WO2022238663A1 - Nano-dispersions aqueuses et nano-emulsions de traitement des eaux - Google Patents
Nano-dispersions aqueuses et nano-emulsions de traitement des eaux Download PDFInfo
- Publication number
- WO2022238663A1 WO2022238663A1 PCT/FR2022/050909 FR2022050909W WO2022238663A1 WO 2022238663 A1 WO2022238663 A1 WO 2022238663A1 FR 2022050909 W FR2022050909 W FR 2022050909W WO 2022238663 A1 WO2022238663 A1 WO 2022238663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nano
- water
- particles
- emulsion
- lipid phase
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 239000007908 nanoemulsion Substances 0.000 title claims abstract description 33
- 238000011282 treatment Methods 0.000 title claims description 15
- 239000002245 particle Substances 0.000 claims abstract description 100
- 150000002632 lipids Chemical class 0.000 claims abstract description 83
- 229910052615 phyllosilicate Inorganic materials 0.000 claims abstract description 79
- 239000012071 phase Substances 0.000 claims abstract description 70
- 239000000341 volatile oil Substances 0.000 claims abstract description 60
- 239000002270 dispersing agent Substances 0.000 claims abstract description 43
- 239000008346 aqueous phase Substances 0.000 claims abstract description 22
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 15
- 239000011707 mineral Substances 0.000 claims abstract description 15
- 239000000839 emulsion Substances 0.000 claims description 60
- 239000000203 mixture Substances 0.000 claims description 22
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 20
- 239000000787 lecithin Substances 0.000 claims description 20
- 229940067606 lecithin Drugs 0.000 claims description 20
- 235000010445 lecithin Nutrition 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 18
- 241001465754 Metazoa Species 0.000 claims description 14
- 235000013305 food Nutrition 0.000 claims description 12
- 238000009360 aquaculture Methods 0.000 claims description 10
- 244000144974 aquaculture Species 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 229920000656 polylysine Polymers 0.000 claims description 9
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 8
- 238000010008 shearing Methods 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000003651 drinking water Substances 0.000 claims description 5
- 235000020188 drinking water Nutrition 0.000 claims description 5
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 claims description 5
- 230000003449 preventive effect Effects 0.000 claims description 5
- -1 sodium cations Chemical class 0.000 claims description 5
- 239000011229 interlayer Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 150000003904 phospholipids Chemical class 0.000 claims description 4
- 239000004475 Arginine Substances 0.000 claims description 3
- 239000004398 Ethyl lauroyl arginate Substances 0.000 claims description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 3
- 238000011109 contamination Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 3
- 235000015872 dietary supplement Nutrition 0.000 claims description 3
- XJTMYVOVQZMMKX-KRWDZBQOSA-N ethyl (2s)-5-(diaminomethylideneamino)-2-(dodecanoylamino)pentanoate Chemical compound CCCCCCCCCCCC(=O)N[C@H](C(=O)OCC)CCCN=C(N)N XJTMYVOVQZMMKX-KRWDZBQOSA-N 0.000 claims description 3
- 235000019455 ethyl lauroyl arginate Nutrition 0.000 claims description 3
- 150000002327 glycerophospholipids Chemical group 0.000 claims description 3
- 239000003755 preservative agent Substances 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 2
- 239000012456 homogeneous solution Substances 0.000 claims description 2
- 230000002335 preservative effect Effects 0.000 claims description 2
- 239000013589 supplement Substances 0.000 claims description 2
- 239000004927 clay Substances 0.000 description 48
- 239000006185 dispersion Substances 0.000 description 39
- 230000002209 hydrophobic effect Effects 0.000 description 20
- 239000010410 layer Substances 0.000 description 19
- 235000012216 bentonite Nutrition 0.000 description 15
- 238000004299 exfoliation Methods 0.000 description 15
- 229910000278 bentonite Inorganic materials 0.000 description 14
- 239000000440 bentonite Substances 0.000 description 14
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 14
- 244000052769 pathogen Species 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- 241000251468 Actinopterygii Species 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 235000019198 oils Nutrition 0.000 description 12
- 230000008901 benefit Effects 0.000 description 9
- 230000001804 emulsifying effect Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000003242 anti bacterial agent Substances 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 229940088710 antibiotic agent Drugs 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 5
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000004819 silanols Chemical class 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 238000002296 dynamic light scattering Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 230000001717 pathogenic effect Effects 0.000 description 4
- 150000004756 silanes Chemical class 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 241000520869 Pseudomonas anguilliseptica Species 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002600 sunflower oil Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241000238582 Artemia Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- 240000009023 Myrrhis odorata Species 0.000 description 2
- 235000007265 Myrrhis odorata Nutrition 0.000 description 2
- 241000607568 Photobacterium Species 0.000 description 2
- 235000007303 Thymus vulgaris Nutrition 0.000 description 2
- 240000002657 Thymus vulgaris Species 0.000 description 2
- 241000607598 Vibrio Species 0.000 description 2
- 241000607594 Vibrio alginolyticus Species 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 239000002734 clay mineral Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 235000019592 roughness Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000001256 steam distillation Methods 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- 239000001585 thymus vulgaris Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- AHYFYQKMYMKPKD-UHFFFAOYSA-N 3-ethoxysilylpropan-1-amine Chemical class CCO[SiH2]CCCN AHYFYQKMYMKPKD-UHFFFAOYSA-N 0.000 description 1
- USMNOWBWPHYOEA-UHFFFAOYSA-N 3‐isothujone Chemical compound CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 description 1
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- UDHXJZHVNHGCEC-UHFFFAOYSA-N Chlorophacinone Chemical compound C1=CC(Cl)=CC=C1C(C=1C=CC=CC=1)C(=O)C1C(=O)C2=CC=CC=C2C1=O UDHXJZHVNHGCEC-UHFFFAOYSA-N 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- 241000239250 Copepoda Species 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166652 Cymbopogon martinii Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 235000013628 Lantana involucrata Nutrition 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 240000007707 Mentha arvensis Species 0.000 description 1
- 235000018978 Mentha arvensis Nutrition 0.000 description 1
- 235000006677 Monarda citriodora ssp. austromontana Nutrition 0.000 description 1
- 240000007673 Origanum vulgare Species 0.000 description 1
- 241001517016 Photobacterium damselae Species 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000700141 Rotifera Species 0.000 description 1
- 235000017304 Ruaghas Nutrition 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- 241000246337 Satureja montana Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000269809 Sparus aurata Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000194056 Streptococcus iniae Species 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 241000276707 Tilapia Species 0.000 description 1
- 206010066901 Treatment failure Diseases 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000011256 aggressive treatment Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 235000019728 animal nutrition Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 1
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 1
- 235000007746 carvacrol Nutrition 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000037149 energy metabolism Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000009309 intensive farming Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229930007110 thujone Natural products 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P1/00—Disinfectants; Antimicrobial compounds or mixtures thereof
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/02—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
- A01N25/04—Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/158—Fatty acids; Fats; Products containing oils or fats
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/20—Inorganic substances, e.g. oligoelements
- A23K20/28—Silicates, e.g. perlites, zeolites or bentonites
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K50/00—Feeding-stuffs specially adapted for particular animals
- A23K50/80—Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3454—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
- A23L3/358—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K61/00—Culture of aquatic animals
- A01K61/10—Culture of aquatic animals of fish
- A01K61/13—Prevention or treatment of fish diseases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/04—Disinfection
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/08—Nanoparticles or nanotubes
Definitions
- the present invention relates to aqueous nano-dispersions and nanoemulsions intended to decontaminate water or to prevent its contamination by pathogenic agents, in particular water used for aquaculture, or the drinking water of terrestrial animals, which can according to the dosage be used as a preventive treatment for animal infections.
- Aquaculture represents 50% of the fish consumed in the world.
- the sector is developing like all intensive farming with the use of antibiotics to deal with the diseases that affect farms. This overexposure to antibiotics contributes to the development of antibiotic resistance and the spread of pathogens. It has become a major concern in this sector, under pressure from consumers.
- the subject of the invention is an aqueous nano-dispersion comprising mineral particles, an amphiphilic dispersing agent and active molecules, such that the particles are clusters of exfoliated phyllosilicate sheets of size D90 in number less than 1000 nanometers, and such that the active molecules include essential oils.
- the clusters of very small phyllosilicate sheets serve as a support for the molecules of essential oils which are physically bound to the surface of the phyllosilicate sheets with an amphiphilic surfactant, this has the advantage of stabilizing these molecules and to concentrate them on their surface.
- the small size of the clusters of sheets thus makes it possible to widely disperse the active molecules, which when they are hydrophobic and of low density tend to group together to form large drops, or even lipid films on the surface of the water.
- These active molecules can be essential oils or combinations of essential oils.
- the size D50 in number of the particles is less than 750 nm, preferably less than 200 nm and very preferably less than 100 nm.
- the size D50 in number of the particles ranges from 10 to 800 nm, preferably from 10 to 750 nm, preferably from 20 to 500 nm, preferably from 20 to 400 nm, preferably from 20 to 300 nm, preferably 20 to 200 nm, preferably 20 to 100 nm, preferably 20 to 90 nm, preferably 25 to 70 nm, preferably 25 to 50 nm.
- the reduction in size of the clusters of phyllosilicate sheets has the advantage of promoting the dispersion of the active molecules while having a high local concentration of active molecule, and thus of enhancing their effectiveness.
- Using these nanometric size phyllosilicate sheets we increase the contact surface with the essential oils, which remain labile, because they can be desorbed, which promotes their effectiveness. Moreover, they are thus dispersed in the volume of water on their phyllosilicate support, and can interact with pathogens.
- This aqueous nano-dispersion is very simple to implement in a basin of aquaculture water or in the drinking water of terrestrial animals. The small size of the clusters of sheets facilitates their suspension in water with slow sedimentation.
- the invention also relates to a nano-emulsion with a continuous aqueous phase and a dispersed lipid phase, in which the dispersed lipid phase contains lipids, mineral particles consisting of clusters of phyllosilicate sheets swollen with water and exfoliated, at least one essential oil and one amphiphilic dispersing agent, and in which the size D50 in number of the drops of the dispersed lipid phase is less than 800 nm and preferably less than 300 nm.
- the size D50 in number of the drops of the dispersed lipid phase ranges from 10 to 800 nm, preferably from 20 to 700 nm, preferably from 50 to 500 nm, preferably from 75 to 400 nm. nm, preferably 50 to 300 nm, preferably 100 to 300 nm.
- the water of the lipid phase is physisorbed between the layers of phyllosilicates to swell them (interlayer space), which makes it possible to achieve smaller particle sizes by exfoliation, and the dispersing agent, with a part hydrophilic and a hydrophobic part, is adsorbed on the surface of the clusters of sheets by its hydrophilic part. This makes the sheets partially hydrophobic, promotes exfoliation of the phyllosilicates and allows good dispersion of the phyllosilicate sheets in the lipids.
- the lipid phase does not include any water other than the water adsorbed in the phyllosilicate sheets.
- the amphiphilic dispersing agent of the aqueous nano-dispersion and of the nanoemulsion can be chosen from the group of ethyl lauroyl arginate (LAE), cationic surfactants based on arginine with 16 carbons and more, phospholipids, e-polylysine and combinations thereof.
- LAE ethyl lauroyl arginate
- the dispersing agent is a phosphoglyceride.
- the dispersing agent is a phosphatidyl choline and preferentially lecithin.
- These dispersing agents will bind to the silanolate functions of the phyllosilicates via the cationic part of their structure.
- the phyllosilicates of the aqueous nano-dispersion and of the nanoemulsion mainly have sodium cations in the interfoliar position.
- the interfoliar sodium cations have the advantage of offering less resistance to the increase in the interfoliar distance of the so-called sodium phyllosilicate sheets and thus of promoting their swelling by water molecules as well as their exfoliation.
- Sodium phyllosilicates thus have advantages on the size of the dispersion to obtain clusters of smaller sheets, this favors fine dispersions of essential oil and thus a greater surface-to-volume ratio of the phyllosilicate clusters which support the molecules is obtained. essential oil molecules, and this increases the encounter statistics between the active molecules and the pathogens.
- the phyllosilicates are smectites which are mainly sheets of montmorillonites.
- the amphiphilic dispersing agent content of the aqueous nanodispersion is between 0.2 and 2.0% by weight relative to the weight of the mineral particles.
- the dispersing agent content of the dispersed lipid phase of the nano-emulsion is advantageously between 10% and 400% and preferably between 20% and 300% by weight relative to the weight of particles of the lipid phase.
- the preferred range of dispersing agent content corresponds to a rate of coverage of the silanol functions by the dispersing agent between 20 and 60%, ie between 30 and 130% of the mass of clay used to provide a dispersing agent such as soya lecithin.
- the water content of the dispersed lipid phase of the nanoemulsion is between 10% and 300% and preferably between 20% and 200% by weight relative to the weight of particles of the lipid phase.
- the amount of water no longer allows the molecules of the dispersing agent to physically bind to the surface of the sheets and the sheets are not sufficiently hydrophobic to serve as a support for the molecules. active like essential oils.
- Aqueous nano-dispersions and nanometric emulsions can be used as an agent for decontaminating aquaculture water and drinking water for terrestrial animals, or as a means of preventive treatment of pathologies in animals through its daily hydration, or in the preventive treatment of animals against the development of contamination agents in their organism. They can thus be used to protect these waters from the proliferation of pathogens. In certain indirect applications, these systems can constitute a palatant to encourage the water intake of animals.
- Nanometric emulsions have the advantage of being able to remain in homogeneous suspension under the force of thermal agitation, which makes it possible to store them over long periods of time while remaining very easy to homogenize during their use.
- the aqueous nano-dispersions and the nanometric emulsions can complete a food, a food supplement or a premix.
- aqueous dispersions and nanometric emulsions can be used as a natural preservative, based on essential oils for preparations whose water activity parameter is greater than 0.45 .
- the water activity does not represent the water content (or humidity) but rather the availability of this water. The higher the water activity, the greater the amount of free water and the greater the ability for microorganisms to grow.
- the nanometric emulsions obtained by this approach are very stable particles mechanically, as well as over time, and can be easily introduced into an extruder to be coextruded at the heart of granulated foods. They will thus be ideal vehicles for the incorporation of essential oils into foods in the form of a premix, which facilitates handling (because it reduces the risk of inhalation or evaporation of essential oils).
- the premixes are thus also found in a galenic form which promotes their metabolization with drop sizes of the order of a hundred nanometers.
- the invention also relates to a method for preparing a nano-emulsion, comprising the following steps: dissolving the dispersing agent in the aqueous phase of the lipid phase and obtaining a homogeneous solution; add the phyllosilicates and mix the dough obtained with a kneader; add the lipids of the lipid phase; shearing the composition obtained; add the aqueous phase; provide shear energy to obtain a micrometric emulsion; and resume the micrometric emulsion with a high pressure homogenizer or a microfluidizer to obtain a nanometric emulsion.
- the objective of the invention is a mode of use of essential oils which makes it possible to limit their volatility while having a high efficiency with quantities used under control.
- This implementation of essential oils in a stably nanoscale dispersed form promotes the encounter statistics with pathogens.
- the storage and incorporation of essential oils in animal nutrition practices will be greatly facilitated by the stability and homogeneity of the dispersions.
- the figure. 1 shows a structural diagram of a bentonite
- the figure. 2 presents the formula of lecithin
- the figure. 3 schematically presents the evolution of the lecithin content as a function of the specific surface of the clay and for several coverage rates;
- the figure. 4 schematically presents the evolution of the size of the drops of the dispersed phase according to the size and the concentration of the mineral particles;
- the figure. 5 presents the size of the mineral particles for two concentrations of clay
- the figure. 6 shows the measurement of the size of different clays dispersed in water
- the figure. 7 shows the size of the lipid drops in an emulsion
- the figure. 8 shows a diagram of the emulsion obtained
- the figure. 9 schematically presents the evolution of the size of the drops of the dispersed phase according to the size and the concentration of the mineral particles.
- the figure. 10 shows a diagram for measuring the contact angle between a drop of pure water and the clay surface.
- an emulsion is of the “oil in water” type, when (i) the dispersing phase is an aqueous phase and (ii) the dispersed phase is an organic phase (hydrophobic, lipidic or oily). Such an emulsion is also commonly referred to as “direct emulsion” or by the abbreviation “O/W”.
- the term “labile” molecule is understood to mean a molecule bound to a substrate by physical, ionic interactions, or Van der Waals forces, non-covalent, which gives it a capacity to grip or reversible organization.
- the composition comprises exfoliated phyllosilicates, that is to say phyllosilicates whose layers have been separated by exfoliation.
- exfoliated means phyllosilicates having undergone exfoliation, that is to say a more or less complete separation of its individual sheets.
- the exfoliation process usually includes three phases:
- clay or “mineral particles” is used interchangeably to designate and describe phyllosilicates.
- the D50 in number of a sample of particles represents the size of the particles for which 50% of the particles of the sample have a particle size smaller than this value
- a D90 in number represents the size particles for which 90% of the particles of the sample have a particle size below this value.
- nanometric emulsion or “nano-emulsion” means an emulsion in which the drops of the dispersed phase have a size D50 in number of less than 800 nanometers (nm), preferably less than 500 nanometers (nm), of particularly less than 300 nanometers (nm) and a D90 number less than 1000 nm.
- nano-dispersion or “nanometric dispersion” means a dispersion in which the colloidal particles of phyllosilicates are dispersed with a size D50 in number of less than 1000 nanometers (nm).
- the water activity symbol for activity of water
- Water activity is one of the main parameters influencing the preservation of food or pharmaceutical products. Microorganisms need “free” water (free for biochemical reactions) to grow. Water activity does not represent the water content (or humidity) but rather the availability of this water. The higher the water activity, the greater the amount of free water (1 being the maximum) and the more microorganisms will grow.
- the water activity is 0 to 1, preferably 0.45 to 1, preferably 0.6 to 1, preferably greater than 0.45.
- the present invention thus relates to an aqueous nano-dispersion and a nanoemulsion comprising particles and active liposomal molecules.
- the particles consist of clusters of phyllosilicate sheets of D50 size in number less than 1,000 nanometers (nm).
- the active molecules can be essential oils (EO) or combinations of essential oils.
- the lipids of the lipid, or hydrophobic, or oily, or organic phase of the nanometric emulsions are chosen according to the applications envisaged from vegetable oils, mineral oils, synthetic oils, hydrophobic organic solvents and liquid polymers. hydrophobic.
- the lipid phase of the nano-emulsion includes bacteriostatic agents, such as essential oils. It may also contain unsaturated fatty acids, antioxidants and vitamins.
- sunflower oil is used.
- Essential oils are used.
- the entire aromatic plant or more specifically some of its organs (root, bark, leaf, flower, fruit, seed, etc.) will be selected to extract the aromatic compounds.
- An essential oil has a complex molecular composition which gives it unique virtues. It does not contain proteins, fats or carbohydrates, contains no minerals or vitamins: it therefore has no nutritional value.
- the essential oils are liquid, apart from a few special cases: the essential oils of myrrh and sandalwood are rather viscous and those of rose and camphor can be crystallized. At low temperature, some essential oils crystallize: those of anise, field mint or saturated thyme when the bottles are stored in the refrigerator.
- Essential oils are volatile, this volatility explains their fragrant character as well as their method of obtaining by steam distillation. They are very soluble in fatty oils (which constitute a very good support when one wishes to dilute them), lipids (hence the principle of enfleurage formerly used to extract essential oils by putting them in contact with a fat animal such as lanolin), ether, most organic solvents as well as in alcohol (of high titer). Character liposo fad: essential oils do not dissolve in water, it is therefore imperative to use a surfactant to allow their implementation suspended in water. They have a high refractive index and often have a rotatory power. Most of them are colored.
- EO components depend on their chemical structure. Oxygenated terpenes (e.g. carvacrol, thujone) exhibit higher antimicrobial activity than non-oxygenated terpenes (e.g. a- and b-pinene, limonene).
- non-oxygenated terpenes e.g. a- and b-pinene, limonene.
- lipophilic character of their hydrocarbon skeleton as well as the hydrophilic character of their functional groups are decisive with respect to their antimicrobial activity.
- the order of antimicrobial activity of these compounds is as follows: phenols > aldehydes > ketones > alcohols > ethers > hydrocarbons.
- phenolic compounds have been shown to possess significant antimicrobial activity. It seems that the presence of the hydroxyl group is related to the inactivation of microbial enzymes. Most likely, this group interacts with the cell membrane, causing leakage of cell components, modification of fatty acids and phospholipids, as well as impaired energy metabolism and influence on the synthesis of genetic material.
- the phyllosilicates are related to the inactivation of microbial enzymes. Most likely, this group interacts with the cell membrane, causing leakage of cell components, modification of fatty acids and phospholipids, as well as impaired energy metabolism and influence on the synthesis of genetic material.
- Phyllosilicates are clay minerals of the group of silicates built by stacking tetrahedral layers ("T") where the tetrahedra share three peaks out of four ("basal” oxygens), the fourth peak (“apical” oxygen ) being connected to an octahedral (“O”) layer occupied by different cations (Al, Mg, Le, Ti, Li, etc.).
- Figure 1 shows an example of a phyllosilicate structure. These stacked structures form organized sheets (as described in detail below) whose surface charge is negative over a wide pH range (4 ⁇ pH ⁇ 9), which will be stabilized by cationic counterions.
- Smectites are a group of clay minerals, and therefore silicates, more precisely phyllosilicates.
- A represents a cation interlayer (alkali or alkaline-earth element), D an octahedral cation, T a tetrahedral cation, O oxygen and Z a monovalent anion (generally OH-).
- phyllosilicates of TOT or 2:1 structure, that is to say made up of sheets comprising two tetrahedral layers head to tail, bonded together by octahedral cations. The sheets are bound together by the interfoliar cations.
- Montmorillonite is a 2/1 type clay, also called TOT (for tetrahedron/octahedron/tetrahedron).
- TOT for tetrahedron/octahedron/tetrahedron.
- a montmorillonite sheet is made up of three layers: an octahedral Al(OH)sO layer: 7 atoms for 6 vertices + aluminum in the center.
- the OH- and oxygen being shared between the different octahedra that make up the layer. and two tetrahedral layers which cover on each side the octahedral layer at its base; S1O4: 5 atoms for 4 vertices + silicon in the middle.
- the oxygens being shared between the different tetrahedrons that make up the layer.
- interfoliar cations generally monovalent or divalent, which ensure the electrical neutrality of the mineral.
- phyllosilicates can be used, but the smectites and particularly the montmorillonites have the advantage, due to their lamellar structure with a spacing between the layers greater than the other phyllosilicates, of being able to be swollen by small molecules with hydrophobic properties which will improve the exfoliation of the clay platelets and thus facilitate their dispersion in the lipid composition.
- the other phyllosilicates, but also the micas and the talcs can also be exfoliated in this way, but the energy which would be necessary to disperse the lamellar layers in the lipid phase would be much higher.
- bentonite is used as phyllosilicate.
- Bentonites are clays mainly composed of montmorillonite, whose interlayer cations are usually either calcium, or sodium, potassium, their combination or other metal ions. Bentonite is negatively charged on the surface (on the length) and positively on the sides (width) which allows it to interact with other charged molecules.
- Clays are hydrophilic and smectites, including bentonite, have a swelling capacity. This particularity makes it possible to adsorb water-soluble molecules in the interfoliar space of clays via an aqueous phase. The water is said to be physisorbed on the surface of the clay sheets via the silanol groups.
- clay will also be used to refer to phyllosilicates.
- the dispersing or surface agent usually used is a molecule with a hydrophobic part and a hydrophilic part.
- the adhesion of this dispersing agent by physical interaction to the mineral particles makes it possible to make the clay sheets hydrophobic and to obtain a good dispersion of these clay sheets in a lipid phase.
- Arginine grafted on a long alkyl chain can also play this role of dispersing agent. You can also use ethyl lauroyl arginate (LAE). E-polylysine can also be used as a surfactant.
- Phosphatidylcholine has (FIG. 2): a hydrophilic pole: choline (1) and the phosphate group (2); a hydrophobic tail: fatty acid residues (here, palmitic (5) and oleic (4) acid residues); and glycerol (3) connects these two hydrophilic and hydrophobic poles.
- the phosphate group is negatively charged, while choline is positively charged. Phosphatidylcholine is therefore zwitterionic.
- hydrophilic and lipophilic and its hydrophilic-lipophilic balance (HLB) can vary between 2 and 9.5 depending on the fatty acid residues of the hydrophobic tail.
- one approach consists in using so-called “emulsifying” or “emulsifying” compounds.
- emulsifying compounds are most often emulsifying surfactants (also called “surfactants”) which, thanks to their amphiphilic structure, are placed at the oil/water interface and stabilize the dispersed droplets.
- surfactants also called “surfactants”
- emulsifying compounds of this type do not always offer the desired stability over time, with a permanent balance of surfactants between the interface to be stabilized and the micelles in solution.
- synthetic surfactants often have disadvantages from an ecological or food point of view, since they disrupt biological systems through a strong interaction with cell membranes.
- emulsifying/emulsifying compounds can also consist of solid particles, which make it possible to obtain so-called “Pickering emulsions”.
- Pickering emulsions are emulsions which are stabilized by particles in colloidal suspension in the aqueous phase which become anchored at the oil/water interface, interpreted as a wetting effect at the interface of the two phases, with a strong stability.
- the phyllosilicate particles thus have an emulsifying role to stabilize the emulsions according to an object of the invention. These emulsions are thus Pickering emulsions.
- the objective of this step is to obtain a stable emulsion with a dispersed phase in the form of drops in a continuous phase.
- the lipid phase comprises the dispersion of phyllosilicates in oil previously described.
- the aqueous phase is composed of water which can be supplemented with a monovalent salt, with a concentration between 0 and 100 mM in water, advantageously with NaCl at a concentration of less than 50 mM and very advantageously at 25 mM. This ionic strength was chosen to limit the electrostatic repulsions due to the surface charges of the clay particles.
- a lipid phase is always used in which clay particles are dispersed and stabilized with a dispersing or surface agent in the presence of water as previously describe.
- the direct or reverse character of the emulsion obtained is mainly a function of the relative viscosities of the continuous phase and of the dispersed phase, of the proportion of dispersed phase relative to the continuous phase at the start of the emulsification, knowing that the dispersed phase can then be added drop by drop to increase the proportion, it is thus possible to produce emulsions with more than 65% by weight of dispersed phase.
- the size of the drops of the dispersed phase obtained is a function of the size of the clay particles and of the concentration of these clay particles.
- Figure 9 schematically presents the changes observed. [00100] For a given clay particle size, the diameter of the drops decreases with the concentration; the more particles are added, the more interfaces they can stabilize and therefore drops of the dispersed phase result in smaller diameters. However, the size of the clay particles will dictate a minimum droplet size; you can't make drops smaller than the stabilizing particles.
- Emulsions stabilized by phyllosilicates organized on the surface of the droplets make it possible to have lipid droplets stabilized against coalescence by a physical barrier of dominant negative charge on the surface for a wide range of pH ranging from pH 4 and pH 10 This negative charge is provided by the surface silanolate bonds of the clay platelets.
- These negatively charged silanolates can interact with molecules (L-arginine, L-Lysine) or cationic polymers (chitosan, hyaluronic acid, polylysine, etc%), which makes it possible to change the surface interactions of the droplets and functionalize them or change their attractiveness for different supports. It is also possible to functionalize them by covalent bonding by condensation of silanes prepared to provide specific functions.
- silanes which can be condensed by one or more silanes are possible. Mention may be made, by way of example, of mono, di or tri ethoxy aminopropylsilanes. Many molecules can be used to then covalently couple the amine function provided by the silanes. Simple chemistry can be used with coupling agents like isothiocyanates, N-hydroxysuccimide ester (NHS-ester), isocyanates, acyl azides, sulfonyl chlorides, aldehydes, glyoxals, epoxides, oxiranes, carbonates, aryl halides, imidoesters, carbodiimides , anhydrides, and fluorophenyl esters
- the surfaces of the particles can thus be functionalized to interact with surface antigens on bacteria, or bacterial biofilms.
- the preparation of an aqueous nano-dispersion of phyllosilicate particles comprises the following steps:
- the phyllosilicate content in the aqueous nanodispersion ranges from 0.005 to 20% by weight.
- the content of phyllosilicates in the aqueous nanodispersion ranges from 0.5 to 20% by weight, preferably from 1 to 20% by weight. [00111] In embodiments, the content of phyllosilicates in the aqueous nanodispersion ranges from 0.005 to 5% by weight, preferably from 0.005 to 2% by weight.
- the content of phyllosilicates in the aqueous nano-dispersion ranges from 0.5 and 35% by weight and preferably from 0.5 to 15% by weight, relative to the weight of the lipid composition. .
- the invention also relates to nanometric emulsions. These emulsions consist of a lipid phase and a continuous aqueous phase. [00114] The objective is to obtain a nanometric emulsion according to one of the objects of the invention.
- steps (1) to (4) Take this emulsion and shear it with even more energy by treatment in a high pressure homogenizer or a microfluidizer and obtain a nanometric emulsion.
- the purpose of steps (1) to (4) is to prepare the lipid phase of the nanoemulsion according to one of the subjects of the invention.
- This lipid phase comprises lipids, for example sunflower oil to which at least one essential oil is added as an antibacterial agent, phyllosilicates, swelling water of the phyllosilicates and an amphiphilic dispersing agent.
- lipids for example sunflower oil to which at least one essential oil is added as an antibacterial agent, phyllosilicates, swelling water of the phyllosilicates and an amphiphilic dispersing agent.
- Step (1) is obtained by adding water in sufficient quantity to solubilize the dispersing agent and impregnate the clay sheets.
- Clays are known for their water absorbing properties, and they can swell depending on their chemical and structural composition between 2 times their mass in water, up to 20 times their mass in water. The clays thus swollen form a gel whose more or less swollen and more or less exfoliated sheets incorporate the entire volume of water. It is not necessary to saturate all of the water absorption capacity of the clays to obtain a satisfactory dispersion of the clay in the lipid phase, which is why we limit the water supply to 300 % by weight relative to clay. Conversely, clays need to be at least impregnated with water to promote their dispersion. Exfoliable clays are usually stored at a humidity level of 10%. It is essential not to drop below the 5% threshold to avoid the collapse of the phyllosilicate sheets, leading to a structure that loses its ability to exfoliate.
- the clay sheets are easier to exfoliate but they are impregnated with water and they have less capacity to adsorb the molecules of the amphiphilic dispersing agent. They keep their hydrophilic character.
- the water content is between 10 and 400% and very preferably between 20% and 200% relative to the weight of phyllosilicates or clays of the lipid phase.
- a dispersing agent such as lecithin, as dispersing agent/exfo binder. This will be adsorbed on the surface of the clay sheets by ionic interaction between the ammonium functions and the silanol groups of the clays.
- the lecithin or Ge-polylysine is pre-dissolved in the water of step (1) to facilitate its incorporation.
- the amount of lecithin or e-polylysine can vary from 5% to 100% clay surface coverage.
- This coverage rate is calculated according to the total outer surface of clay after exfoliation, and the number of anionic charges at the surface of the sheets (usually there are about five silanol functions per square nanometer, 5 /nm 2 ) accessible by lecithin or e-polylysine molecules (the most swollen layers (spread apart by water)). It therefore depends on the specific surface of the clay accessible by the dispersing agent.
- FIG. 3 schematically shows the evolution of the necessary content of lecithin by weight relative to the content by weight of clay as a function of the specific surface of the exfoliated clays for several coverage rates of the silanols of the clay sheets by lecithin.
- the optimal lecithin content to obtain good exfoliation followed by stable direct emulsification is between 13% and 129% by mass relative to the mass of the clay for a coverage rate of 20% and respectively a specific clay surface of 100 m 2 /g and 1000 m 2 /g.
- the optimal lecithin content is between 39% and 387% by mass relative to the mass of the clay and respectively a specific clay surface of 100 m 2 /g and 1000 m 2 / g.
- step (3) the lipids of the lipid phase of the nano-emulsion are added to the paste obtained in step (2).
- the resulting lipid phase is such that the level of phyllosilicates, that is to say the weight of phyllosilicates, is greater than 0.2% by weight relative to the weight of the lipid phase and preferably between 0.2% and 20% by weight.
- Step (4) can be obtained by shearing applied in batch by means for example of a Silverson (rotor-stator shearing), an additional treatment by ultrasound or using a high pressure homogenizer is also possible to reduce particle size.
- a Silverson rotor-stator shearing
- an additional treatment by ultrasound or using a high pressure homogenizer is also possible to reduce particle size.
- step (5) the water from the aqueous phase is added.
- this aqueous phase can be supplemented with a monovalent salt, with a concentration between 0 and 100 mM in water, advantageously with NaCl at a concentration of less than 50 mM and very advantageously 25 mM.
- step (6) the supply of shear energy can be achieved with a rotor/stator with an air gap of 150 micrometers and a mobile of 30 mm, at a speed of 2000 to 5000 rpm for 3 to 30 min, preferably 4000 rpm for 5 min, even more preferably at 4500 rpm for 4 min.
- step (7) preformed emulsions were passed through a high pressure (HP) homogenizer (GEA Niro Soavi Panda Plus 2000, Italy) up to 5 times at 1000 bar at room temperature.
- HP homogenizer was equipped with a high pressure valve (HP valve) and a low pressure valve (LP valve).
- HP valve high pressure valve
- LP valve low pressure valve
- the pressure at the LP valve was adjusted to 100 bar and the HP valve was used to arrive at a treatment pressure of 1000 bar which corresponds to the sum of the pressures at the two valves.
- shearing of a liquid composition is meant the application of shearing forces in an air gap positioned between a rotor and a stator.
- This air gap can be between 0.1 mm and 2 mm depending on the equipment.
- This shear force in the air gap is expressed in the form of a shear gradient, which will be all the stronger as the speed of rotation of the rotor is high, as the diameter of the rotor is large, and as the air gap is weak.
- the speed of the rotor can vary between a few rpm up to 12000 rpm.
- the speed at the end of the rotor is determined, which must be of the order of 2.5 m/s, for an air gap of 150 ⁇ m on the M5 equipment from Silverson.
- Method 1 Particle size measurements of an aqueous or lipid dispersion (DLS)
- the size of the mineral particles obtained in an aqueous or lipid medium is measured by dynamic light scattering (Dynamic Light Scattering or DLS).
- DLS Dynamic Light Scattering
- the experiments were performed with a Malvem Nano ZS instrument. All measurements were performed at a temperature of 20°C with a detection angle of 173°.
- the hydrodynamic diameter was obtained from the analysis of the correlation function using the Malvem DTS software, and by approximating a spherical shape of the particles or clusters of phyllosilicate sheets by taking into account the largest dimensions of the particles.
- the viscosity of sunflower oil is 66 cSt.
- the sample tested is brought by dilution to a concentration of 0.1% by weight of particles relative to the weight of the medium (water or oil). 1 min before the measurement, the sample tested is stirred with a vortex.
- Figures 5 and 6a to 6d presented give the evolution of the number of particles as a function of their size in semi-logarithmic coordinates.
- Figure 6 shows the particle sizes of four different phyllosilicates after dispersion and exfoliation in water as previously described.
- concentrations of phyllosilicates are 5% by weight relative to the entire composition during exfoliation and 0.1% when measuring the particle sizes.
- Fig. 6(a) shows the size curve obtained for a bentonite from Wyoming.
- the D50 is: 255 nm.
- Fig. 6(b) presents the size curve obtained for a superfine green clay of French origin, montmorillonite - illite.
- the D50 is: 295 nm.
- Fig. 6(c) shows the size curve obtained for a Lafaure bentonite.
- the D50 is: 295 nm.
- Fig. 6(d) shows the size curve obtained for a Smectagri bentonite.
- the D50 is: 712 nm.
- the size D90 of the particles is well below 1 micrometer.
- the contact angle For the clay layers to be able to fulfill their role of mineral emulsifying particles, it is necessary for the contact angle to be between 35 and 45 degrees and preferably between 37 and 42 degrees. Above and below the values indicated, the stability of the emulsions is not sufficient.
- a contact angle less than 30 degrees indicates that the surface of the clays is too hydrophilic to stabilize the emulsions.
- An angle greater than 50 degrees indicates that the surface is too hydrophobic to stabilize the emulsions.
- the clays are deposited in a thin layer using a spatula on a flat solid support.
- drops of pure water of only 2 pL are deposited on the clays.
- the images obtained during the deposits also make it possible to consider that the wetting obeys the Wenzel model.
- the contact angles measured are considered to be representative of the wettability of the clays, even if the values are slightly lower than the angles which would be obtained on the same surfaces at smooth state.
- the deposited drop is observed using a high magnification digital camera and the equation of the envelope of the drop is obtained by nonlinear regression assuming that the envelope of the drop follows the shape of an ellipse.
- the contact angle is obtained by measuring the slope of the tangent to the envelope of the drop at the point of intersection with the straight line parallel to the plane of the clay layer (see figure 17).
- Each liquid is deposited at 2 different places in the clay layer, and the contact angle of each drop is measured 3 times.
- the absolute error on each angle measurement can be estimated at +/- 2 degrees.
- the measured contact angle is 37 to 39 degrees.
- the clay particles obtained according to the method of the invention will lead to the production of stable nano-emulsions.
- Example 1 In vitro test of the activity of essential oils bound to particles of phyllosilicates in an aqueous dispersion
- Escherichia coli provided by the microbiology laboratory at Polytech Clermont Ferrand.
- Staphylococcus aureus (Ref.: cip 53-156), supplied by LMGE, Clermont Auvergne University.
- the growth inhibitory activity is determined by the inhibition diameters around the wells after 24 to 48 h.
- the aqueous nano-dispersion according to one of the objects of the invention consists of:
- Bentonite 0.5 g - e-Polylysine: 1 ml of solution (at 0.36 g/l)
- a control is also carried out with antibiotics: Chloromphenicol for V. alginolyticus and P. anguilliseptica in quantities of 30 pg and 8 pg respectively in the well of the Petri dish, and Ciprofloxacin with a quantity of 5 pg for P damselae spp. piscicida [00172]
- the following table shows the mean inhibition diameters obtained for the essential oils which have demonstrated significant inhibitory activity.
- the protocol for preparing a nano-emulsion was followed, stopping at the end of step (4) of adding high shear energy. Then samples were taken to qualify the size of the phyllosilicate particles dispersed in the lipid phase.
- FIG. 5 presents the result of measurements of the size of bentonite particles dispersed in the lipid phase for two concentrations of bentonite: 1% and 10%.
- the size distribution has a maximum around 1 micrometer.
- the maximum clearly shifted towards the small sizes.
- the maximum number of particles has a size of the order of 25 nanometers.
- the increase in concentration for a given shear energy leads to a reduction in particle size (by friction between the particles) which reflects an improvement in dispersion.
- Example 3 Preparation of a nanometric emulsion
- Direct emulsions were prepared using a lipid phase/aqueous phase ratio of 40/60.
- the emulsification was carried out by supplying shear energy with a rotor/stator device with an air gap of 150 micrometers and a spindle of 30 mm, at 4500 rpm for 4 minutes.
- the emulsions thus obtained remain micrometric, because the energy provided is insufficient.
- the emulsions thus obtained are then sheared with greater and more efficient energy, with a high pressure homogenizer or a microfluidizer.
- the size of the drops thus obtained is measured as for the particles by dynamic light scattering (Dynamic Light Scattering or DLS).
- Figure 7 shows the average diameter of the dispersed phase lipid drops.
- the D50 is 300 nanometers.
- the size of these particles can be estimated to be of the order of 50 nanometers.
- FIG. 8 schematically presents the emulsion 20 obtained.
- the lipid particles 28 dispersed in an aqueous phase 26.
- the lipid particles or drops, which comprise a composition as previously described, are stabilized by the dispersed phyllosilicate mineral particles. These particles of very small size which retain a certain hydrophilic character will preferentially arrange themselves at the water/oil interface, this is what is represented at reference 24.
- This lipid product is obtained from a direct oil/water emulsion obtained by dispersion in water of a lipid composition as previously described.
- the emulsion can be concentrated by separation of the aqueous phase, this separation can be carried out by any means, in particular by ultrafiltration.
- the concentrated nanometric emulsions thus obtained make it possible to work on demanding applications on the quantity of water provided by the emulsion, such as dry food preparations, dry food coatings.
- Concentrated solutions also make it possible to reduce volumes and concentrate active ingredients, which facilitates product logistics, and makes it possible to work on applications requiring larger quantities and concentrations of active ingredients.
- Nanometric emulsions are an excellent means of maximizing the encounter statistics between the pathogens and the active principles, because by diluting the latter in a lipid matrix and by supporting them on the phyllosilicate sheets at the interface, then by reducing the size of objects at the nanometric scale, we multiply by several orders of magnitude the number of particles that can interact with pathogens.
- emulsions of 20 microns size of drops usually obtained with rotor-stator shearing
- the drops carry around a volume of 510 mht'
- a drop of 300 nm size obtained after high pressure homogenization
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Animal Husbandry (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Plant Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Agronomy & Crop Science (AREA)
- Dispersion Chemistry (AREA)
- Birds (AREA)
- Marine Sciences & Fisheries (AREA)
- Toxicology (AREA)
- Dentistry (AREA)
- Insects & Arthropods (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Medicinal Chemistry (AREA)
- Nutrition Science (AREA)
- Colloid Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Nano-émulsion avec une phase aqueuse continue et une phase lipidique dispersée, dans laquelle la phase lipidique dispersée contient des particules minérales constituées d'amas de feuillets de phyllosilicates gonflés par de l'eau et exfoliés, au moins une huile essentielle et un agent de dispersion amphiphile.
Description
Nano-dispersions aqueuses et nano-émulsions de traitement des eaux
Domaine de l’invention
[0001] La présente invention concerne des nano-dispersions aqueuses et des nanoémulsions destinées à décontaminer des eaux ou à prévenir leur contamination par des agents pathogènes, notamment des eaux utilisées pour l’aquaculture, ou les eaux de breuvage des animaux terrestres, pouvant selon le dosage être utilisé comme traitement préventif des infections des animaux.
État de la technique
[0002] Au niveau mondial, la demande de poisson est en augmentation du fait de la combinaison de plusieurs facteurs : croissance démographique, urbanisation et multiplication des richesses. Selon des recherches portant sur l'offre et la demande de poisson, la production aquacole devra doubler d'ici à 2030 pour pouvoir satisfaire la demande et les besoins croissants à l'échelon planétaire. Actuellement, le poisson représente près de 20 pour cent des aliments d'origine animale consommés dans le monde. Ce qui en fait une cible intéressante, comme décrit dans la suite de ce document, sachant que les principes s’appliquent également aux élevages d’animaux terrestres, et aux animaux domestiques, avec chacun leur spécificité.
[0003] Selon des estimations actuelles, les rendements de la pêche de capture marine ne devraient augmenter que très faiblement. Seule l'aquaculture pourra donc permettre de satisfaire la demande.
[0004] L’aquaculture représente 50 % du poisson consommé dans le monde. Le secteur se développe comme tous les élevages intensifs avec l’utilisation d’antibiotiques pour faire face aux maladies qui touchent les exploitations. Cette surexposition aux antibiotiques participe au développement de l’antibiorésistance et la propagation des pathogènes. C’est devenu une préoccupation majeure de ce secteur, sous la pression des consommateurs.
[0005] On peut citer des grandes familles de pathogènes récurrents des élevages, rencontrés dans les exploitations : les photobacterium (par exemple sous espèce damselae), les vibrionacea (par exemple les alginolyticus, photobacterium, ou vibrio), les pseudomonas (par exemple anguilliseptica).
[0006] Face à ces pathogènes, les pisciculteurs ont le plus souvent recours à l’utilisation d'antibiotiques. Mais, à la fin du traitement, la flore présente généralement une résistance accrue à l’antibiotique utilisé, de nombreux gènes de résistances sont portés par des plasmides qui peuvent se transmettre d’une espèce bactérienne à l’autre. Le risque de sélectionner des souches pathogènes résistantes incite donc à limiter le recours aux antibiotiques (Pham 2017). Les chercheurs se retrouvent donc face au besoin de trouver d’autres alternatives et principes actifs pour lutter contre les pathogènes et la multi-résistance.
[0007] Le traitement de choix des maladies microbiennes reste l'antibiothérapie. Des abus dans son utilisation ont malheureusement conduit à l’apparition de souches résistantes et à de fréquents échecs de traitement. Il existe aussi un risque de transmission des résistances plasmidiques à d'autres bactéries, y compris celles pathogènes pour l'homme, et d'accumulation de résidus dans la chair des poissons et dans les effluents des piscicultures. Des législations sévères ont considérablement restreint l'emploi des antibiotiques en milieu aquatique, posant de gros problèmes aux pisciculteurs dont l'arsenal antibactérien est de plus en plus limité.
[0008] Parmi les alternatives utilisées pour remplacer les antibiotiques, on trouve les huiles essentielles. L’utilisation de l’huile de cannelle, contenant majoritairement de la cinnamaldéhyde, a déjà été intégrée à la diète de tilapias infectés par streptococcus iniae et a réduit le taux de mortalité des poissons qui était très élevé (Rattanachaikunsopon & Phumkhachom, 2010). Les effets des huiles essentielles sur des poulets d’élevage ont également été décrits (Brenes and Roura, Animal Feed Science and Technology, 158, 2010, 1-14).
[0009] Usuellement les traitements sont effectués en balnéothérapie dans les élevages aquacoles. Mais comme il s’agit de molécules volatiles et hydrophobes, le trempage des poissons dans un bassin contenant des HE reste complexe, difficile à mettre en œuvre et peu recommandé à grande échelle dans les exploitations utilisant des cages en pleine mer, ou raccordées à un cours d’eau.
[0010] Il y a par conséquent un besoin grandissant pour des systèmes alternatifs permettant de protéger efficacement les élevages notamment aquacoles de ces pathogènes de façon ciblée, en substitution à l’utilisation systématique des médicaments antibiotiques, et particulièrement dans une approche préventive, qui n’induit pas d’antibiorésistance, c’est un enjeu doublé des contraintes de mise en œuvre des huiles
qu’il faut administrer efficacement et simplement aux espèces cibles (élevage aquacole, et distribution dans les eaux de breuvage pour les espèces terrestres).
Description brève de l’invention
[0011] L’invention a pour objet une nano-dispersion aqueuse comprenant des particules minérales, un agent de dispersion amphiphile et des molécules actives, telle que les particules sont des amas de feuillets de phyllosilicates exfoliés de taille D90 en nombre inférieure à 1 000 nanomètres, et telle que les molécules actives comportent des huiles essentielles.
[0012] Les amas de feuillets de phyllosilicates de très petite taille servent de support aux molécules d’huiles essentielles qui sont liées physiquement à la surface des feuillets de phyllosilicates avec un agent de surface amphiphile, cela a l’avantage de stabiliser ces molécules et de les concentrer à leur surface. La petite taille des amas de feuillets permet ainsi de largement disperser les molécules actives, qui lorsqu’elles sont hydrophobes et de faible densité ont tendance à se regrouper pour former des grosses gouttes, voire des films lipidiques en surface de l’eau. Ces molécules actives peuvent être des huiles essentielles ou des combinaisons d’huiles essentielles.
[0013] Avantageusement, la taille D50 en nombre des particules est inférieure à 750 nm, préférentiellement inférieure à 200 nm et très préférentiellement inférieure à 100 nm. [0014] Dans des modes de réalisation, la taille D50 en nombre des particules va de 10 à 800 nm, de préférence de 10 à 750 nm, de préférence de 20 à 500 nm, de préférence de 20 à 400 nm, de préférence de 20 à 300 nm, de préférence de 20 à 200 nm, de préférence de 20 à 100 nm, de préférence de 20 à 90 nm, de préférence de 25 à 70 nm, de préférence de 25 à 50 nm. [0015] La diminution de taille des amas de feuillets de phyllosilicates a l’avantage de favoriser la dispersion des molécules actives tout en ayant une concentration locale élevée en molécule active, et ainsi de renforcer leur efficacité. À l’aide de ces feuillets de phyllosilicates de taille nanométrique, on augmente la surface de contact avec les huiles essentielles, qui restent labiles, car elles peuvent se désorber, ce qui favorise leur efficacité. Par ailleurs elles se retrouvent ainsi dispersées dans le volume d’eau sur leur support en phyllosilicate, et peuvent interagir avec les pathogènes.
[0016] Cette nano-dispersion aqueuse est très simple à mettre en œuvre dans un bassin d’eau aquacole ou dans des eaux de breuvage d’animaux terrestre. La petite taille des amas de feuillets facilite leur mise en suspension dans les eaux avec une sédimentation lente.
[0017] L’invention a aussi pour objet une nano-émulsion avec une phase aqueuse continue et une phase lipidique dispersée, dans laquelle la phase lipidique dispersée contient des lipides, des particules minérales constituées d’amas de feuillets de phyllosilicates gonflés par de l’eau et exfoliés, au moins une huile essentielle et un agent de dispersion amphiphile, et dans laquelle la taille D50 en nombre des gouttes de la phase lipidique dispersée est inférieure à 800 nm et de préférence inférieure à 300 nm.
[0018] Dans des modes de réalisation, la taille D50 en nombre des gouttes de la phase lipidique dispersée va de 10 à 800 nm, de préférence de 20 à 700 nm, de préférence de 50 à 500 nm, de préférence de 75 à 400 nm, de préférence de 50 à 300 nm, de préférence de 100 à 300 nm.
[0019] L’eau de la phase lipidique est physisorbée entre les feuillets de phyllosilicates pour les gonfler (espace interfoliaire), ce qui permet d’atteindre des tailles de particules plus petites par exfoliation, et l’agent de dispersion, avec une partie hydrophile et une partie hydrophobe, est adsorbé à la surface des amas de feuillets par sa partie hydrophile. Cela rend partiellement hydrophobe les feuillets, favorise l’exfoliation des phyllosilicates et permet une bonne dispersion des feuillets de phyllosilicates dans les lipides.
[0020] En d’autres termes, la phase lipidique ne comprend pas d’eau autre que l’eau adsorbée dans les feuillets de phyllosilicates.
[0021] L’agent de dispersion amphiphile de la nano-dispersion aqueuse et de la nanoémulsion peut être choisi dans le groupe de l’éthyle lauroyl arginate (LAE), des tensioactifs cationiques à base d’arginine en 16 carbones et plus, des phospholipides, du e-polylysine et leurs combinaisons.
[0022] Avantageusement, l’agent de dispersion est un phosphoglycéride.
[0023] Très avantageusement, l’agent de dispersion est une phosphatidyle choline et préférentiellement la lécithine.
[0024] Ces agents de dispersion vont se lier aux fonctions silanolates des phyllosilicates par la partie cationique de leur structure.
[0025] De préférence, les phyllosilicates de la nano-dispersion aqueuse et de la nanoémulsion ont majoritairement des cations de sodium en position interfoliaires. [0026] Les cations de sodium interfoliaires ont l’avantage d’opposer moins de résistance à l’augmentation de la distance interfoliaire des feuillets phyllosilicates dits sodiques et ainsi de favoriser leur gonflement par des molécules d’eau ainsi que leur exfoliation. Les phyllosilicates sodiques présentent ainsi des avantages sur la taille de la dispersion pour obtenir des amas de feuillets plus petits, cela favorise les dispersions fines d’huile essentielle et ainsi on obtient un plus grand rapport surface sur volume des amas de phyllosilicates qui supportent les molécules actives d’huile essentielle, et cela augmente la statistique de rencontre entre les molécules actives et les pathogènes.
[0027] Très préférentiellement, les phyllosilicates sont des smectites qui sont majoritairement des feuillets de montmorillonites. [0028] Avantageusement, la teneur en agent de dispersion amphiphile de la nanodispersion aqueuse est comprise entre 0,2 et 2,0 % en poids relativement au poids des particules minérales.
[0029] Avantageusement, la teneur en agent de dispersion de la phase lipidique dispersée de la nano-émulsion est avantageusement comprise entre 10 % et 400 % et préférentiellement entre 20 % et 300 % en poids relativement au poids de particules de la phase lipidique.
[0030] Lorsque la teneur en agent de dispersion tel que de la lécithine est insuffisante, le caractère hydrophobe des particules d’argile est insuffisant, ce qui ne les stabilise pas dans la phase lipidique [0031] À des teneurs en agent de dispersion trop élevées, on perd le caractère hydrophile des particules et les molécules d’huiles essentielles se retrouvent en compétition avec l’agent de dispersion à la surface des particules, ce qui ne favorise pas leur disponibilité à la surface des particules de phyllosilicates.
[0032] Pour des particules de phyllosilicates exfoliées avec une surface spécifique de l’ordre de 300 m2/g, la gamme préférentielle de teneur en agent de dispersion correspond à un taux de couverture des fonctions silanol par l’agent de dispersion
compris entre 20 et 60 %, soit entre 30 et 130 % de la masse d’argile engagée à apporter en agent de dispersion tel que la lécithine de soja.
[0033] Avantageusement, la teneur en eau de la phase lipidique dispersée de la nanoémulsion est comprise entre 10 % et 300 % et préférentiellement entre 20 % et 200 % en poids relativement au poids de particules de la phase lipidique.
[0034] En-dessous de 10 % d’eau en poids relativement au poids des particules, les feuillets de phyllosilicates ne sont pas suffisamment prégonflés et il n’est pas possible d’obtenir une diminution suffisante des tailles de particules lors de leur exfoliation.
[0035] Au-delà de 300 %, la quantité d’eau ne permet plus aux molécules de l’agent de dispersion de venir se lier physiquement à la surface des feuillets et les feuillets ne sont pas suffisamment hydrophobes pour servir de support aux molécules actives comme les huiles essentielles.
[0036] Les nano -dispersions aqueuses et les émulsions nanométriques peuvent être utilisées comme agent de décontamination d’eaux aquacoles et d’eaux de breuvage d’animaux terrestres, ou comme moyen de traitement préventif des pathologies chez l’animal au travers de son hydratation quotidienne, ou dans le traitement préventif des animaux contre le développement d’agents de contamination dans leur organisme. Ils peuvent ainsi servir pour protéger ces eaux de la prolifération d’agents pathogènes. Dans certaines applications indirectes, ces systèmes peuvent constituer un appétant pour inciter la prise d’eau des animaux.
[0037] Les émulsions nanométriques présentent l’avantage de pouvoir rester en suspension homogène sous la force de l’agitation thermique, ce qui permet de les stocker sur de longues périodes tout en restant très faciles à homogénéiser lors de leur utilisation. [0038] Selon un autre mode d’utilisation, les nano-dispersions aqueuses et les émulsions nanométriques peuvent compléter un aliment, un complément alimentaire ou un premix.
[0039] Selon encore un autre mode d’utilisation, les dispersions aqueuses et les émulsions nanométriques peuvent être utilisées comme agent conservateur naturel, à base d’huiles essentielles pour des préparations dont le paramètre activité de l’eau est supérieur à 0,45.
[0040] L'activité de l'eau ne représente pas la teneur en eau (ou humidité) mais bien la disponibilité de cete eau. Plus l'activité de l'eau est élevée, plus la quantité d'eau libre est grande et plus les micro-organismes ont la capacité de se développer.
[0041] Les émulsions nanométriques obtenues par cette approche sont des particules très stables mécaniquement, ainsi qu’au cours du temps, et peuvent être introduites facilement dans une extrudeuse pour être coextrudées au cœur des aliments en granulés. Elles seront ainsi des véhicules idéaux pour l’incorporation d’huiles essentielles dans des aliments sous forme de premix, qui facilite la manipulation (car réduit le risque d’inhalation, ou d’évaporation des huiles essentielles). Les premix se retrouvent ainsi également sous une forme galénique qui favorise leur métabolisation avec des tailles de gouttes de l’ordre de la centaine de nanomètres.
[0042] Leur présence dans un aliment, un complément alimentaire ou un premix a l’avantage de favoriser la conservation dans le temps de ces aliments, compléments ou premix, les propriétés bactériostatiques des huiles essentielles sous forme de particules dispersées à l’échelle nanométrique constituent un avantage considérable dans la conservation des aliments, ce qui limite les recours aux traitements thermiques, qui dégradent la qualité nutritionnelle en particulier les micro-nutriments, ou aux agents de conservation qui peuvent être controversés malgré leur utilisation massive.
[0043] L’invention a aussi pour objet un procédé de préparation d’une nano-émulsion, comportant les étapes suivantes : dissoudre l’agent de dispersion dans la phase aqueuse de la phase lipidique et obtenir une solution homogène ; ajouter les phyllosilicates et mélanger avec un pétrin la pâte obtenue ; ajouter les lipides de la phase lipidique ; cisailler la composition obtenue ; ajouter la phase aqueuse ; apporter de l’énergie de cisaillement pour obtenir une émulsion micrométrique ; et reprendre l’émulsion micrométrique avec un homogénéisateur haute pression ou un microfluidisateur pour obtenir une émulsion nanométrique.
[0044] L'objectif de l'invention est un mode d’utilisation des huiles essentielles qui permet de limiter leur volatilité tout en ayant une grande efficacité avec des quantités
utilisées maîtrisées. Cette mise en œuvre des huiles essentielles dans une forme dispersée à l’échelle nanométrique de façon stable favorise la statistique de rencontre avec les pathogènes. Le stockage et l’incorporation des huiles essentielles dans des pratiques en nutrition animale seront grandement facilités par la stabilité et l’homogénéité des dispersions.
Description des Figures
[0045] L’invention est décrite ci-après à l’aide des figures 1 à 10, données uniquement à titre d’illustration :
La figure. 1 présente un schéma de structure d’une bentonite ;
La figure. 2 présente la formule de la lécithine ;
La figure. 3 présente schématiquement l’évolution de la teneur en lécithine en fonction de la surface spécifique de l’argile et pour plusieurs taux de couverture ; La figure. 4 présente schématiquement l’évolution de la taille des gouttes de la phase dispersée en fonction de la taille et de la concentration des particules minérales ;
La figure. 5 présente la taille des particules minérales pour deux concentrations d’argile ;
La figure. 6 présente la mesure de la taille de différentes argiles dispersées dans l’eau ;
La figure. 7 présente la taille des gouttes lipidiques d’une émulsion ;
La figure. 8 présente un schéma de l’émulsion obtenue ;
La figure. 9 présente schématiquement l’évolution de la taille des gouttes de la phase dispersée en fonction de la taille et de la concentration des particules minérales ; et
La figure. 10 présente un schéma de mesure de l’angle de contact entre une goutte d’eau pure et la surface d’argiles.
Description détaillée de l’invention
[0046] Une émulsion est du genre « huile dans eau », lorsque (i) la phase dispersante est une phase aqueuse et (ii) la phase dispersée est une phase organique (hydrophobe, lipidique ou huileuse). Une telle émulsion est encore désignée couramment par « émulsion directe » ou par le sigle « H/E ».
[0047] Dans le cadre de la présente invention, on entend par molécule « labile », une molécule liée à un substrat par des interactions physiques, ioniques, ou des forces de Van der Waals, non covalentes, ce qui lui donne une capacité d’accroche ou d’organisation réversible. [0048] Dans le cadre de la présente invention, la composition comprend des phyllosilicates exfoliés c’est-à-dire des phyllosilicates dont les feuillets ont été séparés par exfoliation.
[0049] Par le terme « exfolié », on entend les phyllosilicates ayant subi une exfoliation, c’est-à-dire une séparation plus ou moins complète de ses feuillets individuels. Le procédé d’exfoliation comprend usuellement trois phases :
- (1) gonflement des feuillets de phyllosilicate par de l’eau,
- (2) L’adsorption d’une molécule hydrophobe à la surface des particules de phyllosilicates, pour la rendre compatible avec des lipides, par exemple de la lécithine, et - (3) L’apport d’énergie de cisaillement pour séparer les particules de phyllosilicate dans la phase dispersante.
[0050] Dans le cadre de l’invention, on utilise indifféremment le terme « argiles » ou « particules minérales » pour désigner et décrire les phyllosilicates.
[0051] Dans ce qui suit, le D50 en nombre d’un échantillon de particules représente la taille des particules pour laquelle 50% des particules de l'échantillon possèdent une granulométrie inférieure à cette valeur, par analogie un D90 en nombre représente la taille des particules pour laquelle 90% des particules de l'échantillon possèdent une granulométrie inférieure à cette valeur.
[0052] On entend par « émulsion nanométrique » ou « nano-émulsion) une émulsion dont les gouttes de la phase dispersée ont une taille D50 en nombre inférieure à 800 nanomètres (nm), de préférence inférieure à 500 nanomètres (nm), de manière particulièrement inférieure à 300 nanomètres (nm) et un D90 en nombre inférieur à 1000 nm.
[0053] On entend par « nano-dispersion » ou « dispersion nanométrique » une dispersion dont les particules colloïdales de phyllosilicates sont dispersées avec une taille D50 en nombre inférieure à 1000 nanomètres (nm).
[0054] L'activité de l'eau (symbole pour activity of water) représente la pression de vapeur d’eau p d’un produit humide divisée par la pression de vapeur saturante po à la même température :
[0055] aw = p/p0 [0056] Ce paramètre traduit les interactions de l'eau avec la matrice du produit humide.
[0057] L'activité de l'eau est l'un des principaux paramètres influençant la conservation des aliments ou des produits pharmaceutiques. Les micro-organismes ont besoin d’eau « libre » (libre pour les réactions biochimiques) pour se développer. L'activité de l'eau ne représente pas la teneur en eau (ou humidité) mais bien la disponibilité de cette eau. Plus l’activité de l’eau est élevée, plus la quantité d’eau libre est grande (1 étant le maximum) et plus les micro-organismes se développeront.
[0058] Dans des modes de réalisations, l’activité de l’eau est de 0 à 1, de préférence de 0,45 à 1, de préférence de 0,6 à 1, de préférence supérieure à 0,45. [0059] La présente invention concerne ainsi une nano -dispersion aqueuse et une nanoémulsion comportant des particules et des molécules actives liposo lubies. Les particules sont constituées d’amas de feuillets de phyllosilicates de taille D50 en nombre inférieure à 1 000 nanomètres (nm). Les molécules actives peuvent être des huiles essentielles (HE) ou des combinaisons d’huiles essentielles. Lipides
[0060] Les lipides de la phase lipidique, ou hydrophobe, ou huileuse, ou organique des émulsions nanométriques, sont choisis selon les applications envisagées parmi les huiles végétales, les huiles minérales, les huiles de synthèse, les solvants organiques hydrophobes et les polymères liquides hydrophobes. La phase lipidique de la nano- émulsion comprend des agents bactériostatiques, tels que des huiles essentielles. Elle peut aussi contenir des acides gras insaturés, des antioxydants et des vitamines.
[0061] Dans les exemples, on utilise de l’huile de tournesol.
Huiles essentielles
[0062] Depuis des siècles, l'homme utilise les plantes comme moyen de prévention et ou guérison contre les maladies. Plus précisément les extraits de ses plantes, furent utilisés comme remèdes chez de nombreuses civilisations à travers le globe. [0063] La norme Afnor NF T 75 - 006 (2000) définit les huiles essentielles comme étant « des produits obtenus, soit à partir de matières naturelles végétales par entraînement à la vapeur d'eau, soit par des procédés mécaniques à partir de l'épicarpe des citrus, soit par distillation sèche. L'huile essentielle ainsi obtenue est séparée de la phase aqueuse par des procédés physiques. [0064] Une huile essentielle est une substance odorante et volatile, non grasse, extraite d’un végétal sous forme liquide. Elle provient d’une sécrétion élaborée par certains végétaux et contenue dans des structures spécialisées (poils, poches et canaux sécréteurs). Selon l’huile essentielle, la totalité de la plante aromatique, voire plus spécifiquement certains de ses organes (racine, écorce, feuille, fleur, fruit, graine...) seront sélectionnés pour en extraire les composés aromatiques. Une huile essentielle a une composition moléculaire complexe qui lui confère des vertus uniques. Elle ne contient ni protéines, ni lipides, ni glucides, ne renferme pas de minéraux ni de vitamines : elle n’a donc aucune valeur nutritionnelle.
[0065] À température ambiante, les huiles essentielles sont liquides, hormis quelques cas particuliers : les huiles essentielles de myrrhe et de santal sont plutôt visqueuses et celles de rose et de camphrier peuvent être cristallisées. À basse température, certaines huiles essentielles cristallisent : celles d’anis, de menthe des champs ou de thym saturéioïde lorsque les flacons sont stockés au réfrigérateur.
[0066] Les huiles essentielles sont volatiles, cette volatilité explique leur caractère odorant ainsi que leur mode d’obtention par entraînement à la vapeur d’eau. Ils sont très solubles dans les huiles grasses (qui constituent un très bon support lorsque l’on souhaite les diluer), les lipides (d’où le principe de l’enfleurage anciennement utilisé pour extraire les HE en les mettant en contact avec une graisse animale comme la lanoline), l’éther, la plupart des solvants organiques ainsi que dans l’alcool (de titre élevé). De caractère liposo lubie : les huiles essentielles ne se dissolvent pas dans l’eau, il faut donc impérativement utiliser un tensio-actif pour permettre leur mise en
suspension dans l’eau. Elles possèdent un indice de réfraction élevé et ont souvent un pouvoir rotatoire. La plupart d’entre elles sont colorées.
[0067] Étant donné la grande complexité de la composition chémotypique des huiles essentielles, malgré de possibles synergies certains auteurs préfèrent étudier l’effet d’un composé isolé pour pouvoir ensuite le comparer à l’activité globale de l’huile.
[0068] L’activité des composants des HE dépend de leur structure chimique. Les terpènes oxygénés (carvacrol, thujone par exemple) présentent une activité antimicrobienne plus élevée que les terpènes non oxygénés (a- et b-pinène, limonène par exemple). De plus, le caractère lipophile de leur squelette hydrocarboné ainsi que le caractère hydrophile de leurs groupes fonctionnels sont déterminants vis-à-vis de leur activité antimicrobienne. Ainsi, l’ordre d’activité antimicrobienne de ces composés est le suivant : phénols > aldéhydes > cétones > alcools > éthers > hydrocarbures.
[0069] Parmi les constituants d’huile essentielle, il a été démontré que les composés phénoliques possédaient une activité antimicrobienne importante. Il semble que la présence du groupe hydroxyle soit liée à l'inactivation des enzymes microbiennes. Très probablement, ce groupe interagit avec la membrane cellulaire, provoquant des fuites de composants cellulaires, une modification des acides gras et des phospholipides, ainsi qu'une altération du métabolisme énergétique et une influence sur la synthèse de matériel génétique. Les phyllosilicates
[0070] Les phyllosilicates sont des minéraux argileux du groupe des silicates construits par empilement de couches tétraédriques (« T ») où les tétraèdres partagent trois sommets sur quatre (les oxygènes « basaux »), le quatrième sommet (l’oxygène « apical ») étant relié à une couche octaédrique (« O ») occupée par des cations différents (Al, Mg, Le, Ti, Li, etc.). La figure 1 présente un exemple de structure de phyllosilicate. Ces structures empilées forment des feuillets organisés (tels que décrit dans le détail ci-dessous) dont leur charge de surface est négative sur une large plage de pH (4<pH<9), qui seront stabilisés par des contres-ions cationiques. Ces contres- ions seront monovalents, ou divalents, ce qui confère à l’argile une capacité à être gonflée dans l’eau plus ou moins fortement, par insertion de molécules d’eau entre les feuillets.
[0071] Les smectites sont un groupe de minéraux argileux, et donc des silicates, plus précisément des phyllosilicates.
[0072] Leur composition type est où A représente un cation
interfoliaire (élément alcalin ou alcalino-terreux), D un cation octaédrique, T un cation tétraédrique, O l’oxygène et Z un anion monovalent (généralement OH-).
[0073] Elles cristallisent dans le système monoclinique.
[0074] Ce sont des phyllosilicates de structure TOT (ou 2:1), c'est-à-dire constitués de feuillets comportant deux couches tétraédriques tête-bêche, liées entre elles par les cations octaédriques. Les feuillets sont liés entre eux par les cations interfoliaires.
[0075] On distingue les smectites dioctaédriques (beïdellite, montmorillonite, nontronite, etc.) et trioctaédriques (hectorite, saponite, etc.).
[0076] La montmorillonite est une argile de type 2/1, dite encore TOT (pour tétraèdre/octaèdre/tétraèdre). Cela signifie qu’un feuillet de montmorillonite est formé de trois couches : une couche octaédrique Al(OH )sO : 7 atomes pour 6 sommets + l'aluminium au centre. Les OH- et l'oxygène étant partagés entre les différents octaèdres qui composent la couche. et deux couches tétraédriques qui recouvrent de chaque côté la couche octaédrique à sa base ; S1O4 : 5 atomes pour 4 sommets + le silicium au milieu. Les oxygènes étant partagés entre les différents tétraèdres qui composent la couche.
[0077] Les imperfections dans le cristal sont compensées par des cations interfoliaires, généralement monovalents ou divalents, qui assurent la neutralité électrique du minéral.
[0078] L’ensemble des phyllosilicates peut être utilisé, mais les smectites et particulièrement les montmorillonites ont l’avantage, du fait de leur structure lamellaire avec un écartement entre les feuillets plus élevé que les autres phyllosilicates, de pouvoir être gonflés par des petites molécules avec des propriétés hydrophobes qui vont améliorer T exfoliation des plaquettes argileuses et ainsi faciliter leur dispersion dans la composition lipidique. Les autres phyllosilicates, mais aussi les micas et les talcs peuvent aussi être ainsi exfoliés, mais l’énergie qui serait nécessaire pour disperser les feuillets lamellaires dans la phase lipidique serait beaucoup plus élevée.
[0079] Dans les exemples, on utilise de la bentonite comme phyllosilicate. Les bentonites sont des argiles majoritairement composées de montmorillonite, dont les cations interfoliaires sont usuellement soit du calcium, soit du sodium, du potassium, leur combinaison ou d’autres ions métalliques. [0080] La bentonite est chargée négativement à la surface (sur la longueur) et positivement sur les côtés (largeur) ce qui lui permet d’interagir avec d’autres molécules chargées.
[0081] Les argiles sont hydrophiles et les smectites dont la bentonite ont une capacité de gonflement. Cette particularité permet d’adsorber des molécules hydrosolubles dans l’espace interfoliaire des argiles par l’intermédiaire d’une phase aqueuse. L’eau est dite physisorbée à la surface des feuillets d’argile via les groupements silanols.
[0082] Dans la description, on utilisera également le terme « argile » pour faire référence aux phyllosilicates.
Agent de dispersion ou de surface [0083] On utilise usuellement comme agent de dispersion ou de surface une molécule avec une partie hydrophobe et une partie hydrophile. L’adhésion de cet agent de dispersion par interaction physique aux particules minérales permet de rendre hydrophobe les feuillets d’argile et d’obtenir une bonne dispersion de ces feuillets d’argile dans une phase lipidique. [0084] Il est avantageux d’utiliser un agent de dispersion présentant une tête polaire cationique et une chaîne hydrophobe, soluble dans la phase lipidique, tels que les phospholipides présentant des fonctions polaires cationiques telles que pour la sérine, l’éthanolamine ou encore la choline, on obtient ainsi de la phosphatidylsérine, de la phosphatidyléthanolamine, ou encore de la phosphatidylcholine, plus connue sous le nom de « lécithine ». C’est un lipide de la classe des phosphoglycérides. L’arginine greffée sur une chaîne alkyle longue (Cl 6 et plus) peut également jouer ce rôle d’agent de dispersion. On peut aussi utiliser l’éthyle lauroyl arginate (LAE). On peut aussi utiliser la e-polylysine comme agent de surface.
[0085] Tous ces agents de dispersion sont labiles car ils se lient à la surface des amas de feuillets de phyllosilicates par des interactions non covalentes, ce qui leur donne une capacité d’accroche ou d’organisation réversible en fonction des conditions physicochimiques (pH, force Ionique, température, etc...).
[0086] La phosphatidylcholine possède (figure 2) : un pôle hydrophile : la choline (1) et le groupe phosphate (2) ; une queue hydrophobe : les résidus d’acides gras (ici, les résidus d'acides palmitique (5) et oléique (4)) ; et le glycérol (3) relie ces deux pôles hydrophile et hydrophobe.
[0087] Le groupe phosphate est chargé négativement, tandis que la choline est chargée positivement. La phosphatidylcholine est donc zwitterionique.
[0088] Elle est à la fois hydrophile et lipophile, et son équilibre hydrophile-lipophile (HLB) peut varier entre 2 et 9,5 selon les résidus d'acides gras de la queue hydrophobe.
Procédé d’obtention d’une émulsion
[0089] Pour stabiliser les émulsions, une démarche consiste à employer des composés dits « émulsifiants » ou « émulsionnants ».
[0090] Ces composés émulsifiants sont le plus souvent des agents tensioactifs émulsionnants (dits encore « agents de surface ») qui, grâce à leur structure amphiphile, se placent à l'interface huile/eau et stabilisent les gouttelettes dispersées.
[0091] Cependant, les composés émulsifiants de ce genre n'offrent pas toujours la stabilité recherchée dans le temps, avec un équilibre permanent des agents tensio-actifs entre l’interface à stabiliser et les micelles en solution. De plus, les agents tensioactifs de synthèse présentent souvent des inconvénients sur le plan écologique ou alimentaire, car ils perturbent les systèmes biologiques par une interaction forte avec les membranes cellulaires.
[0092] Ces composés émulsifiants/émulsionnants peuvent également consister en des particules solides, qui permettent l'obtention d'émulsions dites « émulsions de Pickering ».
[0093] Les émulsions de Pickering sont des émulsions qui sont stabilisées par des particules en suspension colloïdales dans la phase aqueuse venant s'ancrer à l'interface huile/eau interprété comme un effet de mouillage à l’interface des deux phases, avec une forte stabilité.
[0094] Contrairement aux agents tensio-actifs qui s'adsorbent et se désorbent continuellement sous l’effet de l’agitation thermique, les particules en suspension
colloïdale s'adsorbent fortement aux interfaces et l’énergie de désorption des particules devient suffisamment élevée pour rendre le phénomène irréversible.
[0095] Les particules de phyllosilicates ont ainsi un rôle d’émulsifiant pour stabiliser les émulsions selon un objet de l’invention. Ces émulsions sont ainsi des émulsions de Pickering.
[0096] L’objectif de cette étape est l’obtention d’une émulsion stable avec une phase dispersée en forme de gouttes dans une phase continue. La phase lipidique comprend la dispersion de phyllosilicates dans de l’huile précédemment décrite. La phase aqueuse est composée de l’eau pouvant être complétée par un sel monovalent, avec une concentration entre 0 et 100 mM dans l’eau, avec avantageusement du NaCl à une concentration inférieure à 50 mM et très avantageusement à 25 mM. Cette force ionique a été choisie pour limiter les répulsions électrostatiques dues aux charges de surface des particules d’argile. Pour disperser les deux phases non miscibles, on va apporter une énergie de cisaillement appliquée en batch, à température ambiante, avec par exemple un dispositif rotor/stator avec un entrefer de 150 micromètres avec un mobile de 30 mm, à 4500 rpm pendant 4 min.
[0097] Pour obtenir une émulsion selon l’un des objets de l’invention, on utilise toujours une phase lipidique dans laquelle des particules d’argile sont dispersées et stabilisées avec un agent de dispersion ou de surface en présence d’eau comme précédemment décrit.
[0098] Le caractère direct ou inverse de l’émulsion obtenue est principalement fonction des viscosités relatives de la phase continue et de la phase dispersée, de la proportion de phase dispersée par rapport à la phase continue au démarrage de l’émulsification, sachant que la phase dispersée peut être ensuite ajoutée goutte à goutte pour augmenter la proportion, on peut réaliser ainsi des émulsions à plus de 65% en poids de phase dispersée.
[0099] La taille de gouttes de la phase dispersée obtenues est fonction de la taille de particules d’argile et de la concentration de ces particules d’argile. La figure 9 présente schématiquement les évolutions observées. [00100] Pour une taille de particules d’argile donnée, le diamètre de gouttes diminue avec la concentration ; plus on met de particules, plus celles-ci peuvent stabiliser d’interfaces et donc il en résulte des gouttes de la phase dispersée de plus petits
diamètres. Cependant, la taille des particules d’argile va imposer une taille minimale de gouttes ; on ne peut pas faire de gouttes plus petites que les particules stabilisantes.
[00101] Il est à noter que la stabilisation des gouttes d’émulsions par des particules d’argile induit une rigidifïcation de l’interface avec des gouttes qui perdent leur sphéricité. Par ailleurs la taille limite de gouttes observée sur le plateau à forte concentration d’argile dépend de l’énergie de cisaillement apportée pour fragmenter les gouttes.
[00102] Les émulsions stabilisées par des phyllosilicates organisés à la surface des gouttelettes, permettent d’avoir des gouttelettes lipidiques stabilisées contre la coalescence par une barrière physique de charge dominante négative en surface pour une large gamme de pH allant de pH 4 et pH 10. Cette charge négative est apportée par les liaisons silanolates de surface des plaquettes d’argile. Ces silanolates de charge négative, peuvent interagir avec des molécules (L-arginine, L-Lysine) ou des polymères cationiques (chitosan, acide hyaluronique, polylysine, etc...), ce qui permet de changer les interactions de surface des gouttelettes et ainsi les fonctionnaliser ou changer leur attractivité pour différents supports. Il est également possible de les fonctionnaliser par liaison covalente par condensation de silanes préparés pour apporter des fonctions particulières. Une diversité de silanes pouvant se condenser par une ou plusieurs silanes sont envisageables. On peut citer à titre d’exemple les mono, di ou tri ethoxy aminopropylsilanes. De nombreuses molécules sont utilisables pour ensuite coupler de façon covalente la fonction amine apportée par les silanes. Une chimie simple peut être utilisée avec des agents de couplage comme les isothiocyanates, les N- hydroxysuccimide ester (NHS-ester), isocyanates, acyl azides, sulfonyl chlorides, aldéhydes, glyoxals, epoxides, oxiranes, carbonates, aryl halides, imidoesters, carbodiimides, anhydrides, and fluorophenyl esters
[00103] Les surfaces des particules sont ainsi fonctionnalisables pour interagir avec des antigènes de surface sur les bactéries, ou des biofïlms bactériens. Nano-dispersion aqueuse de particules de phyllosilicates
[00104] La préparation d’une nano-dispersion aqueuse de particules de phyllosilicates comprend les étapes suivantes :
[00105] (1) Préparer une solution aqueuse de phyllosilicates : homogénéiser la solution avec un rotor stator et laisser reposer ; [00106] (2) Ajouter à la solution aqueuse de phyllosilicates une quantité donnée de l’agent de dispersion, par exemple la e-polylysine ; homogénéiser au vortex ;
[00107] (3) Ajouter à la solution précédente une quantité donnée d’huile essentielle ;
[00108] (4) Homogénéiser la solution complétée dans un bain d’ultra-sons pour obtenir la nano-dispersion aqueuse de phyllosilicates. [00109] Dans des modes de réalisation, la teneur en phyllosilicates dans la nanodispersion aqueuse va de 0,005 à 20 % en poids.
[00110] Dans des modes de réalisation, la teneur en phyllosilicates dans la nanodispersion aqueuse va de 0,5 à 20 % en poids, préférentiellement de 1 à 20 % en poids.
[00111] Dans des modes de réalisation, la teneur en phyllosilicates dans la nanodispersion aqueuse va de 0,005 à 5 % en poids, préférentiellement de 0,005 à 2 % en poids.
[00112] Dans des modes de réalisation, la teneur en phyllosilicates dans la nano- dispersion aqueuse va de 0,5 et 35 % en poids et de préférence de 0,5 à 15 % en poids, par rapport au poids de la composition lipidique.
Procédé de préparation d’une nano-émulsion
[00113] L’invention a aussi pour objet des émulsions nanométriques. Ces émulsions se composent d’une phase lipidique et d’une phase aqueuse continue. [00114] L’objectif est l’obtention d’une émulsion nanométrique selon l’un des objets de l’invention.
[00115] Pour associer deux systèmes qui n’ont à l’origine aucune affinité, l’un apolaire (les lipides - huiles essentielles) et l’autre polaire (phase aqueuse - phyllosilicates), on va : (1) Dissoudre l’agent de dispersion dans l’eau de gonflement de l’argile et obtenir un mélange homogène ;
(2) Ajouter l’argile et mélanger avec un pétrin la composition obtenue pour gonfler les feuillets de phyllosilicate par l’eau, et adsorber l’agent de dispersion à la surface des particules de phyllosilicates, pour les rendre compatibles avec la phase lipidique ;
(3) Ajouter les lipides de la phase lipidique ;
(4) Apporter de l’énergie de cisaillement à la composition obtenue pour disperser/exfolier les feuillets d’argile dans la phase lipidique ;
(5) Ajouter l’eau de la phase aqueuse externe avec par exemple un rapport de phase huileuse/phase aqueuse de 40/60 ;
(6) Apporter de l’énergie de cisaillement à la composition obtenue pour disperser la phase lipidique dans la phase aqueuse et obtenir une émulsion micrométrique ; et
(7) Reprendre cette émulsion et la cisailler avec encore plus d’énergie par traitement dans un homogénéisateur haute pression ou un microfluidisateur et obtenir une émulsion nanométrique.
[00116] Les étapes (1) à (4) ont pour but la préparation de la phase lipidique de la nanoémulsion selon l’un des objets de l’invention.
[00117] Cette phase lipidique comporte des lipides, par exemple de l’huile de tournesol à laquelle on ajoute au moins une huile essentielle comme agent antibactérien, des phyllosilicates, de l’eau de gonflement des phyllosilicates et un agent de dispersion amphiphile.
[00118] L’étape (1) est obtenue par l’apport d’eau en quantité suffisante pour solubiliser l’agent de dispersion et imprégner les feuillets d’argile.
[00119] Les argiles sont connues pour leurs propriétés absorbantes d’eau, et ils peuvent gonfler selon leur composition chimique et structurelle entre 2 fois leur masse en eau, jusqu’à 20 fois leur masse en eau. Les argiles ainsi gonflées forment un gel dont les feuillets plus ou moins gonflés et plus ou moins exfoliés intègrent la totalité du volume d’eau. Il n’est pas nécessaire de saturer la totalité de la capacité d’absorption de l’eau des argiles pour obtenir une dispersion satisfaisante de l’argile dans la phase lipidique, c’est pourquoi nous limitons l’apport d’eau à 300 % en poids par rapport à l’argile. À l’inverse il est nécessaire que les argiles soient un minimum imprégné d’eau pour favoriser leur dispersion. Les argiles exfoliables sont usuellement conservées à un taux d’humidité de 10 %. Il est indispensable de ne pas descendre sous le seuil des 5 % pour éviter l’effondrement des feuillets de phyllosilicate, conduisant à une structure qui perd sa capacité d’exfoliation.
[00120] Une teneur en eau insuffisante de l’eau de gonflement de la phase lipidique ne permet pas une bonne exfoliation des phyllosilicates.
[00121] Lorsqu’il y a une teneur en eau trop élevée, les feuillets d’argile sont plus faciles à exfolier mais ils sont imprégnés d’eau et ils ont moins de capacité pour adsorber les molécules de l’agent de dispersion amphiphile. Ils gardent leur caractère hydrophile.
[00122] De préférence, la teneur en eau est comprise entre 10 et 400 % et très préférentiellement entre 20 % et 200 % relativement au poids de phyllosilicates ou argiles de la phase lipidique. [00123] A l’étape (2) on utilise un agent de dispersion, tel que de la lécithine comme agent dispersant/exfo liant. Celle-ci va s’adsorber en surface des feuillets d’argile par interaction ionique entre les fonctions ammoniums et les groupes silanol des argiles. La
lécithine ou Ge-polylysine est pré-dissoute dans l’eau de l’étape (1) pour faciliter son incorporation. La quantité de lécithine ou de e-polylysine peut varier entre un taux de couverture de la surface d’argile de 5 % à 100 %. Ce taux de couverture est calculé en fonction de la surface extérieure d’argile totale après l 'exfoliation, et le nombre de charges anioniques en surface des feuillets (usuellement il y a de l’ordre de cinq fonctions silanol par nanomètre au carré, 5/nm2) accessibles par les molécules de lécithine ou de e-polylysine (feuillets les plus gonflés (écartés par l’eau)). Il dépend donc de la surface spécifique de l’argile accessible par l’agent dispersant.
[00124] Il est par conséquent nécessaire de travailler sur différents taux d’agent de dispersion, selon les argiles utilisées, qui présenteront des quantités de silanols suffisamment accessibles aux molécules de lécithine. Il faut viser les taux de couverture optimal entre 20 % et 60 % des silanols de surface des particules selon la taille de particules et l’hydrophobation souhaitée. Ainsi différents types de particules pourront être préparées pour stabiliser les émulsions directes. [00125] La figure 3 présente schématiquement l’évolution de la teneur nécessaire en lécithine en poids relativement à la teneur en poids d’argile en fonction de la surface spécifique des argiles exfoliés pour plusieurs taux de couverture des silanols des feuillets d’argile par la lécithine.
[00126] Cette figure montre que la teneur en lécithine optimale pour obtenir une bonne exfoliation suivie d’une émulsification directe stable est comprise entre 13 % et 129 % en masse relativement à la masse de l’argile pour un taux de couverture de 20 % et respectivement une surface spécifique d’argile de 100 m2/g et 1000 m2/g. Pour un taux de couverture de 60 % la teneur en lécithine optimale est comprise entre 39 % et 387 % en masse relativement à la masse de l’argile et respectivement une surface spécifique d’argile de 100 m2/g et 1000 m2/g.
[00127] Lorsque la teneur en agent de dispersion tel que de la lécithine est insuffisante, le caractère hydrophobe des particules d’argile est insuffisant.
[00128] Lorsque la quantité d’agent de dispersion tel que de la lécithine permet de couvrir les silanols de surface des particules, on favorise la dispersion des argiles dans la phase lipidique. À des taux de couverture proche de 100 % on perd le caractère hydrophile des argiles, elles deviennent très stables en environnement lipidique, ce qui les rend moins susceptibles de migrer à l’interface eau-huile pour stabiliser l’émulsion.
[00129] Il y a une compétition entre l’agent de dispersion tel que la lécithine et les molécules d’eau pour la physisorption à la surface des argiles, donc un excès d’agent de dispersion sera défavorable à la quantité d’eau adsorbable et par conséquence à la qualité de l’exfoliation des particules d’argiles en particules de taille nanométrique. [00130] Pour la bentonite utilisée, avec une surface spécifique de l’ordre de 300 m2/g, on doit donc avoir une teneur optimale en lécithine de l’ordre de 30 à 130 % en poids relativement à la masse de l’argile avec un taux de couverture compris entre 20 et 60 % des silanols de surface de l’argile.
[00131] Une mesure de l’angle de contact entre une goutte d’eau pure et la surface des argiles à la fin de l’étape (2), c’est-à-dire avant d’ajouter les lipides (3) et l’énergie de cisaillement (4), permet de vérifier que la quantité d’agent de dispersion ou de surface est satisfaisante
[00132] A l’étape (3), on ajoute à la pâte obtenue à l’étape (2) les lipides de la phase lipidique de la nano-émulsion. La phase lipidique résultante est telle que le taux de phyllosilicates, c’est-à-dire le poids en phyllosilicates, est supérieur à 0,2 % en poids par rapport au poids de la phase lipidique et de préférence compris entre 0,2 % et 20 % en poids. Ces taux de phyllosilicates permettent d'obtenir aisément des émulsions directes à l'étape (6).
[00133] L’étape (4) peut être obtenue par un cisaillement appliqué en batch au moyen par exemple d’un Silverson (cisaillement rotor-stator), un traitement complémentaire par ultrasons ou à l’aide d’un homogénéisateur haute pression est aussi possible pour réduire la taille des particules.
[00134] À l’étape (5) on ajoute l’eau de la phase aqueuse. Avantageusement, cette phase aqueuse peut être complétée par un sel monovalent, avec une concentration entre 0 et 100 mM dans l’eau, avec avantageusement du NaCl à une concentration inférieure à 50 mM et très avantageusement de 25 mM.
[00135] À l’étape (6) l’apport d’énergie de cisaillement peut être réalisé avec un rotor/stator avec un entrefer de 150 micromètres et un mobile de 30 mm, à une vitesse de 2000 à 5000 rpm pendant 3 à 30 min, de préférence 4000 rpm pendant 5 min, encore plus préférentiellement à 4500 rpm pendant 4 min.
[00136] Afin de réduire les diamètres moyens des gouttes, à l’étape (7) des émulsions préformées ont été passées à travers un homogénéisateur haute pression (HP) (GEA
Niro Soavi Panda Plus 2000, Italie) jusqu'à 5 fois à 1000 bar à température ambiante. L’homogénéisateur HP était équipé d’une soupape haute pression (soupape HP) et d’une soupape basse pression (soupape BP). Dans cette étude, la pression à la vanne BP a été ajustée à 100 bar et la vanne HP a été utilisée pour arriver à une pression de traitement de 1000 bar qui correspond à la somme des pressions aux deux vannes.
[00137] Par cisaillement d’une composition liquide, on entend l’application de forces de cisaillement dans un entrefer positionné entre un rotor et un stator. Cet entrefer peut être compris selon les équipements entre 0,1 mm et 2 mm. Cette force de cisaillement dans l’entrefer s’exprime sous forme d’un gradient de cisaillement, qui sera d’autant plus fort que la vitesse de rotation du rotor est élevée, que le diamètre du rotor est élevé, et que l’entrefer est faible. Dans des équipements du commerce, la vitesse du rotor peut varier entre quelques rpm jusqu’à 12000 rpm. Pour traduire les paramètres en valeur universelle utilisables sur tout type d’équipement, on détermine la vitesse à l’extrémité du rotor, qui doit être de l’ordre de 2,5 m/s, pour un entrefer de 150 μm sur l’équipement M5 de chez Silverson.
[00138] Il est important d’appliquer la bonne vitesse, pour apporter le bon niveau d’énergie qui permet de fracturer les gouttelettes d’émulsion à la bonne taille, alors que le temps de traitement permet d’obtenir une bonne homogénéité de traitement du volume à émulsionner. [00139] Une variation de la vitesse (gradient de cisaillement) permet de moduler la taille des émulsions, qui va varier entre 1 μm à 10 000 rpm, et 70 μm à 1 000 rpm. Le temps de traitement est déterminé pour cet équipement pour des volumes d’émulsions maximum de 3 L. Méthodes
Méthode 1 : Mesures de la taille de particules d’une dispersion aqueuse ou lipidique (DLS)
[00140] La taille des particules minérales obtenues dans un milieu aqueux ou lipidique est mesurée par diffusion dynamique de la lumière (en anglais Dynamic Light Scattering ou DLS). Les expériences ont été réalisées avec un instrument Malvem Nano ZS. Toutes les mesures ont été effectuées à une température de 20 °C avec un angle de détection de 173°. Le diamètre hydrodynamique a été obtenu à partir de l'analyse de la
fonction de corrélation utilisant le logiciel Malvem DTS, et en faisant l’approximation d’une forme sphérique des particules ou amas de feuillets de phyllosilicates en prenant en compte les dimensions les plus importantes des particules. La viscosité de l’huile de tournesol est de 66 cSt.
[00141] L’échantillon testé est amené par dilution à une concentration de 0,1 % en poids de particules relativement au poids du médium (eau ou huile). 1 mn avant la mesure on agite l’échantillon testé avec un vortex.
[00142] Les figures 5 et 6a à 6d présentées donnent l’évolution du nombre de particules en fonction de leur taille en coordonnées semi-logarithmiques.
[00143] La figure 6 présente les tailles des particules de quatre phyllosilicates différents après dispersion et exfoliation dans de l’eau comme précédemment décrit.
[00144] Les concentrations de phyllosilicates sont de 5 % en poids relativement à l’ensemble de la composition lors de l’exfoliation et de 0,1 % lors de la mesure des tailles de particules.
[00145] La figure. 6(a) présente la courbe de tailles obtenue pour une bentonite du Wyoming. Le D50 est de : 255 nm.
[00146] La figure. 6(b) présente la courbe de tailles obtenue pour une argile verte surfine d’origine France, montmorillonite - illite. Le D50 est de : 295 nm.
[00147] La figure. 6(c) présente la courbe de tailles obtenue pour une bentonite de Lafaure. Le D50 est de : 295 nm.
[00148] La figure. 6(d) présente la courbe de tailles obtenue pour une bentonite de Smectagri. Le D50 est de : 712 nm.
[00149] Pour ces quatre figures nous avons l’axe des abscisses qui représente le diamètre des particules, alors que l’axe des ordonnées représente le pourcentage de la population en nombre des particules au diamètre considéré.
[00150] Dans les quatre essais, la taille D90 des particules est bien inférieure à 1 micromètre.
Méthode 2 : Mesure d’angles de contact
[00151] Une mesure de l’angle de contact entre une goutte d’eau pure et la surface des argiles à la fin de l’étape (2), c’est-à-dire avant d’ajouter les lipides (3) et l’énergie de
cisaillement (4), permet de vérifier que la quantité d’agent de dispersion ou de surface est satisfaisante. Pour que les feuillets d’argile puissent remplir leur rôle de particules émulsifiantes minérales, il est nécessaire que l’angle de contact soit compris entre 35 et 45 degrés et de préférence entre 37 et 42 degrés. Au-delà et en deçà des valeurs indiquées, la stabilité des émulsions n’est pas suffisante. Un angle de contact inférieur à 30 degrés indique que la surface des argiles est trop hydrophile pour stabiliser les émulsions. Un angle supérieur à 50 degrés indique que la surface est trop hydrophobe pour stabiliser les émulsions.
[00152] Les argiles sont déposées en couche mince à l’aide d’une spatule sur un support solide plan. Afin de limiter les effets dus à l’irrégularité (rugosité) de la surface, des gouttes d’eau pure de 2 pL seulement sont déposées sur les argiles. Les images obtenues lors des dépôts permettent de plus de considérer que le mouillage obéit au modèle de Wenzel. Les rugosités des surfaces obtenues avec les différentes argiles pouvant être considérées comme relativement similaires, les angles de contact mesurés sont considérés comme représentatifs de la mouillabilité des argiles, même si les valeurs sont légèrement inférieures aux angles qui seraient obtenus sur les même surfaces à l’état lisse.
[00153] Lorsque l’état d’équilibre est atteint, la goutte déposée est observée à l’aide d’une caméra numérique à fort grossissement et l’équation de l’enveloppe de la goutte est obtenu par régression non linéaire en supposant que l’enveloppe de la goutte suit la forme d’une ellipse. L’angle de contact est obtenu par mesure de la pente de la tangente à l’enveloppe de la goutte au point d’intersection avec la droite parallèle au plan de la couche d’argile (voir figure 17).
[00154] Chaque liquide est déposé à 2 endroits différents de la couche d’argile, et l’angle de contact de chaque goutte est mesuré 3 fois. L’erreur absolue sur chaque mesure d’angle peut être estimée à +/- 2 degrés.
[00155] L’angle de contact mesuré est de 37 à 39 degrés. Ainsi, les particules d’argiles obtenues selon le procédé de l’invention conduiront à l’obtention de nano-émulsions stables.
EXEMPLES
Exemple 1 : Test in vitro de l’activité d’huiles essentielles liées à des particules de phyllosilicates dans une dispersion aqueuse
[00156] Plusieurs essais ont été réalisés pour montrer l’intérêt des particules de phyllosilicates comme support des huiles essentielles et ainsi améliorer leur efficacité spécifique d’une part et illustrer l’obtention de gouttes lipidiques de taille appropriée d’autre part.
[00157] Le choix des microorganismes a été porté sur trois espèces bactériennes provoquant des pathologie fréquentes chez le poisson, plus spécifiquement la daurade (sparus aurata).
[00158] Ce sont des espèces qui provoquent des maladies induisant une mortalité massive dans la plupart des cultures de différentes espèces de poissons, Elles sont majoritairement gram négatif. Les microorganismes nous ont été fournis par l’institut Pasteur, sous forme de lyophilisât bactérien, avec les références suivantes : [00159] Vibrio alginolyticus CIP 103336T
[00160] Photobacterium damselae ssp. Piscicida CIP 104404T
[00161] Pseudomonas anguilliseptica CIP 106711T
[00162] En plus des souches étudiées, deux souches témoins ont été utilisées :
[00163] Escherichia coli, fournis par le laboratoire de microbiologie à Polytech Clermont Ferrand.
[00164] Staphylococcus aureus (Réf. : cip 53-156), fournis par le LMGE, Université Clermont Auvergne.
[00165] Le test de l’efficacité d’une composition selon l’invention, d’une huile essentielle, liée à des particules de bentonite a été réalisé par la méthode de l’aromatogramme.
[00166] C’est une méthode inspirée de l’antibiogramme qui permet de déterminer l’activité inhibitrice de croissance des huiles essentielles par la mesure du diamètre d’inhibition autour d’un puits central dans lequel sera introduit la dispersion contenant l’huile essentielle. Une suspension du germe considéré est préparée en eau distillée stérile et ajustée à par exemple 108 bactéries/ml. Chaque suspension (100 mΐ) est étalée
sur une boite de Pétri de 90 mm de diamètre comprenant un milieu nutritif pour les germes (gélose). On crée dans la gélose un puits de 6 mm de diamètre dans lequel on vient introduire une composition selon l’invention.
[00167] L’activité inhibitrice de croissance est déterminée par les diamètres d’inhibition autour des puits après 24 à 48 h.
[00168] La nano-dispersion aqueuse selon l’un des objets de l’invention est constituée de :
Eau distillée stérile : 10 g
Bentonite : 0,5 g - e-Polylysine : 1 ml de solution (à 0,36 g/l)
Huile essentielle : 50 mg.
[00169] L’ordre d’addition est respecté selon la composition ci-dessus, et chaque ingrédient est vigoureusement agité avant l’ajout de l’ingrédient suivant. Ainsi la bentonite est gonflée et exfoliée puis lie physiquement les molécules d’huile essentielle à la surface des particules via l’agent de dispersion. Ce protocole est celui précédemment décrit. L’ordre de grandeur de la taille D50 en nombre des particules de bentonite est de 300 nm.
[00170] Cela constitue une solution mère de dispersion d’huile essentielle supportée. Pour les essais on introduit 200 mΐ de cette dispersion d’huile essentielle à 4,55 mg/ml dans le puits de la boîte de Pétri, ce qui représente 0,9 lmg d’huile essentielle.
[00171] On effectue aussi un contrôle avec des antibiotiques : Chloromphenicol pour V. alginolyticus et P. anguilliseptica à des quantités de 30 pg et 8 pg respectivement dans le puits de la boite de Pétri, et Ciprofloxacin avec une quantité de 5 pg pour P. damselae spp. piscicida [00172] Le tableau suivant montre les diamètres d’inhibition moyens obtenus pour les huiles essentielles qui ont démontré une activité inhibitrice notable.
[00173] Les 7 huiles essentielles (HE), décrites dans le tableau ci-dessus, ont donné une signature d’inhibition significative de la croissance et commune pour les trois espèces étudiées. En ce qui concerne P. anguilliseptica, on observe plus de sensibilité vis-à-vis de la majorité des HE. Les sept HE les plus inhibitrices sont : Cannelle de Chine, Origan compact, Lemongrass, Palmarosa, Thym à Thymol et Sarriette des montagnes.
[00174] Ces résultats montrent tout l’intérêt de l’utilisation d’une nano-dispersion aqueuse selon l’un des objets de l’invention comportant des particules de phyllosilicates support d’huiles essentielles. [00175] Ces résultats permettent de déterminer les conditions optimales pour la préparation et l’obtention des nano-émulsions selon l’invention.
Exemple 2 : Exfoliation de phyllosilicates dans de l’huile
[00176] Pour mesurer la taille des particules dans la phase lipidique d’une nanoémulsion, on a suivi le protocole de préparation d’une nano-émulsion en s’arrêtant à la fin de l’étape (4) d’apport d’une forte énergie de cisaillement. Puis on a prélevé des échantillons pour qualifier la taille des particules de phyllosilicate dispersées dans la phase lipidique.
[00177] La figure 5 présente le résultat de mesures de taille de particules de bentonite dispersées dans la phase lipidique pour deux concentrations de bentonite : 1 % et 10 %. A une concentration de 1 %, la distribution de tailles présente un maximum vers 1 micromètre. A une concentration de 10 %, le maximum s’est nettement décalé vers les petites tailles. Le nombre maximum de particules a une taille de l’ordre de 25 nanomètres. L’augmentation de concentration pour une énergie de cisaillement donnée entraîne une diminution de taille des particules (par friction entre les particules) qui traduit une amélioration de la dispersion. Exemple 3 : Préparation d’une émulsion nanométrique
[00178] Des émulsions directes ont été préparées en utilisant un rapport phase lipidique/phase aqueuse de 40/60. L’émulsification a été réalisée par apport d’énergie de cisaillement avec un dispositif rotor/stator avec un entrefer de 150 micromètres et un mobile de 30 mm, à 4500 rpm pendant 4 minutes. Les émulsions ainsi obtenues restent micrométriques, car l’énergie apportée est insuffisante. Pour réduire la taille, les émulsions ainsi obtenues sont ensuite cisaillées avec une énergie plus importante et plus efficace, avec un homogénéisateur haute pression ou un microfluidiseur.
[00179] La taille des gouttes ainsi obtenues est mesurée comme pour les particules par diffusion dynamique de la lumière (en anglais Dynamic Light Scattering ou DLS). La figure 7 montre le diamètre moyen des gouttes lipidiques de la phase dispersée. Le D50 est de 300 nanomètres.
[00180] Comme la taille des gouttes est directement liée à celle des particules, la taille de ces particules peut être estimée être de l’ordre de 50 nanomètres.
[00181] La figure 8 présente schématiquement l’émulsion 20 obtenue. [00182] On voit les particules lipidiques 28 dispersées dans une phase aqueuse 26.
[00183] Les particules ou gouttes lipidiques, qui comportent une composition comme précédemment décrite sont stabilisées par les particules minérales de phyllosilicate dispersées. Ces particules de toute petite taille qui conservent un certain caractère hydrophile vont préférentiellement se disposer à l’interface eau/huile, c’est ce qui est représenté à la référence 24.
[00184] Ce produit lipidique est obtenu à partir d’une émulsion directe huile/eau obtenue par dispersion dans de l’eau d’une composition lipidique comme précédemment décrite. L’émulsion peut être concentrée par séparation de la phase aqueuse, cette séparation peut être réalisée par tout moyen, notamment par ultrafiltration.
[00185] Les émulsions nanométriques concentrées ainsi obtenues permettent de travailler sur des applications exigeantes sur la quantité d’eau apportée par l’émulsion, telles que les préparations par voie sèche d’aliments, les coating d’aliments secs. Les solutions concentrées permettent également de réduire les volumes et de concentrer les principes actifs, ce qui facilite la logistique des produits, et permet de travailler sur des applicatifs nécessitant des quantités et des concentrations de principe actifs plus importants.
[00186] Les émulsions nanométriques sont un excellent moyen de maximisation de statistique de rencontre entre les pathogènes et les principes actifs, car en diluant ces derniers dans une matrice lipidique et en les supportant sur les feuillets de phyllosilicates à l’interface, puis en réduisant la tailles des objets à l’échelle nanométrique, on multiplie par plusieurs ordres de grandeur le nombre particules pouvant interagir avec les pathogènes. En effet des émulsions de 20 microns (taille de gouttes usuellement obtenue avec un cisaillement rotor-stator), les gouttes embarquent environ un volume de 510 mht', alors qu’une goutte de 300 nm (taille obtenue après homogénéisation à haute pression) encapsulent un volume environ de 0,11 μm3. On en déduit que pour le même volume de phase lipidique dispersée nous avons de l’ordre de 4640 fois plus de particules en suspension. C’est ce nombre important de gouttes qui favorise la statistique de rencontre entre les pathogènes et les principes actifs contenus dans les dispersions nanométriques et rend plus efficace (à la même concentration de principe actif soit 5 à 50 mg HE /ml de phase lipidique) les traitements contre les pathogènes dans des environnements exigeants. Par exemple nous pouvons citer la décontamination des bassins de production des zooplanctons tels que les Rotifers, les
Copepodes ou les Artémias, qui produisent des quantités importantes de pathogènes, en particulier la Vibrio. Aujourd’hui les élevages d’Artémia sont lavés à l’eau douce, puis au peroxyde d’hydrogène, ce qui est un traitement très agressif pour ce zooplancton.
Claims
1. Nano-émulsion avec une phase aqueuse continue et une phase lipidique dispersée, caractérisée en ce que la phase lipidique dispersée contient des particules minérales constituées d’amas de feuillets de phyllosilicates gonflés par de l’eau et exfoliés, au moins une huile essentielle et un agent de dispersion amphiphile, et en ce que la taille D50 en nombre des gouttes de la phase lipidique dispersée est inférieure à 800 nm et de préférence inférieure à 300 nm.
2. Nano-émulsion selon l’une quelconque des revendications précédentes, dans laquelle l’agent de dispersion amphiphile est choisi dans le groupe de l’éthyle lauroyl arginate (LAE), des tensioactifs cationiques à base d’arginine en 16 carbones et plus, des phospholipides, du e-polylysine et leurs combinaisons.
3. Nano-émulsion selon la revendication 2, dans laquelle ledit agent de dispersion est un phosphoglycéride.
4. Nano- émulsion selon la revendication 3, dans laquelle ledit agent de dispersion est une phosphatidyle choline et préférentiellement la lécithine.
5. Nano-émulsion selon l’une quelconque des revendications précédentes, dans laquelle les feuillets de phyllosilicates sont des feuillets avec des cations de sodium interfoliaires et très préférentiellement majoritairement des feuillets de montmorillonites .
6. Nano-émulsion selon l’une quelconque des revendications précédentes, dans laquelle la teneur en agent de dispersion est comprise entre 10 % et 400 % et préférentiellement entre 20 % et 300 % en poids relativement au poids de particules.
7. Nano-émulsion selon l’une quelconque des revendications précédentes, dans laquelle la phase lipidique dispersée comprend une teneur en eau comprise entre 10 % et 300 % et préférentiellement entre 20 % et 200 % en poids relativement au poids de particules.
8. Nano-émulsion selon l’une quelconque des revendications précédentes, dans laquelle la phase lipidique dispersée comprend un taux de phyllosilicates supérieur à 0,5 % en poids par rapport au poids de ladite phase lipidique et de préférence compris entre 2 % et 20 %.
9. Utilisation d’une nano-émulsion selon l’une quelconque des revendications précédentes comme agent de décontamination d’eaux aquacoles et d’eau de breuvage d’animaux terrestres.
10. Nano-émulsion telle que définie dans l’une quelconque des revendications 1 à 8, pour son utilisation dans le traitement préventif des animaux contre le développement d’agents de contamination dans leur organisme.
11. Utilisation d’une nano-émulsion selon l’une quelconque des revendications 1 à 8, pour compléter un aliment, un complément alimentaire ou un premix.
12. Utilisation d’une nano-émulsion selon l’une quelconque des revendications 1 à 8, comme agent conservateur naturel à base d’huiles essentielles, pour les préparations dont le paramètre activité de l’eau est supérieur à 0,45.
13. Procédé de préparation d’une nano-émulsion selon l’une quelconque des revendications 1 à 8, comprenant les étapes suivantes :
- dissoudre l’agent de dispersion dans la phase aqueuse de la phase lipidique et obtenir une solution homogène ;
- ajouter les phyllosilicates et mélanger avec un pétrin la pâte obtenue ;
- ajouter les lipides de la phase lipidique ;
- cisailler la composition obtenue ;
- ajouter la phase aqueuse ; - apporter de l’énergie de cisaillement pour obtenir une émulsion micrométrique ; et
- reprendre l’émulsion micrométrique avec un homogénéisateur haute pression ou un microfluidisateur pour obtenir une émulsion nanométrique.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22730953.1A EP4337009A1 (fr) | 2021-05-12 | 2022-05-12 | Nano-dispersions aqueuses et nano-emulsions de traitement des eaux |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2105032 | 2021-05-12 | ||
FR2105032A FR3122836A1 (fr) | 2021-05-12 | 2021-05-12 | NANO-DISPERSIONS AQUEUSES ET NANO-EMULSIONS de traitement des eaux |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022238663A1 true WO2022238663A1 (fr) | 2022-11-17 |
Family
ID=77411780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2022/050909 WO2022238663A1 (fr) | 2021-05-12 | 2022-05-12 | Nano-dispersions aqueuses et nano-emulsions de traitement des eaux |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4337009A1 (fr) |
FR (1) | FR3122836A1 (fr) |
WO (1) | WO2022238663A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100272769A1 (en) * | 2005-08-03 | 2010-10-28 | Amcol International | Virus-, Bacteria-, and Fungi-Interacting Layered Phyllosilicates and Methods of Use |
WO2014104868A1 (fr) * | 2012-12-31 | 2014-07-03 | Advanced Scientific Developments | Complexe moléculaire détoxifiant et antimicrobien |
CN105111511A (zh) * | 2015-07-31 | 2015-12-02 | 河南科技大学 | 一种抗菌纳米复合可食性膜及其制备方法 |
WO2016070091A1 (fr) * | 2014-10-31 | 2016-05-06 | Integrated Aquaculture International, Llc | Prémélange alimentaire pour animaux d'aquaculture sous forme enrobée |
CN108935524A (zh) * | 2018-09-04 | 2018-12-07 | 红塔烟草(集团)有限责任公司 | 一种烟草粉螟驱避剂及其制备方法 |
CN110305369A (zh) * | 2018-03-27 | 2019-10-08 | 上海泛亚生命科技有限公司 | 一种缓释型天然植物香氛功能涂料 |
CN111742981A (zh) * | 2020-07-20 | 2020-10-09 | 重庆市林业科学研究院 | 一种鲜笋保鲜涂膜剂及其制备方法 |
WO2021089971A1 (fr) * | 2019-11-07 | 2021-05-14 | Huddle Corp | Aliment ou complément alimentaire pour animaux d'élevage |
-
2021
- 2021-05-12 FR FR2105032A patent/FR3122836A1/fr active Pending
-
2022
- 2022-05-12 EP EP22730953.1A patent/EP4337009A1/fr active Pending
- 2022-05-12 WO PCT/FR2022/050909 patent/WO2022238663A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100272769A1 (en) * | 2005-08-03 | 2010-10-28 | Amcol International | Virus-, Bacteria-, and Fungi-Interacting Layered Phyllosilicates and Methods of Use |
WO2014104868A1 (fr) * | 2012-12-31 | 2014-07-03 | Advanced Scientific Developments | Complexe moléculaire détoxifiant et antimicrobien |
WO2016070091A1 (fr) * | 2014-10-31 | 2016-05-06 | Integrated Aquaculture International, Llc | Prémélange alimentaire pour animaux d'aquaculture sous forme enrobée |
CN105111511A (zh) * | 2015-07-31 | 2015-12-02 | 河南科技大学 | 一种抗菌纳米复合可食性膜及其制备方法 |
CN110305369A (zh) * | 2018-03-27 | 2019-10-08 | 上海泛亚生命科技有限公司 | 一种缓释型天然植物香氛功能涂料 |
CN108935524A (zh) * | 2018-09-04 | 2018-12-07 | 红塔烟草(集团)有限责任公司 | 一种烟草粉螟驱避剂及其制备方法 |
WO2021089971A1 (fr) * | 2019-11-07 | 2021-05-14 | Huddle Corp | Aliment ou complément alimentaire pour animaux d'élevage |
CN111742981A (zh) * | 2020-07-20 | 2020-10-09 | 重庆市林业科学研究院 | 一种鲜笋保鲜涂膜剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
BRENESROURA, ANIMAL FEED SCIENCE AND TECHNOLOGY, vol. 158, 2010, pages 1 - 14 |
Also Published As
Publication number | Publication date |
---|---|
FR3122836A1 (fr) | 2022-11-18 |
EP4337009A1 (fr) | 2024-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bot et al. | Inter-relationships between composition, physicochemical properties and functionality of lecithin ingredients | |
CN107847566A (zh) | 释放过氧化氢的抗微生物组合物和制剂 | |
US20060233845A1 (en) | Micro/nanoparticle obtained from lipid-containing marine organisms for use in pharmaceutics and cosmetics | |
WO2019053134A1 (fr) | Solution huileuse d'alcool benzylique et utilisation dans la prevention et le traitement des parasitoses | |
CN107595647A (zh) | 一种利用羟基磷酸钙纳米颗粒稳定的o/w型皮克林乳液及其制备方法 | |
WO2014076432A1 (fr) | Procédé pour la fabrication d'une émulsion sèche en poudre contenant au moins un principe actif lipophile, destinée à améliorer la biodisponibilité dudit principe actif lipophile, et émulsion sèche obtenue par ce procédé | |
EP3429346B1 (fr) | Composition comprenant un mel, un ester methylique d'acide gras et un tensioactif non-ionique de hlb superieur ou egal a 12 | |
FR3021531A1 (fr) | Systeme de conservation | |
KR20220109059A (ko) | 금속아미노점토 결합된 나노리포좀, 이의 제조방법 및 이를 이용한 화장료 | |
WO2022238663A1 (fr) | Nano-dispersions aqueuses et nano-emulsions de traitement des eaux | |
CA3219365A1 (fr) | Composition sous forme d'organisation supramoleculaire incluant des molecules hydrophiles stabilisee par des particules minerales dans une phase lipidique | |
BRPI1004808A2 (pt) | composiÇÕes baseadas em nanopartÍculas de pràpolis, processos de obtenÇço e uso | |
Yazgan | Antimicrobial activities of emulsion-based edible solutions incorporating lemon essential oil and sodium caseinate against some food-borne bacteria | |
EP3697371A1 (fr) | Emulsion huile-dans-eau a base d'huiles essentielles et formulee sans tensio-actif | |
EP3429349B1 (fr) | Concentre comprenant un mel et un ester d'acide gras et de polyethylene glycol de hlb superieur ou egal a 12 | |
EP3743377A1 (fr) | Encapsulation de substances actives et/ou de microorganismes dans un materiau lamellaire | |
WO2023166891A1 (fr) | Composition pour cavité buccale | |
EP4003269A1 (fr) | Complexe hybride mineral et organique et son utilisation pour le maintien de l'equilibre microbiologique de la peau et/ou d'une composition cosmetique et/ou dermopharmaceutique | |
Carneiro et al. | Effect of different combination of wall materials on the encapsulation efficiency of flaxseed oil microencapsulated by spray drying. | |
EP2640506B1 (fr) | Neo-materiau hybride de sequestration de principe actif a usage alimentaire et son procede de fabrication | |
Nguyen et al. | Formulation and evaluation of nanoemulsion-based nanocream using green ingredients exhibiting enhanced performance characteristics | |
FR2979522A1 (fr) | Systeme de conservation biodermique | |
FR3007284B1 (fr) | Association synergique de trois composes lipophiles et utilisations | |
WO2020227796A1 (fr) | Composition de supports lipidiques nanostructurés naturels avec action intrinsèque anesthésiante, bactéricide, antifongique et biopesticide | |
CN116803427A (zh) | 一种纳米颗粒自组装人工油体的制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22730953 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022730953 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022730953 Country of ref document: EP Effective date: 20231212 |