WO2022237691A1 - 一种电极极片及含该电极极片的电池 - Google Patents
一种电极极片及含该电极极片的电池 Download PDFInfo
- Publication number
- WO2022237691A1 WO2022237691A1 PCT/CN2022/091503 CN2022091503W WO2022237691A1 WO 2022237691 A1 WO2022237691 A1 WO 2022237691A1 CN 2022091503 W CN2022091503 W CN 2022091503W WO 2022237691 A1 WO2022237691 A1 WO 2022237691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- value
- pole piece
- active material
- electrode sheet
- Prior art date
Links
- 238000000576 coating method Methods 0.000 claims abstract description 198
- 239000011248 coating agent Substances 0.000 claims abstract description 190
- 239000011149 active material Substances 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 35
- 230000014509 gene expression Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 239000003792 electrolyte Substances 0.000 description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 21
- 229910001416 lithium ion Inorganic materials 0.000 description 21
- 239000000654 additive Substances 0.000 description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 12
- 229910052744 lithium Inorganic materials 0.000 description 12
- -1 LiMnPO 4 Inorganic materials 0.000 description 10
- 229910003002 lithium salt Inorganic materials 0.000 description 10
- 159000000002 lithium salts Chemical class 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 9
- 239000011888 foil Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 230000002687 intercalation Effects 0.000 description 7
- 238000009830 intercalation Methods 0.000 description 7
- 229910013063 LiBF 4 Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910013188 LiBOB Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 238000009831 deintercalation Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 230000003631 expected effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011366 tin-based material Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910003289 NiMn Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical class [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical class [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the field of lithium batteries, in particular to an electrode pole piece and a battery containing the electrode pole piece.
- lithium-ion batteries As a new type of energy, lithium-ion batteries have the advantages of high energy density, large capacity, long cycle life, and no memory effect, and have been widely used in electronic products and electric vehicles.
- various electronic products have higher and higher requirements for battery energy density, and as the demand for battery energy density increases, the coating weight and thickness of the pole piece design are also increasing, but so It will cause the charge transfer path to become longer, the battery charge and discharge rate capability will be reduced, and the cycle life and safety will be reduced.
- One of the objectives of the present invention is to provide an electrode pole piece to solve the problem of longer charge transfer path caused by the increasing coating weight and thickness of the pole piece design, thereby improving the rate charging of the battery ability, improving the cycle life and safety of the battery.
- An electrode pole piece comprising:
- the OI value of the second coating is smaller than the OI value of the first coating.
- OI 1 represents the OI value of the first coating
- OI 2 represents the OI value of the second coating
- OI 1 and OI 2 satisfy the relationship: 1.1 ⁇ OI 1 /OI 2 ⁇ 2.0
- the relational expressions satisfied by OI 1 and OI 2 include but are not limited to: 1.1 ⁇ OI 1 /OI 2 ⁇ 1.3, 1.3 ⁇ OI 1 /OI 2 ⁇ 1.5, 1.5 ⁇ OI 1 /OI 2 ⁇ 1.8, or 1.8 ⁇ OI 1 /OI 2 ⁇ 2.0.
- the OI value OI 1 of the first coating can be 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, or 70-80;
- the OI value OI 2 of the second coating can be 3-10, 10-15, 15-20, 20-25, 25-30, 30-35, or 35-40.
- the OI value of the first coating and the second coating should be set so that the OI value of the second coating is always smaller than the OI value of the first coating.
- the OI value settings of the two coatings Through a large number of experimental studies, it is found that the OI value of the negative electrode is set smaller than the OI value of the positive electrode. It is more helpful to improve the performance of the battery.
- the OI value of the active material in the first coating can be 2.5-5, 5-10, 10-15, or 15-20; the OI value of the active material in the second coating can be It may be 2-5, 5-10, 10-12, or 12-15.
- the OI value of the active material material in the second coating should also be smaller than the OI value of the active material material in the first coating, so that by regulating the OI value of the active material material, it is more conducive to the coating The regulation of the OI value is more conducive to the adjustment of the OI value of the pole piece.
- the OI value of the active material is closely related to its physical and chemical properties such as the particle size of the particles and the electrical resistance of the powder.
- the purpose of changing the OI value can be achieved by adjusting these physical and chemical properties.
- the OI value of the coating can also be adjusted by adjusting the ratio of the conductive agent and other factors, not just limited to the adjustment of the OI value of the active material material, as long as the OI value of the second coating is smaller than the OI of the first coating The effect of improving the battery performance can be achieved. It is more preferable to set the OI value ratio of the two coatings within the above range, which is better for the improvement of the battery rate charging capacity.
- the resistance of the active material material in the first coating can be 1-5 ⁇ , 5-10 ⁇ , 10-15 ⁇ , 15-20 ⁇ , 20-25 ⁇ , or 25-30 ⁇ ;
- the resistance of the active material material can be 0.3-1 ⁇ , 1-2 ⁇ , 2-3 ⁇ , 3-4 ⁇ , 4-5 ⁇ , 5-6 ⁇ , 6-7 ⁇ , 7-8 ⁇ , 8-9 ⁇ , or 9-10 ⁇ .
- the compaction density of the pole piece is consistent with the coating density, the smaller the OI value of the coating, the smaller the OI value of the pole piece, thereby achieving the purpose of improving the rate charging capacity and optimizing the cycle performance.
- the D50 of the active material in the first coating can be 2-5 ⁇ m, 5-10 ⁇ m, 10-15 ⁇ m, 15-20 ⁇ m, 20-25 ⁇ m, or 25-30 ⁇ m;
- the D50 of the active material material may be 1-5 ⁇ m, 5-10 ⁇ m, 10-12 ⁇ m, 12-15 ⁇ m, 15-18 ⁇ m, or 18-20 ⁇ m.
- the particle size of the active material material it can be screened corresponding to its resistance, so that the OI value of the coating can be designed according to the actual situation at any time, so as to achieve the OI value of the first coating and the second coating. inconsistent purpose.
- the specific surface area of the active material in the first coating is 0.2-0.5m 2 /g, 0.5-0.8m 2 /g, 0.8-1.0m 2 /g, 1.0-1.2m 2 / g , 1.2 ⁇ 1.5m 2 /g, 1.5 ⁇ 1.8m 2 /g, or 1.5 ⁇ 2.0m 2 /g;
- the specific surface area of the active material in the second coating is 0.5 ⁇ 0.8m 2 /g, 0.8 ⁇ 1.0m 2 /g, 1.0 ⁇ 1.2m 2 /g, 1.2 ⁇ 1.5m 2 /g, 1.5 ⁇ 1.8m 2 /g, 1.5 ⁇ 2.0m 2 /g, 2.0 ⁇ 2.5m 2 / g , or 2.5 ⁇ 3.0 m 2 /g.
- the thickness of the second coating is smaller than the thickness of the first coating.
- the thickness of the first coating can be a conventional thickness
- the thickness of the second coating is an optimized design
- the thickness of the second coating is set to be smaller than the thickness of the first coating, so that the transmission path of lithium ions becomes smaller. Short, and then reduce the OI value of the pole piece, and further achieve the purpose of improving the charging capacity of the rate and optimizing the cycle performance.
- the thickness of the first coating is represented by H 1
- the thickness of the second coating is represented by H 2
- H 1 and H 2 satisfy the relationship: 1 ⁇ H 1 /H 2 ⁇ 10.
- the thickness ratio of the second coating is relatively low, the purpose of improving the OI value of the pole piece may not be achieved, and the expected effect cannot be achieved; and when the thickness ratio of the second coating is relatively high, the cost advantage of layer dropping will be sacrificed , and will also increase the overall thickness of the pole piece, which cannot solve the problem of lengthening the charge transfer path caused by it.
- the thickness H 1 of the first coating can be 50-80 ⁇ m, 80-120 ⁇ m, 120-150 ⁇ m, 150-200 ⁇ m, 200-250 ⁇ m, or 250-300 ⁇ m; the thickness H 2 of the second coating It may be 10 to 30 ⁇ m, 30 to 50 ⁇ m, 50 to 100 ⁇ m, 100 to 130 ⁇ m, 130 to 160 ⁇ m, or 160 to 200 ⁇ m.
- the second object of the present invention is to provide a battery comprising a positive electrode sheet, a negative electrode sheet and a separator spaced between the positive electrode sheet and the negative electrode sheet, the positive electrode sheet and/or the negative electrode sheet being any of the above-mentioned Electrode pads described in item.
- the thicker coating layer is divided into the first coating layer and the second coating layer to be coated respectively, and then by regulating the first coating layer and the second coating layer
- the OI value of the layer, the OI value of the second coating is set smaller than the OI value of the first coating, so that the overall OI value of the pole piece is lower, and because the second coating has good dynamic properties and liquid retention and absorption ability, thereby improving the rate charging capability and improving the cycle life and safety of the battery.
- the electrode pole piece of the present invention also provides a proportional relationship between the OI value of the first coating and the second coating, while improving the charging performance of the battery rate, it can also avoid the lithium intercalation between the two coatings.
- the difference in capacity is too large, resulting in poor consistency of pole pieces.
- An electrode pole piece comprising a current collector, a first coating and a second coating; the first coating is coated on at least one surface of the current collector; the second coating is coated on the first coating away from the current collector A surface of ; wherein the OI value of the second coating is less than the OI value of the first coating.
- OI 1 represents the OI value of the first coating
- OI 2 represents the OI value of the second coating
- OI 1 and OI 2 satisfy the relationship: 1.1 ⁇ OI 1 /OI 2 ⁇ 2.0.
- the relational expressions satisfied by OI 1 and OI 2 include but are not limited to: 1.1 ⁇ OI 1 /OI 2 ⁇ 1.3, 1.3 ⁇ OI 1 /OI 2 ⁇ 1.5, 1.5 ⁇ OI 1 /OI 2 ⁇ 1.8, or 1.8 ⁇ OI 1 /OI 2 ⁇ 2.0.
- the OI value OI 1 of the first coating can be 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, or 70-80;
- the OI value OI 2 of the second coating can be 3-10, 10-15, 15-20, 20-25, 25-30, 30-35, or 35-40.
- the OI value of the first coating and the second coating should be set so that the OI value of the second coating is always smaller than the OI value of the first coating.
- the OI value settings of the two coatings Through a large number of experimental studies, it is found that the OI value of the negative electrode is set smaller than the OI value of the positive electrode. It is more helpful to improve the performance of the battery.
- the purpose of changing the OI value can be achieved by adjusting these physical and chemical properties.
- the OI value of the coating can also be adjusted by adjusting the ratio of the conductive agent and other factors, not just limited to the adjustment of the OI value of the active material material, as long as the OI value of the second coating is smaller than the OI of the first coating The effect of improving the battery performance can be achieved. It is more preferable to set the OI value ratio of the two coatings within the above range, which is better for the improvement of the battery rate charging capacity.
- the resistance of the active material in the first coating can be 1-5 ⁇ , 5-10 ⁇ , 10-15 ⁇ , 15-20 ⁇ , 20-25 ⁇ , or 25-30 ⁇ ;
- the resistance of the active material material can be 0.3-1 ⁇ , 1-2 ⁇ , 2-3 ⁇ , 3-4 ⁇ , 4-5 ⁇ , 5-6 ⁇ , 6-7 ⁇ , 7-8 ⁇ , 8-9 ⁇ , or 9-10 ⁇ .
- the compaction density of the pole piece is consistent with the coating density, the smaller the OI value of the coating, the smaller the OI value of the pole piece, thereby achieving the purpose of improving the rate charging capacity and optimizing the cycle performance.
- the D50 of the active material in the first coating can be 2-5 ⁇ m, 5-10 ⁇ m, 10-15 ⁇ m, 15-20 ⁇ m, 20-25 ⁇ m, or 25-30 ⁇ m; in the second coating
- the D50 of the active material material may be 1-5 ⁇ m, 5-10 ⁇ m, 10-12 ⁇ m, 12-15 ⁇ m, 15-18 ⁇ m, or 18-20 ⁇ m.
- the particle size of the active material material it can be screened corresponding to its resistance, so that the OI value of the coating can be designed according to the actual situation at any time, so as to achieve the OI value of the first coating and the second coating. inconsistent purpose.
- the specific surface area of the active material in the first coating is 0.2-0.5m 2 /g, 0.5-0.8m 2 /g, 0.8-1.0m 2 /g, 1.0-1.2m 2 / g , 1.2 ⁇ 1.5m 2 /g, 1.5 ⁇ 1.8m 2 /g, or 1.5 ⁇ 2.0m 2 /g;
- the specific surface area of the active material in the second coating is 0.5 ⁇ 0.8m 2 /g, 0.8 ⁇ 1.0m 2 /g, 1.0 ⁇ 1.2m 2 /g, 1.2 ⁇ 1.5m 2 /g, 1.5 ⁇ 1.8m 2 /g, 1.5 ⁇ 2.0m 2 /g, 2.0 ⁇ 2.5m 2 / g , or 2.5 ⁇ 3.0 m 2 /g.
- the thickness of the second coating is smaller than the thickness of the first coating.
- the thickness of the first coating can be a conventional thickness
- the thickness of the second coating is an optimized design
- the thickness of the second coating is set to be smaller than the thickness of the first coating, so that the transmission path of lithium ions becomes smaller. Short, and then reduce the OI value of the pole piece, and further achieve the purpose of improving the charging capacity of the rate and optimizing the cycle performance.
- the thickness of the first coating is represented by H 1
- the thickness of the second coating is represented by H 2
- H 1 and H 2 satisfy the relationship: 1 ⁇ H 1 /H 2 ⁇ 10.
- the thickness H1 of the first coating can be 50-80 ⁇ m, 80-120 ⁇ m, 120-150 ⁇ m, 150-200 ⁇ m, 200-250 ⁇ m, or 250-300 ⁇ m; the thickness H2 of the second coating It may be 10 to 30 ⁇ m, 30 to 50 ⁇ m, 50 to 100 ⁇ m, 100 to 130 ⁇ m, 130 to 160 ⁇ m, or 160 to 200 ⁇ m.
- a battery comprising a positive electrode sheet, a negative electrode sheet and a separator spaced between the positive electrode sheet and the negative electrode sheet, the positive electrode sheet and/or the negative electrode sheet being the electrode sheet described in any one of the above.
- the positive electrode active material can also include but not limited to LiCoO 2 , LiNiO 2 , LiVO 2.
- the positive active material can also be modified.
- the method of modifying the positive active material should be known to those skilled in the art.
- the positive active material can be modified by coating, doping and other methods Modification, the material used in the modification treatment may be one or more combinations including but not limited to Al, B, P, Zr, Si, Ti, Ge, Sn, Mg, Ce, W, etc.
- the positive current collector is usually a structure or part that collects current, and the positive current collector can be a variety of materials suitable for use as a positive current collector for lithium-ion batteries in the art.
- the positive current collector can include but not It is limited to metal foil and the like, and more specifically may include but not limited to aluminum foil and the like.
- the negative electrode current collector is usually a structure or part that collects current.
- the negative electrode current collector can be a variety of materials suitable for use as a lithium ion battery negative electrode collector in the art.
- the negative electrode current collector can include but is not limited to Metal foil etc., more specifically may include but not limited to copper foil etc.
- the separator can be various materials suitable for lithium-ion battery separators in this field, for example, it can include but not limited to polyethylene, polypropylene, polyvinylidene fluoride, aramid, polyethylene terephthalate , Polytetrafluoroethylene, polyacrylonitrile, polyimide, polyamide, polyester and natural fiber etc. one or more combination.
- the electrolyte includes an organic solvent, an electro
- Example 1 The difference from Example 1 is that the ratio of OI 1 /OI 2 of the positive electrode sheet, see Table 1 below for details.
- the electrolyte includes organic solvents, electrolyte lithium salts,
- Example 11 The difference from Example 11 is that the ratio of the negative electrode sheet OI 1 /OI 2 , see Table 1 below for details.
- a battery comprising a positive electrode sheet, a negative electrode sheet, a diaphragm and an electrolyte spaced between the positive electrode sheet and the negative electrode sheet; wherein the positive electrode sheet uses ternary NCM523 as an active material, which includes aluminum foil, a first coating and a second coating ;
- the first coating is coated on the surface of the aluminum foil;
- Negative plate adopts graphite as active material, and it comprises copper foil, first coating and second coating;
- the first coating is coated on the surface of copper foil;
- Example 21 The difference from Example 21 is the ratio of OI 1 /OI 2 between the positive and negative electrodes, see Table 1 below for details.
- the electrode pole piece provided by the present invention solves the problem that the current charge transfer path becomes longer due to the increasing coating weight and thickness of the pole piece design, improves the rate charging capacity of the battery, and improves the charging capacity of the battery. The cycle life and safety of the battery are improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供了一种电极极片及含该电极极片的电池,包括集流体、第一涂层和第二涂层;第一涂层涂覆于集流体的至少一表面;第二涂层涂覆于第一涂层远离集流体的一表面;其中,第二涂层的OI值小于第一涂层的OI值。相比于现有技术,本发明的电极极片,为保证电池的能量密度,将较厚的涂覆层分为第一涂层和第二涂层分别进行涂覆,然后通过调控第一涂层和第二涂层的OI值,将第二涂层的OI值设置小于第一涂层的OI值,使得极片的整体OI值较低,且由于第二涂层具有良好的动力学性能和保液吸液能力,从而改善了倍率充电能力,提升了电池的循环寿命和安全性。
Description
本发明涉及锂电池领域,具体涉及一种电极极片及含该电极极片的电池。
锂离子电池作为一种新型能源,具有能量密度高、容量大、循环寿命长、无记忆效应等优点,已广泛应用于电子产品和电动汽车。随着科技的进步,各类电子产品对电池能量密度的要求也越来越高,而随着电池能量密度需求的升高,极片设计的涂布重量和厚度也越来越大,但如此会导致电荷转移路径变长,电池充放电倍率能力降低,循环寿命和安全性降低。
有鉴于此,确有必要提供一种解决上述问题的技术方案。
发明内容
本发明的目的之一在于:提供一种电极极片,以解决目前因极片设计的涂布重量和厚度越来越大而导致的电荷转移路径变长的问题,从而改善了电池的倍率充电能力,提升了电池的循环寿命和安全性。
为了实现上述目的,本发明采用以下技术方案:
一种电极极片,包括:
集流体,
第一涂层,涂覆于所述集流体的至少一表面;
第二涂层,涂覆于所述第一涂层远离所述集流体的一表面;
其中,所述第二涂层的OI值小于所述第一涂层的OI值。
优选的,以OI
1表示所述第一涂层的OI值,以OI
2表示所述第二涂层的OI 值,OI
1和OI
2满足关系式:1.1≤OI
1/OI
2≤2.0。具体的,OI
1和OI
2满足的关系式包括但不限于:1.1≤OI
1/OI
2<1.3、1.3≤OI
1/OI
2<1.5、1.5≤OI
1/OI
2<1.8、或1.8≤OI
1/OI
2≤2.0。将两个涂层的OI值比例设置在此范围内,一方面可以显著提升第二涂层的动力学性能,进而改善电池的动力性能、充电倍率能力和循环能力;另一方面也避免了第一涂层和第二涂层的嵌锂能力差异太大,从而保证了极片的一致性,避免了因极片局部恶化而导致的充电析锂问题严重及电芯循环性变差。
优选的,所述第一涂层的OI值OI
1可为5~10、10~20、20~30、30~40、40~50、50~60、60~70、或70~80;所述第二涂层的OI值OI
2可为3~10、10~15、15~20、20~25、25~30、30~35、或35~40。第一涂层和第二涂层的OI值在具体设置时应保持第二涂层的OI值始终小于第一涂层的OI值。此外,对于正极片和负极片活性物质材料的不同,两者对于两个涂层的OI值设置也存在区别,通过大量的实验研究发现,将负极片的OI值设置小于正极片的OI值,更有助于对电池性能的改善。
优选的,所述第一涂层中的活性物质材料的OI值可为2.5~5、5~10、10~15、或15~20;所述第二涂层中的活性物质材料的OI值可为2~5、5~10、10~12、或12~15。与前述对应的,第二涂层中的活性物质材料的OI值也应小于第一涂层中活性物质材料的OI值,如此,通过对于活性物质材料OI值的调控,更有利于对涂层OI值的调控,进而更利于调整极片的OI值。而活性物质材料的OI值与其颗粒的粒径、粉体的电阻等物化特性息息相关,可通过调整此些物化特性来达到改变其OI值的目的。当然,涂层OI值还可以通过调整导电剂的比例等因素来调整,并不单单只局限于对活性物质材料OI值的调整,只要保证第 二涂层的OI值小于第一涂层的OI值即可达到改善电池性能的作用,更优选的将两个涂层的OI值比例关系设置在上述范围内,对于电池倍率充电能力的改善更佳。
优选的,所述第一涂层中的活性物质材料的电阻为可1~5Ω、5~10Ω、10~15Ω、15~20Ω、20~25Ω、或25~30Ω;所述第二涂层中的活性物质材料的电阻可为0.3~1Ω、1~2Ω、2~3Ω、3~4Ω、4~5Ω、5~6Ω、6~7Ω、7~8Ω、8~9Ω、或9~10Ω。一般的,活性物质材料的的电阻越小,则锂离子传输路径越短,活性物质材料的OI值越小,则涂层的OI值越小。而在极片压实密度和涂布密度一致的情况下,当涂层的OI值越小时,极片的OI值越小,进而达到提升倍率充电能力及优化循环性能的目的。
优选的,所述第一涂层中的活性物质材料的D50可为2~5μm、5~10μm、10~15μm、15~20μm、20~25μm、或25~30μm;所述第二涂层中的活性物质材料的D50可为1~5μm、5~10μm、10~12μm、12~15μm、15~18μm、或18~20μm。一般的,活性物质材料的D50值越小,则电阻越小,锂离子传输路径越短,活性物质材料的OI值越小,则涂层的OI值越小,极片的OI值越小。因此,对于活性物质材料颗粒大小的选择,可与其电阻相对应来筛选,如此可随时根据实际情况具体设计涂层的OI值,以达到第一涂层和第二涂层得到的极片OI值不一致的目的。
优选的,所述第一涂层中的活性物质材料的比表面积为0.2~0.5m
2/g、0.5~0.8m
2/g、0.8~1.0m
2/g、1.0~1.2m
2/g、1.2~1.5m
2/g、1.5~1.8m
2/g、或1.5~2.0m
2/g;所述第二涂层中的活性物质材料的比表面积为0.5~0.8m
2/g、0.8~1.0m
2/g、1.0~1.2m
2/g、1.2~1.5m
2/g、1.5~1.8m
2/g、1.5~2.0m
2/g、2.0~2.5m
2/g、或2.5~3.0 m
2/g。活性物质材料的D50越小,则其比表面积越大,制成极片后的电阻越小,则锂离子传输路径越短,极片的OI值越小,从而达到提升倍率充电能力及优化循环性能的目的。
优选的,所述第二涂层的厚度小于所述第一涂层的厚度。其中,第一涂层的厚度可为常规的厚度,而第二涂层的厚度为优化后的设计,将第二涂层的厚度设置小于第一涂层的厚度,使得锂离子的传输路径变短,进而降低极片的OI值,进一步达到提升倍率充电能力及优化循环性能的目的。
优选的,以H
1表示所述第一涂层的厚度,以H
2表示所述第二涂层的厚度,H
1和H
2满足关系式:1<H
1/H
2<10。当第二涂层的厚度占比较低时,则可能无法起到改善极片OI值的目的,无法达到预期效果;而当第二涂层的厚度占比较高时,又会牺牲掉层成本优势,且同样会增加极片的整体厚度,无法解决其导致的电荷转移路径变长的问题。
优选的,所述第一涂层的厚度H
1可为50~80μm、80~120μm、120~150μm、150~200μm、200~250μm、或250~300μm;所述第二涂层的厚度H
2可为10~30μm、30~50μm、50~100μm、100~130μm、130~160μm、或160~200μm。
本发明的目的之二在于,提供一种电池,包括正极片、负极片和间隔于所述正极片和所述负极片之间隔膜,所述正极片和/或所述负极片为上述任一项所述的电极极片。
相比于现有技术,本发明的有益效果在于:
1)本发明的电极极片,为保证电池的能量密度,将较厚的涂覆层分为第一涂层和第二涂层分别进行涂覆,然后通过调控第一涂层和第二涂层的OI值,将第二涂层的OI值设置小于第一涂层的OI值,使得极片的整体OI值较低, 且由于第二涂层具有良好的动力学性能和保液吸液能力,从而改善了倍率充电能力,提升了电池的循环寿命和安全性。
2)此外,本发明的电极极片,还提供了第一涂层与第二涂层OI值的比例关系,在改善电池倍率充电性能的同时,还可以避免因两个涂层之间嵌锂能力差异太大而导致极片一致性差的问题。
1、一种电极极片,包括集流体、第一涂层和第二涂层;第一涂层涂覆于集流体的至少一表面;第二涂层涂覆于第一涂层远离集流体的一表面;其中,第二涂层的OI值小于第一涂层的OI值。
进一步地,以OI
1表示所述第一涂层的OI值,以OI
2表示所述第二涂层的OI值,OI
1和OI
2满足关系式:1.1≤OI
1/OI
2≤2.0。具体的,OI
1和OI
2满足的关系式包括但不限于:1.1≤OI
1/OI
2<1.3、1.3≤OI
1/OI
2<1.5、1.5≤OI
1/OI
2<1.8、或1.8≤OI
1/OI
2≤2.0。将两个涂层的OI值比例设置在此范围内,一方面可以显著提升第二涂层的动力学性能,进而改善电池的动力性能、充电倍率能力和循环能力;另一方面也避免了第一涂层和第二涂层的嵌锂能力差异太大,从而保证了极片的一致性,避免了因极片局部恶化而导致的充电析锂问题严重及电芯循环性变差。
进一步地,所述第一涂层的OI值OI
1可为5~10、10~20、20~30、30~40、40~50、50~60、60~70、或70~80;所述第二涂层的OI值OI
2可为3~10、10~15、15~20、20~25、25~30、30~35、或35~40。第一涂层和第二涂层的OI值在具体设置时应保持第二涂层的OI值始终小于第一涂层的OI值。此外,对于正极片 和负极片活性物质材料的不同,两者对于两个涂层的OI值设置也存在区别,通过大量的实验研究发现,将负极片的OI值设置小于正极片的OI值,更有助于对电池性能的改善。
进一步地,所述第一涂层中的活性物质材料的OI值可为2.5~5、5~10、10~15、或15~20;所述第二涂层中的活性物质材料的OI值可为2~5、5~10、10~12、或12~15。与前述对应的,第二涂层中的活性物质材料的OI值也应小于第一涂层中活性物质材料的OI值,如此,通过对于活性物质材料OI值的调控,更有利于对涂层OI值的调控,进而更利于调整极片的OI值。而活性物质材料的OI值与其颗粒的粒径、粉体的电阻等物化特性息息相关,可通过调整此些物化特性来达到改变其OI值的目的。当然,涂层OI值还可以通过调整导电剂的比例等因素来调整,并不单单只局限于对活性物质材料OI值的调整,只要保证第二涂层的OI值小于第一涂层的OI值即可达到改善电池性能的作用,更优选的将两个涂层的OI值比例关系设置在上述范围内,对于电池倍率充电能力的改善更佳。
进一步地,所述第一涂层中的活性物质材料的电阻为可1~5Ω、5~10Ω、10~15Ω、15~20Ω、20~25Ω、或25~30Ω;所述第二涂层中的活性物质材料的电阻可为0.3~1Ω、1~2Ω、2~3Ω、3~4Ω、4~5Ω、5~6Ω、6~7Ω、7~8Ω、8~9Ω、或9~10Ω。一般的,活性物质材料的的电阻越小,则锂离子传输路径越短,活性物质材料的OI值越小,则涂层的OI值越小。而在极片压实密度和涂布密度一致的情况下,当涂层的OI值越小时,极片的OI值越小,进而达到提升倍率充电能力及优化循环性能的目的。
进一步地,所述第一涂层中的活性物质材料的D50可为2~5μm、5~10μm、 10~15μm、15~20μm、20~25μm、或25~30μm;所述第二涂层中的活性物质材料的D50可为1~5μm、5~10μm、10~12μm、12~15μm、15~18μm、或18~20μm。一般的,活性物质材料的D50值越小,则电阻越小,锂离子传输路径越短,活性物质材料的OI值越小,则涂层的OI值越小,极片的OI值越小。因此,对于活性物质材料颗粒大小的选择,可与其电阻相对应来筛选,如此可随时根据实际情况具体设计涂层的OI值,以达到第一涂层和第二涂层得到的极片OI值不一致的目的。
进一步地,所述第一涂层中的活性物质材料的比表面积为0.2~0.5m
2/g、0.5~0.8m
2/g、0.8~1.0m
2/g、1.0~1.2m
2/g、1.2~1.5m
2/g、1.5~1.8m
2/g、或1.5~2.0m
2/g;所述第二涂层中的活性物质材料的比表面积为0.5~0.8m
2/g、0.8~1.0m
2/g、1.0~1.2m
2/g、1.2~1.5m
2/g、1.5~1.8m
2/g、1.5~2.0m
2/g、2.0~2.5m
2/g、或2.5~3.0m
2/g。活性物质材料的D50越小,则其比表面积越大,制成极片后的电阻越小,则锂离子传输路径越短,极片的OI值越小,从而达到提升倍率充电能力及优化循环性能的目的。
进一步地,所述第二涂层的厚度小于所述第一涂层的厚度。其中,第一涂层的厚度可为常规的厚度,而第二涂层的厚度为优化后的设计,将第二涂层的厚度设置小于第一涂层的厚度,使得锂离子的传输路径变短,进而降低极片的OI值,进一步达到提升倍率充电能力及优化循环性能的目的。
进一步地,以H
1表示所述第一涂层的厚度,以H
2表示所述第二涂层的厚度,H
1和H
2满足关系式:1<H
1/H
2<10。当第二涂层的厚度占比较低时,则可能无法起到改善极片OI值的目的,无法达到预期效果;而当第二涂层的厚度占比较高时,又会牺牲掉层成本优势,且同样会增加极片的整体厚度,无 法解决其导致的电荷转移路径变长的问题。
进一步地,所述第一涂层的厚度H
1可为50~80μm、80~120μm、120~150μm、150~200μm、200~250μm、或250~300μm;所述第二涂层的厚度H
2可为10~30μm、30~50μm、50~100μm、100~130μm、130~160μm、或160~200μm。
2、一种电池,包括正极片、负极片和间隔于正极片和负极片之间隔膜,所述正极片和/或所述负极片为上述任一项所述的电极极片。
其中,正极片的集流体上涂覆的第一涂层和第二涂层,其采用的活性物质可以是包括但不限于化学式如Li
aNi
xCo
yM
zO
2-bN
b(其中0.95≤a≤1.2,x>0,y≥0,z≥0,且x+y+z=1,0≤b≤1,M选自Mn,Al中的一种或多种的组合,N选自F,P,S中的一种或多种的组合)所示的化合物中的一种或多种的组合,所述正极活性物质还可以是包括但不限于LiCoO
2、LiNiO
2、LiVO
2、LiCrO
2、LiMn
2O
4、LiCoMnO
4、Li
2NiMn
3O
8、LiNi
0.5Mn
1.5O
4、LiCoPO
4、LiMnPO
4、LiFePO
4、LiNiPO
4、LiCoFSO
4、CuS
2、FeS
2、MoS
2、NiS、TiS
2等中的一种或多种的组合。该正极活性物质还可以经过改性处理,对正极活性物质进行改性处理的方法对于本领域技术人员来说应该是己知的,例如,可以采用包覆、掺杂等方法对正极活性物质进行改性,改性处理所使用的材料可以是包括但不限于Al,B,P、Zr、Si、Ti、Ge、Sn、Mg、Ce、W等中的一种或多种的组合。而所述正极集流体通常是汇集电流的结构或零件,所述正极集流体可以是本领域各种适用于作为锂离子电池正极集流体的材料,例如,所述正极集流体可以是包括但不限于金属箔等,更具体可以是包括但不限于铝箔等。
负极片的集流体上涂覆的第一涂层和第二涂层,其采用的活性物质可以是包括但不限于石墨、软碳、硬碳、碳纤维、中间相碳微球、硅基材料、锡 基材料、钛酸锂或其他能与锂形成合金的金属等中的一种或几种。其中,所述石墨可选自人造石墨、天然石墨以及改性石墨中的一种或几种;所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅合金中的一种或几种;所述锡基材料可选自单质锡、锡氧化合物、锡合金中的一种或几种。所述负极集流体通常是汇集电流的结构或零件,所述负极集流体可以是本领域各种适用于作为锂离子电池负极集流体的材料,例如,所述负极集流体可以是包括但不限于金属箔等,更具体可以是包括但不限于铜箔等。
而所述隔膜可以是本领域各种适用于锂离子电池隔膜的材料,例如,可以是包括但不限于聚乙烯、聚丙烯、聚偏氟乙烯、芳纶、聚对苯二甲酸乙二醇酯、聚四氟乙烯、聚丙烯腈、聚酰亚胺,聚酰胺、聚酯和天然纤维等中的一种或多种的组合。
该锂离子电池还包括电解液,电解液包括有机溶剂、电解质锂盐和添加剂。其中,电解质锂盐可以是高温性电解液中采用的LiPF
6和/或LiBOB;也可以是低温型电解液中采用的LiBF
4、LiBOB、LiPF
6中的至少一种;还可以是防过充型电解液中采用的LiBF
4、LiBOB、LiPF
6、LiTFSI中的至少一种;亦可以是LiClO
4、LiAsF
6、LiCF
3SO
3、LiN(CF
3SO
2)
2中的至少一种。而有机溶剂可以是环状碳酸酯,包括PC、EC;也可以是链状碳酸酯,包括DFC、DMC、或EMC;还可以是羧酸酯类,包括MF、MA、EA、MP等。而添加剂包括但不限于成膜添加剂、导电添加剂、阻燃添加剂、防过充添加剂、控制电解液中H
2O和HF含量的添加剂、改善低温性能的添加剂、多功能添加剂中的至少一种。
为使本发明的技术方案和优点更加清楚,下面将结合具体实施方式,对 本发明及其有益效果作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种电池,包括正极片、负极片、间隔于正极片和负极片之间隔膜和电解液;其中,正极片采用三元NCM523作为活性物质,其包括铝箔、第一涂层和第二涂层;第一涂层涂覆于铝箔的表面;第二涂层涂覆于第一涂层远离铝箔的表面,第一涂层和第二涂层的OI
1/OI
2=1.25,H
1为200μm,H
2为50μm;而负极片则采用常规的石墨作为活性物质,没有第一涂层和第二涂层之分,涂层总厚度为250μm,隔膜采用聚乙烯;然后将正极片、隔膜和负极片制成电芯,注入电解液,组装成锂离子电池,电解液包括有机溶剂、电解质锂盐、添加剂,其中,有机溶剂采用PC,电解质锂盐采用LiBF
4、添加剂采用成膜添加剂。
实施例2~10
与实施例1不同的是,正极片OI
1/OI
2的比值,具体见比值见如下表1。
其余同实施例1,这里不再赘述。
实施例11
一种电池,包括正极片、负极片、间隔于正极片和负极片之间隔膜和电解液;其中,负极片采用石墨作为活性物质,其包括铜箔、第一涂层和第二涂层;第一涂层涂覆于铜箔的表面;第二涂层涂覆于第一涂层远离铜箔的表面,第一涂层和第二涂层的OI
1/OI
2=1.17,H
1为200μm,H
2为50μm;而正极片采用常规的三元NCM523作为活性物质,没有第一涂层和第二涂层之分,涂层总厚度为250μm,隔膜采用聚乙烯;然后将正极片、隔膜和负极片制成电芯,注入电解液,组装成锂离子电池,电解液包括有机溶剂、电解质锂盐、 添加剂,有机溶剂采用PC,电解质锂盐采用LiBF
4、添加剂采用成膜添加剂。
实施例12~20
与实施例11不同的是,负极片OI
1/OI
2的比值,具体见比值见如下表1。
其余同实施例11,这里不再赘述。
实施例21
一种电池,包括正极片、负极片、间隔于正极片和负极片之间隔膜和电解液;其中,正极片采用三元NCM523作为活性物质,其包括铝箔、第一涂层和第二涂层;第一涂层涂覆于铝箔的表面;第二涂层涂覆于第一涂层远离铝箔的表面,第一涂层和第二涂层的OI
1/OI
2=1.11,H
1为200μm,H
2为50μm;负极片采用石墨作为活性物质,其包括铜箔、第一涂层和第二涂层;第一涂层涂覆于铜箔的表面;第二涂层涂覆于第一涂层远离铜箔的表面,第一涂层和第二涂层的OI
1/OI
2=1.20,H
1为200μm,H
2为50μm;隔膜采用聚乙烯;然后将正极片、隔膜和负极片制成电芯,注入电解液,组装成锂离子电池,电解液包括有机溶剂、电解质锂盐、添加剂,有机溶剂采用PC,电解质锂盐采用LiBF
4、添加剂采用成膜添加剂。
实施例22~30
与实施例21不同的是,正极片和负极片OI
1/OI
2的比值,具体见比值见如下表1。
其余同实施例21,这里不再赘述。
对比例1
一种电池,包括正极片、负极片、间隔于正极片和负极片之间隔膜和电解液;其中,正极片采用常规的三元NCM523作为活性物质,负极片采用常 规的石墨作为活性物质,正负极片均没有第一涂层和第二涂层之分,正负极片的涂层总厚度分别为250μm,正极片的极片OI值为43.2,负极片的极片OI值为8.7;隔膜采用聚乙烯;然后将正极片、隔膜和负极片制成电芯,注入电解液,组装成锂离子电池,电解液包括有机溶剂、电解质锂盐、添加剂,有机溶剂采用PC,电解质锂盐采用LiBF
4、添加剂采用成膜添加剂。
对比例2~3
与对比例1不同的是,正负极片的极片OI值,具体见数值见如下表1。
其余同对比例1,这里不再赘述。
表1
将上述实施例1~30和对比例1~3组装好的电池进行性能检测,包括:1)通过3C/3C充放电5圈后,拆解电池确认其界面的析锂情况,判断其动力学性能;2)在25℃下1C/1C循环,判断电池的循环性能。具体的测试结果见下表2。
表2
由上述的测试结果中可以看出,相比于对比例1~3中采用的常规正负极片设计,当正极片和/或负极片采用本发明的电极极片设计时,均能一定程度的改善3C/3C析锂和循环性能。这主要是因为本发明的电极极片将极片涂层分为两个涂层分别涂覆,且将第二涂层的OI值设置小于第一涂层的OI值,使得极片的整体OI值较低,从而降低了锂离子的传输路径,改善了电池的倍 率充电能力,提升了电池的循环寿命和安全性。
此外,由实施例1~10和11~20的对比中可以看出,当负极片采用本发明的电极极片设计时,相比于正极片的使用,其对于电池性能的改善更佳。这主要是因为当负极片的OI值降低时,锂离子嵌入负极片的路径更短,也更加容易,而如果只是降低正极片的OI值,虽锂离子脱嵌路径变短了,但嵌入路径没有变化,相对而言,嵌入比脱嵌的困难程度更高,也因此,实施例11~20的效果要更优于实施例1~10中的效果。当然,如果正负极片均采用本发明的电极极片,也即是同时缩短了锂离子的脱嵌和嵌入路径,则对于电池性能的改善更加明显,可见实施例21~30的效果。
另外,由上述的测试结果中还可以看出,随着OI
1/OI
2的增大,第一涂层的动力学性能逐步增强,有效改善了电池的充电倍率能力和循环能力;但如果OI
1/OI
2过大,因第一涂层和第二涂层间的嵌锂能力差异太大,反而会造成极片的一致性差及局部恶化,导致充电析锂和循环能力变差,因此以在关系式1.1≤OI
1/OI
2≤2.0之间为佳,在该区间内,通过调整正负极片的OI
1/OI
2,还可以使电池的性能改善更加明显。
综上可得,本发明提供的电极极片,解决了目前因极片设计的涂布重量和厚度越来越大而导致的电荷转移路径变长的问题,改善了电池的倍率充电能力,提升了电池的循环寿命和安全性。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改。因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作出的任何显而易见的改进、替换或变型均属于本发明的保护范围。此外,尽管本说明书中使用了一些特定的 术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。
Claims (11)
- 一种电极极片,其特征在于,包括:集流体,第一涂层,涂覆于所述集流体的至少一表面;第二涂层,涂覆于所述第一涂层远离所述集流体的一表面;其中,所述第二涂层的OI值小于所述第一涂层的OI值。
- 根据权利要求1所述的电极极片,其特征在于,以OI 1表示所述第一涂层的OI值,以OI 2表示所述第二涂层的OI值,OI 1和OI 2满足关系式:1.1≤OI 1/OI 2≤2.0。
- 根据权利要求2所述的电极极片,其特征在于,所述第一涂层的OI值OI 1为5~80;所述第二涂层的OI值OI 2为3~40。
- 根据权利要求3所述的电极极片,其特征在于,所述第一涂层中的活性物质材料的OI值为2.5~20;所述第二涂层中的活性物质材料的OI值为2~15。
- 根据权利要求2~4任一项所述的电极极片,其特征在于,所述第一涂层中的活性物质材料的电阻为1~30Ω;所述第二涂层中的活性物质材料的电阻为0.3~10Ω。
- 根据权利要求2~4任一项所述的电极极片,其特征在于,所述第一涂层中的活性物质材料的D50为2~30μm;所述第二涂层中的活性物质材料的D50为1~20μm。
- 根据权利要求2~4任一项所述的电极极片,其特征在于,所述第一涂层中的活性物质材料的比表面积为0.2~2.0m 2/g;所述第二涂层中的活性物质材料的比表面积为0.5~3.0m 2/g。
- 根据权利要求1所述的电极极片,其特征在于,所述第二涂层的厚度小于所述第一涂层的厚度。
- 根据权利要求8所述的电极极片,其特征在于,以H 1表示所述第一涂层的厚度,以H 2表示所述第二涂层的厚度,H 1和H 2满足关系式:1<H 1/H 2<10。
- 根据权利要求9所述的电极极片,其特征在于,所述第一涂层的厚度H 1为50~300μm;所述第二涂层的厚度H 2为10~200μm。
- 一种电池,包括正极片、负极片和间隔于所述正极片和所述负极片之间隔膜,其特征在于,所述正极片和/或所述负极片为权利要求1~10任一项所述的电极极片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022002476.3T DE112022002476T5 (de) | 2021-05-08 | 2022-05-07 | Elektrodenpolstück und batterie mit dem elektrodenpolstück |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110497937.4 | 2021-05-08 | ||
CN202110497937.4A CN113394370B (zh) | 2021-05-08 | 2021-05-08 | 一种电极极片及含该电极极片的电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022237691A1 true WO2022237691A1 (zh) | 2022-11-17 |
Family
ID=77616957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/091503 WO2022237691A1 (zh) | 2021-05-08 | 2022-05-07 | 一种电极极片及含该电极极片的电池 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN113394370B (zh) |
DE (1) | DE112022002476T5 (zh) |
WO (1) | WO2022237691A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024146650A1 (zh) * | 2023-01-05 | 2024-07-11 | 珠海冠宇电池股份有限公司 | 电极片及电池 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113394370B (zh) * | 2021-05-08 | 2022-11-18 | 江苏正力新能电池技术有限公司 | 一种电极极片及含该电极极片的电池 |
CN114039023A (zh) * | 2021-10-13 | 2022-02-11 | 东莞维科电池有限公司 | 提高高电压锂电池循环性能的负极极片及制备方法和应用 |
CN114447272B (zh) * | 2022-01-11 | 2024-08-23 | 珠海冠宇电池股份有限公司 | 一种极片及电池 |
CN114628634B (zh) * | 2022-04-11 | 2023-09-15 | 蜂巢能源科技(无锡)有限公司 | 一种正极片、制备方法及全固态电池 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306750A (zh) * | 2011-08-19 | 2012-01-04 | 东莞新能源科技有限公司 | 锂离子电池负极片的制备方法及涂膜干燥装置 |
JP2016024987A (ja) * | 2014-07-22 | 2016-02-08 | トヨタ自動車株式会社 | 非水系二次電池 |
CN108140810A (zh) * | 2016-07-04 | 2018-06-08 | 株式会社Lg化学 | 二次电池用负极 |
CN111628141A (zh) * | 2020-07-16 | 2020-09-04 | 珠海冠宇电池股份有限公司 | 一种掺硅负极极片及包括该负极极片的锂离子电池 |
CN111825088A (zh) * | 2020-07-07 | 2020-10-27 | 鞍钢化学科技有限公司 | 一种锂离子电池负极专用人造石墨材料的制备方法 |
WO2020218773A1 (ko) * | 2019-04-24 | 2020-10-29 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
WO2020218780A1 (ko) * | 2019-04-24 | 2020-10-29 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
CN113036298A (zh) * | 2019-12-06 | 2021-06-25 | 宁德时代新能源科技股份有限公司 | 负极极片及含有它的二次电池、装置 |
CN113394370A (zh) * | 2021-05-08 | 2021-09-14 | 东莞塔菲尔新能源科技有限公司 | 一种电极极片及含该电极极片的电池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005197002A (ja) * | 2003-12-26 | 2005-07-21 | Hitachi Ltd | リチウムイオン二次電池 |
CN106601994B (zh) * | 2017-01-05 | 2020-05-22 | 深圳市优特利电源有限公司 | 负电极及其制备方法和低温锂离子电池 |
CN110010851B (zh) * | 2018-04-28 | 2020-08-28 | 宁德时代新能源科技股份有限公司 | 锂离子电池 |
CN109585779A (zh) * | 2018-10-30 | 2019-04-05 | 福建冠城瑞闽新能源科技有限公司 | 兼顾能量密度和功率密度的锂离子电池电极片及制备方法 |
-
2021
- 2021-05-08 CN CN202110497937.4A patent/CN113394370B/zh active Active
-
2022
- 2022-05-07 DE DE112022002476.3T patent/DE112022002476T5/de active Pending
- 2022-05-07 WO PCT/CN2022/091503 patent/WO2022237691A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102306750A (zh) * | 2011-08-19 | 2012-01-04 | 东莞新能源科技有限公司 | 锂离子电池负极片的制备方法及涂膜干燥装置 |
JP2016024987A (ja) * | 2014-07-22 | 2016-02-08 | トヨタ自動車株式会社 | 非水系二次電池 |
CN108140810A (zh) * | 2016-07-04 | 2018-06-08 | 株式会社Lg化学 | 二次电池用负极 |
WO2020218773A1 (ko) * | 2019-04-24 | 2020-10-29 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
WO2020218780A1 (ko) * | 2019-04-24 | 2020-10-29 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 |
CN113036298A (zh) * | 2019-12-06 | 2021-06-25 | 宁德时代新能源科技股份有限公司 | 负极极片及含有它的二次电池、装置 |
CN111825088A (zh) * | 2020-07-07 | 2020-10-27 | 鞍钢化学科技有限公司 | 一种锂离子电池负极专用人造石墨材料的制备方法 |
CN111628141A (zh) * | 2020-07-16 | 2020-09-04 | 珠海冠宇电池股份有限公司 | 一种掺硅负极极片及包括该负极极片的锂离子电池 |
CN113394370A (zh) * | 2021-05-08 | 2021-09-14 | 东莞塔菲尔新能源科技有限公司 | 一种电极极片及含该电极极片的电池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024146650A1 (zh) * | 2023-01-05 | 2024-07-11 | 珠海冠宇电池股份有限公司 | 电极片及电池 |
Also Published As
Publication number | Publication date |
---|---|
CN113394370B (zh) | 2022-11-18 |
DE112022002476T5 (de) | 2024-02-29 |
CN113394370A (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109845005B (zh) | 正极活性材料预分散体组合物、二次电池用正极以及包含该正极的锂二次电池 | |
CN107710463B (zh) | 锂-硫电池用正极、其制造方法以及包含其的锂-硫电池 | |
JP5101692B2 (ja) | 導電性が優れたアノード材料及びそれを使用する高出力二次バッテリー | |
WO2022237691A1 (zh) | 一种电极极片及含该电极极片的电池 | |
JP5166356B2 (ja) | リチウム電池 | |
JP5757148B2 (ja) | リチウムイオン二次電池用負極活物質及びその負極活物質を用いたリチウムイオン二次電池 | |
JP2019515465A (ja) | 二次電池用正極及びこれを含むリチウム二次電池 | |
CN102522539B (zh) | 阴极活性材料及包含该活性材料的锂二次电池 | |
WO2013183187A1 (ja) | 負極活物質及びその製造方法 | |
WO2016121585A1 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP2011023221A (ja) | リチウムイオン二次電池 | |
CN113097448A (zh) | 补锂负极及其应用 | |
US9023521B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2022548846A (ja) | 二次電池用正極材及びこれを含むリチウム二次電池 | |
WO2023164794A1 (zh) | 电化学装置及包含该电化学装置的电子装置 | |
WO2023070770A1 (zh) | 一种正极极片及包含其的锂离子二次电池 | |
JP6808948B2 (ja) | 非水系リチウムイオン二次電池用負極、その製法及び非水系リチウムイオン二次電池 | |
KR20190083701A (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
CN113795464A (zh) | 制造锂二次电池用正极活性材料的方法和由该方法制造的正极活性材料 | |
JP7556779B2 (ja) | 負極活物質、負極、及び二次電池 | |
JP2019200868A (ja) | 非水二次電池 | |
WO2014103755A1 (ja) | 非水電解質二次電池 | |
KR20220157095A (ko) | 다층구조의 음극 및 이를 포함하는 이차전지 | |
TWI803088B (zh) | 負極及包括其之鋰離子電池 | |
KR20200095182A (ko) | 리튬 이차전지의 음극 활물질층 형성용 조성물, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22806657 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022002476 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22806657 Country of ref document: EP Kind code of ref document: A1 |