WO2022237773A1 - 上行控制信息uci传输方法、装置、用户设备及介质 - Google Patents

上行控制信息uci传输方法、装置、用户设备及介质 Download PDF

Info

Publication number
WO2022237773A1
WO2022237773A1 PCT/CN2022/091940 CN2022091940W WO2022237773A1 WO 2022237773 A1 WO2022237773 A1 WO 2022237773A1 CN 2022091940 W CN2022091940 W CN 2022091940W WO 2022237773 A1 WO2022237773 A1 WO 2022237773A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
pucchs
uci
ack
puschs
Prior art date
Application number
PCT/CN2022/091940
Other languages
English (en)
French (fr)
Inventor
鲁智
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22806736.9A priority Critical patent/EP4340280A1/en
Publication of WO2022237773A1 publication Critical patent/WO2022237773A1/zh
Priority to US18/388,245 priority patent/US20240080844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a UCI transmission method, device, user equipment and medium.
  • UE User Equipment
  • eMBB enhanced mobile broadband
  • URLLC ultra-high reliability and ultra-low Ultra-Reliable and Low Latency Communications
  • mMTC massive Machine Type of Communication
  • a service such as eMBB service
  • other services may also need to be transmitted, which may cause a certain time
  • the uplink channel carrying the uplink control information (Uplink Control Information, UCI) of the eMBB service on the domain resource overlaps with the uplink channel carrying the UCI of other services, which causes the UE to cancel the UCI transmission of a certain service.
  • UCI Uplink Control Information
  • Embodiments of the present application provide a UCI transmission method, device, user equipment, and medium, which can solve the problem of low UCI transmission reliability of UEs.
  • a UCI transmission method which is applied to a UE, and the method includes: when N uplink channels overlap in time domain resources, the UE transmits N through a target uplink channel among the N uplink channels For the M UCIs carried on the uplink channels, N and M are both positive integers; the target uplink channel is determined by at least one of the following: priorities of the N uplink channels, and channel types of the N uplink channels.
  • a UCI transmission device in a second aspect, includes: a transmission module.
  • the transmission module is used to transmit the M UCIs carried on the N uplink channels through the target uplink channel in the N uplink channels when the N uplink channels overlap in time domain resources, N, M are all positive integers; the target uplink channel is determined by at least one of the following: priorities of the N uplink channels, and channel types of the N uplink channels.
  • a UE in a third aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor. When the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a UE including a processor and a communication interface, wherein the communication interface is used to pass a target uplink channel among the N uplink channels when the N uplink channels overlap in time domain resources , transmitting M UCIs carried on N uplink channels, where N and M are both positive integers; the target uplink channel is determined by at least one of the following: the priority of the N uplink channels, and the channel type of the N uplink channels.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the first aspect The steps of the method.
  • the UE when N uplink channels overlap in time domain resources, the UE can use the priorities of the N uplink channels (and/or the channels of the N uplink channels) among the N uplink channels. type) to determine the target uplink channel, and transmit the M UCIs carried on the N uplink channels.
  • the UE can use the priority of the N uplink channels among the N uplink channels (and/or the channel types of the N uplink channels) determine the target uplink channel to transmit M UCIs without canceling the transmission of UCIs of a certain service, so the UCI transmission reliability of the UE can be improved.
  • FIG. 1 is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • Fig. 2 is one of the schematic diagrams of the UCI transmission method provided by the embodiment of the present application.
  • Fig. 3 is the second schematic diagram of the UCI transmission method provided by the embodiment of the present application.
  • Fig. 4 is the third schematic diagram of the UCI transmission method provided by the embodiment of the present application.
  • FIG. 5 is one of the schematic structural diagrams of the UCI transmission device provided by the embodiment of the present application.
  • FIG. 6 is the second structural schematic diagram of the UCI transmission device provided by the embodiment of the present application.
  • FIG. 7 is the third structural schematic diagram of the UCI transmission device provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present application.
  • UCI is multiplexed on the uplink channel
  • the UE Before transmitting multiple UCIs through multiple uplink channels, the UE may jointly encode at least one UCI among the multiple UCIs and uplink data carried on a certain uplink channel among the multiple uplink channels, and cancel the at least An uplink channel (that is, an uplink channel bearing the at least one UCI) transmits the UCI, so as to multiplex the at least one UCI onto the certain uplink channel. It can be understood that after the at least one UCI is multiplexed onto a certain uplink channel, the at least one UCI is added to the certain uplink channel.
  • the network side device When the network side device schedules an uplink channel, it can include a priority indicator field (Priority indicator) in the DCI format (format) 0-1 and format 0-2, and the priority indicator field indicates the scheduled uplink channel Is it high priority or low priority.
  • a priority indicator field (Priority indicator) in the DCI format (format) 0-1 and format 0-2, and the priority indicator field indicates the scheduled uplink channel Is it high priority or low priority.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th Generation (6th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), Pedestrian Terminal (PUE) and other terminal-side devices, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • Fig. 2 shows a flowchart of a UCI transmission method provided by an embodiment of the present application.
  • the UCI transmission method provided by the embodiment of the present application may include the following steps 101 and 102 .
  • Step 101 the UCI transmission device receives P UCIs from the network side equipment.
  • P is a positive integer.
  • one UCI may be any of the following: Hybrid automatic repeat request acknowledgment (HARQ-ACK), scheduling request (Scheduling Request, SR), Channel State Information (Channel State Information, CSI), Physical Random Access Channel (Physical Random Access Channel, PRACH) information.
  • HARQ-ACK Hybrid automatic repeat request acknowledgment
  • SR scheduling request
  • CSI Channel State Information
  • CSI Physical Random Access Channel
  • PRACH Physical Random Access Channel
  • the UCI type of each of the above P UCIs may be the same; or, the UCI types of some UCIs are the same; and the UCI types of all UCIs are different.
  • P UCIs include HARQ-ACK 1, HARQ-ACK 2, and HARQ-ACK 3, the UCI types of each UCI are the same; assuming that P UCIs include HARQ-ACK 1, HARQ-ACK 2, and SR 1 , the UCI types of some UCIs are the same.
  • Step 102 In the case that the N uplink channels overlap in time domain resources, the UCI transmission device transmits the M UCIs carried on the N uplink channels through the target uplink channel among the N uplink channels.
  • N uplink channels overlap in time domain resources can be understood as: all uplink channels in the N uplink channels overlap; or, some uplink channels in the N uplink channels overlap (for example, pairwise overlapping, etc.).
  • the above N uplink channels include: P uplink channels carrying P UCIs respectively, and each uplink channel carries one UCI respectively, P ⁇ N; the above M UCIs include P UCIs, P ⁇ M.
  • one uplink channel may be any of the following: a physical uplink control channel (Physical Uplink Control Channel, PUCCH), a physical uplink shared channel ( Physical Uplink Shared Channel, PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the target uplink channel is determined by at least one of the following: priorities of N uplink channels, channel types of N uplink channels; N and M are both positive integers.
  • the priorities of the above N uplink channels may be configured by the network side device or determined by the UCI transmission device.
  • the priority of the uplink channel carrying the second UCI is determined by the first indication field ; In the case that the second UCI among the P UCIs does not include the first indication field, the priority of the uplink channel bearing the second UCI is low priority.
  • the second UCI is: any one of the P UCIs.
  • the priority of the third UCI among the above M UCIs is configured by the network side device.
  • the third UCI is: among the M UCIs, UCIs other than the P UCIs.
  • the foregoing channel types may include at least one of the following: PUCCH type and PUSCH type.
  • the UCI transmission device may first determine the target uplink channel from the N uplink channels, and then the UCI transmission device may The target uplink channel is directly transmitted to transmit M UCIs (that is, UCIs carried on the target uplink channel).
  • the UCI transmission device may transfer the UCI of the same type among the M UCIs (and /or UCIs of different types), multiplexed onto the target uplink channel, and transmit the target uplink channel, so as to transmit M UCIs.
  • the UCI transmission device can multiplex the UCI of the same type among the M UCIs, that is, HARQ-ACK 1 and HARQ-ACK 2, onto the target uplink channel, and transmit the target uplink channel.
  • the UCI transmission device when the UCI transmission device transmits M UCIs carried on N uplink channels through the target uplink channel, the UCI transmission device may cancel the second uplink channel for transmission, or may continue to pass The second uplink channel is used for transmission.
  • the second uplink channel is: among the N uplink channels, an uplink channel other than the target uplink channel.
  • the UCI transmission device when N uplink channels overlap in time domain resources, the UCI transmission device can use the priorities (and/or N The channel type of the N uplink channels) determines the target uplink channel, and transmits the M UCIs carried on the N uplink channels.
  • the UCI transmission device can use N uplink channels among the N uplink channels.
  • the target uplink channel determined by the priority of the channel (and/or the channel type of the N uplink channels) transmits M UCIs without canceling the UCI of a certain service. Therefore, the UCI transmission reliability of the UCI transmission device can be improved .
  • the above target uplink channel is: a high priority uplink channel among the N uplink channels; wherein, the above M
  • the UCI is: the UCI carried on the high-priority uplink channel.
  • the UCI transmission device may cancel the transmission of UCI through other uplink channels (that is, among the N uplink channels, except the target uplink channel), and transmit UCI through a high-priority uplink channel, that is, the UCI transmission device adopts prioritization (priorization) way, transmit UCI.
  • target uplink channel is determined by the priorities of the N uplink channels and the channel types of the N uplink channels.
  • the foregoing target uplink channels are determined by priorities of the N uplink channels and channel types of the N uplink channels.
  • the UCI transmission method provided by the embodiment may further include the following step 201, and the above-mentioned step 102 may specifically be implemented through the following step 102a.
  • Step 201 In the case where N uplink channels overlap in time domain resources, the UCI transmission device multiplexes the first UCI onto the target uplink channel by using a target multiplexing method when the N uplink channels include PUCCH .
  • the above-mentioned target multiplexing method is configured by the network side device; the target multiplexing method includes at least one of the following: allowing PUCCHs of different priorities to be multiplexed, allowing PUCCHs of different priorities to be multiplexed with PUSCHs use.
  • the UCI transmission device can multiplex the UCI carried on one PUCCH among multiple PUCCHs with different priorities to another PUCCH.
  • the above "allowing multiplexing of PUCCH and PUSCH with different priorities” can be understood as: the UCI transmission device can multiplex the UCI carried on one PUCCH (or PUSCH) among PUCCHs and PUSCHs with different priorities to one PUSCH (or PUSCH) on a PUCCH).
  • the UCI transmission device may first multiplex part of the UCI to a certain PUCCH (such as a high priority PUCCH) , and then multiplex the part of UCI and the UCI carried on the one PUCCH onto a certain PUSCH, so as to multiplex the first UCI onto the target uplink channel (that is, the certain PUSCH).
  • a certain PUCCH such as a high priority PUCCH
  • the first UCI includes: the part of UCI and the UCI carried on the certain PUCCH.
  • the above-mentioned first UCI includes: UCIs of the same type among the M UCIs.
  • the type of the first UCI is the same as the type of UCI carried on the target uplink channel.
  • the above-mentioned target multiplexing method is: allowing PUCCHs of different priorities to be multiplexed; the above-mentioned N uplink channels include X PUCCHs and Y PUSCHs;
  • the above-mentioned first UCI includes: UCIs of the same type carried on X PUCCHs.
  • the target uplink channel is: the high-priority PUCCH
  • the target uplink channel is: the high priority PUCCH;
  • the above target uplink channel is: the High priority PUSCH;
  • the target uplink channel is: the above-mentioned low-priority PUSCH.
  • the following will use two different scenarios to specifically describe how the UCI transmission device multiplexes the first UCI onto the target uplink channel when the target multiplexing mode is to allow multiplexing of PUCCHs with different priorities.
  • Table 1 shows that in a single CC scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (ie 2)
  • Y is 0, and the 2 PUCCHs include low-priority PUCCHs (i.e. LP PUCCH) and high-priority PUCCH (i.e. HP PUCCH), so that when the two PUCCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e. the UCI carried on the low-priority PUCCH) ) are multiplexed onto the target uplink channel (that is, the high-priority PUCCH), and the multiplexed high-priority PUCCH is transmitted.
  • the first UCI i.e. the UCI carried on the low-priority PUCCH
  • the target uplink channel that is, the high-priority PUCCH
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low-priority PUCCH and high-priority PUCCH and 1 PUSCH only include low-priority PUSCH (i.e. LP PUSCH), so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e.
  • the UCI carried on the low-priority PUCCH is multiplexed to the target uplink channel (that is, the high-priority PUCCH), and the transmission of the low-priority PUSCH is canceled, and the multiplexed high-priority PUCCH is transmitted.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low-priority PUCCH and high-priority PUCCH
  • 1 PUSCH includes a high priority PUSCH (i.e. HP PUSCH), so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e. low
  • the UCI carried on the priority PUCCH and the UCI carried on the high priority PUCCH) are multiplexed onto the target uplink channel (that is, the high priority PUSCH), and the multiplexed high priority PUSCH is transmitted.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low-priority PUCCH and high-priority PUCCH
  • the 2 PUSCHs include low-priority PUSCH and high-priority PUSCH, so that when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e.
  • the UCI carried on the priority PUCCH, and the UCI carried on the high priority PUCCH) are multiplexed to the target uplink channel (that is, the high priority PUSCH), and the transmission of the low priority PUSCH is cancelled, and the high priority PUSCH after transmission is multiplexed Grade PUSCH.
  • Table 2 shows that in a multi-CC (for example, dual-carrier) scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • a multi-CC for example, dual-carrier
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (i.e. 1)
  • Y is a positive integer (i.e. 1)
  • the 1 PUCCH includes low priority Level PUCCH
  • the 1 PUSCH includes low priority PUSCH
  • the 1 PUCCH corresponds to cell 1 (ie C1)
  • the 1 PUSCH corresponds to cell 2 (ie C2), so when the 1 PUCCH and the 1 PUSCH are in
  • the UCI transmission device may multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to the target uplink channel (that is, the low-priority PUSCH), and transmit the multiplexed low-priority PUCCH Grade PUSCH.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a low-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH) can be multiplexed to the target uplink channel (that is, the high-priority PUCCH), and the transmission of the low-priority PUSCH can be canceled, and the multiplexed high-priority PUCCH can be transmitted .
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a high-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) can be multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high-priority PUSCH.
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the two PUSCHs include low-priority PUSCH and high-priority PUSCH
  • the two PUCCHs correspond to C1
  • the low-priority PUSCH among the two PUSCHs corresponds to C2
  • the high-priority PUSCH among the two PUSCHs corresponds to C3 Therefore, when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) multiplexed onto the target uplink channel (ie, the high-priority PUSCH), and transmit the low-priority PUSCH, and transmit the multiplex
  • the above-mentioned target multiplexing method is: allowing PUCCH and PUSCH with different priorities to be multiplexed; the above-mentioned N uplink channels include X PUCCHs and Y PUSCHs; the above-mentioned first UCI includes: UCIs of the same type carried on X PUCCHs.
  • the target uplink channel is: a high-priority PUSCH or a low-priority PUSCH among the Y PUSCHs.
  • the following will use two different scenarios to specifically describe how the UCI transmission device multiplexes the first UCI onto the target uplink channel when the target multiplexing mode is to allow multiplexing of PUCCH and PUSCH with different priorities.
  • Table 3 shows that in a single CC scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (ie 2)
  • Y is a positive integer (ie 1)
  • the 2 PUCCHs include low priority PUCCH with high priority and PUCCH with high priority
  • the 1 PUSCH includes PUSCH with low priority, so when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e. low
  • the UCI carried on the priority PUCCH and the UCI carried on the high priority PUCCH) are multiplexed onto the target uplink channel (that is, the low priority PUSCH), and the multiplexed low priority PUSCH is transmitted.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a high-priority PUSCH, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the low-priority PUCCH) UCI, and the UCI carried on the high-priority PUCCH) are multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high-priority PUSCH is transmitted.
  • the first UCI that is, the low-priority PUCCH
  • the UCI carried on the high-priority PUCCH are multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexe
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 2 PUSCHs include a low priority PUSCH and a high priority PUSCH, so that when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e.
  • the UCI carried on the high-priority PUCCH and the UCI carried on the high-priority PUCCH) are multiplexed to the target uplink channel (ie, the high-priority PUSCH), and the transmission of the low-priority PUSCH is cancelled, and the high-priority PUSCH after transmission is multiplexed PUSCH.
  • Table 4 shows that in a multi-CC (for example, dual-carrier) scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (i.e. 1)
  • Y is a positive integer (i.e. 1)
  • the 1 PUCCH includes low priority Level PUCCH
  • the 1 PUSCH includes low priority PUSCH
  • the 1 PUCCH corresponds to cell 1 (ie C1)
  • the 1 PUSCH corresponds to cell 2 (ie C2), so when the 1 PUCCH and the 1 PUSCH are in
  • the UCI transmission device may multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to the target uplink channel (that is, the low-priority PUSCH), and transmit the multiplexed low-priority PUCCH Grade PUSCH.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 1)
  • Y is a positive integer (such as 1)
  • the 1 PUCCH includes a low-priority PUCCH
  • the 1 PUCCH PUSCH includes high-priority PUSCH
  • the 1 PUCCH corresponds to cell 1 (ie C1)
  • the 1 PUSCH corresponds to cell 2 (ie C2), so when the 1 PUCCH and the 1 PUSCH overlap in time domain resources
  • the UCI transmission device may multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to a target uplink channel (that is, the high-priority PUSCH), and transmit the multiplexed high-priority PUSCH.
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a low-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) can be multiplexed to the target uplink channel (that is, the low-priority PUSCH), and the multiplexed low-priority PUSCH.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a high-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) can be multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high-priority PUSCH.
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the two PUSCHs include low-priority PUSCH and high-priority PUSCH
  • the two PUCCHs correspond to C1
  • the low-priority PUSCH among the two PUSCHs corresponds to C2
  • the high-priority PUSCH among the two PUSCHs corresponds to C3 Therefore, when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) multiplexed onto the target uplink channel (ie, the high-priority PUSCH), and transmit the low-priority PUSCH, and transmit the multiplex
  • the UCI transmission device may preferentially multiplex the first UCI to the high-priority PUSCH.
  • the above target multiplexing method includes: allowing PUCCHs of different priorities to be multiplexed, and allowing PUCCHs of different priorities to be multiplexed with PUSCHs;
  • the N uplink channels include X PUCCHs and Y PUSCHs;
  • the first UCI includes: UCIs of the same type carried on the X PUCCHs.
  • the target uplink channel is: a high-priority PUCCH among the X PUCCHs;
  • the above target uplink channel is: the high-priority PUCCH priority PUSCH;
  • the above target uplink channel is: the Low priority PUSCH.
  • Table 5 shows that in a single CC scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • N uplink channels include X PUCCHs and Y PUSCHs, X is a positive integer (ie 2), and Y is 0, and the 2 PUCCHs include low priority PUCCH and high priority PUCCH PUCCH, so that when the two PUCCHs overlap in time domain resources, the UCI transmission device can multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to the target uplink channel (that is, the high-priority PUCCH ), and transmit the multiplexed high-priority PUCCH.
  • the first UCI that is, the UCI carried on the low-priority PUCCH
  • the target uplink channel that is, the high-priority PUCCH
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a low-priority PUSCH, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the low-priority PUCCH) UCI, and the UCI carried on the high-priority PUCCH) are multiplexed onto the target uplink channel (that is, the low-priority PUSCH), and the multiplexed low-priority PUSCH is transmitted.
  • the first UCI that is, the low-priority PUCCH
  • the UCI carried on the high-priority PUCCH are multiplexed onto the target uplink channel (that is, the low-priority PUSCH), and the multiplexe
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a high-priority PUSCH, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the low-priority PUCCH) UCI, and the UCI carried on the high-priority PUCCH) are multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high-priority PUSCH is transmitted.
  • the first UCI that is, the low-priority PUCCH
  • the UCI carried on the high-priority PUCCH are multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 2 PUSCHs include a low priority PUSCH and a high priority PUSCH, so that when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (i.e.
  • the UCI carried on the high-priority PUCCH and the UCI carried on the high-priority PUCCH) are multiplexed to the target uplink channel (ie, the high-priority PUSCH), and the transmission of the low-priority PUSCH is cancelled, and the high-priority PUSCH after transmission is multiplexed PUSCH.
  • the UCI transmission device may preferentially multiplex the first UCI to the high-priority PUSCH.
  • Table 6 shows that in a multi-CC (for example, dual-carrier) scenario, the UCI transmission device multiplexes different UCIs onto different uplink channels according to priorities of different uplink channels and channel types of different uplink channels.
  • a multi-CC for example, dual-carrier
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (ie 1)
  • Y is a positive integer (ie 1)
  • the 1 PUCCH includes low priority Level PUCCH
  • the 1 PUSCH includes low priority PUSCH
  • the 1 PUCCH corresponds to cell 1 (ie C1)
  • the 1 PUSCH corresponds to cell 2 (ie C2), so when the 1 PUCCH and the 1 PUSCH are in
  • the UCI transmission device may multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to the target uplink channel (that is, the low-priority PUSCH), and transmit the multiplexed low-priority PUCCH Grade PUSCH.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 1)
  • Y is a positive integer (such as 1)
  • the 1 PUCCH includes a low-priority PUCCH
  • the 1 PUCCH PUSCH includes high-priority PUSCH
  • the 1 PUCCH corresponds to cell 1 (ie C1)
  • the 1 PUSCH corresponds to cell 2 (ie C2), so when the 1 PUCCH and the 1 PUSCH overlap in time domain resources
  • the UCI transmission device may multiplex the first UCI (that is, the UCI carried on the low-priority PUCCH) to a target uplink channel (that is, the high-priority PUSCH), and transmit the multiplexed high-priority PUSCH.
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a low-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) can be multiplexed to the target uplink channel (that is, the low-priority PUSCH), and the multiplexed low-priority PUSCH.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 1)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the 1 PUSCH includes a high-priority PUSCH
  • the 2 PUCCHs correspond to C1
  • the 1 PUSCH corresponds to C2, so that when the 2 PUCCHs and the 1 PUSCH overlap in time domain resources, the UCI transmission device
  • the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) can be multiplexed onto the target uplink channel (that is, the high-priority PUSCH), and the multiplexed high-priority PUSCH.
  • N uplink channels include X PUCCH and Y PUSCH
  • X is a positive integer (such as 2)
  • Y is a positive integer (such as 2)
  • the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the two PUSCHs include low-priority PUSCH and high-priority PUSCH
  • the two PUCCHs correspond to C1
  • the low-priority PUSCH among the two PUSCHs corresponds to C2
  • the high-priority PUSCH among the two PUSCHs corresponds to C3 Therefore, when the 2 PUCCHs and the 2 PUSCHs overlap in time domain resources, the UCI transmission device can transmit the first UCI (that is, the UCI carried on the low-priority PUCCH and the UCI carried on the high-priority PUCCH) multiplexed onto the target uplink channel (ie, the high-priority PUSCH), and transmit the low-priority PUSCH, and transmit the multiplex
  • the UCI transmission device may preferentially multiplex the first UCI to the high-priority PUSCH.
  • step 102a the UCI transmission device transmits M UCIs through a target uplink channel among the N uplink channels.
  • the M UCIs include: the first UCI, and/or the UCI carried on the target uplink channel.
  • the UCI transmission device may adopt a method of allowing PUCCHs of different priorities to be multiplexed (and/or allowing PUCCHs of different priorities to be multiplexed with PUSCHs), UCIs of the same type among M UCIs are multiplexed on the target uplink channel without canceling the UCI of a certain service. Therefore, while ensuring the transmission of high-priority services, the impact on low-priority services can be reduced, so , the service reliability of the UCI transmission device can be improved.
  • the above-mentioned first UCI includes: the first HARQ-ACK carried on the high-priority uplink channel, the second HARQ-ACK carried on the low-priority uplink channel, and the first HARQ-ACK carried on the low-priority uplink channel
  • the first part of the channel state information carried is CSI-part 1; the above target uplink channel is a low priority PUSCH.
  • the above step 201 may be implemented through the following step 201a.
  • Step 201a when N uplink channels overlap in time domain resources, the UCI transmission device adopts the target multiplexing mode when the N uplink channels include PUCCH, and when the first condition is met, UCI transmission
  • the apparatus performs mapping processing on the first HARQ-ACK according to a default mapping rule, and performs mapping processing on the second HARQ-ACK based on the CSI-part1 according to the first rule.
  • the foregoing first condition may be: the first HARQ-ACK is greater than 2 bits, and the second HARQ-ACK is greater than 2 bits.
  • the above-mentioned first UCI further includes: the second part of channel state information CSI-part 2 carried on the low-priority uplink channel;
  • the first rule above includes any of the following:
  • Discard CSI-part 2 and perform mapping processing on the second HARQ-ACK according to the mapping method of CSI-part 1, and perform mapping processing on CSI-part 1 according to the mapping method of CSI-part 2;
  • the second HARQ-ACK is mapped according to a default mapping rule.
  • the UCI transmission device may Discard CSI-part 2 first, and map the high-priority first HARQ-ACK according to the HARQ-ACK formula and mapping rules in the related art, and the low-priority second HARQ-ACK according to CSI-part 2 calculates the corresponding RE, performs rate matching and performs RE mapping.
  • the UCI transmission device can first discard CSI-part 1 and CSI-part 2, and then map the first HARQ-ACK with high priority according to the HARQ-ACK formula and mapping rules in the related art, and the low For the second priority HARQ-ACK, the corresponding RE is calculated according to the CSI-part 1 method, and the rate matching and RE mapping are performed.
  • the UCI transmission device may first The high-priority first HARQ-ACK is mapped according to the HARQ-ACK formula and mapping rules in the related art, and then the low-priority second HARQ-ACK is jointly encoded with CSI-part 1 to calculate the corresponding RE, perform rate matching and RE mapping, and calculate and map the RE of CSI-part 2.
  • the first rule includes: discarding CSI-part 2, and performing mapping processing on the second HARQ-ACK according to the mapping method of CSI-part 1, and, according to CSI-part 2
  • the UCI transmission device can discard CSI-part 2 first, and then use the first HARQ-ACK with high priority according to the HARQ-ACK formula and
  • the mapping rules are used for mapping processing, and the second HARQ-ACK with low priority is calculated according to the method of CSI-part 1 for the corresponding RE, and the rate matching and RE mapping are performed, and then the CSI-part 1 is calculated according to the method of CSI-part 2
  • the corresponding RE is calculated by means of the method, and the rate matching and RE mapping are performed.
  • the first rule includes: mapping the second HARQ-ACK according to the default mapping rule on the RE adjacent to the resource unit RE occupied by the first HARQ-ACK
  • the UCI transmission device will first map the high-priority first HARQ-ACK according to the HARQ-ACK formula and mapping rules in the related art, and then perform the mapping process on the low-priority second HARQ-ACK After using the RE where the first HARQ-ACK with high priority is excluded, mapping processing and RE mapping are performed on the remaining resources next to the first HARQ-ACK according to the method in the related art.
  • the UCI transmission device can map different UCIs according to different rules when the first UCI includes different UCIs of different UCI types, the service reliability of the UCI transmission device can be improved.
  • step 201a may be replaced by the following step 201b.
  • Step 201b In the case where N uplink channels overlap in time domain resources, the UCI transmission device adopts the target multiplexing method when the N uplink channels include PUCCH, and if the second condition is met, UCI transmission The device adjusts the puncture formula to Abit, and performs mapping processing on the first HARQ-ACK and the second HARQ-ACK according to the adjusted puncture formula.
  • some bits in the above-mentioned Abit are used for mapping processing on the first HARQ-ACK, and some bits are used for mapping processing on the second HARQ-ACK.
  • the first T bits in the above-mentioned Abit are used for mapping The first HARQ-ACK performs mapping processing, and the last P bits are used to perform mapping processing on the second HARQ-ACK, and A, T, and P are all positive integers.
  • the UCI transmission device adopts the target multiplexing method when the N uplink channels include PUCCH, and when the second condition is met, the UCI transmission device Adjust the puncture formula to 4 bits, and perform mapping processing on the first HARQ-ACK and the second HARQ-ACK according to the adjusted puncture formula, wherein the first 2 bits in the 4 bits are used to perform the first HARQ-ACK Mapping processing, the last 2 bits are used to perform mapping processing on the second HARQ-ACK.
  • the above second condition may be: the first HARQ-ACK is less than or equal to 2 bits, and the second HARQ-ACK is less than or equal to 2 bits.
  • the UCI transmission device can change the puncture formula in the related art to 4 bits ;in.
  • the first 2 bits are used as the first HARQ-ACK, and the latter 2 bits are used as the second HARQ-ACK.
  • the UCI transmission device can map different UCIs according to different rules when the first UCI includes different UCIs of different UCI types, the service reliability of the UCI transmission device can be improved.
  • mapping of UCIs with different priorities on the PUSCH can be processed according to the following principles.
  • HP A/N that is, the first HARQ-ACK with high priority
  • LP A/N that is, the second HARQ-ACK with low priority
  • LP CSI that is, the CSI with low priority
  • HP A/N is processed according to the existing A/N formula and mapping rules. Discard CSI part 2, LP A/N calculates corresponding REs according to CSI part 2, performs rate matching and RE mapping.
  • Method 2 HP A/N processes according to the existing A/N formula and mapping rules, LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, and discards CSI parts 1 and 2.
  • Method 3 HP A/N processes according to the existing A/N formula and mapping rules, LP A/N and CSI part 1 jointly code to calculate the corresponding RE, perform rate matching and RE mapping, and then calculate the CSI part2 RE and map.
  • Method 4 HP A/N processes according to the existing A/N formula and mapping rules, LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, discards CSI part 2, and converts CSI Part 1 calculates the corresponding REs according to the CSI part 2 method for rate matching and RE mapping.
  • Method 5 First, HP A/N is processed according to the existing A/N method, and then after excluding the RE where the high-priority A/N is located, LP A/N uses the remaining resources next to the HP A/N according to the existing method Perform processing and RE mapping.
  • the multiplexing of the high-priority A/N (that is, HARQ-ACK) less than or equal to 2 bits and the low-priority A/N less than 2 bits can be implemented in the following ways on the PUSCH.
  • High-priority A/N performs puncture processing according to the existing A/N formula and mapping rules, discards Channel State Information (CSI) part2, and low-priority A/N follows
  • the CSI part2 method calculates the corresponding resource element (Resource Element, RE), rate matching and RE mapping, the formula is as follows:
  • K r is the size of the rth code block; is the scheduling bandwidth for PUSCH transmission, characterized by the number of subcarriers; is the number of subcarriers on symbol 1 of Orthogonal frequency division multiplex (OFDM) bearing PTRS; is the number of resource particles available for UCI transmission on OFDM symbol l; is the total number of OFDM symbols, including all OFDM symbols used for demodulation reference signals (Demodulation Reference Signal, DMRS).
  • OFDM Orthogonal frequency division multiplex
  • the number of coded symbols per layer is:
  • Q' ACK is the number of symbols occupied by the high-priority A/N.
  • the number of coded symbols per layer is:
  • C UL-SCH is the number of code blocks of UL-SCH;
  • K r is the size of the rth code block; is the scheduling bandwidth for PUSCH transmission, characterized by the number of subcarriers; is the number of subcarriers on the OFDM symbol 1 carrying PTRS; is the number of resource particles available for UCI transmission on OFDM symbol l; is the total number of OFDM symbols, including all OFDM symbols used for DMRS.
  • is configured for high-level configuration parameter scaling
  • l 0 is the index of the first OFDM symbol that does not carry DMRS after the first DMRS symbol.
  • the number of coded symbols per layer is:
  • is configured for high-level configuration parameter scaling
  • l 0 is the index of the first OFDM symbol that does not carry DMRS after the first DMRS symbol
  • R is the PUSCH code rate
  • Q m is the PUSCH modulation order.
  • Method 2 The high-priority A/N performs puncture processing according to the existing A/N formula and mapping rules, and the low-priority A/N calculates the corresponding RE according to the CSI part 1 method, performs rate matching and RE mapping , discarding CSI part 1 and 2, the formula is as follows:
  • the number of coded symbols for each layer is:
  • is configured for the high-level configuration parameter scaling.
  • the number of coded symbols per layer is:
  • is configured for high-level configuration parameter scaling
  • R is the PUSCH code rate
  • Q m is the PUSCH modulation order.
  • Method 3 High-priority A/Ns are processed by puncture according to the existing A/N formula and mapping rules, and low-priority A/Ns are jointly coded with CSI part 1 to calculate the corresponding REs, perform rate matching and RE mapping, and then calculate the RE of CSI part2 and map it.
  • the number of coded symbols per layer is:
  • is configured for the high-level configuration parameter scaling.
  • the number of coded symbols per layer is:
  • is configured for high-level configuration parameter scaling
  • R is the PUSCH code rate
  • Q m is the PUSCH modulation order.
  • Method 4 The high-priority A/N performs puncture processing according to the existing A/N formula and mapping rules, and the low-priority A/N calculates the corresponding RE according to the CSI part 1 method, performs rate matching and RE mapping , CSI part 2 is discarded. If there is CSI part 1, then CSI part 1 is calculated according to CSI part 2 to perform rate matching and RE mapping on corresponding REs.
  • the formula is as follows:
  • the number of coded symbols for each layer is:
  • is configured for the high-level configuration parameter scaling.
  • the number of coded symbols per layer is:
  • is configured for high-level configuration parameter scaling
  • R is the PUSCH code rate
  • Q m is the PUSCH modulation order.
  • the number of coded symbols per layer is:
  • C UL-SCH is the number of code blocks of UL-SCH
  • K r is the size of the rth code block
  • the number of coded symbols per layer is:
  • Q' ACK is the number of symbols occupied by the high-priority A/N; is the number of resource particles available for UCI transmission on OFDM symbol l; is the total number of OFDM symbols, including all OFDM symbols used for DMRS.
  • Method 5 First, the high-priority A/N is processed according to the existing A/N puncture method, and then the low-priority A/N uses the RE that excludes the high-priority A/N, and the high-priority A/N is next to the high-priority A/N.
  • the remaining resources are processed according to the existing formula for puncture processing and RE mapping.
  • Method 6 Change the existing A/N puncture formula to 4bit: the first 2bits are used as high-priority A/N, and the latter 2bits are used as low-priority A/N. specifically:
  • the number of coded symbols per layer is:
  • O ACK is 4 bits, of which the first 2 bits are used as high-priority HARQ-ACK, and the latter 2 bits are used as low-priority HARQ-ACK;
  • C UL-SCH is the number of code blocks of UL-SCH;
  • K r is the size of the rth code block;
  • is the number of resource particles available for UCI transmission on OFDM symbol l; is the total number of OFDM symbols, including all OFDM symbols used for DMRS.
  • is configured for high-level configuration parameter scaling
  • l 0 is the index of the first OFDM symbol that does not carry DMRS after the first DMRS symbol.
  • the number of coded symbols per layer is:
  • O ACK is 4 bits, of which the first 2 bits are used as high-priority HARQ-ACK, and the latter 2 bits are used as low-priority HARQ-ACK;
  • C UL-SCH is the number of code blocks of UL-SCH;
  • K r is the size of the rth code block;
  • is the number of resource particles available for UCI transmission on OFDM symbol l; is the total number of OFDM symbols, including all OFDM symbols used for DMRS.
  • is configured for high-level configuration parameter scaling
  • l 0 is the index of the first OFDM symbol that does not carry DMRS after the first DMRS symbol
  • R is the PUSCH code rate
  • Q m is the PUSCH modulation order.
  • Method 1 HP A/N performs puncture processing according to the existing A/N formula and mapping rules. Discard CSI part 2, LP A/N calculates corresponding REs according to CSI part 2, performs rate matching and RE mapping.
  • the formula can be shown in the first way with reference to the above, and will not be repeated here.
  • Method 2 HP A/N performs puncture processing according to the existing A/N formula and mapping rules, LP A/N calculates the corresponding RE according to the CSI part 1 method, performs rate matching and RE mapping, and discards the CSI part 1 and 2.
  • the formula can refer to the above-mentioned method 2, and will not be repeated here.
  • Method 3 HP A/N performs puncture processing according to the existing A/N formula and mapping rules, LP A/N and CSI part 1 jointly code to calculate the corresponding RE, perform rate matching and RE mapping, and then Calculate the RE of CSI part2 and map it.
  • the formula can refer to the method shown in the third method above, and will not be repeated here.
  • Method 4 HP A/N performs puncture processing according to the existing A/N formula and mapping rules, LP A/N calculates the corresponding RE according to the CSI part 1 method, performs rate matching and RE mapping, and discards the CSI part 2. If there is CSI part 1, then use CSI part 1 to calculate the corresponding RE according to CSI part 2 for rate matching and RE mapping.
  • the formula is shown in Formula 4 above, and will not be repeated here.
  • Method 5 First, the HP A/N is processed according to the existing A/N puncture method, and then the LP A/N uses the RE that excludes the high-priority A/N, and the remaining resources next to the HP A/N are processed according to the existing The formula is used for rate matching processing and RE mapping.
  • Method 1 HP A/N performs rate matching according to the existing A/N formula and mapping rules. Discard CSI part 2, LP A/N calculates corresponding REs according to CSI part 2, performs rate matching and RE mapping.
  • the formula can be shown in the first way with reference to the above, and will not be repeated here.
  • Method 2 HP A/N performs rate matching according to the existing A/N formula and mapping rules, and LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, Discard CSI part 1 and 2.
  • the formula can refer to the above-mentioned method 2, and will not be repeated here.
  • Method 3 HP A/N performs rate matching processing according to the existing A/N formula and mapping rules. If there is a low-priority CSI, LP A/N and CSI part 1 are jointly encoded to calculate Perform rate matching and RE mapping for corresponding REs, and then calculate and map REs of CSI part2.
  • the formula can refer to the method shown in the third method above, and will not be repeated here.
  • Method 4 HP A/N performs rate matching according to the existing A/N formula and mapping rules, and LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, Discard CSI part 2, if there is CSI part 1, then calculate the corresponding RE for CSI part 1 according to CSI part 2 for rate matching and RE mapping.
  • CSI part 1 performs rate matching and RE mapping
  • CSI part 2 performs rate matching and RE mapping.
  • Method 5 First, the HP A/N is processed according to the existing A/N rate matching (rate matching) method, and then the LP A/N uses the RE that excludes the high-priority A/N, and the remaining The resources are punctured and RE mapped according to the existing formula.
  • rate matching rate matching
  • Method 6 First, LP A/N performs puncture processing according to the existing A/N formula and mapping rules, and uses reserved REs for corresponding mapping. Then HP A/N performs rate matching (rate matching) according to the existing A/N formula and mapping rules to exclude resources reserved for LP A/N for mapping. The formula is as shown above and will not be repeated here.
  • Method 1 HP A/N performs rate matching according to the existing A/N formula and mapping rules. Discard CSI part 2, LP A/N calculates corresponding REs according to CSI part 2, performs rate matching and RE mapping. The formula is shown in Formula 1 above, and will not be repeated here.
  • Method 2 HP A/N performs rate matching according to the existing A/N formula and mapping rules, and LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, Discard CSI part 1 and 2.
  • the formula can refer to the above-mentioned method 2, and will not be repeated here.
  • Method 3 HP A/N performs rate matching processing according to the existing A/N formula and mapping rules. If there is a low-priority CSI, LP A/N and CSI part 1 are jointly encoded to calculate Perform rate matching and RE mapping for corresponding REs, and then calculate and map REs of CSI part2.
  • the formula can refer to the method shown in the third method above, and will not be repeated here.
  • Method 4 HP A/N performs rate matching according to the existing A/N formula and mapping rules, and LP A/N calculates corresponding REs according to CSI part 1, performs rate matching and RE mapping, Discard CSI part 2, if there is CSI part 1, then calculate the corresponding RE for CSI part 1 according to CSI part 2 for rate matching and RE mapping.
  • the formula is shown in Formula 4 above, and will not be repeated here.
  • Method 5 First, the HP A/N is processed according to the existing A/N rate matching method, and then the LP A/N performs rate matching and RE resources on the remaining RE resources next to the HP A/N according to the existing formula. map. The formula is as shown above and will not be repeated here.
  • Method 1 HP UCI is processed according to the existing UCI formula and mapping rules, and LP A/N is discarded.
  • the UCI transmission device transmits the M Before the UCI
  • the UCI transmission method provided in the embodiment of the present application may also include the following step 301, and the above step 102 may be specifically implemented through the following step 102b.
  • Step 301 In the case that N uplink channels overlap in time domain resources, the UCI transmission device cancels the transmission of UCI through the first uplink channel when the third condition is satisfied.
  • the third condition above includes:
  • the target multiplexing method is to allow multiplexing of PUCCHs with different priorities
  • the N uplink channels include X PUCCHs and Y PUSCHs, where X is a positive integer and Y is a positive integer;
  • X PUCCHs do not include high-priority PUCCHs, and Y PUSCHs include high-priority PUSCHs;
  • the above-mentioned first uplink channel is: X PUCCHs.
  • Table 7 shows that the UCI transmission device cancels the transmission of UCI through the first uplink channel when the third condition is met.
  • N uplink channels include X PUCCHs and Y PUSCHs
  • X is a positive integer (i.e. 1)
  • Y is a positive integer (i.e. 1)
  • the 1 PUCCH includes low priority PUCCH
  • the 1 PUSCH includes a high priority PUSCH, so when the 1 PUCCH and the 1 PUSCH overlap in time domain resources, the UCI transmission device can cancel the transmission of the low priority PUCCH and transmit the high priority PUCCH PUSCH.
  • the third condition above includes:
  • the target multiplexing method is to allow multiplexing of PUCCH and PUSCH with different priorities
  • the N uplink channels only include X PUCCHs
  • the above-mentioned first uplink channel is: a low-priority PUCCH among the X PUCCHs.
  • Table 8 shows that the UCI transmission device cancels the transmission of UCI through the first uplink channel when the third condition is met.
  • N uplink channels include X PUCCHs and Y PUSCHs, X is a positive integer (ie 2), and Y is 0, and the 2 PUCCHs include low priority PUCCH and high priority PUCCH
  • the UCI transmission device can cancel the transmission of the low-priority PUCCH and transmit the high-priority PUCCH.
  • step 102b the UCI transmission device transmits M UCIs through the target uplink channel among the N uplink channels.
  • the UCI transmission device can cancel the transmission of UCI through the first uplink channel when the third condition is met, so that the transmission of high-priority services can be guaranteed, In this way, the service experience of the user can be improved.
  • the UCI transmission method provided in the embodiment of the present application may be executed by a UCI transmission device, or a control module in the UCI transmission device for executing the UCI transmission method.
  • the UCI transmission device executed by the UCI transmission device is taken as an example to describe the UCI transmission device provided in the embodiment of the present application.
  • Fig. 5 shows a possible structural diagram of a UCI transmission device involved in the embodiment of the present application.
  • the UCI transmission device 60 may include: a transmission module 61 .
  • the transmission module 61 is configured to transmit the M UCIs carried on the N uplink channels through the target uplink channel in the N uplink channels when the N uplink channels overlap in time domain resources, and both N and M is a positive integer; the target uplink channel is determined by at least one of the following: priorities of the N uplink channels, and channel types of the N uplink channels.
  • the foregoing target uplink channel is determined by priorities of the N uplink channels and channel types of the N uplink channels.
  • the UCI transmission device 60 provided in the embodiment of the present application may further include: a processing module 62 .
  • the processing module 62 is configured to multiplex the first UCI to the target uplink channel by using the target multiplexing mode when the N uplink channels include PUCCH; wherein, the first UCI includes: among the M UCIs The same type of UCI; the target multiplexing method is: configured by the network side device; the target multiplexing method includes at least one of the following: allowing PUCCHs of different priorities to be multiplexed, allowing PUCCHs and PUSCHs of different priorities to be multiplexed .
  • the above-mentioned target multiplexing method is: allowing multiplexing of PUCCHs with different priorities; the above-mentioned N uplink channels include X PUCCHs and Y PUSCHs; the above-mentioned first UCI includes: UCI of the same type; when X is a positive integer and Y is 0, if X PUCCHs include low-priority PUCCH and high-priority PUCCH, the target uplink channel is: high-priority PUCCH; is a positive integer and Y is a positive integer, if X PUCCHs include low-priority PUCCHs and high-priority PUCCHs, and Y PUSCHs do not include high-priority PUSCHs, then the target uplink channel is: high-priority When X is a positive integer and Y is a positive integer, if X PUCCHs include low-priority PUCCHs and high-priority PUCCH
  • the above target multiplexing method is: allow multiplexing of PUCCHs and PUSCHs with different priorities; the above N uplink channels include X PUCCHs and Y PUSCHs; the above first UCI includes: X UCIs of the same type are carried on the PUCCH; when Y is a positive integer, the target uplink channel is: a high-priority PUSCH or a low-priority PUSCH among the Y PUSCHs.
  • the above target multiplexing method includes: allowing PUCCHs of different priorities to be multiplexed, and allowing PUCCHs of different priorities to be multiplexed with PUSCHs;
  • the above N uplink channels include X PUCCHs and Y PUSCHs;
  • the above-mentioned first UCI includes: UCIs of the same type carried on X PUCCHs; when X is a positive integer and Y is 0, the target uplink channel is: a high-priority PUCCH among the X PUCCHs;
  • Y PUSCHs include high-priority PUSCHs, the target uplink channel is: high priority
  • X PUCCHs include low-priority PUCCHs and high-priority PUCCHs and high-priority PUCCHs, and Y PUSCHs include high-priority PUSCHs
  • the target uplink channel is: high priority
  • X PUCCHs include low-priority PUCCHs and high
  • the above-mentioned first UCI includes: the first HARQ-ACK carried on the high-priority uplink channel, the second HARQ-ACK carried on the low-priority uplink channel, and the second HARQ-ACK carried on the low-priority uplink channel.
  • CSI-part 1; the above target uplink channel is low priority PUSCH.
  • the above-mentioned processing module 62 is specifically configured to perform mapping processing on the first HARQ-ACK according to a default mapping rule when the first condition is met, and perform mapping processing on the second HARQ-ACK based on CSI-part1 according to the first rule. Perform mapping processing.
  • the above-mentioned first UCI also includes: CSI-part 2 carried on the low-priority uplink channel; the above-mentioned first rule includes any of the following: discarding CSI-part 2, and according to CSI-part
  • the mapping method of 2 is used to map the second HARQ-ACK; the CSI-part 1 and CSI-part 2 are discarded, and the second HARQ-ACK is mapped according to the mapping method of CSI-part 1; the second HARQ -ACK and CSI-part 1 are mapped, and then CSI-part 2 is mapped; CSI-part 2 is discarded, and the second HARQ-ACK is mapped according to the mapping method of CSI-part 1, and, according to The mapping method of CSI-part 2 is to map CSI-part 1; on the RE adjacent to the resource unit RE occupied by the first HARQ-ACK, the second HARQ-ACK is mapped according to the default mapping rule deal with.
  • the above-mentioned processing module 62 is further configured to adjust the puncture formula to A bit when the second condition is met, and perform the first HARQ-ACK according to the adjusted puncture formula Perform mapping processing with the second HARQ-ACK.
  • the first T bits in the above Abit are used for mapping the first HARQ-ACK
  • the last P bits are used for mapping the second HARQ-ACK
  • A, T, and P are all positive integers.
  • the UCI transmission device 60 may further include: a cancellation module 63 .
  • the cancellation module 63 is configured to cancel the transmission of UCI through the first uplink channel when the third condition is met.
  • the above third condition includes: the above target multiplexing method is to allow multiplexing of PUCCHs with different priorities; the above N uplink channels include X PUCCHs and Y PUSCHs, where X is a positive integer, And Y is a positive integer; the above X PUCCHs do not include high-priority PUCCHs, and Y PUSCHs include high-priority PUSCHs; wherein, the above-mentioned first uplink channel is: X PUCCHs.
  • the above third condition includes: the above target multiplexing method is to allow multiplexing of PUCCH and PUSCH with different priorities; N uplink channels only include X PUCCHs; wherein, the above first uplink channel It is: a low-priority PUCCH among the X PUCCHs.
  • the UCI transmission device during the transmission process of a service of the UCI transmission device, if there are other services that need to be transmitted and N uplink channels overlap in time domain resources, the UCI transmission device can pass this Among the N uplink channels, the target uplink channel determined by the priorities of the N uplink channels (and/or the channel types of the N uplink channels) transmits M UCIs without canceling the UCI of a certain service. Therefore, it can The UCI transmission reliability of the UCI transmission device is improved.
  • the UCI transmission device in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the UCI transmission device provided in the embodiment of the present application can implement various processes implemented by the method embodiments in FIG. 1 to FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device 70, including a processor 71, a memory 72, and programs or instructions stored in the memory 72 and operable on the processor 71,
  • a communication device 70 including a processor 71, a memory 72, and programs or instructions stored in the memory 72 and operable on the processor 71
  • the communication device 70 is a UE
  • the program or instruction is executed by the processor 71
  • each process of the above-mentioned UCI transmission method embodiment can be realized, and the same technical effect can be achieved.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, where the communication interface is used to transmit N
  • the target uplink channel is determined by at least one of the following: priorities of the N uplink channels, and channel types of the N uplink channels.
  • This terminal embodiment corresponds to the above-mentioned UE-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, and a processor 110, etc. at least some of the components.
  • the terminal 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used by the image capturing device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 receives the downlink data from the network side device, and processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 109 can be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the radio frequency unit 101 is configured to transmit the M UCIs carried on the N uplink channels through the target uplink channel in the N uplink channels when the N uplink channels overlap in time domain resources, and both N and M is a positive integer;
  • the target uplink channel is determined by at least one of the following: priorities of the N uplink channels, and channel types of the N uplink channels.
  • the terminal can use the N uplink channels
  • the target uplink channel determined by the priorities of the N uplink channels (and/or the channel types of the N uplink channels) transmits M UCIs without canceling the UCI of a certain service, so the UCI transmission of the terminal can be improved reliability.
  • the processor 110 is configured to multiplex the first UCI onto the target uplink channel in a target multiplexing manner when the N uplink channels include the PUCCH.
  • the above-mentioned first UCI includes: UCI of the same type among the M UCIs; the above-mentioned target multiplexing method is: configured by the network side device; the target multiplexing method includes at least one of the following: allowing PUCCHs of different priorities to be multiplexed 1. Allow PUCCH and PUSCH with different priorities to be multiplexed.
  • the terminal can use the method of allowing PUCCHs of different priorities to be multiplexed (and/or allowing PUCCHs of different priorities to be multiplexed with PUSCHs), and M UCIs of the same type in UCI are multiplexed on the target uplink channel without canceling the UCI of a certain service. Therefore, while ensuring the transmission of high-priority services, the impact on low-priority services can be reduced. In this way, it is possible Improve the reliability of terminal services.
  • the above-mentioned first UCI includes: the first HARQ-ACK carried on the high-priority uplink channel, the second HARQ-ACK carried on the low-priority uplink channel, and the first HARQ-ACK carried on the low-priority uplink channel Carried CSI-part 1; the above target uplink channel is low priority PUSCH.
  • the processor 110 is specifically configured to, when the first condition is met, perform mapping processing on the first HARQ-ACK according to a default mapping rule, and perform mapping processing on the second HARQ-ACK based on CSI-part1 according to the first rule Mapping processing.
  • the terminal can perform mapping processing on different UCIs according to different rules, so the service reliability of the terminal can be improved.
  • the processor 110 is further configured to adjust the puncture formula to A bit when the second condition is met, and perform the first HARQ-ACK according to the adjusted puncture formula Perform mapping processing with the second HARQ-ACK.
  • the first T bits in the above Abit are used for mapping the first HARQ-ACK, and the last P bits are used for mapping the second HARQ-ACK, and A, T, and P are all positive integers.
  • the terminal can perform mapping processing on different UCIs according to different rules, so the service reliability of the terminal can be improved.
  • the processor 110 is further configured to cancel the transmission of the UCI through the first uplink channel when the third condition is met.
  • the terminal can cancel the transmission of UCI through the first uplink channel when the third condition is met, so that the transmission of high-priority services can be guaranteed, so, It can improve the user experience of using the service.
  • the embodiment of the present application also provides a readable storage medium.
  • the readable storage medium stores programs or instructions.
  • the program or instructions are executed by the processor, the various processes of the above-mentioned UCI transmission method embodiments can be achieved, and the same To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned UCI transmission method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned UCI transmission method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行控制信息UCI传输方法、装置、用户设备及介质,属于通信技术领域,本申请实施例的UCI传输方法包括:在N个上行信道在时域资源上重叠的情况下,UE通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。

Description

上行控制信息UCI传输方法、装置、用户设备及介质
本申请要求于2021年5月10日提交国家知识产权局、申请号为202110507912.8、申请名称为“上行控制信息UCI传输方法、装置、用户设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种UCI传输方法、装置、用户设备及介质。
背景技术
目前,在新空口(New Radio,NR)系统中,用户设备(User Equipment,UE)可以支持多个不同场景的业务,例如,增强型移动宽带(Enhance MobileBroadband,eMBB)业务、超高可靠超低时延通信(Ultra-Reliableand Low LatencyCommunications,URLLC)业务、海量机器类通信(massive Machine Type of Communication,mMTC)业务等,以满足用户在不同场景下的业务需求。
但是,由于不同场景的业务的调度周期和传输时长不同,这样在UE的一个业务(例如eMBB业务)的传输过程中,可能会出现有其他业务也需要传输的情况,因此可能会导致某个时域资源上承载eMBB业务的上行控制信息(Uplink ControlInformation,UCI)的上行信道,和承载其他业务的UCI的上行信道发生重叠,从而导致UE取消传输某个业务的UCI。
因此,导致UE的UCI的传输可靠性较低。
发明内容
本申请实施例提供一种UCI传输方法、装置、用户设备及介质,能够解决UE的UCI的传输可靠性较低的问题。
第一方面,提供了一种UCI传输方法方法,应用于UE,该方法包括:在N个上行信道在时域资源上重叠的情况下,UE通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。
第二方面,提供了一种UCI传输装置,该UCI传输装置包括:传输模块。其中,传输模块,用于在N个上行信道在时域资源上重叠的情况下,UCI传输装置通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。
第三方面,提供了一种UE,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种UE,包括处理器及通信接口,其中,所述通信接口用于在N个上行信道在时域资源上重叠的情况下,通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至 少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,UE在N个上行信道在时域资源上重叠的情况下,可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输该N个上行信道上承载的M个UCI。由于在UE的一个业务的传输过程中,若出现有其他业务需要传输而导致N个上行信道在时域资源上重叠,则UE可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输M个UCI,而无需取消传输某个业务的UCI,因此,可以提升UE的UCI的传输可靠性。
附图说明
图1是本申请实施例提供的一种无线通信系统的框图;
图2是本申请实施例提供的UCI传输方法的示意图之一;
图3是本申请实施例提供的UCI传输方法的示意图之二;
图4是本申请实施例提供的UCI传输方法的示意图之三;
图5是本申请实施例提供的UCI传输装置的结构示意图之一;
图6是本申请实施例提供的UCI传输装置的结构示意图之二;
图7是本申请实施例提供的UCI传输装置的结构示意图之三;
图8是本申请实施例提供的通信设备的结构示意图;
图9是本申请实施例提供的终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
以下将对本申请实施例涉及的术语进行说明。
1、UCI复用在上行信道
UE在通过多个上行信道传输多个UCI之前,可以将该多个UCI中的至少一个UCI,和该多个上行信道中的某个上行信道上承载的上行数据进行联合编码,并取消通过至少一个上行信道(即承载该至少一个UCI的上行信道)传输UCI,以将该至少一个UCI复用至该某个上行信道上。可以理解,在将至少一个UCI复用至某个上行信道上之后,该某个上行信道上增加了该至少一个UCI。
2、上行信道的优先级
网络侧设备在调度某个上行信道时,可以在DCI格式(format)0-1和format 0-2中包含优先级指示域(Priority indicator),该优先级指示域指示调度的该某个上行信 道是高优先级还是低优先级。
3、其他术语
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的UCI传输方法进行详细地说明。
图2示出了本申请实施例提供的一种UCI传输方法的流程图。如图2所示,本申请实施例提供的UCI传输方法可以包括下述的步骤101和步骤102。
步骤101、UCI传输装置从网络侧设备接收P个UCI。
本申请实施例中,P为正整数。
可选地,本申请实施例中,针对P个UCI中的每个UCI,一个UCI可以为以下任一项:混合自动重传请求确定信息(Hybrid automatic repeat request acknowledgement,HARQ-ACK)、调度请求(Scheduling Request,SR)、信道状态信息(Channel State Information,CSI)、物理随机接入信道(Physical Random Access Channel,PRACH)信息。
可选地,本申请实施例中,上述P个UCI中的每个UCI的UCI类型可以相同;或者,部分UCI的UCI类型相同;所有UCI的UCI类型均不相同。
示例性地,假设P个UCI包括HARQ-ACK 1、HARQ-ACK 2、HARQ-ACK 3,则每个UCI的UCI类型相同;假设P个UCI包括HARQ-ACK 1、HARQ-ACK 2、SR 1,则部分UCI的UCI类型相同。
步骤102、在N个上行信道在时域资源上重叠的情况下,UCI传输装置通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI。
需要说明的是,上述“N个上行信道在时域资源上重叠”可以理解为:N个上行信道中的所有上行信道均重叠;或者,N个上行信道中的部分上行信道有重叠(例如,两两重叠等)。
本申请实施例中,上述N个上行信道中包括:分别承载P个UCI的P个上行信道,每个上行信道分别承载一个UCI,P≤N;上述M个UCI中包括P个UCI,P≤M。
可选地,本申请实施例中,针对N个上行信道中的每个上行信道,一个上行信道可以为以下任一项:物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
本申请实施例中,上述目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型;N、M均为正整数。
可选地,本申请实施例中,上述N个上行信道的优先级可以为:网络侧设备配置的,或者UCI传输装置确定的。
进一步可选地,本申请实施例中,在P个UCI中的第二UCI中包括第一指示域的情况下,承载该第二UCI的上行信道的优先级是由该第一指示域确定的;在P个UCI中的第二UCI中不包括第一指示域的情况下,承载该第二UCI的上行信道的优先级为低优先级。其中,该第二UCI为:P个UCI中的任一个UCI。
进一步可选地,本申请实施例中,上述M个UCI中的第三UCI的优先级是由网络侧设备配置的。其中,该第三UCI为:M个UCI中,除P个UCI之外的UCI。
可选地,本申请实施例中,上述信道类型可以包括以下至少一项:PUCCH类型、PUSCH类型。
可选地,本申请实施例中,在目标上行信道由N个上行信道的优先级确定的情况下,UCI传输装置可以先从N个上行信道中,确定出目标上行信道,然后UCI传输装置可以直接传输该目标上行信道,以传输M个UCI(即该目标上行信道上承载的UCI)。
可选地,本申请实施例中,在目标上行信道由N个上行信道的优先级和N个上行信道的信道类型确定的情况下,UCI传输装置可以将M个UCI中类型相同的UCI(和 /或类型不同的UCI),复用至目标上行信道上,并传输该目标上行信道,以传输M个UCI。
示例性地,假设M个UCI包括HARQ-ACK 1、HARQ-ACK 2、SR 1、CSI 1,则在目标上行信道由N个上行信道的优先级和N个上行信道的信道类型确定的情况下,UCI传输装置可以将M个UCI中类型相同的UCI,即HARQ-ACK 1、HARQ-ACK 2复用至目标上行信道上,并传输该目标上行信道。
可选地,本申请实施例中,在UCI传输装置通过目标上行信道,传输N个上行信道上承载的M个UCI的情况下,UCI传输装置可以取消第二上行信道进行传输,或者可以继续通过第二上行信道进行传输。其中,第二上行信道为:N个上行信道中,除目标上行信道之外的上行信道。
本申请实施例提供的UCI传输方法,UCI传输装置在N个上行信道在时域资源上重叠的情况下,可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输该N个上行信道上承载的M个UCI。由于在UCI传输装置的一个业务的传输过程中,若出现有其他业务需要传输而导致N个上行信道在时域资源上重叠,则UCI传输装置可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输M个UCI,而无需取消传输某个业务的UCI,因此,可以提升UCI传输装置的UCI的传输可靠性。
下面将举例说明,上述目标上行信道是如何由N个上行信道的优先级确定的。
可选地,本申请实施例中,在目标上行信道是由N个上行信道的优先级确定的情况下,上述目标上行信道为:N个上行信道中的高优先级上行信道;其中,上述M个UCI为:该高优先级上行信道上承载的UCI。
可以理解,UCI传输装置可以取消通过其他上行信道(即N个上行信道中,除目标上行信道外的)传输UCI,并通过高优先级上行信道传输UCI,即UCI传输装置采用优先化(priorization)方式,传输UCI。
下面将举例说明,上述目标上行信道是如何由N个上行信道的优先级和N个上行信道的信道类型确定的。
可选地,本申请实施例中,上述目标上行信道是由N个上行信道的优先级和N个上行信道的信道类型确定的。具体地,结合图2,如图3所示,在上述步骤102中的“UCI传输装置通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI”之前,本申请实施例提供的UCI传输方法还可以包括下述的步骤201,并且上述的步骤102具体可以通过下述的步骤102a实现。
步骤201、在N个上行信道在时域资源上重叠的情况下,UCI传输装置在N个上行信道中包括PUCCH的情况下,采用目标复用方式,将第一UCI复用至目标上行信道上。
本申请实施例中,上述目标复用方式为:网络侧设备配置的;该目标复用方式包括以下至少一项:允许不同优先级的PUCCH进行复用、允许不同优先级的PUCCH与PUSCH进行复用。
需要说明的是,上述“允许不同优先级的PUCCH进行复用”可以理解为:UCI 传输装置可以将不同优先级的多个PUCCH中,一个PUCCH上承载的UCI,复用至另一个PUCCH上。上述“允许不同优先级的PUCCH与PUSCH进行复用”可以理解为:UCI传输装置可以将不同优先级的PUCCH与PUSCH中,一个PUCCH(或PUSCH)上承载的UCI,复用至一个PUSCH(或一个PUCCH)上。
可选地,本申请实施例中,在目标复用方法为允许不同优先级的PUCCH进行复用的情况下,UCI传输装置可以先将部分UCI复用至某个PUCCH(例如高优先级PUCCH)上,然后再将该部分UCI和该一个PUCCH上承载的UCI,复用至某个PUSCH上,以将第一UCI复用至目标上行信道(即该某个PUSCH)上。可以理解,第一UCI包括:该部分UCI,和该某个PUCCH上承载的UCI。
本申请实施例中,上述第一UCI包括:M个UCI中类型相同的UCI。
可以理解,第一UCI的类型,和目标上行信道上承载的UCI的类型相同。
可选地,在本申请实施例中的一种可能的实现方式中,上述目标复用方式为:允许不同优先级的PUCCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一UCI包括:X个PUCCH上承载的类型相同的UCI。
在X为正整数、且Y为0的情况下,若X个PUCCH包括低优先级PUCCH和高优先级PUCCH,则上述目标上行信道为:该高优先级PUCCH;
在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中不包括高优先级PUSCH(即Y个PUSCH中仅包括低优先级PUSCH),则上述目标上行信道为:该高优先级PUCCH;
在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH,则上述目标上行信道为:该高优先级PUSCH;
在X为正整数、且Y为正整数的情况下,若X个PUCCH中不包括高优先级PUCCH(即X个PUCCH中仅包括低优先级PUCCH)、且Y个PUSCH中不包括高优先级PUSCH(即Y个PUSCH中仅包括低优先级PUSCH),则目标上行信道为:上述低优先级PUSCH。
以下将以两个不同的场景,具体说明在目标复用方式为允许不同优先级的PUCCH进行复用的情况下,UCI传输装置是如何将第一UCI复用至目标上行信道上的。
针对单载波(component carrier,CC)场景
表1示出了在单CC场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表1
Figure PCTCN2022091940-appb-000001
Figure PCTCN2022091940-appb-000002
如表1所示,在情况(case)1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即2)、且Y为0,该2个PUCCH包括低优先级PUCCH(即LP PUCCH)和高优先级PUCCH(即HP PUCCH),从而在该2个PUCCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUCCH)上,并传输复用后的高优先级PUCCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),2个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且1个PUSCH中仅包括低优先级PUSCH(即LP PUSCH),从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优 先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUCCH)上,并取消传输低优先级PUSCH,以及,传输复用后的高优先级PUCCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),2个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且1个PUSCH中包括高优先级PUSCH(即HP PUSCH),从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 4下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),2个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且2个PUSCH中包括低优先级PUSCH和高优先级PUSCH,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并取消传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
针对多CC场景
表2示出了在多CC(例如双载波)场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表2
Figure PCTCN2022091940-appb-000003
Figure PCTCN2022091940-appb-000004
如表2所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即1)、且Y为正整数(即1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该1个PUCCH对应小区1(即C1),该1个PUSCH对应小区2(即C2),从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUCCH)上,并取消传输低优先级PUSCH,以及,传输复用后的高优先级PUCCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括高优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的 UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 4下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该2个PUSCH包括低优先级PUSCH和高优先级PUSCH,该2个PUCCH对应C1,该2个PUSCH中的低优先级PUSCH对应C2,该2个PUSCH中的高优先级PUSCH对应C3,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
可选地,在本申请实施例中的另一种可能的实现方式中,上述目标复用方式为:允许不同优先级的PUCCH和PUSCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一UCI包括:X个PUCCH上承载的类型相同的UCI。
在Y为正整数的情况下,上述目标上行信道为:Y个PUSCH中的高优先级PUSCH,或低优先级PUSCH。
以下将以两个不同的场景,具体说明在目标复用方式为允许不同优先级的PUCCH和PUSCH进行复用的情况下,UCI传输装置是如何将第一UCI复用至目标上行信道上的。
针对单CC场景
表3示出了在单CC场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表3
Figure PCTCN2022091940-appb-000005
Figure PCTCN2022091940-appb-000006
如表3所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即2)、且Y为正整数(即1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括低优先级PUSCH,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括高优先级PUSCH,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该2个PUSCH包括低优先级PUSCH和高优先级PUSCH,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并取消传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
针对多CC场景
表4示出了在多CC(例如双载波)场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表4
Figure PCTCN2022091940-appb-000007
Figure PCTCN2022091940-appb-000008
Figure PCTCN2022091940-appb-000009
如表4所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即1)、且Y为正整数(即1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该1个PUCCH对应小区1(即C1),该1个PUSCH对应小区2(即C2),从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如1)、且Y为正整数(如1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括高优先级PUSCH,该1个PUCCH对应小区1(即C1),该1个PUSCH对应小区2(即C2),从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 4下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括高优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 5下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该2个PUSCH包括低优先级PUSCH和高优先级PUSCH,该2个PUCCH对应C1,该2个PUSCH中的低优先级PUSCH对应C2,该2个PUSCH中的高优先级PUSCH对应C3,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
可以理解,如果同时有高优先级PUSCH和低优先级PUSCH,UCI传输装置可以将第一UCI优先复用到高优先级PUSCH上。
可选地,在本申请实施例中的又一种可能的实现方式中,上述目标复用方式包括:允许不同优先级的PUCCH进行复用,以及允许不同优先级的PUCCH与PUSCH进行 复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一UCI包括:X个PUCCH上承载的类型相同的UCI。
在X为正整数、且Y为0的情况下,上述目标上行信道为:X个PUCCH中的高优先级PUCCH;
在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH,上述目标上行信道为:该高优先级PUSCH;
在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中仅包括低优先级PUSCH,上述目标上行信道为:该低优先级PUSCH。
以下将以两个不同的场景,具体说明在目标复用方式为允许不同优先级的PUCCH进行复用、和允许不同优先级的PUCCH与PUSCH进行复用的情况下,UCI传输装置是如何将第一UCI复用至目标上行信道上的。
针对单CC场景
表5示出了在单CC场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表5
Figure PCTCN2022091940-appb-000010
Figure PCTCN2022091940-appb-000011
如表5所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即2)、且Y为0,该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,从而在该2个PUCCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUCCH)上,并传输复用后的高优先级PUCCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括低优先级PUSCH,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括高优先级PUSCH,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 4下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该2个PUSCH包括低优先级PUSCH和高优先级PUSCH,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并取消传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
可以理解,如果同时有高优先级PUSCH和低优先级PUSCH,UCI传输装置可以将第一UCI优先复用到高优先级PUSCH上。
针对多CC场景
表6示出了在多CC(例如双载波)场景下,UCI传输装置根据不同上行信道的优先级和不同上行信道的信道类型,将不同的UCI复用至不同的上行信道上。
表6
Figure PCTCN2022091940-appb-000012
Figure PCTCN2022091940-appb-000013
如表6所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即1)、且Y为正整数(即1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该1个PUCCH对应小区1(即C1),该1个PUSCH对应小区2(即C2),从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 2下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如1)、且Y为正整数(如1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括高优先级PUSCH,该1个PUCCH对应小区1(即C1),该1个PUSCH对应小区2(即C2),从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 3下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该1个PUSCH包括低优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即低优先级PUSCH)上,并传输复用后的低优先级PUSCH。
在case 4下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如1),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH, 该1个PUSCH包括高优先级PUSCH,该2个PUCCH对应C1,该1个PUSCH对应C2,从而在该2个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输复用后的高优先级PUSCH。
在case 5下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(如2)、且Y为正整数(如2),该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,该2个PUSCH包括低优先级PUSCH和高优先级PUSCH,该2个PUCCH对应C1,该2个PUSCH中的低优先级PUSCH对应C2,该2个PUSCH中的高优先级PUSCH对应C3,从而在该2个PUCCH和该2个PUSCH在时域资源上重叠的情况下,UCI传输装置可以将第一UCI(即低优先级PUCCH上承载的UCI,和高优先级PUCCH上承载的UCI)复用至目标上行信道(即高优先级PUSCH)上,并传输低优先级PUSCH,以及,传输复用后的高优先级PUSCH。
可以理解,如果同时有高优先级PUSCH和低优先级PUSCH,UCI传输装置可以将第一UCI优先复用到高优先级PUSCH上。
步骤102a、UCI传输装置通过N个上行信道中的目标上行信道,传输M个UCI。
可以理解,M个UCI包括:第一UCI,和/或目标上行信道上承载的UCI。
如此可知,由于在N个上行信道中包括PUCCH的情况下,UCI传输装置可以采用允许不同优先级的PUCCH进行复用(和/或允许不同优先级的PUCCH与PUSCH进行复用)的方式,将M个UCI中类型相同的UCI复用至目标上行信道上,而无需取消传输某个业务的UCI,因此,可以在保证高优先级业务的传输的同时,减少对低优先级业务的影响,如此,可以提升UCI传输装置的业务的可靠性。
可选地,本申请实施例中,上述第一UCI包括:高优先级上行信道上承载的第一HARQ-ACK、低优先级上行信道上承载第二HARQ-ACK、和低优先级上行信道上承载的第一部分信道状态信息CSI-part 1;上述目标上行信道为低优先级PUSCH。具体地,上述步骤201具体可以通过下述的步骤201a实现。
步骤201a、在N个上行信道在时域资源上重叠的情况下,UCI传输装置在N个上行信道中包括PUCCH的情况下,采用目标复用方式,在满足第一条件的情况下,UCI传输装置按照默认的映射规则,对第一HARQ-ACK进行映射处理,并按照第一规则,基于CSI-part1,对第二HARQ-ACK进行映射处理。
进一步可选地,本申请实施例中,上述第一条件可以为:第一HARQ-ACK大于2比特bit、且第二HARQ-ACK大于2bit。
可选地,本申请实施例中,上述第一UCI还包括:低优先级上行信道上承载的第二部分信道状态信息CSI-part 2;
上述第一规则包括以下任一项:
丢弃CSI-part 2,并按照CSI-part 2的映射方式,对第二HARQ-ACK进行映射处理;
丢弃CSI-part 1和CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理;
对第二HARQ-ACK和CSI-part 1进行映射处理,再对CSI-part 2进行映射处理;
丢弃CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理,以及,按照CSI-part 2的映射方式,对CSI-part 1进行映射处理;
在与第一HARQ-ACK所占用的资源单元RE相邻的RE上,按照默认的映射规则,对第二HARQ-ACK进行映射处理。
进一步可选地,本申请实施例中,在第一规则包括:丢弃CSI-part 2,并按照CSI-part 2的映射方式,对第二HARQ-ACK进行映射处理的情况下,UCI传输装置可以先丢弃CSI-part 2,并将高优先级的第一HARQ-ACK,按照相关技术中的HARQ-ACK的公式和映射规则进行映射处理,以及,将低优先级的第二HARQ-ACK,按照CSI-part 2的方式计算相应RE,速率匹配并进行RE映射。
进一步可选地,本申请实施例中,在第一规则包括:丢弃CSI-part 1和CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理的情况下,UCI传输装置可以先丢弃CSI-part 1和CSI-part 2,再将高优先级的第一HARQ-ACK,按照相关技术中的HARQ-ACK的公式和映射规则进行映射处理,以及,将低优先级的第二HARQ-ACK,按照CSI-part 1的方式计算相应RE,进行速率匹配及RE映射。
进一步可选地,本申请实施例中,在第一规则包括:对第二HARQ-ACK和CSI-part 1进行映射处理,再对CSI-part 2进行映射处理的情况下,UCI传输装置可以先将高优先级的第一HARQ-ACK,按照相关技术中的HARQ-ACK的公式和映射规则进行映射处理,再将低优先级的第二HARQ-ACK与CSI-part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,以及,计算CSI-part 2的RE并映射。
进一步可选地,本申请实施例中,在第一规则包括:丢弃CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理,以及,按照CSI-part 2的映射方式,对CSI-part 1进行映射处理的情况下,UCI传输装置可以先丢弃CSI-part 2,再将高优先级的第一HARQ-ACK,按照相关技术中的HARQ-ACK的公式和映射规则进行映射处理,以及,将低优先级的第二HARQ-ACK,按照CSI-part 1的方式计算相应RE,进行速率匹配及RE映射,再将CSI-part 1,按照CSI-part 2的方式计算相应RE,进行速率匹配及RE映射。
进一步可选地,本申请实施例中,在第一规则包括:在与第一HARQ-ACK所占用的资源单元RE相邻的RE上,按照默认的映射规则,对第二HARQ-ACK进行映射处理的情况下,UCI传输装置先将将高优先级的第一HARQ-ACK,按照相关技术中的HARQ-ACK的公式和映射规则进行映射处理,然后再对低优先级的第二HARQ-ACK使用排除高优先级的第一HARQ-ACK所在的RE后,在紧邻第一HARQ-ACK剩余的资源按照相关技术中的方式进行映射处理及RE映射。
如此可知,由于UCI传输装置可以在第一UCI包括不同UCI类型的不同UCI时,按照不同的规则,对不同UCI进行映射处理,因此,可以提升UCI传输装置的业务的可靠性。
可选地,本申请实施例中,上述步骤201a可以替换为下述的步骤201b。
步骤201b、在N个上行信道在时域资源上重叠的情况下,UCI传输装置在N个上行信道中包括PUCCH的情况下,采用目标复用方式,在满足第二条件的情况下,UCI传输装置调整打孔puncture公式为Abit,并按照调整后的puncture公式,对第一 HARQ-ACK和第二HARQ-ACK进行映射处理。
本申请实施例中,上述Abit中的部分bit用于对第一HARQ-ACK进行映射处理,部分bit用于对第二HARQ-ACK进行映射处理,如上述Abit中的前T个bit用于对第一HARQ-ACK进行映射处理,后P个bit用于对第二HARQ-ACK进行映射处理,A、T、P均为正整数。例如,在N个上行信道在时域资源上重叠的情况下,UCI传输装置在N个上行信道中包括PUCCH的情况下,采用目标复用方式,在满足第二条件的情况下,UCI传输装置调整打孔puncture公式为4bit,并按照调整后的puncture公式,对第一HARQ-ACK和第二HARQ-ACK进行映射处理,其中,4bit中的前2个bit用于对第一HARQ-ACK进行映射处理,后2个bit用于对第二HARQ-ACK进行映射处理。
进一步可选地,本申请实施例中,上述第二条件可以为:第一HARQ-ACK小于或等于2bit、且第二HARQ-ACK小于或等于2bit。
进一步可选地,本申请实施例中,上述A具体可以为4,即A bit为4bit;上述T具体可以为2,即前T个bit为前两个bit,后P个bit为后两个bit。
本申请实施例中,当高优先级的第一HARQ-ACK小于或等于2bit、且低优先级的第二HARQ-ACK小于或等于2bit时,UCI传输装置可以更改相关技术中的puncture公式为4bit;其中。前面2bits用作第一HARQ-ACK,后面2bit用作第二HARQ-ACK。
如此可知,由于UCI传输装置可以在第一UCI包括不同UCI类型的不同UCI时,按照不同的规则,对不同UCI进行映射处理,因此,可以提升UCI传输装置的业务的可靠性。
需要说明的是,对于不同优先级的UCI在PUSCH上的映射可以按照下述原则处理。
以HP A/N(也即高优先级的第一HARQ-ACK)和LP A/N(也即低优先级的第二HARQ-ACK)及LP CSI(也即低优先级的CSI)复用到LP PUSCH为例。可以有下述实现方式:
方式一:HP A/N按照现有的A/N的公式和映射规则进行处理。丢弃CSI part 2,LP A/N按照CSI part 2方式计算相应RE,速率匹配并进行RE映射。
方式二:HP A/N按照现有的A/N的公式和映射规则进行处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 1和2。
方式三:HP A/N按照现有的A/N的公式和映射规则进行处理,LP A/N与CSI part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,然后计算CSI part2的RE并映射。
方式四:HP A/N按照现有的A/N的公式和映射规则进行处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 2,把CSI part 1按照CSI part 2方式计算相应RE进行速率匹配及RE映射。
方式五:首先HP A/N按照现有的A/N的方式处理,接着排除高优先级的A/N所在RE后,LP A/N使用紧邻HP A/N剩余的资源按照现有的方式进行处理及RE映射。
具体地,对于不同载荷大小的HP A/N和LP A/N,可以分下列情况处理:
(1)小于等于2bits的高优先级A/N(也即HARQ-ACK)与小于2bits的低优先级A/N复用在PUSCH可以有以下几种实现方式。
方式一:高优先级A/N按照现有的A/N的公式和映射规则进行打孔(puncture)方式处理,丢弃信道状态信息(Channel State Information,CSI)part2,低优先级A/N按照CSI part2方式计算相应的资源元素(Resource Element,RE),速率匹配并进行RE映射,公式如下:
Figure PCTCN2022091940-appb-000014
其中,O LP ACK为低优先级HARQ-ACK比特数,如果O LP ACK≥360,那么L LP ACK=11,否则L LP ACK为低优先级HARQ-ACK的CRC比特数,Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000015
C UL-SCH为UL-SCH的码块数。K r为第r个码块大小;
Figure PCTCN2022091940-appb-000016
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000017
为承载PTRS的正交频分复用(Orthogonal frequency division multiplex,OFDM)符号l上的子载波数;
Figure PCTCN2022091940-appb-000018
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000019
Figure PCTCN2022091940-appb-000020
为总的OFDM符号数,包括所有用于解调参考信号(Demodulation Reference Signal,DMRS)的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000021
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000022
对于低优先级HARQ-ACK在没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000023
其中,Q' ACK为高优先级A/N占用符号数。
对于高优先级HARQ-ACK在有UL-SCH的PUSCH(不用做repetition type B),每层编码符号数为:
Figure PCTCN2022091940-appb-000024
其中,O ACK为高优先级HARQ-ACK bit数,如果O ACK≥360,那么L ACK=11,否则L ACK为HARQ-ACK的CRC bit数;
Figure PCTCN2022091940-appb-000025
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000026
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000027
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000028
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000029
Figure PCTCN2022091940-appb-000030
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000031
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000032
α为高层配置参数scaling配置的;
l 0为第一个DMRS符号后,第一个不承载DMRS的OFDM符号索引。
对于高优先级HARQ-ACK在没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000033
其中,O ACK为高优先级HARQ-ACK bit数,如果O ACK≥360,那么L ACK=11,否则L ACK为HARQ-ACK的CRC bit数;
Figure PCTCN2022091940-appb-000034
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000035
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000036
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000037
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000038
Figure PCTCN2022091940-appb-000039
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000040
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000041
α为高层配置参数scaling配置的;
l 0为第一个DMRS符号后,第一个不承载DMRS的OFDM符号索引;
R为PUSCH码率;Q m为PUSCH调制阶数。
方式二:高优先级A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,低优先级A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 1和2,公式如下:
对于低优先级A/N在有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000042
其中,O LP ACK为低优先级ACK bit数,如果O LP ACK≥360,那么L LP ACK=11,否则L LP ACK为低优先级ACK的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000043
Figure PCTCN2022091940-appb-000044
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000045
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000046
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000047
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000048
Figure PCTCN2022091940-appb-000049
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000050
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000051
α为高层配置参数scaling配置的。
对于低优先级A/N没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000052
其中,O LP ACK为低优先级ACK bit数,如果O LP ACK≥360,那么L LP ACK=11,否则L LP ACK为低优先级ACK的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000053
Figure PCTCN2022091940-appb-000054
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000055
为PUSCH传输的 调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000056
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000057
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000058
Figure PCTCN2022091940-appb-000059
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000060
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000061
α为高层配置参数scaling配置的;
R为PUSCH码率;Q m为PUSCH调制阶数。
方式三:高优先级A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,低优先级A/N与CSI part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,然后计算CSI part2的RE并映射。
对于低优先级A/N和低优先级CSI part 1在有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000062
其中,O LP ACK+CSI part 1为低优先级ACK和低优先级CSI part 1的bit数,如果O LP ACK+CSI part 1≥360,那么L LP ACK+CSI part 1=11,否则L LP ACK+CSI part 1为低优先级ACK和低优先级CSI part 1的CRC bit数之和,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000063
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000064
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000065
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000066
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000067
Figure PCTCN2022091940-appb-000068
Figure PCTCN2022091940-appb-000069
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000070
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000071
α为高层配置参数scaling配置的。
对于低优先级A/N和低优先级CSI part 1没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000072
其中,O LP ACK+CSI part 1为低优先级ACK和低优先级CSI part 1的bit数,如果O LP ACK+CSI part 1≥360,那么L LP ACK+CSI part 1=11,否则L LP ACK+CSI part 1为低优先级ACK和低优先级CSI part 1的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000073
Figure PCTCN2022091940-appb-000074
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000075
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000076
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000077
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000078
Figure PCTCN2022091940-appb-000079
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000080
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000081
α为高层配置参数scaling配置的;
R为PUSCH码率;Q m为PUSCH调制阶数。
方式四:高优先级A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,低优先级A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 2,如果有CSI part 1,那么把CSI part 1按照CSI part 2方式计算相应RE进行速率匹配及RE映射,公式如下:
对于低优先级A/N在有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000082
其中,O LP ACK为低优先级ACK bit数,如果O LP ACK≥360,那么L LP ACK=11,否则L LP ACK为低优先级ACK的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000083
Figure PCTCN2022091940-appb-000084
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000085
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000086
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000087
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000088
Figure PCTCN2022091940-appb-000089
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000090
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000091
α为高层配置参数scaling配置的。
对于低优先级A/N没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000092
其中,O LP ACK为低优先级ACK bit数,如果O LP ACK≥360,那么L LP ACK=11,否则L LP ACK为低优先级ACK的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000093
Figure PCTCN2022091940-appb-000094
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000095
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000096
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000097
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000098
Figure PCTCN2022091940-appb-000099
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000100
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000101
α为高层配置参数scaling配置的;
R为PUSCH码率;Q m为PUSCH调制阶数。
对于CSI part 1有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000102
其中,O CSI-1为CSI part 1bit数,如果O CSI-1≥360,那么L CSI-1=11,否则L CSI-1为CSI part 1的CRC bit数,其中Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000103
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000104
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000105
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000106
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000107
Figure PCTCN2022091940-appb-000108
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000109
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000110
对于CSI part 1没有UL-SCH的PUSCH,每层编码符号数为:
Figure PCTCN2022091940-appb-000111
其中,Q' ACK为高优先级A/N占用符号数;
Figure PCTCN2022091940-appb-000112
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000113
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
方式五:首先高优先级A/N按照现有的A/N的puncture方式处理,接着低优先级A/N使用排除高优先级的A/N所在RE后,在紧邻高优先级A/N剩余的资源按照现有的公式进行puncture处理及RE映射。
方式六:更改现有的A/N puncture公式为4bit:其中前面2bits用作高优先级A/N,后面2bit用作低优先级A/N。具体地:
对于高优先级和低优先级HARQ-ACK在有UL-SCH的PUSCH(不用做repetition type B),每层编码符号数为:
Figure PCTCN2022091940-appb-000114
其中,O ACK为4bit,其中前面2bits用作高优先级HARQ-ACK,后面2bit用作低优先级HARQ-ACK;
Figure PCTCN2022091940-appb-000115
包括用作高优先级HARQ-ACK和低优先级HARQ-ACK的
Figure PCTCN2022091940-appb-000116
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000117
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000118
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000119
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000120
Figure PCTCN2022091940-appb-000121
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000122
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000123
α为高层配置参数scaling配置的;
l 0为第一个DMRS符号后,第一个不承载DMRS的OFDM符号索引。
对于高优先级和低优先级HARQ-ACK在没有UL-SCH的PUSCH上,每层编码符号数为:
Figure PCTCN2022091940-appb-000124
其中,O ACK为4bit,其中前面2bits用作高优先级HARQ-ACK,后面2bit用作低优先级HARQ-ACK;
Figure PCTCN2022091940-appb-000125
包括用作高优先级HARQ-ACK和低优先级HARQ-ACK的
Figure PCTCN2022091940-appb-000126
C UL-SCH为UL-SCH的码块数;K r为第r个码块大小;
Figure PCTCN2022091940-appb-000127
为PUSCH传输的调度带宽,表征为子载波数;
Figure PCTCN2022091940-appb-000128
为承载PTRS的OFDM符号l上的子载波数;
Figure PCTCN2022091940-appb-000129
为OFDM符号l上可用于UCI传输的资源粒子数;
Figure PCTCN2022091940-appb-000130
Figure PCTCN2022091940-appb-000131
为总的OFDM符号数,包括所有用于DMRS的OFDM符号。
对于承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000132
对于不承载DMRS的任何OFDM符号,
Figure PCTCN2022091940-appb-000133
α为高层配置参数scaling配置的;
l 0为第一个DMRS符号后,第一个不承载DMRS的OFDM符号索引;
R为PUSCH码率;Q m为PUSCH调制阶数。
(2)小于等于2bits的高优先级HP A/N与大于2bits的低优先级LP A/N复用在PUSCH可以有以下几种实现方式。
方式一:HP A/N按照现有的A/N的公式和映射规则进行打孔(puncture)方式处理。丢弃CSI part 2,LP A/N按照CSI part 2方式计算相应RE,速率匹配并进行RE映射。公式可参照上述方式一所示,此处不再赘述。
方式二:HP A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 1和2。公式可参照上述方式二所示,此处不再赘述。
方式三:HP A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,LP A/N与CSI part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,然后计算CSI part2的RE并映射。公式可参照上述方式三所示,此处不再赘述。
方式四:HP A/N按照现有的A/N的公式和映射规则进行打孔puncture方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 2,如果有CSI part 1,那么把CSI part 1按照CSI part 2方式计算相应RE进行速率匹配及RE映射。公式如上面公式四所示,此处不再赘述。
方式五:首先HP A/N按照现有的A/N的puncture方式处理,接着LP A/N使用排除高优先级的A/N所在RE后,在紧邻HP A/N剩余的资源按照现有的公式进行速率匹配处理及RE映射。
(3)大于2bits的高优先级HP A/N与小于等于2bits的低优先级LP A/N复用在PUSCH可以有以下几种实现方式。
方式一:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理。丢弃CSI part 2,LP A/N按照CSI part 2方式计算相应RE,速率匹配并进行RE映射。公式可参照上述方式一所示,此处不再赘述。
方式二:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射, 丢弃CSI part 1和2。公式可参照上述方式二所示,此处不再赘述。
方式三:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,如果有低优先级的CSI,LP A/N与CSI part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,然后计算CSI part2的RE并映射。公式可参照上述方式三所示,此处不再赘述。
方式四:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 2,如果有CSI part 1,那么把CSI part 1按照CSI part 2方式计算相应RE进行速率匹配及RE映射。公式可参照上述方式四所示,此处不再赘述。
方式五:首先HP A/N按照现有的A/N的速率匹配(rate matching)方式处理,接着LP A/N使用排除高优先级的A/N所在RE后,在紧邻HP A/N剩余的资源按照现有的公式进行puncture处理及RE映射。
方式六:首先LP A/N按照现有的A/N的公式和映射规则进行puncture方式处理,并使用预留RE,进行相应映射。然后HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式在排除预留给LP A/N的资源进行映射。公式如上面所示,此处不再赘述。
(4)大于2bits的高优先级HP A/N与大于2bits的低优先级LP A/N复用在PUSCH可以有以下几种实现方式。
方式一:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理。丢弃CSI part 2,LP A/N按照CSI part 2方式计算相应RE,速率匹配并进行RE映射。公式如上面公式一所示,此处不再赘述。
方式二:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 1和2。公式可参照上述方式二所示,此处不再赘述。
方式三:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,如果有低优先级的CSI,LP A/N与CSI part 1联合编码的方式计算相应RE,进行速率匹配及RE映射,然后计算CSI part2的RE并映射。公式可参照上述方式三所示,此处不再赘述。
方式四:HP A/N按照现有的A/N的公式和映射规则进行速率匹配(rate matching)方式处理,LP A/N按照CSI part 1的方式计算相应RE,进行速率匹配及RE映射,丢弃CSI part 2,如果有CSI part 1,那么把CSI part 1按照CSI part 2方式计算相应RE进行速率匹配及RE映射。公式如上面公式四所示,此处不再赘述。
方式五:首先HP A/N按照现有的A/N的速率匹配(rate matching)方式处理,接着LP A/N在紧邻HP A/N剩余的RE资源按照现有的公式进行速率匹配及RE映射。公式如上面所示,此处不再赘述。
以HP A/N和LP A/N及HP CSI复用到HP PUSCH为例。可以有下述实现方式:
方式一:HP UCI按照现有的UCI的公式和映射规则进行处理,丢弃LP A/N。
可选地,本申请实施例中,结合图2,如图4所示,在上述步骤102中的“UCI传输装置通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI” 之前,本申请实施例提供的UCI传输方法还可以包括下述的步骤301,并且上述步骤102具体可以通过下述的步骤102b实现。
步骤301、在N个上行信道在时域资源上重叠的情况下,UCI传输装置在满足第三条件的情况下,取消通过第一上行信道传输UCI。
可选地,本申请实施例中,上述第三条件包括:
目标复用方式为允许不同优先级的PUCCH进行复用;
N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数、且Y为正整数;
X个PUCCH中不包括高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH;
本申请实施例中,上述第一上行信道为:X个PUCCH。
表7示出了UCI传输装置在满足第三条件的情况下,取消通过第一上行信道传输UCI。
表7
Figure PCTCN2022091940-appb-000134
如表7所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即1)、且Y为正整数(即1),该1个PUCCH包括低优先级PUCCH,该1个PUSCH包括高优先级PUSCH,从而在该1个PUCCH和该1个PUSCH在时域资源上重叠的情况下,UCI传输装置可以取消传输低优先级PUCCH,并传输高优先级PUSCH。
可选地,本申请实施例中,上述第三条件包括:
目标复用方式为允许不同优先级的PUCCH与PUSCH进行复用;
N个上行信道仅包括X个PUCCH;
本申请实施例中,上述第一上行信道为:X个PUCCH中的低优先级PUCCH。
表8示出了UCI传输装置在满足第三条件的情况下,取消通过第一上行信道传输UCI。
表8
Figure PCTCN2022091940-appb-000135
Figure PCTCN2022091940-appb-000136
如表8所示,在case 1下,N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数(即2)、且Y为0,该2个PUCCH包括低优先级PUCCH和高优先级PUCCH,从而在该2个PUCCH在时域资源上重叠的情况下,UCI传输装置可以取消传输低优先级PUCCH,并传输高优先级PUCCH。
步骤102b、UCI传输装置通过N个上行信道中的目标上行信道,传输M个UCI。
如此可知,由于在N个上行信道中包括PUCCH的情况下,UCI传输装置可以在满足第三条件的情况下,取消通过第一上行信道传输UCI,因此,可以在保证高优先级业务的传输,如此,可以提升用户使用业务的体验。
需要说明的是,本申请实施例提供的UCI传输方法,执行主体可以为UCI传输装置,或者,该UCI传输装置中的用于执行UCI传输方法的控制模块。本申请实施例中以UCI传输装置执行UCI传输方法为例,说明本申请实施例提供的UCI传输装置的。
图5示出了本申请实施例中涉及的UCI传输装置的一种可能的结构示意图。如图5所示,UCI传输装置60可以包括:传输模块61。
其中,传输模块61,用于在N个上行信道在时域资源上重叠的情况下,通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。
在一种可能的实现方式中,上述目标上行信道是由N个上行信道的优先级和N个上行信道的信道类型确定的。结合图5,如图6所示,本申请实施例提供的UCI传输装置60还可以包括:处理模块62。其中,处理模块62,用于在N个上行信道中包括PUCCH的情况下,采用目标复用方式,将第一UCI复用至目标上行信道上;其中,该第一UCI包括:M个UCI中类型相同的UCI;该目标复用方式为:网络侧设备配置的;该目标复用方式包括以下至少一项:允许不同优先级的PUCCH进行复用、允许不同优先级的PUCCH与PUSCH进行复用。
在一种可能的实现方式中,上述目标复用方式为:允许不同优先级的PUCCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一UCI包括:X个PUCCH上承载的类型相同的UCI;在X为正整数、且Y为0的情况下,若X个PUCCH包括低优先级PUCCH和高优先级PUCCH,则该目标上行信道为:高优先级PUCCH;在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中不包括高优先级PUSCH,则该目标上行信道为:高优先级PUCCH;在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH,则该目标上行信道为:高优先级PUSCH;在X为正整数、且Y为正整数的情况下,若X个PUCCH中不包括高优先级PUCCH、且Y个PUSCH中不包括高优先级PUSCH,则该目标上行信道为:低优先级PUSCH。
在一种可能的实现方式中,上述目标复用方式为:允许不同优先级的PUCCH和PUSCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一 UCI包括:X个PUCCH上承载的类型相同的UCI;在Y为正整数的情况下,该目标上行信道为:Y个PUSCH中的高优先级PUSCH,或低优先级PUSCH。
在一种可能的实现方式中,上述目标复用方式包括:允许不同优先级的PUCCH进行复用,以及允许不同优先级的PUCCH与PUSCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH;上述第一UCI包括:X个PUCCH上承载的类型相同的UCI;在X为正整数、且Y为0的情况下,该目标上行信道为:X个PUCCH中的高优先级PUCCH;在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH,该目标上行信道为:高优先级PUSCH;在X为正整数、且Y为正整数的情况下,若X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且Y个PUSCH中不包括高优先级PUSCH,该目标上行信道为:低优先级PUSCH。
在一种可能的实现方式中,上述第一UCI包括:高优先级上行信道上承载的第一HARQ-ACK、低优先级上行信道上承载第二HARQ-ACK以及低优先级上行信道上承载的CSI-part 1;上述目标上行信道为低优先级PUSCH。上述处理模块62,具体用于在满足第一条件的情况下,按照默认的映射规则,对第一HARQ-ACK进行映射处理,并按照第一规则,基于CSI-part1,对第二HARQ-ACK进行映射处理。
在一种可能的实现方式中,上述第一UCI还包括:低优先级上行信道上承载的CSI-part 2;上述第一规则包括以下任一项:丢弃CSI-part 2,并按照CSI-part 2的映射方式,对第二HARQ-ACK进行映射处理;丢弃CSI-part 1和CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理;对第二HARQ-ACK和CSI-part 1进行映射处理,再对CSI-part 2进行映射处理;丢弃CSI-part 2,并按照CSI-part 1的映射方式,对第二HARQ-ACK进行映射处理,以及,按照CSI-part 2的映射方式,对CSI-part 1进行映射处理;在与第一HARQ-ACK所占用的资源单元RE相邻的RE上,按照默认的映射规则,对第二HARQ-ACK进行映射处理。
在一种可能的实现方式中,上述处理模块62,还用于在满足第二条件的情况下,调整打孔puncture公式为A比特bit,并按照调整后的puncture公式,对第一HARQ-ACK和第二HARQ-ACK进行映射处理。其中,上述Abit中的前T个bit用于对第一HARQ-ACK进行映射处理,后P个bit用于对第二HARQ-ACK进行映射处理,A、T、P均为正整数。
在一种可能的实现方式中,结合图5,如图7所示,本申请实施例提供的UCI传输装置60还可以包括:取消模块63。其中,取消模块63,用于在满足第三条件的情况下,取消通过第一上行信道传输UCI。
在一种可能的实现方式中,上述第三条件包括:上述目标复用方式为允许不同优先级的PUCCH进行复用;上述N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数、且Y为正整数;上述X个PUCCH中不包括高优先级PUCCH、且Y个PUSCH中包括高优先级PUSCH;其中,上述第一上行信道为:X个PUCCH。
在一种可能的实现方式中,上述第三条件包括:上述目标复用方式为允许不同优先级的PUCCH与PUSCH进行复用;N个上行信道仅包括X个PUCCH;其中,上述第一上行信道为:X个PUCCH中的低优先级PUCCH。
本申请实施例提供的UCI传输装置,由于在UCI传输装置的一个业务的传输过程中,若出现有其他业务需要传输而导致N个上行信道在时域资源上重叠,则UCI传输装置可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输M个UCI,而无需取消传输某个业务的UCI,因此,可以提升UCI传输装置的UCI的传输可靠性。
本申请实施例中的UCI传输装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性地,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的UCI传输装置能够实现图1至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备70,包括处理器71,存储器72,存储在存储器72上并可在所述处理器71上运行的程序或指令,例如,该通信设备70为UE时,该程序或指令被处理器71执行时实现上述UCI传输方法实施例的各个过程,且能达到相同的技术效果。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于在N个上行信道在时域资源上重叠的情况下,通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。该终端实施例是与上述UE侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、 开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,射频单元101,用于在N个上行信道在时域资源上重叠的情况下,通过N个上行信道中的目标上行信道,传输N个上行信道上承载的M个UCI,N、M均为正整数;该目标上行信道是由以下至少一项确定的:N个上行信道的优先级、N个上行信道的信道类型。
本申请实施例提供的终端,由于在终端的一个业务的传输过程中,若出现有其他业务需要传输而导致N个上行信道在时域资源上重叠,则终端可以通过该N个上行信道中的由N个上行信道的优先级(和/或N个上行信道的信道类型)确定的目标上行信道,传输M个UCI,而无需取消传输某个业务的UCI,因此,可以提升终端的UCI的传输可靠性。
可选地,本申请实施例中,处理器110,用于在N个上行信道中包括PUCCH的情况下,采用目标复用方式,将第一UCI复用至目标上行信道上。
其中,上述第一UCI包括:M个UCI中类型相同的UCI;上述目标复用方式为:网络侧设备配置的;该目标复用方式包括以下至少一项:允许不同优先级的PUCCH进行复用、允许不同优先级的PUCCH与PUSCH进行复用。
如此可知,由于在N个上行信道中包括PUCCH的情况下,终端可以采用允许不同优先级的PUCCH进行复用(和/或允许不同优先级的PUCCH与PUSCH进行复用)的方式,将M个UCI中类型相同的UCI复用至目标上行信道上,而无需取消传输某个业务的UCI,因此,可以在保证高优先级业务的传输的同时,减少对低优先级业务的影响,如此,可以提升终端的业务的可靠性。
可选地,本申请实施例中,上述第一UCI包括:高优先级上行信道上承载的第一HARQ-ACK、低优先级上行信道上承载第二HARQ-ACK、和低优先级上行信道上承载的CSI-part 1;上述目标上行信道为低优先级PUSCH。
处理器110,具体用于在满足第一条件的情况下,按照默认的映射规则,对第一 HARQ-ACK进行映射处理,并按照第一规则,基于CSI-part1,对第二HARQ-ACK进行映射处理。
如此可知,由于终端可以在第一UCI包括不同UCI类型的不同UCI时,按照不同的规则,对不同UCI进行映射处理,因此,可以提升终端的业务的可靠性。
可选地,本申请实施例中,处理器110,还用于在满足第二条件的情况下,调整打孔puncture公式为A比特bit,并按照调整后的puncture公式,对第一HARQ-ACK和第二HARQ-ACK进行映射处理。
其中,上述Abit中的前T个bit用于对第一HARQ-ACK进行映射处理,后P个bit用于对第二HARQ-ACK进行映射处理,A、T、P均为正整数。
如此可知,由于终端可以在第一UCI包括不同UCI类型的不同UCI时,按照不同的规则,对不同UCI进行映射处理,因此,可以提升终端的业务的可靠性。
可选地,本申请实施例中,处理器110,还用于在满足第三条件的情况下,取消通过第一上行信道传输UCI。
如此可知,由于在N个上行信道中包括PUCCH的情况下,终端可以在满足第三条件的情况下,取消通过第一上行信道传输UCI,因此,可以在保证高优先级业务的传输,如此,可以提升用户使用业务的体验。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述UCI传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述UCI传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情 况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种上行控制信息UCI传输方法,所述方法包括:
    在N个上行信道在时域资源上重叠的情况下,用户设备UE通过所述N个上行信道中的目标上行信道,传输所述N个上行信道上承载的M个UCI,N、M均为正整数;
    所述目标上行信道是由以下至少一项确定的:所述N个上行信道的优先级、所述N个上行信道的信道类型。
  2. 根据权利要求1所述的方法,其中,所述目标上行信道是由所述N个上行信道的优先级和所述N个上行信道的信道类型确定的;
    所述UE通过所述N个上行信道中的目标上行信道,传输所述M个UCI之前,所述方法还包括:
    在所述N个上行信道中包括PUCCH的情况下,所述UE采用目标复用方式,将第一UCI复用至所述目标上行信道上;
    其中,所述第一UCI包括:所述M个UCI中类型相同的UCI;
    所述目标复用方式包括以下至少一项:允许不同优先级的PUCCH进行复用、允许不同优先级的PUCCH与PUSCH进行复用。
  3. 根据权利要求2所述的方法,其中,所述目标复用方式为:允许不同优先级的PUCCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在X为正整数、且Y为0的情况下,若X个PUCCH包括低优先级PUCCH和高优先级PUCCH,则所述目标上行信道为:所述高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中不包括高优先级PUSCH,则所述目标上行信道为:所述高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH,则所述目标上行信道为:所述高优先级PUSCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中不包括高优先级PUCCH、且所述Y个PUSCH中不包括高优先级PUSCH,则所述目标上行信道为:所述低优先级PUSCH。
  4. 根据权利要求2所述的方法,其中,所述目标复用方式为:允许不同优先级的PUCCH和PUSCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在Y为正整数的情况下,所述目标上行信道为:所述Y个PUSCH中的高优先级PUSCH,或低优先级PUSCH。
  5. 根据权利要求2所述的方法,其中,所述目标复用方式包括:允许不同优先级的PUCCH进行复用,以及允许不同优先级的PUCCH与PUSCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在X为正整数、且Y为0的情况下,所述目标上行信道为:所述X个PUCCH中 的高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH,所述目标上行信道为:所述高优先级PUSCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中仅包括低优先级PUSCH,所述目标上行信道为:所述低优先级PUSCH。
  6. 根据权利要求2所述的方法,其中,所述第一UCI包括:高优先级上行信道上承载的第一混合自动重传请求确定信息HARQ-ACK、低优先级上行信道上承载第二HARQ-ACK以及低优先级上行信道上承载的第一部分信道状态信息CSI-part 1;所述目标上行信道为低优先级PUSCH;
    所述将第一UCI复用至所述目标上行信道上,包括:
    在满足第一条件的情况下,所述UE按照默认的映射规则,对所述第一HARQ-ACK进行映射处理,并按照第一规则,基于所述CSI-part1,对所述第二HARQ-ACK进行映射处理。
  7. 根据权利要求6所述的方法,其中,所述第一UCI还包括:低优先级上行信道上承载的第二部分信道状态信息CSI-part 2;
    所述第一规则包括以下任一项:
    丢弃所述CSI-part 2,并按照所述CSI-part 2的映射方式,对所述第二HARQ-ACK进行映射处理;
    丢弃所述CSI-part 1和所述CSI-part 2,并按照所述CSI-part 1的映射方式,对所述第二HARQ-ACK进行映射处理;
    对所述第二HARQ-ACK和所述CSI-part 1进行映射处理,再对CSI-part 2进行映射处理;
    丢弃所述CSI-part 2,并按照所述CSI-part 1的映射方式,对所述第二HARQ-ACK进行映射处理,以及,按照所述CSI-part 2的映射方式,对所述CSI-part 1进行映射处理;
    在与所述第一HARQ-ACK所占用的资源单元RE相邻的RE上,按照所述默认的映射规则,对所述第二HARQ-ACK进行映射处理。
  8. 根据权利要求6所述的方法,其中,所述方法还包括:
    在满足第二条件的情况下,所述UE调整打孔puncture公式为A比特bit,并按照调整后的puncture公式,对所述第一HARQ-ACK和所述第二HARQ-ACK进行映射处理;
    其中,所述Abit中的前T个bit用于对所述第一HARQ-ACK进行映射处理,后P个bit用于对所述第二HARQ-ACK进行映射处理,A、T、P均为正整数。
  9. 根据权利要求1所述的方法,其中,所述UE通过所述N个上行信道中的目标上行信道,传输所述N个上行信道上承载的M个UCI之前,所述方法还包括:
    在满足第三条件的情况下,所述UE取消通过第一上行信道传输UCI。
  10. 根据权利要求9所述的方法,其中,所述第三条件包括:
    所述目标复用方式为允许不同优先级的PUCCH进行复用;
    所述N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数、且Y为正整数;
    所述X个PUCCH中不包括高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH;
    其中,所述第一上行信道为:所述X个PUCCH。
  11. 根据权利要求9所述的方法,其中,所述第三条件包括:
    所述目标复用方式为允许不同优先级的PUCCH与PUSCH进行复用;
    N个上行信道仅包括X个PUCCH;
    其中,所述第一上行信道为:所述X个PUCCH中的低优先级PUCCH。
  12. 一种UCI传输装置,所述UCI传输装置包括:传输模块;
    所述传输模块,用于在N个上行信道在时域资源上重叠的情况下,通过所述N个上行信道中的目标上行信道,传输所述N个上行信道上承载的M个UCI,N、M均为正整数;
    所述目标上行信道是由以下至少一项确定的:所述N个上行信道的优先级、所述N个上行信道的信道类型。
  13. 根据权利要求12所述的UCI传输装置,其中,所述目标上行信道是由所述N个上行信道的优先级和所述N个上行信道的信道类型确定的;
    所述UCI传输装置还包括:处理模块;
    所述处理模块,用于在所述N个上行信道中包括PUCCH的情况下,采用目标复用方式,将第一UCI复用至所述目标上行信道上;
    其中,所述第一UCI包括:所述M个UCI中类型相同的UCI;
    所述目标复用方式为:网络侧设备配置的;
    所述目标复用方式包括以下至少一项:允许不同优先级的PUCCH进行复用、允许不同优先级的PUCCH与PUSCH进行复用。
  14. 根据权利要求13所述的UCI传输装置,其中,所述目标复用方式为:允许不同优先级的PUCCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在X为正整数、且Y为0的情况下,若X个PUCCH包括低优先级PUCCH和高优先级PUCCH,则所述目标上行信道为:所述高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中不包括高优先级PUSCH,则所述目标上行信道为:所述高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH,则所述目标上行信道为:所述高优先级PUSCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中不包括高优先级PUCCH、且所述Y个PUSCH中不包括高优先级PUSCH,则所述目标上行信道为:所述低优先级PUSCH。
  15. 根据权利要求13所述的UCI传输装置,其中,所述目标复用方式为:允许不同优先级的PUCCH和PUSCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在Y为正整数的情况下,所述目标上行信道为:所述Y个PUSCH中的高优先级PUSCH,或低优先级PUSCH。
  16. 根据权利要求13所述的UCI传输装置,其中,所述目标复用方式包括:允许不同优先级的PUCCH进行复用,以及允许不同优先级的PUCCH与PUSCH进行复用;所述N个上行信道包括X个PUCCH和Y个PUSCH;所述第一UCI包括:所述X个PUCCH上承载的类型相同的UCI;
    在X为正整数、且Y为0的情况下,所述目标上行信道为:所述X个PUCCH中的高优先级PUCCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH,所述目标上行信道为:所述高优先级PUSCH;
    在X为正整数、且Y为正整数的情况下,若所述X个PUCCH中包括低优先级PUCCH和高优先级PUCCH、且所述Y个PUSCH中不包括高优先级PUSCH,所述目标上行信道为:所述低优先级PUSCH。
  17. 根据权利要求13所述的UCI传输装置,其中,所述第一UCI包括:高优先级上行信道上承载的第一混合自动重传请求确定信息HARQ-ACK、低优先级上行信道上承载第二HARQ-ACK以及低优先级上行信道上承载的第一部分信道状态信息CSI-part 1;所述目标上行信道为低优先级PUSCH;
    所述处理模块,具体用于在满足第一条件的情况下,按照默认的映射规则,对所述第一HARQ-ACK进行映射处理,并按照第一规则,基于所述CSI-part1,对所述第二HARQ-ACK进行映射处理。
  18. 根据权利要求17所述的UCI传输装置,其中,所述第一UCI还包括:低优先级上行信道上承载的第二部分信道状态信息CSI-part 2;
    所述第一规则包括以下任一项:
    丢弃所述CSI-part 2,并按照所述CSI-part 2的映射方式,对所述第二HARQ-ACK进行映射处理;
    丢弃所述CSI-part 1和所述CSI-part 2,并按照所述CSI-part 1的映射方式,对所述第二HARQ-ACK进行映射处理;
    对所述第二HARQ-ACK和所述CSI-part 1进行映射处理,再对CSI-part 2进行映射处理;
    丢弃所述CSI-part 2,并按照所述CSI-part 1的映射方式,对所述第二HARQ-ACK进行映射处理,以及,按照所述CSI-part 2的映射方式,对所述CSI-part 1进行映射处理;
    在与所述第一HARQ-ACK所占用的资源单元RE相邻的RE上,按照所述默认的映射规则,对所述第二HARQ-ACK进行映射处理。
  19. 根据权利要求17所述的UCI传输装置,其中,所述处理模块,还用于在满足 第二条件的情况下,调整打孔puncture公式为A比特bit,并按照调整后的puncture公式,对所述第一HARQ-ACK和所述第二HARQ-ACK进行映射处理;
    其中,所述Abit中的前T个bit用于对所述第一HARQ-ACK进行映射处理,后P个bit用于对所述第二HARQ-ACK进行映射处理,A、T、P均为正整数。
  20. 根据权利要求12所述的UCI传输装置,其中,所述UCI传输装置还包括:取消模块;
    所述取消模块,用于在满足第一条件的情况下,取消通过第一上行信道传输UCI。
  21. 根据权利要求20所述的UCI传输装置,其中,所述第一条件包括:
    所述目标复用方式为允许不同优先级的PUCCH进行复用;
    所述N个上行信道包括X个PUCCH和Y个PUSCH,X为正整数、且Y为正整数;
    所述X个PUCCH中不包括高优先级PUCCH、且所述Y个PUSCH中包括高优先级PUSCH;
    其中,所述第一上行信道为:所述X个PUCCH。
  22. 根据权利要求20所述的UCI传输装置,其中,所述第一条件包括:
    所述目标复用方式为允许不同优先级的PUCCH与PUSCH进行复用;
    N个上行信道仅包括X个PUCCH;
    其中,所述第一上行信道为:所述X个PUCCH中的低优先级PUCCH。
  23. 一种UE,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11中任一项所述的UCI传输方法的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11中任一项所述的UCI传输方法。
  25. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至11中任一项所述的UCI传输方法的步骤。
  26. 一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至11中任一项所述的UCI传输方法的步骤。
  27. 一种电子设备,包括所述电子设备被配置成用于执行如权利要求1至11中任一项所述的UCI传输方法的步骤。
PCT/CN2022/091940 2021-05-10 2022-05-10 上行控制信息uci传输方法、装置、用户设备及介质 WO2022237773A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22806736.9A EP4340280A1 (en) 2021-05-10 2022-05-10 Uplink control information (uci) transmission method and apparatus, and user equipment and medium
US18/388,245 US20240080844A1 (en) 2021-05-10 2023-11-09 Uplink Control Information UCI Transmission Method and Apparatus, User Equipment, and Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110507912.8 2021-05-10
CN202110507912.8A CN115334652A (zh) 2021-05-10 2021-05-10 上行控制信息uci传输方法、装置、用户设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/388,245 Continuation US20240080844A1 (en) 2021-05-10 2023-11-09 Uplink Control Information UCI Transmission Method and Apparatus, User Equipment, and Medium

Publications (1)

Publication Number Publication Date
WO2022237773A1 true WO2022237773A1 (zh) 2022-11-17

Family

ID=83912166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091940 WO2022237773A1 (zh) 2021-05-10 2022-05-10 上行控制信息uci传输方法、装置、用户设备及介质

Country Status (4)

Country Link
US (1) US20240080844A1 (zh)
EP (1) EP4340280A1 (zh)
CN (1) CN115334652A (zh)
WO (1) WO2022237773A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934822A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种信道状态信息反馈方法、终端、基站及储存介质
WO2021016774A1 (zh) * 2019-07-26 2021-02-04 Oppo广东移动通信有限公司 无线通信方法和设备
CN112351495A (zh) * 2019-08-08 2021-02-09 大唐移动通信设备有限公司 Uci的传输方法、装置、终端及基站
US20210105766A1 (en) * 2019-10-07 2021-04-08 FG Innovation Company Limited Method of multiplexing uplink control information and related device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021016774A1 (zh) * 2019-07-26 2021-02-04 Oppo广东移动通信有限公司 无线通信方法和设备
CN112351495A (zh) * 2019-08-08 2021-02-09 大唐移动通信设备有限公司 Uci的传输方法、装置、终端及基站
US20210105766A1 (en) * 2019-10-07 2021-04-08 FG Innovation Company Limited Method of multiplexing uplink control information and related device
CN111934822A (zh) * 2020-08-07 2020-11-13 中兴通讯股份有限公司 一种信道状态信息反馈方法、终端、基站及储存介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "Views on Intra-UE Multiplexing/Prioritization", 3GPP DRAFT; R1-2103106, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177907 *

Also Published As

Publication number Publication date
US20240080844A1 (en) 2024-03-07
EP4340280A1 (en) 2024-03-20
CN115334652A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
EP3965497B1 (en) Uplink control information sending and receiving methods, terminal, and network side device
US20220150804A1 (en) Information transmission method and terminal device
US20230199761A1 (en) Uplink channel transmission method and apparatus, and terminal
CN114363986A (zh) Pucch重复传输次数确定方法、装置及终端
WO2022017353A1 (zh) 物理上行控制信道资源重叠的处理方法及装置
WO2022012417A1 (zh) 冲突处理方法及装置
US20230354404A1 (en) Method and apparatus for determining number of coded modulation symbols, and communications device
CN113890701B (zh) 旁链路传输方法、传输装置和终端
US20230189324A1 (en) Transmission method and apparatus
CN111817830B (zh) 传输、接收控制方法、终端及网络侧设备
WO2022213899A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2022237773A1 (zh) 上行控制信息uci传输方法、装置、用户设备及介质
WO2022143491A1 (zh) Uci复用的方法、装置、设备及可读存储介质
CN115334676A (zh) 上行传输的复用指示方法、装置、终端及网络侧设备
WO2023046162A1 (zh) Pucch传输功率的控制方法、装置及终端
WO2022017342A1 (zh) 上行传输方法、装置及设备
WO2022068869A1 (zh) 传输处理方法、装置及相关设备
WO2023280211A1 (zh) Pucch时域资源重叠的处理方法及装置
US20230254867A1 (en) Uplink transmission processing method and apparatus, and terminal
WO2022028606A1 (zh) 信息确定方法、信息指示方法、终端及网络侧设备
WO2023006026A1 (zh) 上行传输方法、装置及终端
WO2022028604A1 (zh) 上行传输方法、装置及终端设备
WO2022068798A1 (zh) 传输处理方法、装置、终端及可读存储介质
EP4307814A1 (en) Information feedback method and apparatus, information sending method and apparatus, and terminal and network side device
EP4340271A1 (en) Information transmission method and apparatus, terminal, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022806736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022806736

Country of ref document: EP

Effective date: 20231211