WO2022237388A1 - 蒸发结构、散热器、半导体器件及制备方法 - Google Patents
蒸发结构、散热器、半导体器件及制备方法 Download PDFInfo
- Publication number
- WO2022237388A1 WO2022237388A1 PCT/CN2022/085123 CN2022085123W WO2022237388A1 WO 2022237388 A1 WO2022237388 A1 WO 2022237388A1 CN 2022085123 W CN2022085123 W CN 2022085123W WO 2022237388 A1 WO2022237388 A1 WO 2022237388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- evaporation
- plate
- semiconductor element
- bottom plate
- top plate
- Prior art date
Links
- 238000001704 evaporation Methods 0.000 title claims abstract description 202
- 230000008020 evaporation Effects 0.000 title claims abstract description 160
- 239000004065 semiconductor Substances 0.000 title claims abstract description 125
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 95
- 238000003466 welding Methods 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 238000011049 filling Methods 0.000 claims abstract description 47
- 230000001681 protective effect Effects 0.000 claims abstract description 24
- 238000007789 sealing Methods 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims abstract description 5
- 230000017525 heat dissipation Effects 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000002121 nanofiber Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
- H01L23/4275—Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
Definitions
- the present application relates to the technical field of preparation of evaporation structures, in particular to an evaporation structure, a radiator, a semiconductor device and a preparation method.
- the chip is the core of electronic equipment for computing, and it is also one of the main heating elements of electronic equipment.
- semiconductor components such as wafers are packaged in a metal case, and the metal case is used to conduct away the heat generated by the semiconductor components, thereby realizing heat dissipation of the chip.
- the wafer inside the chip is fixed on the substrate through solder balls.
- the heat generated by the wafer is dissipated to the substrate below through the solder balls, and at the same time, the heat is dissipated to the metal shell on the top through the heat-conducting material above the wafer. physically.
- the main heat dissipation path of the wafer is to transfer heat to the metal shell through the thermally conductive material above, and then the metal shell is transferred to other heat sinks and other heat dissipation devices through the thermally conductive material.
- Embodiments of the present application provide an evaporation structure, a radiator, a semiconductor device, and a manufacturing method.
- an embodiment of the present application provides a method for preparing an evaporation structure, including: providing a base, and forming a bottom plate on the base, a side plate connected to the bottom plate, and a plurality of return elements arranged at intervals on the bottom plate, wherein the side The plate is formed with a liquid filling port, and the side plate is surrounded by the bottom plate, so that the base forms a cavity with an opening; a capillary structure layer is formed on the inner surface of the bottom plate, the inner surface of the side plate, and the surface of the return element; providing A base top, the protective part is set on the welding area of the base top, and a capillary structure layer is formed on the side of the base top where the protective part is provided to form a top plate; the protective part and the top plate are separated to expose the welding area; the welding area of the top plate It corresponds to the side plate and the reflow parts, and welds the top plate, the side plates, and the reflow parts through the welding area, and
- the embodiment of the present application also provides an evaporation structure, which is used to adapt to the heat dissipation structure to dissipate heat for semiconductor elements.
- the evaporation structure includes: a bottom plate connected to the semiconductor element through a support, spaced from the bottom plate and connected to the heat dissipation structure The top plate and the side plate connecting the bottom plate and the top plate; the bottom plate, the top plate and the side plate cooperate to form an evaporation chamber, and a plurality of return parts connecting the bottom plate and the top plate are arranged between the bottom plate and the top plate; wherein, the evaporation structure adopts the aforementioned preparation method production.
- the embodiment of the present application also provides a heat sink for dissipating heat from a semiconductor element.
- the semiconductor element is fixed on the substrate.
- the structure forms an evaporation chamber for filling the evaporation liquid;
- the support member is arranged in a ring around the semiconductor element, and is spaced apart from the semiconductor element, and the support member is connected to the substrate and the evaporation structure; and the heat dissipation structure, the heat dissipation structure and the evaporation structure The structure is connected away from the side of the semiconductor element.
- the embodiment of the present application also provides a semiconductor device, including: a substrate for providing bearing support; a semiconductor element, the semiconductor element is fixed on the substrate, and is electrically connected to an external device through the substrate; the aforementioned evaporation structure, the evaporation structure It is connected to the side away from the substrate of the semiconductor element; the support is arranged in a ring around the semiconductor element, and is spaced apart from the semiconductor element, and the support is connected to the substrate and the evaporation structure; and the heat dissipation structure, the heat dissipation structure and the evaporation structure are far away from the semiconductor Component side connection.
- the embodiment of the present application also provides a method for manufacturing a semiconductor device, including: preparing an evaporation structure; welding the semiconductor element to one side of the substrate; connecting the support to the substrate, wherein the support is arranged in a ring around the semiconductor element , and set at intervals with the semiconductor element; attach one side of the evaporation structure to the semiconductor element, and fixedly connect the support and the evaporation structure; connect the heat dissipation structure to the side of the evaporation structure away from the semiconductor element; wherein, prepare the evaporation structure, specifically : Provide a base, and form a bottom plate, a side plate connected to the bottom plate, and a plurality of return elements arranged on the bottom plate at intervals on the base, wherein the side plate is formed with a liquid filling port, and the side plate is surrounded by the bottom plate.
- a cavity with an opening on the base forming a capillary structure layer on the inner surface of the bottom plate, the inner surface of the side plate, and the surface of the reflow component; providing a base top, setting a protective member on the welding area of the base top, and A capillary structure layer is formed on the side where the protective member is provided to form a top plate; the protective member and the top plate are separated to expose the welding area; the welding area of the top plate corresponds to the side plate and the reflow piece, and the top plate and the side plate, And the reflow part is welded and fixed, and the bottom plate, the top plate and the side plate cooperate to form an evaporation chamber by sealing the opening; the evaporation liquid is injected through the liquid filling port, and the liquid filling port is sealed to form an evaporation structure.
- FIG. 1 is a schematic diagram of a three-dimensional structure of a semiconductor device provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of an exploded structure of a semiconductor device provided in an embodiment of the present application
- FIG. 3 is a schematic diagram of an explosion structure of an evaporation structure of a semiconductor device
- Fig. 4 is a schematic cross-sectional structure diagram of a semiconductor device provided by an embodiment of the present application.
- FIG. 5 is a schematic cross-sectional structure diagram of a deformed structure of a semiconductor device provided in an embodiment of the present application
- Fig. 6 is a flowchart of a method for preparing an evaporation structure provided in an embodiment of the present application
- Fig. 7A is a schematic structural diagram corresponding to the state change of the base of the evaporation structure provided in the embodiment of the present application during the preparation process;
- Fig. 7B is a schematic structural diagram of the prepared base of the evaporation structure provided in the embodiment of the present application.
- Fig. 8 is a schematic diagram of the state change structure of the top plate of the evaporation structure provided in the embodiment of the present application during the preparation process;
- Fig. 9 is a schematic structural diagram corresponding to the state change of the evaporation structure preparation process provided by the embodiment of the present application.
- FIG. 10 is a flow chart of a method for manufacturing a semiconductor device provided in an embodiment of the present application.
- Fig. 11 is a schematic structural block diagram of an electronic device provided by an embodiment of the present application.
- the embodiment of the present application provides a semiconductor device 10, the semiconductor device 10 includes a substrate 20, a semiconductor element 30, and a heat sink 70, wherein the substrate 20 is used to provide a bearing support for the semiconductor element 30 , the semiconductor element 30 is fixed on the substrate 20 and is electrically connected to external electronic elements or electronic devices through the substrate 20 .
- the heat sink 70 is fixed on the substrate 20 and connected with the semiconductor element 30, so as to take away part of the heat generated by the semiconductor element 30, so as to realize the effect of cooling the semiconductor element 30.
- the semiconductor element 30 can be a chip or a wafer, which is not described herein. Do limited.
- the heat sink 70 includes an evaporation structure 40 , a support member 50 and a heat dissipation structure 60 .
- the evaporation structure 40 is connected to a side of the semiconductor element 30 away from the substrate 20 , and the evaporation structure 40 forms an evaporation chamber 401 for filling evaporation liquid.
- the evaporating liquid in the evaporation chamber 401 absorbs the heat generated by the semiconductor element 30 through the change of liquid-gas state, and guides the heat absorbed by the heat dissipation structure 60 to the semiconductor device 10, and at the same time restores the liquid state, so that the semiconductor element 30 can be continuously realized. effective heat dissipation.
- connection mode between the semiconductor element 30 and the evaporation structure 40 may be that a heat-conducting compound 80 is arranged between the semiconductor element 30 and the evaporation structure 40, and the semiconductor element 30 and the evaporation structure 40 are connected through the heat-conducting compound 80, as shown in FIG. 4 Shown, the evaporating liquid includes but not limited to at least one of water, ethanol, and acetone.
- the supporting member 50 is disposed circumferentially on the peripheral side of the semiconductor element 30 and spaced apart from the semiconductor element 30 , and the supporting member 50 connects the substrate 20 and the evaporation structure 40 to form an annular support for the evaporation structure 40 .
- the connection methods of the support member 50 and the evaporation structure 40 include but not limited to ultrasonic fusion, welding, gluing and clamping, and the connection methods of the support member 50 and the substrate 20 include but not limited to gluing and clamping.
- the heat dissipation structure 60 is connected to the side of the evaporation structure 40 away from the semiconductor element 30 , and is used to increase the contact area between the evaporation structure 40 and the air, to dissipate heat for the evaporation structure 40 , and to reliquefy the gaseous evaporation liquid in the evaporation structure 40 .
- the support member 50 is used to support and connect the substrate 20 and the evaporation structure 40, so that the heat generated by the semiconductor element 30 can be maximized while providing support for the evaporation structure 40. Transfer to the evaporating structure 40, and then make the evaporating liquid in the evaporating structure 40 absorb heat and vaporize, and turn into a gaseous liquid.
- the heat dissipation structure 60 After the evaporated evaporating liquid is in contact with the matching side of the evaporating structure 40 and the heat dissipation structure 60, part of the heat is transferred to the heat dissipation structure 60 to be taken away, and is cooled again to become the evaporating liquid, which flows back to the side of the evaporating structure 40 close to the semiconductor element 30.
- the heat generated by the semiconductor element 30 is diffused to the outside through the heat dissipation structure 60 by utilizing the change of state of the evaporating liquid in the evaporation structure 40, so that the effective cooling of the semiconductor element 30 can be realized, and the semiconductor device 10 has a stronger heat dissipation effect. , can adapt to higher temperature environment.
- the side of the substrate 20 away from the semiconductor element 30 is provided with an external contact point 201, and the semiconductor element 30 is fixed on the opposite side of the substrate 20 by soldering and is electrically connected to the external contact point 201,
- the external contact point 201 can be adapted to external electronic components or electronic devices, so as to realize the electrical connection between the semiconductor component 30 and external electronic components or electronic devices.
- the support member 50 may be rectangular or ring-shaped, and connected between the substrate 20 and the evaporation structure 40 to form a multi-point support for the evaporation structure 40 .
- the support member 50 includes a first support portion 501, a second support portion 502 spaced apart from the first support portion 501, a third support portion 503 connecting the first support portion 501 and the second support portion 502, and a third support portion 503 connected to the first support portion 501.
- Three supporting parts 503 are arranged at intervals and are connected with the first supporting part 501 and the second supporting part 502; wherein, the first supporting part 501, the second supporting part 502, the third supporting part 503 and the fourth supporting part
- the portions 504 are all connected to the evaporation structure 40 to realize annular support for the evaporation structure 40 and form a closed accommodation cavity between the substrate 20 and the evaporation structure 40 for accommodating the semiconductor element 30 .
- the semiconductor element 30 is accommodated in a closed accommodation chamber, so that the semiconductor element 30 can be in a relatively airtight environment, reducing the contamination of the semiconductor element 30 by external impurities, and at the same time, the heat generated by the semiconductor element 30 can be transferred by the evaporation structure 40 to the maximum extent Give heat dissipation structure.
- first supporting part 501, the second supporting part 502, the third supporting part 503 and the fourth supporting part 504 can be integrally formed, or they can be connected to each other by means of welding, ultrasonic fusion, glue, etc. It is not limited here.
- the evaporation structure 40 is provided with a liquid filling port 406 communicated with the formed evaporation chamber 401, and a preset amount of evaporating liquid is filled into the liquid filling port 406.
- the liquid filling port 406 is sealed.
- the liquid filling port 406 may be sealed by a sealing member, or by electric welding, cold welding or ultrasonic welding to seal the liquid filling port 406 .
- the evaporation structure 40 includes a bottom plate 402 connected to the semiconductor element 30 and the support member 50 , a top plate 404 spaced apart from the bottom plate 402 and connected to the heat dissipation structure 60 , and a side plate 403 connecting the bottom plate 402 and the top plate 404 .
- the bottom plate 402 , the top plate 404 and the side plate 403 cooperate to form an evaporation chamber 401 , and a plurality of return elements 405 connecting the bottom plate 402 and the top plate 404 are disposed between the bottom plate 402 and the top plate 404 . It can be understood that there may be one or more return elements 405, and when there are multiple return elements 405, they are arranged in an array.
- the bottom plate 402, the side plate 403 and the top plate 404 of the evaporation structure 40 are integrally formed to be connected to each other, or the bottom plate 402 and the side plate 403 are integrally formed, and the side plate 403 and the top plate 404 are connected to each other by welding or bonding, or the side
- the plate 403 and the top plate 404 are integrally formed, and the side plate 403 and the bottom plate 402 are connected to each other by welding or bonding, or the bottom plate 402 and the side plate 403 are connected to each other by welding or bonding, and the side plate 403 and the top plate 404 are also connected by welding Or bonding to achieve mutual connection, which is not limited here.
- the reflow piece 405 is integrally formed with the bottom plate 402 and connected to the top plate 404 by welding, or the reflow piece 405 is integrally formed with the top plate 404 and connected to the bottom plate 402 by welding, and the reflow piece 405 can be a columnar structure or a polygonal structure , without limitation here.
- the liquid filling port 406 can be disposed on at least one of the bottom plate 402 , the side plate 403 or the top plate 404 of the evaporation structure 40 .
- the liquid filling port 406 is provided on the side plate 403, so that after the semiconductor device 10 is assembled, the evaporating liquid can be replenished or replaced through the liquid filling port 406 provided on the side plate.
- the pressure resistance of the evaporation chamber 401 formed by the evaporation structure 40 can be effectively enhanced to prevent the evaporation chamber 401 from being crushed.
- the liquid flows back to the bottom of the evaporation chamber 401 .
- a part of the inner surface of the evaporation structure 40 is provided with a capillary structure layer 407, and the capillary structure layer 407 can be a sintered metal powder layer, a metal mesh layer, a thermally conductive fiber layer, or a nanofiber layer. any one or a combination thereof.
- the capillary structure layer 407 is at least disposed on the surface of the return element 405 .
- the capillary structure layer 407 is at least disposed on the inner surface of the top plate 404 and the inner surface of the side plate 403, or the capillary structure layer 407 is at least disposed on the inner surface of the top plate 404, the inner surface of the side plate 403 and the surface of the return element 405.
- the capillary structure layer 407 is formed on the inner surface of the evaporation chamber 401 and the surface of the return member 405 as an example for illustration. It has a pore structure, and the pore structure will generate a strong capillary force, so all the evaporating liquid injected into the evaporation chamber 401 is absorbed in these pore structures.
- the semiconductor element 30 starts to generate heat, and heats the evaporating liquid in the pore structure of the corresponding evaporation chamber 401 above the semiconductor element 30, so that the temperature of the evaporating liquid starts to rise.
- the evaporating liquid When the temperature rises above the evaporating temperature of the evaporating liquid itself, the evaporating liquid changes from a liquid state to a vapor state. Because the vapor state evaporating liquid is not limited by the structure, the evaporating liquid can fill the entire evaporation chamber 401 .
- the evaporation liquid in the pore structure of the evaporation chamber 401 above the semiconductor element 30 is reduced, due to capillary action, the evaporation liquid in the pore structure of the evaporation chamber 401 corresponding to the semiconductor element 30 will be drawn to the evaporation chamber 401 corresponding to the semiconductor element 30 In the area where the newly supplemented evaporating liquid will continue to absorb the heat generated by the semiconductor element 30, continue to heat up and evaporate.
- the heat dissipation structure 60 includes a connection plate 601 connected to the evaporation structure 40 and a plurality of heat dissipation fins 602 arranged at intervals on the side of the connection plate 601 away from the evaporation structure 40 .
- the connecting plate 601 and the heat sink 602 can be integrally formed, or can be connected to each other by welding or clamping.
- the area of the connection plate 601 of the heat dissipation structure 60 is larger than the area of the top plate 404 of the evaporation structure 40 , so that the heat dissipation structure 60 can be fully attached to the evaporation structure 40 to achieve better heat dissipation effect for the evaporation structure 40 .
- Step S11 providing a base, and forming a bottom plate, a side plate connected to the bottom plate, and a plurality of return elements arranged at intervals on the bottom plate on the base, wherein the side plate is formed with a liquid filling port, and The side plate surrounds the bottom plate so that the base forms a cavity with an opening.
- a substrate M is provided, and the substrate M is a metal matrix, wherein the metal can be copper, iron, aluminum, or an alloy, etc., which is not limited here.
- the base of the evaporation structure 40 is formed on the substrate M, the base includes a bottom plate 402, a side plate 403 connected to the bottom plate 402, and a plurality of return elements 405 arranged at intervals on the bottom plate 402, wherein the side plate 403 is formed with
- the liquid filling port 406, and the side plate 403 surrounds the bottom plate 402 so that the base forms a cavity with an opening.
- the liquid filling port 406 on the side plate 403 can be formed during the metal etching process.
- bottom plate 402 , the side plate 403 , and the return element 405 on the base M may also be integrally formed by heat pressing.
- Step S12 forming a capillary structure layer on the inner surface of the bottom plate, the inner surface of the side plate, and the surface of the return element.
- a layer of metal powder is laid on the inner surface of the bottom plate 402, the inner surface of the side plate 403, and the surface of the return piece 405, and is sintered on the inner surface of the bottom plate 402, the inner surface of the side plate 403, and A capillary structure layer 407a is formed on the surface of the reflow member 405, wherein the metal powder includes but not limited to copper powder and iron powder.
- the inner surface of the bottom plate 402 , the inner surface of the side plate 403 , and the surface of the reflow element 405 are welded with metal mesh, thermally conductive fiber layer or nanofiber layer to form the capillary structure layer 407 a.
- Step S13 providing a base top, setting a protection member on the welding area of the base top, and forming a capillary structure layer on the side of the base top where the protection member is provided to form a top plate, wherein the welding area and The return element and the side plate are arranged correspondingly.
- a base N is provided, and the base N includes a welding area corresponding to the reflow part 405 and the side plate 403, that is, the welding area includes a first welding area corresponding to the reflow part 405, and the side plate 403 corresponds to the set second welding area.
- the first protective piece N1 is set on the first welding area of the base N
- the second protective piece N2 is set on the second welding area, and the corresponding welding area is protected by the first protective piece N1 and the second protective piece N2, so as to avoid corresponding welding area is polluted.
- a capillary structure layer 407b is formed on the side where the protection member is provided on the top N, so that no The capillary structure layer 407b is formed in the area with the protective member, and then the base N is made into the top plate 404 .
- the method of forming the capillary structure layer 407b on the side of the IMN provided with the protective member may be to lay a layer of metal powder on the side of the IMN provided with the protective member, and sintering on the IMN The capillary structure layer 407b is formed so that the base N is made into the top plate 404 .
- the way of forming the capillary structure layer 407b on the side of the base N provided with the protective member may be to weld a metal mesh, a thermally conductive fiber layer or a nanofiber layer on the side of the base N provided with the protective member, so as to The capillary structure layer 407b is formed so that the base N is made into the top plate 404 .
- Step S14 separating the protective member from the top plate, exposing the welding area.
- the first protection part N1 and the second protection part N2 are separated from the top board 404 , so that the welding area on the top board 404 is exposed.
- Step S15 Corresponding the welding area of the top plate to the side plate and the reflow piece, and welding and fixing the top plate, the side plate, and the reflow piece through the welding area, so as to cover the The opening makes the bottom plate, the top plate and the side plate cooperate to form an evaporation chamber.
- the position of the top plate 404 is adjusted so that the first welding area of the top plate 404 corresponds to the reflow element 405 , and the second welding area corresponds to the side plate 403 .
- the top plate 404, the side plate 403, and the return piece 405 are welded and fixed through the welding area to cover the opening of the chamber so that the bottom plate 402, the top plate 404 and the side plate 403 cooperate to form an evaporation chamber.
- Step S16 injecting evaporation liquid through the liquid filling port, and sealing the liquid filling port to form the evaporation structure.
- the evaporating liquid is injected through the liquid filling port, and the liquid filling port is sealed, which specifically includes:
- the evaporating liquid is injected into the evaporation chamber in a vacuum state through the liquid filling port, and the liquid filling port is closed to form the evaporation structure.
- the evaporation chamber 401 is evacuated through the liquid filling port 406, and the evaporation liquid is injected into the vacuum state evaporation chamber 401 through the liquid filling port 406, and then the liquid filling port 406 is sealed to store the evaporation liquid in the evaporation chamber 401, thereby forming the evaporation structure 40.
- step S11, step S12 and step S13 can be reversed, specifically, step S13 is executed first, and then step S11 and step S12 are executed.
- the embodiment of the present application also provides a method for manufacturing a semiconductor device, and the method includes step 21 to step 25 .
- Step S21 preparing an evaporation structure.
- the specific steps for preparing the evaporation structure are the same as steps S11-S16 in Figure 6, that is, preparing the evaporation structure includes:
- a base is provided, and a bottom plate, a side plate connected to the bottom plate, and a plurality of return elements arranged at intervals on the bottom plate are formed on the base, wherein a liquid filling port is formed on the side plate, and the side plate a plate surrounds the bottom plate so that the base forms a cavity with an opening;
- a base top is provided, a protection member is provided on the welding area of the base top, and a capillary structure layer is formed on the side of the base top where the protection member is provided to form a top plate, wherein the welding area and the reflow
- the parts and the side panels are set correspondingly;
- the welding area of the top plate corresponds to the side plate and the reflow piece, and the top plate, the side plate, and the reflow piece are welded and fixed through the welding area, so as to cover the opening so that The bottom plate, the top plate and the side plates cooperate to form an evaporation chamber;
- Step S22 soldering the semiconductor element to one side of the substrate.
- the semiconductor element 30 is fixed on one side of the substrate 20 so as to be electrically connected to external electronic elements or electronic devices through the substrate 20 .
- an external contact point 201 may be provided on the side of the substrate 20 away from the semiconductor element 30, and the semiconductor element 30 is fixed on the opposite side of the substrate 20 by welding and electrically connected to the external contact point 201, so as to communicate with the external contact point 201 through the external contact point 201.
- the external electronic components or electronic devices are adapted so as to realize the electrical connection between the semiconductor component 30 and the external electronic components or electronic devices, as shown in FIG. 5 .
- Step S23 connecting the support member to the substrate, wherein the support member is arranged in a ring around the semiconductor element and spaced apart from the semiconductor element.
- the supporting member 50 is respectively connected and fixed to the substrate 20 and the evaporation structure 40 , wherein the supporting member 50 is arranged in a ring around the semiconductor element 30 and spaced apart from the semiconductor element 30 .
- the way of connecting and fixing the support member 50 to the substrate 20 and the evaporation structure 40 may be by welding or by adhesive, which is not limited here.
- Step S24 attaching one side of the evaporation structure to the semiconductor element, and fixedly connecting the support member and the evaporation structure.
- the fixed connection between the support member 50 and the evaporation structure 40 may be through welding or adhesive connection, which is not limited here.
- Step S25 Connect the heat dissipation structure to the other side of the evaporation structure.
- the heat dissipation structure 60 is connected to the side of the evaporation structure 40 away from the semiconductor element 30 , wherein the fixed connection may be through welding or adhesive connection, which is not limited here.
- the present application also provides a kind of electronic equipment 100, and this electronic equipment 100 comprises semiconductor device 10 and memory 90, and semiconductor device 10 and memory 90 are connected by bus, and this bus is such as I2C (Inter-integrated Circuit) bus .
- the electronic device 100 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, and the like.
- the application provides an evaporation structure, a heat sink, a semiconductor device and a preparation method, wherein the evaporation structure is provided with an evaporation chamber filled with an evaporation liquid, and the evaporation structure is connected to a semiconductor element, so that the heat generated by the semiconductor element can be Maximum transfer to the evaporation structure, and then make the evaporation liquid in the evaporation structure absorb heat and vaporize, and turn into a gaseous liquid.
- the vaporized evaporating liquid contacts the side of the evaporating structure and the heat dissipation structure, part of the heat is transferred to the heat dissipation structure and taken away, and then cooled and liquefied again to become the evaporating liquid, which flows back to the side of the evaporating structure close to the semiconductor element.
- the change of physical state of the evaporating liquid in the evaporation structure diffuses the heat generated by the semiconductor element to the outside through the heat dissipation structure, which can realize the effective cooling of the semiconductor element, and then make the semiconductor element have stronger high temperature resistance characteristics.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
一种蒸发结构、散热器、半导体器件及制备方法,其中,蒸发结构的制备方法,包括:提供基底,并于基底上形成底板、连接底板的侧板、及多个间隔布设于底板的回流件,其中,侧板形成有充液口,且侧板围设于底板周侧,以使基底形成具有开口的腔室(S11);在底板的内表面、侧板的内表面、及回流件的表面形成毛细结构层(S12);提供基顶,于基顶的焊接区设置保护件,并在基顶设置有保护件一侧形成毛细结构层以形成顶板(S13);将保护件和顶板分离,使焊接区外露(S14);将顶板的焊接区与侧板和回流件对应,并通过焊接区将顶板与侧板、及回流件焊接固定,以封盖开口使底板、顶板及侧板配合形成蒸发腔(S15);通过充液口注入蒸发液,并密封充液口,以形成蒸发结构(S16)。
Description
相关申请的交叉引用
本申请基于申请号为202110517273.3、申请日为2021年5月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及蒸发结构制备技术领域,尤其涉及一种蒸发结构、散热器、半导体器件及制备方法。
目前,芯片是电子设备进行运算的核心,也是电子设备的主要发热元件之一。传统的芯片是将晶元等半导体元件封装在金属壳体内,利用金属壳体将半导体元件所产生的热量导离,从而实现芯片的散热。
也即,目前芯片内部的晶圆通过焊球固定到基板上,晶圆工作时晶元产生的热量通过焊球散热到下方的基板上,同时通过晶元上方的导热材料散热到顶部的金属壳体上。对于绝大多数的金属封装芯片,晶元的主要散热路径都是通过上方的导热材料将热量传递到金属壳体,然后金属壳体再通过导热材料传递到散热器等其他散热器件上。因为通过金属壳体与散热器连接,利用散热器带走金属壳体所传递的热量的散热路径承担着大部分的散热量,故而这个散热路径上的热阻直接影响着内部晶元的温度。
然而,传统芯片仅通过金属壳体导热的散热方式,散热效果不佳,因此,如何提供一种可以为芯片等半导体器件进行有效的导热、散热的蒸发结构,是本领域技术人员正在研究的热门课题。
发明内容
本申请实施例提供一种蒸发结构、散热器、半导体器件及制备方法。
第一方面,本申请实施例提供一种蒸发结构的制备方法,包括:提供一基底,并于基底上形成底板、连接底板的侧板、及多个间隔布设于底板的回流件,其中,侧板形成有充液口,且侧板围设于底板周侧,以使基底形成具有开口的腔室;在底板的内表面、侧板的内表面、及回流件的表面形成毛细结构层;提供一基顶,于基顶的焊接区设置保护件,并在基顶设置有保护件一侧形成毛细结构层以形成一顶板;将保护件和顶板分离,使焊接区外露;将顶板的焊接区与侧板和回流件对应,并通过焊接区将顶板与侧板、及回流件焊接固定,以封盖开口使底板、顶板及侧板配合形成蒸发腔;通过充液口注入蒸发液,并密封充液口,以形成蒸发结构。
第二方面,本申请实施例还提供一种蒸发结构,用于与散热结构适配为半导体元件散热,蒸发结构包括:与半导体元件通过支撑件连接的底板、与底板间隔设置并与散热结构连接的顶板、及连接底板和顶板的侧板;底板、顶板及侧板配合形成蒸发腔,且底板和顶板之间设 置有多个连接底板和顶板的回流件;其中,蒸发结构采用前述的制备方法制成。
第三方面,本申请实施例还提供一种散热器,用于为半导体元件散热,半导体元件固定于基板,散热器包括:前述的蒸发结构,蒸发结构与半导体元件远离基板一侧连接,且蒸发结构形成有用于填装蒸发液的蒸发腔;支撑件,支撑件环形布设于半导体元件的周侧,并与半导体元件间隔设置,且支撑件连接基板和蒸发结构;及散热结构,散热结构与蒸发结构远离半导体元件一侧连接。
第四方面,本申请实施例还提供一种半导体器件,包括:基板,用于提供承载支撑;半导体元件,半导体元件固定于基板,并通过基板与外部设备电连接;前述的蒸发结构,蒸发结构与半导体元件远离基板一侧连接;支撑件,支撑件环形布设于半导体元件的周侧,并与半导体元件间隔设置,且支撑件连接基板和蒸发结构;及散热结构,散热结构与蒸发结构远离半导体元件一侧连接。
第五方面,本申请实施例还提供半导体器件的制备方法,包括:制备蒸发结构;将半导体元件焊接于基板的一侧;将支撑件连接基板,其中,支撑件环形布设于半导体元件的周侧,并与半导体元件间隔设置;将蒸发结构的一侧贴合于半导体元件,并固定连接支撑件和蒸发结构;将散热结构与蒸发结构远离半导体元件一侧连接;其中,制备蒸发结构,具体为:提供一基底,并于基底上形成底板、连接底板的侧板、及多个间隔布设于底板的回流件,其中,侧板形成有充液口,且侧板围设于底板周侧,以使基底形成具有开口的腔室;在底板的内表面、侧板的内表面、及回流件的表面形成毛细结构层;提供一基顶,于基顶的焊接区设置保护件,并在基顶设置有保护件一侧形成毛细结构层以形成一顶板;将保护件和顶板分离,使焊接区外露;将顶板的焊接区与侧板和回流件对应,并通过焊接区将顶板与侧板、及回流件焊接固定,以封盖开口使底板、顶板及侧板配合形成蒸发腔;通过充液口注入蒸发液,并密封充液口,以形成蒸发结构。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一半导体器件的立体结构示意图;
图2是本申请实施例提供的一种半导体器件的爆炸结构示意图;
图3为半导体器件的蒸发结构的爆炸构示意图;
图4是本申请实施例提供的半导体器件的剖面结构示意图;
图5是本申请实施例提供的半导体器件的一种变形结构的剖面结构示意图;
图6是本申请实施例提供的一种蒸发结构的制备方法的流程图;
图7A是本申请实施例提供的蒸发结构的底座在制备过程中状态变化对应的结构示意图;
图7B是本申请实施例提供的蒸发结构的底座制备完成的结构示意图;
图8是本申请实施例提供的蒸发结构的顶板在制备过程中的状态变化结构示意图;
图9是本申请实施例提供的蒸发结构制备过程的状态变化对应的结构示意图;
图10是本申请实施例提供的一种半导体器件的制备方法的流程图;
图11是本申请实施例提供的一种电子设备的示意性结构框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
需要说明的是,在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面结合附图,对本申请的一些实施方式作详细说明,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1和图2,本申请实施例提供了一种半导体器件10,该半导体器件10包括基板20、半导体元件30、及散热器70,其中,基板20用于为半导体元件30提供承载支撑,半导体元件30固定于基板20并通过基板20与外部的电子元件或电子设备电连接。散热器70固定于基板20并与半导体元件30连接,以带走半导体元件30所产生的部分热量,从而实现为半导体元件30散热的效果,该半导体元件30可以是芯片或晶圆,在此不做限定。
具体地,散热器70包括蒸发结构40、支撑件50及散热结构60。蒸发结构40与半导体元件30远离基板20的一侧连接,且蒸发结构40形成有用于填装蒸发液的蒸发腔401。蒸发腔401内的蒸发液通过液气物态变化实现将半导体元件30所产生的热量吸收,并配合散热结构60所吸收的热量导出半导体器件10,同时恢复液态,从而可以持续实现对半导体元件30的有效散热。其中,半导体元件30和蒸发结构40之间的连接方式可以是,在半导体元件30和蒸发结构40之间设置有导热合剂80,半导体元件30和蒸发结构40通过导热合剂80连接,如图4所示,蒸发液包括但不限定于水、乙醇、丙酮中的至少一者。
支撑件50周向布设于半导体元件30的周侧,并与半导体元件30间隔设置,且支撑件50连接基板20和蒸发结构40,以对蒸发结构40形成环形支撑。其中,支撑件50与蒸发结构40的连接方式包括但不限定于超声融合、焊接、胶黏及卡接,支撑件50与基板20的连接方式包括但不限定于胶黏及卡接。
散热结构60与蒸发结构40远离半导体元件30的一侧连接,用于增大蒸发结构40与空气的接触面积,为蒸发结构40散热,以使蒸发结构40内的气态蒸发液重新液化。
本实施例中,通过将半导体元件30设置于基板20上,利用支撑件50支撑连接基板20和蒸发结构40,从而在为蒸发结构40提供支撑的同时使得半导体元件30所产生的热量可以最大限度传递给蒸发结构40,进而使得蒸发结构40内的蒸发液吸热汽化,转变为气态液体。汽化后的蒸发液在与蒸发结构40和散热结构60配合的一侧接触后,将部分热量传递给散热结构60带走,并再次冷却转变为蒸发液,回流到蒸发结构40靠近半导体元件30的一侧,利用蒸发结构40内蒸发液的物态变化将半导体元件30所产生的热量经散热结构60扩散到外部, 可以实现半导体元件30的有效降温,进而使得半导体器件10具有更强的散热效果,可以适应更高的温度环境。
请参阅图2,在一些实施方式中,基板20远离半导体元件30的一侧设置有外接触点201,半导体元件30通过焊接固定于基板20的相对另一侧并与外接触点201电连接,以通过外接触点201与外部的电子元件或电子设备适配,从而实现半导体元件30和外部的电子元件或电子设备电连接。
如图2所示,在一些实施方式中,支撑件50可以为矩形或环形,连接于基板20和蒸发结构40之间,以形成对蒸发结构40的多点支撑。
具体地,支撑件50包括第一支撑部501、与第一支撑部501间隔设置的第二支撑部502、连接第一支撑部501和第二支撑部502的第三支撑部503、及与第三支撑部503间隔设置并与第一支撑部501和第二支撑部502连接的第四支撑部504;其中,第一支撑部501、第二支撑部502、第三支撑部503及第四支撑部504均与和蒸发结构40连接,以实现对蒸发结构40的环形支撑,并使得基板20和蒸发结构40之间形成封闭的收容腔,用以收容半导体元件30。利用封闭的收容腔收容半导体元件30,使得半导体元件30可以处于相对密闭的环境,减少外部杂质对半导体元件30造成污损,同时,使得半导体元件30所产生的热量可以最大限度由蒸发结构40传递给散热结构。
可以理解,第一支撑部501、第二支撑部502、第三支撑部503及第四支撑部504可以是一体成型,也可以通过焊接、超声融合、黏胶等方式实现彼此之间的连接,在此不做限定。
如图3和图4所示,在一些实施方式中,蒸发结构40设置有与所形成的蒸发腔401连通的充液口406,预设量的蒸发液通过该充液口406加注到该蒸发腔401内,并在蒸发液加注完毕后,充液口406被密封。其中,充液口406密封的方式可以是通过密封件密封,也可以是通过电焊、冷焊或超声焊接等方式将充液口406密封。
具体地,蒸发结构40包括与半导体元件30和支撑件50连接的底板402、与底板402间隔设置并与散热结构60连接的顶板404、及连接底板402和顶板404的侧板403。底板402、顶板404及侧板403配合形成蒸发腔401,且底板402和顶板404之间设置有多个连接底板402和顶板404的回流件405。可以理解,回流件405可以是一个或多个,当回流件405为多个时,呈阵列布设。
其中,蒸发结构40的底板402、侧板403及顶板404一体成型实现彼此连接,或者是底板402与侧板403一体成型,侧板403与顶板404通过焊接或者粘合实现彼此连接,或者是侧板403与顶板404一体成型,侧板403与底板402通过焊接或者粘合实现彼此连接,或者是底板402与侧板403通过焊接或者粘合实现彼此连接,且侧板403与顶板404也通过焊接或者粘合实现彼此连接,在此不做限定。
回流件405与底板402一体成型,并通过焊接与顶板404连接,或者回流件405与顶板404一体成型,并通过焊接与底板402连接,且该回流件405可以是柱状结构,也可以是多边形结构,在此不做限制。
充液口406可以设置于蒸发结构40的底板402、侧板403或顶板404中的至少一者。本实施方式中,充液口406设置于侧板403,以使得半导体器件10在装配完成后可以通过设置于侧板上的充液口406进行蒸发液的补充或更换。
通过设置回流件405从而可以有效增强蒸发结构40所形成的蒸发腔401的抗压能力,防 止蒸发腔401被压扁,同时,通过设置回流件405可以有效加速蒸发结构40的顶板404上冷凝的液体回流至蒸发腔401的底部。
请参阅图5,在一些实施方式中,蒸发结构40的部分内表面设置有毛细结构层407,毛细结构层407可以是烧结金属粉末层、金属网丝层、导热纤维层、纳米纤维层中的任一者或者其组合。
具体地,毛细结构层407至少设置于回流件405的表面。或者,毛细结构层407至少设置于顶板404的内表面、及侧板403的内表面,或毛细结构层407至少设置于顶板404的内表面、侧板403的内表面及回流件405的表面。
本实施方式中,蒸发腔401的内表面及回流件405的表面均形成有毛细结构层407为例进行说明,通过在蒸发结构40的蒸发腔401内设置有毛细结构层407,毛细结构层407具有孔隙结构,孔隙结构会产生强大的毛细力,故而注入到蒸发腔401内部的蒸发液全部都被吸附在这些孔隙结构中。当半导体器件10开始工作时,半导体元件30开始发热,并加热半导体元件30上方对应的蒸发腔401孔隙结构内的蒸发液,使得蒸发液的温度开始升高。当温度升高超过蒸发液自身的蒸发温度时,蒸发液从液态变为汽态,因为汽态的蒸发液不受结构的限制,故而蒸发液可以充盈在整个蒸发腔401内。当半导体元件30上方的蒸发腔401孔隙结构内的蒸发液减少后,因为毛细作用,蒸发腔401对应半导体元件30以外的孔隙结构内的蒸发液就会被牵引到蒸发腔401与半导体元件30对应处的面积内,新补充的蒸发液就会继续吸收半导体元件30的所产生的热量,继续升温和蒸发。当蒸汽碰到蒸发腔401的顶部时,通过散热结构60将部分热量带走使得蒸汽温度就会迅速降低,当温度降低到蒸发液的冷凝温度以下时,蒸汽即被冷凝为液态。并通过回流件405表面的毛细结构层407将液态蒸发液拉回到蒸发腔401的底部上,以此循环往复,不断将半导体元件30的热量高效的传递到散热结构60,进而经散热结构60散发到空气中。
在一些实施方式中,散热结构60包括与蒸发结构40连接的连接板601及多个间隔布设于连接板601远离蒸发结构40一侧的散热片602。其中,连接板601和散热片602可以是一体成型,也可以是通过焊接、卡接实现彼此之间的连接。
在一些实施方式中,散热结构60的连接板601的面积大于蒸发结构40的顶板404面积,从而使得散热结构60可以充分与蒸发结构40贴合,为蒸发结构40实现更优散热效果。
请参阅图6,本申请实施例还提供了一种制备方法,用于蒸发结构40的制备,制备方法包括步骤S11至步骤S16。
步骤S11:提供一基底,并于所述基底上形成底板、连接所述底板的侧板、及多个间隔布设于所述底板的回流件,其中,所述侧板形成有充液口,且所述侧板围设于所述底板周侧,以使所述基底形成具有开口的腔室。
如图7A和图7B所示,提供基底M,该基底M为金属基体,其中,金属的可以是铜、铁、铝、或合金等,在此不做限定。
通过金属蚀刻工艺,在基底M上形成蒸发结构40的底座,该底座包括底板402、连接底板402的侧板403、及多个间隔布设于底板402的回流件405,其中,侧板403形成有充液口406,且侧板403围设于底板402周侧,以使基底形成具有开口的腔室。该侧板403上的充液口406可以在金属蚀刻过程中形成。
可以理解,在基底M上形成底板402、侧板403、及回流件405还可以是热压一体成型。
步骤S12:在所述底板的内表面、所述侧板的内表面、及所述回流件的表面形成毛细结构层。
在一些实施方式中,在底板402的内表面、侧板403的内表面、及回流件405的表面铺设一层金属粉末,并通过烧结在底板402的内表面、侧板403的内表面、及回流件405的表面形成毛细结构层407a,其中,金属粉末包括但不限于铜粉、铁粉。
在一些实施方式中,在底板402的内表面、侧板403的内表面、及回流件405的表面焊接金属网丝、导热纤维层或纳米纤维层,以形成毛细结构层407a。
步骤S13:提供一基顶,于所述基顶的焊接区设置保护件,并在所述基顶设置有所述保护件一侧形成毛细结构层以形成一顶板,其中,所述焊接区与所述回流件及所述侧板对应设置。
如图8所示,提供一基顶N,基顶N包括与回流件405及侧板403对应设置的焊接区,即焊接区包括与回流件405对应设置的第一焊接区,及与侧板403对应设置的第二焊接区。在基顶N的第一焊接区设置第一保护件N1,并在第二焊接区设置第二保护件N2,利用第一保护件N1和第二保护件N2保护对应焊接区,以避免对应焊接区被污染。
将第一保护件N1设置于第一焊接区、第二保护件N2设置于第二焊接区后,在基顶N设置有保护件一侧形成毛细结构层407b,从而使得在基顶N未设置有保护件的区域形成有毛细结构层407b,进而将基顶N制成顶板404。
在一些实施方式中,在基顶N设置有保护件一侧形成毛细结构层407b的方式,可以是在基顶N设置有保护件一侧铺设一层金属粉末,并通过烧结在基顶N上形成毛细结构层407b,从而将基顶N制成顶板404。
在一些实施方式中,在基顶N设置有保护件一侧形成毛细结构层407b的方式,可以是在基顶N设置有保护件一侧焊接金属网丝、导热纤维层或纳米纤维层,以形成毛细结构层407b,从而将基顶N制成顶板404。
步骤S14:将所述保护件和所述顶板分离,使所述焊接区外露。
将第一保护件N1和第二保护件N2和顶板404分离,使得顶板404上的焊接区外露。
步骤S15:将所述顶板的焊接区与所述侧板和所述回流件对应,并通过所述焊接区将所述顶板与所述侧板、及所述回流件焊接固定,以封盖所述开口使所述底板、所述顶板及所述侧板配合形成蒸发腔。
请参阅图9,在一些示例中,调整顶板404位置,使得顶板404的第一焊接区与回流件405对应,第二焊接区和侧板403对应。并通过焊接区将顶板404与侧板403、及回流件405焊接固定,以封盖腔室的开口使底板402、顶板404及侧板403配合形成蒸发腔。
步骤S16:通过所述充液口注入蒸发液,并密封所述充液口,以形成所述蒸发结构。
在一些实施方式中,通过所述充液口注入蒸发液,并密封所述充液口,具体包括:
经所述充液口对所述蒸发腔进行抽真空处理;
将蒸发液经所述充液口注入到真空状态的蒸发腔内,并封闭所述充液口以形成所述蒸发结构。如图9所示,经充液口406对蒸发腔401抽真空,并将蒸发液经充液口406注入到真空状态的蒸发腔401内,然后密封充液口406将蒸发液存储在蒸发腔401内,从而形成蒸发结构40。
在一些实施方式中,步骤S11、步骤S12及步骤S13的顺序可以调换,具体为,先执行 步骤S13,再执行步骤S11及步骤S12。
请参阅图10,本申请实施例还提供了一种半导体器件的制备方法,所述制备方法包括步骤21至步骤25。
步骤S21:制备蒸发结构。
在一些实施方式中,制备蒸发结构的具体步骤与图6中步骤S11-S16相同,也即,制备蒸发结构包括:
提供一基底,并于所述基底上形成底板、连接所述底板的侧板、及多个间隔布设于所述底板的回流件,其中,所述侧板形成有充液口,且所述侧板围设于所述底板周侧,以使所述基底形成具有开口的腔室;
在所述底板的内表面、所述侧板的内表面、及所述回流件的表面形成毛细结构层;
提供一基顶,于所述基顶的焊接区设置保护件,并在所述基顶设置有所述保护件一侧形成毛细结构层以形成一顶板,其中,所述焊接区与所述回流件及所述侧板对应设置;
将所述保护件和所述顶板分离,使所述焊接区外露;
将所述顶板的焊接区与所述侧板和所述回流件对应,并通过所述焊接区将所述顶板与所述侧板、及所述回流件焊接固定,以封盖所述开口使所述底板、所述顶板及所述侧板配合形成蒸发腔;
通过所述充液口注入蒸发液,并密封所述充液口,以形成所述蒸发结构。
制备蒸发结构的具体步骤描述,请参见图6步骤S11-S16的相关描述,在此不做赘述。
步骤S22:将半导体元件焊接于基板的一侧。
将半导体元件30固定在基板20的一侧,以通过基板20与外部的电子元件或电子设备电连接。具体可以是在基板20远离半导体元件30的一侧设置有外接触点201,半导体元件30通过焊接固定于基板20的相对另一侧并与外接触点201电连接,以通过外接触点201与外部的电子元件或电子设备适配,从而实现半导体元件30和外部的电子元件或电子设备电连接,如图5所示。
步骤S23:将支撑件连接所述基板,其中,所述支撑件环形布设于半导体元件的周侧,并与所述半导体元件间隔设置。
将支撑件50分别与基板20和蒸发结构40连接固定,其中,使得支撑件50环形布设于半导体元件30的周侧,并与半导体元件30间隔设置。其中,支撑件50与基板20和蒸发结构40连接固定的方式可以是通过焊接、或者通过粘合剂连接,在此不做限定。
步骤S24:将所述蒸发结构的一侧贴合于半导体元件,并固定连接所述支撑件和所述蒸发结构。
在半导体元件30上涂抹一层导热合剂80,然后将蒸发结构40通过导热合剂80贴合于半导体元件30,并固定连接支撑件50和蒸发结构40。其中,支撑件50和蒸发结构40固定连接可以是通过焊接、或者通过粘合剂连接,在此不做限定。
步骤S25:将散热结构与所述蒸发结构另一侧连接。
将散热结构60与蒸发结构40远离半导体元件30一侧连接,其中,固定连接可以是通过焊接、或者通过粘合剂连接,在此不做限定。
请参阅图11,本申请还提供了一种电子设备100,该电子设备100包括半导体器件10和存储器90,半导体器件10和存储器90通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。该电子设备100包括但不限定于手机、平板电脑、笔记本电脑、台式电脑、个人数字助理和穿戴式设备等。
本申请所提供了一种蒸发结构、散热器、半导体器件及制备方法,其中,蒸发结构设置有填装有蒸发液的蒸发腔,并且蒸发结构与半导体元件连接,使得半导体元件所产生的热量可以最大限度传递给蒸发结构,进而使得蒸发结构内的蒸发液吸热汽化,转变为气态液体。汽化后的蒸发液在与蒸发结构和散热结构配合的一侧接触后,将部分热量传递给散热结构带走,并再次冷却液化转变为蒸发液,回流到蒸发结构靠近半导体元件的一侧,利用蒸发结构内蒸发液的物态变化将半导体元件所产生的热量经散热结构扩散到外部,可以实现半导体元件的有效降温,进而使得半导体元件具有更强的耐高温特性。
应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本申请的具体实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种蒸发结构的制备方法,包括:提供一基底,并于所述基底上形成底板、连接所述底板的侧板、及多个间隔布设于所述底板的回流件,其中,所述侧板形成有充液口,且所述侧板围设于所述底板周侧,以使所述基底形成具有开口的腔室;在所述底板的内表面、所述侧板的内表面、及所述回流件的表面形成毛细结构层;提供一基顶,于所述基顶的焊接区设置保护件,并在所述基顶设置有所述保护件一侧形成毛细结构层以形成一顶板;将所述保护件和所述顶板分离,使所述焊接区外露;将所述顶板的焊接区与所述侧板和所述回流件对应,并通过所述焊接区将所述顶板与所述侧板、及所述回流件焊接固定,以封盖所述开口使所述底板、所述顶板及所述侧板配合形成蒸发腔;通过所述充液口注入蒸发液,并密封所述充液口,以形成所述蒸发结构。
- 根据权利要求1所述的制备方法,其中,所述在所述基顶设置有所述保护件一侧形成毛细结构层,以形成一顶板,包括:在所述基顶设置有所述保护件一侧铺设金属粉末,并将所述金属粉末烧结固定于所述基顶,以形成具有毛细结构层的顶板。
- 根据权利要求1-2任一项所述的制备方法,其中,所述通过所述充液口注入蒸发液,并密封所述充液口,包括:经所述充液口对所述蒸发腔进行抽真空处理;将蒸发液经所述充液口注入到真空状态的蒸发腔内,并封闭所述充液口以形成所述蒸发结构。
- 根据权利要求1-2任一项所述的制备方法,其中,所述蒸发液包括水、丙醇或乙醇中的至少一者。
- 一种蒸发结构,用于与散热结构适配为半导体元件散热,其中,所述蒸发结构包括:与所述半导体元件通过支撑件连接的底板、与所述底板间隔设置并与所述散热结构连接的顶板、及连接所述底板和所述顶板的侧板;所述底板、所述顶板及所述侧板配合形成所述蒸发腔,且所述底板和所述顶板之间设置有多个连接所述底板和所述顶板的回流件;其中,所述蒸发结构采用权利要求1-4任一项所述的制备方法制成。
- 一种散热器,用于为半导体元件散热,其中,所述半导体元件固定于基板,所述散热器包括:如权利要求5所述的蒸发结构,所述蒸发结构与所述半导体元件远离所述基板一侧连接,且所述蒸发结构形成有用于填装蒸发液的蒸发腔;支撑件,所述支撑件环形布设于所述半导体元件的周侧,并与所述半导体元件间隔设置,且所述支撑件连接所述基板和所述蒸发结构;及散热结构,所述散热结构与所述蒸发结构远离所述半导体元件一侧连接。
- 根据权利要求6所述的散热器,其中,所述半导体元件和所述蒸发结构之间设置有导 热合剂,所述半导体元件和所述蒸发结构的底板通过所述导热合剂连接。
- 一种半导体器件,包括:基板,用于提供承载支撑;半导体元件,所述半导体元件固定于所述基板,并通过所述基板与外部设备电连接;如权利要求5所述的蒸发结构,所述蒸发结构与所述半导体元件远离所述基板一侧连接;支撑件,所述支撑件环形布设于所述半导体元件的周侧,并与所述半导体元件间隔设置,且所述支撑件连接所述基板和所述蒸发结构;及散热结构,所述散热结构与所述蒸发结构远离所述半导体元件一侧连接。
- 根据权利要求8所述的半导体器件,其中,所述半导体元件和所述蒸发结构之间设置有导热合剂,所述半导体元件和所述蒸发结构的底板通过所述导热合剂连接。
- 一种半导体器件的制备方法,包括:制备蒸发结构;将半导体元件焊接于基板的一侧;将支撑件连接所述基板,其中,所述支撑件环形布设于半导体元件的周侧,并与所述半导体元件间隔设置;将所述蒸发结构的一侧贴合于半导体元件,并固定连接所述支撑件和所述蒸发结构;将散热结构与所述蒸发结构远离所述半导体元件一侧连接;其中,制备所述蒸发结构,为:提供一基底,并于所述基底上形成底板、连接所述底板的侧板、及多个间隔布设于所述底板的回流件,其中,所述侧板形成有充液口,且所述侧板围设于所述底板周侧,以使所述基底形成具有开口的腔室;在所述底板的内表面、所述侧板的内表面、及所述回流件的表面形成毛细结构层;提供一基顶,于所述基顶的焊接区设置保护件,并在所述基顶设置有所述保护件一侧形成毛细结构层以形成一顶板;将所述保护件和所述顶板分离,使所述焊接区外露;将所述顶板的焊接区与所述侧板和所述回流件对应,并通过所述焊接区将所述顶板与所述侧板、及所述回流件焊接固定,以封盖所述开口使所述底板、所述顶板及所述侧板配合形成蒸发腔;通过所述充液口注入蒸发液,并密封所述充液口,以形成所述蒸发结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110517273.3A CN112951728B (zh) | 2021-05-12 | 2021-05-12 | 蒸发结构、散热器、半导体器件及制备方法 |
CN202110517273.3 | 2021-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022237388A1 true WO2022237388A1 (zh) | 2022-11-17 |
Family
ID=76233758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/085123 WO2022237388A1 (zh) | 2021-05-12 | 2022-04-02 | 蒸发结构、散热器、半导体器件及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112951728B (zh) |
WO (1) | WO2022237388A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112951728B (zh) * | 2021-05-12 | 2022-02-15 | 中兴通讯股份有限公司 | 蒸发结构、散热器、半导体器件及制备方法 |
CN117855168B (zh) * | 2024-03-07 | 2024-05-10 | 江苏中科智芯集成科技有限公司 | 一种高功率mcm芯片封装结构及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060098411A1 (en) * | 2004-11-11 | 2006-05-11 | Taiwan Microloops Corp. | Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same |
CN101232794A (zh) * | 2007-01-24 | 2008-07-30 | 富准精密工业(深圳)有限公司 | 均热板及散热装置 |
CN103398613A (zh) * | 2013-07-22 | 2013-11-20 | 施金城 | 均热板及其制造方法 |
CN112951728A (zh) * | 2021-05-12 | 2021-06-11 | 中兴通讯股份有限公司 | 蒸发结构、散热器、半导体器件及制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09293808A (ja) * | 1996-04-25 | 1997-11-11 | Fujitsu Ltd | 半導体装置 |
CN1195196C (zh) * | 2002-01-10 | 2005-03-30 | 杨洪武 | 集成式热管及其换热方法 |
US20090025910A1 (en) * | 2007-07-27 | 2009-01-29 | Paul Hoffman | Vapor chamber structure with improved wick and method for manufacturing the same |
CN101927426A (zh) * | 2009-06-24 | 2010-12-29 | 富准精密工业(深圳)有限公司 | 均温板及其制造方法 |
CN101995182A (zh) * | 2009-08-11 | 2011-03-30 | 和硕联合科技股份有限公司 | 均温板及其制造方法 |
JP2011096994A (ja) * | 2009-09-29 | 2011-05-12 | Kyocera Corp | 冷却器、配線基板、および発光体 |
CN204301376U (zh) * | 2014-11-14 | 2015-04-29 | 广东五星太阳能股份有限公司 | 一种毛细管喷流声降噪机构及使用该机构的热泵装置 |
US10561041B2 (en) * | 2017-10-18 | 2020-02-11 | Pimems, Inc. | Titanium thermal module |
CN111863746B (zh) * | 2019-04-25 | 2023-10-13 | 华为技术有限公司 | 一种散热装置、电路板及电子设备 |
CN111725144A (zh) * | 2020-05-22 | 2020-09-29 | 上海交通大学 | 基于气液相变的高温电子封装基板材料器件及其制备方法 |
-
2021
- 2021-05-12 CN CN202110517273.3A patent/CN112951728B/zh active Active
-
2022
- 2022-04-02 WO PCT/CN2022/085123 patent/WO2022237388A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060098411A1 (en) * | 2004-11-11 | 2006-05-11 | Taiwan Microloops Corp. | Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same |
CN101232794A (zh) * | 2007-01-24 | 2008-07-30 | 富准精密工业(深圳)有限公司 | 均热板及散热装置 |
CN103398613A (zh) * | 2013-07-22 | 2013-11-20 | 施金城 | 均热板及其制造方法 |
CN112951728A (zh) * | 2021-05-12 | 2021-06-11 | 中兴通讯股份有限公司 | 蒸发结构、散热器、半导体器件及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112951728B (zh) | 2022-02-15 |
CN112951728A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022237388A1 (zh) | 蒸发结构、散热器、半导体器件及制备方法 | |
KR950014046B1 (ko) | 최적화된 히트 파이프 및 전자회로 일체형 조립체 | |
US8592971B2 (en) | Direct semiconductor contact ebullient cooling package | |
US7978473B2 (en) | Cooling apparatus with cold plate formed in situ on a surface to be cooled | |
US8970029B2 (en) | Thermally enhanced heat spreader for flip chip packaging | |
TWI291752B (en) | Semiconductor package with heat dissipating device and fabrication method thereof | |
KR101017452B1 (ko) | 반도체 패키지 | |
US10907908B2 (en) | Cooler | |
US20160343639A1 (en) | Seminconductor device assembly with vapor chamber | |
KR102082252B1 (ko) | 칩 패키지 구조체 및 그 제조 방법 | |
JP5397340B2 (ja) | 半導体冷却装置 | |
US11024557B2 (en) | Semiconductor package structure having vapor chamber thermally connected to a surface of the semiconductor die | |
TWI508238B (zh) | 晶片散熱系統 | |
US4313492A (en) | Micro helix thermo capsule | |
CN105307452B (zh) | 一种热沉材料为底板超薄均热板的制造方法 | |
CN105202956A (zh) | 钼铜或钨铜合金等热沉材料为基板的复合均热板制造方法 | |
JP2008028163A (ja) | パワーモジュール装置 | |
EP3850662B1 (en) | Module base with integrated thermal spreader and heat sink for thermal and structural management of high-performance integrated circuits or other devices | |
JP2008541464A (ja) | 集積回路パッケージ構造体およびそれを製造する方法 | |
CN116067212A (zh) | 电子设备 | |
US11450586B2 (en) | Heat dissipation structure, semiconductor packaging device, and manufacturing method of the semiconductor packaging device | |
WO2024179385A1 (zh) | 芯片模组及其制备方法、光模块、通信系统和电子设备 | |
JP2022157412A (ja) | 熱伝導部材 | |
JP2022133173A (ja) | 熱伝導部材 | |
JP2022133169A (ja) | 熱伝導部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22806358 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22806358 Country of ref document: EP Kind code of ref document: A1 |