WO2022237399A1 - 机器人的控制方法、装置和机器人 - Google Patents

机器人的控制方法、装置和机器人 Download PDF

Info

Publication number
WO2022237399A1
WO2022237399A1 PCT/CN2022/085533 CN2022085533W WO2022237399A1 WO 2022237399 A1 WO2022237399 A1 WO 2022237399A1 CN 2022085533 W CN2022085533 W CN 2022085533W WO 2022237399 A1 WO2022237399 A1 WO 2022237399A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
information
robots
designated area
path
Prior art date
Application number
PCT/CN2022/085533
Other languages
English (en)
French (fr)
Inventor
许哲涛
Original Assignee
北京京东乾石科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东乾石科技有限公司 filed Critical 北京京东乾石科技有限公司
Publication of WO2022237399A1 publication Critical patent/WO2022237399A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present disclosure relates to the field of computing technology, and in particular to a robot control method, a robot control device, a robot, and a non-volatile computer-readable storage medium.
  • the distribution robot can perform the transportation task of items indoors to reduce labor costs.
  • a multi-machine scheduling system can be used to deploy background servers, wireless communication base stations and other facilities to control the driving of robots and avoid traffic congestion.
  • a robot control method including: before the robot enters the designated area of the control scene, receiving the broadcast information of other robots that have entered the designated area, the broadcast information of the other robots including the heading information of the other robots; determining whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as the heading information of the other robots; after determining to control the robot to enter the designated area
  • broadcast information of the robot is sent, and the broadcast information of the robot includes heading information of the robot.
  • the determining whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as the heading information of the other robots includes: when the heading information of the robot is consistent with the heading information of the other robots When the heading information of the robot is the same, control the robot to enter the designated area; when the heading information of the robot is different from the heading information of the other robots, plan a first path for the robot, according to The planning result of the first path controls the driving of the robot, and the first path is a path that can go around the designated area to reach the destination.
  • controlling the robot to drive according to the planning result of the first path includes: when the first path cannot be planned, controlling the robot to wait for the other robots to drive out of the Enter the designated area after entering the designated area.
  • the controlling the driving of the robot according to the planning result of the first path includes: when the difference between the distance of the first path and the distance of the second path exceeds a threshold, controlling the The robot enters the designated area after waiting for the other robots to leave the designated area, and the second path is a path passing through the designated area to reach the destination.
  • the robot's broadcast information includes at least one of the robot's identity information and location information
  • the other robot's broadcast information includes at least one of the other robot's identity information and location information.
  • the determining whether to control the robot to enter the designated area includes: determining whether to control the robot to enter the designated area according to at least one item of identity information and location information of the other robots.
  • the number of bytes occupied by the identity information in the broadcast information is determined according to the number of robots in the control scene, and the number of bytes occupied by the location information is determined according to the coordinate form of the location information.
  • a robot control device including: a receiver, configured to receive broadcast information of other robots that have entered the designated area before the robot enters the designated area, the The broadcast information of other robots includes the heading information of the other robots; the controller is used to determine whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as the heading information of the other robots; A device is configured to send broadcast information of the robot when it is determined to control the robot to enter the designated area, where the broadcast information of the robot includes heading information of the robot.
  • a robot including: a communication module, configured to receive broadcast information from other robots that have entered the designated area before the robot enters the designated area, and the other robots
  • the broadcast information of the robot includes the heading information of the other robots, and when it is determined to control the robot to enter the designated area, the broadcast information of the robot is sent, and the broadcast information of the robot includes the heading information of the robot;
  • the controller is configured to determine whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as the heading information of the other robots.
  • the controller controls the robot to enter the designated area when the heading information of the robot is the same as the heading information of the other robots; When the heading information of other robots is not the same, plan a first path for the robot, and control the robot to drive according to the planning result of the first path, and the first path can reach the destination by detouring the designated area. path of the land.
  • the controller controls the robot to wait for the other robots to leave the designated area before entering the designated area.
  • the controller controls the robot to wait for the other robots to drive out of the specified area before entering In the specified area, the second path is a path passing through the specified area to reach the destination.
  • the robot's broadcast information includes at least one of the robot's identity information and location information
  • the other robot's broadcast information includes at least one of the other robot's identity information and location information. item; the controller determines whether to control the robot to enter the designated area according to at least one of the other robot's identity information and location information.
  • the number of bytes occupied by the identity information in the broadcast information is determined according to the number of robots in the control scene, and the number of bytes occupied by the location information is determined according to the coordinate form of the location information.
  • a control device for a robot comprising: a memory; and a processor coupled to the memory, the processor being configured to, based on instructions stored in the memory device, Execute the robot control method in any one of the above embodiments.
  • a non-volatile computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the robot control method in any one of the above-mentioned embodiments is implemented.
  • Fig. 1 shows the flowchart of some embodiments of the control method of the robot of the present disclosure
  • Fig. 2a shows a schematic diagram of some embodiments of the control method of the robot of the present disclosure
  • Fig. 2b shows a schematic diagram of other embodiments of the robot control method of the present disclosure
  • Fig. 2c shows a schematic diagram of some other embodiments of the robot control method of the present disclosure
  • Fig. 3 shows a flow chart of other embodiments of the robot control method of the present disclosure
  • Figure 4 shows a schematic diagram of some embodiments of a robot of the present disclosure
  • Fig. 5 shows a block diagram of some embodiments of the control device of the robot of the present disclosure
  • Fig. 6 shows a block diagram of other embodiments of the control device of the robot of the present disclosure
  • Fig. 7 shows a block diagram of some other embodiments of the control device of the robot of the present disclosure.
  • Figure 8 shows a block diagram of some embodiments of a robot of the present disclosure.
  • the inventors of the present disclosure found that there is a problem in the above-mentioned related art that a plurality of additional facilities need to be deployed, resulting in high control costs.
  • the present disclosure proposes a robot control technical solution, which can solve the problem of traffic congestion without deploying background servers and wireless communication base stations, thereby reducing control costs.
  • the multi-machine scheduling system requires the background server to know the location of each robot in real time. This requires the deployment of wireless communication base stations in all operating areas, so that each robot can report its position to the dispatching system. When a robot appears in a designated area such as a long and narrow corridor, the dispatching system remotely controls other robots so as not to conflict with it.
  • the main disadvantages of relying on the multi-machine dispatching system to solve the intersection and blocking problems of multiple robots in the designated area include: the need to deploy a background server to run the multi-machine dispatching system; the need to deploy wireless communication base stations to cover the robot operating area, so that the dispatching system can grasp the real-time The robot position to complete the scheduling task. This leads to higher cost of control and lower efficiency of the system.
  • the technical solution disclosed in the present disclosure can avoid the problem of converging and blocking of delivery robots running on a single machine in a narrow and long designated area without the deployment of a background dispatching system and a wireless communication base station, thereby reducing the cost of control and improving delivery efficiency. robot operating efficiency.
  • Fig. 1 shows a flow chart of some embodiments of the robot control method of the present disclosure.
  • step 110 before the robot enters the designated area in the control scene, broadcast information of other robots that have entered the designated area is received.
  • the broadcast information of other robots includes the heading information of other robots.
  • the robot and other robots may be delivery robots that can perform delivery tasks. Delivery robots can improve transportation efficiency and reduce labor costs.
  • control scene may be the operating area of each robot.
  • the specified area may be a long and narrow passage area, and the width of the long and narrow passage area is smaller than the width threshold; the specified area may also be an area where congestion often occurs in the control scene.
  • step 120 it is determined whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as that of other robots.
  • the broadcast information of the robot includes at least one item of identity information and location information of the robot, and the broadcast information of other robots includes at least one item of identity information and location information of other robots.
  • the number of bytes occupied by the identity information in the broadcast information is determined according to the number of robots in the control scene; the number of bytes occupied by the location information is determined according to the coordinate form of the location information.
  • the broadcast information may consist of 13 bytes, and may include the ID of the robot entering the narrow passage, the current position coordinates (x, y), and the heading.
  • the robot ID occupies 1 byte, which can uniquely encode 256 robots;
  • the position information is the robot's current position coordinates, occupying 8 bytes, and each 4-byte long integer parameter represents a one-dimensional coordinate;
  • the heading information is The robot's movement heading, an integer parameter occupying 1 to 4 bytes, used to represent the movement direction of the robot.
  • the robot when the heading information of the robot is the same as that of other robots, the robot is controlled to enter the designated area.
  • Figure 2a shows such a control situation.
  • Fig. 2a shows a schematic diagram of some embodiments of the control method of the robot of the present disclosure.
  • delivery robots A and B are driving in the same direction in the narrow passage.
  • delivery robot A When delivery robot A enters the long and narrow passage, it will broadcast its own ID, position coordinates, and heading; when robot B is about to enter the long and narrow passage according to the navigation planning path, it will receive the broadcast information from robot A; Encounter and blockage will occur; robot B normally drives into the narrow passage, and broadcasts its own ID, coordinates, and heading.
  • a first path is planned for the robot, and the robot is controlled to drive according to the planning result of the first path.
  • the first path is a path that can bypass the designated area to reach the destination.
  • the robot if the first path can be planned, the robot is controlled to travel along the first path. For example, if the first path can be planned and the difference between the distance of the first path and the distance of the second path does not exceed a threshold, the robot is controlled to travel along the first path.
  • the second path is a path through the specified area to reach the destination. For example, Figure 2b shows such a control situation.
  • Fig. 2b shows a schematic diagram of other embodiments of the robot control method of the present disclosure.
  • delivery robots A and B are driving towards each other in the long and narrow passage.
  • delivery robot A When delivery robot A enters the long and narrow passage, it will broadcast its own ID, location coordinates, and heading.
  • Robot B plans the path according to the navigation, and will receive the broadcast information from robot A when it is about to enter the narrow passage.
  • Robot B determines that there is a risk of encountering and blocking with A, and robot B will re-plan the path. After finding a detourable path, robot B will move forward according to the new detour path.
  • the robot when the first path cannot be planned, the robot is controlled to enter the designated area after waiting for other robots to leave the designated area; or when the difference between the distance of the first path and the distance of the second path exceeds a threshold In this case, the control robot waits for other robots to leave the designated area before entering the designated area.
  • Figure 2c shows such a control situation.
  • Fig. 2c shows a schematic diagram of some other embodiments of the robot control method of the present disclosure.
  • delivery robots A and B are driving towards each other in the long and narrow passage.
  • the distribution robot A After the distribution robot A enters the narrow and long passage, it will broadcast its own ID, position coordinates, and heading.
  • Robot B plans the path according to the navigation, and when it is about to enter the narrow passage, it will receive the broadcast information from robot A.
  • Robot B judges that there is a risk of encountering and blocking with A.
  • Robot B will re-plan the path. If there is no detour path, or the detour path takes too much time, robot B enters the avoidance area and waits for robot A to pass before proceeding.
  • the robot can continue to be controlled according to the remaining steps in the embodiment of FIG. 1 .
  • step 130 when it is determined that the robot is controlled to enter the designated area, broadcast information of the robot is sent.
  • the broadcast information of the robot includes the heading information of the robot.
  • control strategy of the robot that is about to enter the designated area is determined according to the heading information broadcast by the robot that has entered the designated area. It can solve the problem of traffic congestion without deploying background servers and wireless communication base stations, thereby reducing control costs.
  • Fig. 3 shows a flow chart of other embodiments of the robot control method of the present disclosure.
  • robot A enters the long and narrow passage, and the wireless communication module (communication module) turns on the broadcast mode.
  • the wireless communication module (communication module) turns on the broadcast mode. Real-time broadcast of its own ID, location coordinates, and heading.
  • Robot B needs to enter the narrow passage according to the originally planned path, and at this time receives the broadcast information from robot A. If the heading of B is the same as that of A, it is judged that there is no risk of obstruction, and robot B enters the narrow and long area smoothly, and the wireless communication module turns on the broadcast mode. Real-time broadcast of its own ID, location coordinates, and heading.
  • Figure 4 shows a schematic diagram of some embodiments of a robot of the present disclosure.
  • Control devices include controllers, power systems, navigation systems, communication modules, antennas, etc.
  • the power system is used to drive the robot to move freely;
  • the navigation system is used to provide the robot with its own positioning, global map, etc.;
  • the communication module and the antenna are used to enable the robot to realize the wireless communication function.
  • FIG. 5 shows a block diagram of some embodiments of a control device for a robot of the present disclosure.
  • the control device of the robot includes a receiver 51 , a controller 52 and a transmitter 53 .
  • the receiver 51 receives broadcast information of other robots that have entered the designated area before the robot enters the designated area of the control scene.
  • the broadcast information of other robots includes the heading information of other robots.
  • the controller 52 determines whether to control the robot to enter the designated area according to whether the heading information of the robot is the same as that of other robots.
  • the transmitter 53 transmits the broadcast information of the robot when it is determined that the controlled robot enters the designated area.
  • the broadcast information of the robot includes the heading information of the robot.
  • the controller 52 controls the robot to enter the designated area when the heading information of the robot is the same as that of other robots; Planning the first path; controlling the robot to drive according to the planning result of the first path.
  • the first path is a path that can bypass the designated area to reach the destination.
  • the controller 52 controls the robot to wait for other robots to leave the designated area before entering the designated area.
  • the controller 52 controls the robot to wait for other robots to leave the designated area before entering the designated area.
  • the second path is a path through the specified area to reach the destination.
  • the broadcast information of the robot includes at least one item of identity information and location information of the robot
  • the broadcast information of other robots includes at least one item of identity information and location information of other robots.
  • the controller 52 determines whether to control the robot to enter the designated area according to at least one item of identity information and location information of other robots.
  • the number of bytes occupied by the identity information in the broadcast information is determined according to the number of robots in the control scene, and the number of bytes occupied by the location information is determined according to the coordinate form of the location information.
  • Fig. 6 shows a block diagram of other embodiments of the control device of the robot of the present disclosure.
  • the control device 6 of the robot in this embodiment includes: a memory 61 and a processor 62 coupled to the memory 61 , the processor 62 is configured to execute the instructions in the present disclosure based on instructions stored in the memory 61 .
  • the memory 61 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), a database, and other programs.
  • Fig. 7 shows a block diagram of some other embodiments of the control device of the robot of the present disclosure.
  • the robot control device 7 of this embodiment includes: a memory 710 and a processor 720 coupled to the memory 710, the processor 720 is configured to execute any of the foregoing based on instructions stored in the memory 710 The control method of the robot in the embodiment.
  • the memory 710 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader) and other programs.
  • the control device 7 of the robot may also include an input and output interface 730, a network interface 740, a storage interface 750, and the like. These interfaces 730 , 740 , and 750 , as well as the memory 710 and the processor 720 may be connected via a bus 760 , for example.
  • the input and output interface 730 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, a touch screen, a microphone, and a speaker.
  • the network interface 740 provides a connection interface for various networked devices.
  • the storage interface 750 provides connection interfaces for external storage devices such as SD cards and U disks.
  • Figure 8 shows a block diagram of some embodiments of a robot of the present disclosure.
  • the robot 8 includes a communication module 81 and a controller 82 .
  • the communication module 81 receives the broadcast information of other robots that have entered the designated area; when it is determined that the controlled robot 8 enters the designated area, it sends the broadcast information of the robot 8.
  • the broadcast information of other robots includes heading information of other robots
  • the broadcast information of robot 8 includes heading information of robot 8 .
  • the controller 82 determines whether to control the robot 8 to enter the designated area according to whether the heading information of the robot 8 is the same as that of other robots.
  • the controller 82 controls the robot 8 to enter the designated area when the heading information of the robot 8 is the same as that of other robots; if the heading information of the robot 8 is different from the heading information of other robots , planning the first path for the robot 8; controlling the robot 8 to drive according to the planning result of the first path.
  • the first path is a path that can bypass the designated area to reach the destination.
  • the controller 82 controls the robot 8 to wait for other robots to leave the designated area before entering the designated area.
  • the controller 8 controls the robot 8 to wait for other robots to leave the designated area before entering the designated area.
  • the second path is a path through the specified area to reach the destination.
  • the broadcast information includes at least one item of identity information and location information of the robot 8 corresponding to the broadcast information.
  • the controller 82 determines whether to control the robot 8 to enter the designated area according to at least one item of identity information and location information of other robots.
  • the number of bytes occupied by the identity information in the broadcast information is determined according to the number of robots in the control scene, and the number of bytes occupied by the location information is determined according to the coordinate form of the location information.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein. .
  • the methods and systems of the present disclosure may be implemented in many ways.
  • the methods and systems of the present disclosure may be implemented by software, hardware, firmware, or any combination of software, hardware, and firmware.
  • the above sequence of steps for the method is for illustration only, and the steps of the method of the present disclosure are not limited to the sequence specifically described above unless specifically stated otherwise.
  • the present disclosure can also be implemented as programs recorded in recording media, the programs including machine-readable instructions for realizing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing the method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种机器人(8)的控制方法、控制装置(6, 7)和机器人(8),机器人(8)的控制方法包括:在机器人(8)进入控制场景的指定区域之前,接收已经进入指定区域的其他机器人的广播信息,其他机器人的广播信息包括其他机器人的航向信息(110);根据机器人(8)的航向信息与其他机器人的航向信息是否相同,确定是否控制机器人(8)进入指定区域(120);在确定控制机器人(8)进入指定区域的情况下,发送机器人(8)的广播信息,机器人(8)的广播信息包括机器人(8)的航向信息(130)。

Description

机器人的控制方法、装置和机器人
相关申请的交叉引用
本申请是以CN申请号为202110521806.5,申请日为2021年5月13日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及计算技术领域,特别涉及一种机器人的控制方法、机器人的控制装置、机器人、非易失性计算机可读存储介质。
背景技术
配送机器人可在室内执行物品的运输任务,以减少人力成本。
大型的室内环境部分区域会存在狭长走廊等狭窄的指定区域。在狭窄的指定区域只能允许少量机器人(如1台机器人)通过的情况下,若大量机器人在指定区域发生交汇,会引起机器人通行阻塞降低配送效率。
在相关技术中,可以通过多机调度系统,部署后台服务器、无线通信基站等设施控制机器人的行驶,避免通行阻塞。
发明内容
根据本公开的一些实施例,提供了一种机器人的控制方法,包括:在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息;根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域;在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述机器人的广播信息包括所述机器人的航向信息。
在一些实施例中,所述根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域包括:在所述机器人的航向信息与所述其他机器人的航向信息相同的情况下,控制所述机器人进入所述指定区域;在所述机器人的航向信息与所述其他机器人的航向信息不相同的情况下,为所述机器人规划第一路径,根据所述第一路径的规划结果控制所述机器人行驶,所述第一路径 为能够绕行所述指定区域到达目的地的路径。
在一些实施例中,所述根据所述第一路径的规划结果控制所述机器人行驶包括:在无法规划出所述第一路径的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域。
在一些实施例中,所述根据所述第一路径的规划结果控制所述机器人行驶包括:在所述第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域,所述第二路径为穿过所述指定区域到达所述目的地的路径。
在一些实施例中,所述机器人的广播信息包括所述机器人的身份信息、位置信息中的至少一项,所述其他机器人的广播信息包括所述其他机器人的身份信息、位置信息中的至少一项;所述确定是否控制所述机器人进入所述指定区域包括:根据所述其他机器人的身份信息、位置信息中的至少一项,确定是否控制所述机器人进入所述指定区域。
在一些实施例中,所述广播信息中的身份信息所占字节数量根据控制场景中机器人的数量确定,所述位置信息所占字节数量根据所述位置信息采用的坐标形式确定。
根据本公开的另一些实施例,提供一种机器人的控制装置,包括:接收器,用于在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息;控制器,用于根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域;发送器,用于在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述机器人的广播信息包括所述机器人的航向信息。
根据本公开的又一些实施例,提供一种机器人,包括:通信模组,用于在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息,在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述机器人的广播信息包括所述机器人的航向信息;
控制器,用于根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域。
在一些实施例中,所述控制器在所述机器人的航向信息与所述其他机器人的航向 信息相同的情况下,控制所述机器人进入所述指定区域,在所述机器人的航向信息与所述其他机器人的航向信息不相同的情况下,为所述机器人规划第一路径,根据所述第一路径的规划结果控制所述机器人行驶,所述第一路径为能够绕行所述指定区域到达目的地的路径。
在一些实施例中,所述控制器在无法规划出所述第一路径的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域。
在一些实施例中,所述控制器在所述第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域,所述第二路径为穿过所述指定区域到达所述目的地的路径。
在一些实施例中,所述机器人的广播信息包括所述机器人的身份信息、位置信息中的至少一项,所述其他机器人的广播信息包括所述其他机器人的身份信息、位置信息中的至少一项;所述控制器根据所述其他机器人的身份信息、位置信息中的至少一项,确定是否控制所述机器人进入所述指定区域。
在一些实施例中,所述广播信息中的身份信息所占字节数量根据控制场景中机器人的数量确定,所述位置信息所占字节数量根据所述位置信息采用的坐标形式确定。
根据本公开的又一些实施例,提供一种机器人的控制装置,包括:存储器;和耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器装置中的指令,执行上述任一个实施例中的机器人的控制方法。
根据本公开的再一些实施例,提供一种非易失性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一个实施例中的机器人的控制方法。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1示出本公开的机器人的控制方法的一些实施例的流程图;
图2a示出本公开的机器人的控制方法的一些实施例的示意图;
图2b示出本公开的机器人的控制方法的另一些实施例的示意图;
图2c示出本公开的机器人的控制方法的又一些实施例的示意图;
图3示出本公开的机器人的控制方法的另一些实施例的流程图;
图4示出本公开的机器人的一些实施例的示意图;
图5示出本公开的机器人的控制装置的一些实施例的框图;
图6示出本公开的机器人的控制装置的另一些实施例的框图
图7示出本公开的机器人的控制装置的又一些实施例的框图;
图8示出本公开的机器人的一些实施例的框图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开的发明人发现上述相关技术中存在如下问题:需要部署多个额外设施,导致控制成本高。
鉴于此,本公开提出了一种机器人的控制技术方案,能够在无需部署后台服务器、无线通信基站的情况下,解决通行阻塞问题,从而降低了控制成本。
如前所述,多机调度系统需要后台服务器实时掌握每台机器人所在的位置。这就需要在所有运行区域布设无线通信基站,使每个机器人都能向调度系统上报自己的位置。当有机器人出现在狭长走廊等指定区域时,调度系统远程控制其他机器人不与之发生运行冲突。
也就是说,依靠多机调度系统解决多台机器人在指定区域的交汇阻塞问题主要缺 点包括:需要部署后台服务器运行多机调度系统;需要部署无线通讯基站覆盖机器人运行区域,使调度系统能实时掌握机器人位置,完成调度任务。这就是导致控制的成本较高,系统的效率较低。
针对上述技术问题,本公开的技术方案,无需后台调度系统和无线通讯基站的部署,即可避免单机运行的配送机器人在狭长的指定区域的交汇阻塞问题,从而降低了控制的成本,提高了配送机器人运行效率。
图1示出本公开的机器人的控制方法的一些实施例的流程图。
如图1所示,在步骤110中,在机器人进入控制场景中的指定区域之前,接收已经进入指定区域的其他机器人的广播信息。其他机器人的广播信息包括其他机器人的航向信息。
例如,机器人、其他机器人可以为可执行配送任务的配送机器人。配送机器人可以提高运输效率,降低人工成本。
在一些实施例中,控制场景可以为各机器人的运行区域。指定区域可以为狭长通道区域,狭长通道区域的宽度小于宽度阈值;指定区域也可以是控制场景中经常发生拥堵的区域。
例如,配送机器人运行区域存在狭长通道,若在狭长通道内机器人相遇,会发生通行阻塞,影响配送效率。
在步骤120中,根据机器人的航向信息与其他机器人的航向信息是否相同,确定是否控制机器人进入指定区域。
在一些实施例中,机器人的广播信息包括机器人的身份信息、位置信息中的至少一项,其他机器人的广播信息包括其他机器人的身份信息、位置信息中的至少一项。例如,广播信息中的身份信息所占字节数量根据控制场景中机器人的数量确定;位置信息所占字节数量根据位置信息采用的坐标形式确定。
例如,广播信息可以由13个字节组成,可以包含进入狭长通道的机器人ID,当前位置坐标(x,y),航向。机器人ID占用1个字节,可实现对256个机器人进行唯一编码;位置信息为机器人当前位置坐标,占用8个字节,每4个字节的长整型参数表征一维坐标;航向信息为机器人运动航向,占用1个到4个字节的整型参数用于表征机器人的运动朝向。
在一些实施例中,根据其他机器人的身份信息、位置信息中的至少一项,确定是否控制机器人进入指定区域。例如,可以根据其他机器人的身份信息,可以确定该其 他机器人的优先级是否高于自己的优先级,从而确定是否绕行获等待避让;可以根据该其他机器人的位置信息和自身的位置信息,规划绕行路径。
在一些实施例中,在机器人的航向信息与其他机器人的航向信息相同的情况下,控制机器人进入指定区域。例如,图2a示出了这种控制情况。
图2a示出本公开的机器人的控制方法的一些实施例的示意图。
如图2a所示,配送机器人A和B在狭长通道同向行驶。当配送机器人A进入狭长通道后将自身ID、位置坐标、航向广播出去;机器人B按照导航规划路径即将进入狭长通道时,会收到机器人A的广播信息;机器人B判定与A方向同向,不会发生相遇阻塞;机器人B正常驶入狭长通道,并对自身ID、坐标、航向进行广播。
在一些实施例中,在机器人的航向信息与其他机器人的航向信息不相同的情况下,为机器人规划第一路径,根据第一路径的规划结果控制机器人行驶。第一路径为能够绕行指定区域到达目的地的路径。
在一些实施例中,在能够规划出第一路径的情况下,控制机器人按照第一路径行驶。例如,在能够规划出第一路径,且第一路径的路程与第二路径的路程的差值未超过阈值的情况下,控制机器人按照第一路径行驶。第二路径为穿过指定区域到达目的地的路径。例如,图2b示出了这种控制情况。
图2b示出本公开的机器人的控制方法的另一些实施例的示意图。
如图2b所示,配送机器人A和B在狭长通道相向行驶。当配送机器人A进入狭长通道后会将自身ID、位置坐标、航向广播出去。机器人B按照导航规划路径,即将进入狭长通道时会收到机器人A的广播信息。机器人B判定与A有相遇阻塞风险,机器人B会重新规划路径,找到可绕行路径后,机器人B按照新的绕行路径前进。
在一些实施例中,在无法规划出第一路径的情况下,控制机器人等待其他机器人驶出指定区域后进入指定区域;或者在第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制机器人等待其他机器人驶出指定区域后进入指定区域。例如,图2c示出了这种控制情况。
图2c示出本公开的机器人的控制方法的又一些实施例的示意图。
如图2c所示,配送机器人A和B在狭长通道相向行驶。配送机器人A进入狭长通道后会将自身ID、位置坐标、航向广播出去。机器人B按照导航规划路径,即将进入狭长通道时会收到机器人A的广播信息,机器人B判定与A有相遇阻塞风险。机器人B会重新规划路径,若发现无绕行路径,或绕行路径耗时过多,机器人B进入避 让区域,等待机器人A通过后再通行。
在确定了机器人的控制策略后,可以继续根据图1的实施例中其余步骤控制机器人。
在步骤130中,在确定控制所述机器人进入所述指定区域的情况下,发送机器人的广播信息。机器人的广播信息包括机器人的航向信息。
在上述实施例中,根据已经进入指定区域的机器人广播的航向信息,确定即将进入指定区域的机器人的控制策略。能够在无需部署后台服务器、无线通信基站的情况下,解决通行阻塞问题,从而降低了控制成本。
图3示出本公开的机器人的控制方法的另一些实施例的流程图。
如图3所示,机器人A进入狭长通道,无线通信模块(通信模组)开启广播模式。实时广播自身ID、位置坐标、航向。
机器人B按照原本的规划路径需要进入狭长通道,此时收到机器人A的广播信息。若B与A航向相同,判定为无阻塞风险,机器人B顺利进入狭长区域,同时无线通信模块开启广播模式。实时广播自身ID、位置坐标、航向。
若B与A航向相反,判定为有阻塞风险,机器人B重新规划路径,寻找可绕行方案。若B有绕行方案,机器人B根据绕行方案行进;若B无法绕行或绕行方案路程增加过多,机器人B避让等待。机器人A通过后机器人B进入狭长通道。
图4示出本公开的机器人的一些实施例的示意图。
如图4所示,机器人配置有控制装置。控制装置包括控制器、动力系统、导航系统、通信模组、天线等。
动力系统用于驱动机器人自由移动;导航系统用于为机器人提供自身定位、全局地图等;通信模组可、天线用于使得机器人实现无线通信功能。
图5示出本公开的机器人的控制装置的一些实施例的框图。
如图5所示,机器人的控制装置包括接收器51、控制器52、发送器53。
接收器51在机器人进入控制场景的指定区域之前,接收已经进入指定区域的其他机器人的广播信息。其他机器人的广播信息包括其他机器人的航向信息。
控制器52根据机器人的航向信息与其他机器人的航向信息是否相同,确定是否控制机器人进入指定区域。
发送器53在确定控制机器人进入指定区域的情况下,发送机器人的广播信息。机器人的广播信息包括机器人的航向信息。
在一些实施例中,控制器52在机器人的航向信息与其他机器人的航向信息相同的情况下,控制机器人进入指定区域;在机器人的航向信息与其他机器人的航向信息不相同的情况下,为机器人规划第一路径;根据第一路径的规划结果控制机器人行驶。第一路径为能够绕行指定区域到达目的地的路径。
在一些实施例中,控制器52在无法规划出第一路径的情况下,控制机器人等待其他机器人驶出指定区域后进入指定区域。
在一些实施例中,控制器52在第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制机器人等待其他机器人驶出指定区域后进入指定区域。第二路径为穿过指定区域到达目的地的路径。
在一些实施例中,机器人的广播信息包括机器人的身份信息、位置信息中的至少一项,其他机器人的广播信息包括其他机器人的身份信息、位置信息中的至少一项。控制器52根据其他机器人的身份信息、位置信息中的至少一项,确定是否控制机器人进入指定区域。
在一些实施例中,广播信息中的身份信息所占字节数量根据控制场景中机器人的数量确定,位置信息所占字节数量根据位置信息采用的坐标形式确定。
图6示出本公开的机器人的控制装置的另一些实施例的框图。
如图6所示,该实施例的机器人的控制装置6包括:存储器61以及耦接至该存储器61的处理器62,处理器62被配置为基于存储在存储器61中的指令,执行本公开中任意一个实施例中的机器人的控制方法。
其中,存储器61例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)、数据库以及其他程序等。
图7示出本公开的机器人的控制装置的又一些实施例的框图。
如图7所示,该实施例的机器人的控制装置7包括:存储器710以及耦接至该存储器710的处理器720,处理器720被配置为基于存储在存储器710中的指令,执行前述任意一个实施例中的机器人的控制方法。
存储器710例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
机器人的控制装置7还可以包括输入输出接口730、网络接口740、存储接口750等。这些接口730、740、750以及存储器710和处理器720之间例如可以通过总线760 连接。其中,输入输出接口730为显示器、鼠标、键盘、触摸屏、麦克、音箱等输入输出设备提供连接接口。网络接口740为各种联网设备提供连接接口。存储接口750为SD卡、U盘等外置存储设备提供连接接口。
图8示出本公开的机器人的一些实施例的框图。
如图8所示,机器人8包括通信模组81、控制器82。
通信模组81在机器人8进入控制场景的指定区域之前,接收已经进入指定区域的其他机器人的广播信息;在确定控制机器人8进入指定区域的情况下,发送机器人8的广播信息。其他机器人的广播信息包括其他机器人的航向信息,机器人8的广播信息包括机器人8的航向信息。
控制器82根据机器人8的航向信息与其他机器人的航向信息是否相同,确定是否控制机器人8进入指定区域。
在一些实施例中,控制器82在机器人8的航向信息与其他机器人的航向信息相同的情况下,控制机器人8进入指定区域;在机器人8的航向信息与其他机器人的航向信息不相同的情况下,为机器人8规划第一路径;根据第一路径的规划结果控制机器人8行驶。第一路径为能够绕行指定区域到达目的地的路径。
在一些实施例中,控制器82在无法规划出第一路径的情况下,控制机器人8等待其他机器人驶出指定区域后进入指定区域。
在一些实施例中,控制器8在第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制机器人8等待其他机器人驶出指定区域后进入指定区域。第二路径为穿过指定区域到达目的地的路径。
在一些实施例中,广播信息包括广播信息相应的机器人8的身份信息、位置信息中的至少一项。控制器82根据其他机器人的身份信息、位置信息中的至少一项,确定是否控制机器人8进入指定区域。
在一些实施例中,广播信息中的身份信息所占字节数量根据控制场景中机器人的数量确定,位置信息所占字节数量根据位置信息采用的坐标形式确定。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
至此,已经详细描述了根据本公开的。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本公开的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (17)

  1. 一种机器人的控制方法,包括:
    在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息;
    根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域;
    在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述机器人的广播信息包括所述机器人的航向信息。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域包括:
    在所述机器人的航向信息与所述其他机器人的航向信息相同的情况下,控制所述机器人进入所述指定区域;
    在所述机器人的航向信息与所述其他机器人的航向信息不相同的情况下,为所述机器人规划第一路径,根据所述第一路径的规划结果控制所述机器人行驶,所述第一路径为能够绕行所述指定区域到达目的地的路径。
  3. 根据权利要求2所述的控制方法,其中,所述根据所述第一路径的规划结果控制所述机器人行驶包括:
    在无法规划出所述第一路径的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域。
  4. 根据权利要求2所述的控制方法,其中,所述根据所述第一路径的规划结果控制所述机器人行驶包括:
    在所述第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域,所述第二路径为穿过所述指定区域到达所述目的地的路径。
  5. 根据权利要求1-4所述的控制方法,其中,
    所述机器人的广播信息包括所述机器人的身份信息、位置信息中的至少一项,所述其他机器人的广播信息包括所述其他机器人的身份信息、位置信息中的至少一项;
    所述确定是否控制所述机器人进入所述指定区域包括:
    根据所述其他机器人的身份信息、位置信息中的至少一项,确定是否控制所述机器人进入所述指定区域。
  6. 根据权利要求5所述的控制方法,其中,
    所述身份信息所占字节数量根据所述控制场景中机器人的数量确定,所述位置信息所占字节数量根据所述位置信息采用的坐标形式确定。
  7. 根据权利要求1-4所述的控制方法,其中,
    所述指定区域为狭长通道区域,所述狭长通道区域的宽度小于宽度阈值。
  8. 一种机器人的控制装置,包括:
    接收器,用于在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息;
    控制器,用于根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域;
    发送器,用于在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述机器人的广播信息包括所述机器人的航向信息。
  9. 一种机器人,包括:
    通信模组,用于在机器人进入控制场景的指定区域之前,接收已经进入所述指定区域的其他机器人的广播信息,在确定控制所述机器人进入所述指定区域的情况下,发送所述机器人的广播信息,所述其他机器人的广播信息包括所述其他机器人的航向信息,所述机器人的广播信息包括所述机器人的航向信息;
    控制器,用于根据所述机器人的航向信息与所述其他机器人的航向信息是否相同,确定是否控制所述机器人进入所述指定区域。
  10. 根据权利要求9所述的机器人,其中,
    所述控制器在所述机器人的航向信息与所述其他机器人的航向信息相同的情况下,控制所述机器人进入所述指定区域,在所述机器人的航向信息与所述其他机器人的航向信息不相同的情况下,为所述机器人规划第一路径,根据所述第一路径的规划结果控制所述机器人行驶,所述第一路径为能够绕行所述指定区域到达目的地的路径。
  11. 根据权利要求10所述的机器人,其中,
    所述控制器在无法规划出所述第一路径的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域。
  12. 根据权利要求10所述的机器人,其中,
    所述控制器在所述第一路径的路程与第二路径的路程的差值超过阈值的情况下,控制所述机器人等待所述其他机器人驶出所述指定区域后进入所述指定区域,所述第二路径为穿过所述指定区域到达所述目的地的路径。
  13. 根据权利要求9-12所述的机器人,其中,
    所述机器人的广播信息包括所述机器人的身份信息、位置信息中的至少一项,所述其他机器人的广播信息包括所述其他机器人的身份信息、位置信息中的至少一项;
    所述控制器根据所述其他机器人的身份信息、位置信息中的至少一项,确定是否控制所述机器人进入所述指定区域。
  14. 根据权利要求13所述的机器人,其中,
    所述身份信息所占字节数量根据所述控制场景中机器人的数量确定,所述位置信息所占字节数量根据所述位置信息采用的坐标形式确定。
  15. 根据权利要求9-12所述的机器人,其中,
    所述指定区域为狭长通道区域,所述狭长通道区域的宽度小于宽度阈值。
  16. 一种机器人的控制装置,包括:
    存储器;和
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行权利要求1-7任一项所述的机器人的控制方法。
  17. 一种非易失性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求1-7任一项所述的机器人的控制方法。
PCT/CN2022/085533 2021-05-13 2022-04-07 机器人的控制方法、装置和机器人 WO2022237399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110521806.5A CN115421474A (zh) 2021-05-13 2021-05-13 机器人的控制方法、装置和机器人
CN202110521806.5 2021-05-13

Publications (1)

Publication Number Publication Date
WO2022237399A1 true WO2022237399A1 (zh) 2022-11-17

Family

ID=84027939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085533 WO2022237399A1 (zh) 2021-05-13 2022-04-07 机器人的控制方法、装置和机器人

Country Status (2)

Country Link
CN (1) CN115421474A (zh)
WO (1) WO2022237399A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488176A (zh) * 2013-09-29 2014-01-01 中国科学院深圳先进技术研究院 自动导引小车调度方法和系统
CN108983735A (zh) * 2018-08-29 2018-12-11 广州市君望机器人自动化有限公司 移动机器人调度装置与方法
US20190051061A1 (en) * 2017-08-10 2019-02-14 Amazon Technologies, Inc. Broadcast strategy modes for autonomous vehicle operations
US20190310655A1 (en) * 2018-04-04 2019-10-10 Invia Robotics, Inc. Autonomous Robots Performing Concerted Operation Based on Shared Sensory Access and Holistic Flow of Information
CN111738649A (zh) * 2020-04-16 2020-10-02 北京京东乾石科技有限公司 轨迹协同方法、装置及系统
CN111897339A (zh) * 2020-08-04 2020-11-06 湖南驰众机器人有限公司 Agv分布式交通管制方法以及agv
WO2020231080A1 (ko) * 2019-05-10 2020-11-19 재단법인 대구경북과학기술원 이동로봇의 센서 데이터를 활용한 교차점 패턴 인식모델 생성 방법 및 교차점 패턴 인식 시스템
CN112149555A (zh) * 2020-08-26 2020-12-29 华南理工大学 一种基于全局视觉的多仓储agv追踪方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488176A (zh) * 2013-09-29 2014-01-01 中国科学院深圳先进技术研究院 自动导引小车调度方法和系统
US20190051061A1 (en) * 2017-08-10 2019-02-14 Amazon Technologies, Inc. Broadcast strategy modes for autonomous vehicle operations
US20190310655A1 (en) * 2018-04-04 2019-10-10 Invia Robotics, Inc. Autonomous Robots Performing Concerted Operation Based on Shared Sensory Access and Holistic Flow of Information
CN108983735A (zh) * 2018-08-29 2018-12-11 广州市君望机器人自动化有限公司 移动机器人调度装置与方法
WO2020231080A1 (ko) * 2019-05-10 2020-11-19 재단법인 대구경북과학기술원 이동로봇의 센서 데이터를 활용한 교차점 패턴 인식모델 생성 방법 및 교차점 패턴 인식 시스템
CN111738649A (zh) * 2020-04-16 2020-10-02 北京京东乾石科技有限公司 轨迹协同方法、装置及系统
CN111897339A (zh) * 2020-08-04 2020-11-06 湖南驰众机器人有限公司 Agv分布式交通管制方法以及agv
CN112149555A (zh) * 2020-08-26 2020-12-29 华南理工大学 一种基于全局视觉的多仓储agv追踪方法

Also Published As

Publication number Publication date
CN115421474A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US11397442B2 (en) Travel planning system, travel planning method, and non-transitory computer readable medium
Oyekanlu et al. A review of recent advances in automated guided vehicle technologies: Integration challenges and research areas for 5G-based smart manufacturing applications
US10926410B2 (en) Layered multi-agent coordination
CN105182981B (zh) 机器人的行进方法、控制方法、控制系统和服务器
US11860621B2 (en) Travel control device, travel control method, travel control system and computer program
US10089586B2 (en) Job management system for a fleet of autonomous mobile robots
EP3892423B1 (en) Transfer robot-based control method and device
KR20190008709A (ko) 자율주행 로봇 장치 및 자율 주행 방법
WO2019152656A2 (en) System and method for managing a swarm of unmanned aerial vehicles
CA3104505A1 (en) Robot scheduling and robot path control method, server and storage medium
WO2018156284A1 (en) Systems and methods for delivering merchandise using unmanned aerial vehicles
CN109108973A (zh) 单向式路径调度方法及系统
US20140100717A1 (en) Guided Vehicle System and Guided Vehicle Control Method
US11468770B2 (en) Travel control apparatus, travel control method, and computer program
WO2022052809A1 (zh) 用于控制仓库中的机器人的行驶的方法和装置
WO2022237399A1 (zh) 机器人的控制方法、装置和机器人
US20210123766A1 (en) Travel control apparatus, mobile body, and operation system
CN110914845A (zh) 用于资源管理的系统和装置
WO2023174096A1 (zh) 自主移动机器人的调度方法、系统、电子设备和存储介质
KR20230095588A (ko) 강화 학습 기반의 알고리즘과 경로 계획 기반의 알고리즘을 사용하여 로봇을 제어하는 방법 및 시스템과, 로봇이 배치되는 건물
KR20200053744A (ko) 주행 시스템, 이에 포함되는 자동 주행 장치 및 교차점 충돌 방지 방법
CN108445903B (zh) 一种无人机防撞控制方法
WO2023035756A1 (zh) 可移动设备的调度方法、调度装置、电子设备和存储介质
US20220292983A1 (en) Method for autonomous control of vehicles of a transportation system
CN115268431A (zh) 机器人的控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE