WO2022237324A1 - 接插件故障检测装置及方法 - Google Patents

接插件故障检测装置及方法 Download PDF

Info

Publication number
WO2022237324A1
WO2022237324A1 PCT/CN2022/082041 CN2022082041W WO2022237324A1 WO 2022237324 A1 WO2022237324 A1 WO 2022237324A1 CN 2022082041 W CN2022082041 W CN 2022082041W WO 2022237324 A1 WO2022237324 A1 WO 2022237324A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
module
detected
fault detection
detection device
Prior art date
Application number
PCT/CN2022/082041
Other languages
English (en)
French (fr)
Inventor
李达辉
Original Assignee
上海三一重机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海三一重机股份有限公司 filed Critical 上海三一重机股份有限公司
Publication of WO2022237324A1 publication Critical patent/WO2022237324A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the present application relates to the technical field of construction machinery, and in particular to a connector fault detection device and method.
  • the present application provides a connector fault detection device and method, which are used to solve the technical problems in the prior art that the connector fault detection cannot detect instantaneous disconnection and cannot realize automatic connector fault detection.
  • the application provides a connector fault detection device, including:
  • the resistance detection module is electrically connected to the timing module, and is used to determine the contact resistance measurement value of the connector to be detected based on the voltage measurement value at both ends of the connector to be detected when a constant current passes through the connector to be detected;
  • the timing module is electrically connected to the open circuit detection module, and is used to determine the maintenance time when the measured contact resistance value is greater than or equal to the preset open circuit resistance;
  • the open circuit detection module determines the open circuit fault type of the connector to be detected based on the maintenance time.
  • the open circuit detection module is specifically used for:
  • the preset duration range is determined according to the requirements of the circuit where the to-be-tested connector is located on power interruption time and/or signal interruption time.
  • the connector fault detection device provided according to the application also includes:
  • a clock module is electrically connected to the timing module and used to provide timing pulse signals for the timing module.
  • the connector fault detection device provided according to the application also includes:
  • the self-test module is electrically connected to the clock module, and is used to determine a self-test pulse with a preset time length, and determine the self-test pulse based on the number of timing pulse signals in the process of the self-test pulse passing through the pulse gate of the clock module. Describe the working status of the clock module.
  • the connector fault detection device provided according to the application also includes:
  • the miswiring checking module is used to apply a high level to each terminal on either side of the connector to be detected one by one, and based on the high level detection results at each terminal on the opposite side of the connector to be detected Describe the wiring results on both sides of the connector to be tested.
  • the connector fault detection device provided according to the application also includes:
  • the vibration excitation module is used to generate a frequency sweep signal, and the frequency sweep signal is used to excite the vibrating table where the connector to be detected is located to vibrate according to the frequency of the frequency sweep signal.
  • the connector fault detection device provided according to the application also includes:
  • the constant current source module is used to provide a constant magnitude DC power supply for the detection connector.
  • the connector fault detection device provided according to the application also includes:
  • the communication module is electrically connected with each module in the connector fault detection device, and is used for transmitting data of each module.
  • the connector fault detection device provided according to the application also includes:
  • the upper computer is electrically connected with the communication module, and is used for displaying and/or setting parameters in each module in the connector fault detection device.
  • the present application provides a connector fault detection method, including:
  • the connector fault detection device and method provided in the embodiments of the present application pass a constant current through the connector to be detected, determine the measured contact resistance value of the connector to be detected according to the voltage measurement value at both ends of the connector to be detected, and determine that the measured contact resistance value is greater than It is equal to the maintenance time of the preset open circuit resistance value, and then determines the open circuit fault type of the connector to be detected, realizes the detection of the instantaneous open circuit fault of the connector, improves the accuracy of the fault detection of the connector, and realizes the
  • the fault detection automation improves the fault detection efficiency of the connector and improves the reliability of the connector.
  • Fig. 1 is one of structural representations of the connector fault detection device that the present application provides;
  • Fig. 2 is the second structural representation of the connector fault detection device provided by the present application.
  • FIG. 3 is a schematic flowchart of a method for detecting a connector fault provided by the present application.
  • Connectors are electrical components, and there are many types of faults, such as open circuit, short circuit, momentary open circuit, miswiring, poor insulation, etc.
  • the momentary open circuit refers to the short-term open circuit phenomenon of the connector. Due to the short maintenance time of the momentary disconnection, it is difficult to detect, but the control system is likely to send a false alarm signal when the connector has a momentary disconnection. Therefore, detecting the instantaneous disconnection of the connector is beneficial to eliminate the false alarm signal of the control system and improve the reliability of the control system.
  • the present application provides a device for determining whether an instantaneous disconnection occurs in a connector by measuring the contact resistance.
  • the contact interface will form a contact resistance.
  • the contact resistance is composed of the following three parts, which are concentrated resistance, film resistance and conductor resistance.
  • Concentrated resistance is the resistance formed by the contraction or concentration of current lines when the current passes through the actual contact surface, also known as cluster resistance or shrinkage resistance.
  • the film resistance is the resistance formed by the contact surface film layer and other pollutants. From the analysis of the state of the contact surface, the surface contamination film can be divided into a solid film layer and a loose impurity contamination layer. The film layer resistance can also be called interface resistance.
  • Conductor resistance is the dynamic contact resistance and dynamic contact resistance of instantaneous power failure when actually measuring the contact resistance of electrical connector contacts.
  • the contact form of the electrical connector has three forms: point contact, line contact and surface contact. Regardless of the contact form, resistance will be generated at the contact site. Among all the factors affecting the contact resistance, the contact pressure is the main factor affecting the size of the contact resistance. When the contact pressure remains constant or its variation is negligible, it corresponds to "static contact resistance". In actual use, dynamic application environments such as vibration, shock, and collision will affect the contact pressure of the contact part, and the contact resistance will change with the change of the value, direction and time of the contact pressure. The contact resistance at this time is called “dynamic contact resistance". ". This change occurs in a very short period of time due to the influence of the external dynamic environment. The contact resistance of the electrical connector contacts may be reduced by extrusion, or may be increased by traction, and even cause the connection to be interrupted. Serious consequences.
  • Fig. 1 is one of the structural representations of the connector fault detection device provided by the present application, as shown in Fig. 1, the device includes:
  • the resistance detection module 110 is electrically connected with the timing module 120, and is used to determine the contact resistance measurement value of the connector to be detected based on the voltage measurement value at both ends of the connector to be detected when a constant current passes through the connector to be detected;
  • the timing module 120 is electrically connected to the open circuit detection module 130, and is used to determine the maintenance time when the measured contact resistance value is greater than or equal to the preset open circuit resistance;
  • the open circuit detection module 130 determines the open circuit fault type of the connector to be detected based on the maintenance time.
  • the disconnection fault types of the connector to be detected include disconnection and instantaneous disconnection.
  • the constant current source can be used to ensure that the current size of the connector is constant when the contact resistance of the connector changes suddenly.
  • the magnitude of the constant current can be set according to actual needs, for example, 10mA (milliampere). It can measure the voltage change value at both ends of the connector to be detected, calculate the change value of the contact resistance of the connector to be detected and the length of time it is maintained, and then determine whether the connector to be detected is open circuited and the type of open circuit fault that occurs.
  • the resistance detection module 110 can determine the measured value of the contact resistance of the connector to be detected according to the voltage measurement value at both ends of the connector to be detected, and send it to the timing module 120 .
  • the measured value of the contact resistance will also change. A sudden increase in the measured value of the contact resistance only indicates that the connector may be disconnected. At this time, the measured value of the contact resistance can be compared with the preset disconnected resistance value to determine whether the connector to be detected has a disconnected circuit.
  • the preset breaking resistance value can be set according to the maximum value of the contact resistance when the connector to be tested works normally, for example, it can be 1 ohm, 10 ohm and 100 ohm. For example, when the maximum value of the connector to be detected is 100 ohms when it is working normally, the preset open circuit resistance can be 100 ohms.
  • the connector to be detected has an open circuit . If the measured value of the contact resistance is 90 ohms, it can be considered that the connector to be tested is not disconnected.
  • the maintenance time during which the measured contact resistance value is greater than or equal to the preset open circuit resistance can be obtained by the timing module 120 and sent to the open circuit detection module 130 .
  • the maintenance time means that during the continuous detection of the contact resistance measurement value by the resistance detection module 110, the time starting point is when the contact resistance measurement value increases to greater than or equal to the preset open circuit resistance value, and the time point when the contact resistance measurement value decreases The moment until the preset breaking resistance value is the time end, the time period determined by the time start and time end.
  • the open circuit detection module 130 determines the open circuit fault type of the connector to be detected according to the maintenance time sent by the timing module 120 . For example, if the maintenance time is less than the set value, it can be considered that an instantaneous circuit break has occurred, and if the maintenance time is greater than or equal to the set value, it can be considered that a circuit break has occurred.
  • the connector fault detection device provided in the embodiment of the present application passes a constant current through the connector to be detected, determines the measured contact resistance value of the connector to be detected according to the voltage measurement value at both ends of the connector to be detected, and determines that the measured value of the contact resistance is greater than or equal to the preset value.
  • Set the maintenance time of the open circuit resistance and then determine the open circuit fault type of the connector to be detected, realize the detection of the instantaneous open circuit fault of the connector, improve the accuracy of the fault detection of the connector, and realize the fault detection of the connector
  • the automation improves the fault detection efficiency of the connector and improves the reliability of the connector.
  • the disconnection detection module 130 is specifically used for:
  • the preset duration range is determined according to the requirements of the circuit where the connector to be detected is located on the power interruption time and/or the signal interruption time.
  • the power supply requirement of some circuits is that the power interruption time shall not exceed 9 microseconds, therefore, the preset duration range may be [1, 9] microseconds (uS).
  • the maintenance time is less than 1 microsecond, it can be considered that the connector is disconnected, but the disconnection time is too short to affect the operation of each component in the circuit, and it does not belong to the situation of instantaneous disconnection; when the maintenance time is greater than 9 Microseconds, it can be considered that the connector is disconnected, and the disconnection time is relatively long, which does not belong to the situation of instantaneous disconnection.
  • instantaneous disconnection will not affect them, such as ordinary switches and lamps, etc.; but for electrical components that require high power quality, such as power switching devices or circuits with time control functions, instantaneous disconnection may cause The control function cannot be realized.
  • the set value can be the upper limit value of the preset duration range.
  • the device also includes:
  • the clock module is electrically connected to the timing module 120 and used to provide timing pulse signals for the timing module 120 .
  • the clock module may use a passive crystal oscillator as an oscillating device, or may use an active crystal oscillator as an oscillating device to provide timing pulse signals for the timing module 120 .
  • the clock module can use a passive crystal oscillator as an oscillation device to provide a timing pulse signal with a frequency of 20 MHz to the detection circuit.
  • the pulse counting method is used to measure the duration of the momentary open circuit of the electrical connector, that is, when the detection circuit detects that the measured value of the contact resistance of the connector is greater than or equal to the preset open circuit resistance, the circuit is identified as an open circuit, and the circuit automatically opens the pulse counting gate.
  • the 20MHz timing pulse signal is allowed to pass through the gate, and then the counter counts the number of pulses, and the number of pulses obtained is multiplied by 0.05 microseconds, which is the maintenance time and the length of time for the instantaneous circuit break.
  • the detection circuit determines that there is an instantaneous disconnection in the connector, and the data can be sent to the externally connected single-chip microcomputer or other processors by means of interruption.
  • the pulse counting method is the measurement basis for the length of the dynamic contact resistance change of the connector.
  • the combination of the measurement of the contact resistance and its maintenance time can be achieved through the control of the high-frequency pulse gate and the control of the counter by the RS trigger.
  • the RS flip-flop measures the sudden contact resistance and it has been maintained for a period of time, when the sudden value of the resistance and the maintenance time have reached the specified value, the RS flip-flop locks the data, and at the same time notifies the detection microcontroller to receive the data and in the form of an interruption. for related processing. After the MCU receives the data, it releases the self-locking of the RS flip-flop, waiting to capture a new momentary disconnection.
  • the single-chip microcomputer performs some processing on the data and then sends the data to the host computer through the serial port according to the self-defined data transmission protocol. Or display the data on the digital tube and start the sound and light alarm in the stand-alone state. Due to the high signal frequency used in the pulse counting method, in order to improve the measurement accuracy, the pulse gates related to the 20MHz signal and the chips before the pulse signal is sent to the counter should be as few as possible to reduce the impact of chip delay. Make the measurement result closer to the real value.
  • the device also includes:
  • the self-inspection module is electrically connected with the clock module, and is used to determine the self-inspection pulse with a preset time length, and determine the working state of the clock module based on the number of timing pulse signals in the process of the self-inspection pulse passing through the pulse gate of the clock module.
  • the accuracy of the timing module 120 determines whether the detection result of the connector fault detection device is accurate.
  • the timing pulse information signal provided by the clock module has a great influence on the timing module 120 . Therefore, it needs to be checked by a self-test module to determine whether it is in a normal working state.
  • the main working principle of the self-test module is to use the monostable delay circuit to generate a self-test pulse, which is a positive pulse with a preset time length.
  • the measured value of the length of the self-test pulse is the product of the time length of a single timing pulse signal and the number of timing pulse signals during the process of the self-test pulse passing through the pulse gate of the clock module.
  • the self-test pulse can be a positive pulse with a preset time length of 3 microseconds.
  • the pulse gate When it passes through the pulse gate of the clock module, the pulse gate is in an open state, and the 20MHz timing pulse signal can pass through this gate to reach the counter.
  • the pulse gate After the self-test pulse passes through the pulse gate, the pulse gate is in a closed state, and the timing pulse signal cannot reach the counter through the gate. Therefore, multiplying the count by the counter by 0.05 microseconds is the length measurement of the self-test pulse. If the measured length is 3 microseconds, it indicates that the working state of the clock module is normal. If the length measurement value is not 3 microseconds, it indicates that the working state of the clock module is abnormal.
  • the counting result of the counter can be directly displayed on the digital tube, so as to judge whether the system is normal by comparing the values.
  • the counting result of the counter in the self-inspection module can also be directly sent to the host computer. After the host computer converts the counting result into a length measurement value, compares it with the self-inspection pulse, and then gives the automatic judgment result, pointing out the connection Whether the plug-in fault detection device is working normally.
  • the self-test pulse of the self-test module should be measured first, so as to judge whether the length of the monostable delayed positive pulse generated by the self-test module is consistent with the preset time length. Due to the limitation of measurement conditions, it is impossible to directly read the length of the self-test monostable delayed positive pulse with the instrument, so a series of positive pulses can be obtained by continuous triggering, and then the length of a single positive pulse can be measured with an oscilloscope.
  • the monostable delay circuit can be continuously triggered with a rectangular wave whose period is twice as long as the self-test positive pulse length, so that it can generate a rectangular wave with a certain period.
  • the device also includes:
  • the miswiring inspection module is used to apply a high level to each terminal on either side of the connector to be detected one by one, and determine the two sides of the connector to be detected based on the high level detection results at each terminal on the opposite side of the connector to be detected wiring results.
  • the wiring result is the connection result of the terminals on both sides of the connector to be detected.
  • the working principle of the miswiring inspection module is to use the high and low level discrimination method, apply a high level to any terminal on either side of the connector to be detected, and on the opposite side of the connector to be detected, only the terminals connected to this side A high level will be detected. By applying a high level to each terminal on this side one by one, the wiring result between the terminal on the opposite side and the terminal on this side is determined, so as to determine whether miswiring occurs.
  • the device also includes:
  • the vibration excitation module is used to generate a frequency sweep signal, and the frequency sweep signal is used to excite the vibrating table where the connector to be detected is located to vibrate according to the frequency of the frequency sweep signal.
  • the vibration excitation module can be used to simulate the vibration situation of the connector to be detected.
  • the excitation module can generate a frequency sweep signal, for example, a sinusoidal frequency sweep signal of 10 Hz to 200 Hz.
  • the vibration excitation module can be electrically connected with the vibrating table where the connector to be tested is located, and the vibrating table generates vibration according to the frequency of the frequency sweep signal, thereby simulating the external vibration environment.
  • the frequency of the frequency sweep signal can be set according to different external environments, such as simulation of automobile roads, simulation of ocean waves, simulation of aerospace environment, simulation of earthquakes, simulation of transportation conditions, and vibration simulation during the operation of rolling stock, etc.
  • the device also includes:
  • the constant current source module is used to provide a constant magnitude DC power supply for the detection connector.
  • the role of the constant current source module in the connector fault detection device is to provide a basis for judging the resistance value of the contact resistance of the disconnected connector.
  • the resistance of a normal electrical circuit should be very small or even close to zero.
  • the connector is abnormal, that is, the increase of the contact resistance indicates that the connector circuit has poor contact, and the resistance value is large enough to a certain value, which can be considered as a connector open circuit.
  • resistance measurements vary greatly in accuracy, resolution, and range, and generally speaking, the best of the three cannot be achieved at the same time.
  • There are many methods for measuring line resistance including voltage compensation voltammetry, four-wire method and voltage method.
  • the connector fault detection device provided in the present application adopts the latter, that is, the connector to be detected is powered by a constant current source, and then the voltage drop at both ends thereof is measured.
  • the constant current source can also be used to supply power to the resistor with the preset open circuit resistance to obtain the corresponding voltage, and input the voltage of the two to the voltage comparator for voltage comparison, so as to know whether there is contact resistance in the connector to be detected The case of sudden increase.
  • the device also includes:
  • the communication module is electrically connected with each module in the connector fault detection device, and is used for transmitting data of each module.
  • the communication unit can be arranged in the circuit board of the connector fault detection device, and is electrically connected to each module, and transmits the detection data of each module to the remote device, or obtains parameters from the remote device, and sends it to the corresponding module.
  • the device also includes:
  • the upper computer is electrically connected with the communication module, and is used for displaying and/or setting parameters in each module of the connector fault detection device.
  • the connector fault detection device may adopt a scheme of upper and lower computers, and a separate upper computer is set, and other modules are set as a lower computer.
  • the upper computer can use Windows operating system as the platform, use VC++6.0 to program, combine the operation of the database, optimize the interface of the upper computer, and graphically test the results.
  • the lower computer adopts single-chip microcomputer plus TTL basic circuit, and the seven-segment digital tube displays the measurement results.
  • the lower computer can set the number of connector pins, the evaluation standard of the time length of the momentary open circuit, the evaluation standard of the open circuit resistance, the measurement of the detection system selected by the switch button, the self-inspection status and the stand-alone online status and single system work or combined with the upper computer. Work.
  • Fig. 2 is the second structural schematic diagram of the connector fault detection device provided by the present application. As shown in Fig. PC. In addition to power supply modules, display output modules, panel input modules, etc.
  • the PC is the upper computer, which is mainly responsible for sending instructions to the lower computer and receiving, displaying and printing the detection data, and saving the data in the database, and can read the detection history from the database at the same time.
  • the relevant classification statistics can be carried out on the data. View the current working status of the lower computer, and set the working parameters of the lower computer.
  • Excitation module self-test module, fault detection peripheral circuit, power supply module, display output module, panel input module, parameter setting single-chip microcomputer and detection processing single-chip microcomputer.
  • the parameter setting single-chip microcomputer is responsible for all relevant parameter settings
  • the detection processing single-chip microcomputer is responsible for the detection of the connector, data storage and data transmission.
  • the power supply module needs to supply power supply of four voltages to the circuit, for example including positive 12V, negative 12V, positive 5V and negative 5V.
  • the positive and negative voltages power the constant current source.
  • Positive 5V supplies power to the basic circuit and single-chip microcomputer and serves as a reference voltage for analog-to-digital conversion.
  • the negative 5V is used as a reference voltage for digital-to-analog conversion.
  • the power supply module adopts the AC 220V power supply obtained from the mains, and adopts the method of linear voltage regulation to supply power to the circuit. First step down and rectify the AC 220V power supply, then filter it to obtain a power supply close to DC, and then use the integrated linear voltage regulator module to stabilize the voltage to obtain the voltage.
  • Step-down uses a power transformer to change AC 220V into AC 18V voltage, and uses the unidirectional conduction characteristics of diodes to rectify the stepped-down AC to turn it into low-voltage DC.
  • single-phase bridge rectifier circuits are mostly used.
  • the rectified voltage is a unidirectional pulsating voltage and is not suitable for powering electronic circuits.
  • components with energy storage functions such as capacitors and inductors, to form a filter circuit to convert the pulsating DC voltage into a relatively smooth DC voltage to meet the needs of electronic circuits and equipment. needs.
  • Commonly used are capacitor filter, inductor filter and compound filter. Since the current is not large and the load changes are not very large, capacitor filtering is used.
  • the display output part includes the data display of the detection device in the stand-alone state, the indication of the circuit-related state, and the data transmission to the PC in the online state.
  • the input part includes obtaining test data from the basic test module, obtaining setting standard values from corresponding control buttons, switches, etc., and receiving control instructions and parameter value settings from the PC.
  • Trinity digital tube display is used for the digital tube display, in order to save the pins of the single-chip microcomputer, the detection data is displayed by the dynamic scanning method. In the state of stand-alone operation, when the circuit detects the momentary disconnection of the connector, the detection data will be displayed immediately, and the sound and light alarm will be used to remind relevant personnel to record the detection results.
  • the stand-alone panel can also set the contact resistance value standard and the disconnection time standard in the form of a knob, and set the stand-alone online work, detection and replacement of connectors, etc. in the form of a toggle switch.
  • the switch in the form of a button includes reset, self-test, simulated vibration, etc.
  • the traditional detection of connectors is mostly manual, using a multimeter for simple measurement. Most of them stay at the stage of miswiring and checking for broken wires. It is impossible to detect instantaneous disconnection and it is impossible to realize automation, microcomputer control and data processing.
  • the purpose of the embodiments of the present application is to realize multi-level measurement and automatic detection of connector faults.
  • the research situation is mainly aimed at factories producing rolling stock connectors. The purpose is to improve the reliability of construction machinery connectors before they are installed on vehicles, and ensure that the electrical connectors used on rolling stock have the reliability that meets the requirements. Realize microcomputer control, data storage and query, and graphic display of test results.
  • Fig. 3 is a schematic flow chart of the connector fault detection method provided by the present application. As shown in Fig. 3, the method includes:
  • Step 310 Determine the contact resistance measurement value of the connector to be detected based on the voltage measurement value at both ends of the connector to be detected and the constant current passing through the connector to be detected;
  • Step 320 determining the maintenance time during which the measured contact resistance value of the connector to be tested is greater than the preset open circuit resistance value
  • Step 330 based on the maintenance time, determine the open circuit fault type of the connector to be detected.
  • the connector fault detection method uses a constant current to pass through the connector to be detected, and determines the measured contact resistance value of the connector to be detected according to the voltage measurement value at both ends of the connector to be detected, and determines that the measured value of the contact resistance is greater than or equal to the predetermined value.
  • Set the maintenance time of the open circuit resistance and then determine the open circuit fault type of the connector to be detected, realize the detection of the instantaneous open circuit fault of the connector, improve the accuracy of the fault detection of the connector, and realize the fault detection of the connector
  • the automation improves the fault detection efficiency of the connector and improves the reliability of the connector.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disc, CD, etc., including several commands to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Abstract

一种接插件故障检测装置及方法,其中装置包括:电阻检测模块(110),与计时模块(120)电连接,用于当恒定电流通过待检测接插件时,基于待检测接插件两端的电压测量值确定待检测接插件的接触电阻测量值;计时模块(120),与断路检测模块(130)电连接,用于确定接触电阻测量值大于等于预设断路阻值的维持时间;断路检测模块(130),基于维持时间,确定待检测接插件的断路故障类型。该装置及方法实现了对插接件出现的瞬间断路故障进行检测,提高了插接件故障检测的准确性,实现了接插件故障检测自动化,提高了插接件故障检测效率。

Description

接插件故障检测装置及方法
相关申请的交叉引用
本申请要求于2021年5月11日提交的申请号为202110513291.4,名称为“作业机械驾驶舱的风量控制方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及工程机械技术领域,尤其涉及一种接插件故障检测装置及方法。
背景技术
随着工程机械的快速发展,各种智能化产品在工程机械上的应用越来越广泛,尤其在挖掘机及移动机械上,各种电气接插件数量也越来越多。
这些接插件设计灵活,易于维修,给设备之间的通信和控制带来了很大的方便,极大地提升了产品的性能,但是同时也带来了一些问题。电气系统的可靠性在很大程度上影响着工程机械的可靠性,而电气系统可靠性的一个很重要的方面在于接插件的可靠性。所以对电气接插件的可靠性进行评估,检测其故障所在显得至关重要。
现有的接插件故障检测,多采用人工的方式,利用万用表进行简单的测量,停留在误配线及检查断线的阶段,无法检测瞬间断路,也无法实现接插件故障检测自动化。
发明内容
本申请提供一种接插件故障检测装置及方法,用以解决现有技术中接插件故障检测无法检测瞬间断路,也无法实现接插件故障检测自动化的技术问题。
本申请提供一种接插件故障检测装置,包括:
电阻检测模块,与计时模块电连接,用于当恒定电流通过待检测接插件时,基于所述待检测接插件两端的电压测量值确定所述待检测接插件的接触电阻测量值;
计时模块,与断路检测模块电连接,用于确定所述接触电阻测量值大于等于预设断路阻值的维持时间;
断路检测模块,基于所述维持时间,确定所述待检测接插件的断路故障类型。
根据本申请提供的接插件故障检测装置,所述断路检测模块具体用于:
若所述维持时间在预设时长范围内,则确定所述待检测接插件的断路故障类型为瞬间断路;
其中,所述预设时长范围是根据所述待检测接插件所在的电路对电源中断时间和/或信号中断时间的要求所确定的。
根据本申请提供的接插件故障检测装置,还包括:
时钟模块,与所述计时模块电连接,用于为所述计时模块提供计时脉冲信号。
根据本申请提供的接插件故障检测装置,还包括:
自检模块,与所述时钟模块电连接,用于确定预设时间长度的自检脉冲,并基于所述自检脉冲通过所述时钟模块的脉冲闸门的过程中计时脉冲信号的数量,确定所述时钟模块的工作状态。
根据本申请提供的接插件故障检测装置,还包括:
误配线检查模块,用于对所述待检测接插件任一侧的各个端子逐一施加高电平,并基于所述待检测接插件对侧的各个端子处的高电平检测结果,确定所述待检测接插件两侧的配线结果。
根据本申请提供的接插件故障检测装置,还包括:
激振模块,用于生成扫频信号,所述扫频信号用于激发所述待检测接插件所在的振动台按照所述扫频信号的频率产生振动。
根据本申请提供的接插件故障检测装置,还包括:
恒流源模块,用于为所述检测接插件提供恒定大小的直流电源。
根据本申请提供的接插件故障检测装置,还包括:
通信模块,与所述接插件故障检测装置中各个模块电连接,用于传输各个模块的数据。
根据本申请提供的接插件故障检测装置,还包括:
上位机,与所述通信模块电连接,用于对所述接插件故障检测装置中各 个模块中的参数进行显示和/或设置。
本申请提供一种接插件故障检测方法,包括:
基于待检测接插件两端的电压测量值,以及通过所述待检测接插件的恒定电流,确定所述待检测接插件的接触电阻测量值;
确定所述接触电阻测量值大于等于预设断路阻值的维持时间;
基于所述维持时间,确定所述待检测接插件的断路故障类型。
本申请实施例提供的接插件故障检测装置及方法,通过恒定电流通过待检测接插件,根据待检测接插件两端的电压测量值确定待检测接插件的接触电阻测量值,确定接触电阻测量值大于等于预设断路阻值的维持时间,进而确定待检测接插件的断路故障类型,实现了对插接件出现的瞬间断路故障进行检测,提高了插接件故障检测的准确性,实现了接插件故障检测自动化,提高了插接件故障检测效率,提高了插接件的可靠性。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的接插件故障检测装置的结构示意图之一;
图2为本申请提供的接插件故障检测装置的结构示意图之二;
图3为本申请提供的接插件故障检测方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
接插件为电气元件,其故障类型有多种,如断路、短路、瞬间断路、误配线、绝缘不良等。其中,瞬间断路是指插接件出现短暂的断路现象。由于瞬间断路的维持时间较短,难以检测,但插接件出现瞬间断路时又容易引起 控制系统发出虚假报警信号。因此,检测插接件出现的瞬间断路有利于消除控制系统出现的虚假报警信号,提高控制系统的可靠性。
本申请提供一种通过测量接触电阻来确定接插件是否出现瞬间断路的装置。当连接器的一对接触件插合时,其接触界面将形成接触电阻,根据电接触理论,接触电阻由以下三部分组成,分别为集中电阻、膜层电阻和导体电阻。
集中电阻为电流通过实际接触面时,因电流线收缩或集中形成的电阻,也称集束电阻或收缩电阻。膜层电阻为由接触表面膜层及其他污染物所构成的电阻。从接触表面状态分析,表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。也可把膜层电阻称为界面电阻。导体电阻为实际测量电连接器接触件的接触电阻时,都是动态接触电阻和瞬间断电的动态接触电阻。
电连接器的接触件接触形式有点接触、线接触和面接触三种形式。不论何种接触形式都将在接触部位产生电阻。在所有影响接触电阻的因素中,接触压力是影响接触电阻大小的主要因素。当接触压力保持不变或其变化几乎可以忽略时,所对应的是“静态接触电阻”。在实际使用中,振动、冲击、碰撞等动态应用环境将影响接触部位的接触压力,接触电阻必将随接触压力数值、方向及时间的变化而变化,此时的接触电阻称为“动态接触电阻”。这种变化是受外界动态环境影响而在极短的时间内发生的,电连接器接触件的接触电阻有可能受到挤压而减小,也可能受到牵引而增大,甚至使连接中断而造成严重后果。
图1为本申请提供的接插件故障检测装置的结构示意图之一,如图1所示,该装置包括:
电阻检测模块110,与计时模块120电连接,用于当恒定电流通过待检测接插件时,基于待检测接插件两端的电压测量值确定待检测接插件的接触电阻测量值;
计时模块120,与断路检测模块130电连接,用于确定接触电阻测量值大于等于预设断路阻值的维持时间;
断路检测模块130,基于维持时间,确定待检测接插件的断路故障类型。
具体地,待检测接插件的断路故障类型包括断路和瞬间断路。可以通过给接插件提供恒定电流,以恒流源的方式保证接插件接触电阻突变时的电流 大小固定不变。恒定电流的大小可以根据实际需要进行设置,例如10mA(毫安)。可以测量待检测接插件两端的电压变化值,计算出待检测接插件的接触电阻变化值及其维持的时间长短,进而确定待检测接插件是否发生断路,以及发生的断路故障类型。
由于通过待检测接插件的电流大小是固定不变的,电阻检测模块110可以根据待检测接插件两端的电压测量值,确定待检测接插件的接触电阻测量值,并将其发送至计时模块120。
若待检测接插件的接触压力发生变化时,接触电阻测量值也会发生变化。接触电阻测量值突然变大,仅表明接插件可能发生了断路,此时,可以将接触电阻测量值与预设断路阻值进行比较,来判断待检测接插件是否发生了断路。预设断路阻值可以根据接触电阻在待检测插接件正常工作时的最大值来进行设置,例如可以为1欧姆、10欧姆和100欧姆等。例如,待检测插接件正常工作时的最大值为100欧姆,则预设断路阻值可以为100欧姆,当检测到的接触电阻测量值大于等于100欧姆,可以认为待检测接插件发生了断路。若接触电阻测量值为90欧姆,则可以认为待检测接插件没有发生断路。
待检测接插件发生断路时,还需要进一步结合发生断路的时间来判断是否为瞬间断路。因此,可以通过计时模块120得到该接触电阻测量值大于等于预设断路阻值的维持时间,并将其发送至断路检测模块130。此处,维持时间是指在电阻检测模块110连续检测接触电阻测量值的过程中,以接触电阻测量值增大至大于等于预设断路阻值的时刻为时间起点,以接触电阻测量值减小至小于预设断路阻值的时刻为时间终点,由时间起点和时间终点所确定的时间段。
断路检测模块130根据计时模块120发送的维持时间,确定待检测接插件的断路故障类型。例如,若维持时间小于设定值,则可以认为发生了瞬间断路,若维持时间大于等于设定值,可以认为发生了断路。
本申请实施例提供的接插件故障检测装置,通过恒定电流通过待检测接插件,根据待检测接插件两端的电压测量值确定待检测接插件的接触电阻测量值,确定接触电阻测量值大于等于预设断路阻值的维持时间,进而确定待检测接插件的断路故障类型,实现了对插接件出现的瞬间断路故障进行检测,提高了插接件故障检测的准确性,实现了接插件故障检测自动化,提高了插 接件故障检测效率,提高了插接件的可靠性。
基于上述实施例,断路检测模块130具体用于:
若维持时间在预设时长范围内,则确定待检测接插件的断路故障类型为瞬间断路;
其中,预设时长范围是根据待检测接插件所在的电路对电源中断时间和/或信号中断时间的要求所确定的。
具体地,例如,有些电路的电源要求为电源中断时间不得大于9微秒,因此,预设时长范围可以为[1,9]微秒(uS)。当维持时间小于1微秒时,可以认为该接插件虽然发生了断路,但断路时间过短,不会对电路中各个元器件的运行造成影响,不属于瞬间断路的情形;当维持时间大于9微秒时,可以认为该接插件发生了断路,并且断路时间比较长,不属于瞬间断路的情形。
对于部分电气元件,瞬间断路并不会对其造成影响,例如普通开关和电灯等;但是对于电源质量要求较高的电气元件,比如电源切换装置或者带有时间控制功能的电路,瞬间断路可能导致控制功能无法实现。
此外,若维持时间达到设定值时,可以认为待检测接插件的断路故障类型为瞬间断路,此处的设定值可以为预设时长范围的上限值。
基于上述任一实施例,该装置还包括:
时钟模块,与计时模块120电连接,用于为计时模块120提供计时脉冲信号。
具体地,时钟模块可以采用无源晶振作为起振器件,也可以采用有源晶振作为起振器件,为计时模块120提供计时脉冲信号。
例如,时钟模块可以采用无源晶振作为起振器件,向检测电路提供频率为20MHz的计时脉冲信号。对于电气接插件出现瞬间断路的时间长短的计时方法采用脉冲计数法,即当检测电路检测到接插件的接触电阻测量值大于等于预设断路阻值时认定出现的断路,电路自动开启脉冲计数闸门允许20MHz的计时脉冲信号通过闸门,进而之后的计数器对脉冲个数进行计数,得到的脉冲个数乘以0.05微秒即是维持时间,也是出现瞬间断路的时间长短。计得的维持时间达到规定的时长,检测电路确定接插件出现了瞬间断路,可以通过中断的方式将数据发给外部连接的单片机或者其他处理器。
脉冲计数法是接插件动态接触电阻变化的时间长短的测量基准,例如,可以通过RS触发器对高频脉冲闸门的控制及计数器的控制达到将测量接触电阻及其维持时间长短的结合。当RS触发器测量突变的接触电阻并且其已经维持一段时间,电阻的突变值及维持时间都达到了规定值时,RS触发器就锁住该数据,同时以中断的形式通知检测单片机接收数据及作相关处理。单片机接收到数据后解除RS触发器自锁,等待捕捉新的瞬间断路。同时单片机对数据进行一些处理后按自定义的数据传输协议通过串口将数据发送给上位机。或者在单机的状态下将数据显示在数码管上并启动声光报警。由于脉冲计数法采用的信号频率较高,为提高测量精度,与20MHz信号相关的脉冲闸门及从脉冲信号发出到计数器之前的各芯片应越少越好,以减小芯片延时产生的影响,使测量结果更加接近于真实值。
基于上述任一实施例,该装置还包括:
自检模块,与时钟模块电连接,用于确定预设时间长度的自检脉冲,并基于自检脉冲通过时钟模块的脉冲闸门的过程中计时脉冲信号的数量,确定时钟模块的工作状态。
具体地,计时模块120的精确性决定了接插件故障检测装置的检测结果是否准确。而时钟模块所提供的计时脉冲信息信号,对计时模块120的影响程度很大。因此,需要利用自检模块对其进行检查,以确定它是否处于正常的工作状态。
自检模块主要的工作原理就是利用单稳延时电路产生一个自检脉冲,也就是一个预设时间长度的正脉冲。让自检脉冲通过时钟模块的脉冲闸门,统计自检脉冲通过时钟模块的脉冲闸门过程中计时脉冲信号的数量,计算自检脉冲的长度测量值,将长度测量值与预设时间长度进行比较,若一致,则说明时钟模块的工作状态为正常,若不一致,则说明时钟模块的工作状态为异常。其中,自检脉冲的长度测量值为单个计时脉冲信号的时间长度与自检脉冲通过时钟模块的脉冲闸门过程中计时脉冲信号的数量之间的乘积。
例如,自检脉冲可以为预设时间长度为3微秒的正脉冲,当它通过时钟模块的脉冲闸门时,脉冲闸门处于开启状态,20MHz的计时脉冲信号可以经过此闸门到达计数器。当自检脉冲通过脉冲闸门之后,脉冲闸门处于关闭状态,计时脉冲信号不能通过闸门到达计数器。所以,计数器的计数结果乘以 0.05微秒即是自检脉冲的长度测量值。若长度测量值为3微秒,则表明时钟模块的工作状态为正常。若长度测量值不为3微秒,则表明时钟模块的工作状态为异常。
若自检模块与数码管连接,则计数器的计数结果可以直接显示在数码管上,以便对比数值判断系统是否正常。在联机状态下,自检模块中的计数器的计数结果还可以直接发往上位机,上位机将计数结果换算为长度测量值后,与自检脉冲进行对比,然后给出自动判断结果,指出接插件故障检测装置是否处于工作正常状态。
此外,在对时钟模块进行检查之前首先要对自检模块的自检脉冲进行测量,以判断自检模块产生的单稳延时正脉冲的长度值是否与预设时间长度一致。由于测量条件限制,无法用仪器直接读出自检单稳延时正脉冲的长度,所以可以采用连续触发的方式得到一连串的正脉冲,然后用示波器量出单个正脉冲的长度。可以用周期比自检正脉冲长度的2倍还长的矩形波去连续触发单稳延时电路,使其产生一定周期的矩形波。
基于上述任一实施例,该装置还包括:
误配线检查模块,用于对待检测接插件任一侧的各个端子逐一施加高电平,并基于待检测接插件对侧的各个端子处的高电平检测结果,确定待检测接插件两侧的配线结果。
具体地,配线结果为待检测接插件两侧端子的连接结果。误配线检查模块的工作原理为采用高低电平鉴别法,在待检测接插件任一侧的任一端子施加高电平,在待检测接插件的对侧,只有与该侧相连接的端子会检测到高电平。通过在该侧各个端子逐一施加高电平,从而确定对侧与该侧的端子之间的配线结果,从而确定是否发生误配线。
例如,在待检测接插件的一端加上巡回高电平,在同一时刻接插件的一端只有一根线加上高电平,其它线加的是低电平。依次巡回的往下进行。然后在接插件的另一端从第一根线开始依次巡回地扫描检查哪些线得到了高电平,哪些线得到了低电平。若在A端的第一根线加的是高电平,其余是低电平,而在B端的第二根线得到了高电平,而B端其它线是低电平,则说明A端第一根线与B端第二根线相连了。同理要查出A端第二根线与B端第一根线相连。从而可以查出该接插件的第一、二根线出现错接。短路、绝缘不良 的情况检查也与误配线相似。
基于上述任一实施例,该装置还包括:
激振模块,用于生成扫频信号,扫频信号用于激发待检测接插件所在的振动台按照扫频信号的频率产生振动。
具体地,为了检测待检测接插件在受迫振动的情况下是否会出现故障,可以通过激振模块对待检测接插件进行振动情况模拟。
激振模块可以生成扫频信号,例如10Hz至200Hz的正弦扫频信号。激振模块可以与待检测接插件所在的振动台进行电连接,振动台按照扫频信号的频率产生振动,从而对外界振动环境进行模拟。扫频信号的频率可以根据外界环境的不同而进行设置,例如汽车道路的模拟、海浪的模拟、航天环境的模拟、地震的模拟、运输条件的模拟以及机车车辆运行过程中的振动模拟等。
基于上述任一实施例,该装置还包括:
恒流源模块,用于为检测接插件提供恒定大小的直流电源。
具体地,恒流源模块在接插件故障检测装置中的作用就是提供接插件断路的接触电阻的阻值判定依据。对于断路,正常的电气线路其阻值应当非常小甚至接近于零。当电气线路中的阻值突然增大时接插件即出现了异常,即接触电阻的增大表明接插件线路出现接触不良现象,阻值大到一定值可以认为出现了接插件断路。根据不同的情况,电阻测量在精度、分辨率和范围上有很大不同,一般而言,三者不能同时达到最佳。而对于线路阻值的测定有多种方法,有电压补偿伏安法测电阻,四线法测电阻及电压法测电阻。本申请提供的接插件故障检测装置采用后者,即通过恒流源给待检测接插件供电,然后测量其两端的压降。
同样地,还可以通过恒流源给预设断路阻值的电阻供电得到相应电压,将此二者的电压输入到电压比较器进行电压大小比较,即可知道待检测接插件是否出现了接触电阻突然增大的情况。
基于上述任一实施例,该装置还包括:
通信模块,与接插件故障检测装置中各个模块电连接,用于传输各个模块的数据。
具体地,通信单元可以设置在接插件故障检测装置的电路板中,分别与 各个模块电连接,将各个模块的检测数据传输至远程设备,或者从远程设备中获取参数,将其发送至相应的模块。
基于上述任一实施例,该装置还包括:
上位机,与通信模块电连接,用于对接插件故障检测装置中各个模块中的参数进行显示和/或设置。
具体地,接插件故障检测装置可以采用上下位机方案,单独设置一个上位机,将其他各个模块设置为一个下位机。
例如,上位机可以以Windows操作系统为平台,用VC++6.0进行编程,结合对数据库进行操作,利用对上位机界面进行优化,图形化检测结果。
下位机采用单片机加TTL基础电路,七段数码管显示测量结果。下位机可设定接插件针数、瞬间断路的时间长度评判标准、断路阻值评判标准、通过开关按钮选择检测系统的测量、自检状态和单机联机状态及单系统工作或是与上位机联合工作。
基于上述任一实施例,图2为本申请提供的接插件故障检测装置的结构示意图之二,如图2所示,该装置除了激振模块、自检模块、故障检测外围电路、接插件和PC机。除了电源模块、显示输出模块、面板输入模块等。
其中,PC机为上位机,主要负责向下位机发送指令和接收、显示、打印检测数据,并将数据保存到数据库中,同时可以从数据库中读出检测的历史记录。可以对数据进行相关的分类统计。查看下位机当前工作状态,设定下位机的工作参数。
激振模块、自检模块、故障检测外围电路、电源模块、显示输出模块、面板输入模块、参数设置单片机和检测处理单片机。参数设置单片机负责所有相关参数设定,检测处理单片机负责接插件的检测及数据保存和数据传送。
其中,电源模块需要给电路供给四种电压的电源,例如包括正12V、负12V、正5V和负5V。正负电压给恒流源供电。正5V给基础电路及单片机供电并作为模数转换的参考电压。而负5V则作为数模转换的参考电压。电源模块采用从市电取得交流220V电源,采用线性稳压的办法向电路供电。首先对交流220V电源进行降压、整流,然后进行滤波得到接近直流的电源,接下来采用集成线性稳压模块进行稳压得到电压。降压采用电源变压器将交流220V变为交流18V电压,利用二极管的单向导通特性对降压后的交流电 进行整流,使其变成低压直流电。在实际电路中多采用单相桥式整流电路。整流后的电压是单向脉动电压,不适合用于对电子线路供电。一般在整流后,为了获得比较理想的直流电压还需要利用具有储能作用的元器件,如电容、电感来组成滤波电路,将脉动的直流电压变成较为平滑的直流电压以满足电子线路及设备的需要。常用的有电容滤波、电感滤波和复式滤波。由于电流不大且负载变化不是很大,所以采用电容滤波。
显示输出部分包括检测装置在单机状态下的数据显示、电路相关状态的指示以及在联机状态下将数据传输给PC机。输入部分包括从基础测试模块获得测试数据、从相应的控制按钮、开关等获得设置标准值以及从PC机处接收控制指令和参数值设置等。对于数码管显示采用三位一体数码管显示,为了节省单片机的引脚,采用动态扫描法显示检测数据。在单机工作的状态下,电路检测到接插件的瞬断立即显示检测数据同时采用声光报警的方式提醒相关人员记录检测结果。按下清零按钮后声光报警解除同时数码管数据清零等待下一次检测结果显示。单机面板还可以旋钮的方式设置接触电阻值标准和断路时间标准,以拨动开关的形式设置单机联机工作、检测更换接插件等。按钮形式的开关有清零、自检、模拟振动等。
传统的对于接插件的检测多是手工的方式,利用万用表进行简单的测量。多是停留在误配线及检查断线的阶段,无法检测瞬间断路更无法实现自动化,微机控制及数据处理等。基于这点考虑,本申请实施例的目的是实现接插件故障的多层次测量和自动化检测。研究的情况主要是针对生产机车车辆接插件的工厂,目的是提高工程机械接插件在装上车前的可靠性,保证机车车辆上使用的电气接插件都具有符合要求的可靠性。实现微机控制及数据存储查询以及图形显示检测结果等。
基于上述任一实施例,图3为本申请提供的接插件故障检测方法的流程示意图,如图3所示,该方法包括:
步骤310,基于待检测接插件两端的电压测量值,以及通过待检测接插件的恒定电流,确定待检测接插件的接触电阻测量值;
步骤320,确定待检测接插件的接触电阻测量值大于预设断路阻值的维持时间;
步骤330,基于维持时间,确定待检测接插件的断路故障类型。
本申请实施例提供的接插件故障检测方法,通过恒定电流通过待检测接插件,根据待检测接插件两端的电压测量值确定待检测接插件的接触电阻测量值,确定接触电阻测量值大于等于预设断路阻值的维持时间,进而确定待检测接插件的断路故障类型,实现了对插接件出现的瞬间断路故障进行检测,提高了插接件故障检测的准确性,实现了接插件故障检测自动化,提高了插接件故障检测效率,提高了插接件的可靠性。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干命令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种接插件故障检测装置,包括:
    电阻检测模块,与计时模块电连接,用于当恒定电流通过待检测接插件时,基于所述待检测接插件两端的电压测量值确定所述待检测接插件的接触电阻测量值;
    计时模块,与断路检测模块电连接,用于确定所述接触电阻测量值大于等于预设断路阻值的维持时间;
    断路检测模块,基于所述维持时间,确定所述待检测接插件的断路故障类型。
  2. 根据权利要求1所述的接插件故障检测装置,其特征在于,所述断路检测模块具体用于:
    若所述维持时间在预设时长范围内,则确定所述待检测接插件的断路故障类型为瞬间断路;
    其中,所述预设时长范围是根据所述待检测接插件所在的电路对电源中断时间和/或信号中断时间的要求所确定的。
  3. 根据权利要求1所述的接插件故障检测装置,还包括:
    时钟模块,与所述计时模块电连接,用于为所述计时模块提供计时脉冲信号。
  4. 根据权利要求3所述的接插件故障检测装置,还包括:
    自检模块,与所述时钟模块电连接,用于确定预设时间长度的自检脉冲,并基于所述自检脉冲通过所述时钟模块的脉冲闸门的过程中计时脉冲信号的数量,确定所述时钟模块的工作状态。
  5. 根据权利要求1所述的接插件故障检测装置,还包括:
    误配线检查模块,用于对所述待检测接插件任一侧的各个端子逐一施加高电平,并基于所述待检测接插件对侧的各个端子处的高电平检测结果,确定所述待检测接插件两侧的配线结果。
  6. 根据权利要求1所述的接插件故障检测装置,还包括:
    激振模块,用于生成扫频信号,所述扫频信号用于激发所述待检测接插件所在的振动台按照所述扫频信号的频率产生振动。
  7. 根据权利要求1所述的接插件故障检测装置,还包括:
    恒流源模块,用于为所述检测接插件提供恒定大小的直流电源。
  8. 根据权利要求1至7任一项所述的接插件故障检测装置,还包括:
    通信模块,与所述接插件故障检测装置中各个模块电连接,用于传输各个模块的数据。
  9. 根据权利要求8所述的接插件故障检测装置,还包括:
    上位机,与所述通信模块电连接,用于对所述接插件故障检测装置中各个模块中的参数进行显示和/或设置。
  10. 一种接插件故障检测方法,包括:
    基于待检测接插件两端的电压测量值,以及通过所述待检测接插件的恒定电流,确定所述待检测接插件的接触电阻测量值;
    确定所述接触电阻测量值大于等于预设断路阻值的维持时间;
    基于所述维持时间,确定所述待检测接插件的断路故障类型。
PCT/CN2022/082041 2021-05-11 2022-03-21 接插件故障检测装置及方法 WO2022237324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513291.4 2021-05-11
CN202110513291.4A CN113253157A (zh) 2021-05-11 2021-05-11 接插件故障检测装置及方法

Publications (1)

Publication Number Publication Date
WO2022237324A1 true WO2022237324A1 (zh) 2022-11-17

Family

ID=77222779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082041 WO2022237324A1 (zh) 2021-05-11 2022-03-21 接插件故障检测装置及方法

Country Status (2)

Country Link
CN (1) CN113253157A (zh)
WO (1) WO2022237324A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253157A (zh) * 2021-05-11 2021-08-13 上海三一重机股份有限公司 接插件故障检测装置及方法
CN114783162B (zh) * 2022-06-20 2022-10-28 商飞软件有限公司 一种飞机三余度系统告警表决方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285833A (ja) * 2006-04-14 2007-11-01 Ricoh Co Ltd 接続異常検知装置、接続異常検知方法及び電気装置
CN101201378A (zh) * 2007-11-20 2008-06-18 陕西永辉测控技术有限公司 电接触件瞬断测试系统
CN201130226Y (zh) * 2007-11-20 2008-10-08 陕西永辉测控技术有限公司 电接触件瞬断测试系统
CN201352245Y (zh) * 2009-02-16 2009-11-25 西安市耀石科技发展有限公司 多路线缆连接器瞬断测试系统
US20170199236A1 (en) * 2014-06-05 2017-07-13 Kevin Stephen Davies System and Method for Detecting Connector Faults in Power Conversion System
CN107703408A (zh) * 2017-10-17 2018-02-16 西安谷德电子科技有限公司 一种多通道线缆连接器的瞬断瞬通测试系统
CN108918974A (zh) * 2018-09-14 2018-11-30 广州赛宝计量检测中心服务有限公司 瞬态电阻值测量电路和高速瞬断测试仪
CN113253157A (zh) * 2021-05-11 2021-08-13 上海三一重机股份有限公司 接插件故障检测装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201594124U (zh) * 2010-02-23 2010-09-29 浙江中控技术股份有限公司 一种线缆检测装置
CN203405526U (zh) * 2013-06-27 2014-01-22 南京浦镇海泰制动设备有限公司 一种配线导通测试装置
CN105717416A (zh) * 2014-12-05 2016-06-29 上海航天精密机械研究所 新型电缆组件瞬态故障检测装置及方法
CN107101742A (zh) * 2017-03-09 2017-08-29 宁波吉利汽车研究开发有限公司 一种车辆接插件监测装置
CN107329014A (zh) * 2017-06-29 2017-11-07 北京新能源汽车股份有限公司 高压插接件故障检测方法及装置
CN209460347U (zh) * 2019-01-22 2019-10-01 柳州机车车辆有限公司 铁路客车电气控制线路对线机
CN112505592A (zh) * 2019-09-16 2021-03-16 北京新能源汽车股份有限公司 一种高压接插件故障检测电路、检测方法、控制器及汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285833A (ja) * 2006-04-14 2007-11-01 Ricoh Co Ltd 接続異常検知装置、接続異常検知方法及び電気装置
CN101201378A (zh) * 2007-11-20 2008-06-18 陕西永辉测控技术有限公司 电接触件瞬断测试系统
CN201130226Y (zh) * 2007-11-20 2008-10-08 陕西永辉测控技术有限公司 电接触件瞬断测试系统
CN201352245Y (zh) * 2009-02-16 2009-11-25 西安市耀石科技发展有限公司 多路线缆连接器瞬断测试系统
US20170199236A1 (en) * 2014-06-05 2017-07-13 Kevin Stephen Davies System and Method for Detecting Connector Faults in Power Conversion System
CN107703408A (zh) * 2017-10-17 2018-02-16 西安谷德电子科技有限公司 一种多通道线缆连接器的瞬断瞬通测试系统
CN108918974A (zh) * 2018-09-14 2018-11-30 广州赛宝计量检测中心服务有限公司 瞬态电阻值测量电路和高速瞬断测试仪
CN113253157A (zh) * 2021-05-11 2021-08-13 上海三一重机股份有限公司 接插件故障检测装置及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN YINHUAN: "A kind of transient detection method of electronic connector", MECHANICAL AND ELECTRICAL INFORMATION, no. 30, 25 October 2009 (2009-10-25), pages 100 - 101, XP093005194, DOI: 10.19514/j.cnki.cn32-1628/tm.2009.30.053 *
CHEN YINHUAN: "Design of Electronic Receptacle Detection System", SCIENCE & TECHNOLOGY INFORMATION, vol. 16, no. 35, 31 December 2018 (2018-12-31), CN , pages 93 - 94, XP093005207, ISSN: 1672-3791, DOI: 10.16661/j.cnki.1672-3791.2018.35.093 *
LAN, XINWU ET AL.: "Research on Intelligent Detection Technology of Embedded Connector Fault for Electric Vehicle Heavy Loading", MODERN ELECTRONICS TECHNIQUE, vol. 40, no. 18, 15 September 2017 (2017-09-15), pages 161 - 163,167, XP093005283, ISSN: 1004-373x *
LIU, SHIJIANG: "Discussion on Fault Detection of Electrical Receptacle in Industrial Enterprise", SCIENCE & TECHNOLOGY FOR DEVELOPMENT, no. S1, 10 December 2011 (2011-12-10), pages 91 - 92,94, XP093005279 *
LU, JIANMING ET AL.: "Test Technique of Instant Break for Electrical Connector", INSTRUMENT STANDARDIZATION & METROLOGY, no. 2, 26 April 2008 (2008-04-26), pages 40 - 41,48, XP093005270 *

Also Published As

Publication number Publication date
CN113253157A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2022237324A1 (zh) 接插件故障检测装置及方法
CN101164129A (zh) 固体电解电容器的检查装置及检查方法
CN210129032U (zh) 一种在线监测电流互感器故障的装置
CN105137258A (zh) 一种高压试验接地智能预警控制装置
CN205404719U (zh) 一种互感器公共回路多点接地检测仪
CN114545165B (zh) 一种容性负载专用高压绝缘检测装置
CN207946515U (zh) 互感器极性测试仪
CN113777452B (zh) 一种电压自适应站用直流系统接地试验装置及方法
CN103207342B (zh) 一种检修试验接地智能预警装置
CN102435914B (zh) 便携式飞机导线综合性能测试仪
CN209345426U (zh) 异常检测装置和电路
CN211014532U (zh) 一种可控硅测试仪
CN113671281A (zh) 一种高压老化筛选控制系统
CN210923872U (zh) 一种配电终端故障在线判别系统
CN210181038U (zh) 一种简易型机油品质检测装置
CN208369206U (zh) 一种具有tev检测的电弧光保护装置
CN204177906U (zh) 极性测试仪
CN202083766U (zh) 高压接地选线装置
CN105866727A (zh) 一种用于电能表检定装置的实时核查系统
CN207396699U (zh) 一种用于消防设备电源的ac220v电压检测电路
CN214335168U (zh) 一种基于ups系统的评测装置
CN206671406U (zh) 一种板卡供电电压在线监测系统
CN204758739U (zh) 一种直流回路故障查找器
CN216926923U (zh) 一种可带整流模块测量断路器分合闸线圈直阻仪器
CN218938472U (zh) 一种4pt接线综合分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE