interpreted as defined by a radio resource control layer (RRC) information element (IE), specifically PDSCH-Config or PDSCH-ConfigCommon.
  • RRC radio resource control layer
  • TDRA may also be interpreted as resource allocation in the time domain of PUSCH specified by Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • FIG. 3 shows only main functional blocks related to the description of the embodiment, and that the UE 200 (gNB 100) has other functional blocks (for example, power supply section, etc.). Also, FIG. 3 shows the functional block configuration of the UE 200, and please refer to FIG. 18 for the hardware configuration.
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 controls radio (RF) signals transmitted from multiple antenna elements to generate beams with higher directivity. It can support aggregation (CA), dual connectivity (DC) in which communication is performed simultaneously between the UE and two NG-RAN Nodes, and the like.
  • CA aggregation
  • DC dual connectivity
  • the radio signal transmitting/receiving unit 210 may transmit a physical uplink shared channel.
  • the radio signal transmitting/receiving unit 210 may constitute a transmitting unit.
  • the radio signal transmitting/receiving unit 210 may transmit PUSCH toward the network (gNB 100).
  • the radio signal transmitting/receiving unit 210 may support repeated transmission (Repetition) of PUSCH.
  • Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. That is, PUSCH is 14 symbols or less, and there is no possibility of being allocated across multiple slots (adjacent slots).
  • Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit (Repetition) an uplink channel (UL channel) using a plurality of slots.
  • the uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH).
  • the radio signal transmitting/receiving unit 210 may transmit PUSCH across multiple slots.
  • a shared channel may also be referred to as a data channel.
  • the radio signal transmitting/receiving unit 210 may repeatedly transmit the data sequence after concatenating a plurality of code blocks (CB) via PUSCH.
  • the data series may be replaced with other synonymous terms such as data block, bit series, and bit string.
  • the CB may be the CB after Cyclic Redundancy Checksum (CRC) processing, CB segmentation, channel coding and rate matching.
  • CRC Cyclic Redundancy Checksum
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical Broadcast Channel (PBCH) etc. may be included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data may refer to data transmitted over a data channel.
  • control signal/reference signal processing unit 240 may transmit the capability information of the UE 200 regarding allocation of the physical uplink shared channel (PUSCH) to the network.
  • the control signal/reference signal processing unit 240 may configure a transmitting unit that transmits capability information.
  • control signal/reference signal processing unit 240 can receive control information indicating allocation of UL channels in the time domain.
  • the control signal/reference signal processing unit 240 may constitute a receiving unit.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI) indicating allocation in the time domain of UL channels such as PUSCH.
  • DCI downlink control information
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
  • hybrid ARQ Hybrid automatic repeat request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 controls transmission of UL channels, specifically PUSCH and PUCCH.
  • control unit 270 can hop the UL channel in the frequency direction in units of a specific period of more than a plurality of slots. Hopping in the frequency direction of the UL channel may be called frequency hopping, and frequency hopping in units of a specific period of multiple slots or more may be called inter-slot frequency hopping. . Note that hopping may mean that the frequency resource to be used changes. In short, it may mean that the subcarrier, resource block, resource block group, BWP, etc. are changed.
  • control unit 270 may cause the UL channel to hop in the frequency direction in units of a specific number of times indicating the number of repeated transmissions of the UL channel. Specifically, the control unit 270 may perform frequency hopping in units of the number of repeated transmissions (repetition number) of the designated UL channel, in other words, every predetermined number of repetitions.
  • the control unit 270 if the transmission of the UL channel (PUSCH and PUCCH) overlaps (may be expressed as a case of collision), the UL channel (Repetition may be )
  • the UL channel (Repetition may be )
  • a frequency hopping pattern using allocatable resources that avoids duplication may be determined.
  • the control unit 270 can assign avoiding overlap at the first Repetition of the UL channel, specifically at the transmission timing of the first Repetition.
  • a hopping pattern using resources may be determined.
  • control unit 270 may set a hopping pattern related to UL channel repetition as described above, based on signaling from the network.
  • the control unit 270 may determine the allocation of DMRS transmitted on the UL channel, specifically the PUSCH, based on the PUSCH repetition state, that is, the number of repetitions, the repetition period, and the like.
  • control unit 270 may allocate PUSCH across multiple slots, that is, support TBoMS.
  • control unit 270 may determine a transport block (TB) to be transmitted via PUSCH based on DCI (control information) received by the control signal/reference signal processing unit 240.
  • TB transport block
  • Across multiple slots may mean that the PUSCH is assigned to two or more consecutive slots. Also, instead of the slot, the unit may be a symbol, a subframe, or the like.
  • the control unit 270 may decide to divide a TB transmitted via PUSCH into a plurality of code blocks (CB) based on whether PUSCH is allocated across a plurality of slots. For example, the control unit 270 may divide one TB into a plurality of CBs (up to 8) as in 3GPP Release-15, 16. Alternatively, control section 270 may change the maximum division number into CBs according to the number of slots (or the number of symbols) to which PUSCH is allocated.
  • CB code blocks
  • control unit 270 may divide and allocate transport blocks (TB) transmitted via PUSCH in the time domain. Specifically, the control unit 270 divides a 1-bit sequence for UL-SCH (shared channel) after code block (CB) concatenation, and transmits the bit sequence across multiple slots.
  • control unit 270 may stop transmitting at least part of the PUSCH in the time domain. For example, when PUCCH and PUSCH resources to which TBoMS are applied overlap and PUCCH resources are given priority, control section 270 may transmit PUSCH to which TBoMS is applied.
  • control section 270 may transmit control information transmitted via PUCCH, specifically, Uplink Control Information (UCI) via PUSCH. good.
  • UCI Uplink Control Information
  • control unit 270 may determine the number of UCIs to be transmitted via PUSCH, based on the repetition of PUSCH transmission (Repetition) or the time resource allocated to PUSCH. For example, the control unit 270 may determine the maximum number of UCIs (sequences) to be transmitted via the PUSCH when multiple PUCCHs overlap the PUSCH to which TBoMS is applied (specifically, (more on how to determine this later).
  • control unit 270 may determine the number of UCIs to be transmitted via the PUSCH based on the number of UCIs assigned to the PUCCH or the length of the UCIs assigned to the PUSCH.
  • control section 270 may determine the number of symbols for UCI to be transmitted via PUSCH based on the time resources to which PUSCH is allocated. Specifically, when PUCCH and time resources of PUSCH when TBoMS is applied overlap, control section 270 calculates coded symbols for UCI and determines the number of symbols to be transmitted via PUSCH. good.
  • the gNB 100 may also be provided with the functions related to DMRS transmission/reception and TBoMS described above.
  • the gNB 100 (radio signal transmitting/receiving unit 210) may constitute a receiving unit that receives the UL channel repeatedly transmitted from the UE200.
  • the radio signal transmitting/receiving unit 210 of the gNB 100 may receive UL channels hopped in the frequency direction, for example, in specific time units.
  • the gNB 100 may receive from the UE 200 a specific number of repeated transmissions, that is, a UL channel (for example, PUSCH) on which Repetition is performed.
  • the gNB 100 may receive the UL channel hopped in the frequency direction in units of the specific number of times.
  • the gNB 100 configures a control unit that performs channel estimation (Joint channel estimation) of UL channels allocated to multiple slots, for example PUSCH, using DMRS allocated to multiple slots. good.
  • the gNB 100 controls the reception of a TBoMS that processes TBs via UL channels assigned to multiple slots, that is, UL channels such as PUSCH assigned across multiple slots. can be executed.
  • TBoMS may be interpreted as a technique for transmitting one transport block using multiple slots.
  • FIG. 4 shows an example of PUSCH allocation by TBoMS. Specifically, FIG. 4 shows an example of PUSCH allocation by TBoMS according to Type A repetition like TDRA and Type B repetition like TDRA. Type A and B are described above. May mean Repetition type A, B.
  • TBoMS can have the following advantages.
  • ⁇ Since resources are allocated across multiple slots, the encoding rate (code rate) decreases.
  • the channel coding gain is improved by lengthening the code sequence.
  • 3GPP Release-15 and 16 specify PUCCH multiplexing on PUSCH on time resources allocated for PUSCH. Specifically, the following cases can be assumed.
  • ⁇ (Case 1) PUCCH repetition and PUSCH repetition Overlapping PUSCH repetitions are not transmitted. Repeatedly transmitted UCIs are not multiplexed (integrated) with other UCIs.
  • FIG. 5 shows an example of multiplexing PUCCH to PUSCH (Cases 2 and 3).
  • FIG. 5 shows specific examples of Cases 2 and 3 described above.
  • DAI Downlink Assignment Index
  • the PUCCH may be piggybacked to the earliest PUSCH of the overlapping actual repetitions.
  • the actual repetition is the repetition to be finally transmitted, and the nominal repetition may be interpreted as the repetition notified/assigned by the gNB to the UE.
  • the following factors can change actual repetition and nominal repetition:
  • the nominal repetition may be split at the slot boundary and turned into two actual repetitions.
  • the formula for calculating the number of coded modulation symbols for HARQ-ACK (Hybrid Automatic repeat request-acknowledgement) after rate matching on PUSCH is specified in 3GPP TS38.212, etc. For example, it is defined in HARQ ACK with UL-SCH (3GPP TS38.212 Section 6.3.2.4.1.1).
  • the formula for calculating the encoded symbols when assigning UCI to PUSCH may be as follows.
  • the number of coded modulation symbols for UCI after rate matching on PUSCH is defined in 3GPP TS38.212 and the like.
  • CG Configured Grant
  • HARQ-ACK the Beta-offset value of HARQ-ACK is referenced.
  • Beta-offset can be set by RRC or DCI. Specifically, it may be selected from 1 or 2 bits for DCI_0_2, 2 bits for DCI 0_1, and the first Beta-offset of the Beta-offset sequence set by RRC for DCI 0_0.
  • Beta-offsets can be set according to the number of UCI bits (HARQ-ACK: 3 types, CSI: 2 types).
  • the range of Beta-offset is 1 ⁇ 120 (HARQ-ACK, CG-UCI), 1.125 ⁇ 20 (CSI).
  • the UE 200 may transmit 1 TB via multiple slots according to any of the following methods. Specifically, the UE 200 may divide the 1-bit sequence for UL-SCH after CB concatenation, and transmit across multiple slots. Either of the following options may apply.
  • Fig. 6 shows operation example 1-1 (Opt 1). An example of such TB (PUSCH) and PUCCH allocation is shown. As shown in FIG. 6, when overlapping with PUCCH, UCI is multiplexed with CB (TB) and PUSCH is transmitted. In this case, the PUSCH in the slot may have a higher code rate than other PUSCHs.
  • Operation example 1-2 In this operation example, operations related to determination of transmission resources when PUCCH and TBoMS-applied PUSCH collide will be described.
  • TBoMS-applied PUSCH may be transmitted based on any of the following methods.
  • PUSCH resources other than those that overlap with prioritized PUCCH resources - (Opt1): Transmit PUSCH resources other than those that overlap with prioritized PUCCH resources - (Opt2): Do not transmit even PUSCH resources that do not overlap with prioritized PUCCH resources - (Opt 2-1): PUCCH resources that overlap Transmission is performed on the previous PUSCH resource, but transmission is not performed on the PUSCH resource after the resource overlap (Opt 2-2): Do not perform transmission on the PUSCH resource both before and after the PUCCH where the resource overlaps Opt 2-2 may be targeted when PUSCH overlaps with high priority PUCCH or overlaps with repeated transmission of PUCCH. Also, when the PUSCH of the UL-SCH overlaps with the PUCCH, the PUSCH may not be dropped, and the PUCCH may be dropped or multiplexed.
  • PUSCH or PUCCH (resource) drop is interpreted as a resource (time resource and / or frequency resource) that is not allocated due to collision (overlapping allocation) with other UL channel resources. good.
  • Operation example 2 In this operation example, operations related to determination of PUSCH resources for transmitting UCI when TBoMS is applied will be described.
  • UE 200 may transmit UCI using PUSCH resources according to any of the following methods.
  • any of the following methods may be applied.
  • Alt 5 Transmit UCI using PUSCH resources of 1 slot
  • Alt 6 Transmit UCI using multiple PUSCH Repetition resources
  • Alt 7 Transmit UCI using PUSCH resources of multiple slots Transmit
  • Alt 8) Transmit UCI using all PUSCH resources allocated 1 TB For Alt 1, one of the following options may be applied.
  • (Opt1) Select one Repetition resource based on transmission timing from PUSCH Repetition overlapping PUCCH For example, UCI using the Repetition resource with the earliest (or latest) transmission timing among Repetitions overlapping resources may be sent.
  • (Opt2) Select one Repetition resource based on the number of symbols from the PUSCH Repetitions that overlap with the PUCCH. you can A UCI may be transmitted using a repetition resource having the largest number of overlapping symbols among the repetitions.
  • FIG. 7 shows an example of a UCI transmission pattern according to operation example 2 (Alt 1).
  • PUSCH Repetition
  • overlapping PUCCH may include UCI, and UCI is transmitted via the PUSCH (TB). you can
  • FIG. 8 shows an example of a UCI transmission pattern according to operation example 2 (Alt 2).
  • Alt 2 shows an example of a UCI transmission pattern according to operation example 2 (Alt 2).
  • PUSCH Repetition
  • overlapping PUCCH may contain UCI, and UCI is transmitted through the PUSCH (TB).
  • SCS the same applies to Alt below.
  • the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH by the same method as Alt2.
  • FIG. 9 shows an example of a UCI transmission pattern according to operation example 2 (Alt 3).
  • PUSCH Repetition
  • overlapping PUCCH may include UCI, and UCI is transmitted via the PUSCH (TB). you can
  • FIG. 10 shows an example of a UCI transmission pattern according to operation example 2 (Alt 4).
  • PUSCH Repetition
  • overlapping PUCCH may contain UCI, and UCI is transmitted through the PUSCH (TB). you can
  • the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH in the same manner as Alt 2.
  • FIG. 11 shows an example of a UCI transmission pattern according to Operation Example 2 (Alt 5). As shown in FIG. 11, in Type B repetition like TDRA, UCI may also be transmitted using PUSCH resources that do not overlap with PUCCH.
  • the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH in the same manner as Alt 2. Also, for Alt 6, one of the following options may apply:
  • UCI transmission 12 shows an example of a UCI transmission pattern according to operation example 2 (Alt 6). As shown in FIG. 12, in the case of Opt 1, UCI may also be transmitted using PUSCH resources that do not overlap with PUCCH.
  • the UE 200 may determine the maximum number of PUSCH slots that can be multiplexed with one PUCCH in the same manner as Alt 4. Also, for Alt 7, one of the following options may apply:
  • PUSCH resources before the resources to which PUCCH is assigned are also used for UCI transmission
  • Opt 2 Only PUSCH resources after resources to which PUCCH are assigned are used for UCI transmission 13 shows an example of a UCI transmission pattern according to operation example 2 (Alt 7). As shown in FIG. 13 , for Opt 2, PUSCH resources prior to PUCCH may not be used for UCI transmission.
  • PUSCH resources before the resources to which PUCCH is assigned are also used for UCI transmission
  • Opt 2 Only PUSCH resources after resources to which PUCCH are assigned are used for UCI transmission 14 shows an example of a UCI transmission pattern according to operation example 2 (Alt 8). As shown in FIG. 14, the PUSCH resource before the PUCCH-assigned resource is also used for UCI transmission (Opt 1), or the UCI is transmitted using only the PUSCH resource after the PUCCH-assigned resource. may be It should be noted that whether it is before or after the resource may be determined based on the slot (or symbol), for example.
  • the UE 200 may calculate the number of encoded symbols for UCI based on PUSCH resources in which PUCCH and allocated resources overlap, according to any of the following methods.
  • Alt 4 For PUSCH resources existing in multiple slots where the allocation resource time overlap
  • the UE 200 may calculate the number of encoding symbols for UCI according to any of the following methods, taking into account allocation resources that do not overlap with PUCCH.
  • ⁇ (Alt 5) Calculate the number of encoded symbols based on 1 st PUSCH resource
  • ⁇ (Alt 6) Calculate the number of encoded symbols based on multiple PUSCH Repetition resources
  • PUSCH of multiple slots Calculate the number of encoding symbols based on resources
  • ⁇ (Alt 8) Calculate the number of encoding symbols based on all PUSCH resources to which 1TB is allocated Note that the PUSCH resource where UCI is transmitted and the number of encoding symbols for UCI It may be different from the PUSCH resource referred to during calculation.
  • the UE 200 may use offset values corresponding to TBoMS when calculating coded modulation symbols after rate matching for UCI. Specifically, any of the following options may apply.
  • scaling value for each beta offset index value may be set.
  • the scaling value may be notified via DCI.
  • the DCI beta_offset indicator field may implicitly signal the scaling value.
  • a scaling value may be set for each indicator field.
  • the scaling value may be notified by higher layer signaling, or the scaling value may be determined in advance according to a predetermined rule.
  • Beta-offset value mapping applied when using TBoMS
  • whether or not to use the Beta-offset value for TBoMS may be notified via DCI.
  • the DCI beta_offset indicator field may implicitly signal the scaling value.
  • a scaling value may be set for each indicator field.
  • the scaling value may be notified by higher layer signaling.
  • the UE 200 may use offset values corresponding to TBoMS when calculating coded modulation symbols for UCI. Specifically, any of the following options may apply.
  • FIG. 15 shows a configuration example of a Beta-offset value mapping table according to Operation Example 3.
  • FIG. 15 a new value may be added to any reserved bit.
  • the UE 200 may determine the maximum number of UCI sequences via the PUSCH when multiple PUCCH resources overlap with the PUSCH to which TBoMS is applied, according to any of the following methods.
  • FIG. 16 shows an example of a UCI transmission pattern according to Operation Example 4 (Opt 5). As shown in FIG. 16, the maximum number (two) of UCI sequences that can be transmitted based on all PUSCH resources allocated 1 TB may be determined.
  • the UE 200 may determine the maximum number of UCI sequences via the PUSCH when multiple PUCCH resources overlap with the PUSCH to which TBoMS is applied, according to any of the following methods.
  • PUSCH resources may be used to preferentially transmit UCI sequences with short sequence lengths.
  • the UCI sequence to be transmitted may be selected based on transmission timing or UCI sequence length.
  • FIG. 17 shows an example of a UCI transmission pattern according to operation example 4 (Alt 2). As shown in FIG. 17, UCI sequences with short sequence lengths may be preferentially transmitted.
  • UE 200 may report the following contents as UE Capability Information to the network regarding TBoMS.
  • the UE 200 may report the supported duplexing scheme by any of the following methods.
  • transport block (TB) was used, but as will be explained later, it is a block of a given data, which can be replaced by another synonymous term such as, for example, a data packet. you can
  • the UCI is used as the control information.
  • the control information is transmitted via a physical uplink control channel, it may be called by another name, or other control information. I do not care.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good.
  • link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 18, the device may be configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 200UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal transmits a physical uplink control channel and a physical uplink shared channel extending over a plurality of slots, and when the physical uplink control channel and the physical uplink shared channel overlap in a time domain, divides in the time domain and allocates a transport block that is transmitted via the physical uplink shared channel.

Description

端末terminal
 本開示は、カバレッジ拡張に対応した端末に関する。 This disclosure relates to a terminal compatible with coverage extension.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 例えば、3GPP Release-17では、NRにおけるカバレッジ拡張(CE: Coverage Enhancement)について検討することが合意されている(非特許文献1)。 For example, in 3GPP Release-17, it was agreed to consider coverage enhancement (CE: Coverage Enhancement) in NR (Non-Patent Document 1).
 また、カバレッジ拡張に関して、複数スロットに割り当てられた物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)を介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)の時間リソースの決定方法について検討することが合意されている(非特許文献2)。 Also, for coverage extension, the time resource of TB processing over multi-slot PUSCH (TBoMS) for processing transport blocks (TB) via Physical Uplink Shared Channel (PUSCH) allocated to multiple slots It has been agreed to consider the determination method of (Non-Patent Document 2).
 3GPP Release-15, 16では、PUSCHが割り当てられた時間リソース上への物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)の多重が規定されているが、このような規定をそのままTBoMSに適用しても、必ずしも効率的ではない可能性がある。 3GPP Release-15, 16 specifies the multiplexing of Physical Uplink Control Channel (PUCCH) on the time resources assigned to PUSCH, but these rules are applied to TBoMS as they are. However, it may not always be efficient.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、物理上りリンク共有チャネル(PUSCH)を介してトランスポートブロック(TB)を処理するTBoMSをより効率的に実現し得る端末の提供を目的とする。 Therefore, the following disclosure is made in view of this situation, and a terminal that can more efficiently realize TBoMS that processes transport blocks (TB) via a physical uplink shared channel (PUSCH) for the purpose of providing
 本開示の一態様は、物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)と、前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを時間領域において分割して割り当てる制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A terminal (UE 200) comprising a control unit (control unit 270) that divides and allocates transport blocks transmitted via the physical uplink shared channel in the time domain when the uplink shared channel overlaps in the time domain. is.
 本開示の一態様は、物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)と、前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルの少なくとも一部の時間領域での送信を中止する制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A terminal (UE 200) comprising a control unit (control unit 270) that suspends transmission in at least a part of the physical uplink shared channel in the time domain when the physical uplink shared channel overlaps the physical uplink shared channel in the time domain.
 本開示の一態様は、物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)と、前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク制御チャネルを介して送信される制御情報を、前記物理上りリンク共有チャネルを介して送信する制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical A control unit (control unit 270) that transmits control information to be transmitted through the physical uplink control channel through the physical uplink shared channel when the uplink shared channel overlaps in the time domain. A terminal (UE 200).
 本開示の一態様は、物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部(無線信号送受信部210)と、前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルが割り当てられた時間リソースに基づいて、前記物理上りリンク制御チャネルを介して送信される制御情報用のシンボル数を決定する制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a transmitting unit (radio signal transmitting/receiving unit 210) that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots, and the physical uplink control channel and the physical When the uplink shared channel overlaps in the time domain, the number of symbols for control information transmitted over the physical uplink control channel is determined based on the time resources allocated to the physical uplink shared channel. A terminal (UE 200) including a control unit (control unit 270).
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 2 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. As shown in FIG. 図3は、gNB100及びUE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of gNB100 and UE200. 図4は、TBoMSによるPUSCHの割り当て例を示す図である。FIG. 4 is a diagram showing an example of PUSCH allocation by TBoMS. 図5は、PUCCHのPUSCHへの多重化例(Case 2, 3)を示す図である。FIG. 5 is a diagram showing an example of multiplexing PUCCH to PUSCH (Case 2, 3). 図6は、動作例1-1(Opt 1)に係るTB(PUSCH)及びPUCCHの割り当て例を示す図である。FIG. 6 is a diagram showing an example of allocation of TB (PUSCH) and PUCCH according to operation example 1-1 (Opt 1). 図7は、動作例2(Alt 1)に係るUCIの送信パターンの例を示す図である。FIG. 7 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 1). 図8は、動作例2(Alt 2)に係るUCIの送信パターンの例を示す図である。FIG. 8 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 2). 図9は、動作例2(Alt 3)に係るUCIの送信パターンの例を示す図である。FIG. 9 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 3). 図10は、動作例2(Alt 4)に係るUCIの送信パターンの例を示す図である。FIG. 10 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 4). 図11は、動作例2(Alt 5)に係るUCIの送信パターンの例を示す図である。FIG. 11 is a diagram illustrating an example of a UCI transmission pattern according to Operation Example 2 (Alt 5). 図12は、動作例2(Alt 6)に係るUCIの送信パターンの例を示す図である。FIG. 12 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 6). 図13は、動作例2(Alt 7)に係るUCIの送信パターンの例を示す図である。FIG. 13 is a diagram illustrating an example of a UCI transmission pattern according to operation example 2 (Alt 7). 図14は、動作例2(Alt 8)に係るUCIの送信パターンの例を示す図である。FIG. 14 is a diagram illustrating an example of a UCI transmission pattern according to Operation Example 2 (Alt 8). 図15は、動作例3に係るBeta-offset値のマッピングテーブルの構成例を示す図である。FIG. 15 is a diagram illustrating a configuration example of a Beta-offset value mapping table according to Operation Example 3. As illustrated in FIG. 図16は、動作例4(Opt 5)に係るUCIの送信パターンの例を示す図である。FIG. 16 is a diagram illustrating an example of a UCI transmission pattern according to Operation Example 4 (Opt 5). 図17は、動作例4(Alt 2)に係るUCIの送信パターンの例を示す図である。FIG. 17 is a diagram illustrating an example of a UCI transmission pattern according to operation example 4 (Alt 2). 図18は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 18 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and terminals 200 (User Equipment 200, hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100 (hereinafter gNB 100). Note that the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 The gNB100 is an NR-compliant radio base station and performs NR-compliant radio communication with the UE200. gNB100 and UE200 control radio signals transmitted from multiple antenna elements to generate beams with higher directivity Massive MIMO, carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle, And dual connectivity (DC) in which communication is performed simultaneously between the UE and multiple NG-RAN Nodes, etc., can be supported.
 無線通信システム10は、FR1及びFR2に対応する。各FR(Frequency Range)の周波数帯は、次のとおりである。 The wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR (Frequency Range) are as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
In FR1, a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz may be used and a bandwidth (BW) of 5-100 MHz may be used. FR2 is a higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。 Furthermore, the wireless communication system 10 may also support a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 may support frequency bands above 52.6 GHz and up to 114.25 GHz.
 また、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。さらに、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも適用されてもよい。 Also, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS) may be applied. Furthermore, DFT-S-OFDM may be applied not only to the uplink (UL) but also to the downlink (DL).
 図2は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 2 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG.
 図2に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。なお、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。また、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。さらに、SCSは、240kHzよりも広くてもよい(例えば、図2に示すように、480kHz, 960kHz)。 As shown in FIG. 2, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). Note that the number of symbols forming one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Also, the number of slots per subframe may vary depending on the SCS. Additionally, the SCS may be wider than 240kHz (eg, 480kHz, 960kHz, as shown in Figure 2).
 なお、図2に示す時間方向(t)は、時間領域、時間ドメイン、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、周波数ドメイン、リソースブロック、リソースブロックグループ、サブキャリア、BWP(Band width part)、サブチャネル、共通周波数リソースなどと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 2 may also be referred to as the time domain, time domain, symbol period, symbol time, or the like. The frequency direction may also be called frequency domain, frequency domain, resource block, resource block group, subcarrier, BWP (Bandwidth part), subchannel, common frequency resource, and the like.
 無線通信システム10は、gNB100が形成するセル(或いは物理チャネルでもよい)のカバレッジを広げるカバレッジ拡張(CE: Coverage Enhancement)をサポートできる。カバレッジ拡張では、各種の物理チャネルの受信成功率を高めるための仕組みが提供されてよい。 The radio communication system 10 can support coverage enhancement (CE: Coverage Enhancement) that expands the coverage of cells (or physical channels) formed by the gNB 100. Coverage enhancement may provide mechanisms for increasing the success rate of reception of various physical channels.
 例えば、gNB100は、PDSCH(Physical Downlink Shared Channel)の繰り返し送信に対応でき、UE200は、PUSCH(Physical Uplink Shared Channel)の繰り返し送信に対応できる。 For example, gNB 100 can support repeated transmission of PDSCH (Physical Downlink Shared Channel), and UE 200 can support repeated transmission of PUSCH (Physical Uplink Shared Channel).
 無線通信システム10では、時分割複信(TDD)のスロット設定パターン(Slot Configuration pattern)が設定されてよい。例えば、DDDSU(D:下りリンク(DL)シンボル、S:DL/上りリンク(UL)またはガードシンボル、U:ULシンボル)が規定(3GPP TS38.101-4参照)されてよい。 In the wireless communication system 10, a time division duplex (TDD) slot configuration pattern may be set. For example, DDDSU (D: downlink (DL) symbol, S: DL/uplink (UL) or guard symbol, U: UL symbol) may be defined (see 3GPP TS38.101-4).
 「D」は、全てDLシンボルを含むスロットを示し、「S」は、DL、UL、及びガードシンボル(G)が混在するスロットを示す。「U」は、全てULシンボルを含むスロットを示す。例えば、Sスロットが10D+2G+2Uの場合、時間方向において連続した2シンボル(2U)と1スロット(14シンボル)とをULに利用、つまり、連続した複数スロットをULに利用することができる。 "D" indicates a slot containing all DL symbols, and "S" indicates a slot containing a mixture of DL, UL, and guard symbols (G). "U" indicates a slot containing all UL symbols. For example, when the S slot is 10D+2G+2U, 2 consecutive symbols (2U) and 1 slot (14 symbols) in the time direction can be used for UL, that is, multiple consecutive slots can be used for UL. .
 また、無線通信システム10では、スロット毎に復調用参照信号(DMRS)を用いてPUSCH(またはPUCCH(Physical Uplink Control Channel))のチャネル推定を実行できるが、さらに、複数スロットにそれぞれ割り当てられたDMRSを用いてPUSCH(またはPUCCH)のチャネル推定を実行できる。このようなチャネル推定は、Joint channel estimationと呼ばれてもよい。或いは、cross-slot channel estimationなど、別の名称で呼ばれてもよい。 Further, in the radio communication system 10, channel estimation of PUSCH (or PUCCH (Physical Uplink Control Channel)) can be performed using a demodulation reference signal (DMRS) for each slot. can be used to perform channel estimation for PUSCH (or PUCCH). Such channel estimation may be called joint channel estimation. Alternatively, it may be called by another name such as cross-slot channel estimation.
 UE200は、gNB100がDMRSを用いたJoint channel estimationを実行できるように、複数スロットに割り当てられた(跨がった)DMRSを送信できる。 The UE 200 can transmit DMRS assigned to (spanning) multiple slots so that the gNB 100 can perform joint channel estimation using DMRS.
 また、無線通信システム10では、カバレッジ拡張に関して、複数スロットに割り当てられたPUSCHを介してトランスポートブロック(TB)を処理するTB processing over multi-slot PUSCH(TBoMS)が適用されてもよい。 Also, in the radio communication system 10, TB processing over multi-slot PUSCH (TBoMS), which processes transport blocks (TB) via PUSCHs assigned to multiple slots, may be applied for coverage extension.
 TBoMSでは、PUSCHのRepetition type A(詳細について後述)のTime Domain Resource Allocation(TDRA)のように、割り当てられたシンボルの数は、各スロットにおいて同じでもよいし、PUSCHのRepetition type B(詳細について後述)のTDRAのように、各スロットに割り当てられたシンボルの数は異なっていてもよい。 In TBoMS, the number of allocated symbols can be the same in each slot, as in Time Domain Resource Allocation (TDRA) of PUSCH Repetition type A (details below), or PUSCH Repetition type B (details below) ), the number of symbols allocated to each slot may be different.
 TDRAは、3GPP TS38.214において規定されているPUSCHの時間ドメインにおけるリソース割り当てと解釈されてよい。PUSCHのTDRAは、無線リソース制御レイヤ(RRC)の情報要素(IE)、具体的には、PDSCH-ConfigまたはPDSCH-ConfigCommonによって規定されると解釈されてもよい。 TDRA may be interpreted as resource allocation in the PUSCH time domain specified in 3GPP TS38.214. The PUSCH TDRA may be interpreted as defined by a radio resource control layer (RRC) information element (IE), specifically PDSCH-Config or PDSCH-ConfigCommon.
 また、TDRAは、下りリンク制御情報(DCI:Downlink Control Information)によって指定されるPUSCHの時間ドメインにおけるリソース割り当てと解釈されてもよい。  TDRA may also be interpreted as resource allocation in the time domain of PUSCH specified by Downlink Control Information (DCI).
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。図3は、gNB100及びUE200の機能ブロック構成図である。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described. Specifically, the functional block configuration of UE 200 will be described. FIG. 3 is a functional block configuration diagram of gNB100 and UE200.
 図3に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 As shown in FIG. 3, the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
 なお、図3では、実施形態の説明に関連する主な機能ブロックのみが示されており、UE200(gNB100)は、他の機能ブロック(例えば、電源部など)を有することに留意されたい。また、図3は、UE200の機能的なブロック構成について示しており、ハードウェア構成については、図18を参照されたい。 Note that FIG. 3 shows only main functional blocks related to the description of the embodiment, and that the UE 200 (gNB 100) has other functional blocks (for example, power supply section, etc.). Also, FIG. 3 shows the functional block configuration of the UE 200, and please refer to FIG. 18 for the hardware configuration.
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、複数のアンテナ素子から送信される無線(RF)信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 The radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR. The radio signal transmitting/receiving unit 210 controls radio (RF) signals transmitted from multiple antenna elements to generate beams with higher directivity. It can support aggregation (CA), dual connectivity (DC) in which communication is performed simultaneously between the UE and two NG-RAN Nodes, and the like.
 また、無線信号送受信部210は、物理上りリンク共有チャネルを送信してよい。本実施形態において、無線信号送受信部210は、送信部を構成してよい。 Also, the radio signal transmitting/receiving unit 210 may transmit a physical uplink shared channel. In this embodiment, the radio signal transmitting/receiving unit 210 may constitute a transmitting unit.
 具体的には、無線信号送受信部210は、PUSCHをネットワーク(gNB100)に向けて送信してよい。無線信号送受信部210は、PUSCHの繰り返し送信(Repetition)をサポートしてよい。 Specifically, the radio signal transmitting/receiving unit 210 may transmit PUSCH toward the network (gNB 100). The radio signal transmitting/receiving unit 210 may support repeated transmission (Repetition) of PUSCH.
 PUSCHの繰り返し送信は、複数の種類が規定されてよい。具体的には、Repetition type A及びRepetition type Bが規定されてよい。Repetition type Aは、スロット内に割り当てられたPUSCHが繰り返し送信される形態と解釈されてよい。つまり、PUSCHは、14シンボル以下であり、複数スロット(隣接スロット)に跨がって割り当てられる可能性はない。 Multiple types of repeated transmission of PUSCH may be defined. Specifically, Repetition type A and Repetition type B may be defined. Repetition type A may be interpreted as a form in which the PUSCH allocated within the slot is repeatedly transmitted. That is, PUSCH is 14 symbols or less, and there is no possibility of being allocated across multiple slots (adjacent slots).
 一方、Repetition type Bは、15シンボル以上のPUSCHが割り当てられる可能性があるPUSCHの繰り返し送信と解釈されてよい。本実施形態では、このようなPUSCHを複数スロットに跨がって割り当てることが許容されてよい。 On the other hand, Repetition type B may be interpreted as repeated transmission of PUSCH to which 15 or more PUSCH symbols may be allocated. In the present embodiment, allocation of such PUSCH across multiple slots may be allowed.
 また、無線信号送受信部210は、複数スロットを用いて上りリンクチャネル(ULチャネル)を繰り返し送信(Repetition)してもよい。上りリンクチャネルには、物理上りリンク共有チャネル(PUSCH)及び物理上りリンク制御チャネル(PUCCH)が含まれてよい。無線信号送受信部210は、複数のスロットに跨がったPUSCHを送信してよい。共有チャネルは、データチャネルと呼ばれてもよい。 Also, the radio signal transmitting/receiving unit 210 may repeatedly transmit (Repetition) an uplink channel (UL channel) using a plurality of slots. The uplink channel may include a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH). The radio signal transmitting/receiving unit 210 may transmit PUSCH across multiple slots. A shared channel may also be referred to as a data channel.
 また、無線信号送受信部210は、複数のコードブロック(CB)が連結(concatenation)された後のデータ系列を、PUSCHを介して繰り返し送信してよい。データ系列は、データブロック、ビット系列、ビット列など、他の同義の用語に読み替えられてもよい。CBは、Cyclic Redundancy Checksum(CRC)処理、CB分割、チャネル符号化及びレートマッチング後のCBであってもよい。 Also, the radio signal transmitting/receiving unit 210 may repeatedly transmit the data sequence after concatenating a plurality of code blocks (CB) via PUSCH. The data series may be replaced with other synonymous terms such as data block, bit series, and bit string. The CB may be the CB after Cyclic Redundancy Checksum (CRC) processing, CB segmentation, channel coding and rate matching.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
 変復調部230は、所定の通信先(gNB100など)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100, etc.). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれてよい。 Also, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical Broadcast Channel (PBCH) etc. may be included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味してよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data may refer to data transmitted over a data channel.
 また、制御信号・参照信号処理部240は、物理上りリンク共有チャネル(PUSCH)の割り当てに関するUE200の能力情報をネットワークに送信してよい。本実施形態において、制御信号・参照信号処理部240は、能力情報を送信する送信部を構成してよい。 Also, the control signal/reference signal processing unit 240 may transmit the capability information of the UE 200 regarding allocation of the physical uplink shared channel (PUSCH) to the network. In this embodiment, the control signal/reference signal processing unit 240 may configure a transmitting unit that transmits capability information.
 具体的には、制御信号・参照信号処理部240は、PUSCHの割り当て(Repetitionを含んでよい)に関するUE Capability InformationをgNB100に送信できる。なお、UE Capability Informationの詳細については、後述する。 Specifically, the control signal/reference signal processing unit 240 can transmit UE Capability Information related to PUSCH allocation (which may include repetition) to the gNB 100. Details of UE Capability Information will be described later.
 また、制御信号・参照信号処理部240は、ULチャネルの時間領域における割り当てを示す制御情報を受信できる。本実施形態において、制御信号・参照信号処理部240は、受信部を構成してよい。 Also, the control signal/reference signal processing unit 240 can receive control information indicating allocation of UL channels in the time domain. In this embodiment, the control signal/reference signal processing unit 240 may constitute a receiving unit.
 具体的には、制御信号・参照信号処理部240は、PUSCHなどのULチャネルの時間領域における割り当てを示す下りリンク制御情報(DCI)を受信してよい。 Specifically, the control signal/reference signal processing unit 240 may receive downlink control information (DCI) indicating allocation in the time domain of UL channels such as PUSCH.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、ULチャネル、具体的には、PUSCH及びPUCCHの送信を制御する。 The control unit 270 controls each functional block that configures the UE200. In particular, in this embodiment, the control unit 270 controls transmission of UL channels, specifically PUSCH and PUCCH.
 具体的には、制御部270は、複数スロット以上の特定期間を単位として、ULチャネルを周波数方向においてホッピングさせることができる。ULチャネルの周波数方向におけるホッピングとは、frequency hoppingと呼ばれてもよく、複数スロット以上の特定期間を単位としたfrequency hoppingは、スロット間周波数ホッピング(inter-slot frequency hopping)と呼ばれてもよい。なお、ホッピングとは、利用する周波数リソースが変化することを意味してよい。端的には、サブキャリア、リソースブロック、リソースブロックグループまたはBWPなどが変化することを意味してよい。 Specifically, the control unit 270 can hop the UL channel in the frequency direction in units of a specific period of more than a plurality of slots. Hopping in the frequency direction of the UL channel may be called frequency hopping, and frequency hopping in units of a specific period of multiple slots or more may be called inter-slot frequency hopping. . Note that hopping may mean that the frequency resource to be used changes. In short, it may mean that the subcarrier, resource block, resource block group, BWP, etc. are changed.
 また、制御部270は、ULチャネルの繰り返し送信数を示す特定回数を単位として、ULチャネルを周波数方向においてホッピングさせてもよい。具体的には、制御部270は、指定されたULチャネルの繰り返し送信数(Repetition数)を単位として、言い換えると、所定数のRepetition毎にfrequency hoppingを実行してよい。 Also, the control unit 270 may cause the UL channel to hop in the frequency direction in units of a specific number of times indicating the number of repeated transmissions of the UL channel. Specifically, the control unit 270 may perform frequency hopping in units of the number of repeated transmissions (repetition number) of the designated UL channel, in other words, every predetermined number of repetitions.
 制御部270は、gNB100におけるJoint channel estimationが適用された場合において、ULチャネル(PUSCH及びPUCCH)の送信が重複する場合(衝突した場合と表現されてもよい)、当該ULチャネル(のRepetitionでもよい)リソース割り当て時、具体的には、DCI受信のタイミングにおいて、重複を回避した割り当て可能なリソースを用いたfrequency hoppingのパターン(hopping pattern)を決定してもよい。 When the joint channel estimation in the gNB 100 is applied, the control unit 270, if the transmission of the UL channel (PUSCH and PUCCH) overlaps (may be expressed as a case of collision), the UL channel (Repetition may be ) At the time of resource allocation, specifically at the timing of DCI reception, a frequency hopping pattern using allocatable resources that avoids duplication may be determined.
 或いは、制御部270は、ULチャネル(PUSCH及びPUCCH)の送信が重複する場合、当該ULチャネルの最初のRepetition時、具体的には、最初のRepetitionの送信タイミングにおいて、重複を回避した割り当て可能なリソースを用いたhopping patternを決定してもよい。 Alternatively, when the transmission of the UL channel (PUSCH and PUCCH) overlaps, the control unit 270 can assign avoiding overlap at the first Repetition of the UL channel, specifically at the transmission timing of the first Repetition. A hopping pattern using resources may be determined.
 また、制御部270は、ネットワークからのシグナリングに基づいて、上述したようなULチャネルのRepetitionに関するhopping patternを設定してもよい。 Also, the control unit 270 may set a hopping pattern related to UL channel repetition as described above, based on signaling from the network.
 制御部270は、ULチャネル、具体的には、PUSCH上において送信されるDMRSの割り当てを、PUSCHの繰り返しの状態、つまり、Repetition数、Repetition期間などに基づいて決定してもよい。 The control unit 270 may determine the allocation of DMRS transmitted on the UL channel, specifically the PUSCH, based on the PUSCH repetition state, that is, the number of repetitions, the repetition period, and the like.
 具体的には、制御部270は、所定数のRepetition毎に、同一のDMRS用のシンボル(OFDMシンボル)を送信してもよい。また、制御部270は、所定数のRepetition毎に、使用するDMRS用のシンボル(OFDMシンボル)をそれぞれ設定してもよい。 Specifically, the control unit 270 may transmit the same DMRS symbol (OFDM symbol) for each predetermined number of repetitions. Also, the control unit 270 may set a DMRS symbol (OFDM symbol) to be used for each predetermined number of repetitions.
 制御部270は、上述したように、複数のスロットに跨がってPUSCHを割り当てて、つまり、TBoMSをサポートしてよい。TBoMSをサポートする場合、制御部270は、制御信号・参照信号処理部240が受信したDCI(制御情報)に基づいて、PUSCHを介して送信されるトランスポートブロック(TB)を決定してよい。 As described above, the control unit 270 may allocate PUSCH across multiple slots, that is, support TBoMS. When supporting TBoMS, the control unit 270 may determine a transport block (TB) to be transmitted via PUSCH based on DCI (control information) received by the control signal/reference signal processing unit 240.
 なお、複数のスロットに跨がるとは、連続する2つ以上のスロットにPUSCHに割り当てられることを意味してよい。また、スロットではなく、シンボル或いはサブフレームなどが単位とされてもよい。 "Across multiple slots" may mean that the PUSCH is assigned to two or more consecutive slots. Also, instead of the slot, the unit may be a symbol, a subframe, or the like.
 制御部270は、複数のスロットに跨がってPUSCHを割り当てるか否かに基づいて、PUSCHを介して送信されるTBの複数のコードブロック(CB)への分割を決定してもよい。例えば、制御部270は、3GPP Release-15, 16と同様に、1つのTBを複数のCB(最大8つ)に分割してもよい。或いは、制御部270は、PUSCHが割り当てられるスロット数(またはシンボル数)に応じて、CBへの最大分割数を変更してもよい。 The control unit 270 may decide to divide a TB transmitted via PUSCH into a plurality of code blocks (CB) based on whether PUSCH is allocated across a plurality of slots. For example, the control unit 270 may divide one TB into a plurality of CBs (up to 8) as in 3GPP Release-15, 16. Alternatively, control section 270 may change the maximum division number into CBs according to the number of slots (or the number of symbols) to which PUSCH is allocated.
 また、制御部270は、PUCCHとPUSCHとが時間領域において重複する場合、PUSCHを介して送信されるトランスポートブロック(TB)を時間領域において分割して割り当ててもよい。具体的には、制御部270は、コードブロック(CB)の連結(concatenation)後のUL-SCH(共有チャネル)用の1ビット系列を分割し、複数スロットに跨がって当該ビット系列を送信してよい。 Also, when PUCCH and PUSCH overlap in the time domain, the control unit 270 may divide and allocate transport blocks (TB) transmitted via PUSCH in the time domain. Specifically, the control unit 270 divides a 1-bit sequence for UL-SCH (shared channel) after code block (CB) concatenation, and transmits the bit sequence across multiple slots. You can
 或いは、制御部270は、PUCCHとPUSCHとが時間領域において重複する場合、PUSCHの少なくとも一部の時間領域での送信を中止してもよい。例えば、制御部270は、PUCCHと TBoMSが適用されたPUSCHリソースとが重複し、PUCCHリソースが優先される場合、TBoMSが適用されたPUSCHを送信してもよい。 Alternatively, if the PUCCH and the PUSCH overlap in the time domain, the control unit 270 may stop transmitting at least part of the PUSCH in the time domain. For example, when PUCCH and PUSCH resources to which TBoMS are applied overlap and PUCCH resources are given priority, control section 270 may transmit PUSCH to which TBoMS is applied.
 或いは、制御部270は、PUCCHとPUSCHとが時間領域において重複する場合、PUCCHを介して送信される制御情報、具体的には、Uplink Control Information(UCI)を、PUSCHを介して送信してもよい。 Alternatively, when PUCCH and PUSCH overlap in the time domain, control section 270 may transmit control information transmitted via PUCCH, specifically, Uplink Control Information (UCI) via PUSCH. good.
 この場合、制御部270は、PUSCHの繰り返し送信(Repetition)またはPUSCHが割り当てられた時間リソースに基づいて、PUSCHを介して送信するUCIの数を決定してもよい。例えば、制御部270は、複数のPUCCHが、TBoMSが適用されているPUSCHとリソースが重複した場合、PUSCHを介して送信するUCI(系列)の最大数を決定してもよい(なお、具体的な決定方法については、さらに後述する)。 In this case, the control unit 270 may determine the number of UCIs to be transmitted via PUSCH, based on the repetition of PUSCH transmission (Repetition) or the time resource allocated to PUSCH. For example, the control unit 270 may determine the maximum number of UCIs (sequences) to be transmitted via the PUSCH when multiple PUCCHs overlap the PUSCH to which TBoMS is applied (specifically, (more on how to determine this later).
 また、制御部270は、PUCCHに割り当てられたUCIの数またはPUSCHに割り当てられたUCIの長さに基づいて、PUSCHを介して送信するUCIの数を決定してもよい。 Also, the control unit 270 may determine the number of UCIs to be transmitted via the PUSCH based on the number of UCIs assigned to the PUCCH or the length of the UCIs assigned to the PUSCH.
 或いは、制御部270は、PUCCHとPUSCHとが時間領域において重複する場合、PUSCHが割り当てられた時間リソースに基づいて、PUSCHを介して送信されるUCI用のシンボル数を決定してもよい。具体的には、制御部270は、PUCCHとTBoMS適用時のPUSCHの時間リソースとが重複する場合、UCI用の符号化シンボルを計算し、PUSCHを介して送信される当該シンボル数を決定してよい。 Alternatively, when PUCCH and PUSCH overlap in the time domain, control section 270 may determine the number of symbols for UCI to be transmitted via PUSCH based on the time resources to which PUSCH is allocated. Specifically, when PUCCH and time resources of PUSCH when TBoMS is applied overlap, control section 270 calculates coded symbols for UCI and determines the number of symbols to be transmitted via PUSCH. good.
 また、上述したDMRS送受信及びTBoMSに関する機能は、gNB100にも備えられてよい。例えば、gNB100(無線信号送受信部210)は、UE200から繰り返し送信されるULチャネルを受信する受信部を構成してよい。gNB100の無線信号送受信部210は、例えば、特定時間を単位として、周波数方向においてホッピングしたULチャネルを受信してよい。 In addition, the gNB 100 may also be provided with the functions related to DMRS transmission/reception and TBoMS described above. For example, the gNB 100 (radio signal transmitting/receiving unit 210) may constitute a receiving unit that receives the UL channel repeatedly transmitted from the UE200. The radio signal transmitting/receiving unit 210 of the gNB 100 may receive UL channels hopped in the frequency direction, for example, in specific time units.
 また、gNB100(無線信号送受信部210)は、UE200から特定回数、繰り返し送信、つまり、Repetitionが実行されるULチャネル(例えば、PUSCH)を受信してよい。この場合、gNB100(無線信号送受信部210)は、当該特定回数を単位として、周波数方向においてホッピングしたULチャネルを受信してよい。 Also, the gNB 100 (radio signal transmitting/receiving unit 210) may receive from the UE 200 a specific number of repeated transmissions, that is, a UL channel (for example, PUSCH) on which Repetition is performed. In this case, the gNB 100 (radio signal transmitting/receiving unit 210) may receive the UL channel hopped in the frequency direction in units of the specific number of times.
 gNB100(制御部270)は、複数のスロットに割り当てられたDMRSを用いて、複数のスロットに割り当てられたULチャネル、例えば、PUSCHのチャネル推定(Joint channel estimation)を実行する制御部を構成してよい。 The gNB 100 (control unit 270) configures a control unit that performs channel estimation (Joint channel estimation) of UL channels allocated to multiple slots, for example PUSCH, using DMRS allocated to multiple slots. good.
 また、gNB100(制御部270)は、複数スロットに割り当てられたULチャネルを介してTBを処理するTBoMS、つまり、複数のスロットに跨がって割り当てられたPUSCHなどのULチャネルの受信に関する制御を実行してよい。 In addition, the gNB 100 (control unit 270) controls the reception of a TBoMS that processes TBs via UL channels assigned to multiple slots, that is, UL channels such as PUSCH assigned across multiple slots. can be executed.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、カバレッジ拡張の性能(coverage performance)を目的としたTBoMS適用時におけるPUCCH及びPUSCHの割り当てに関する動作について説明する。
(3) Operation of Radio Communication System Next, the operation of the radio communication system 10 will be described. Specifically, operations related to allocation of PUCCH and PUSCH when TBoMS is applied for the purpose of coverage performance will be described.
 (3.1)前提
 上述したように、TBoMSとは、1つのトランスポートブロックを複数のスロットを用いて送信する技術と解釈されてよい。
(3.1) Assumptions As described above, TBoMS may be interpreted as a technique for transmitting one transport block using multiple slots.
 図4は、TBoMSによるPUSCHの割り当て例を示す。具体的には、図4は、Type A repetition like TDRA及びType B repetition like TDRAに従ったTBoMSによるPUSCHの割り当て例を示す。なお、Type A, Bは、上述した。Repetition type A, Bを意味してよい。 Fig. 4 shows an example of PUSCH allocation by TBoMS. Specifically, FIG. 4 shows an example of PUSCH allocation by TBoMS according to Type A repetition like TDRA and Type B repetition like TDRA. Type A and B are described above. May mean Repetition type A, B.
 TBoMSは、次のような利点を有し得る。  TBoMS can have the following advantages.
  ・複数スロットに跨がってリソースが割り当てられるため、符号化レート(コードレート)が低下する。   ・Since resources are allocated across multiple slots, the encoding rate (code rate) decreases.
  ・符号系列が長くなることによって、チャネルコーディングのゲインが向上する。   ・The channel coding gain is improved by lengthening the code sequence.
  ・複数TBを送信する場合に比べて上位レイヤのヘッダー量を削減できる。   ・Compared to sending multiple TBs, the amount of upper layer headers can be reduced.
 また、3GPP Release-15, 16では、PUSCHが割り当てられた時間リソース上へのPUCCHの多重(PUCCH multiplexing on PUSCH)が規定されている。具体的には、次のケースを想定し得る。 In addition, 3GPP Release-15 and 16 specify PUCCH multiplexing on PUSCH on time resources allocated for PUSCH. Specifically, the following cases can be assumed.
  ・(Case 1):PUCCHrepetitionと、PUSCH repetition
 重複(Overlap)しているPUSCH repetitionは、送信さRない。繰り返し送信されているUCIは、他のUCIとの多重化(統合)は実行されない。
・(Case 1): PUCCH repetition and PUSCH repetition
Overlapping PUSCH repetitions are not transmitted. Repeatedly transmitted UCIs are not multiplexed (integrated) with other UCIs.
  ・(Case 2):Repetition type A PUSCHと、異なる複数のPUCCH 
  ・(Case 3):Repetition type B PUSCH(3回)と、異なる複数のPUCCH
 図5は、PUCCHのPUSCHへの多重化例(Case 2, 3)を示す。図5では、上述したCase 2, 3の具体例が示されている。Case 2の場合、Downlink Assignment Index(DAI)が3に達していない場合、無駄なリソースが発生し得る。Case 3の場合、PUCCHは、overlapしているactual repetitionのうち最先(earliest)PUSCHにpiggybackにされてよい。
・(Case 2): Repetition type A PUSCH and different PUCCH
・(Case 3): Repetition type B PUSCH (three times) and different PUCCHs
FIG. 5 shows an example of multiplexing PUCCH to PUSCH (Cases 2 and 3). FIG. 5 shows specific examples of Cases 2 and 3 described above. In Case 2, if the Downlink Assignment Index (DAI) does not reach 3, resources may be wasted. For Case 3, the PUCCH may be piggybacked to the earliest PUSCH of the overlapping actual repetitions.
 なお、actual repetitionとは、最終的に送信するrepetitionであり、nominal repetitionは、gNBがUEに通知/割り当てたrepetitionと解釈されてよい。例えば、次のような要因によって、actual repetitionとnominal repetitionとが変わり得る。  The actual repetition is the repetition to be finally transmitted, and the nominal repetition may be interpreted as the repetition notified/assigned by the gNB to the UE. For example, the following factors can change actual repetition and nominal repetition:
  (i)nominal repetitionがULシンボルに配置されていない場合、nominal repetitionは除外されてよい。 (i) If the nominal repetition is not placed in the UL symbol, the nominal repetition may be excluded.
  (ii)nominal repetitionがスロット境界(slot boundary)に配置されている場合、slot boundaryにおいてnominal repetitionが分割され、2つのactual repetitionに変わってよい。 (ii) If a nominal repetition is placed on a slot boundary, the nominal repetition may be split at the slot boundary and turned into two actual repetitions.
 PUSCH上のレートマッチング後のHARQ-ACK(Hybrid Automatic repeat request-Acknowledgement)用の符号化変調シンボル数の計算式は、3GPP TS38.212などにおいて規定されている。例えば、HARQ ACK with UL-SCHなどにおいて規定されている(3GPP TS38.212 6.3.2.4.1.1章)。 The formula for calculating the number of coded modulation symbols for HARQ-ACK (Hybrid Automatic repeat request-acknowledgement) after rate matching on PUSCH is specified in 3GPP TS38.212, etc. For example, it is defined in HARQ ACK with UL-SCH (3GPP TS38.212 Section 6.3.2.4.1.1).
 また、UCIをPUSCHに割り当てる場合における符号化シンボルの計算式は、次のとおりでよい。 Also, the formula for calculating the encoded symbols when assigning UCI to PUSCH may be as follows.
  ・UCI with UL-SCHの場合   ・For UCI with UL-SCH
Figure JPOXMLDOC01-appb-M000001
  ・UCI without UL-SCHの場合
Figure JPOXMLDOC01-appb-M000001
・For UCI without UL-SCH
Figure JPOXMLDOC01-appb-M000002
 また、PUSCH上のレートマッチング後におけるUCI用の符号化変調シンボル数についても、3GPP TS38.212などにおいて規定されている。ここで、CG (Configured Grant)-UCIと、HARQ-ACKとが多重される場合、HARQ-ACKのBeta-offsetの値が参照される。
Figure JPOXMLDOC01-appb-M000002
Also, the number of coded modulation symbols for UCI after rate matching on PUSCH is defined in 3GPP TS38.212 and the like. Here, when CG (Configured Grant)-UCI and HARQ-ACK are multiplexed, the Beta-offset value of HARQ-ACK is referenced.
 Beta-offsetは、RRCまたはDCIによって設定できる。具体的には、DCI_0_2では、1または2ビットから選択、DCI 0_1では、2ビット、DCI 0_0では、RRCによって設定されたBeta-offset sequenceの最初のBeta-offsetとされてよい。  Beta-offset can be set by RRC or DCI. Specifically, it may be selected from 1 or 2 bits for DCI_0_2, 2 bits for DCI 0_1, and the first Beta-offset of the Beta-offset sequence set by RRC for DCI 0_0.
 また、UCIのビット数に応じて異なるBeta-offsetを設定可能である(HARQ-ACK:3種類、CSI:2種類)。Beta-offsetの範囲は、1~120 (HARQ-ACK, CG-UCI), 1.125~20 (CSI)である。 Also, different Beta-offsets can be set according to the number of UCI bits (HARQ-ACK: 3 types, CSI: 2 types). The range of Beta-offset is 1~120 (HARQ-ACK, CG-UCI), 1.125~20 (CSI).
 (3.2)動作概要
 以下では、次の動作例について説明する。
(3.2) Outline of Operation The following operation example will be described below.
  ・(動作例1):PUCCHとTBoMSを適用したPUSCHとが衝突(重複)した場合
   ・(動作例1-1):コードブロック(CB)連結(concatenation)後のUL-SCH用1ビット系列
   ・(動作例1-2):PUCCHとTBoMSを適用したPUSCHとが衝突した場合における送信リソースの決定
  ・(動作例2):TBoMS適用時のUCIを送信するPUSCHリソースの決定
 PUCCHとTBoMS適用時のPUSCHの時間リソースとが重複した場合のUCI送信用PUSCH リソースの決定
  ・(動作例3):TBoMS適用時のUCI符号化変調シンボル長の決定
 PUCCHとTBoMS適用時のPUSCHの時間リソースとが重複した場合のUCI用符号化シンボルの計算
  ・(動作例4):TBoMS適用時の複数UCI系列の送信
 複数PUCCHが、TBoMSが適用されているPUSCHリソースと重複した場合におけるPUSCH経由での最大UCI系列数の決定
  ・(動作例5):UE capabilityの通知
・(Operation example 1): When PUCCH and TBoMS-applied PUSCH collide (overlap) ・(Operation example 1-1): 1-bit sequence for UL-SCH after code block (CB) concatenation ・(Operation example 1-2): Determination of transmission resources when PUCCH and TBoMS-applied PUSCH collide (Operation example 2): Determination of PUSCH resources for transmitting UCI when TBoMS is applied When PUCCH and TBoMS are applied Determination of PUSCH resources for UCI transmission when PUSCH time resources overlap (Operation example 3): Determination of UCI coded modulation symbol length when TBoMS is applied PUCCH and PUSCH time resources when TBoMS are applied overlap Calculation of encoded symbols for UCI in case (Operation example 4): Transmission of multiple UCI sequences when TBoMS is applied Maximum number of UCI sequences via PUSCH when multiple PUCCHs overlap PUSCH resources to which TBoMS is applied・(Operation example 5): Notification of UE capability
 (3.3)動作例1
 (3.3.1)動作例1-1
 本動作例では、コードブロック(CB)連結(concatenation)後のUL-SCH用1ビット系列に関する動作について説明する。
(3.3) Operation example 1
(3.3.1) Operation example 1-1
In this operation example, an operation regarding a UL-SCH 1-bit sequence after code block (CB) concatenation will be described.
 UE200は、次の何れかの方法に従って、複数スロットを介して1TBを送信してもよい。具体的には、UE200は、CB連結後のUL-SCH用1ビット系列を分割し、複数スロットに跨がって送信してよい。次の何れかのオプションが適用されてもよい。 The UE 200 may transmit 1 TB via multiple slots according to any of the following methods. Specifically, the UE 200 may divide the 1-bit sequence for UL-SCH after CB concatenation, and transmit across multiple slots. Either of the following options may apply.
  ・(Opt1):等分割したビット系列を、各PUSCHを介して送信
  ・(Opt2):各PUSCHに応じて送信するビット長を変更して送信
   ・(Opt 2-1):多重化されるUCIの符号化変調シンボルに応じて送信するビット長を決定
   ・(Opt 2-2):各PUSCHのシンボル長に応じて送信するビット長を決定
 図6は、動作例1-1(Opt 1)に係るTB(PUSCH)及びPUCCHの割り当て例を示す。図6に示すように、PUCCHと重複する場合、UCIがCB(TB)と多重されてPUSCHが送信される。この場合、当該スロット内のPUSCHでは、他のPUSCHと比較して符号化率(code rate)が高くなってもよい。
・(Opt1): Transmit equally divided bit sequences via each PUSCH ・(Opt2): Transmit by changing the bit length to be transmitted according to each PUSCH ・(Opt 2-1): Multiplexed UCI (Opt 2-2): Determine the bit length to be transmitted according to the symbol length of each PUSCH Fig. 6 shows operation example 1-1 (Opt 1). An example of such TB (PUSCH) and PUCCH allocation is shown. As shown in FIG. 6, when overlapping with PUCCH, UCI is multiplexed with CB (TB) and PUSCH is transmitted. In this case, the PUSCH in the slot may have a higher code rate than other PUSCHs.
 (3.3.2)動作例1-2
 本動作例では、PUCCHとTBoMSを適用したPUSCHとが衝突した場合における送信リソースの決定に関する動作について説明する。
(3.3.2) Operation example 1-2
In this operation example, operations related to determination of transmission resources when PUCCH and TBoMS-applied PUSCH collide will be described.
 PUCCHとTBoMS適用したPUSCHリソースとが重複し、PUCCHリソースが優先される場合、次の何れかの方法に基づいて、TBoMSを適用したPUSCHが送信されてもよい。 When PUCCH and TBoMS-applied PUSCH resources overlap and PUCCH resources are given priority, TBoMS-applied PUSCH may be transmitted based on any of the following methods.
  ・(Opt1):優先されるPUCCHリソースと重なったPUSCHリソース以外は送信
  ・(Opt2):優先されるPUCCHリソースと重なっていないPUSCHリソースでも送信しない
   ・(Opt 2-1):リソースが重なったPUCCH以前のPUSCHリソースでは送信を行うが、リソースが重なった以降のPUSCHリソースでは送信を行わない
   ・(Opt 2-2):リソースが重なったPUCCH以前及び以降の両方において、PUSCHリソースで送信を行わない
 Opt 2-2は、PUSCHが、高優先度のPUCCHと重なった場合、またはPUCCHの繰り返し送信と重なった場合を対象としてよい。また、UL-SCHのPUSCHがPUCCHと重なった場合、当該PUSCHはドロップされなくてよく、PUCCHがドロップまたは多重化されてよい。
- (Opt1): Transmit PUSCH resources other than those that overlap with prioritized PUCCH resources - (Opt2): Do not transmit even PUSCH resources that do not overlap with prioritized PUCCH resources - (Opt 2-1): PUCCH resources that overlap Transmission is performed on the previous PUSCH resource, but transmission is not performed on the PUSCH resource after the resource overlap (Opt 2-2): Do not perform transmission on the PUSCH resource both before and after the PUCCH where the resource overlaps Opt 2-2 may be targeted when PUSCH overlaps with high priority PUCCH or overlaps with repeated transmission of PUCCH. Also, when the PUSCH of the UL-SCH overlaps with the PUCCH, the PUSCH may not be dropped, and the PUCCH may be dropped or multiplexed.
 なお、PUSCHまたはPUCCH(リソース)のドロップとは、当該リソースが他のULチャネルのリソースと衝突(割り当てが重複すること)によって、割り当てられないリソース(時間リソース及び/または周波数リソース)と解釈されてよい。 In addition, PUSCH or PUCCH (resource) drop is interpreted as a resource (time resource and / or frequency resource) that is not allocated due to collision (overlapping allocation) with other UL channel resources. good.
 (3.4)動作例2
 本動作例では、TBoMS適用時のUCIを送信するPUSCHリソースの決定に関する動作について説明する。
(3.4) Operation example 2
In this operation example, operations related to determination of PUSCH resources for transmitting UCI when TBoMS is applied will be described.
 UE200は、PUCCHとTBoMS適用時のPUSCHの時間リソースが重なった場合、次の何れかの方法に従ってPUSCHリソースを用いてUCIを送信してもよい。 When the time resources of PUCCH and PUSCH when TBoMS is applied overlap, UE 200 may transmit UCI using PUSCH resources according to any of the following methods.
 PUCCHと割当リソースが重なったPUSCHリソースを用いてUCIを送信する場合、次の何れかの方法が適用されてよい。 When transmitting UCI using PUSCH resources that overlap PUCCH and allocated resources, any of the following methods may be applied.
  ・(Alt 1):割当リソース時間が重なった1つのRepetitionリソースを用いてUCIを送信
  ・(Alt 2):割当リソース時間が重なった複数Repetitionリソースを用いてUCIを送信
  ・(Alt 3):割当リソース時間が重なった1スロット内に存在するPUSCHリソースを用いてUCIを送信
  ・(Alt 4):割当リソース時間が重なった複数スロット内に存在するPUSCHリソースを用いてUCIを送信
 PUCCHと重なっていない割当リソースも用いてUCIを送信する場合、次の何れかの方法が適用されてよい。
・(Alt 1): Transmit UCI using one Repetition resource whose allocation resource time overlaps ・(Alt 2): Transmit UCI using multiple repetition resources whose allocation resource time overlaps ・(Alt 3): Allocation Transmit UCI using PUSCH resources that exist within one slot whose resource times overlap (Alt 4): Transmit UCI using PUSCH resources that exist within multiple slots whose allocated resource times overlap Does not overlap with PUCCH If the UCI is also transmitted using allocated resources, any of the following methods may be applied.
  ・(Alt 5):1スロットのPUSCHリソースを用いてUCIを送信
  ・(Alt 6):複数のPUSCH Repetitionリソースを用いてUCIを送信
  ・(Alt 7):複数スロットのPUSCHリソースを用いてUCIを送信
  ・(Alt 8):1TBが割り当てられる全PUSCHリソースを用いてUCIを送信
 Alt 1の場合、次の何れかのオプションが適用されてもよい。
(Alt 5): Transmit UCI using PUSCH resources of 1 slot (Alt 6): Transmit UCI using multiple PUSCH Repetition resources (Alt 7): Transmit UCI using PUSCH resources of multiple slots Transmit (Alt 8): Transmit UCI using all PUSCH resources allocated 1 TB For Alt 1, one of the following options may be applied.
  ・(Opt1):PUCCHと重なったPUSCH Repetitionの中から送信タイミングに基づいて1つのRepetitionリソースを選択
 例えば、リソースが重なったRepetitionの中から最も送信タイミングが早い(または遅い)Repetitionリソースを用いてUCIが送信されてよい。
(Opt1): Select one Repetition resource based on transmission timing from PUSCH Repetition overlapping PUCCH For example, UCI using the Repetition resource with the earliest (or latest) transmission timing among Repetitions overlapping resources may be sent.
  ・(Opt2):PUCCHと重なったPUSCH Repetitionの中からシンボル数に基づいて1つのRepetitionリソースを選択
 例えば、リソースが重なったRepetitionの中から最も割当シンボル数が多いRepetitionリソースを用いてUCIが送信されてよい。Repetitionの中から最もリソースが重なったシンボル数が多いRepetitionリソースを用いてUCIが送信されてもよい。
(Opt2): Select one Repetition resource based on the number of symbols from the PUSCH Repetitions that overlap with the PUCCH. you can A UCI may be transmitted using a repetition resource having the largest number of overlapping symbols among the repetitions.
 図7は、動作例2(Alt 1)に係るUCIの送信パターンの例を示す。図7に示すように、Type A repetition like TDRA及びType B repetition like TDRAにおいて、PUCCHと重なったPUSCH(Repetition)には、UCIが含まれてよく、当該PUSCH(TB)を介してUCIが送信されてよい。 FIG. 7 shows an example of a UCI transmission pattern according to operation example 2 (Alt 1). As shown in FIG. 7, in Type A repetition like TDRA and Type B repetition like TDRA, PUSCH (Repetition) overlapping PUCCH may include UCI, and UCI is transmitted via the PUSCH (TB). you can
 Alt 2の場合、次の何れかのオプションが適用されてもよい。 For Alt 2, one of the following options may apply.
  ・(Opt 1):UE200は受信した上位レイヤのシグナリングに基づいて多重可能な最大Repetitionリソース数を決定
  ・(Opt 2):UE200は受信したDCIに基づいて多重可能な最大Repetitionリソース数を決定
  ・(Opt 3):UE200は所定のルールに基づいて多重可能な最大Repetitionリソース数を決定
 図8は、動作例2(Alt 2)に係るUCIの送信パターンの例を示す。図8に示すように、Type A repetition like TDRA及びType B repetition like TDRAにおいて、PUCCHと重なったPUSCH(Repetition)には、UCIが含まれてよく、当該PUSCH(TB)を介してUCIが送信されてよい。また、Alt 2の場合、PUCCHには、他と異なるSCSが適用されていてもよい(以下のAltについても同様)。
・(Opt 1): UE 200 determines the maximum number of multiplexable repetition resources based on the received upper layer signaling ・(Opt 2): UE 200 determines the maximum number of multiplexable repetition resources based on the received DCI ・(Opt 3): UE 200 determines the maximum number of multiplexable repetition resources based on a predetermined rule. FIG. 8 shows an example of a UCI transmission pattern according to operation example 2 (Alt 2). As shown in FIG. 8, in Type A repetition like TDRA and Type B repetition like TDRA, PUSCH (Repetition) overlapping PUCCH may contain UCI, and UCI is transmitted through the PUSCH (TB). you can Also, in the case of Alt 2, PUCCH may be applied with an SCS different from others (the same applies to Alt below).
 Alt 3の場合、次の何れかのオプションが適用されてもよい。 For Alt 3, one of the following options may apply.
  ・(Opt 1):PUCCHと重なったPUSCH Repetitionの中から送信タイミングに基づいて1つのRepetitionリソースを選択
  ・(Opt 2):PUCCHと重なったPUSCH Repetitionの中からシンボル数に基づいて1つのRepetitionリソースを選択
 この場合、UE200は、1つのPUCCHと多重可能な最大Repetitionリソース数をAlt 2と同様の方法で決定してもよい。
(Opt 1): Select one Repetition resource based on transmission timing from PUSCH Repetition that overlaps with PUCCH. (Opt 2): Select one Repetition resource based on the number of symbols from PUSCH Repetition that overlaps with PUCCH. In this case, the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH by the same method as Alt2.
 図9は、動作例2(Alt 3)に係るUCIの送信パターンの例を示す。図9に示すように、Type A repetition like TDRA及びType B repetition like TDRAにおいて、PUCCHと重なったPUSCH(Repetition)には、UCIが含まれてよく、当該PUSCH(TB)を介してUCIが送信されてよい。 FIG. 9 shows an example of a UCI transmission pattern according to operation example 2 (Alt 3). As shown in FIG. 9, in Type A repetition like TDRA and Type B repetition like TDRA, PUSCH (Repetition) overlapping PUCCH may include UCI, and UCI is transmitted via the PUSCH (TB). you can
 Alt 4の場合、次の何れかのオプションが適用されてもよい。 For Alt 4, one of the following options may apply.
  ・(Opt 1):UE200は受信した上位レイヤのシグナリングに基づいて多重可能な最大スロット数を決定
  ・(Opt 2):UE200は受信したDCIに基づいて多重可能な最大スロット数を決定
  ・(Opt 3):UE200は所定のルールに基づいて多重可能な最大スロット数を決定
 図10は、動作例2(Alt 4)に係るUCIの送信パターンの例を示す。図10に示すように、Type A repetition like TDRA及びType B repetition like TDRAにおいて、PUCCHと重なったPUSCH(Repetition)には、UCIが含まれてよく、当該PUSCH(TB)を介してUCIが送信されてよい。
(Opt 1): UE 200 determines the maximum number of slots that can be multiplexed based on the received higher layer signaling (Opt 2): UE 200 determines the maximum number of slots that can be multiplexed based on the received DCI (Opt 3): UE 200 determines the maximum number of slots that can be multiplexed based on a predetermined rule FIG. 10 shows an example of a UCI transmission pattern according to operation example 2 (Alt 4). As shown in FIG. 10, in Type A repetition like TDRA and Type B repetition like TDRA, PUSCH (Repetition) overlapping PUCCH may contain UCI, and UCI is transmitted through the PUSCH (TB). you can
 また、Alt 5の場合、UE200は、1つのPUCCHと多重可能な最大Repetitionリソース数をAlt 2と同様の方法で決定してもよい。 Also, in the case of Alt 5, the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH in the same manner as Alt 2.
 図11は、動作例2(Alt 5)に係るUCIの送信パターンの例を示す。図11に示すように、Type B repetition like TDRAにおいて、PUCCHとリソースが重なっていないPUSCHリソースも用いてUCIが送信されてもよい。 FIG. 11 shows an example of a UCI transmission pattern according to Operation Example 2 (Alt 5). As shown in FIG. 11, in Type B repetition like TDRA, UCI may also be transmitted using PUSCH resources that do not overlap with PUCCH.
 Alt 6の場合も、UE200は、1つのPUCCHと多重可能な最大Repetitionリソース数をAlt 2と同様の方法で決定してもよい。また、Alt 6の場合、次の何れかのオプションが適用されてもよい。 Also in the case of Alt 6, the UE 200 may determine the maximum number of repetition resources that can be multiplexed with one PUCCH in the same manner as Alt 2. Also, for Alt 6, one of the following options may apply:
  ・(Opt 1):PUCCHが割り当てられているリソースの前のPUSCHリソースもUCI送信に使用する
  ・(Opt 2):PUCCHが割り当てられているリソースの後のPUSCHリソースのみをUCI送信に使用する
 図12は、動作例2(Alt 6)に係るUCIの送信パターンの例を示す。図12に示すように、Opt 1の場合、PUCCHとリソースが重なっていないPUSCHリソースも用いてUCIが送信されてよい。
- (Opt 1): PUSCH resources before the resources to which PUCCH is assigned are also used for UCI transmission - (Opt 2): Only PUSCH resources after resources to which PUCCH are assigned are used for UCI transmission 12 shows an example of a UCI transmission pattern according to operation example 2 (Alt 6). As shown in FIG. 12, in the case of Opt 1, UCI may also be transmitted using PUSCH resources that do not overlap with PUCCH.
 Alt 7の場合、UE200は、1つのPUCCHと多重可能なPUSCHの最大スロット数をAlt 4と同様の方法で決定してもよい。また、Alt 7の場合、次の何れかのオプションが適用されてもよい。 In the case of Alt 7, the UE 200 may determine the maximum number of PUSCH slots that can be multiplexed with one PUCCH in the same manner as Alt 4. Also, for Alt 7, one of the following options may apply:
  ・(Opt 1):PUCCHが割り当てられているリソースの前のPUSCHリソースもUCI送信に使用する
  ・(Opt 2):PUCCHが割り当てられているリソースの後のPUSCHリソースのみをUCI送信に使用する
 図13は、動作例2(Alt 7)に係るUCIの送信パターンの例を示す。図13に示すように、Opt 2の場合、PUCCHより前のPUSCHリソースは、UCIの送信に使用されなくてよい。
- (Opt 1): PUSCH resources before the resources to which PUCCH is assigned are also used for UCI transmission - (Opt 2): Only PUSCH resources after resources to which PUCCH are assigned are used for UCI transmission 13 shows an example of a UCI transmission pattern according to operation example 2 (Alt 7). As shown in FIG. 13 , for Opt 2, PUSCH resources prior to PUCCH may not be used for UCI transmission.
 Alt 8の場合、次の何れかのオプションが適用されてもよい。 For Alt 8, one of the following options may apply.
  ・(Opt 1):PUCCHが割り当てられているリソースの前のPUSCHリソースもUCI送信に使用する
  ・(Opt 2):PUCCHが割り当てられているリソースの後のPUSCHリソースのみをUCI送信に使用する
 図14は、動作例2(Alt 8)に係るUCIの送信パターンの例を示す。図14に示すように、PUCCHが割り当てられているリソースの前のPUSCHリソースもUCI送信に使用する(Opt 1)、またはPUCCHが割り当てられているリソースの後のPUSCHリソースのみを用いてUCIが送信されてよい。なお、リソースの前または後かは、例えば、スロット(またはシンボル)を基準として判定されてよい。
- (Opt 1): PUSCH resources before the resources to which PUCCH is assigned are also used for UCI transmission - (Opt 2): Only PUSCH resources after resources to which PUCCH are assigned are used for UCI transmission 14 shows an example of a UCI transmission pattern according to operation example 2 (Alt 8). As shown in FIG. 14, the PUSCH resource before the PUCCH-assigned resource is also used for UCI transmission (Opt 1), or the UCI is transmitted using only the PUSCH resource after the PUCCH-assigned resource. may be It should be noted that whether it is before or after the resource may be determined based on the slot (or symbol), for example.
 (3.5)動作例3
 本動作例では、TBoMS適用時のUCI符号化変調シンボル長の決定に関する動作について説明する。
(3.5) Operation example 3
In this operation example, operations related to determination of the UCI-encoded modulation symbol length when TBoMS is applied will be described.
 UE200は、次の何れかの方法に従って、PUCCHと割当リソースが重なったPUSCHリソースに基づいてUCI用符号化シンボル数を計算してよい。 The UE 200 may calculate the number of encoded symbols for UCI based on PUSCH resources in which PUCCH and allocated resources overlap, according to any of the following methods.
  ・(Alt 1):割当リソース時間が重なった1つのRepetitionにリソースに基づいて符号化シンボル数を計算
  ・(Alt 2):割当リソース時間が重なった複数Repetitionリソースに基づいて符号化シンボル数を計算
  ・(Alt 3):割当リソース時間が重なった1スロット内に存在するPUSCHリソースに基づいて符号化シンボル数を計算
  ・(Alt 4):割当リソース時間が重なった複数スロット内に存在するPUSCHリソースに基づいて符号化シンボル数を計算
 或いは、UE200は、次の何れかの方法に従って、PUCCHと重なっていない割当リソースも考慮して、UCI用符号化シンボル数を計算してよい。
・(Alt 1): Calculate the number of coded symbols based on the resources in one repetition whose allocated resource times overlap ・(Alt 2): Calculate the number of coded symbols based on multiple repetition resources whose allocated resource times overlap (Alt 3): Calculate the number of coded symbols based on the PUSCH resources existing in one slot where the allocation resource time overlaps (Alt 4): For PUSCH resources existing in multiple slots where the allocation resource time overlap Alternatively, the UE 200 may calculate the number of encoding symbols for UCI according to any of the following methods, taking into account allocation resources that do not overlap with PUCCH.
  ・(Alt 5):1ストットのPUSCHリソースに基づいて符号化シンボル数を計算
  ・(Alt 6):複数のPUSCH Repetitionリソースに基づいて符号化シンボル数を計算
  ・(Alt 7):複数スロットのPUSCHリソースに基づいて符号化シンボル数を計算
  ・(Alt 8):1TBが割り当てられる全PUSCHリソースに基づいて符号化シンボル数を計算
 なお、UCIが送信されるPUSCHリソースと、UCI用の符号化シンボル数計算時に参照するPUSCHリソースとは異なっていてもよい。
・(Alt 5): Calculate the number of encoded symbols based on 1 st PUSCH resource ・(Alt 6): Calculate the number of encoded symbols based on multiple PUSCH Repetition resources ・(Alt 7): PUSCH of multiple slots Calculate the number of encoding symbols based on resources ・(Alt 8): Calculate the number of encoding symbols based on all PUSCH resources to which 1TB is allocated Note that the PUSCH resource where UCI is transmitted and the number of encoding symbols for UCI It may be different from the PUSCH resource referred to during calculation.
 また、UE200は、UCI用レートマッチング後の符号化変調シンボル計算時において、TBoMSに対応したoffset valuesが使用してもされてもよい。具体的には、次の何れかのオプションが適用されてもよい。 Also, the UE 200 may use offset values corresponding to TBoMS when calculating coded modulation symbols after rate matching for UCI. Specifically, any of the following options may apply.
  ・(Opt 1):TBoMS使用時のみBeta-offsetのマッピング値を変更する
   ・(Opt 1-1):TBoMS使用時は、Beta-offset値をスケーリングする
 この場合、beta offset index値毎にスケーリング値が設定されてもよい。また、DCIを介してスケーリング値が通知されてもよい。例えば、DCIのbeta_offset indicator fieldによって、暗黙的にスケーリング値が通知されてもよい。この場合、indicator field毎にスケーリング値が設定されてもよい。或いは、上位レイヤのシグナリングによってスケーリング値が通知されてもよいし、所定のルールに従って予めスケーリング値が決定されてもよい。
・(Opt 1): Change Beta-offset mapping value only when using TBoMS ・(Opt 1-1): Scale Beta-offset value when using TBoMS In this case, scaling value for each beta offset index value may be set. Also, the scaling value may be notified via DCI. For example, the DCI beta_offset indicator field may implicitly signal the scaling value. In this case, a scaling value may be set for each indicator field. Alternatively, the scaling value may be notified by higher layer signaling, or the scaling value may be determined in advance according to a predetermined rule.
   ・(Opt 1-2):TBoMS使用時に適用されるBeta-offset値のマッピングを設定する
 この場合、DCIを介してTBoMS用のBeta-offset値を使用するか否かが通知されてもよい。例えば、DCIのbeta_offset indicator fieldによって、暗黙的にスケーリング値が通知されてもよい。この場合、indicator field毎にスケーリング値が設定されてもよい。或いは、上位レイヤのシグナリングによってスケーリング値が通知されてもよい。
(Opt 1-2): Set Beta-offset value mapping applied when using TBoMS In this case, whether or not to use the Beta-offset value for TBoMS may be notified via DCI. For example, the DCI beta_offset indicator field may implicitly signal the scaling value. In this case, a scaling value may be set for each indicator field. Alternatively, the scaling value may be notified by higher layer signaling.
 また、UE200は、UCI用符号化変調シンボル計算時にTBoMSに対応したoffset valuesを使用してもよい。具体的には、次の何れかのオプションが適用されてもよい。 Also, the UE 200 may use offset values corresponding to TBoMS when calculating coded modulation symbols for UCI. Specifically, any of the following options may apply.
  ・(Opt 1):TBoMS使用時のみbeta offset valuesのマッピング値を変更する
  ・(Opt 2):Beta-offset値のマッピングテーブルに含まれるreserved bitに新たな値を追加する。
(Opt 1): Change the mapping value of beta offset values only when using TBoMS. (Opt 2): Add a new value to the reserved bit included in the beta-offset value mapping table.
 図15は、動作例3に係るBeta-offset値のマッピングテーブルの構成例を示す。図15に示すように、何れかにreserved bitに新たな値が追加されてもよい。 FIG. 15 shows a configuration example of a Beta-offset value mapping table according to Operation Example 3. FIG. As shown in FIG. 15, a new value may be added to any reserved bit.
 (3.6)動作例4
 本動作例では、TBoMS適用時の複数UCI系列の送信に関する動作について説明する。
(3.6) Operation example 4
In this operation example, operations related to transmission of multiple UCI sequences when TBoMS is applied will be described.
 UE200は、次の何れかの方法に従って、複数PUCCHが、TBoMSが適用されているPUSCHとリソースが重なった場合、PUSCH経由での最大UCI系列数を決定してもよい。 The UE 200 may determine the maximum number of UCI sequences via the PUSCH when multiple PUCCH resources overlap with the PUSCH to which TBoMS is applied, according to any of the following methods.
  ・(Opt 1):Repetition毎に送信可能なUCI系列の最大数を決定する
  ・(Opt 2):スロット毎に送信可能なUCI系列の最大数を決定する
  ・(Opt 3):複数のRepetition毎に送信可能なUCI系列の最大数を決定する
  ・(Opt 4):複数のスロット毎に送信可能なUCI系列の最大数を決定する
  ・(Opt 5):1TBが割り当てられる全てのPUSCHリソースに基づいて送信可能なUCI系列の最大数を決定する。
・(Opt 1): Determine the maximum number of UCI sequences that can be transmitted for each repetition ・(Opt 2): Determine the maximum number of UCI sequences that can be transmitted for each slot ・(Opt 3): For multiple repetitions (Opt 4): Determine the maximum number of UCI sequences that can be transmitted per multiple slots (Opt 5): Based on all PUSCH resources allocated 1 TB determines the maximum number of UCI sequences that can be transmitted by
 図16は、動作例4(Opt 5)に係るUCIの送信パターンの例を示す。図16に示すように、1TBが割り当てられる全てのPUSCHリソースに基づいて送信可能なUCI系列の最大数(2つ)が決定されてよい。 FIG. 16 shows an example of a UCI transmission pattern according to Operation Example 4 (Opt 5). As shown in FIG. 16, the maximum number (two) of UCI sequences that can be transmitted based on all PUSCH resources allocated 1 TB may be determined.
 或いは、UE200は、次の何れかの方法に従って、複数PUCCHが、TBoMSが適用されているPUSCHとリソースが重なった場合、PUSCH経由での最大UCI系列数を決定してもよい。 Alternatively, the UE 200 may determine the maximum number of UCI sequences via the PUSCH when multiple PUCCH resources overlap with the PUSCH to which TBoMS is applied, according to any of the following methods.
  ・(Alt 1):多重化を行うPUCCHに割り当てられていたUCI系列の送信可能最大数を決定する
 この場合、PUSCHリソースを用いて、先にリソース割り当てられていたUCI系列が優先的に送信されてもよい。
- (Alt 1): Determine the maximum number of UCI sequences that can be transmitted that have been assigned to the PUCCH to be multiplexed. may
  ・(Alt 2):UCIビット系列長に基づいて、最大のUCI系列数を送信する
 この場合、PUSCHリソースを用いて、短い系列長のUCI系列が優先的に送信されてもよい。また、送信するUCI系列は、送信タイミングまたはUCIの系列長に基づいて選択されてもよい。
(Alt 2): Transmit the maximum number of UCI sequences based on the UCI bit sequence length. In this case, PUSCH resources may be used to preferentially transmit UCI sequences with short sequence lengths. Also, the UCI sequence to be transmitted may be selected based on transmission timing or UCI sequence length.
 図17は、動作例4(Alt 2)に係るUCIの送信パターンの例を示す。図17に示すように、短い系列長のUCI系列が優先的に送信されてもよい。 FIG. 17 shows an example of a UCI transmission pattern according to operation example 4 (Alt 2). As shown in FIG. 17, UCI sequences with short sequence lengths may be preferentially transmitted.
 (3.7)動作例5
 本動作例では、UE capabilityの通知に関する動作について説明する。
(3.7) Operation example 5
In this operation example, an operation related to notification of UE capability will be described.
 UE200は、TBoMS に関して、次の内容をUE Capability Informationとしてネットワークに報告してよい。  UE 200 may report the following contents as UE Capability Information to the network regarding TBoMS.
  ・UCIを送信するPUSCHリソースの各決定方法の適用可否
  ・UCI用符号化シンボル計算時における各計算方法の適用可否
  ・UCIの多重化の最大数
 UE200は、対応(サポート)する周波数(FRまたはバンドでもいい)について、次の何れかの方法によって報告してよい。
- Applicability of each determination method for PUSCH resources for transmitting UCI - Applicability of each calculation method when calculating encoded symbols for UCI - Maximum number of UCI multiplexing may be reported in any of the following ways:
  ・全周波数一括での対応可否(移動局としての対応可否)
  ・周波数毎の対応可否
  ・FR1/FR2毎の対応可否
  ・SCS毎の対応可否
 また、UE200は、対応する複信方式について、次の何れかの方法によって報告してよい。
・Possibility of support for all frequencies at once (possibility of support as a mobile station)
- Compatibility for each frequency - Compatibility for each FR1/FR2 - Compatibility for each SCS In addition, the UE 200 may report the supported duplexing scheme by any of the following methods.
  ・UEとしての対応可否
  ・複信方式毎(TDD/FDD)の対応可否
・Supportability as UE ・Supportability for each duplex method (TDD/FDD)
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、上述した動作例1~5に係るUE200(及びgNB100)によれば、複数スロットに割り当てられた物理上りリンク共有チャネル(PUSCH)を介してトランスポートブロック(TB)を処理するTBoMSをより効率的に実現し得る。
(4) Functions and Effects According to the above-described embodiment, the following functions and effects are obtained. Specifically, according to the UE 200 (and gNB 100) according to operation examples 1 to 5 described above, a TBoMS that processes transport blocks (TB) via a physical uplink shared channel (PUSCH) assigned to multiple slots can be realized more efficiently.
 特に、上述した動作例によれば、PUCCHとTBoMSを適用したPUSCHとが衝突(重複)した場合でも、UCIをPUSCH経由で確実にネットワーク(無線基地局)に送信できる。これにより、TBoMSの適用範囲を広げ得る。 In particular, according to the operation example described above, even if PUCCH and PUSCH to which TBoMS is applied collide (overlap), UCI can be reliably transmitted to the network (radio base station) via PUSCH. This can broaden the application range of TBoMS.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the present invention is not limited to the description of the embodiments, and that various modifications and improvements are possible.
 例えば、上述した実施形態では、トランスポートブロック(TB)の用語が用いられていたが、後述するように、所定のデータのブロックであり、例えば、データパケットなどの別の同義の用語に置き換えられてよい。 For example, in the embodiments described above, the term transport block (TB) was used, but as will be explained later, it is a block of a given data, which can be replaced by another synonymous term such as, for example, a data packet. you can
 上述した実施形態では、制御情報としてUCIを対象として説明したが、物理上りリンク制御チャネルを介して送信される制御情報であれば、別の名称で呼ばれてもよいし、他の制御情報でも構わない。 In the above-described embodiment, the UCI is used as the control information. However, if the control information is transmitted via a physical uplink control channel, it may be called by another name, or other control information. I do not care.
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 Also, in the above description, configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good. Similarly, link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-specific may be read interchangeably. Similarly, common, shared, group-common, UE common, and UE shared may be read interchangeably.
 また、上述した実施形態の説明に用いたブロック構成図(図3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Also, the block configuration diagram (FIG. 3) used to describe the above-described embodiment shows blocks for each function. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、当該装置のハードウェア構成の一例を示す図である。図18に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 18 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 18, the device may be configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, mobile stations in the present disclosure may be read as base stations. In this case, the base station may have the functions that the mobile station has.
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 In addition, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200UE
210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (6)

  1.  物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部と、
     前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルを介して送信されるトランスポートブロックを時間領域において分割して割り当てる制御部と
    を備える端末。
    a transmission unit that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots;
    a control unit that divides and allocates transport blocks transmitted via the physical uplink shared channel in the time domain when the physical uplink control channel and the physical uplink shared channel overlap in the time domain; terminal.
  2.  物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部と、
     前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルの少なくとも一部の時間領域での送信を中止する制御部と
    を備える端末。
    a transmission unit that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots;
    a control unit that suspends transmission of at least part of the physical uplink shared channel in the time domain when the physical uplink control channel and the physical uplink shared channel overlap in the time domain.
  3.  物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部と、
     前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク制御チャネルを介して送信される制御情報を、前記物理上りリンク共有チャネルを介して送信する制御部と
    を備える端末。
    a transmission unit that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots;
    Control for transmitting control information transmitted via the physical uplink control channel via the physical uplink shared channel when the physical uplink control channel and the physical uplink shared channel overlap in the time domain a terminal comprising:
  4.  前記制御部は、前記物理上りリンク共有チャネルの繰り返し送信または前記物理上りリンク共有チャネルが割り当てられた時間リソースに基づいて、前記物理上りリンク共有チャネルを介して送信する前記制御情報の数を決定する請求項3に記載の端末。 The control unit determines the number of the control information to be transmitted via the physical uplink shared channel based on repeated transmission of the physical uplink shared channel or time resources to which the physical uplink shared channel is allocated. A terminal according to claim 3.
  5.  前記制御部は、前記物理上りリンク制御チャネルに割り当てられた前記制御情報の数または前記物理上りリンク制御チャネルに割り当てられた前記制御情報の長さに基づいて、前記物理上りリンク共有チャネルを介して送信する前記制御情報の数を決定する請求項3に記載の端末。 The control unit, based on the number of the control information allocated to the physical uplink control channel or the length of the control information allocated to the physical uplink control channel, via the physical uplink shared channel 4. A terminal according to claim 3, wherein the terminal determines the number of said control information to be transmitted.
  6.  物理上りリンク制御チャネル、及び複数のスロットに跨がった物理上りリンク共有チャネルを送信する送信部と、
     前記物理上りリンク制御チャネルと前記物理上りリンク共有チャネルとが時間領域において重複する場合、前記物理上りリンク共有チャネルが割り当てられた時間リソースに基づいて、前記物理上りリンク制御チャネルを介して送信される制御情報用のシンボル数を決定する制御部と
    を備える端末。
    a transmission unit that transmits a physical uplink control channel and a physical uplink shared channel spanning multiple slots;
    When the physical uplink control channel and the physical uplink shared channel overlap in the time domain, the physical uplink shared channel is transmitted via the physical uplink control channel based on the allocated time resource. a control unit that determines the number of symbols for control information.
PCT/JP2021/012423 2021-03-24 2021-03-24 Terminal WO2022201404A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012423 WO2022201404A1 (en) 2021-03-24 2021-03-24 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012423 WO2022201404A1 (en) 2021-03-24 2021-03-24 Terminal

Publications (1)

Publication Number Publication Date
WO2022201404A1 true WO2022201404A1 (en) 2022-09-29

Family

ID=83395410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012423 WO2022201404A1 (en) 2021-03-24 2021-03-24 Terminal

Country Status (1)

Country Link
WO (1) WO2022201404A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100232, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970864 *
INTEL CORPORATION: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971136 *
VIVO: "Discussion on PUSCH TB processing over multiple slots", 3GPP DRAFT; R1-2100458, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970380 *
WILUS INC.: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2101680, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971833 *

Similar Documents

Publication Publication Date Title
JP7499384B2 (en) Terminal
WO2022079876A1 (en) Terminal
WO2021171594A1 (en) Terminal
WO2022201404A1 (en) Terminal
WO2022244097A1 (en) Terminal and wireless communication method
WO2022201401A1 (en) Terminal and radio base station
WO2022244501A1 (en) Terminal and wireless communication method
WO2022201403A1 (en) Terminal and wireless communication method
WO2022239081A1 (en) Terminal and wireless communication method
WO2022239080A1 (en) Terminal and radio communication method
WO2022195787A1 (en) Terminal, wireless communication system and wireless communication method
WO2022239078A1 (en) Terminal, radio communication system, and radio communication method
WO2022239082A1 (en) Terminal and wireless communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190377A1 (en) Terminal, wireless communication system, and wireless communication method
EP4132144A1 (en) Terminal
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215272A1 (en) Terminal, base station, wireless communication system, and wireless communication method
US20240224283A1 (en) Terminal, radio communication system and radio communication method
WO2022153506A1 (en) Wireless base station and terminal
WO2021199387A1 (en) Terminal
US20240236999A1 (en) Terminal, radio communication system and radio communication method
WO2022220136A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022201462A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP