WO2022237438A1 - 车辆通信设备、WiFi连接方法及车辆诊断系统 - Google Patents

车辆通信设备、WiFi连接方法及车辆诊断系统 Download PDF

Info

Publication number
WO2022237438A1
WO2022237438A1 PCT/CN2022/086549 CN2022086549W WO2022237438A1 WO 2022237438 A1 WO2022237438 A1 WO 2022237438A1 CN 2022086549 W CN2022086549 W CN 2022086549W WO 2022237438 A1 WO2022237438 A1 WO 2022237438A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
module
circuit
vehicle
terminal
Prior art date
Application number
PCT/CN2022/086549
Other languages
English (en)
French (fr)
Inventor
王维林
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022237438A1 publication Critical patent/WO2022237438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present application relates to the technical field of vehicle diagnosis, in particular to a vehicle communication device, a WiFi connection method and a vehicle diagnosis system.
  • the communication connection between the diagnostic equipment and the electronic control unit of the vehicle is generally established through the vehicle communication tool.
  • the diagnostic data output by the vehicle is used to diagnose the vehicle.
  • the current vehicle communication tools have relatively single functions, and their functions cannot cover multiple scenarios such as bus detection, bus information monitoring, and intelligent diagnosis.
  • Embodiments of the present application provide a vehicle communication device, a WiFi connection method, and a vehicle diagnosis system, which are capable of comprehensively diagnosing a vehicle.
  • the embodiment of the present application provides a vehicle communication device, the vehicle communication device includes a measurement module and a VCI module;
  • the measurement module includes a measurement unit, a first controller, and a first communication module;
  • the measurement unit is connected to the first controller, and the measurement unit is used to measure the tested components or circuits of the vehicle, obtain measurement data and transmit it to the first controller;
  • the first communication module is connected to the first controller, and the first communication module is used to establish a first communication connection between the first controller and a diagnostic device;
  • the VCI module includes a second controller, a physical connection circuit, a second communication module and a vehicle communication module;
  • the physical connection circuit is used to connect with the first controller, the second controller and the diagnostic equipment respectively, and the physical connection circuit is used to establish the first controller, the second controller and a physical communication connection between said diagnostic device;
  • the second communication module is connected to the second controller, and the second communication module is used to establish a second communication connection between the second controller and the diagnostic device;
  • the vehicle communication module is used to connect with the second controller and the OBD connector of the vehicle respectively, and is used to establish a communication connection between the second controller and the electronic control unit of the vehicle.
  • the measurement module also includes a first USB interface circuit
  • the VCI module also includes a second USB interface circuit
  • the first USB interface circuit is connected to the first controller and the physical connection circuit respectively
  • the second USB interface circuit is connected to the second controller and the physical connection circuit respectively.
  • the physical connection circuit includes a switching circuit and a USB hub;
  • the switching circuit is respectively connected to the first USB interface circuit, the second USB interface circuit, the USB hub and the second controller;
  • the USB hub includes an input and output interface, and the input and output interface of the USB hub is used to connect with the second controller and the diagnostic equipment.
  • the switch circuit includes a first switch and a second switch
  • the first switch includes a first control terminal, a first terminal, a second terminal and a third terminal
  • the second switch includes The second control terminal, the fourth terminal, the fifth terminal and the sixth terminal;
  • the USB hub also includes a first expansion interface and a second expansion interface
  • the first end of the first switch is connected to the first USB interface circuit
  • the second end of the first switch is connected to the first expansion interface of the USB hub
  • the second end of the first switch is The third terminal is connected to the sixth terminal of the second switch
  • the fourth terminal of the second switch is connected to the second USB interface circuit
  • the fifth terminal of the second switch is connected to the USB hub.
  • the second expansion interface is connected, and the first control terminal of the first switch and the second control terminal of the second switch are both connected to the second controller.
  • the second controller is also used for:
  • the first USB interface circuit When it is detected that the voltage of the input and output interface of the USB hub is the first preset voltage, the first USB interface circuit is controlled to work in the device mode, and the first control terminal of the first switching switch outputs the first a control signal for turning on the connection between the first terminal and the second terminal of the first switch, and outputting a second control signal to the second control terminal of the second switch for turning on the The connection between the fourth terminal and the fifth terminal of the second transfer switch;
  • the first USB interface When it is detected that the voltage of the input and output interface of the USB hub is the second preset voltage, the first USB interface is controlled to work in the master mode, and the first control terminal of the first switch outputs the third control signal to turn on the connection between the first end and the third end of the first switch, and output a fourth control signal to the second control end of the second switch to turn on the The connection between the fourth terminal and the sixth terminal of the second switch.
  • the measuring unit includes a multimeter circuit, a signal generating circuit and an oscilloscope circuit;
  • the multimeter circuit is connected to the first controller, and the multimeter circuit is used to measure the tested components or circuits of the vehicle to obtain the measurement data of the multimeter;
  • the signal generation circuit is connected to the first controller, and the signal generation circuit is used to generate an analog waveform signal under the drive of the first controller, and the analog waveform signal is used to apply to the vehicle under test components or circuits;
  • the oscilloscope circuit is connected to the first controller, and the oscilloscope circuit is used to measure the tested components or circuits of the vehicle to obtain oscilloscope measurement data.
  • the multimeter circuit includes test leads, a channel selection circuit and a multimeter dedicated chip;
  • test leads are used to connect the tested components or circuits of the vehicle to measure the tested components or circuits
  • the channel selection circuit is respectively connected with the test leads and the first controller, the channel selection circuit is used to switch to the corresponding test channel for testing according to the channel selection signal sent by the first controller, and obtain the The test pen is based on the test signal transmitted by the corresponding test channel;
  • the multimeter dedicated chip is respectively connected to the channel selection circuit and the first controller, and the multimeter dedicated chip is used to obtain multimeter measurement data according to the test signal and transmit it to the first controller.
  • the oscilloscope circuit includes a probe and an analog-to-digital conversion circuit
  • the probe is used to connect the tested component or circuit of the vehicle to measure the tested component or circuit;
  • the analog-to-digital conversion circuit is respectively connected to the probe and the first controller, the analog-to-digital conversion circuit is used to receive the detection analog waveform signal transmitted by the probe, and according to the detection analog waveform signal, The detected digital waveform signal is obtained and transmitted to the first controller.
  • the first communication module includes a first WiFi module, an Ethernet module or a third USB interface circuit;
  • the first WiFi module, the Ethernet module or the third USB interface circuit is connected to the first controller.
  • the first controller is also used for:
  • the communication channel of the first WiFi module, the Ethernet module or the third USB interface circuit is controlled to be opened.
  • the vehicle communication circuit includes a diagnostic interface and a protocol conversion module
  • the diagnostic interface is used to connect with the protocol conversion module, the second controller and the OBD connector of the vehicle respectively, the diagnostic interface is used to receive the diagnostic data sent by the electronic control unit of the vehicle, and based on the The specific communication connection of the second control circuit converts the diagnostic data into diagnostic data under the communication protocol based on the specific communication connection and transmits it to the second controller;
  • the protocol conversion module is respectively connected to the diagnostic interface and the second controller, and the protocol conversion module is used to convert the data transmitted by the second controller into data under a specific communication protocol, so that all The electronic control unit of the vehicle can identify, or convert the data transmitted by the diagnostic interface into data under a specific protocol, so that the second controller can identify.
  • the second communication module includes a second WiFi module
  • the second WiFi module is connected to the second controller, and the second WiFi module is used to establish a WiFi communication connection between the second controller and the diagnostic equipment.
  • the second communication module further includes a Bluetooth module
  • the bluetooth module is connected with the second controller, and the bluetooth module is used to establish a bluetooth communication connection between the second controller and the diagnostic equipment.
  • the embodiment of the present application provides a WiFi communication control method, which is applied to the above-mentioned vehicle communication device, and the control method includes:
  • the first WiFi module or the second WiFi module Based on the authentication password and connection request of the terminal device, generate response information and send it to the terminal device through the first WiFi module or the second WiFi module, so that the terminal device sends the response information to the terminal device according to the response information
  • the first WiFi module or the second WiFi module sends a communication service request, and stores the WiFi AP hotspot information of the terminal device in a preset hotspot information list;
  • control the WiFi AP mode of the first WiFi module or the second WiFi module When receiving the communication service request sent by the terminal device, control the WiFi AP mode of the first WiFi module or the second WiFi module to close, and control the WiFi STA of the first WiFi module or the second WiFi module at the same time mode on;
  • the preset hotspot information list if the WiFi AP hotspot information of the terminal device is inquired from the preset hotspot list, control the WiFi between the first WiFi module or the second WiFi module and the terminal device AP hotspot connection, if not found, control the WiFi STA mode of the first WiFi module or the second WiFi module to close, and simultaneously control the WiFi AP mode of the first WiFi module or the second WiFi module to open.
  • an embodiment of the present application provides a vehicle diagnostic system, including the above-mentioned vehicle communication device;
  • a diagnosis device is used for diagnosing the vehicle through the vehicle communication device.
  • the beneficial effect of the embodiments of the present application is that: a vehicle communication device, a WiFi connection method and a vehicle diagnosis system are provided.
  • the vehicle communication device includes a measurement module and a VCI module, the measurement module includes a measurement unit, a first controller and a first communication module, the VCI module includes a second controller, a physical connection circuit, a second communication module and a vehicle communication module, and the measurement
  • the unit can measure the vehicle, the first communication module can establish the communication connection between the first controller and the diagnostic equipment, the physical connection circuit can establish the physical communication connection between the first controller, the second controller and the diagnostic equipment, and the second
  • the second communication module can establish a communication connection between the second controller and the diagnostic equipment, and the vehicle communication module can establish a communication connection between the second controller and the vehicle. Since the vehicle communication module integrates the communication function and the measurement function, the diagnosis of the vehicle is more comprehensive.
  • FIG. 1 is a schematic diagram of an application scenario of a vehicle diagnosis system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a vehicle diagnostic system provided in FIG. 1;
  • Fig. 3 is a schematic structural diagram of a vehicle communication device provided in Fig. 2;
  • Fig. 4 is a schematic structural diagram of a measurement module and a VCI module provided in Fig. 3;
  • FIG. 5 is a schematic structural diagram of another vehicle communication device provided in FIG. 2;
  • Fig. 6 is a schematic structural diagram of a multimeter circuit provided in Fig. 5;
  • Fig. 7 is a schematic structural diagram of an oscilloscope circuit provided in Fig. 5;
  • FIG. 8 is a schematic structural diagram of a physical connection circuit provided in FIG. 4;
  • FIG. 9 is a schematic structural diagram of another vehicle communication device provided in FIG. 2 .
  • FIG. 1 shows a schematic diagram of an application environment of a vehicle diagnosis system provided by an embodiment of the present application.
  • the application environment includes a vehicle diagnostic system 100 and a vehicle 200 .
  • the vehicle diagnostic system 100 is communicatively connected with the vehicle 200, so that the vehicle diagnostic system 100 can send instructions/data to the vehicle 200, and/or receive the parameters/data returned by the vehicle 200, and the vehicle diagnostic system 100 can also control the vehicle 200 Some lines or components are measured to obtain corresponding measurement data, and fault analysis is performed on the lines or components of the vehicle 200 based on the measurement data, so as to perform a comprehensive diagnosis on the vehicle 200 .
  • the vehicle 200 may be any type of vehicle, such as a car, a bus, a heavy truck, and the like.
  • the vehicle 200 is provided with an electronic control unit (Electronic Control Unit, ECU), and the ECU records all data/parameters of the vehicle 200, and the vehicle 200 can be diagnosed by obtaining the data in the ECU.
  • ECU Electronic Control Unit
  • ECU is a microcomputer dedicated to vehicles in terms of use.
  • the functions of modern vehicles are becoming more and more abundant, and each subsystem on the vehicle needs a powerful ECU to control the work of the system.
  • the gearbox ECU adjusts the appropriate gear according to the current vehicle speed and rotation speed
  • the air conditioner ECU automatically adjusts the temperature according to the current temperature.
  • ECU The functions of ECU are logically divided into three types, namely logic control function, bus function and diagnosis function.
  • the logic control function of the ECU simply put, is that the ECU obtains input signals from the sensor or the bus, and after a series of calculations, the action is output through the actuator.
  • the ECU does not exist in isolation in the vehicle network, and information needs to be exchanged between each ECU.
  • the instrument needs the output speed signal of the engine to correctly display the current speed.
  • the bus function of the ECU refers to the function of the ECU to exchange data information in the vehicle network.
  • the diagnosis function of the ECU can be used to read out the cause of the failure from the ECU through the vehicle diagnostic instrument, so as to carry out more targeted maintenance.
  • a vehicle diagnostic system 100 includes a vehicle communication device 10 and a diagnostic device 20 .
  • the vehicle communication device 10 can be used as an interface device for communication between the diagnostic device 20 and the vehicle 200 , for performing protocol conversion to establish a communication link between the diagnostic device 20 and the vehicle 200 .
  • the vehicle communication device 10 can also measure the lines or components of the vehicle 200 through a measurement tool to obtain measurement data, and then convert the measurement data into a measurement of a specific communication protocol based on the current communication connection mode with the diagnostic device 20 Data, and then send the measurement data after the protocol conversion to the diagnostic equipment 20, so that the diagnostic equipment 20 processes and analyzes the transmitted measurement data, and gives the processing and analysis results.
  • the diagnostic device 20 may be any type of electronic device capable of diagnosing the vehicle 200 , for example, it may specifically be a tablet computer for diagnosis, and relevant diagnostic software for diagnosing the vehicle 200 is installed on the tablet computer.
  • the vehicle communication device 10 includes a measurement module 11 and a VCI (Vehicle Communication Interface, vehicle communication interface) module 12 .
  • VCI Vehicle Communication Interface, vehicle communication interface
  • the measurement module 11 can measure and analyze the communication lines and electrical faults of the vehicle 200 , and the VCI module 12 can establish a communication connection between the diagnostic equipment 20 and the electronic control unit of the vehicle 200 to realize the diagnosis of the vehicle 200 .
  • the measurement module 11 and the VCI module 12 can be used in a separate state or integrated together. When used in a separate state, although the functions are relatively small, the device is small in size and light in weight , The power consumption is also relatively low. When integrated and used together, the functions are powerful and can cover a variety of different application scenarios, such as bus detection, bus information monitoring, intelligent diagnosis, etc.
  • the measurement module 11 includes a measurement unit 111 , a first controller 112 and a first communication module 113 .
  • the VCI module 12 includes a second controller 121 , a physical connection circuit 122 , a second communication module 123 and a vehicle communication module 124 .
  • the vehicle communication module 124 is respectively connected with the second controller 121 and the OBD connector (On Board Diagnostics) of the vehicle 200, and the vehicle communication module 124 can establish a communication connection between the second controller 121 and the electronic control unit of the vehicle 200.
  • OBD connector On Board Diagnostics
  • the vehicle communication module 124 includes a diagnostic interface 1241 and a protocol conversion module 1242 .
  • the diagnostic interface 1241 is respectively connected to the protocol conversion module 1242, the second controller 121 and the OBD connector of the vehicle 200.
  • the diagnostic interface 1241 can receive the diagnostic data sent by the electronic control unit of the vehicle 200, and based on the specific connection with the second control circuit 121
  • the communication connection converts the diagnostic data into diagnostic data under a communication protocol based on a specific communication connection and transmits it to the second controller 121 .
  • the second controller 121 is connected to the diagnostic connector 1241 based on Ethernet communication. After the diagnostic connector 1241 receives the diagnostic data sent by the electronic control unit of the vehicle 200, it first converts the diagnostic data into diagnostic data under the DoIP protocol, and then converts the diagnostic data into diagnostic data under the DoIP protocol.
  • the diagnostic data after protocol conversion is sent to the second controller 121 so that the second controller 121 can identify and process it.
  • the protocol conversion module 1242 is connected with the diagnostic interface 1241 and the second controller 121.
  • the protocol conversion module 1242 can convert the data transmitted by the second controller 121 into data under a specific communication protocol, so that the electronic control unit of the vehicle 200 can recognize , or, convert the data transmitted by the diagnostic interface 1241 into data under a specific protocol, so that the second controller 121 can recognize it.
  • the first controller 112 and the second controller 121 can be any general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field programmable gate array (FPGA), single-chip microcomputer, ARM (Acorn RISC Machine) or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of these.
  • the controller 13 can also be any conventional processor, controller, microcontroller or state machine. Controller 13 may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors combined with a DSP, and/or any other such configuration.
  • the measurement unit 111 is connected to the first controller 112 , and the measurement unit 111 can measure the measured component or current of the vehicle 200 , obtain measurement data and transmit the measurement data to the first controller 112 .
  • the measurement data may include data obtained through measurement by a multimeter, data obtained by detection by a sensor, data obtained by measurement by an oscilloscope, and the like.
  • the measuring unit 111 includes a multimeter circuit 1111 , a signal generating circuit 1112 and an oscilloscope circuit 1113 .
  • the multimeter circuit 1111 is connected to the first controller 112 , and the multimeter circuit 1111 can measure the components or circuits of the vehicle 200 to obtain the measurement data of the multimeter.
  • the multimeter circuit 1111 includes test leads 11111 , a channel selection circuit 11112 and a multimeter dedicated chip 11113 .
  • the test leads 11111 are used to connect the tested components or circuits of the vehicle 200 to measure the tested components or circuits.
  • the test leads 11111 are connected between two terminals of the circuit under test or between two lines in the vehicle 200 to measure the voltage between two terminals of the circuit under test or between two lines.
  • the channel selection circuit 11112 is respectively connected to the test leads 11111 and the first controller 112, and the channel selection circuit 11112 can switch to the corresponding test channel for testing according to the channel selection signal sent by the first controller 112, so as to obtain test leads 11111 based on the corresponding test channel test signal.
  • the test channels of the multimeter circuit 1111 may include a resistance test channel, an AC current test channel, an AC voltage test channel, a DC current test channel, a DC voltage test channel, a capacitance test channel, a diode test channel, a triode test channel, and a buzzer test channel.
  • the corresponding test signals include resistance signals, AC current signals, AC voltage signals, DC current signals, DC voltage signals, capacitance signals, diode voltage drop signals, triode voltage drop signals, and buzzer signals.
  • the channel selection circuit 11112 switches to the DC voltage test channel for testing according to the channel selection signal sent by the first controller 112, so as to obtain a DC voltage test signal.
  • the multimeter dedicated chip 11113 is connected to the channel selection circuit 11112 and the first controller 112 respectively.
  • the multimeter dedicated chip 11113 can process the test signal transmitted from the channel selection circuit 11112 to obtain the measurement data of the multimeter and transmit it to the first controller 112.
  • the multimeter special chip 11113 can adopt the common multimeter special chip on the market, such as 7106 chip, 7206 chip and so on.
  • the signal generating circuit 1112 is connected to the first controller 112 , and the signal generating circuit 1112 can generate an analog waveform signal under the driving of the first controller 112 , and the analog waveform signal is applied to the component or circuit under test of the vehicle 200 .
  • the first controller 112 can drive the signal generating circuit 1112 to output arbitrary waveform signals, such as sine wave, triangular wave, square wave, etc., and can adjust the frequency of the output waveform signal of the signal generating circuit 11112, thereby utilizing the waveform signal output by the signal generating circuit 1112 Push the tested component or circuit on the vehicle 200 to work normally. If the component or circuit under test cannot work normally, the waveform signal output by the signal generating circuit 1112 can be used for troubleshooting and searching for the faulty part.
  • the oscilloscope circuit 1113 includes a probe 11131 and an analog-to-digital conversion circuit 11132 .
  • the probe 11131 is used to connect the tested components or circuits of the vehicle 200, measure the tested components or circuits of the vehicle 200, and obtain detection analog waveform signals such as voltage waveforms of bus signals.
  • the analog-to-digital converter 11132 is respectively connected to the probe 11131 and the first controller 112, and the analog-to-digital converter 11132 can receive the detection analog waveform signal transmitted by the probe 11131, and then convert the detection analog waveform signal into a corresponding detection digital waveform signal , and finally transmit the detected digital waveform signal to the first controller 112, so that the first controller 112 further processes the detected digital waveform signal to obtain corresponding waveform data.
  • the measurement unit 111 may include any one or more circuits in the multimeter circuit 1111, the signal generation circuit 1112 and the oscilloscope circuit 1113, and may also include other arbitrary modules or circuits, such as , Analog sensor circuit, digital sensor circuit and so on.
  • the first communication module 113 can establish a communication connection between the first controller 112 and the diagnostic device 20 .
  • the first controller 112 can receive the measurement control data sent by the diagnostic device 20, and the first controller 112 performs corresponding operations according to the measurement control data, for example, starting the measurement unit
  • the corresponding measurement circuit or module in 111 works, obtains corresponding measurement data, and so on.
  • the first controller 112 can also acquire measurement data from the measurement unit 111, then process the measurement data, and convert the measurement data into measurement data under a specific communication protocol based on the communication connection mode with the diagnostic device 20, and then The protocol-converted measurement data is sent to the diagnostic device 20 .
  • the physical connection circuit 122 can be respectively connected with the first controller 112, the second controller 121 and the diagnostic device 20, and the physical connection circuit 122 is used to establish a physical connection between the first controller 112, the second controller 121 and the diagnostic device 20. communication connection.
  • the physical communication connection mode is USB communication connection, that is, the USB communication connection between the first controller 112 , the second controller 121 and the diagnostic device 20 can be realized through the physical connection circuit 122 .
  • the measurement module 11 further includes a first USB interface circuit 114
  • the VCI module 12 further includes a second USB interface circuit 125 .
  • the first USB interface circuit 114 is connected to the first controller 112
  • the second USB interface circuit 125 is connected to the second controller 121
  • the first USB interface circuit 114 and the second USB interface circuit 125 can also be connected to the physical connection circuit 122 .
  • the measurement module 11 and the VCI module 12 When the measurement module 11 and the VCI module 12 are used in a separate state, there is no USB communication connection between the first controller 112 and the second controller 121, and the second controller 121 can communicate with the diagnostic device 20 through a physical connection circuit 122 Establish a USB communication connection; when the measurement module 11 and the VCI module 12 are integrated and used together, the first controller 112 can establish a USB communication connection with the second controller 121 through the physical connection circuit 122, and can also communicate with the diagnostic device through the physical connection circuit 122.
  • Device 20 establishes a USB communication connection.
  • the physical connection circuit 122 includes a switching circuit 1221 and a USB hub 1222 .
  • the switching circuit 1221 is connected to the first USB interface circuit 114 , the second USB interface circuit 125 , the USB hub 1222 and the second controller 121 respectively.
  • the switching circuit 1221 can be any switching element, such as a single pole double throw switch, a relay switch and so on.
  • the USB hub 1222 includes an input and output interface 12221 , and the input and output interface 12221 of the USB hub 1222 is connected with the second controller 121 and the diagnostic device 20 .
  • the switch circuit 1221 is controlled by the second controller 121, and the second controller 121 can realize the USB connection between the first USB interface circuit 114, the second USB interface circuit 125 and the diagnostic device 20 by controlling the switch 1221, thereby realizing
  • the USB connection between the first controller 112 , the second controller 121 and the diagnostic device 20 further implements USB data transmission between the first controller 112 , the second controller 121 and the diagnostic device 20 .
  • the switch circuit 1221 includes a first switch 12211 and a second switch 12212 .
  • the first switch 12211 includes a first control terminal A1, a first terminal B1, a second terminal B2 and a third terminal B3, and the second switch 12212 includes a second control terminal A2, a fourth terminal B4, a fifth terminal B5 and a third terminal B3.
  • Six-terminal B6 is
  • the USB hub 1222 also includes a first expansion interface 12222 and a second expansion interface 12223 .
  • the first terminal B1 of the first switch 12211 is connected to the first USB interface circuit 114
  • the second terminal B2 of the first switch 12211 is connected to the first extension interface 12222 of the USB hub 1222
  • the second terminal B2 of the first switch 12211 The third terminal B3 is connected to the sixth terminal B6 of the second switch 12212
  • the fourth terminal B4 of the second switch 12212 is connected to the second USB interface circuit 125
  • the fifth terminal B5 of the second switch 12212 is connected to the USB hub 1222.
  • the second expansion interface 12223 is connected, and the first control terminal A1 of the first switch 12211 and the second control terminal A2 of the second switch 12212 are both connected to the second controller 121 .
  • the second controller 121 can control the conducting state of the first terminal B1, the second terminal B2 and the third terminal B3 in the first switch 12211, and control the fourth terminal B4 and the fifth terminal B5 in the second switch 12212 and the conduction state of the sixth terminal B6.
  • the second controller 121 detects the voltage of the input and output interface 12221 of the USB hub 1222, and if it detects that the voltage of the input and output interface 12221 of the USB hub 1222 is the first preset voltage (for example, 5V voltage), it means that the external host device (Diagnostic equipment 20) is connected with the input and output interface 12221 of USB hub 1222, and diagnostic equipment 20 provides 5V voltage to the input and output interface 12221 of USB hub 1222, at this moment, in order to realize the USB between diagnostic equipment 20 and second controller 121
  • control the second USB interface circuit 125 to work in the device mode, and output the first control signal to the first control terminal A1 of the first switch 12211, so as to conduct the first terminal B1 of the first switch 12211 and the first terminal B1 of the first switch 12211.
  • the measurement module 11 and the VCI module 12 are integrated together (the first USB interface circuit 114 of the measurement module 11 is connected to the second terminal B2 of the first switch 12211), since the first switch The first terminal B1 and the second terminal B2 of the 12211 are connected, so the USB communication connection between the first controller 112 and the diagnostic device 20 is realized, and the first controller 112 and the diagnostic device 20 can communicate with each other. data.
  • the second controller 121 When the second controller 121 detects that the voltage of the input and output interface 12221 of the USB hub 1222 is the first preset voltage (for example, 0V voltage), it means that the diagnostic device 20 is disconnected from the input and output interface 12221 of the USB hub 1222. At this time, The second controller 121 controls the second USB interface circuit 125 to work in the master mode, and outputs a third control signal to the first control terminal A1 of the first switch 12211 to turn on the first terminal B1 of the first switch 12211 connection with the third terminal B3, and output a fourth control signal to the second control terminal A2 of the second switch 12212 to conduct between the fourth terminal B4 and the sixth terminal B6 of the second switch 12212 Connection.
  • the first preset voltage for example, 0V voltage
  • the measurement module 11 and the VCI module 12 are integrated together (the first USB interface circuit 114 of the measurement module 11 is connected to the second terminal B2 of the first switch 12211), since the first switch The first terminal B1 and the third terminal B3 of 12211 are conducting, the fourth terminal B4 and the sixth terminal B6 of the second switching switch 12212 are conducting, and the second USB interface circuit 125 works in the master mode (second USB interface circuit 125 outputs 5V voltage), so, just realized USB communication connection between the first controller 112 and the second controller 121, can transmit data mutually between the first controller 112 and the second controller 121, because Data transmission is straight-through, so information forwarding can be reduced and forwarding efficiency can be improved.
  • the second controller 121 when the measurement module 11 and the VCI module 12 are integrated and used together, and the first controller 112 and the second controller 121 are not connected to the diagnostic device 20 through USB communication, in order to realize the first controller 112, the second The communication connection between the second controller 121 and the diagnostic equipment 20. At this time, the communication connection between the second controller 121 and the diagnostic equipment 20 is established through the second communication module 123, such as a WiFi communication connection.
  • the first control If the controller 112 and the second controller 121 are in USB communication connection, then the first controller 112 has realized the communication connection with the diagnostic device 20, at this time, the second controller 121 and the diagnostic device 20 can communicate with each other To transmit data, the data output by the first controller 112 is sent to the diagnostic device 20 through the second controller 121, and the data output by the diagnostic device can also be sent to the first controller 112 through the second controller 121, thus, the first controller 112 and the diagnostic device 20 can also transmit data to each other.
  • the first communication module 113 includes a first WiFi module 1131, an Ethernet module 1132 or a third USB interface circuit 1133, the first WiFi module 1131, an Ethernet module 1132 or a third
  • the USB interface circuit 1133 is connected to the first controller 112 .
  • the first controller 112 When the first controller 112 sends data to the diagnostic device 20, it first detects the current communication connection mode with the diagnostic device 20. For example, the first controller 112 and the diagnostic device 20 are currently in WiFi communication connection. At this time, the first The controller 112 converts the data to be sent into data under the WiFi communication protocol, and then sends the data under the WiFi communication protocol to the diagnostic device 20 so that the diagnostic device 20 can identify and process it.
  • the first communication module 113 may only include any one, two or three of the first WiFi module 1131, the Ethernet module 1132, and the third USB interface circuit 1133 For example, only the third USB interface circuit 1133 is included, and the first WiFi module 1131 and the Ethernet module 1132 are ignored.
  • the first communication module 113 may also include other arbitrary communication modules, such as a Bluetooth module, a ZigBee module, and the like.
  • the first controller 112 can control the remaining communication channels with the diagnostic device 20 (the first WiFi module 1131, the Ethernet module 1132 , the third USB interface circuit 1133) is closed, and only the USB communication connection realized through the physical connection circuit 123 with the diagnostic device 20 is reserved, or the USB communication connection realized with the second controller 121 through the physical connection circuit 123 is reserved.
  • the first controller 112 can be used to detect the input voltage of the first USB interface circuit 114, and when it is detected that the input voltage of the first USB interface circuit 114 is a third preset voltage (for example, 5V), it indicates that the first USB interface
  • the circuit 114 has been connected to the second USB interface circuit 125 through the physical connection circuit 123, so the first USB interface circuit 114 can receive the 5V voltage output by the second USB interface circuit 125.
  • the first controller 112 controls the communication channel of the first WiFi module 1131, the Ethernet module 1132 or the third USB interface circuit 1133 to close; when it is detected that the input voltage of the first USB interface circuit 114 is the fourth preset voltage ( For example 0V), it means that the first USB interface circuit 114 has been connected with the second USB interface circuit 125 through the physical connection circuit 123, and the input voltage of the first USB interface circuit 114 is 0V.
  • the first controller 112 controls the opening of the communication channel of the first WiFi module 1131 , the Ethernet module 1132 or the third USB interface circuit 1133 .
  • the priority of the USB communication connection mode is set to high
  • the priority of the Ethernet communication connection mode is set to medium
  • the priority of the WiFi communication connection mode is set to low, so if the diagnostic device 20 is currently connected to the first controller 112 for a WiFi communication connection, and at the next moment the diagnostic device 20 accesses to perform a USB communication connection with the first controller 112 , at this time, the WiFi communication connection between the diagnostic device 20 and the first controller 112 is closed.
  • the second communication module 123 includes a second WiFi module 1231 and a Bluetooth module 1234 .
  • the second WiFi module 1231 is connected to the second controller 121 , and the second WiFi module 1231 can establish a WiFi communication connection between the second controller 121 and the diagnosis device 20 .
  • the Bluetooth module 1234 is connected to the second controller 121 , and the Bluetooth module 1234 can establish a Bluetooth communication connection between the second controller 121 and the diagnostic device 20 .
  • the diagnostic device 20 and the second controller 121 can be connected through multiple communication methods, similar to the connection management method between the diagnostic device 20 and the first controller 112, the diagnostic device 20 and the first controller 112 can be connected through The available communication connection modes between the second controllers 121 are prioritized, and the communication connection mode with higher priority is preferred.
  • AP equipment is used as a WiFi base station, such as the router we usually use, to provide wireless access services and allow other wireless devices to Access to provide data access;
  • STA devices are used as WiFi workstations, such as mobile phones connected to router WiFi hotspots, which can be connected to AP devices.
  • WiFi hotspots displayed on the screen of the mobile phone or the computer screen, and then touch the screen or enter the password through the keyboard to complete the authentication connection.
  • the diagnostic device 20 can first initiate a connection request.
  • the embodiment of the present application also provides a WiFi connection method, which is used to realize the WiFi communication connection between the first WiFi module 1131 or the second WiFi module 1231 and the diagnostic device 20.
  • a WiFi connection method which is used to realize the WiFi communication connection between the first WiFi module 1131 or the second WiFi module 1231 and the diagnostic device 20.
  • the method includes the following steps:
  • the AP mode of the second WiFi module 1231 is turned on, so that the AP mode of the second WiFi module 1231 is active, so that terminal devices including the diagnostic device 20 can scan and receive information such as connection requests sent by terminal devices.
  • the second WiFi module 1231 can generally only be connected with designated devices, such as the diagnostic device 20, and the second WiFi module 1231 is pre-set with an authentication password, allowing only devices that send the correct authentication password to connect.
  • the WiFi AP hotspot information of the device is stored in the preset hotspot information list;
  • the existing WiFi AP hotspots are scanned or inquired about.
  • the preset hotspot information list if the WiFi AP hotspot information of the terminal device that has passed the password authentication is inquired from the preset hotspot list, control the second WiFi module 1231 to connect with the WiFi AP hotspot of the terminal device, if not found, control The WiFi STA mode of the second WiFi module 1231 is closed, and the WiFi AP mode of the second WiFi module 1231 is controlled to open.
  • the WiFi communication connection between the measurement module 11 or VCI module 12 that lacks an interactive interface and the diagnostic device 20 can be conveniently realized, and the AP of the measurement module 11 or VCI module 12 only allows devices that pass the authentication connection, which can reduce the connection interference of other irrelevant devices.
  • the connection between the diagnostic device 20 and the measurement module 11 or the VCI module 12 can also add security authentication and authentication management. For example, when the diagnostic device 20 performs WiFi hotspot scanning, only the first WiFi of the measurement module 11 is allowed.
  • the hotspots of the second WiFi module 1231 of the module 1131 and the VCI module 12 appear in the communication list, and the hotspots of other unrelated devices are filtered out, wherein filtering can be performed by means of SSID (Service Set Identifier).
  • SSID Service Set Identifier
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by one or more processors, each process of the above-mentioned automobile diagnosis method embodiment is realized, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • the computer-readable storage medium can be used to store non-volatile software programs, non-volatile computer-executable programs and modules.
  • the processor executes various functional applications and data processing of the WiFi connection method by running non-volatile software programs, instructions and modules stored in the memory, that is, implements the WiFi connection method described in the above method embodiments.
  • the computer-readable storage medium may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory may optionally include memory located remotely from the processor, and such remote memory may be connected to the processor via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD-ROM), including several instructions to make a terminal (which may be a mobile terminal, a personal computer, a server, or a network device, etc.) execute the methods described in various embodiments or some parts of the embodiments of the present application.
  • a storage medium such as ROM/RAM, disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及车辆诊断技术领域,公开一种车辆通信设备、WiFi连接方法及车辆诊断系统。车辆通信设备包括测量模块和VCI模块,测量模块包括测量单元、第一控制器和第一通信模组,VCI模块包括第二控制器、物理连接电路、第二通信模组和车辆通信模块,测量单元可对车辆进行测量,第一通信模组可建立第一控制器与诊断设备的通信连接,物理连接电路可建立第一控制器、第二控制器与诊断设备之间的物理通信连接,第二通信模组可建立第二控制器与诊断设备的通信连接,车辆通信模块可建立第二控制器与车辆之间的通信连接。由于车辆通信模块集成了通信功能和测量功能,使得车辆的诊断更加全面。

Description

车辆通信设备、WiFi连接方法及车辆诊断系统
本申请要求于2021年5月12日提交中国专利局、申请号为202110518232.6、申请名称为“车辆通信设备、WiFi连接方法及车辆诊断系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆诊断技术领域,特别是涉及一种车辆通信设备、WiFi连接方法及车辆诊断系统。
背景技术
在车辆诊断应用中,一般是通过车辆通信工具建立起诊断设备与车辆的电子控制单元之间的通信连接,诊断设备与车辆的电子控制单元实现通信连接后,诊断设备便可以通过车辆通信工具获取车辆输出的诊断数据,对车辆进行诊断。
随着车辆的电子控制单元越来越复杂,车辆可能发生的故障也不尽相同,有些故障(例如一些电气故障)并不能通过车辆通信工具从车辆的电子控制单元获取,这些故障需要测量工具对车辆的线路或部件进行检测来得到,因此,目前的车辆通信工具功能比较单一,其功能无法覆盖总线检测、总线信息监控、智能诊断等多场景。
发明内容
本申请实施例提供了一种车辆通信设备、WiFi连接方法及车辆诊断系统,其能够较为全面地对车辆进行诊断。
本申请实施例为解决相关技术问题提供了如下技术方案:
在第一方面,本申请实施例提供了一种车辆通信设备,所述车辆通信设备包括测量模块和VCI模块;
所述测量模块包括测量单元、第一控制器、第一通信模组;
所述测量单元与所述第一控制器连接,所述测量单元用于对车辆的被测部件或电路进行测量,得到测量数据并传输给所述第一控制器;
所述第一通信模组与所述第一控制器连接,所述第一通信模组用于建立所述第一控制器与诊断设备的第一通信连接;
所述VCI模块包括第二控制器、物理连接电路、第二通信模组及车辆通信模块;
所述物理连接电路用于分别与所述第一控制器、所述第二控制器及所述诊断设备连接,所述物理连接电路用于建立所述第一控制器、所述第二控制器及所述诊断设备之间的物理通信连接;
所述第二通信模组与所述第二控制器连接,所述第二通信模组用于建立所 述第二控制器与所述诊断设备的第二通信连接;
所述车辆通信模块用于分别与所述第二控制器及车辆的OBD接头连接,用于建立所述第二控制器与所述车辆的电子控制单元之间的通信连接。
可选地,所述测量模块还包括第一USB接口电路,所述VCI模块还包括第二USB接口电路;
所述第一USB接口电路分别与所述第一控制器及所述物理连接电路连接,所述第二USB接口电路分别与所述第二控制器及所述物理连接电路连接。
可选地,所述物理连接电路包括切换电路及USB集线器;
所述切换电路分别与所述第一USB接口电路、所述第二USB接口电路、所述USB集线器及所述第二控制器连接;
所述USB集线器包括输入输出接口,所述USB集线器的输入输出接口用于与所述第二控制器及所述诊断设备连接。
可选地,所述切换电路包括第一切换开关和第二切换开关,所述第一切换开关包括第一控制端、第一端、第二端及第三端,所述第二切换开关包括第二控制端、第四端、第五端及第六端;
所述USB集线器还包括第一扩展接口及第二扩展接口;
所述第一切换开关的第一端与所述第一USB接口电路连接,所述第一切换开关的第二端与所述USB集线器的第一扩展接口连接,所述第一切换开关的第三端与所述第二切换开关的第六端连接,所述第二切换开关的第四端与所述第二USB接口电路连接,所述第二切换开关的第五端与所述USB集线器的第二扩展接口连接,所述第一切换开关的第一控制端及所述第二切换开关的第二控制端均与所述第二控制器连接。
可选地,所述第二控制器还用于:
检测所述USB集线器的输入输出接口的电压;
在检测到所述USB集线器的输入输出接口的电压为第一预设电压时,控制所述第一USB接口电路工作在设备模式,并且,向所述第一切换开关的第一控制端输出第一控制信号,以导通所述第一切换开关的第一端与第二端之间的连接,以及,向所述第二切换开关的第二控制端输出第二控制信号,以导通所述第二切换开关的第四端和第五端之间的连接;
在检测到所述USB集线器的输入输出接口的电压为第二预设电压时,控制所述第一USB接口工作在主模式,并且,向所述第一切换开关的第一控制端输出第三控制信号,以导通所述第一切换开关的第一端和第三端之间的连接,以及,向所述第二切换开关的第二控制端输出第四控制信号,以导通所述第二切换开关的第四端与第六端之间的连接。
可选地,所述测量单元包括万用表电路、信号发生电路及示波器电路;
所述万用表电路与所述第一控制器连接,所述万用表电路用于对车辆的被测部件或电路进行测量,得到万用表测量数据;
所述信号发生电路与所述第一控制器连接,所述信号发生电路用于在所述 第一控制器的驱动下,产生模拟波形信号,所述模拟波形信号用于施加在车辆的被测部件或电路;
所述示波器电路与所述第一控制器连接,所述示波器电路用于对车辆的被测部件或电路进行测量,得到示波器测量数据。
可选地,所述万用表电路包括表笔、通道选择电路及万用表专用芯片;
所述表笔用于连接车辆的被测部件或电路,以对所述被测部件或电路进行测量;
所述通道选择电路分别与所述表笔及所述第一控制器连接,所述通道选择电路用于根据所述第一控制器发送的通道选择信号,切换至对应的测试通道进行测试,得到所述表笔基于所述对应的测试通道传输的测试信号;
所述万用表专用芯片分别与所述通道选择电路及所述第一控制器连接,所述万用表专用芯片用于根据所述测试信号,得到万用表测量数据并传输给所述第一控制器。
可选地,所述示波器电路包括探针及模数转换电路;
所述探针用于连接车辆的被测部件或电路,以对所述被测部件或电路进行测量;
所述模数转换电路分别与所述探针及所述第一控制器连接,所述模数转换电路用于接收所述探针传输的检测模拟波形信号,并且根据所述检测模拟波形信号,得到检测数字波形信号并传输给所述第一控制器。
可选地,所述第一通信模组包括第一WiFi模块、以太网模块或第三USB接口电路;
所述第一WiFi模块、所述以太网模块或所述第三USB接口电路与所述第一控制器连接。
可选地,所述第一控制器还用于:
检测所述第一USB接口电路的输入电压;
在检测到所述第一USB接口电路的输入电压为第三预设电压时,控制所述第一WiFi模块、所述以太网模块或所述第三USB接口电路的通信通道关闭;
在检测到所述第一USB接口电路的输入电压为第四预设电压时,控制所述第一WiFi模块、所述以太网模块或所述第三USB接口电路的通信通道开启。
可选地,所述车辆通信电路包括诊断接口及协议转换模块;
所述诊断接口用于分别与所述协议转换模块、所述第二控制器及车辆的OBD接头连接,所述诊断接口用于接收所述车辆的电子控制单元发送过来的诊断数据,并基于与所述第二控制电路的特定通信连接,将所述诊断数据转换成基于所述特定通信连接的通信协议下的诊断数据并传输给所述第二控制器;
所述协议转换模块分别与所述诊断接口及所述第二控制器连接,所述协议转换模块用于将所述第二控制器传输过来的数据转换成特定通信协议下的数据,以使所述车辆的电子控制单元能够识别,或者,将所述诊断接口传输过来的数据转换成特定协议下的数据,以使所述第二控制器能够识别。
可选地,所述第二通信模组包括第二WiFi模块;
所述第二WiFi模块与所述第二控制器连接,所述第二WiFi模块用于建立所述第二控制器与所述诊断设备之间的WiFi通信连接。
可选地,所述第二通信模组还包括蓝牙模块;
所述蓝牙模块与所述第二控制器连接,所述蓝牙模块用于建立所述第二控制器与所述诊断设备之间的蓝牙通信连接。
在第二方面,本申请实施例提供一种WiFi通信的控制方法,应用于如上所述的车辆通信设备,所述控制方法包括:
通过所述第一WiFi模块或所述第二WiFi模块接收终端设备发送的WiFi AP热点信息、认证密码和连接请求;
基于所述终端设备的认证密码和连接请求,生成应答信息并通过所述第一WiFi模块或所述第二WiFi模块发送给所述终端设备,以使所述终端设备根据所述应答信息,向所述第一WiFi模块或所述第二WiFi模块发送通信服务请求,并且,将所述终端设备的WiFi AP热点信息存储在预设热点信息列表;
接收所述终端设备发送的通信服务请求时,控制所述第一WiFi模块或所述第二WiFi模块的WiFi AP模式关闭,同时控制所述第一WiFi模块或所述第二WiFi模块的WiFi STA模式开启;
查询所述预设热点信息列表,若从所述预设热点列表查询到所述终端设备的WiFi AP热点信息,控制所述第一WiFi模块或所述第二WiFi模块与所述终端设备的WiFi AP热点连接,若未查询到,控制所述第一WiFi模块或所述第二WiFi模块的WiFi STA模式关闭,同时控制所述第一WiFi模块或所述第二WiFi模块的WiFi AP模式开启。
在第三方面,本申请实施例提供一种车辆诊断系统,包括如上所述的车辆通信设备;以及
诊断设备,所述诊断设备用于通过所述车辆通信设备对车辆进行诊断。
本申请实施例的有益效果是:提供了一种车辆通信设备、WiFi连接方法及车辆诊断系统。车辆通信设备包括测量模块和VCI模块,测量模块包括测量单元、第一控制器和第一通信模组,VCI模块包括第二控制器、物理连接电路、第二通信模组和车辆通信模块,测量单元可对车辆进行测量,第一通信模组可建立第一控制器与诊断设备的通信连接,物理连接电路可建立第一控制器、第二控制器与诊断设备之间的物理通信连接,第二通信模组可建立第二控制器与诊断设备的通信连接,车辆通信模块可建立第二控制器与车辆之间的通信连接。由于车辆通信模块集成了通信功能和测量功能,使得车辆的诊断更加全面。
附图说明
一个或多个实施例通过与之对应的附图中的图片仅作为示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表 示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供一种车辆诊断系统的应用场景示意图;
图2是图1中提供一种车辆诊断系统的结构示意图;
图3是图2中提供一种车辆通信设备的结构示意图;
图4是图3中提供一种测量模块和VCI模块的结构示意图;
图5是图2中提供另一种车辆通信设备的结构示意图;
图6是图5中提供一种万用表电路的结构示意图;
图7是图5中提供一种示波器电路的结构示意图;
图8是图4中提供一种物理连接电路的结构示意图;
图9是图2中提供又一种车辆通信设备的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
请参阅图1,其示出了本申请实施例提供一种车辆诊断系统的应用环境示意图。如图1所示,所述应用环境包括车辆诊断系统100和车辆200。
车辆诊断系统100与车辆200通信连接,从而,车辆诊断系统100可以向车辆200发送指令/数据,和/或,接收车辆200返回的参数/数据,并且,车辆诊断系统100还可以对车辆200的一些线路或部件进行测量,得到相应的测量数据,并且基于测量数据对车辆200的线路或部件进行故障分析,以对车辆200进行全面诊断。
车辆200可以为任意类型的交通工具,比如,轿车、公交车、重型卡车等。其中,车辆200内设置有电子控制单元(Electronic Control Unit,ECU),ECU记录有车辆200的全部数据/参数,通过获取ECU内的数据,可以对车辆200进行诊断。
ECU从用途上来说就是车辆专用的微型计算机。现代车辆的功能越来越丰富,车辆上的各个子系统都需要功能强大的ECU来控制本系统的工作。例如,变速箱ECU根据当前的车速和转速来调整合适的档位,空调ECU根据当前的温度来自动调整温度。
ECU的功能从逻辑上来说分为三种,分别是逻辑控制功能、总线功能和诊 断功能。
ECU的逻辑控制功能,简单地说,就是ECU从传感器或者总线上获取输入信号,经过一系列的运算之后通过执行器将动作输出。
ECU在车载网络中并不是孤立地存在的,各个ECU之间需要交换信息,例如,仪表需要发动机输出的转速信号才能正确显示当前转速。ECU的总线功能是指ECU在车载网络中交换数据信息的功能。
整车一旦装配好,那些隐藏在车体中的各种信息就难以知道了。如果车辆发生了故障,此时,可以利用ECU的诊断功能,通过车辆诊断仪从ECU中读出来故障的原因,从而更加有针对性地进行维修。
在一些实施例中,如图2所示,车辆诊断系统100包括车辆通信设备10和诊断设备20。
在一方面,车辆通信设备10可作为诊断设备20与车辆200通信的接口设备,用于进行协议的转换以搭建起诊断设备20与车辆200之间的通信链路。在另一方面,车辆通信设备10还可以通过测量工具对车辆200的线路或部件进行测量,得到测量数据,然后基于与诊断设备20当前的通信连接方式,将测量数据转换成特定通信协议的测量数据,再将经过协议转换后的测量数据发送给诊断设备20,从而,诊断设备20根据发送过来的测量数据进行处理、分析,并且给出处理、分析结果。
诊断设备20可以为任意类型的能够对车辆200进行诊断的电子设备,例如,其具体可以为诊断用的平板电脑,所述平板电脑上安装有对车辆200进行诊断的相关诊断软件。
如图3所示,车辆通信设备10包括测量模块11和VCI(Vehicle Communication Interface,车辆通信接口)模块12。
测量模块11可以对车辆200的通信线路、电气故障等进行测量分析,VCI模块12可以建立诊断设备20与车辆200的电子控制单元的通信连接,实现对车辆200的诊断。取决于设计需要或不同应用,测量模块11与VCI模块12可以在分离状态下进行使用,也可以集成在一起进行使用,在分离状态下使用时,虽然功能比较少,但是设备体积小、重量轻、功耗也比较低,在集成在一起使用时,功能强大,可以覆盖多种不同的应用场景,例如总线检测、总线信息监控、智能诊断等等。
其中,如图4所示,测量模块11包括测量单元111、第一控制器112和第一通信模组113。VCI模块12包括第二控制器121、物理连接电路122、第二通信模组123和车辆通信模块124。
车辆通信模块124分别与第二控制器121及车辆200的OBD接头(On Board Diagnostics)连接,车辆通信模块124可建立第二控制器121与车辆200的电子控制单元之间的通信连接。
具体地,如图5所示,车辆通信模块124包括诊断接口1241和协议转换模块1242。
诊断接口1241分别与协议转换模块1242、第二控制器121及车辆200的OBD接头连接,诊断接口1241可接收车辆200的电子控制单元发送过来的诊断数据,并基于与第二控制电路121的特定通信连接,将诊断数据转换成基于特定通信连接的通信协议下的诊断数据并传输给第二控制器121。例如,第二控制器121与诊断接头1241基于以太网通信连接,诊断接头1241接收到车辆200的电子控制单元发送过来的诊断数据后,先将诊断数据转换成DoIP协议下的诊断数据,然后将经过协议转换后的诊断数据发送给第二控制器121,以使第二控制器121能够识别并处理。
协议转换模块1242与诊断接口1241及第二控制器121连接,协议转换模块1242可将第二控制器121传输过来的数据转换成特定通信协议下的数据,以使车辆200的电子控制单元能够识别,或者,将诊断接口1241传输过来的数据转换成特定协议下的数据,以使第二控制器121能够识别。
第一控制器112和第二控制器121可以为任意通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,控制器13还可以是任何传统处理器、控制器、微控制器或状态机。控制器13也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP和/或任何其它这种配置。
测量单元111与第一控制器112连接,测量单元111可对车辆200的被测部件或电流进行测量,得到测量数据并将测量数据传输给第一控制器112。其中,测量数据可以包括通过万用表测量得到的数据、通过传感器检测得到的数据、通过示波器测量得到的数据等等。
其中,如图5所示,测量单元111包括万用表电路1111、信号发生电路1112及示波器电路1113。
万用表电路1111与第一控制器112连接,万用表电路1111可对车辆200的被测部件或电路进行测量,得到万用表测量数据。
具体地,如图6所示,万用表电路1111包括表笔11111、通道选择电路11112及万用表专用芯片11113。
表笔11111用来连接车辆200的被测部件或电路,以对被测部件或电路进行测量。例如,在一种应用场景中,通过表笔11111连接在车辆200中的被测电路的两个端子间或两条线路间,测量被测电路的两个端子间或两条线路间的电压。
通道选择电路11112分别与表笔11111和第一控制器112连接,通道选择电路11112可根据第一控制器112发送的通道选择信号,切换至对应的测试通道进行测试,以得到表笔11111基于对应的测试通道的测试信号。
其中,万用表电路1111的测试通道可以包括电阻测试通道、交流电流测试通道、交流电压测试通道、直流电流测试通道、直流电压测试通道、电容测 试通道、二极管测试通道、三极管测试通道、蜂鸣器测试通道等,对应的所述测试信号包括电阻信号、交流电流信号、交流电压信号、直流电流信号、直流电压信号、电容信号、二极管压降信号、三极管压降信号、蜂鸣器信号等。例如,通道选择电路11112根据第一控制器112发送的通道选择信号,切换至直流电压测试通道进行测试,以得到直流电压测试信号。
万用表专用芯片11113分别与通道选择电路11112及第一控制器112连接,万用表专用芯片11113可对通道选择电路11112传输过来的测试信号进行处理,得到万用表测量数据并传输给第一控制器112。
万用表专用芯片11113可以采用市面上常用的万用表专用芯片,例如7106芯片、7206芯片等。
信号发生电路1112与第一控制器112连接,信号发生电路1112可在第一控制器112的驱动下,产生模拟波形信号,该模拟波形信号被施加在车辆200的被测部件或电路。第一控制器112可驱动信号发生电路1112输出任意波形信号,例如正弦波、三角波、方波等等,并且可调节信号发生电路11112输出波形信号的频率,从而利用信号发生电路1112输出的波形信号推动车辆200上被测部件或电路正常工作。如被测部件或电路不能正常工作,信号发生电路1112输出的波形信号可作故障部位的检修查找之用。
如图7所示,示波器电路1113包括探针11131和模数转换电路11132。
探针11131用来连接车辆200的被测部件或电路,对车辆200的被测部件或电路进行测量,得到诸如总线信号的电压波形等检测模拟波形信号。
模数转换器11132分别与探针11131和第一控制器112连接,模数转换器11132可接收探针11131传输过来的检测模拟波形信号,然后将检测模拟波形信号转换成相应的检测数字波形信号,最后将检测数字波形信号传输给第一控制器112,以使第一控制器112对检测数字波形信号进行进一步处理,得到相应的波形数据。
可以理解的是,取决于设计需要或不同应用,测量单元111可以包括万用表电路1111、信号发生电路1112及示波器电路1113中任意一种或多种电路,还可以包括其他任意的模块或电路,例如,模拟传感器电路、数字传感器电路等等。
第一通信模组113可建立第一控制器112与诊断设备20之间的通信连接。第一控制器112与诊断设备20实现通信连接时,第一控制器112可接收诊断设备20发送的测量控制数据,第一控制器112根据测量控制数据,执行相应的操作,例如,启动测量单元111中相应的测量电路或模块工作、获取相应的测量数据等等。第一控制器112还可以从测量单元111中获取测量数据,然后对测量数据进行处理,并且基于与诊断设备20之间的通信连接方式,将测量数据转换成特定通信协议下的测量数据,再将经过协议转换的测量数据发送给诊断设备20。
物理连接电路122可分别与第一控制器112、第二控制器121和诊断设备 20连接,物理连接电路122用来建立第一控制器112、第二控制器121和诊断设备20之间的物理通信连接。
其中,物理通信连接方式为USB通信连接,即第一控制器112、第二控制器121和诊断设备20之间可通过物理连接电路122来实现USB通信连接。
请再次参阅图5,测量模块11还包括第一USB接口电路114,VCI模块12还包括第二USB接口电路125。
第一USB接口电路114与第一控制器112连接,第二USB接口电路125与第二控制器121连接,第一USB接口电路114和第二USB接口电路125还可以与物理连接电路122连接。
当测量模块11和VCI模块12在分离状态下使用时,第一控制器112与第二控制器121之间不存在USB通信连接,而第二控制器121可以通过物理连接电路122与诊断设备20建立USB通信连接;当测量模块11和VCI模块12集成在一起使用时,第一控制器112可以通过物理连接电路122与第二控制器121建立USB通信连接,也可以通过物理连接电路122与诊断设备20建立USB通信连接。
进一步地,物理连接电路122包括切换电路1221及USB集线器1222。
切换电路1221分别与第一USB接口电路114、第二USB接口电路125、USB集线器1222及第二控制器121连接。其中,切换电路1221可以是任意的开关元件,例如单刀双掷开关、继电器开关等等。
USB集线器1222包括输入输出接口12221,USB集线器1222的输入输出接口12221与第二控制器121和诊断设备20连接。
切换电路1221受控于第二控制器121,第二控制器121可通过控制切换开关1221,实现第一USB接口电路114、第二USB接口电路125和诊断设备20之间的USB连接,从而实现第一控制器112、第二控制器121和诊断设备20之间的USB连接,进而实现第一控制器112、第二控制器121和诊断设备20之间的USB数据传输。
具体地,如图8所示,切换电路1221包括第一切换开关12211和第二切换开关12212。
第一切换开关12211包括第一控制端A1、第一端B1、第二端B2和第三端B3,第二切换开关12212包括第二控制端A2、第四端B4、第五端B5和第六端B6。
USB集线器1222还包括第一扩展接口12222和第二扩展接口12223。
其中,第一切换开关12211的第一端B1与第一USB接口电路114连接,第一切换开关12211的第二端B2与USB集线器1222的第一扩展接口12222连接,第一切换开关12211的第三端B3与第二切换开关12212的第六端B6连接,第二切换开关12212的第四端B4与第二USB接口电路125连接,第二切换开关12212的第五端B5与USB集线器1222的第二扩展接口12223连接,第一切换开关12211的第一控制端A1及第二切换开关12212的第二控制端A2 均与第二控制器121连接。
第二控制器121可控制第一切换开关12211中第一端B1、第二端B2和第三端B3的导通状态,以及,控制第二切换开关12212中第四端B4、第五端B5和第六端B6的导通状态。
具体地,第二控制器121检测USB集线器1222的输入输出接口12221的电压,如果检测到USB集线器1222的输入输出接口12221的电压为第一预设电压(例如5V电压)时,说明外接主设备(诊断设备20)与USB集线器1222的输入输出接口12221连接,诊断设备20向USB集线器1222的输入输出接口12221提供5V电压,此时,为了实现诊断设备20与第二控制器121之间的USB数据传输,控制第二USB接口电路125工作在设备模式,并且,向第一切换开关12211的第一控制端A1输出第一控制信号,以导通第一切换开关12211的第一端B1与第二端B2之间的连接,以及,向第二切换开关12212的第二控制端A2输出第二控制信号,以导通第二切换开关12212的第四端B4和第五端B5之间的连接。
在此种情况下,如果测量模块11与VCI模块12是集成在一起使用的(测量模块11的第一USB接口电路114与第一切换开关12211的第二端B2连接),由于第一切换开关12211的第一端B1和第二端B2是导通的,于是,第一控制器112与诊断设备20之间便实现了USB通信连接,第一控制器112与诊断设备20之间可以相互传输数据。
第二控制器121检测到USB集线器1222的输入输出接口12221的电压为第一预设电压(例如0V电压)时,说明诊断设备20与USB集线器1222的输入输出接口12221断开连接,此时,第二控制器121控制第二USB接口电路125工作在主模式,并且,向第一切换开关12211的第一控制端A1输出第三控制信号,以导通第一切换开关12211的第一端B1与第三端B3之间的连接,以及,向第二切换开关12212的第二控制端A2输出第四控制信号,以导通第二切换开关12212的第四端B4与第六端B6之间的连接。
在此种情况下,如果测量模块11与VCI模块12是集成在一起使用的(测量模块11的第一USB接口电路114与第一切换开关12211的第二端B2连接),由于第一切换开关12211的第一端B1与第三端B3是导通的,第二切换开关12212的第四端B4与第六端B6是导通的,并且第二USB接口电路125工作在主模式(第二USB接口电路125输出5V电压),于是,第一控制器112与第二控制器121之间便实现了USB通信连接,第一控制器112与第二控制器121之间可以相互传输数据,由于数据传输是直通的,因此,能够减少信息转发,提高转发效率。
可以理解的是,在测量模块11与VCI模块12集成在一起使用,并且第一控制器112和第二控制器121未与诊断设备20实现USB通信连接时,为了实现第一控制器112、第二控制器121与诊断设备20的通信连接,此时,通过第二通信模组123建立起第二控制器121与诊断设备20之间的通信连接,例 如WiFi通信连接,而此时第一控制器112与第二控制器121在进行USB通信连接,那么,第一控制器112便实现了与诊断设备20之间的通信连接,此时,第二控制器121与诊断设备20之间可以相互传输数据,第一控制器112输出的数据通过第二控制器121发送给诊断设备20,诊断设备输出的数据也可以通过第二控制器121发送给第一控制器112,从而,第一控制器112与诊断设备20之间也可以互相传输数据。
在一些实施例中,如图9所示,第一通信模组113包括第一WiFi模块1131、以太网模块1132或第三USB接口电路1133,第一WiFi模块1131、以太网模块1132或第三USB接口电路1133与第一控制器112连接。
第一控制器112向诊断设备20发送数据时,先检测与诊断设备20之间当前的通信连接方式,例如,第一控制器112与诊断设备20当前正在进行WiFi通信连接,此时,第一控制器112将所要发送的数据转换成WiFi通信协议下的数据,再将WiFi通信协议下的数据发送给诊断设备20,以使诊断设备20能够识别并处理。
可以理解的是,取决于设计需要或不同应用,第一通信模组113可以仅包括第一WiFi模块1131、以太网模块1132、第三USB接口电路1133中的任意一种、两种或三种,例如,仅包括第三USB接口电路1133,第一WiFi模块1131和以太网模块1132被忽略。另外,第一通信模组113还可以包括其它任意的通信模块,例如蓝牙模块、ZigBee模块等等。
在测量模块11与VCI模块12集成在一起使用时,为了简化连接管理以及降低设备功耗,第一控制器112可以控制与诊断设备20的其余通信通道(第一WiFi模块1131、以太网模块1132、第三USB接口电路1133)关闭,只保留与诊断设备20之间通过物理连接电路123实现的USB通信连接,或者,与第二控制器121之间通过物理连接电路123实现的USB通信连接。
具体地,第一控制器112可用来检测第一USB接口电路114的输入电压,在检测到第一USB接口电路114的输入电压为第三预设电压(例如5V)时,说明第一USB接口电路114已通过物理连接电路123与第二USB接口电路125进行连接,于是,第一USB接口电路114可接收到第二USB接口电路125输出的5V电压,此时,为了简化连接管理以及降低设备功耗,第一控制器112控制第一WiFi模块1131、以太网模块1132或第三USB接口电路1133的通信通道关闭;在检测到第一USB接口电路114的输入电压为第四预设电压(例如0V)时,说明第一USB接口电路114已通过物理连接电路123与第二USB接口电路125进行连接,第一USB接口电路114的输入电压为0V,此时,为了实现第一控制器112与诊断设备20之间的通信连接,第一控制器112控制第一WiFi模块1131、以太网模块1132或第三USB接口电路1133的通信通道开启。
值得说明的是,诊断设备20与第一控制器112之间可以通过多种通信方式进行通信连接时,由于在不同的通信连接方式之间,传输速率和通信稳定性不尽相同,于是,为了实现传输速率和通信稳定性的最大化,将所有通信连接 方式设置优先级,优先级高的通信连接方式被优先选用。例如,将USB通信连接方式的优先级设置为高,将以太网通信连接方式优先级设置为中,将WiFi通信连接方式的优先级设置为低,于是,如果诊断设备20当前与第一控制器112进行WiFi通信连接,并且在下一刻诊断设备20接入,与第一控制器112进行USB通信连接,此时,诊断设备20与第一控制器112的WiFi通信连接被关闭。
如图9所示,第二通信模组123包括第二WiFi模块1231和蓝牙模块1234。
第二WiFi模块1231与第二控制器121连接,第二WiFi模块1231可建立第二控制器121与诊断设备20之间的WiFi通信连接。
蓝牙模块1234与第二控制器121连接,蓝牙模块1234可建立第二控制器121与诊断设备20之间的蓝牙通信连接。
值得说明的是,诊断设备20与第二控制器121之间可以通过多种通信方式进行通信连接时,与诊断设备20与第一控制器112的连接管理方法类似,可以通过对诊断设备20与第二控制器121之间可用的通信连接方式设置优先级,优先级高的通信连接方式被优先选用。
WiFi通信连接中,一般存在AP(Access Point,无线接入点)设备和STA(Station)设备,AP设备作为WiFi的基站,如我们通常使用的路由器,能够提供无线接入服务,允许其它无线设备接入,提供数据访问;STA设备则作为WiFi的工作站,如连接到路由器WiFi热点的手机,它可以连接到AP设备。通常我们在手机和电脑上使用WiFi,都有显示界面可供操作,我们通过在手机屏幕或电脑显示屏上查看WiFi热点,然后通过显示屏触摸或键盘输入密码,完成鉴权连接。
但是测量模块11和VCI模块12均没有显示界面等交互接口,不能与用户进行交互操作,无法通过传统手段完成对应WiFi的鉴权连接过程,而诊断设备20是具有显示界面的,可以与用户进行交互操作,所以测量模块11或VCI模块12需要与诊断设备20进行连接时,一般只能通过诊断设备20最先发起连接请求。
基于此,本申请实施例还提供一种WiFi连接方法,用于实现第一WiFi模块1131或第二WiFi模块1231与诊断设备20进行WiFi通信连接,下面以实现第二WiFi模块1231与诊断设备20的WiFi通信连接为例,该方法包括以下步骤:
接收终端设备发送的WiFi AP热点信息、认证密码和连接请求;
在默认情况下,第二WiFi模块1231的AP模式开启,以使得第二WiFi模块1231的AP模式处于活跃状态,以便包括诊断设备20等终端设备进行扫描以及接收终端设备发送连接请求等信息。
为了实现安全连接,第二WiFi模块1231一般只能与指定的设备进行连接,例如与诊断设备20进行连接,第二WiFi模块1231预先设置有认证密码,只允许发送正确认证密码的设备连接。
基于终端设备的认证密码和连接请求,生成应答信息并通过第一WiFi模块1231发送给终端设备,以使终端设备根据应答信息,向第一第二WiFi模块1231发送通信服务请求,并且,将终端设备的WiFi AP热点信息存储在预设热点信息列表;
接收终端设备发送的通信服务请求时,控制第二WiFi模块1231的WiFi AP模式关闭,同时控制第二WiFi模块1231的WiFi STA模式开启;
通过开启第二WiFi模块1231的WiFi STA模式对已存在的WiFi AP热点进行扫描或查询。
查询预设热点信息列表,若从该预设热点列表查询到已通过密码认证的终端设备的WiFi AP热点信息,控制第二WiFi模块1231与终端设备的WiFi AP热点连接,若未查询到,控制第二WiFi模块1231的WiFi STA模式关闭,同时控制第二WiFi模块1231的WiFi AP模式开启。
因此,通过此种方式,能够方便实现缺少交互接口的测量模块11或VCI模块12与诊断设备20之间的WiFi通信连接,并且,测量模块11或VCI模块12的AP只允许鉴权通过的设备连接,能够减少其它无关设备的连接干扰。另外,为了提高连接的安全性,诊断设备20与测量模块11或VCI模块12的连接还可以加入安全鉴别和认证管理,例如诊断设备20进行WiFi热点扫描时,只允许测量模块11的第一WiFi模块1131和VCI模块12的第二WiFi模块1231的热点出现在通信列表,将其它无关设备的热点过滤掉,其中,可以通过SSID(Service Set Identifier,服务集标识)方式进行过滤。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被一个或多个处理器执行时实现上述汽车诊断方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
所述计算机可读存储介质作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。所述处理器通过运行存储在存储器中的非易失性软件程序、指令以及模块,从而执行所述WiFi连接方法的各种功能应用以及数据处理,即实现上述方法实施例所述WiFi连接方法。
所述计算机可读存储介质可以为包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方 案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是移动终端,个人计算机,服务器,或者网络设备等)执行本申请各个实施例或者实施例的某些部分所述的方法。
最后要说明的是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施方式的目的是使对本申请的公开内容的理解更加透彻全面。并且在本申请的思路下,上述各技术特征继续相互组合,并存在如上所述的本申请不同方面的许多其它变化,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种车辆通信设备,其特征在于,所述车辆通信设备包括测量模块和VCI模块;
    所述测量模块包括测量单元、第一控制器、第一通信模组;
    所述测量单元与所述第一控制器连接,所述测量单元用于对车辆的被测部件或电路进行测量,得到测量数据并传输给所述第一控制器;
    所述第一通信模组与所述第一控制器连接,所述第一通信模组用于建立所述第一控制器与诊断设备的第一通信连接;
    所述VCI模块包括第二控制器、物理连接电路、第二通信模组及车辆通信模块;
    所述物理连接电路用于分别与所述第一控制器、所述第二控制器及所述诊断设备连接,所述物理连接电路用于建立所述第一控制器、所述第二控制器及所述诊断设备之间的物理通信连接;
    所述第二通信模组与所述第二控制器连接,所述第二通信模组用于建立所述第二控制器与所述诊断设备的第二通信连接;
    所述车辆通信模块用于分别与所述第二控制器及车辆的OBD接头连接,用于建立所述第二控制器与所述车辆的电子控制单元之间的通信连接。
  2. 根据权利要求1所述的车辆通信设备,其特征在于,
    所述测量模块还包括第一USB接口电路,所述VCI模块还包括第二USB接口电路;
    所述第一USB接口电路分别与所述第一控制器及所述物理连接电路连接,所述第二USB接口电路分别与所述第二控制器及所述物理连接电路连接。
  3. 根据权利要求2所述的车辆通信设备,其特征在于,
    所述物理连接电路包括切换电路及USB集线器;
    所述切换电路分别与所述第一USB接口电路、所述第二USB接口电路、所述USB集线器及所述第二控制器连接;
    所述USB集线器包括输入输出接口,所述USB集线器的输入输出接口用于与所述第二控制器及所述诊断设备连接。
  4. 根据权利要求3所述的车辆通信设备,其特征在于,
    所述切换电路包括第一切换开关和第二切换开关,所述第一切换开关包括第一控制端、第一端、第二端及第三端,所述第二切换开关包括第二控制端、第四端、第五端及第六端;
    所述USB集线器还包括第一扩展接口及第二扩展接口;
    所述第一切换开关的第一端与所述第一USB接口电路连接,所述第一切换 开关的第二端与所述USB集线器的第一扩展接口连接,所述第一切换开关的第三端与所述第二切换开关的第六端连接,所述第二切换开关的第四端与所述第二USB接口电路连接,所述第二切换开关的第五端与所述USB集线器的第二扩展接口连接,所述第一切换开关的第一控制端及所述第二切换开关的第二控制端均与所述第二控制器连接。
  5. 根据权利要求4所述的车辆通信设备,其特征在于,所述第二控制器还用于:
    检测所述USB集线器的输入输出接口的电压;
    在检测到所述USB集线器的输入输出接口的电压为第一预设电压时,控制所述第二USB接口电路工作在设备模式,并且,向所述第一切换开关的第一控制端输出第一控制信号,以导通所述第一切换开关的第一端与第二端之间的连接,以及,向所述第二切换开关的第二控制端输出第二控制信号,以导通所述第二切换开关的第四端和第五端之间的连接;
    在检测到所述USB集线器的输入输出接口的电压为第二预设电压时,控制所述第一USB接口工作在主模式,并且,向所述第一切换开关的第一控制端输出第三控制信号,以导通所述第一切换开关的第一端和第三端之间的连接,以及,向所述第二切换开关的第二控制端输出第四控制信号,以导通所述第二切换开关的第四端与第六端之间的连接。
  6. 根据权利要求1所述的车辆通信设备,其特征在于,
    所述测量单元包括万用表电路、信号发生电路及示波器电路;
    所述万用表电路与所述第一控制器连接,所述万用表电路用于对车辆的被测部件或电路进行测量,得到万用表测量数据;
    所述信号发生电路与所述第一控制器连接,所述信号发生电路用于在所述第一控制器的驱动下,产生模拟波形信号,所述模拟波形信号用于施加在车辆的被测部件或电路;
    所述示波器电路与所述第一控制器连接,所述示波器电路用于对车辆的被测部件或电路进行测量,得到示波器测量数据。
  7. 根据权利要求6所述的车辆通信设备,其特征在于,所述万用表电路包括表笔、通道选择电路及万用表专用芯片;
    所述表笔用于连接车辆的被测部件或电路,以对所述被测部件或电路进行测量;
    所述通道选择电路分别与所述表笔及所述第一控制器连接,所述通道选择电路用于根据所述第一控制器发送的通道选择信号,切换至对应的测试通道进行测试,得到所述表笔基于所述对应的测试通道传输的测试信号;
    所述万用表专用芯片分别与所述通道选择电路及所述第一控制器连接,所 述万用表专用芯片用于根据所述测试信号,得到万用表测量数据并传输给所述第一控制器。
  8. 根据权利要求6所述的车辆通信设备,其特征在于,所述示波器电路包括探针及模数转换电路;
    所述探针用于连接车辆的被测部件或电路,以对所述被测部件或电路进行测量;
    所述模数转换电路分别与所述探针及所述第一控制器连接,所述模数转换电路用于接收所述探针传输的检测模拟波形信号,并且根据所述检测模拟波形信号,得到检测数字波形信号并传输给所述第一控制器。
  9. 根据权利要求1所述的车辆通信设备,其特征在于,所述第一通信模组包括第一WiFi模块、以太网模块或第三USB接口电路;
    所述第一WiFi模块、所述以太网模块或所述第三USB接口电路与所述第一控制器连接。
  10. 根据权利要求9所述的车辆通信设备,其特征在于,所述第一控制器还用于:
    检测所述第一USB接口电路的输入电压;
    在检测到所述第一USB接口电路的输入电压为第三预设电压时,控制所述第一WiFi模块、所述以太网模块或所述第三USB接口电路的通信通道关闭;
    在检测到所述第一USB接口电路的输入电压为第四预设电压时,控制所述第一WiFi模块、所述以太网模块或所述第三USB接口电路的通信通道开启。
  11. 根据权利要求1至10任一项所述的车辆通信设备,其特征在于,
    所述车辆通信电路包括诊断接口及协议转换模块;
    所述诊断接口用于分别与所述协议转换模块、所述第二控制器及车辆的OBD接头连接,所述诊断接口用于接收所述车辆的电子控制单元发送过来的诊断数据,并基于与所述第二控制电路的特定通信连接,将所述诊断数据转换成基于所述特定通信连接的通信协议下的诊断数据并传输给所述第二控制器;
    所述协议转换模块分别与所述诊断接口及所述第二控制器连接,所述协议转换模块用于将所述第二控制器传输过来的数据转换成特定通信协议下的数据,以使所述车辆的电子控制单元能够识别,或者,将所述诊断接口传输过来的数据转换成特定协议下的数据,以使所述第二控制器能够识别。
  12. 根据权利要求1至10任一项所述的车辆通信设备,其特征在于,所述第二通信模组包括第二WiFi模块;
    所述第二WiFi模块与所述第二控制器连接,所述第二WiFi模块用于建立 所述第二控制器与所述诊断设备之间的WiFi通信连接。
  13. 根据权利要求12所述的车辆通信设备,其特征在于,所述第二通信模组还包括蓝牙模块;
    所述蓝牙模块与所述第二控制器连接,所述蓝牙模块用于建立所述第二控制器与所述诊断设备之间的蓝牙通信连接。
  14. 一种WiFi连接方法,其特征在于,应用于如权利要求9或12所述的车辆通信设备,所述方法包括:
    通过所述第一WiFi模块或所述第二WiFi模块接收终端设备发送的WiFi AP热点信息、认证密码和连接请求;
    基于所述终端设备的认证密码和连接请求,生成应答信息并通过所述第一WiFi模块或所述第二WiFi模块发送给所述终端设备,以使所述终端设备根据所述应答信息,向所述第一WiFi模块或所述第二WiFi模块发送通信服务请求,并且,将所述终端设备的WiFi AP热点信息存储在预设热点信息列表;
    接收所述终端设备发送的通信服务请求时,控制所述第一WiFi模块或所述第二WiFi模块的WiFi AP模式关闭,同时控制所述第一WiFi模块或所述第二WiFi模块的WiFi STA模式开启;
    查询所述预设热点信息列表,若从所述预设热点列表查询到所述终端设备的WiFi AP热点信息,控制所述第一WiFi模块或所述第二WiFi模块与所述终端设备的WiFi AP热点连接,若未查询到,控制所述第一WiFi模块或所述第二WiFi模块的WiFi STA模式关闭,同时控制所述第一WiFi模块或所述第二WiFi模块的WiFi AP模式开启。
  15. 一种车辆诊断系统,其特征在于,包括:
    如权利要求1至13任一项所述的车辆通信设备;以及
    诊断设备,所述诊断设备用于通过所述车辆通信设备对车辆进行诊断。
PCT/CN2022/086549 2021-05-12 2022-04-13 车辆通信设备、WiFi连接方法及车辆诊断系统 WO2022237438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110518232.6 2021-05-12
CN202110518232.6A CN113242532B (zh) 2021-05-12 2021-05-12 车辆通信设备、WiFi连接方法及车辆诊断系统

Publications (1)

Publication Number Publication Date
WO2022237438A1 true WO2022237438A1 (zh) 2022-11-17

Family

ID=77133718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086549 WO2022237438A1 (zh) 2021-05-12 2022-04-13 车辆通信设备、WiFi连接方法及车辆诊断系统

Country Status (2)

Country Link
CN (1) CN113242532B (zh)
WO (1) WO2022237438A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866640A (zh) * 2021-09-03 2021-12-31 深圳市道通合创新能源有限公司 一种电池包检测连接装置和电池包检测系统
CN114387711A (zh) * 2022-01-21 2022-04-22 深圳市道通科技股份有限公司 智能钥匙的控制方法、智能钥匙及车辆系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084088A1 (en) * 2014-03-06 2017-03-23 Robert Bosch Gmbh Electronic unit for a vehicle communication interface
CN107889076A (zh) * 2017-10-26 2018-04-06 深圳市元征软件开发有限公司 车辆诊断方法及车辆诊断仪
CN108476460A (zh) * 2016-12-09 2018-08-31 华为技术有限公司 建立热点连接的方法和终端设备
CN111273641A (zh) * 2020-03-04 2020-06-12 上海育宏电子科技有限公司 一种车辆远程诊断连接装置
US20210012587A1 (en) * 2018-01-25 2021-01-14 Autel Intelligent Technology Corp., Ltd. Automobile diagnostic method, apparatus and vehicle communication interface
CN112291787A (zh) * 2019-07-24 2021-01-29 杭州萤石软件有限公司 一种网络连接方法、装置及系统
CN112423266A (zh) * 2019-08-20 2021-02-26 广州汽车集团股份有限公司 一种车辆诊断方法、装置及汽车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227677A (zh) * 2017-12-29 2018-06-29 深圳市汇川技术股份有限公司 车辆状态监测系统及方法
CN208968830U (zh) * 2018-09-28 2019-06-11 深圳市道通科技股份有限公司 一种上位机及汽车诊断系统
KR102141821B1 (ko) * 2018-12-10 2020-08-06 한국교통안전공단 자동차 진단 통합시스템
CN210895121U (zh) * 2019-10-24 2020-06-30 深圳市道通科技股份有限公司 一种汽车诊断设备及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084088A1 (en) * 2014-03-06 2017-03-23 Robert Bosch Gmbh Electronic unit for a vehicle communication interface
CN108476460A (zh) * 2016-12-09 2018-08-31 华为技术有限公司 建立热点连接的方法和终端设备
CN107889076A (zh) * 2017-10-26 2018-04-06 深圳市元征软件开发有限公司 车辆诊断方法及车辆诊断仪
US20210012587A1 (en) * 2018-01-25 2021-01-14 Autel Intelligent Technology Corp., Ltd. Automobile diagnostic method, apparatus and vehicle communication interface
CN112291787A (zh) * 2019-07-24 2021-01-29 杭州萤石软件有限公司 一种网络连接方法、装置及系统
CN112423266A (zh) * 2019-08-20 2021-02-26 广州汽车集团股份有限公司 一种车辆诊断方法、装置及汽车
CN111273641A (zh) * 2020-03-04 2020-06-12 上海育宏电子科技有限公司 一种车辆远程诊断连接装置

Also Published As

Publication number Publication date
CN113242532B (zh) 2023-05-12
CN113242532A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022237438A1 (zh) 车辆通信设备、WiFi连接方法及车辆诊断系统
WO2021088767A1 (zh) 一种汽车诊断设备、系统及方法
WO2022184069A1 (zh) 汽车总线故障分析方法、诊断设备及总线故障分析系统
CN102608537B (zh) 一种馈网型大功率电池测试装置
CN106656654B (zh) 一种网络故障诊断方法及故障诊断装置
CN105223944A (zh) 一种适配obd ii接口和自适应多种汽车总线和诊断协议的车辆数据采集设备
CN106341294B (zh) 便携式mvb协议分析设备及mvb数据处理方法
WO2020135863A1 (zh) 车辆中的电子控制单元的扫描方法及其汽车诊断设备
CN109873733B (zh) 汽车总线通信方法及系统、远程终端、汽车诊断设备
CN104568459A (zh) Obd智能设备及其测试方法、系统和ecu模拟器
CN102307231A (zh) 一种远程诊断仪装置及其工作系统
WO2022267828A1 (zh) 蓄电池的连接器、蓄电池的检测系统及方法
CN103425124A (zh) 基于电流检测的汽车电器连接性检测装置及方法
US20220234602A1 (en) Automobile diagnosis device, system and method
CN104133428A (zh) 一种控制电气设备的智能控制方法
CN109585948B (zh) 汽车锂电池电芯分布式检测系统和方法以及测量模块
CN108444517B (zh) 便携式多功能仪表测试负载试验箱及仪表检测方法
CN210895123U (zh) 一种汽车诊断设备及系统
CN117560310A (zh) 车载网络can一致性测试装置及方法
CN210895121U (zh) 一种汽车诊断设备及系统
WO2022134501A1 (zh) 实车总线数据远端克隆系统及方法
CN205427060U (zh) 电能回馈型电动汽车直流充电设备的测试装置
CN115220945A (zh) 基于树莓派的车辆检测设备、方法、车辆及存储介质
CN208559238U (zh) 一种基于电动汽车整车can网络的上位机系统
CN110687890A (zh) 一种柴油车自动化下线chkpal的使用方法及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806408

Country of ref document: EP

Kind code of ref document: A1