WO2024050959A1 - 移动式电池状态检测设备、系统和方法 - Google Patents

移动式电池状态检测设备、系统和方法 Download PDF

Info

Publication number
WO2024050959A1
WO2024050959A1 PCT/CN2022/131146 CN2022131146W WO2024050959A1 WO 2024050959 A1 WO2024050959 A1 WO 2024050959A1 CN 2022131146 W CN2022131146 W CN 2022131146W WO 2024050959 A1 WO2024050959 A1 WO 2024050959A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
detection
module
parameters
Prior art date
Application number
PCT/CN2022/131146
Other languages
English (en)
French (fr)
Inventor
陈麒米
滕国鹏
王超立
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Publication of WO2024050959A1 publication Critical patent/WO2024050959A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • This application relates to the technical field of battery detection, and specifically to a mobile battery status detection device, system and method.
  • the performance of the power battery system directly affects the performance of the entire vehicle.
  • the related technology is usually based on the battery parameter information stored in the battery management system (Battery Management System, BMS) and analyzed through manual experience, or the data of the battery pack is read through a multimeter for analysis. , the above method will lead to low efficiency in data reading and fault analysis of the battery pack.
  • BMS Battery Management System
  • this application provides a battery communication device, status detection equipment, system and method, which can solve the problem of low efficiency in data reading and fault analysis of the battery pack when a communication or BMS failure occurs in the battery pack of the power battery system. technical issues.
  • this application provides a battery communication device, including: an electrical performance detection module, a signal simulation module, a relay module and a communication module; the electrical performance detection module is used to send a signal to the battery pack under test based on the communication module. Send electrical performance detection parameters, and receive response parameters corresponding to the electrical performance detection parameters; the signal simulation module is used to send analog signal detection parameters to the battery pack to be tested based on the communication module, and receive the simulation Response parameters corresponding to the signal detection parameters; the relay module is configured to send relay detection parameters to the battery pack to be tested based on the communication module, and receive response parameters corresponding to the relay detection parameters.
  • the electrical performance detection module, the signal simulation module, the relay module and the communication module are integrated into a battery communication device. Based on the battery communication device, detection parameters are sent to the battery pack to be tested and responses corresponding to the detection parameters are received. Parameters are used to determine whether the battery pack or BMS is faulty. The data and fault codes of the battery pack can be read without occupying the dedicated battery pack analysis channel of the production line, improving the efficiency of battery pack data reading and fault detection.
  • the electrical performance detection module includes a high-voltage interface and a high-voltage interlock interface; the high-voltage interface is used to connect high-voltage power to the battery pack to be tested; the high-voltage interlock interface is used for diagnosis Whether the high-voltage interlock function status of the electrical device where the battery pack to be tested is normal.
  • the high-voltage interface is used to connect high-voltage power to the battery pack to be tested; the high-voltage interlock interface is used for diagnosis Whether the high-voltage interlock function status of the electrical device where the battery pack to be tested is normal.
  • a high-voltage test environment can be provided for the battery pack to be tested.
  • By setting the high-voltage interlock interface it can be determined whether the high-voltage interlock detection of the battery management system in the battery pack is normal.
  • the detection method has few limitations. , high universality.
  • the electrical performance detection module includes: a current detection unit, used to diagnose whether the current sensor in the battery pack to be tested is working normally according to the current parameter information in the response parameter; and/or, A temperature detection unit is used to monitor the temperature in the battery pack to be tested.
  • a current detection unit used to diagnose whether the current sensor in the battery pack to be tested is working normally according to the current parameter information in the response parameter
  • a temperature detection unit is used to monitor the temperature in the battery pack to be tested.
  • the signal simulation module includes at least one of the following: a power on and off simulation unit, configured to send a power on and off analog signal to the battery pack under test based on the communication module, and receive the power on and off analog signal. Corresponding response parameters; a wake-up simulation unit, configured to send a wake-up simulation signal to the battery pack to be tested based on the communication module, and receive response parameters corresponding to the wake-up simulation signal; a collision simulation unit, configured to based on the communication The module sends a collision simulation signal to the battery pack to be tested, and receives response parameters corresponding to the collision simulation signal; in this embodiment, by setting a power on and off simulation unit, it can effectively determine whether the power on and off function of the battery pack under test is normal. By setting the wake-up simulation unit, you can effectively test whether the power-based wake-up function of the battery pack is normal. By setting the collision simulation unit, you can effectively judge whether the function of the electrical device where the battery pack is located is normal when it collides.
  • the relay module includes a relay interface and a relay drive control interface; the relay interface is used to detect that the relay is connected to the battery pack to be tested; the relay drive control interface is used to control the battery pack to be tested. Detect the conduction and shutdown of the relay driving circuit in the battery pack; wherein, the relay driving circuit is used to control the closing and opening of the detection relay.
  • the relay interface and the relay drive control interface it can be effectively determined whether the BMS in the battery pack to be tested can normally control the closing of the relay (such as a high-voltage relay).
  • the above-mentioned battery communication device further includes a control module; the control module is respectively connected to the electrical performance detection module, the signal simulation module, and the relay module; the control module is used to control the detection parameters. Parameter input value.
  • the control module is used to control the detection parameters. Parameter input value.
  • an embodiment of the present invention provides a mobile battery status detection device, including a battery pack simulation device and the battery communication device in the above embodiment; the battery pack simulation device communicates with the battery communication device through the communication module Connected; the battery pack simulation device is configured to receive detection parameters sent by the battery communication device and output response parameters corresponding to the detection parameters.
  • the battery pack to be tested is simulated by the battery pack simulation device, and various electrical parameters of the battery pack to be tested are output.
  • the performance and fault detection of the battery to be tested can be completed without moving the battery pack to be tested, which reduces It reduces the detection cost, improves the detection efficiency and shortens the detection cycle.
  • the battery pack simulation device includes a battery management system and a battery equivalent circuit model.
  • One end of the battery management system is connected to the battery equivalent circuit model, and the other end of the battery management system is connected to the communication Module; the battery management system is configured to receive detection parameters sent by the battery communication device, transmit the detection parameters to the battery equivalent circuit model; receive response parameters returned by the battery equivalent circuit model, and The response parameters are transmitted to the communication module; the battery equivalent circuit model is used to respond based on the detection parameters and output the response parameters to the battery management system.
  • the battery equivalent circuit model is used to simulate various electrical parameters of the battery pack to be tested, which can fully and accurately simulate the performance of the battery pack to be tested, reduce the detection cost, improve the battery pack detection efficiency, and shorten the time detection cycle.
  • the battery equivalent circuit model includes at least one of the following: a state of charge SOC management module for simulating and outputting the SOC value of each single cell in the battery pack to be tested; a voltage management module, for simulating and outputting the voltage of each single cell in the battery pack to be tested; a temperature management module for simulating and outputting the temperature of each single cell in the battery pack to be tested; and a balancing module for adjusting a or State parameters of a plurality of single cells, wherein the state parameters include at least one of SOC value, voltage and temperature.
  • various status parameters of the battery pack to be tested can be simulated and adjusted to improve the quality and efficiency of fault analysis.
  • an embodiment of the present invention provides a battery status detection system, including a host computer and the battery status detection device in the above embodiment; the host computer is connected to the communication module in the battery status detection device; The host computer is configured to send detection control instructions to the battery status detection device, and receive status parameters of the battery pack to be tested.
  • the host computer can intuitively and conveniently obtain various electrical parameters of the battery pack to be tested and determine the fault of the battery pack or BMS, and it is also convenient for unified operation and management of each module in the battery status detection device. .
  • an embodiment of the present invention provides a battery status detection method, which is applied to the battery status detection system in the above embodiment.
  • the method includes: sending a detection control instruction to the battery communication device to enable the battery communication
  • the device obtains the status parameters of the battery pack to be tested from the battery pack simulation device; receives the status parameters sent by the battery communication device, and determines whether there is an abnormality in the battery pack simulation device based on the status parameters; after determining that there is an abnormality
  • the current fault type of the battery pack simulation device is determined and displayed.
  • the host computer controls the battery communication device to obtain the status parameters of the battery pack to be tested from the battery pack simulation device, and determines whether there is a fault in the battery based on the received response parameters. When a fault occurs, the corresponding fault can be displayed. type, which greatly improves the efficiency of data reading and fault analysis of battery packs.
  • sending a detection control instruction to the battery communication device so that the battery communication device obtains the status parameters of the battery pack to be tested from the battery pack simulation device includes: sending a target detection working condition corresponding to A detection instruction is sent to the battery pack simulation device, so that the battery pack simulation device determines a target circuit model corresponding to the target detection working condition; and receives state parameters of the target circuit model.
  • sending a target detection working condition corresponding to A detection instruction is sent to the battery pack simulation device, so that the battery pack simulation device determines a target circuit model corresponding to the target detection working condition; and receives state parameters of the target circuit model.
  • the method further includes: determining the current fault code of the battery pack simulation device; and from the preset mapping relationship between fault codes and fault information, Obtain the current fault information corresponding to the current fault code; display the current fault information.
  • the current fault information of the battery pack under test is obtained through the fault code, and the fault information of the battery pack under test can be obtained automatically and conveniently, which greatly improves the efficiency of fault analysis of the battery pack.
  • the embodiment of the present invention provides a battery status detection device, including:
  • a sending unit configured to send a detection control instruction to the battery communication device, so that the battery communication device obtains the status parameters of the battery pack to be tested from the battery pack simulation device;
  • a receiving unit configured to receive the status parameter sent by the battery communication device, and determine whether there is an abnormality in the battery pack simulation device based on the status parameter;
  • a determination display unit is used to determine and display the current fault type of the battery pack simulation device when it is determined that an abnormality exists.
  • an embodiment of the present invention provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, Implement the method described in the fourth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the method described in the fourth aspect is implemented.
  • Figure 1 is a schematic structural diagram of a battery communication device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another battery communication device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another battery communication device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another battery communication device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another battery communication device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another battery communication device provided by an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a battery status detection device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another battery status detection device provided by an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a battery status detection system provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another battery status detection system provided by an embodiment of the present invention.
  • Figure 11 is a flow chart of a battery status detection method provided by an embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of a battery status detection device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . In fields such as electric transportation supply, military equipment, aerospace, etc., batteries are usually used to provide power.
  • a battery communication device can be formed by integrating multiple modules or interfaces for data detection of battery packs.
  • the electrical performance detection parameters are sent to the battery pack to be tested through a battery communication device including an electrical performance detection module, a signal simulation module, a relay module and a communication module, and response parameters corresponding to the electrical performance detection parameters are received.
  • the above design scheme not only eliminates the need to occupy a dedicated battery pack analysis channel in the production line, not only improves the efficiency of battery pack data reading and fault analysis, but also improves the mobility of battery pack testing equipment.
  • the battery communication device provided by the embodiment of the present invention can be used to detect any battery.
  • the battery can be a single cell, or a battery pack or battery pack composed of multiple single cells.
  • the electrical equipment where the battery is located that can be detected using the battery communication device provided by the embodiment of the present invention can be, but is not limited to, electric toys, electric tools, battery cars, electric cars, ships, spacecraft, etc. with batteries.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the following embodiment takes the battery communication device 10 as an example to illustrate a battery communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a battery communication device 10 provided by some embodiments of the present application.
  • the battery communication device 10 includes: an electrical performance detection module 102 , a signal simulation module 104 , a relay module 106 and a communication module 108 .
  • the electrical performance detection module 102 is used to send electrical performance detection parameters to the battery pack to be tested based on the communication module, and receive response parameters corresponding to the electrical performance detection parameters;
  • the signal simulation module 104 is used to send electrical performance detection parameters to the battery pack to be tested based on the communication module 108.
  • the package sends the analog signal detection parameters, and receives the response parameters corresponding to the analog signal detection parameters; wherein the analog signal detection parameters include at least one of a power on and off analog signal, a wake-up analog signal, and a collision analog signal; the relay module 106 is used based on The communication module 108 sends the relay detection parameters to the battery pack to be tested, and receives response parameters corresponding to the relay detection parameters.
  • the electrical performance testing parameters include battery temperature, current, voltage, state of charge (SOC), mass, size and specific heat capacity, as well as the convection heat transfer coefficient of the air and other parameters, such as the individual cells inside the battery pack.
  • Battery pack health status information such as core voltage, temperature of each temperature collection point inside the battery pack, total battery pack voltage, insulation resistance, cooling device inlet and outlet temperature, and battery pack real SOC.
  • the power-on and off analog signals here include but are not limited to, for example, the power on and off signals of the vehicle where the battery pack to be tested is located.
  • the wake-up analog signals include, but are not limited to, the wake-up analog signals of the vehicle where the battery pack to be tested is located.
  • the collision simulation signals include, but are not limited to For example, the signal generated after a collision of the vehicle where the battery pack to be tested is located.
  • the communication module 108 here includes, but is not limited to, a Control Unit Area Network (Controller Area Network, CAN) module.
  • CAN is a multi-host local network serial communication protocol developed to solve the data exchange between many electronic control units in modern automobiles.
  • the CAN bus connects the originally independent processing processes of multiple control units to each other through twisted pairs, optical cables, etc., thereby realizing information sharing between each control unit on two CAN buses, and each sub-unit realizing information on the same CAN bus. Interaction and transfer.
  • the CAN module consists of a CAN controller, a CAN transceiver, a data transmission line and a data transmission terminal.
  • the CAN controller is integrated inside the CAN module and receives data from the control unit microprocessor.
  • the CAN controller processes the data transmitted by the control unit microprocessor and passes it to the CAN transceiver; and the CAN controller can also It receives the data from the transceiver, processes it and then transmits it to the control unit microprocessor, thereby realizing the conversion between the differential signal on the CAN bus and the internal digital signal of the microprocessor.
  • the CAN transceiver is integrated inside the CAN module and has the functions of receiving, transmitting and data conversion at the same time. It converts the digital signal sent by the CAN controller into a bus differential signal and sends it out in a broadcast manner through the data transmission line. At the same time, it receives the bus differential signal sent from the data transmission line and converts it into a digital signal that can be recognized by the CAN control and then sends it to the CAN controller.
  • the data transmission line uses twisted pairs to reduce signal interference on the transmission line, namely CAN_H and CAN_L data lines.
  • the data transmission terminal is a resistor, which prevents signal reflection caused by the impedance mismatch between the transmitting end and the receiving end during the data transmission process from affecting the bus signal quality.
  • This resistor is usually a 120 ⁇ terminal resistor.
  • the communication module 108 also includes, for example, a Local Interconnect Network (LIN) module, an RS232 communication module or an RS485 communication module, etc., which are not limited in this embodiment of the present invention.
  • LIN Local Interconnect Network
  • RS232 communication module or an RS485 communication module, etc., which are not limited in this embodiment of the present invention.
  • LIN is an automotive communication protocol standard in low-cost networks. It is a functional supplement to various existing automotive networks.
  • the LIN standard includes transmission protocol specifications, transmission media specifications, development tool interface specifications and interfaces for software programming.
  • LIN improves In order to increase the flexibility of the system structure, LIN ensures the interoperability of network nodes in hardware and software, and can predict and obtain better electromagnetic compatibility EMC characteristics.
  • LIN complements the current multiple networks within vehicles and provides conditions for hierarchical networks within the vehicle, helping vehicles achieve better performance and reduce costs.
  • RS-232 is a serial data communication interface standard formulated by the Electronic Industry Alliance. The full name of the original number is EIA-RS-232 (RS232 for short). It is widely used in data communication equipment (DCE) and data terminals (Data Terminal Equipment (DTE) connection. The RS232 interface is often used in instrumentation equipment, PLC and embedded fields as a debugging port.
  • RS485 is also known as TIA-485-A, ANSI/TIA/EIA-485 or TIA/EIA-485. Is a standard that defines the electrical characteristics of drivers and receivers in balanced digital multipoint systems. This standard ensures that digital communication networks can effectively transmit signals even over long distances and with high electronic noise.
  • RS485 can be configured as a low-cost local network as well as multi-drop communication links.
  • the electrical performance detection module 102, the signal simulation module 104, the relay module 106 and the communication module 108 are integrated into the battery communication device 10. Based on the battery communication device 10, the detection parameters are sent to the battery pack to be tested and the corresponding detection parameters are received. The response parameters of the battery pack can be used to determine whether the battery pack or BMS is faulty. The data and fault codes of the battery pack can be read without occupying the dedicated analysis channel of the battery production line, which improves the efficiency of data reading and fault detection of the battery pack.
  • the electrical performance detection module 102 includes a high-voltage interface 1022 and a high-voltage interlock interface 1024; the high-voltage interface 1022 is used to connect the high-voltage power supply to the battery pack to be tested; the high-voltage interlock interface 1024 is used to Diagnose whether the high-voltage interlock function status of the electrical device where the battery pack to be tested is located is normal.
  • the high-voltage interface 1022 by setting the high-voltage interface 1022, high-voltage power supplies of different volts can be connected to the battery pack to be tested according to detection needs, and high-voltage detection parameters can be provided for the battery pack to be tested.
  • the high-voltage interlock interface 1024 can diagnose, for example, whether the high-voltage interlock function status of the vehicle where the battery pack under test is located is normal.
  • the embodiment of the present invention can provide a high-voltage test environment for the battery pack to be tested by setting a high-voltage interface.
  • a high-voltage interlock interface By setting the high-voltage interlock interface, it can be judged whether the high-voltage interlock detection of the battery management system in the battery pack is normal.
  • the detection method has small limitations and is generally used. High adaptability.
  • the electrical performance detection module 102 includes: a current detection unit 1026 and a temperature detection unit 1028 .
  • the current detection unit 1026 is used to diagnose whether the current sensor in the battery pack to be tested is working normally according to the current parameter information in the response parameter; the temperature detection unit 1028 is used to monitor the temperature in the battery pack to be tested. .
  • the current detection unit 1026 includes but is not limited to a Current-Voltage-Temperature (IVT) sensor interface, which in the embodiment of the present invention is mainly used for current detection during the charging and discharging process of the battery pack, and for detecting Check whether the voltage and temperature monitoring functions inside the battery pack are normal.
  • the temperature detection unit 1028 includes but is not limited to a negative temperature coefficient thermistor (Negative Temperature Coefficient, NTC). The internal temperature of the battery pack to be tested is monitored through the NTC, where the resistance of the NTC decreases as the temperature increases. Connecting to NTC can simulate the temperature monitoring function of the vehicle where the battery pack under test is located.
  • NTC Negative Temperature Coefficient
  • the electrical performance detection module 102 includes: a high-voltage interface 1022 , a high-voltage interlock interface 1024 , a current detection unit 1026 and a temperature detection unit 1028 .
  • the current detection unit 1026 by setting the current detection unit 1026, it can be accurately determined whether the current sensor in the battery pack to be tested is working normally, and by setting the temperature detection unit 1028, the temperature in the battery pack to be tested can be monitored in real time.
  • the signal simulation module 104 includes at least one of the following: a power up and down simulation unit (not shown), used to send power up and down analog signals to the battery pack under test based on the communication module, and receive power up and down analog signals. Corresponding response parameters; a wake-up simulation unit (not shown), used to send a wake-up simulation signal to the battery pack under test based on the communication module, and receive response parameters corresponding to the wake-up simulation signal; a collision simulation unit (not shown), used to Based on the communication module, a collision simulation signal is sent to the battery pack to be tested, and response parameters corresponding to the collision simulation signal are received.
  • the power on and off simulation unit by setting the power on and off simulation unit, it can be effectively judged whether the power on and off functions of the battery pack to be tested are normal.
  • the wake-up simulation unit By setting the wake-up simulation unit, it can be effectively judged whether the power wake-up function of the battery pack to be tested is normal.
  • the simulation unit can effectively determine whether the function of the electrical device where the battery pack under test is located is normal when it collides.
  • the relay module 106 includes a relay interface 1062 and a relay drive control interface 1064; the relay interface 1062 is used to connect the detection relay to the waiting Test the battery pack; the relay drive control interface 1064 is used to control the on and off of the relay drive circuit in the battery pack to be tested; wherein the relay drive circuit is used to control the on and off of the detection relay. open.
  • the relay drive circuit in the embodiment of the present invention includes a high-side and low-side relay drive circuit inside the BMS.
  • the relay interface 1062 checks whether the relay function of the battery pack to be tested is normal by connecting to an external relay.
  • the relay drive control interface 1064 is used to control the on and off of the high and low side relay drive circuits inside the BMS in the battery pack, thereby realizing the closing and opening of external relays.
  • the embodiment of the present invention can effectively determine whether the BMS in the battery pack to be tested can normally control the closing of the relay (such as a high-voltage relay).
  • the above-mentioned battery communication device 10 also includes a control module 110; the control module 110 is connected to the electrical performance detection module 102, the signal simulation module 104, and the relay module 106 respectively; the control module 110 is Parameter input value for controlling detection parameters.
  • the parameter values of the detection parameters sent by the electrical performance detection module 102 or the signal simulation module 104 to the battery pack to be tested can be input through the control module 110.
  • the control module 110 is set in the battery communication device 10,
  • the parameter values of the detection parameters can be adjusted flexibly and conveniently, and the battery packs to be tested can be tested under various working conditions, thereby improving the fault detection and analysis efficiency and compatibility of the battery packs.
  • the present application also provides a battery status detection device 1, including a battery pack simulation device 20 and a battery communication device 10 in any of the above solutions.
  • the battery pack simulation device 20 is connected through the communication module 108 in the battery communication device 10.
  • the battery pack simulation device 20 is used to receive detection parameters sent by the battery communication device 10 and output response parameters corresponding to the detection parameters. .
  • the battery pack simulation device 20 is used to simulate various electrical parameters of the battery pack to be tested, such as simulating the SOC value, voltage and temperature of each single cell in the battery pack to be tested; it should be noted that the battery pack simulation The device 20 includes, but is not limited to, an electrochemical model or an equivalent circuit model.
  • the electrochemical model explains in principle the dynamic mass transfer process between the positive and negative electrodes of lithium batteries with high accuracy.
  • the equivalent circuit model has clear principles, simple calculation and linear characteristics. It is easy to estimate and predict the status of the battery, and is easy to implement in real-time systems.
  • the battery pack under test is simulated by the battery pack simulation device, and various electrical parameters of the battery pack under test are output. The performance and fault detection of the battery under test can be completed without moving the battery pack under test. The detection cost is reduced, the detection efficiency is improved, and the detection cycle is shortened.
  • the battery pack simulation device 20 includes a battery management system 202 and a battery equivalent circuit model 204.
  • One end of the battery management system 202 is connected to the battery.
  • Equivalent circuit model 204 the other end of the battery management system 202 is connected to the communication module 108; the battery management system 202 is used to receive the detection parameters sent by the battery communication device 10, and transmit the detection parameters to The battery equivalent circuit model 204 receives the response parameters returned by the battery equivalent circuit model 204 and transmits the response parameters to the communication module 108; the battery equivalent circuit model 204 is used to detect parameters and output the response parameters to the battery management system 202 .
  • the battery management system 202 includes a battery monitoring unit (Cell Monitor Unit, CMU) and a battery management unit (Battery Management Unit, BMU); among them, the CMU is responsible for measuring parameters such as voltage, current, and temperature of the battery, as well as balancing, etc. Function, when CMU measures these data, it transmits the data to BMU.
  • the BMU is responsible for evaluating the data transmitted by the CMU. If the data is abnormal, it will protect the battery, issue a request to reduce the current, or cut off the charge and discharge path to prevent the battery from exceeding the permitted usage conditions. It also manages the battery's power and temperature.
  • the battery equivalent circuit model 204 is a battery equivalent system constructed based on the relationship between terminal voltage, internal resistance, capacitance and current. By establishing the battery equivalent circuit model 204, the time-varying curve of the battery's external voltage can be directly simulated.
  • the equivalent circuit model in the battery equivalent circuit model 204 can be written in the form of a state space equation, which is convenient for online real-time estimation. According to the internal device composition and circuit structure, it can be subdivided into internal resistance model, Thevenin model, PNGV model, Massimo Geralol model, etc.
  • the internal resistance model is the simpler model among all equivalent circuit models. This model regards the battery as Composed of an ideal voltage source and a resistor in series, the internal resistance model is suitable for battery simulation analysis that does not require high accuracy.
  • the Thevenin model also called the first-order RC model, adds an RC parallel circuit to the internal resistance model, which can well express the nonlinear characteristics of the battery.
  • the PNGV battery model is based on the Thevenin model with an additional capacitor connected in series. This capacitor is used to represent the error accumulated in the open circuit voltage as the current accumulates during battery operation, and has higher accuracy.
  • the Massimo Geraolo model is improved on the basis of the Thevenin model, fully considering the nonlinearity of the battery model.
  • the model consists of the open circuit voltage E, ohmic internal resistance R0 and a multi-section RC parallel circuit.
  • the Massimo Geraolo model further improves the accuracy of simulating the dynamic and static characteristics of the battery by increasing the order of the RC parallel loop. It also takes into account the polarization reaction, ohmic and current accumulation effects during the battery discharge process.
  • the RC parallel connection in this model is The more loops there are, the higher the order of the model obtained, which can simulate the dynamic and static characteristics of the battery with higher accuracy.
  • the battery equivalent circuit model 204 includes but is not limited to: internal resistance model, Thevenin model, PNGV model, and multi-order RC equivalent circuit models such as Massimo Geraolo.
  • the battery equivalent circuit model 204 can simulate multiple electrical parameters such as the SOC value, voltage, and temperature of each single cell in the battery pack to be tested.
  • the battery equivalent circuit model is used to simulate various electrical parameters of the battery pack to be tested, which can comprehensively and accurately simulate the performance of the battery pack to be tested, reduce the detection cost, and improve the battery pack detection efficiency and applicability.
  • the application scenarios are wide and the accuracy is high.
  • the battery equivalent circuit model includes at least one of the following:
  • the state-of-charge SOC management module is used to simulate and output the SOC value of each single cell in the battery pack to be tested;
  • the voltage management module is used to simulate and output the voltage of each single cell in the battery pack to be tested
  • the temperature management module is used to simulate and output the temperature of each single cell in the battery pack to be tested
  • a balancing module is used to adjust state parameters of one or more single cells, where the state parameters include at least one of SOC value, voltage and temperature.
  • the battery equivalent circuit model is used to simulate and adjust various SOC values, voltage, temperature and other performance parameters of the battery pack to be tested, which can accurately and conveniently simulate the performance of the battery pack to be tested and reduce detection costs. And it can improve the battery pack detection efficiency.
  • the present application also provides a battery status detection system 3, including a host computer 2 and the battery status detection device 1 in the above embodiment; the host The host computer 2 is connected to the communication module 108 in the battery status detection device 1; the host computer 2 is used to send detection control instructions to the battery status detection device 1 and receive status parameters of the battery pack to be tested.
  • the host computer 2 can intuitively and conveniently obtain various electrical parameters of the battery pack to be tested and determine the fault of the battery pack or BMS, and facilitates unified operation and management of each module in the battery status detection device 1 .
  • this application also provides a battery status detection method, which is applied to the battery status detection system in the above embodiments, including the following steps:
  • the host computer 2 sends a detection control command to the battery communication device 10, so that the battery communication device 10 obtains the status parameters of the battery pack to be tested from the battery pack simulation device 20.
  • the host computer 2 receives the status parameter sent by the battery communication device 10, and determines whether there is an abnormality in the battery pack simulation device 20 based on the status parameter.
  • S1106 When the host computer 2 determines that there is an abnormality, it determines and displays the current fault type of the battery pack simulation device.
  • the host computer 2 sends a detection control instruction to the battery communication device 10 , the battery communication device 10 sends detection parameters to the battery pack simulation device 20 in response to the detection control instruction, and the battery pack simulation device 20 feedbacks a response based on the detection parameters.
  • the parameters are sent to the battery communication device 10.
  • the battery communication device 10 obtains the status parameters of the battery pack to be tested from the battery pack simulation device 20 and sends them to the host computer 2.
  • the host computer 2 determines whether the battery pack simulation device 20 exists based on the status parameters. abnormal. When it is determined that an abnormality exists, the current fault type of the battery pack simulation device is determined and displayed.
  • the fault type in the embodiment of the present invention includes but is not limited to identification through a diagnostic trouble code (Diagnostic Trouble Code, DTC), which is the unique identification of the fault type on the vehicle where the battery pack to be tested is located without disassembling the battery pack.
  • DTC Diagnostic Trouble Code
  • the BMU can perform fault self-diagnosis.
  • DTC is the "digital code" corresponding to different faults. When a fault occurs, a read DTC command can be sent to the BMU through the host computer 2 and returned to the ground through the BMU.
  • DTC fault codes can determine the specific fault type and specific information.
  • the standard DTC fault display code contains an indicator prefix and three numbers, such as "P0 ⁇ P3" (power fault code) and "U0 ⁇ U3" (network fault code), among which "P0" and "U0” are uniformly allocated and used by the standard Or reserved for use and cannot be assigned by the OEM etc.
  • Code categories are fault display codes and Hex value is the fault code in hexadecimal format.
  • fault code P1757 corresponds to the precharge circuit failure of the battery pack.
  • the fault code P0131 is the low current and voltage fault of the vehicle where the battery pack is located
  • U3003-62 is the battery voltage signal comparison fault.
  • sending a detection control instruction to the battery communication device so that the battery communication device obtains the status parameters of the battery pack to be tested from the battery pack simulation device includes:
  • the host computer 2 sends a detection command corresponding to the target detection working condition to the battery pack simulation device 20 so that the battery pack simulation device 20 determines the target circuit model corresponding to the target detection working condition; the host computer 2 receives the State parameters of the target circuit model.
  • the target detection working conditions here include but are not limited to different working conditions such as battery cell diving or the battery has not been tested for battery health (State Of Health, SOH) for more than a preset time; assuming that the battery cell is diving during the simulation.
  • SOH Battery Health
  • the host computer 2 sends a detection command corresponding to the occurrence of battery cell diving to the battery pack simulation device 20, so that the battery pack simulation device 20 determines the target circuit corresponding to the target detection working condition.
  • Model the target circuit model sends its own state parameters to the host computer 2 through the battery communication device 10.
  • the current fault type of the battery pack simulation device after determining and displaying the current fault type of the battery pack simulation device, it further includes: determining the current fault code of the battery pack simulation device; In the mapping relationship, current fault information corresponding to the current fault code is obtained; and the current fault information is displayed.
  • the host computer 2 determines that the current fault code of the battery pack simulation device is P1757, and the host computer 2 obtains the current fault information corresponding to the current fault code from the above table 1, which corresponds to the precharge circuit of the battery pack. Fault.
  • the current fault information is displayed on the host computer 2.
  • the current fault information of the battery pack under test is obtained through the fault code, and the fault information of the battery pack under test can be obtained automatically and conveniently, which greatly improves the efficiency of fault analysis of the battery pack.
  • the present application also provides a battery status detection system, including a terminal device including a host computer, communication equipment and a battery pack to be tested , the communication tooling and the internal BMU and CMU of the battery pack can form a battery pack data acquisition system, and then use the multi-channel adjustable external power supply module to form a complete host computer monitoring and data acquisition system; among them, the communication tooling inherits multiple sub-systems Module interfaces, including:
  • the data communication CAN module is used for data communication interaction with the BMU to obtain the status information, fault codes and data information of the battery pack stored in the BMU.
  • the power supply, wake-up and collision signal simulation interface is used to simulate the normal power on and off, wake-up and collision signal functions of the vehicle where the battery pack under test is located.
  • the high-side and low-side relay drive signal analog interface is used to control the on and off of the high-side and low-side relay drive circuits inside the BMU to achieve the closing and opening of the relay.
  • the high-voltage interlock interface can be used to simulate and diagnose the high-voltage interlock function status of the vehicle where the battery pack under test is located.
  • the high-voltage interface connects the battery pack under test through an external high-voltage power supply to realize the high-voltage detection function of the battery pack under test.
  • the relay interface is used to connect an external relay to the battery pack under test to complete the verification of the relay function.
  • the IVT interface is used to diagnose whether the current sensor in the battery pack under test is functioning normally by reading the data communication CAN module and sending message information.
  • the NTC interface is used to connect the battery pack under test to the NTC to simulate the temperature monitoring function of the vehicle where the battery pack under test is located.
  • the battery cell simulation string group and the external power supply module can form different types of battery equivalent circuit models, which can simulate a variety of vehicle operating conditions or fault conditions. There is no need to move the battery pack under test to achieve the same effect as when analyzing the entire battery pack under test, and it does not occupy the dedicated battery pack analysis channel in the production line. The mobility and analysis efficiency are greatly improved, and data analysis is It is more flexible with acquisition and has a richer variety of simulated working conditions.
  • Battery pack data analysis and fault code reading can be completed in the laboratory and after-sales end, and does not occupy the dedicated battery pack analysis of the production line.
  • Channel provides a convenient way to analyze the entire battery pack, improving the quality and efficiency of battery pack analysis.
  • An embodiment of the present invention also provides a battery status detection device, which is used to perform the battery status detection method provided by the above embodiments.
  • the device includes:
  • Sending unit 1202 configured to send detection control instructions to the battery communication device, so that the battery communication device obtains the status parameters of the battery pack to be tested from the battery pack simulation device;
  • the receiving unit 1204 is configured to receive the status parameter sent by the battery communication device, and determine whether there is an abnormality in the battery pack simulation device based on the status parameter;
  • the determination display unit 1206 is configured to determine and display the current fault type of the battery pack simulation device when it is determined that an abnormality exists.
  • the host computer 2 controls the battery communication device 10 to send detection parameters to the battery pack to be tested, and receives the response parameters corresponding to the detection parameters to determine whether the battery pack or BMS is faulty. It can be read without occupying the dedicated analysis channel of the production line. Get the data and fault codes of the battery pack to improve the efficiency of data reading and fault detection of the battery pack.
  • the detection method has small limitations and high universality.
  • the above-mentioned sending unit 1202 includes:
  • a sending module configured to send detection instructions corresponding to the target detection working conditions to the battery pack simulation device, so that the battery pack simulation device determines the target battery equivalent circuit model corresponding to the target detection working conditions;
  • a receiving module configured to receive state parameters of the target battery equivalent circuit model.
  • the battery status detection device provided by the above embodiments of the present application and the battery status detection method provided by the embodiments of the present invention are based on the same inventive concept, and have the same beneficial effects as the methods adopted, run or implemented by the applications stored therein.
  • Figure 13 is a logical structural block diagram of an electronic device according to an exemplary embodiment.
  • the electronic device 1300 may be an electronic device including an on-board controller of a host computer, a motor controller, a domain controller, etc. installed inside the electrical device, or a terminal connected to the battery communication device 10 through a wired or wireless network.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions.
  • the instructions can be executed by a battery processor to complete the charging method of the battery.
  • the method includes: sending Detecting control instructions to the battery communication device, so that the battery communication device obtains the status parameters of the battery pack to be tested from the battery pack simulation device; receiving the status parameters sent by the battery communication device, based on the status The parameters determine whether there is an abnormality in the battery pack simulation device; if it is determined that there is an abnormality, the current fault type of the battery pack simulation device is determined and displayed.
  • the above instructions can also be executed by the processor of the battery to complete other steps involved in the above exemplary embodiments.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an application/computer program product including one or more instructions, which can be executed by a processor of a battery to complete the above battery charging method.
  • the method includes: sending a detection control instruction to the battery communication device, so that the battery communication device obtains the status parameter of the battery pack to be tested from the battery pack simulation device; receiving the status parameter sent by the battery communication device, based on The status parameter determines whether there is an abnormality in the battery pack simulation device; if it is determined that there is an abnormality, the current fault type of the battery pack simulation device is determined and displayed.
  • the above instructions can also be executed by the processor of the battery to complete other steps involved in the above exemplary embodiments.
  • FIG. 13 is an example diagram of electronic device 1300.
  • the schematic diagram 13 is only an example of the electronic device 1300 and does not constitute a limitation of the electronic device 1300. It may include more or fewer components than shown, or some components may be combined, or different components may be used.
  • the electronic device 1300 may also include input and output devices, network access devices, buses, etc.
  • the so-called processor 1302 can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general processor can be a microprocessor or the processor 1302 can also be any conventional processor, etc.
  • the processor 1302 is the control center of the electronic device 1300 and uses various interfaces and lines to connect various parts of the entire electronic device 1300 .
  • the memory 1301 can be used to store computer-readable instructions.
  • the processor 1302 implements various functions of the electronic device 1300 by running or executing computer-readable instructions or modules stored in the memory 1301 and calling data stored in the memory 1301.
  • the memory 1301 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store data based on Data created using the electronic device 1300, etc.
  • the memory 1301 may include a hard disk, memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM) or other non-volatile/volatile storage devices.
  • smart memory card Smart Media Card, SMC
  • flash memory card Flash Card
  • at least one disk storage device flash memory device
  • read-only memory Read-Only Memory
  • RAM random access memory
  • the integrated modules of the electronic device 1300 are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the present invention implements all or part of the processes in the above embodiment methods, and can also use computer-readable instructions to instruct relevant hardware to complete the process.
  • the computer-readable instructions can be stored in a computer-readable storage medium, and the computer-readable instructions can be stored in a computer-readable storage medium. When executed by a processor, the computer readable instructions can implement the steps of each of the above method embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Secondary Cells (AREA)

Abstract

一种移动式电池状态检测设备、系统和方法。该移动式电池状态检测设备包括:电性能检测模块(102),信号模拟模块(104),继电器模块(106)和通信模块(108);电性能检测模块(102)用于基于通信模块(108)向待测电池包发送电性能检测参数,并接收电性能检测参数对应的响应参数;信号模拟模块(104)用于基于通信模块(108)向待测电池包发送模拟信号检测参数,并接收模拟信号检测参数对应的响应参数;继电器模块(106)用于基于通信模块(108)向待测电池包发送继电器检测参数,并接收继电器检测参数对应的响应参数。该设备可以解决动力电池系统的电池包发生故障时,电池包的数据读取和故障分析的效率较低的技术问题。

Description

移动式电池状态检测设备、系统和方法
相关申请的交叉引用
本申请要求享有于2022年9月6日提交的名称为“移动式电池状态检测设备、系统和方法”的中国专利申请202211081501.8的优先权,该申请的全部内容通过引用并入本文中
技术领域
本申请涉及电池检测技术领域,具体涉及一种移动式电池状态检测设备、系统和方法。
背景技术
动力电池系统作为新能源汽车的核心组成部分,其性能优劣直接影响到整车的使用性能。当动力电池系统的电池包发生故障时,相关技术中通常基于电池管理系统(Battery Management System,BMS)存储的电池参数信息并通过人工经验进行分析,或通过万用表来读取电池包的数据进行分析,上述方式会导致电池包的数据读取和故障分析的效率较低。
发明内容
鉴于上述问题,本申请提供一种电池通信装置、状态检测设备、系统和方法,能够解决动力电池系统的电池包发生通信类或者BMS故障时,电池包的数据读取和故障分析的效率较低的技术问题。
第一方面,本申请提供了一种电池通信装置,包括:电性能检测模块,信号模拟模块,继电器模块和通信模块;所述电性能检测模块,用于基于所述通信模块向待测电池包发送电性能检测参数,并接收所述电性能检测参数对应的响应参数;所述信号模拟模块,用于基于所述通信模块向所述待测电池包发送模拟信号检测参数,并接收所述模拟信号检测参数对应的响应参数;所述继电器模块,用于基于所述通信模块向所述待测电池包发送继电器检测参数,并接 收所述继电器检测参数对应的响应参数。
本发明实施例的技术方案中,通过将电性能检测模块,信号模拟模块继电器模块和通信模块集成为电池通信装置,基于电池通信装置向待测电池包发送检测参数,并接收检测参数对应的响应参数来判断电池包或BMS是否出现故障,无需占用产线的专用电池包分析通道即可读取电池包的数据和故障代码,提高电池包的数据读取和故障检测的效率。
在一些实施例中,所述电性能检测模块包括高压接口和高压互锁接口;所述高压接口,用于将高压电源接入所述待测电池包;所述高压互锁接口,用于诊断所述待测电池包所在的用电装置的高压互锁功能状态是否正常。在该实施例中,通过设置高压接口可以为待测电池包提供高压测试环境,通过设置高压互锁接口可以判断电池包中的电池管理系统的高压互锁检测是否正常,检测方法的局限性小,普适性高。
在一些实施例中,所述电性能检测模块包括:电流检测单元,用于根据所述响应参数中的电流参数信息,诊断所述待测电池包中的电流传感器工作是否正常;和/或,温度检测单元,用于监控所述待测电池包中的温度。在该实施例中,通过设置电流检测单元可以有效判断待测电池包中的电流传感器工作是否正常,通过设置温度检测单元可以实时监控待测电池包中的温度。
在一些实施例中,所述信号模拟模块包括以下至少之一:上下电模拟单元,用于基于所述通信模块向所述待测电池包发送上下电模拟信号,并接收所述上下电模拟信号对应的响应参数;唤醒模拟单元,用于基于所述通信模块向所述待测电池包发送唤醒模拟信号,并接收所述唤醒模拟信号对应的响应参数;碰撞模拟单元,用于基于所述通信模块向所述待测电池包发送碰撞模拟信号,并接收所述碰撞模拟信号对应的响应参数;在该实施例中,通过设置上下电模拟单元可以有效判断待测电池包的上下电功能是否正常,通过设置唤醒模拟单元可以有效待测电池包的用电唤醒功能是否正常,通过设置碰撞模拟单元可以有效判断待测电池包所在的用电装置发生碰撞时的功能是否正常。
在一些实施例中,所述继电器模块包括继电器接口和继电器驱动控制接口; 所述继电器接口,用于检测继电器接入所述待测电池包;所述继电器驱动控制接口,用于控制所述待测电池包中继电器驱动电路的导通和关断;其中,所述继电器驱动电路用于控制所述检测继电器的闭合和断开。在该实施例中,通过设置继电器接口和继电器驱动控制接口可以有效判断待测电池包中的BMS是否可以正常控制继电器(如高压继电器)的闭合。
在一些实施例中,上述电池通信装置还包括控制模块;所述控制模块分别与所述电性能检测模块,信号模拟模块,继电器模块相连接;所述控制模块,用于控制所述检测参数的参数输入值。在该实施例中,通过在电池通信装置中设置控制模块,可以灵活便捷的调整检测参数的参数输入值,能够对多种工况下的待测电池包进行测试,提高电池包的故障检测和分析效率以及兼容性。
第二方面,本发明实施例了一种移动式电池状态检测设备,包括电池包模拟装置和上述实施例中的电池通信装置;所述电池包模拟装置通过所述通信模块与所述电池通信装置相连接;所述电池包模拟装置,用于接收所述电池通信装置发送的检测参数,输出所述检测参数对应的响应参数。
在该实施例中,通过电池包模拟装置来模拟待测电池包,并输出待测电池包的各种电性参数,无需移动待测电池包即可完成对待测电池的性能及故障检测,降低了检测成本且提高了检测效率、缩短了检测周期。
在一些实施例中,述电池包模拟装置包括电池管理系统和电池等效电路模型,所述电池管理系统的一端连接所述电池等效电路模型,所述电池管理系统的另一端连接所述通信模块;所述电池管理系统,用于接收所述电池通信装置发送的检测参数,将所述检测参数传输给所述电池等效电路模型;接收所述电池等效电路模型返回的响应参数,并将所述响应参数传输给所述通信模块;所述电池等效电路模型,用于基于所述检测参数进行响应,并输出响应参数给所述电池管理系统。
在该实施例中,通过电池等效电路模型来模拟待测电池包的各种电性参数,能够全面准确的模拟待测电池包的性能,降低了检测成本且能提高电池包检测效率、缩短检测周期。
在一些实施例中,所述电池等效电路模型包括以下至少之一:荷电状态SOC管理模块,用于模拟并输出所述待测电池包中各个单体电池的SOC值;电压管理模块,用于模拟并输出所述待测电池包中各个单体电池的电压;温度管理模块,用于模拟并输出所述待测电池包中各个单体电池的温度;均衡模块,用于调整一个或多个所述单体电池的状态参数,其中,所述状态参数包括SOC值、电压和温度中的至少之一。在该实施例中,通过设置SOC管理模块、电压管理模块、温度管理模块和均衡模块可以模拟并调整待测电池包的各种状态参数,提升故障分析的质量与效率。
第三方面,本发明实施例了一种电池状态检测系统,包括上位机以及上述实施例中的电池状态检测设备;所述上位机与所述电池状态检测设备中的所述通信模块相连接;所述上位机,用于向所述电池状态检测设备发送检测控制指令,以及接收所述待测电池包的状态参数。在该实施例中,通过上位机能够根据直观便捷的获取待测电池包的各种电性参数以及判断电池包或BMS的故障,而且便于对电池状态检测设备中的各个模块进行统一操作和管理。
第四方面,本发明实施例了一种电池状态检测方法,应用于上述实施例中的电池状态检测系统,所述方法包括:发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障类型。在该实施例中,通过上位机控制电池通信装置从所述电池包模拟装置获取待测电池包的状态参数,根据接收到的响应参数判断电池是否存在故障,当出现故障时可以显示对应的故障类型,大大提升了电池包的数据读取和故障分析效率。
在一些实施例中,所述发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数,包括:发送目标检测工况对应的检测指令至所述电池包模拟装置,以使所述电池包模拟装置确定与所述目标检测工况对应的目标电路模型;接收所述目标电路模型的状 态参数。在该实施例中,通过确定并检测不同检测工况下的电池等效电路模型,可以模拟检测多种类型的检测工况,提升故障分析的质量与效率。
在一些实施例中,确定并显示所述电池包模拟装置当前的故障信息之后,还包括:确定所述电池包模拟装置的当前故障代码;从预设的故障代码与故障信息的映射关系中,获取与所述当前故障代码对应的当前故障信息;显示所述当前故障信息。在该实施例中,通过故障代码获取待测电池包的当前故障信息,能够自动便捷的获取到待测电池包的故障信息,大大提升了电池包的故障分析效率。
第五方面,本发明实施例了一种电池状态检测装置,包括:
发送单元,用于发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;
接收单元,用于接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;
确定显示单元,用于在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障类型。
第六方面,本发明实施例了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如第四方面所述的方法。
第七方面,本发明实施例了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时,实现如第四方面所述的方法。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而 并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本发明实施例提供的一种电池通信装置的结构示意图;
图2为本发明实施例提供的另一种电池通信装置的结构示意图;
图3为本发明实施例提供的又一种电池通信装置的结构示意图;
图4为本发明实施例提供的另一种电池通信装置的结构示意图;
图5为本发明实施例提供的另一种电池通信装置的结构示意图;
图6为本发明实施例提供的另一种电池通信装置的结构示意图;
图7为本发明实施例提供的一种电池状态检测设备的结构示意图;
图8为本发明实施例提供的另一种电池状态检测设备的结构示意图;
图9为本发明实施例提供的一种电池状态检测系统的结构示意图;
图10为本发明实施例提供的另一种电池状态检测系统的结构示意图;
图11为本发明实施例提供的一种电池状态检测方法的流程图;
图12是本发明实施例提供的一种电池状态检测装置的结构示意图;
图13为是本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本发明实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数 量、特定顺序或主次关系。在本发明实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本发明实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本发明实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。
在本发明实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用 于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。在电动交通供给、军事装备、航空航天等领域中,通常通过电池来提供动力。
相关技术中,对于加工完毕的电池包在测试其性能是否达标时需要获取该电池包的数据参数,或者在电池包在使用过程中发生通信类或者BMS类的故障时,也需要实时读取电池包数据和故障代码来识别电池包故障类型,为下一步的分析提供信息参考与分析方向。目前电池包数据读取需要占用电池产线生产的专用分析通道,且需要占用较多的人力和物力成本,且在进行高压测试等环节中还存在一定的安全风险。除此之外,还直接影响企业的生产产能与效率,并且由于电池包本身重量与体积较大,使得在整包层级对电池包进行数据读取与分析的效率较低。
为了解决对电池包进行数据读取与分析的效率较低的问题,发明人经过深入研究发现,可以通过对电池包进行数据检测的多个模块或接口进行集成组成电池通信装置。具体通过包括电性能检测模块,信号模拟模块,继电器模块和通信模块的电池通信装置向待测电池包发送电性能检测参数,并接收所述电性能检测参数对应的响应参数。上述的设计方案不仅无需占用产线的专用电池包分析通道,不仅提升了电池包的数据读取和故障分析的效率,还能提高了电池包检测设备的移动性。
本发明实施例提供的电池通信装置,可以应用于检测任意电池,该电池可以为单体电芯,也可以为多个单体电芯组成的电池组或电池包等。可以应用本发明实施例提供的电池通信装置来检测的电池所处的用电设备可以为但不限于,具有电池的电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以电池通信装置10为例,来说明本申请一实施例的一种电池通信装置。
请参照图1,图1为本申请一些实施例提供的电池通信装置10的结构示意图。如图1所示,电池通信装置10包括:电性能检测模块102,信号模拟模块104,继电器模块106和通信模块108。其中,电性能检测模块102,用于基于通信模块向待测电池包发送电性能检测参数,并接收电性能检测参数对应的响应参数;信号模拟模块104,用于基于通信模块108向待测电池包发送模拟信号检测参数,并接收模拟信号检测参数对应的响应参数;其中,模拟信号检测参数包括上下电模拟信号、唤醒模拟信号和碰撞模拟信号中的至少一种;继电器模块106,用于基于通信模块108向待测电池包发送继电器检测参数,并接收继电器检测参数对应的响应参数。
具体地,电性能检测参数包括电池温度、电流、电压、荷电状态(State of Charge,SOC)、质量、尺寸和比热容,以及空气的对流换热系数等参数,例如电池包内部各单体电芯电压、电池包内部各温度采集点温度以及电池包总压、绝缘阻值、冷却装置进出水口温度和电池包真实SOC等电池包健康状态信息。这里的上下电模拟信号包括但不限于例如待测电池包所在的车辆的上下电信号,唤醒模拟信号包括但不限于例如待测电池包所在的车辆的唤醒模拟信号,碰撞模拟信号包括但不限于例如待测电池包所在的车辆的碰撞后产生的信号。这里的通信模块108包括但不限于为控制单元区域网络(Controller Area Network,CAN)模块。
CAN是为解决现代汽车中众多电控单元之间的数据交换而开发的一种多主机局部网络串行通信协议。CAN总线将多个控制单元原本独立的处理过程通过双绞线、光缆等相互联系起来,从而实现在两条CAN总线上实现各个控制单元的信息共享,各个子单元在同一条CAN总线上实现信息交互与传递。其中,CAN模块由CAN控制器、CAN收发器、数据传输线和数据传输终端组成,
CAN控制器集成在CAN模块内部,接收由控制单元微处理器传来的数据,CAN控制器对控制单元微处理器传输的数据进行处理并将其传给CAN收发器;而且CAN控制器也能接收收发器传来的数据,处理后传控制单元微处理器,从而实现CAN总线上差分信号与微处理器内部数字信号之间的转换。
CAN收发器集成在CAN模块内部,同时具备接收、发送和数据转化的功能,它将CAN控制器发送来的数字信号转化为总线差分信号并通过数据传输线以广播的方式发送出去。同时,它接收数据传输线发送来的总线差分信号并将其转化为CAN控制能识别的数字信号后发送给CAN控制器。
数据传输线采用双绞线以减小传输线上信号干扰,即CAN_H和CAN_L数据线。
数据传输终端为电阻器,其防止数据传输过程中由于发送端和接收端阻抗不匹配而造成的信号反射影响总线信号质量,该电阻通常为120Ω的终端电阻。
需要说明的是,通信模块108例如还包括本地内联网(Local Interconnect Network,LIN)模块,RS232通信模块或者RS485通信模块等,本发明实施例对此不作任何限定。
LIN是低成本网络中的汽车通讯协议标准,是现有多种汽车网络在功能上的补充,LIN标准包括传输协议规范、传输媒体规范、开发工具接口规范和用于软件编程的接口,LIN提升了系统结构的灵活性,LIN在硬件和软件上保证了网络节点的互操作性,并可以预测获得更好的电磁兼容EMC特性。LIN补充了当前的车辆内部多重网络,并且为实现车内网络的分级提供了条件,有助于车辆获得更好的性能并降低成本。
RS-232是电子工业联盟制定的串行数据通信接口标准,原始编号全称是EIA-RS-232(简称RS232),它被广泛用于数据通信端(Data Communication Equipment,DCE)和数据终端(Data Terminal Equipment,DTE)之间的连接。RS232接口常用于仪器仪表设备,PLC以及嵌入式领域当作调试口来使用。RS485又名TIA-485-A,ANSI/TIA/EIA-485或TIA/EIA-485。是一个定义平衡数字多点系统中的驱动器和接收器的电气特性的标准。该标准保证了数字通信网络即使在远距离、电子噪声较大的情况下也可以有效传输信号。RS485可以配置低成本的本地网络以及多支路通信链路。
本申请实施例通过将电性能检测模块102,信号模拟模块104,继电器模块106和通信模块108集成为电池通信装置10,基于电池通信装置10向待测电池 包发送检测参数,并接收检测参数对应的响应参数来判断电池包或BMS是否出现故障,无需占用电池产线生产的专用分析通道即可读取电池包的数据和故障代码,提高电池包的数据读取和故障检测的效率。
根据本申请的一些实施例,可选地,请参考图2。如图2所示,电性能检测模块102包括高压接口1022和高压互锁接口1024;所述高压接口1022用于将高压电源接入所述待测电池包;所述高压互锁接口1024用于诊断所述待测电池包所在的用电装置的高压互锁功能状态是否正常。
具体地,在本发明实施例中,通过设置高压接口1022可以根据检测需要将不同伏数的高压电源接入到待测电池包,为待测电池包提供高压检测参数。高压互锁接口1024可以诊断例如待测电池包所在车辆的高压互锁功能状态是否正常。
本发明实施例通过设置高压接口可以为待测电池包提供高压测试环境,通过设置高压互锁接口可以判断电池包中的电池管理系统的高压互锁检测是否正常,检测方法的局限性小,普适性高。
根据本申请的一些实施例,可选地,请参考图3。如图3所示,电池通信装置10中,电性能检测模块102包括:电流检测单元1026和温度检测单元1028。电流检测单元1026,用于根据所述响应参数中的电流参数信息,诊断所述待测电池包中的电流传感器工作是否正常;温度检测单元1028,用于监控所述待测电池包中的温度。
具体地,电流检测单元1026包括但不限于电流-电压-温度(Current-Voltage-Temperature,IVT)传感器接口,在本发明实施例中其主要用于电池包充放电过程中的电流检测,以及检测电池包内部的电压和温度的监测功能是否正常。温度检测单元1028包括但不限于负温度系数热敏电阻(Negative Temperature Coefficient,NTC),通过NTC监控待测电池包内部温度,其中,NTC的阻值随温度的上升而下降。接入NTC可以模拟待测电池包所在的车辆温度监控功能。
根据本申请的一些实施例,可选地,如图4所示,电池通信装置10中,电 性能检测模块102包括:高压接口1022、高压互锁接口1024、电流检测单元1026和温度检测单元1028。
在本发明实施例中,通过设置电流检测单元1026可以精准判断待测电池包中的电流传感器工作是否正常,通过设置温度检测单元1028可以实时监控待测电池包中的温度。
根据本申请的一些实施例,信号模拟模块104包括以下至少之一:上下电模拟单元(图未示),用于基于通信模块向待测电池包发送上下电模拟信号,并接收上下电模拟信号对应的响应参数;唤醒模拟单元(图未示),用于基于通信模块向待测电池包发送唤醒模拟信号,并接收唤醒模拟信号对应的响应参数;碰撞模拟单元(图未示),用于基于通信模块向待测电池包发送碰撞模拟信号,并接收碰撞模拟信号对应的响应参数。在本发明实施例中,通过设置上下电模拟单元可以有效判断待测电池包的上下电功能是否正常,通过设置唤醒模拟单元可以有效判断待测电池包的用电唤醒功能是否正常,通过设置碰撞模拟单元可以有效判断待测电池包所在的用电装置发生碰撞时的功能是否正常。
根据本申请的一些实施例,可选地,如图5所示,所述继电器模块106包括继电器接口1062和继电器驱动控制接口1064;所述继电器接口1062,用于将检测继电器接入所述待测电池包;所述继电器驱动控制接口1064,用于控制所述待测电池包中继电器驱动电路的导通和关断;其中,所述继电器驱动电路用于控制所述检测继电器的闭合和断开。
具体地,本发明实施例中的继电器驱动电路包括BMS内部高低边继电器驱动电路,继电器接口1062通过接入外部继电器完成待测电池包的继电器功能是否正常。继电器驱动控制接口1064用于控制电池包内的BMS内部高低边继电器驱动电路的导通和关断,从而实现外部继电器的闭合和断开。本发明实施例通过设置继电器接口和继电器驱动控制接口可以有效判断待测电池包中的BMS是否可以正常控制继电器(如高压继电器)的闭合。
根据本申请的一些实施例,可选地,请参考图6。如图6所示,上述的电池通信装置10还包括控制模块110;所述控制模块110分别与所述电性能检测 模块102,信号模拟模块104,继电器模块106相连接;所述控制模块110用于控制检测参数的参数输入值。
具体地,在该实施例中,例如通过控制模块110可以输入电性能检测模块102或信号模拟模块104向待测电池包发送的检测参数的参数值,在电池通信装置10中设置控制模块110,可以灵活便捷的调整检测参数的参数值,能够对多种工况下的待测电池包进行测试,提高电池包的故障检测和分析效率以及兼容性。
根据本申请的一些实施例,可选地,如图7所示,本申请还提供了一种电池状态检测设备1,包括电池包模拟装置20和以上任一方案中的电池通信装置10。所述电池包模拟装置20通过所述电池通信装置10中的通信模块108相连接,电池包模拟装置20用于接收所述电池通信装置10发送的检测参数,输出所述检测参数对应的响应参数。
具体地,电池包模拟装置20用于模拟待测电池包的各种电性参数,例如模拟待测电池包中的各单体电池的SOC值、电压和温度等;需要说明的是电池包模拟装置20包括但不限于为电化学模型或等效电路模型。电化学模型从原理上解释了锂电池正负电极之间的动态传质过程,准确度较高。等效电路模型原理清晰、计算简便和具备线性特性,以及便于估计和预测电池的状态,易于实时系统中实现。在本发明实施例中,通过电池包模拟装置来模拟待测电池包,并输出待测电池包的各种电性参数,无需移动待测电池包即可完成对待测电池的性能及故障检测,降低了检测成本且提高了检测效率、缩短了检测周期。
根据本申请的一些实施例,可选地,如图8所示,所述电池包模拟装置20包括电池管理系统202和电池等效电路模型204,所述电池管理系统202的一端连接所述电池等效电路模型204,所述电池管理系统202的另一端连接所述通信模块108;所述电池管理系统202,用于接收所述电池通信装置10发送的检测参数,将所述检测参数传输给所述电池等效电路模型204,接收所述电池等效电路模型204返回的响应参数,并将所述响应参数传输给所述通信模块108;电池等效电路模型204,用于基于所述检测参数进行响应,并输出响应参 数给所述电池管理系统202。
具体地,电池管理系统202包括电池监控单元(Cell Monitor Unit,CMU)和电池管理单元(Battery Management Unit,BMU);其中,CMU负责测量电池的电压、电流和温度等参数,同时还有均衡等功能,当CMU测量到这些数据后,将数据传送给BMU。BMU负责评估CMU传送的数据,如果数据异常,则对电池进行保护,发出降低电流的要求,或者切断充放电通路,以避免电池超出许可的使用条件,同时还对电池的电量、温度进行管理。例如根据预先设计的控制策略,判断需要警示的参数和状态,并且将警示发给待测电池包所处的车辆控制器,最终可以传达给驾驶人员。电池等效电路模型204是基于端电压、内阻、电容以及电流之间的关系而构建的电池等效系统。通过对电池等效电路模型204的建立,可直接模拟电池外部电压随时间变化曲线。电池等效电路模型204中的等效电路模型可写成状态空间方程形式,利于在线实时估计。根据内部器件组成及电路结构的不同,可细分为内阻模型、Thevenin模型、PNGV模型、Massimo Geralol模型等,内阻模型是所有等效电路模型中较简单的模型,该模型将电池看作理想电压源和电阻的串联组成,内阻模型适用于对精度没有很高要求的电池仿真分析。Thevenin模型又叫作一阶RC模型,是在内阻模型的基础上增加了一个RC并联回路,可以很好地表现电池的非线性特性。PNGV电池模型是在Thevenin模型的基础上多串联了一个电容,该电容用于表示在电池运行过程中开路电压随着电流的累积而累计的误差,拥有更高的精准度。Massimo Geraolo模型是在Thevenin模型的基础上改进的,充分考虑了电池模型的非线性,该模型由开路电压E、欧姆内阻R0以及多节RC并联回路组成。Massimo Geraolo模型通过增加RC并联回路的阶数进一步提高了模拟电池动态和静态特性时的精确度,同时也考虑到了电池放电过程中的极化反应、欧姆以及电流积累效应,该模型串联的RC并联回路越多,所得到的模型阶数也就越高,可更高精度地模拟电池的动静态特性。
电池等效电路模型204包括但不限于:内阻模型、Thevenin模型、PNGV模型以及Massimo Geraolo等多阶RC等效电路模型等。电池等效电路模型204 可以模拟例如待测电池包中的各单体电池的SOC值、电压和温度等多个电性参数。
在该实施例中,通过电池等效电路模型来模拟待测电池包的各种电性参数,能够全面准确的模拟待测电池包的性能,降低了检测成本且能提高电池包检测效率、适用的应用场景广泛且准确性高。
根据本申请的一些实施例,电池等效电路模型包括以下至少之一:
荷电状态SOC管理模块,用于模拟并输出待测电池包中各个单体电池的SOC值;
电压管理模块,用于模拟并输出待测电池包中各个单体电池的电压;
温度管理模块,用于模拟并输出待测电池包中各个单体电池的温度;
均衡模块,用于调整一个或多个单体电池的状态参数,其中,状态参数包括SOC值、电压和温度中的至少之一。
在本发明实施例中,通过电池等效电路模型来模拟和调整待测电池包的各种SOC值、电压和温度等性能参数,能够准确便捷的模拟待测电池包的性能,降低了检测成本且能提高电池包检测效率。
根据本申请的一些实施例,可选地,如图9所示,本申请还提供了一种电池状态检测系统3,包括上位机2以及上述实施例中的电池状态检测设备1;所述上位机2与所述电池状态检测设备1中的通信模块108相连接;上位机2用于向所述电池状态检测设备1发送检测控制指令,以及接收待测电池包的状态参数。通过上位机2能够根据直观便捷的获取待测电池包的各种电性参数以及判断电池包或BMS的故障,而且便于对电池状态检测设备1中的各个模块进行统一操作和管理。
根据本申请的一些实施例,可选地,如图11所示,本申请还提供了一种电池状态检测方法,应用于上述实施例中的电池状态检测系统,包括如下步骤:
S1102,上位机2发送检测控制指令至所述电池通信装置10,以使所述电池通信装置10从所述电池包模拟装置20获取待测电池包的状态参数。
S1104,上位机2接收所述电池通信装置10发送的所述状态参数,基于所 述状态参数判断所述电池包模拟装置20是否存在异常。
S1106,上位机2在确定存在异常的情况下,确定并显示电池包模拟装置当前的故障类型。
具体地,例如,上位机2发送检测控制指令至所述电池通信装置10,电池通信装置10响应于该检测控制指令发送检测参数至电池包模拟装置20,电池包模拟装置20基于检测参数反馈响应参数至电池通信装置10,电池通信装置10从上述电池包模拟装置20获取待测电池包的状态参数发送给上位机2,上位机2基于所述状态参数判断所述电池包模拟装置20是否存在异常。在确定存在异常的情况下,确定并显示电池包模拟装置当前的故障类型。
本发明实施例中的故障类型包括但不限于通过诊断故障代码(Diagnostic Trouble Code,DTC)进行辨识,为待测电池包所在的车辆上故障类型的唯一身份标识,是在不拆解电池包的情况下,对电池包内部各零部件进行检查的判断依据。为保证电池包处于健康工作状态,BMU能够进行故障自检,DTC是不同故障所对应的“数字码”,当产生故障后,可以通过上位机2向BMU发送读取DTC指令,通过BMU返回地DTC故障代码可以判断具体的故障类型和具体信息。标准DTC故障显示码包含指示符前缀和三个数字,如“P0~P3”(动力故障码)和“U0~U3”(网络故障码),其中“P0”和“U0”被标准统一分配使用或保留待用,不能由主机厂等自行分配,如表1所示,Code categories为故障显示码,Hex value为16进制格式的故障代码,例如故障码P1757对应为电池包的预充电路故障,故障码P0131为电池包所在的车辆的电流电压过低故障,U3003-62为电池电压的信号比较故障。
表1
Figure PCTCN2022131146-appb-000001
根据本申请的一些实施例,可选地,所述发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数,包括:
上位机2发送目标检测工况对应的检测指令至所述电池包模拟装置20,以使所述电池包模拟装置20确定与所述目标检测工况对应的目标电路模型;上位机2接收所述目标电路模型的状态参数。
具体地,这里的目标检测工况例如包括但不限于电芯跳水现象或电池超过预设时长未进行电池健康度(State Of Health,SOH)检测等不同工况;假设在模拟电池电芯出现跳水现象对电池包进行检测时,上位机2发送电芯出现跳水对应的检测指令至所述电池包模拟装置20,以使所述电池包模拟装置20确定与所述目标检测工况对应的目标电路模型;目标电路模型将自身的状态参数通过电池通信装置10发送至上位机2,通过上述方式,能够快捷准确的模拟检测不同工况下的电池包的状态参数。
根据本申请的一些实施例,可选地,确定并显示电池包模拟装置当前的故障类型之后,还包括:确定所述电池包模拟装置的当前故障代码;从预设的故障代码与故障信息的映射关系中,获取与所述当前故障代码对应的当前故障信息;显示所述当前故障信息。
具体地,例如上位机2确定所述电池包模拟装置的当前故障码为P1757,上位机2从上述表1中获取与所述当前故障代码对应的当前故障信息,对应为电池包的预充电路故障。在上位机2显示所述当前故障信息。
在该实施例中,通过故障代码获取待测电池包的当前故障信息,能够自动便捷的获取到待测电池包的故障信息,大大提升了电池包的故障分析效率。
在电池包发生通信类或者BMS故障时,需要实时读取电池包数据和故障代码识别电池包故障类型,为下一步的分析提供信息参考与分析方向。电池包本身重量与体积大的特点使得在整包层级进行数据读取与分析效率低下,需要占用多余的时间、空间、人力和物力资源,并且还存在一定的安全风险。电池包整包进行整包分析读取数据时需占用专用分析通道、移动性差、便捷性与效率较低。
为了解决上述问题,根据本申请的一些实施例,可选地,如图10所示,本申请还提供了一种电池状态检测系统,包括包含上位机的终端设备、通信工装和待测电池包,通信工装与电池包内部BMU、CMU可组成电池包数据采集系统,再利用多路可调的外部供电模块其即可组成完整上位机监控与数据采集系统;其中,通信工装内继承有多个子模块接口,包括:
数据通信CAN模块,用于和BMU进行数据通信交互,获取BMU内存储的电池包的状态信息、故障码和数据信息。
供电、唤醒和碰撞信号模拟接口,用于模拟待测电池包所在车辆正常上下电、唤醒和碰撞信号功能。
高低边继电器驱动信号模拟接口,用于控制BMU内部高低边继电器驱动电路的导通和关断实现继电器的闭合和断开。
高压互锁接口,可用于模拟诊断待测电池包所在车辆高压互锁功能状态。
高压接口,通过外部高压电源接入待测电池包实现待测电池包的高压检测功能。
继电器接口,用于为待测电池包接入外部继电器以完成继电器功能的验证。
IVT接口,用于通过读取数据通信CAN模块发送报文信息诊断待测电池包内地电流传感器功能是否正常。
NTC接口,用于为待测电池包接入NTC模拟待测电池包所在车辆的温度监控功能。
需要说明的是,如图10所示,电芯模拟串组和外部供电模块可以组成不同类型的电池等效电路模型,可模拟多种整车工况或故障工况。无需移动待测电池包,即可达到与待测电池包整包分析时相同的效果,且不占用产线的专用电池包分析通道,可移动性与分析效率得到了很大提升,且数据分析与采集更灵活,可模拟工况种类也更加丰富。
通过通信工装可将待测电池包整包分析简化为子零部件的组合分析,在实验室和售后端均可完成电池包数据分析与故障代码读取,且不占用产线的专用电池包分析通道,为电池包整包分析提供了便捷的方式,提升了电池包分析的质量与效率。
本发明实施例还提供了一种电池状态检测装置,该装置用于执行上述各实施例提供的电池状态检测方法,如图12所示,该装置包括:
发送单元1202,用于发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;
接收单元1204,用于接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;
确定显示单元1206,用于在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障类型。
本申请实施例通过上位机2控制电池通信装置10向待测电池包发送检测参数,并接收检测参数对应的响应参数来判断电池包或BMS是否出现故障,无需占用产线专用分析通道即可读取电池包的数据和故障代码,提高电池包的数据读取和故障检测的效率,检测方法的局限性小,普适性高。
在本申请的另外一种实施方式中,上述发送单元1202,包括:
发送模块,用于发送目标检测工况对应的检测指令至所述电池包模拟装置,以使所述电池包模拟装置确定与所述目标检测工况对应的目标电池等效电路模型;
接收模块,用于接收所述目标电池等效电路模型的状态参数。
本申请的上述实施例提供的电池状态检测装置与本发明实施例提供的电池 状态检测方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
图13是根据一示例性实施例示出的一种电子设备的逻辑结构框图。例如,电子设备1300可以是包含上位机的车载控制器、电机控制器、域控制器等设置在用电装置内部的电子设备,或通过有线或无线网络与电池通信装置10相连接的终端。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由电池处理器执行以完成上述电池的充电方法,该方法包括:发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障类型。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在示例性实施例中,还提供了一种应用程序/计算机程序产品,包括一条或多条指令,该一条或多条指令可以由电池的处理器执行,以完成上述电池的充电方法,该方法包括:发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障类型。可选地,上述指令还可以由电池的处理器执行以完成上述示例性实施例中所涉及的其他步骤。
图13为电子设备1300的示例图。本领域技术人员可以理解,示意图13仅仅是电子设备1300的示例,并不构成对电子设备1300的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如电子设备1300还可以包括输入输出设备、网络接入设备、总线等。
所称处理器1302可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器1302也可以是任何常规的处理器等,处理器1302是电子设备1300的控制中心,利用各种接口和线路连接整个电子设备1300的各个部分。
存储器1301可用于存储计算机可读指令,处理器1302通过运行或执行存储在存储器1301内的计算机可读指令或模块,以及调用存储在存储器1301内的数据,实现电子设备1300的各种功能。存储器1301可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备1300的使用所创建的数据等。此外,存储器1301可以包括硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)或其他非易失性/易失性存储器件。
电子设备1300集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机可读指令来指令相关的硬件来完成的计算机可读指令可存储于一计算机可读存储介质中,该计算机可读指令在被处理器执行时,可实现上述各个方法实施例的步骤。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性 的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种移动式电池状态检测设备,其特征在于,所述移动式电池状态检测设备用于对多种工况下的待测电池包进行检测;所述移动式电池状态检测设备包括电池通信装置和电池包模拟装置,所述电池通信装置包括:电性能检测模块,信号模拟模块,继电器模块、通信模块;
    所述电性能检测模块,用于基于所述通信模块向待测电池包发送电性能检测参数,并接收所述电性能检测参数对应的响应参数;
    所述信号模拟模块,用于基于所述通信模块向所述待测电池包发送模拟信号检测参数,并接收所述模拟信号检测参数对应的响应参数;
    所述继电器模块,用于基于所述通信模块向所述待测电池包发送继电器检测参数,并接收所述继电器检测参数对应的响应参数;
    所述电池包模拟装置与所述通信模块相连接;
    所述电池包模拟装置,用于接收所述电池通信装置发送的检测参数,输出所述检测参数对应的响应参数。
  2. 根据权利要求1所述的设备,其特征在于,所述电性能检测模块包括高压接口和高压互锁接口;
    所述高压接口,用于将高压电源接入所述待测电池包;
    所述高压互锁接口,用于诊断所述待测电池包所在的用电装置的高压互锁功能状态是否正常。
  3. 根据权利要求1或2所述的设备,其特征在于,所述电性能检测模块包括:
    电流检测单元,用于根据所述响应参数中的电流参数信息,诊断所述待测电池包中的电流传感器工作是否正常;和/或,
    温度检测单元,用于监控所述待测电池包中的温度。
  4. 根据权利要求1所述的设备,其特征在于,所述信号模拟模块包括以下至少之一:
    上下电模拟单元,用于基于所述通信模块向所述待测电池包发送上下电模 拟信号,并接收所述上下电模拟信号对应的响应参数;
    唤醒模拟单元,用于基于所述通信模块向所述待测电池包发送唤醒模拟信号,并接收所述唤醒模拟信号对应的响应参数;
    碰撞模拟单元,用于基于所述通信模块向所述待测电池包发送碰撞模拟信号,并接收所述碰撞模拟信号对应的响应参数。
  5. 根据权利要求1所述的设备,其特征在于,所述继电器模块包括继电器接口和继电器驱动控制接口;
    所述继电器接口,用于将检测继电器接入所述待测电池包;
    所述继电器驱动控制接口,用于控制所述待测电池包中继电器驱动电路的导通和关断;其中,所述继电器驱动电路用于控制所述检测继电器的闭合和断开。
  6. 根据权利要求1所述的设备,其特征在于,还包括:控制模块;
    所述控制模块分别与所述电性能检测模块,信号模拟模块,继电器模块相连接;
    所述控制模块,用于控制所述检测参数的输入值。
  7. 根据权利要求1所述的设备,其特征在于,所述电池包模拟装置包括电池管理系统和电池等效电路模型,所述电池管理系统的一端连接所述电池等效电路模型,所述电池管理系统的另一端连接所述通信模块;
    所述电池管理系统,用于接收所述电池通信装置发送的检测参数,将所述检测参数传输给所述电池等效电路模型;接收所述电池等效电路模型返回的响应参数,并将所述响应参数传输给所述通信模块;
    所述电池等效电路模型,用于基于所述检测参数进行响应,并输出响应参数给所述电池管理系统。
  8. 根据权利要求7所述的设备,其特征在于,所述电池等效电路模型包括以下至少之一:
    荷电状态SOC管理模块,用于模拟并输出所述待测电池包中各个单体电池的SOC值;
    电压管理模块,用于模拟并输出所述待测电池包中各个单体电池的电压;
    温度管理模块,用于模拟并输出所述待测电池包中各个单体电池的温度;
    均衡模块,用于调整一个或多个所述单体电池的状态参数,其中,所述状态参数包括SOC值、电压和温度中的至少之一。
  9. 一种电池状态检测系统,其特征在于,包括上位机以及如权利要求1-8任一项所述的移动式电池状态检测设备;
    所述上位机与所述电池通信装置中的所述通信模块相连接;
    所述上位机,用于向所述电池状态检测设备发送检测控制指令,以及接收所述待测电池包的状态参数。
  10. 一种电池状态检测方法,其特征在于,应用于权利要求9所述的电池状态检测系统,所述方法包括:
    发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数;
    接收所述电池通信装置发送的所述状态参数,基于所述状态参数判断所述电池包模拟装置是否存在异常;
    在确定存在异常的情况下,确定并显示所述电池包模拟装置当前的故障信息。
  11. 根据权利要求10所述的方法,其特征在于,所述发送检测控制指令至所述电池通信装置,以使所述电池通信装置从所述电池包模拟装置获取待测电池包的状态参数,包括:
    发送目标检测工况对应的检测指令至所述电池包模拟装置,以使所述电池包模拟装置确定与所述目标检测工况对应的目标电路模型;
    接收所述目标电路模型的状态参数。
  12. 根据权利要求10所述的方法,其特征在于,所述确定并显示所述电池包模拟装置当前的故障信息,包括:
    确定所述电池包模拟装置的当前故障代码;
    从预设的故障代码与故障信息的映射关系中,获取与所述当前故障代码 对应的当前故障信息;
    显示所述当前故障信息。
  13. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序以实现如权利要求10-12任一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行实现如权利要求10-12中任一项所述的方法。
PCT/CN2022/131146 2022-09-06 2022-11-10 移动式电池状态检测设备、系统和方法 WO2024050959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211081501.8 2022-09-06
CN202211081501.8A CN115166523B (zh) 2022-09-06 2022-09-06 移动式电池状态检测设备、系统和方法

Publications (1)

Publication Number Publication Date
WO2024050959A1 true WO2024050959A1 (zh) 2024-03-14

Family

ID=83482276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131146 WO2024050959A1 (zh) 2022-09-06 2022-11-10 移动式电池状态检测设备、系统和方法

Country Status (2)

Country Link
CN (1) CN115166523B (zh)
WO (1) WO2024050959A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166523B (zh) * 2022-09-06 2022-12-02 江苏时代新能源科技有限公司 移动式电池状态检测设备、系统和方法
CN116991088A (zh) * 2023-07-24 2023-11-03 北京三维天地科技股份有限公司 一种检测新能源电池的远程控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202153255U (zh) * 2011-06-23 2012-02-29 同济大学 一种电池管理系统的硬件在环测试装置
CN108663628A (zh) * 2018-04-02 2018-10-16 上汽大众汽车有限公司 一种高压电池包便携式多功能测试仪
CN110824367A (zh) * 2019-09-26 2020-02-21 福建星云电子股份有限公司 一种新能源汽车电池管理系统硬件在环测试系统及方法
CN111929587A (zh) * 2020-07-30 2020-11-13 合肥国轩高科动力能源有限公司 一种用于动力电池包成品集成检测方法
CN112394288A (zh) * 2019-08-14 2021-02-23 比亚迪股份有限公司 用于电池管理系统的测试系统和测试方法
CN112765821A (zh) * 2021-01-25 2021-05-07 中国第一汽车股份有限公司 继电器诊断测试方法、装置、存储介质、上位机及系统
US20220123559A1 (en) * 2020-10-16 2022-04-21 The Regents Of The University Of Michigan System For Detecting, Assessing, and Displaying Battery Faults
EP4001938A1 (de) * 2020-11-11 2022-05-25 Siemens Aktiengesellschaft Computergestütztes verfahren zum bestimmen von zustandsgrössen eines batteriespeichers und batteriespeicher
CN114924151A (zh) * 2022-05-23 2022-08-19 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种hil系统测试系统和测试方法
CN115166523A (zh) * 2022-09-06 2022-10-11 江苏时代新能源科技有限公司 移动式电池状态检测设备、系统和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272472B1 (ko) * 1995-09-19 2000-11-15 씨. 필립 채프맨 디지탈 프로그램가능 임계 레벨을 가진 마이크로컨트롤러 재작동 기능
CN101782629A (zh) * 2009-01-21 2010-07-21 清华大学 基于obd—ⅱ的电池系统监测方法及装置
US8258748B2 (en) * 2009-03-11 2012-09-04 Enfora, Inc. Methods and apparatus for modeling, monitoring, simulating and controlling power consumption in battery-operated devices
US9177466B2 (en) * 2011-01-20 2015-11-03 Indiana University Research And Technology Corporation Advanced battery early warning and monitoring system
KR101785537B1 (ko) * 2015-02-26 2017-10-16 주식회사 엘지화학 이차 전지 관리 장치의 기능 검증 시스템
US10367235B2 (en) * 2016-02-19 2019-07-30 Cps Technology Holdings Llc Systems and methods for real-time parameter estimation of a rechargeable battery
US11691518B2 (en) * 2017-07-21 2023-07-04 Quantumscape Battery, Inc. Predictive model for estimating battery states
CN207664184U (zh) * 2017-11-24 2018-07-27 安徽特凯新能源科技有限公司 一种具有潜在故障分析诊断功能的电池管理系统
CN107819164A (zh) * 2017-11-24 2018-03-20 安徽特凯新能源科技有限公司 一种具有潜在故障分析诊断功能的电池管理系统
JPWO2021053976A1 (zh) * 2019-09-19 2021-03-25
CN110837058B (zh) * 2019-11-06 2021-10-19 江苏科技大学 基于大数据的电池组健康状态评估装置及评估方法
CN113466723B (zh) * 2020-03-31 2022-09-09 比亚迪股份有限公司 确定电池荷电状态的方法及装置,电池管理系统
TWI751934B (zh) * 2020-07-31 2022-01-01 財團法人工業技術研究院 電池管理系統的測試設備和測試方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202153255U (zh) * 2011-06-23 2012-02-29 同济大学 一种电池管理系统的硬件在环测试装置
CN108663628A (zh) * 2018-04-02 2018-10-16 上汽大众汽车有限公司 一种高压电池包便携式多功能测试仪
CN112394288A (zh) * 2019-08-14 2021-02-23 比亚迪股份有限公司 用于电池管理系统的测试系统和测试方法
CN110824367A (zh) * 2019-09-26 2020-02-21 福建星云电子股份有限公司 一种新能源汽车电池管理系统硬件在环测试系统及方法
CN111929587A (zh) * 2020-07-30 2020-11-13 合肥国轩高科动力能源有限公司 一种用于动力电池包成品集成检测方法
US20220123559A1 (en) * 2020-10-16 2022-04-21 The Regents Of The University Of Michigan System For Detecting, Assessing, and Displaying Battery Faults
EP4001938A1 (de) * 2020-11-11 2022-05-25 Siemens Aktiengesellschaft Computergestütztes verfahren zum bestimmen von zustandsgrössen eines batteriespeichers und batteriespeicher
CN112765821A (zh) * 2021-01-25 2021-05-07 中国第一汽车股份有限公司 继电器诊断测试方法、装置、存储介质、上位机及系统
CN114924151A (zh) * 2022-05-23 2022-08-19 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种hil系统测试系统和测试方法
CN115166523A (zh) * 2022-09-06 2022-10-11 江苏时代新能源科技有限公司 移动式电池状态检测设备、系统和方法

Also Published As

Publication number Publication date
CN115166523B (zh) 2022-12-02
CN115166523A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024050959A1 (zh) 移动式电池状态检测设备、系统和方法
CN107222362B (zh) 一种整车can网络自动化测试平台及其优化方法
US10605844B2 (en) Vehicle high-voltage systems isolation testing
CN202770974U (zh) 电动汽车动力电池自动测试诊断系统
CN102854473B (zh) 电动汽车动力电池自动测试诊断系统和方法
EP4243438A1 (en) Battery fault diagnosis method and apparatus
CN106080251B (zh) 具有完备故障自诊断功能的电动汽车动力电池管理系统
WO2019024405A1 (zh) 故障诊断自动测试方法及装置
CN104965147A (zh) 低压用户电能表串户检测系统及检测方法
CN104483645A (zh) 一种电池管理系统检测装置
CN110824367A (zh) 一种新能源汽车电池管理系统硬件在环测试系统及方法
CN102097834B (zh) 一种锂电池均衡系统的诊断方法
WO2024016104A1 (zh) 电池均衡检测方法、装置、电子设备及存储介质
CN110940532A (zh) 整车能量流测试系统及方法
CN106053975B (zh) 车辆高电压系统的隔离测试
WO2021168756A1 (zh) 连接盒、电动汽车的测试台架、控制方法及装置
WO2022267828A1 (zh) 蓄电池的连接器、蓄电池的检测系统及方法
CN114464906A (zh) 动力电池预警方法和装置
CN213457287U (zh) 一种电池管理系统测试系统
CN211148867U (zh) 电动汽车电池包诊断装置
CN207199787U (zh) 一种基于无线通讯电芯的汽车云端电池管理系统
CN213457762U (zh) 车辆控制器刷新测试台架
CN106891762A (zh) 一种电动汽车蓄电池维护中替换失效电池的方法
CN115047344A (zh) 动力电池包热量估计方法和装置
KR20210022470A (ko) 배터리 관리 시스템 및 배터리 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957919

Country of ref document: EP

Kind code of ref document: A1