WO2022236821A1 - 一种信号处理方法以及相关设备 - Google Patents

一种信号处理方法以及相关设备 Download PDF

Info

Publication number
WO2022236821A1
WO2022236821A1 PCT/CN2021/093884 CN2021093884W WO2022236821A1 WO 2022236821 A1 WO2022236821 A1 WO 2022236821A1 CN 2021093884 W CN2021093884 W CN 2021093884W WO 2022236821 A1 WO2022236821 A1 WO 2022236821A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power amplifier
power
parameter
feedback
Prior art date
Application number
PCT/CN2021/093884
Other languages
English (en)
French (fr)
Inventor
李建平
胡克彬
王亮芳
朱尔霓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/093884 priority Critical patent/WO2022236821A1/zh
Publication of WO2022236821A1 publication Critical patent/WO2022236821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a signal processing method and related equipment.
  • a power amplifier (power amplifier, PA) can be applied in a base station to amplify a wireless signal, so that the wireless signal has higher power and thus has a longer propagation distance and a wider propagation range.
  • the wireless signal will be amplified nonlinearly after passing through the power amplifier, that is, the wireless signal is interfered by the power amplifier, resulting in the signal quality of the wireless signal decline, affecting the communication quality.
  • Digital pre-distortion (Digital pre-distortion, DPD) component is a digital circuit that applies an inverse effect equal to the nonlinear amplification of the power amplifier to the signal, and is used to correct the nonlinear amplification of the power amplifier and obtain linear amplification. Signal, improve signal quality and communication quality.
  • a feedback channel is generally provided to cooperate with digital pre-distortion components to adjust the pre-distortion parameters in time to achieve accurate processing effects.
  • a method for signal processing using a digital predistortion element is to pass a baseband signal through a digital predistortion element to obtain a predistortion signal, and to process the predistortion signal through a power divider to obtain multiple signals into multiple power amplifiers.
  • the feedback signals corresponding to multiple power amplifiers are obtained through the coupler, and the multiple feedback signals received at each receiving moment are added through an adder to obtain a target feedback signal, and the predistortion parameters at each moment are obtained according to the target feedback signal. It is used to make the digital pre-distortion element apply the pre-distortion effect corresponding to the pre-distortion parameter at each time to the baseband signal at each time.
  • the distance between each power amplifier and the power splitter will be different, and the moment when multiple signals enter the power amplifier will be different, which will cause the amplified signal received at the same receiving moment from the outlet of the power amplifier It is not generated at the same time. If the feedback signals at the same receiving time are directly added together, it will result in obtaining the wrong effect of the power amplifier on the signal at the same time, so as to obtain the wrong pre-distortion parameters at the same time, making the digital pre-distortion process invalidated.
  • the embodiment of the present application provides a signal processing method and related equipment, which are used to avoid the failure of digital pre-distortion caused by the different generation times of the signals at the same receiving time due to the different distances between the outlet signals of multiple power amplifiers and the power divider. problem, improve the processing effect of digital pre-distortion.
  • a digital predistortion signal When a digital predistortion signal is processed by several devices, it is divided into two signals, one of which enters the first power amplifier, and the other enters the second power amplifier, and the output signal of the first power amplifier and the second For the output signal of the power amplifier, couplers are arranged at the outlets of the first power amplifier and the second power amplifier to obtain a first feedback analog signal corresponding to the first power amplifier output signal and a second feedback analog signal corresponding to the second power amplifier output signal.
  • the time domain for digital domain processing of the first feedback analog signal and the second feedback analog signal is controlled through the switch matrix.
  • the first feedback analog signal is processed in the digital domain through the switch matrix, and the second feedback analog signal cannot be blocked by the switch matrix, at which point only the first feedback analog signal is processed in the digital domain.
  • the first signal parameter at the time domain discrete target moment can be obtained.
  • the second feedback analog signal is processed in the digital domain through the switch matrix to obtain the second signal parameters.
  • the first feedback analog signal has been processed in the digital domain in the first time period.
  • the first feedback analog signal has been processed.
  • the first signal parameter and the second signal parameter are used as the input of the digital pre-distortion trainer to obtain the target digital pre-distortion parameter simultaneously conforming to the nonlinear characteristic of the first power amplifier and the nonlinear characteristic of the second power amplifier.
  • the signal parameters corresponding to each feedback analog signal at a certain moment can be obtained, and the signal parameters of each feedback signal can be synthesized.
  • the time-domain discrete pre-distortion parameters are obtained, which avoids the problem of digital pre-distortion failure caused by the different generation times of the signals at the same receiving time due to the different distances between the output signals of multiple power amplifiers and the power divider, and improves the digital pre-distortion processing effect.
  • the embodiment of this application provides the first implementation manner of the first aspect:
  • the first feedback analog signal passes through the switch matrix to reach an analog-to-digital converter (analogue-to-digital conversion, ADC), and other feedback analog signals must not pass through the switch matrix.
  • ADC analog-to-digital conversion
  • the first compensation parameter corresponding to the first power amplifier is set in the digital compensator to compensate the amplitude, phase and time delay of the first feedback digital signal, and the second feedback signal is obtained. a feedback signal.
  • a subtractor is used to subtract the first compensation signal from the baseband signal to obtain a first error signal, where the first error signal represents an error generated by the nonlinear effect of the power amplifier on the baseband signal.
  • the first error signal is sent to the digital pre-distortion trainer, and the nonlinear effect caused by the first power amplifier on the signal is converted into an inverse effect of the same degree as the nonlinear effect.
  • the inverse effect is digital pre-distortion, which is converted into digital pre-distortion.
  • the embodiment of this application provides a second implementation manner of the first aspect:
  • the second feedback analog signal passes through the switch matrix to reach an analog-to-digital converter (analogue-to-digital conversion, ADC), and other feedback analog signals must not pass through the switch matrix.
  • ADC analog-to-digital conversion
  • the second compensation parameter corresponding to the second power amplifier is set in the digital compensator, and the amplitude, phase and time delay of the second feedback digital signal are compensated to obtain the first Two feedback signals.
  • a subtractor is used to subtract the second compensation signal from the baseband signal to obtain a second error signal, where the second error signal represents an error generated by the nonlinear effect of the power amplifier on the baseband signal.
  • the second error signal is sent to the digital pre-distortion trainer, and the nonlinear effect caused by the second power amplifier on the signal is converted into an inverse effect of the same degree as the nonlinear effect.
  • the inverse effect is digital pre-distortion, which is converted into digital pre-distortion.
  • the embodiment of this application provides the third implementation manner of the first aspect:
  • the digital predistortion signal is converted into a predistortion analog signal by a DAC, and the predistortion analog signal is obtained by a power divider to obtain a first power distribution signal corresponding to the first power amplifier and a second power distribution signal corresponding to the second power amplifier.
  • the DSA will predetermine the target power of the first power amplifier input signal and the second power amplifier signal.
  • the power of the first power amplifier input signal and the second power amplifier input signal are the same.
  • the first attenuation parameter corresponding to the first power amplifier corresponds
  • the first DSA performs power attenuation on the first power allocation signal to obtain the first power amplifier input signal with target power.
  • the second DSA corresponding to the second power amplifier performs power attenuation on the second power allocation signal according to the second attenuation parameter, to obtain the second power amplifier input signal of the target power.
  • the embodiment of this application provides the fourth implementation manner of the first aspect:
  • a coupler is arranged before the first power amplifier and the second power amplifier to obtain a first feedforward signal corresponding to the first power amplifier and a second feedforward signal corresponding to the second power amplifier
  • a power detection module is arranged before the first power amplifier and the second power amplifier, Input the first feedforward signal into the power detection module to obtain the first signal power of the first feedforward signal, which is also the first signal power of the first power amplifier input signal, and input the second feedforward signal into the power detection module to obtain the second power amplifier input The second signal power of the signal.
  • the AM-AM curve of the power amplifier is a way to evaluate the nonlinear characteristics of the power amplifier.
  • the abscissa of the AM-AM curve is the amplitude of the input signal of the power amplifier, and the ordinate is the output signal of the power amplifier and the input signal after delay, amplitude and phase compensation. Compensate the amplitude of the signal.
  • the amplitude of the first compensation signal is used as the ordinate, and the amplitude corresponding to the power of the first signal is used as the abscissa to obtain a first amplitude-amplitude curve.
  • the amplitude of the second compensation signal is used as the ordinate, and the amplitude corresponding to the power of the second signal is used as the abscissa to obtain a second amplitude-amplitude curve.
  • the voltage regulation optimization algorithm to obtain the grid voltage parameters of the first power amplifier and the grid voltage parameters of the second power amplifier, and obtain the outlet signal of the first power amplifier according to the grid voltage parameters of the first power amplifier , according to the grid voltage parameter of the second power amplifier, the outlet signal of the second power amplifier is obtained.
  • the embodiment of this application provides the fifth implementation manner of the first aspect:
  • the first load echo is calculated, and the first TMN control parameter is obtained in combination with an adaptive search algorithm.
  • the second load echo is calculated, and the second TMN control parameter is obtained in combination with an adaptive search algorithm.
  • the attenuated first power amplifier input signal is used as the input of the whole composed of the first power amplifier and the first TMN to obtain the output of the first power amplifier output signal.
  • the attenuated second power amplifier input signal is used as the overall input of the second power amplifier and the second TMN to obtain the output of the second power amplifier output signal.
  • the embodiment of this application provides the sixth implementation manner of the first aspect:
  • a DPD is used to correct the non-linearity of multi-channel power amplifiers to absorb the common part of multi-channel power amplifier nonlinearity
  • the small APD module in front of each power amplifier is used to absorb the different parts of non-linearity of different power amplifiers, which can further improve Consistency of nonlinear characteristics of multiple power amplifiers.
  • the second aspect of the embodiment of the present application provides a digital predistortion system, and the digital predistortion system has the function of realizing the digital predistortion system in the first aspect, the second aspect, and the third aspect.
  • This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the third aspect of the embodiment of the present application provides a digital predistortion system, including a processor, a memory, an input and output device, and a bus;
  • the processor, memory, input and output devices are connected to the bus;
  • the processor is configured to execute the method described in any one of the above first aspects.
  • the fourth aspect of the embodiments of the present application provides a computer storage medium, where a program is stored in the computer-readable storage medium, and when the computer executes the program, the method described in any one of the foregoing first aspects is performed.
  • a fifth aspect of the embodiments of the present application provides a computer program product.
  • the computer program product When the computer program product is executed on a computer, the computer executes the method described in any one of the foregoing first aspects.
  • the embodiments of the present application have the following advantages: the first feedback analog signal and the second feedback analog signal are obtained, the first feedback analog signal is a signal obtained according to the digital predistortion signal and the first power amplifier, and the second The feedback analog signal is obtained according to the digital predistortion signal and the second power amplifier.
  • the second power amplifier is different from the first power amplifier.
  • the signal parameters corresponding to each feedback analog signal at a certain moment can be obtained, and the time domain discrete time domain can be obtained by synthesizing the signal parameters of each feedback signal
  • the pre-distortion parameters avoid the problem of digital pre-distortion failure caused by the different generation times of the signals at the same receiving time due to the different distances between the output signals of multiple power amplifiers and the power divider, and improve the processing effect of digital pre-distortion.
  • Fig. 1 is a system architecture diagram of digital predistortion in the embodiment of the present application
  • FIG. 2 is a schematic flow chart of a signal processing method in an embodiment of the present application
  • FIG. 3a is another system architecture diagram of digital predistortion in the embodiment of the present application.
  • Fig. 3b is another schematic flowchart of the signal processing method in the embodiment of the present application.
  • Figure 4a is a schematic diagram of the consistency effect of two AM-AM curves in the embodiment of the present application.
  • Figure 4b is a schematic diagram of the inconsistency effect of two AM-AM curves in the embodiment of the present application.
  • Figure 4c is a schematic diagram of the fitting of the AM-AM curve in the embodiment of the present application.
  • Fig. 4d is a schematic flow chart of setting the grid voltage of the power amplifier in the embodiment of the present application.
  • Fig. 4e is a schematic flow diagram of optimizing the voltage regulation algorithm in the embodiment of the present application.
  • Fig. 4f is the first power amplifier ACPR that does not use the optimized voltage regulation algorithm in the embodiment of the present application;
  • Fig. 4g is the second power amplifier ACPR that does not use the optimized voltage regulation algorithm in the embodiment of the present application;
  • Figure 4h is the first power amplifier ACPR that has used the optimized voltage regulation algorithm in the embodiment of the present application.
  • Fig. 4i is the second power amplifier ACPR that does not use the optimized voltage regulation algorithm in the embodiment of the present application;
  • Fig. 5a is another system architecture diagram of digital pre-distortion in the embodiment of the present application.
  • Fig. 5b is another schematic flowchart of the signal processing method in the embodiment of the present application.
  • Figure 5c is a schematic diagram of the influence of TMN parameter changes on the AM curve of the power amplifier
  • FIG. 6a is another system architecture diagram of digital pre-distortion in the embodiment of the present application.
  • Fig. 6b is a schematic diagram of the frame of the analog predistortion in the embodiment of the present application.
  • Fig. 6c is another schematic flowchart of the signal processing method in the embodiment of the present application.
  • Fig. 6d is a schematic diagram of the working sequence of analog predistortion and digital predistortion in the embodiment of the present application;
  • Fig. 6e is the first power amplifier ACPR not processed by APD in the embodiment of the present application.
  • Figure 6f is the first power amplifier ACPR that has been processed by APD in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario of a signal processing method in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another application scenario of the signal processing method in the embodiment of the present application.
  • the embodiment of the present application provides a signal processing method and related equipment, which are used to avoid the failure of digital pre-distortion caused by the different generation times of the signals at the same receiving time due to the different distances between the outlet signals of multiple power amplifiers and the power divider. problem, improve the processing effect of digital pre-distortion.
  • the baseband signal is input to the DPD processor to obtain a digital predistortion input signal.
  • the digital predistortion input signal passes through a digital to analog converter (DAC) to obtain a predistortion analog signal, and the predistortion analog signal passes through a power divider (power divider, After DP), it is divided into multiple power distribution signals, and after power attenuation is performed on each power distribution signal through a digital step attenuator (DSA), the multi-channel power amplifier input signal with the same power is obtained, and the multi-channel power amplifier input signal After passing through multiple power amplifiers, the output signals of multi-channel power amplifiers are obtained.
  • the output signals of the power amplifiers pass through the filter and then radiate through the antenna. Multiple feedback analog signals are sent to the feedback channel.
  • DSA may be included, and the power amplifier input signal with the same power is obtained by the DSA after the power distribution signal is attenuated, and then input to the power amplifier, or it may not include In the DSA, the power distribution signal is directly used as the input of the power amplifier, which is not specifically limited here.
  • the transmission of the feedback analog signals is controlled by the switching matrix (SM), so that multiple feedback analog signals reach the ADC through the switching matrix in time, and the length of the time interval should be such that one feedback
  • the analog signal enters the DPD trainer through ADC, time delay, amplitude and phase compensation, the next feedback analog signal reaches the ADC through the switch matrix.
  • the feedback analog signal passes through the ADC, the feedback digital signal is obtained.
  • the delay, amplitude and phase compensation of the feedback digital signal in the digital domain it enters the DPD trainer to obtain the time-domain discrete digital pre-distortion parameters.
  • the DPD processor is based on the time-domain discrete
  • the digital pre-distortion parameters of the baseband signal are digitally pre-distorted at each moment.
  • the system architecture of digital pre-distortion shown in Figure 1 includes the pre-distortion processing channel shown in the box part in the figure and the feedback channel shown below the box.
  • the pre-distortion processing framework and the feedback channel framework in the digital pre-distortion-based system architecture shown in Fig. 1 are respectively introduced.
  • the output signal of the power amplifier is obtained.
  • the output signal of the power amplifier can be obtained.
  • the characteristics of the output signal are almost the same as the feedback analog signal, and the output signal of the power amplifier itself is not interfered by the coupler.
  • a coupler is placed at the outlet of the first power amplifier to obtain the first feedback analog signal, and a coupler is placed at the outlet of the second power amplifier to obtain the second feedback analog signal.
  • the feedback signal After the feedback signal is obtained through the coupler, the feedback signal enters the feedback channel and needs to be transmitted forward.
  • the transmission time of the feedback signal in the feedback channel is controlled by a switch matrix.
  • the first feedback analog signal passes through the switch matrix to reach an analog-to-digital converter (analogue-to-digital conversion, ADC), and other feedback analog signals must not pass through the switch matrix.
  • ADC analog-to-digital conversion
  • the ADC After converting the feedback analog signal into a feedback digital signal through the ADC, it is necessary to use a digital compensator to compensate the amplitude, phase and time delay of the feedback digital signal.
  • the purpose of the compensation is to eliminate the transformation and The delay generated during the transmission process preserves the nonlinear effect of the power amplifier on the signal.
  • the first compensation parameter corresponding to the first power amplifier is set in the digital compensator, and the amplitude and phase of the first feedback digital signal and the time delay are compensated to obtain the first feedback signal.
  • a subtractor is used to subtract the first compensation signal from the baseband signal to obtain a first error signal, where the first error signal represents an error generated by the nonlinear effect of the power amplifier on the baseband signal.
  • the first error signal is sent to the digital pre-distortion trainer, and the nonlinear effect caused by the first power amplifier on the signal is converted into an inverse effect of the same degree as the nonlinear effect.
  • the inverse effect is digital pre-distortion, which is converted into digital pre-distortion.
  • steps 206 to 209 in this embodiment are similar to steps 202 to 205, and details are not repeated here.
  • one digital pre-distortion processor is aimed at two power amplifiers, so only based on the first signal parameters for the first power amplifier and the second signal parameters for the second power amplifier, the same digital pre-distortion processor cannot It needs to be processed in the digital pre-distortion trainer according to the first signal parameter and the second signal parameter to obtain the target digital pre-distortion that can play a better digital pre-distortion effect on the first power amplifier and the second power amplifier at the same time Parameters, the target digital pre-distortion parameters are discretized in the time domain, including the digital pre-distortion processing parameters of the baseband signal at each moment.
  • the purpose of signal processing in the digital predistortion channel framework in the digital predistortion system architecture is to improve the consistency of the output signals of multiple power amplifiers.
  • properties which are described below:
  • a power detection module is set before the power amplifier, and an adaptive AM-AM optimal voltage regulation algorithm module is set in the feedforward channel to obtain
  • an adaptive AM-AM optimal voltage regulation algorithm module is set in the feedforward channel to obtain
  • the power detection module is located between the DSA and the power amplifier, and a coupler is set in front of each power amplifier to obtain the feedforward signal of the input signal of the power amplifier.
  • the power detection module receives the feedforward signal and detects the instantaneous power of the feedforward signal.
  • the instantaneous power of the feedforward signal is equal to the instantaneous power of the power amplifier input signal.
  • the power detection module sends the instantaneous power detection result of the feedforward signal to the adaptive AM-AM optimal voltage regulation algorithm module in the feedforward channel through the low-speed communication interface, and the adaptive AM-AM optimal voltage regulation algorithm module generates an algorithm for each
  • the control command of the grid voltage of the power amplifier adjusts the grid voltage of each power amplifier.
  • the low-speed communication interface may be a serial peripheral interface (serial peripheral interface, SPI) or other low-speed communication interfaces, which are not specifically limited here.
  • SPI serial peripheral interface
  • the digital pre-distortion processor performs digital pre-distortion processing on the baseband signal received by the digital pre-distortion processor according to the target digital pre-distortion parameters , to get the digital predistortion signal.
  • the digital predistortion signal is converted into a predistortion analog signal by a DAC, and the predistortion analog signal is obtained by a power divider to obtain a first power distribution signal corresponding to the first power amplifier and a second power distribution signal corresponding to the second power amplifier.
  • the DSA will predetermine the target power of the first power amplifier input signal and the second power amplifier signal.
  • the power of the first power amplifier input signal and the second power amplifier input signal are the same.
  • the first attenuation parameter corresponding to the first power amplifier corresponds
  • the first DSA performs power attenuation on the first power allocation signal to obtain the first power amplifier input signal with target power.
  • the second DSA corresponding to the second power amplifier performs power attenuation on the second power allocation signal according to the second attenuation parameter, to obtain the second power amplifier input signal of the target power.
  • a coupler is arranged before the first power amplifier and the second power amplifier to obtain a first feedforward signal corresponding to the first power amplifier and a second feedforward signal corresponding to the second power amplifier
  • a power detection module is arranged before the first power amplifier and the second power amplifier, Input the first feedforward signal into the power detection module to obtain the first signal power of the first feedforward signal, which is also the first signal power of the first power amplifier input signal, and input the second feedforward signal into the power detection module to obtain the second power amplifier input The second signal power of the signal.
  • the AM-AM curve of the power amplifier is a way to evaluate the nonlinear characteristics of the power amplifier.
  • the abscissa of the AM-AM curve is the amplitude of the input signal of the power amplifier, which is represented by x in Figure 4a, and the ordinate is the time delay between the output signal of the power amplifier and the input signal.
  • amplitude, and the amplitude of the compensated signal after phase compensation are represented by y in Fig. 4a.
  • An example of an AM-AM curve is shown in Figure 4a. Note that Figure 4a contains the AM-AM curves of two power amplifiers. The two curves overlap very well, indicating that the nonlinear characteristics of the two power amplifiers are very consistent.
  • a DPD processor can be used to correct the two power amplifiers at the same time. nonlinearity to obtain better predistortion performance.
  • Figure 4b In contrast to Figure 4a, is the AM-AM curve shown in Figure 4b.
  • Figure 4b also contains the AM-AM curves of the two power amplifiers. These two curves diverge severely at the end, indicating that the nonlinear characteristics of the two power amplifiers are quite different. If a DPD processor is used to correct the two power amplifiers at the same time , the performance will deteriorate dramatically.
  • the first AM-AM curve is obtained.
  • the first power amplifier grid voltage parameter is used to obtain the first power amplifier outlet signal
  • the second power amplifier grid voltage parameter is used to obtain the output signal of the second power amplifier.
  • the shape of the AM-AM curve is directly related to the grid voltage of the power amplifier. Adjusting the grid voltage of the power amplifier can adjust the shape of the AM-AM curve, and the AM-AM curves of the two power amplifiers can be aligned to improve the nonlinearity of the two power amplifiers. Consistency, this is the basic principle and purpose of the adaptive AM-AM optimal voltage regulation algorithm.
  • the objective function of the adaptive AM-AM optimal voltage regulation algorithm is:
  • v c and v p are the main tube grid voltage and peak tube grid voltage of the target iDHT power amplifier respectively
  • P ref,k is the kth function value of the AM-AM curve fitting function of the reference power amplifier
  • P tar,k is the target power amplifier
  • K is the number of discrete points on the abscissa of the fitting function.
  • the reference power amplifier can be selected arbitrarily, and the AM-AM curve of other target power amplifiers will tend to be consistent with the AM-AM curve of the reference power amplifier after optimization.
  • the reason for fitting the AM-AM curve is because the AM-AM curve is composed of discrete points, and x and y are not in a one-to-one mapping relationship.
  • One x may correspond to multiple ys, and the curve has a certain width. Using these discrete points directly does not It is easy to evaluate the difference between two AM-AM curves. After fitting the AM-AM curve, the functional relationship between x and y can be obtained. When evaluating the difference between AM-AM curves, the fitted function can be used to directly make a difference.
  • the fitting method can be a high-order polynomial fitting, because the polynomial fitting is simple and efficient. Considering that the AM-AM curve may be relatively curved, using a polynomial to fit all signals of all sizes may not have a good fitting effect, so A piecewise high-order polynomial fit can be used.
  • Figure 4c is a schematic diagram of segmental fitting of the AM-AM curve. It is divided into 4 segments equally between the minimum/maximum amplitude of the DPD input signal x, and each segment is fitted with a high-order polynomial. The fitting order 3 levels are available.
  • Fig. 4d is a schematic diagram of the search process.
  • v c Take the search for v c as an example, first arbitrarily determine a direction, such as the positive direction, then v c is updated as Among them, dv c is the search step size of v c . Configure a new After that, reacquire x and y, and calculate the fitting function calculate at this time
  • the first type In each segment, when searching for a certain grid voltage, when the sign of P tar,k (v c ,v p )-P ref,k changes, the search of this segment is stopped, and the next A segment search.
  • the second type give an absolute threshold th, if the maximum difference between the 4 segments AM-AM in a cycle is less than th, that is Then all searches are terminated, and the final v c and v p are output.
  • n_segment is the number of segments
  • volt_type is used to mark whether to search for v c or v p
  • Fig. 4e is a flowchart of an optimal voltage regulation algorithm.
  • Figure 4f to Figure 4i is the adjacent channel power ratio (adjacent channel power ratio, ACPR) of the two power amplifiers before the optimized voltage regulation algorithm is adopted, and Fig.
  • the ACPR of the two power amplifiers is only -42dB. After optimization, both power amplifiers have reached -45dB+, and the performance has been improved by 3dB+.
  • a matching adjustable network (tunable matching network, TMN) module is placed after each power amplifier in a plurality of power amplifiers, as shown in FIG.
  • TMN tunable matching network
  • Each TMN module and the power amplifier together constitute the processing of the input signal of the power amplifier.
  • the TMN module is composed of a variable capacitor and a load circuit to realize the control of the load of the power amplifier.
  • the TMN control parameters are based on the load echo calculated from the input baseband signal and compensation signal of the DPD processor, combined with the adaptive search algorithm (the LUT table can be preset) to obtain the TMN control parameters.
  • steps 501 to 504 in this embodiment are similar to steps 301 to 304 in the embodiment shown in FIG. 3 b , and details are not repeated here.
  • the first load echo is calculated, and the first TMN control parameter is obtained in combination with an adaptive search algorithm (the LUT table can be preset).
  • TMN function mainly depends on the variable capacitance in the circuit, and the specific form is not limited: diode varactor (Si base/SiC base/GaAs, etc.), MEMS varactor, BST varactor, SCPA, etc., and the corresponding control circuit is provided.
  • the TMN circuit topology can also be flexibly selected according to the actual application scenario: Pi type, T type; the circuit order is strongly related to the impedance tuning range, insertion loss, and system complexity.
  • step 506 in this embodiment is similar to step 505, and details are not repeated here.
  • the attenuated first power amplifier input signal is used as the input of the whole composed of the first power amplifier and the first TMN to obtain the output of the first power amplifier output signal.
  • step 508 in this embodiment is similar to step 507, and details are not repeated here.
  • Figure 5c compares the difference between fine-tuning CLC Pi type TMN circuit parameters and power amplifier gain vs Pout (AM) curves: Cp1 has a greater impact on the gain expansion/compression of AM curves in the mid-to-high power region, adjusted according to feedback information, one drive four DPD actual measurement Linearity improved ⁇ 2dB.
  • analog predistortion is performed in the APD module to obtain multiple analog predistortion signals, which are used as the input of the power amplifier.
  • the APD module also has a corresponding feedback channel, and the feedback signal of the analog predistortion is obtained from the coupler of the power amplifier.
  • the architecture of the APD module in this embodiment is shown in Figure 6b.
  • the PA outlet obtains a feedback signal through a coupler, and the feedback signal is adjusted by a static power control (Variable Gain Amplifier, VGA) module to match the input signal of the APD.
  • the RF error signal is obtained by subtraction.
  • the envelope power detection module detects the envelope power of the RF error signal to obtain the error power.
  • the error power is converted into digital error power by ADC and sent to APD Trainer.
  • APD Trainer is a digital module for training APD Parameters, the goal of APD Trainer is to train APD parameters to minimize the error power.
  • the trained APD parameters are sent to the APD Core and applied to the APD model.
  • the input baseband signal of the APD Core is processed by the APD model and the output signal is sent to the power amplifier.
  • steps 601 to 604 in this embodiment are similar to steps 301 to 304 in the embodiment shown in FIG. 3 b , and details are not repeated here.
  • the first feedback signal obtained by using the coupler is used as the input of the APD feedback channel to obtain APD parameters, and a DPD corrects the nonlinearity of the multi-channel power amplifier to absorb the common part of the nonlinearity of the multi-channel power amplifier , and the small APD module in front of each power amplifier is used to absorb the difference of non-linearity of different power amplifiers.
  • DPD completes one or more rounds of iterations (each round of iterations completes all power amplifier feedback signal processing, DPD solution and DPD coefficients are applied to DPD), then, each APD module works in parallel for a period of time, and then DPD starts to work again, so Alternate and repeat.
  • step 606 in this embodiment is similar to step 605 in this embodiment, and details are not repeated here.
  • Figure 6e is the ACPR without APD
  • Figure 6f is the ACPR with APD. Without APD, only one DPD is used to correct the nonlinearity of the two power amplifiers, and the ACPR is only -37dBc. Increased by 4dB+.
  • the signal processing method in the embodiment of this application can be applied to the indoor small base station minimalist head-end system scenario, please refer to the figure:
  • Indoor small base stations are small base station systems installed indoors (such as stadiums, airports, etc.).
  • Traditional indoor small base stations like outdoor macro stations, use a power amplifier corresponding to a DPD mid-radio frequency architecture.
  • the cost and power consumption of traditional indoor small base stations are still high, and operators are generally deployed in areas with concentrated traffic. This deployment scheme will result in insufficient coverage or even no coverage at all in some corners.
  • Huawei has proposed a one-drive multi-small base station system, as shown in FIG. 7 .
  • the head-end RRU has extremely low size, power consumption, and cost, and can be deployed in any area to improve network coverage.
  • AHBF is a beamforming technology for single-stream data in 5G massive MIMO. After the single-stream data is converted to analog by DAC, it is simulated for more than one minute. After phase modulation, each channel is sent to the power amplifier for filtering and transmission. The front group of phase modulators is used to control the phase of the transmitted signal to steer the beam. Therefore, AHBF is also a typical application scenario where a DPD drives multiple power amplifiers.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种信号处理方法,用于避免在同一接收时刻的信号的产生时刻不同而导致的数字预失真失效的问题,提升数字预失真的处理效果。本申请实施例方法包括:获取第一反馈模拟信号和第二反馈模拟信号,当处于第一时间段时,根据第一反馈模拟信号获取目标时刻的第一信号参数,当处于第二时间段时,根据第二反馈模拟信号获取目标时刻的第二信号参数,根据第一信号参数和第二信号参数获取目标数字预失真参数。

Description

一种信号处理方法以及相关设备 技术领域
本申请实施例涉及通信领域,尤其涉及一种信号处理方法以及相关设备。
背景技术
功率放大器(power amplifier,PA)可以应用在基站中,用于放大无线信号,使无线信号得到更高的功率从而具有更远的传播距离和更广的传播范围。但是,由于功率放大器的非线性特性和无线信号的调制方式带来的特性,会造成无线信号经过功率放大器后被非线性放大,即无线信号被功率放大器施加了干扰作用,造成无线信号的信号质量下降,影响通信质量。数字预失真(digital pre-distortion,DPD)元件是一种采用数字电路,对信号施加与功率放大器的非线性放大作用相等的逆作用,用于矫正功率放大器的非线性放大作用,得到线性放大的信号,提高信号质量和通信质量。为了适应功率放大器的变化等因素,一般设置有反馈通道与数字预失真元件配合,及时调整预失真参数,以达到精确的处理效果。
一种应用数字预失真元件对信号进行处理的方法是,将一个基带信号经过数字预失真元件后得到预失真信号,将预失真信号经过功率分配器处理后得到多路信号进入多个功率放大器,通过耦合器得到多个功率放大器对应的反馈信号,将每个接收时刻收到的多个反馈信号经过加法器相加,得到一个目标反馈信号,根据目标反馈信号得到每个时刻的预失真参数,用于使数字预失真元件在每个时刻对基带信号施加每个时刻预失真参数对应的预失真作用。
但是,在实际应用中,每个功率放大器和功率分配器之间的距离会不相同,多路信号进入功率放大器的时刻会不同,这会导致从功率放大器出口处同一接收时刻收到的放大信号并不是同一时刻产生的,若直接将相同接收时刻的反馈信号相加,会导致获得错误的同一时刻的功率放大器对信号的作用,从而得到错误的同一时刻的预失真参数,使数字预失真处理失效。
发明内容
本申请实施例提供了一种信号处理方法以及相关设备,用于避免由于多个功放出口信号与功率分配器距离不同导致的在同一接收时刻的信号的产生时刻不同而导致的数字预失真失效的问题,提升数字预失真的处理效果。
本申请实施例第一方面提供了一种信号处理方法:
当一个数字预失真信号经过若干器件的处理,分为两路信号,一路进入第一功放,另一路进入第二功放,在第一功放和第二功放出口处得到第一功放出口信号和第二功放出口信号,在第一功放和第二功放出口处设置耦合器,得到第一功放出口信号对应的第一反馈模拟信号和第二功放出口信号对应的第二反馈模拟信号。
通过开关矩阵控制第一反馈模拟信号和第二反馈模拟信号进行数字域处理的时域,当处于第一时间段时,使第一反馈模拟信号通过开关矩阵进行数字域处理,第二反馈模拟信号无法通过开关矩阵被阻挡,此时只有第一反馈模拟信号在数字域处理。通过对第一反馈 模拟信号进行数字域处理,可以得到时域离散的目标时刻的第一信号参数。
当处于第二时间段时,使第二反馈模拟信号通过开关矩阵,进行数字域处理,得到第二信号参数,第一反馈模拟信号已经在第一时间段进行了数字域处理,当处于第二时间段时,第一反馈模拟信号已经处理完毕。
将第一信号参数和第二信号参数作为数字预失真训练器的输入,得到同时符合第一功放非线性特性和第二功放非线性特性的目标数字预失真参数。
可以理解的是,通过对多个功放出口信号对应的多个反馈模拟信号进行独立处理,可以得到每个反馈模拟信号对应的某一时刻的信号参数,通过对每个反馈信号的信号参数合成可以得到时域离散的预失真参数,避免了由于多个功放出口信号与功率分配器距离不同导致的在同一接收时刻的信号的产生时刻不同而导致的数字预失真失效的问题,提升了数字预失真的处理效果。
基于第一方面,本申请实施例提供了第一方面第一种实施方式:
当处于第一时间段时,使第一反馈模拟信号通过开关矩阵,到达模数转换器(analogue-to-digital conversion,ADC),其他反馈模拟信号均不得通过开关矩阵。第一反馈模拟信号在到达ADC后,将第一反馈模拟信号转换为第一反馈数字信号。
在第一反馈模拟信号转换为第一反馈数字信号后,在数字补偿器中设置与第一功放对应的第一补偿参数,对第一反馈数字信号的幅度、相位和时延进行补偿,得到第一反馈信号。
使用减法器,将第一补偿信号和基带信号进行相减,得到第一误差信号,第一误差信号表示功率放大器对基带信号造成的非线性作用所产生的误差。
将第一误差信号送入数字预失真训练器,将第一功放对信号造成的非线性作用,转换为与非线性作用程度相同的逆作用,该逆作用即数字预失真,转换为数字预失真的同时需要对数字预失真的参数进行时域离散化,即获取每个时刻对基带信号的数字预失真作用参数,得到的针对第一功放的目标时刻的数字预失真参数称为第一信号参数。
基于第一方面或第一方面第一种实施方式,本申请实施例提供了第一方面的第二种实施方式:
当处于第二时间段时,使第二反馈模拟信号通过开关矩阵,到达模数转换器(analogue-to-digital conversion,ADC),其他反馈模拟信号均不得通过开关矩阵。第二反馈模拟信号在到达ADC后,将第二反馈模拟信号转换为第二反馈数字信号。
在第二反馈模拟信号转换为第二反馈数字信号后,在数字补偿器中设置与第二功放对应的第二补偿参数,对第二反馈数字信号的幅度、相位和时延进行补偿,得到第二反馈信号。
使用减法器,将第二补偿信号和基带信号进行相减,得到第二误差信号,第二误差信号表示功率放大器对基带信号造成的非线性作用所产生的误差。
将第二误差信号送入数字预失真训练器,将第二功放对信号造成的非线性作用,转换为与非线性作用程度相同的逆作用,该逆作用即数字预失真,转换为数字预失真的同时需要对数字预失真的参数进行时域离散化,即获取每个时刻对基带信号的数字预失真作用参 数,得到的针对第二功放的目标时刻的数字预失真参数称为第二信号参数。
基于第一方面至第一方面第二种实施方式,本申请实施例提供了第一方面第三种实施方式:
数字预失真信号通过DAC转换为预失真模拟信号,预失真模拟信号通过功率分配器得到第一功放对应的第一功率分配信号和第二功放对应的第二功率分配信号。
DSA会预先确定第一功放输入信号和第二功放信号的目标功率大小,第一功放输入信号和第二功放输入信号的功率大小相同,根据第一功放对应的第一衰减参数,第一功放对应的第一DSA对第一功率分配信号进行功率衰减,得到目标功率的第一功放输入信号。
第二功放对应的第二DSA根据第二衰减参数对第二功率分配信号进行功率衰减,得到目标功率的第二功放输入信号。
基于第一方面至第一方面第三种实施方式,本申请实施例提供了第一方面第四种实施方式:
在第一功放和第二功放前设置耦合器,得到第一功放对应的第一前馈信号和第二功放对应的第二前馈信号,在第一功放和第二功放前设置功率检测模块,将第一前馈信号输入功率检测模块,得到第一前馈信号的第一信号功率,也是第一功放输入信号的第一信号功率,将第二前馈信号输入功率检测模块得到第二功放输入信号的第二信号功率。
功放的AM-AM曲线是评估功放非线性特性的一种方式,AM-AM曲线的横坐标是功放输入信号的幅度,纵坐标是功放输出信号与输入信号进行时延、幅度、相位补偿后的补偿信号的幅度。第一补偿信号的幅度作为纵坐标,第一信号功率对应的幅度作为横坐标,得到第一幅度-幅度曲线。
第二补偿信号的幅度作为纵坐标,第二信号功率对应的幅度作为横坐标,得到第二幅度-幅度曲线。
根据第一幅度-幅度曲线和第二幅度-幅度曲线的差异,结合调压优化算法获取第一功放栅压参数和第二功放栅压参数,根据第一功放栅压参数获取第一功放出口信号,根据第二功放栅压参数获取第二功放出口信号。
基于第一方面至第一方面第四种实施方式,本申请实施例提供了第一方面第五种实施方式:
根据DPD处理器的输入基带信号和第一补偿信号,计算出第一负载回波,结合自适应搜索算法获得第一TMN控制参数。
根据DPD处理器的输入基带信号和第二补偿信号,计算出第二负载回波,结合自适应搜索算法获得第二TMN控制参数。
根据第一TMN参数调节第一功放对应的第一TMN后,将经过功率衰减的第一功放输入信号作为第一功放与第一TMN组成的整体的输入,得到第一功放出口信号的输出。
根据第二TMN参数调节第二功放对应的第二TMN后,将经过功率衰减的第二功放输入信号作为第二功放与第二TMN组成的整体的输入,得到第二功放出口信号的输出。
基于第一方面至第一方面第五种实施方式,本申请实施例提供了第一方面第六种实施方式:
将使用耦合器获取的第一反馈信号作为APD反馈通道的输入,得到第一APD参数,通过APD处理器处理后得到第一模拟预失真信号;
可以理解的是,通过一个DPD校正多路功放非线性,用来吸收多路功放非线性的共性部分,而每个功放前面的小型APD模块用来吸收不同功放非线性的差异部分,可以进一步提升多个功放非线性特性的一致性。
本申请实施例第二方面提供了一种数字预失真系统,该数字预失真系统具有实现上述第一方面、第二方面和第三方面中数字预失真系统的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能对应的模块。
本申请实施例第三方面提供了一种数字预失真系统,包括处理器、存储器、输入输出设备以及总线;
处理器、存储器、输入输出设备与总线相连;
处理器用于执行上述第一方面中任一项所述的方法。
本申请实施例第四方面提供了一种计算机存储介质,该计算机可读存储介质中保存有程序,当所述计算机执行所述程序时,执行前述第一方面中任一项所述的方法。
本申请实施例第五方面提供了一种计算机程序产品,当该计算机程序产品在计算机上执行时,计算机执行前述第一方面中任一项所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:获取第一反馈模拟信号和第二反馈模拟信号,第一反馈模拟信号是根据数字预失真信号和第一功放获取的信号,第二反馈模拟信号是根据数字预失真信号和第二功放获取的信号,第二功放和第一功放不同,当处于第一时间段时,根据第一反馈模拟信号获取目标时刻的第一信号参数,当处于第二时间段时,根据第二反馈模拟信号获取目标时刻的第二信号参数,根据第一信号参数和第二信号参数获取目标数字预失真参数。通过对多个功放出口信号对应的多个反馈模拟信号进行独立处理,可以得到每个反馈模拟信号对应的某一时刻的信号参数,通过对每个反馈信号的信号参数合成可以得到时域离散的预失真参数,避免了由于多个功放出口信号与功率分配器距离不同导致的在同一接收时刻的信号的产生时刻不同而导致的数字预失真失效的问题,提升了数字预失真的处理效果。
附图说明
图1为本申请实施例中数字预失真的一个系统架构图;
图2为本申请实施例中信号处理方法的一个流程示意图;
图3a为本申请实施例中数字预失真的另一系统架构图;
图3b为本申请实施例中信号处理方法的另一流程示意图;
图4a为本申请实施例中两个AM-AM曲线的一致性效果示意图;
图4b为本申请实施例中两个AM-AM曲线的非一致性效果示意图;
图4c为本申请实施例中AM-AM曲线的拟合示意图;
图4d为本申请实施例中功率放大器栅压设置的流程示意图;
图4e为本申请实施例中优化调压算法的流程示意图;
图4f为本申请实施例中未使用优化调压算法的第一功放ACPR;
图4g为本申请实施例中未使用优化调压算法的第二功放ACPR;
图4h为本申请实施例中已使用优化调压算法的第一功放ACPR;
图4i为本申请实施例中未使用优化调压算法的第二功放ACPR;
图5a为本申请实施例中数字预失真的另一系统架构图;
图5b为本申请实施例中信号处理方法的另一流程示意图;
图5c为TMN参数变化对功放AM曲线的影响示意图;
图6a为本申请实施例中数字预失真的另一系统架构图;
图6b为本申请实施例中模拟预失真的框架示意图;
图6c为本申请实施例中信号处理方法的另一流程示意图;
图6d为本申请实施例中模拟预失真和数字预失真的工作时序示意图;
图6e为本申请实施例中未使用APD处理的第一功放ACPR;
图6f为本申请实施例中已使用APD处理的第一功放ACPR;
图7为本申请实施例中信号处理方法的一个应用场景示意图;
图8为本申请实施例中信号处理方法的另一应用场景示意图。
具体实施方式
本申请实施例提供了一种信号处理方法以及相关设备,用于避免由于多个功放出口信号与功率分配器距离不同导致的在同一接收时刻的信号的产生时刻不同而导致的数字预失真失效的问题,提升数字预失真的处理效果。
本申请实施例中数字预失真的系统架构如图1所示:
基带信号输入DPD处理器,得到数字预失真输入信号,数字预失真输入信号通过数模转换器(digital to analog converter,DAC)得到预失真模拟信号,预失真模拟信号经过功率分配器(power divider,DP)后,分成多路功率分配信号,通过数字步进衰减器(digital step attenuator,DSA)对每路功率分配信号进行功率衰减后,得到功率相同的多路功放输入信号,多路功放输入信号经过多个功率放大器后,得到多路功放出口信号,功放出口信号经过滤波器后通过天线辐射,同时设置在功率放大器出口处的耦合器会根据多路功放出口信号获取多路反馈模拟信号,将多路反馈模拟信号送入反馈通道。
需要说明的是,在本申请实施例中数字预失真的系统架构中,可以包括DSA,由DSA对功率分配信号经过功率衰减后得到功率相同的功放输入信号再向功率放大器输入,也可以不包括DSA,由功率分配信号直接作为功率放大器的输入,具体此处不做限定。
当多路反馈模拟信号送入反馈通道时,通过开关矩阵(switching matrix,SM)控制反馈模拟信号的传输,使多个反馈模拟信号分时通过开关矩阵到达ADC,时间的间隔长度应使一个反馈模拟信号经过ADC、时延、幅度和相位补偿进入DPD训练器后,再使下一个反馈模拟信号通过开关矩阵到达ADC。反馈模拟信号通过ADC后得到反馈数字信号,在数字域对反馈数字信号进行时延、幅度和相位补偿后,进入DPD训练器,得到时域离散的数字预失真参数,DPD处理器根据时域离散的数字预失真参数,在每个时刻对基带信号进行数字预失真处理。
上面介绍了本申请实施中数字预失真的系统架构,下面介绍基于图1所示的数字预失 真的系统框架实现的信号处理方法。
图1所示的数字预失真的系统架构包括图中方框部分所示的预失真处理通道和方框下方所示的反馈通道,为了更清晰的表述本申请实施例中的信号处理方法,下面将对基于图1所示数字预失真的系统架构中的预失真处理框架和反馈通道框架所应用的方法分别进行介绍。
首先对本申请实施例中基于图1所示的数字预失真的系统架构中反馈通道的信号处理方法进行介绍,请参阅图2:
201、获取第一反馈模拟信号和第二反馈模拟信号。
需要说明的是,本申请实施例中的数字预失真的系统架构中有多个功率放大器,为了清晰描述,本实施中仅以包括两个功率放大器为例进行介绍,并且功率放大器简称为功放。
当数字预失真处理后的信号经过若干个其他的器件经过功率放大器放大后,得到功放出口信号,此时通过在功率放大器的出口处,放置耦合器,通过电磁感应耦合原理,即可得到与功放出口信号的特性几乎相同的反馈模拟信号,功放出口信号本身不受耦合器的干扰。
在第一功放出口处放置耦合器得到第一反馈模拟信号,在第二功放出口处放置耦合器得到第二反馈模拟信号。
202、当处于第一时间段时,将第一反馈模拟信号转换为第一反馈数字信号。
当通过耦合器获取反馈信号后,反馈信号即进入了反馈通道,需要继续向前传输。本实施例中通过开关矩阵控制反馈信号在反馈通道中的传输时间。
当处于第一时间段时,使第一反馈模拟信号通过开关矩阵,到达模数转换器(analogue-to-digital conversion,ADC),其他反馈模拟信号均不得通过开关矩阵。第一反馈模拟信号在到达ADC后,将第一反馈模拟信号转换为第一反馈数字信号。
203、根据第一补偿参数对第一反馈数字信号进行补偿,得到第一补偿信号。
在通过ADC将反馈模拟信号转换为反馈数字信号后,需要使用数字补偿器对反馈数字信号的幅度、相位和时延进行补偿,补偿的目的是消除基带信号输入后进行的幅度和相位的变换和传输过程中产生的时延,保留功率放大器对信号的非线性作用。
当处于第一时间段时,在第一反馈模拟信号转换为第一反馈数字信号后,在数字补偿器中设置与第一功放对应的第一补偿参数,对第一反馈数字信号的幅度、相位和时延进行补偿,得到第一反馈信号。
204、根据第一补偿信号和基带信号获取第一误差信号。
使用减法器,将第一补偿信号和基带信号进行相减,得到第一误差信号,第一误差信号表示功率放大器对基带信号造成的非线性作用所产生的误差。
205、根据第一误差信号获取目标时刻的第一信号参数。
将第一误差信号送入数字预失真训练器,将第一功放对信号造成的非线性作用,转换为与非线性作用程度相同的逆作用,该逆作用即数字预失真,转换为数字预失真的同时需要对数字预失真的参数进行时域离散化,即获取每个时刻对基带信号的数字预失真作用参数,得到的针对第一功放的目标时刻的数字预失真参数称为第一信号参数。
206、当处于第二时间段时,将第二反馈模拟信号转换为第二反馈数字信号。
207、根据第二补偿参数对第二反馈数字信号进行补偿,得到第二补偿信号。
208、根据第二补偿信号和基带信号获取第二误差信号。
209、根据第二误差信号获取目标时刻的第二信号参数。
需要说明的是,本实施例中步骤206至209与202至205类似,具体此处不再赘述。
210、根据第一信号参数和第二信号参数获取目标数字预失真参数。
在本申请实施例中,是一个数字预失真处理器针对两个功放,所以仅根据针对第一功放的第一信号参数和针对第二功放的第二信号参数还无法在同一个数字预失真处理器中进行处理,需要在数字预失真训练器中根据第一信号参数和第二信号参数进行训练,得到能够对第一功放和第二功放同时起到较好数字预失真效果的目标数字预失真参数,目标数字预失真参数是时域离散化的,包括了每个时刻对基带信号的数字预失真处理参数。
以上描述了基于图1所示的数字预失真的系统架构中反馈通道框架的信号处理方法,下面对本申请实施例中基于图1所示的数字预失真的系统架构中数字预失真处理通道框架的信号处理方法进行介绍。
本申请实施例中,在数字预失真的系统架构中的数字预失真通道框架中进行信号处理的目的是提升多个功放出口信号的一致性,可以有多种方式提升多个功放出口信号的一致性,下面分别进行说明:
一、对第一功放和第二功放的栅压进行控制,使第一功放和第二功放的非线性特性一致。
本实施例中,基于图1所示的数字预失真的系统架构的数字预失真通道框架,在功放前设置功率检测模块,在前馈通道中设置自适应AM-AM优化调压算法模块,得到如图3a所示的数字预失真的系统架构,请参阅图3a:
功率检测模块位于DSA和功放之间,同时在每个功放前设置一个耦合器,用于获取功放输入信号的前馈信号,功率检测模块接收前馈信号,并检测前馈信号的瞬时功率大小,前馈信号的瞬时功率大小和功放输入信号的瞬时功率大小相等。功率检测模块通过低速通信接口将前馈信号的瞬时功率检测结果发送给前馈通道中的自适应AM-AM优化调压算法模块,自适应AM-AM优化调压算法模块通过算法生成对每个功放栅压的控制指令,调节每个功放的栅压。
需要说明的是,低速通信接口可以选择串行外围设备接口(serial peripheral interface,SPI)也可以选择其他低速通信接口,具体此处不做限定。
基于图3a所示的数字预失真的系统架构,下面介绍本实施例中的信号处理方法,请参阅图3b:
301、根据目标数字预失真参数对基带信号进行数字预失真,得到数字预失真信号。
在如图2所示的实施例中,在反馈通道中获取目标数字预失真参数后,由数字预失真处理器根据目标数字预失真参数对数字预失真处理器接收的基带信号进行数字预失真处理,得到数字预失真信号。
302、根据数字预失真信号获取第一功率分配信号和第二功率分配信号。
数字预失真信号通过DAC转换为预失真模拟信号,预失真模拟信号通过功率分配器得到第一功放对应的第一功率分配信号和第二功放对应的第二功率分配信号。
303、根据第一衰减参数对第一功率分配信号进行功率衰减,得到第一功放输入信号。
DSA会预先确定第一功放输入信号和第二功放信号的目标功率大小,第一功放输入信号和第二功放输入信号的功率大小相同,根据第一功放对应的第一衰减参数,第一功放对应的第一DSA对第一功率分配信号进行功率衰减,得到目标功率的第一功放输入信号。
304、根据第二衰减参数对第二功率分配信号进行功率衰减,得到第二功放输入信号。
第二功放对应的第二DSA根据第二衰减参数对第二功率分配信号进行功率衰减,得到目标功率的第二功放输入信号。
305、获取第一信号功率和第二信号功率。
在第一功放和第二功放前设置耦合器,得到第一功放对应的第一前馈信号和第二功放对应的第二前馈信号,在第一功放和第二功放前设置功率检测模块,将第一前馈信号输入功率检测模块,得到第一前馈信号的第一信号功率,也是第一功放输入信号的第一信号功率,将第二前馈信号输入功率检测模块得到第二功放输入信号的第二信号功率。
306、根据第一补偿信号和第一信号功率获取第一幅度-幅度曲线。
功放的AM-AM曲线是评估功放非线性特性的一种方式,AM-AM曲线的横坐标是功放输入信号的幅度,图4a中用x表示,纵坐标是功放输出信号与输入信号进行时延、幅度、相位补偿后的补偿信号的幅度,图4a中用y表示。AM-AM曲线的一个示例如图4a所示。注意,图4a中包含两个功放的AM-AM曲线,这两条曲线很好地重合在一起,说明这两个功放的非线性特性非常一致,可以用一个DPD处理器同时校正这两个功放的非线性来获得较好的预失真性能。
与图4a相对比的,是图4b所示的AM-AM曲线。图4b中也包含两个功放的AM-AM曲线,这两条曲线在末端分叉很严重,说明这两个功放的非线性特性相差比较大,如果用一个DPD处理器同时校正这两个功放,性能将急剧恶化。
将第一补偿信号的幅度作为纵坐标y,将第一前馈信号的第一信号功率所对应的幅度作为横坐标x,得到第一AM-AM曲线。
307、根据第二补偿信号和第二信号功率获取第二幅度-幅度曲线。
将第二补偿信号的幅度作为纵坐标y,将第二前馈信号的第二信号功率所对应的幅度作为横坐标x,得到第二AM-AM曲线。
308、根据第一幅度-幅度曲线和第二幅度-幅度曲线获取第一功放栅压参数和第二功放栅压参数,第一功放栅压参数用于获取第一功放出口信号,第二功放栅压参数用于获取第二功放出口信号。
AM-AM曲线的形状与功放的栅压有直接关系,调整功放的栅压即可调整AM-AM曲线的形状,可以把两个功放的AM-AM曲线对齐,从而提高两个功放非线性的一致性,这就是自适应AM-AM优化调压算法的基本原理和目的。
自适应AM-AM优化调压算法的目标函数为:
Figure PCTCN2021093884-appb-000001
其中v c和v p分别为目标iDHT功放的main管栅压和peak管栅压,P ref,k为参考功放AM-AM曲线拟合函数的第k个函数值,P tar,k为目标功放AM-AM曲线拟合函数的第k个函数值,K为拟合函数的横坐标离散点数。参考功放可以任意选择,其他目标功放的AM-AM曲线经过优化后将与参考功放的AM-AM曲线趋向一致。之所以要拟合AM-AM曲线,是因为AM-AM曲线由离散点构成,x和y不是一一映射关系,一个x可能对应多个y,曲线具有一定的宽度,直接利用这些离散点不容易评价两条AM-AM曲线的差异,对AM-AM曲线拟合后获得x和y一一映射的函数关系,评价AM-AM曲线差异的时候可以用拟合后的函数直接作差。拟合方法可以选用高阶多项式拟合,因为多项式拟合校简单高效,考虑到AM-AM曲线可能会比较弯曲,对所有大小的信号采用一个多项式去拟合,可能拟合效果不好,因此可以采用分段高阶多项式拟合。
请参阅图4c,图4c为AM-AM曲线分段拟合的示意图,在DPD输入信号x的最小/最大幅度之间等分成4段,每段都进行高阶多项式拟合,拟合阶数可选择3阶。
对于4个分段,循环搜索v c和v p,每次仅搜索其中一个栅压,如下图所示。在seg 4分段内,只搜索v c,在seg 3分段内,只搜索v p,在seg 2分段内,又搜索v c,在seg 1分段内,又搜索v p;待进入下一个循环时,先在seg1分段内搜索v c,然后依次交替搜索v p和v c。这样,每相邻两个循环内,同一个分段既搜索了v c,又搜索了v p,在多次循环后,整条AM-AM曲线就会渐进地逼近参考功放的AM-AM曲线。
请参阅图4d,图4d为搜索流程示意图,在具体搜索v c和v p的时候,有两个问题需要重点关注:搜索方向和收敛条件。
对于任意功放,在每个分段内,我们不知道栅压与AM-AM的关系,即栅压变化时AM-AM曲线的变化可能是任意的,因此对于每个分段,优化算法的搜索方向都是不确定的。此时,我们通过“尝试”的方法来确定搜索方向。
以搜索v c为例,先任意确定一个方向,比如正方向,则v c更新为
Figure PCTCN2021093884-appb-000002
其中dv c为v c的搜索步长。给目标功放配置新的
Figure PCTCN2021093884-appb-000003
后,重新采集x和y,并计算拟合函数
Figure PCTCN2021093884-appb-000004
此时计算
Figure PCTCN2021093884-appb-000005
如果
Figure PCTCN2021093884-appb-000006
则说明本次确定的正方向不是使目标函数变小的方向,就更改搜索方向为负方向,即
Figure PCTCN2021093884-appb-000007
对于不同的分段,调节不同的栅压(v c或v p),AM-AM曲线的变化快慢是不同的,如果以某个绝对门限作为收敛条件,则对于不同分段或者不同栅压搜索效率和精度会下降。为了解决这个问题,我们采用两种收敛条件。
第一种:在每个分段内,搜索某个栅压时,当P tar,k(v c,v p)-P ref,k的符号发生变化时即停止本分段的搜索,进入下一分段搜索。
第二种:给一个绝对门限th,如果在一个循环内4个分段AM-AM最大差异都小于th, 即
Figure PCTCN2021093884-appb-000008
则所有搜索终止,输出最终的v c和v p
自适应AM-AM优化调压算法的基本流程总结如下图所示。其中,n_segment为分段数,volt_type用于标记搜索v c还是v p,volt_type=0表示搜索v c,volt_type=1表示搜索v p
请参阅图4e,图4e为优化调压算法流程图。
图4a至图4e所示实施例在实际应用中可以提升功放出口信号的一致性,进一步提高两个功放出口的信号质量,其中一组实验数据请参阅图4f至图4i:图4f至图4g是未采用优化调压算法之前两个功放的邻道功率比(adjacent channel power ratio,ACPR),图4h和图4i是采用了本实施例中优化调压后的两个功放的ACPR,优化前两个功放的ACPR只有-42dB,优化后两个功放都达到了-45dB+,性能提升3dB+。
二、对第一功放和第二功放的负载阻抗进行控制,使第一功放和第二功放的射频性能一致。
本实施例中,基于图1所示的数字预失真的系统架构的数字预失真通道框架,在多个功放中每个功放后放置匹配可调网络(tunable matching network,TMN)模块,得到如图5a所示的数字预失真的系统架构,请参阅图5a:
每个TMN模块和功放共同构成对功放输入信号的处理,TMN模块是由可变电容和负载电路组成,实现对功放负载的控制。TMN控制参数是根据DPD处理器的输入基带信号和补偿信号计算出负载回波,结合自适应搜索算法(可预设LUT表)获得TMN控制参数。
基于图5a所示的数字预失真的系统架构,下面介绍本申请实施例中的信号处理方法,请参阅图5b:
501、根据目标数字预失真参数对基带信号进行数字预失真,得到数字预失真信号。
502、根据数字预失真信号获取第一功率分配信号和第二功率分配信号。
503、根据第一衰减参数对第一功率分配信号进行功率衰减,得到第一功放输入信号。
504、根据第二衰减参数对第二功率分配信号进行功率衰减,得到第二功放输入信号。
需要说明的是,本实施例中步骤501至504与图3b所示实施例中步骤301至304类似,具体此处不再赘述。
505、根据基带信号和第一补偿信号获取第一TMN控制参数。
根据DPD处理器的输入基带信号和第一补偿信号,计算出第一负载回波,结合自适应搜索算法(可预设LUT表)获得第一TMN控制参数。
TMN功能实现主要依靠电路中的可变电容,具体形式不限:diode varactor(Si基/SiC基/GaAs等)、MEMS varactor、BST varactor、SCPA等,并配套相应控制电路。
另外,TMN电路拓扑也可以根据实际应用场景灵活选择:Pi型、T型;电路阶数与阻抗调谐范围、插入损耗、系统复杂度等强相关。
506、根据基带信号和第二补偿信号获取第二TMN控制参数。
需要说明的是,本实施例中步骤506和步骤505类似,具体此处不再赘述。
507、根据第一TMN参数和第一功放输入信号获取第一功放出口信号。
根据第一TMN参数调节第一功放对应的第一TMN后,将经过功率衰减的第一功放输入信号作为第一功放与第一TMN组成的整体的输入,得到第一功放出口信号的输出。
508、根据第二TMN参数和第二功放输入信号获取第二功放出口信号。
需要说明的是,本实施例中步骤508和步骤507类似,具体此处不再赘述。
图5a至图5b所示实施例可以提升功放出口信号的一致性并进一步提升功放出口信号的质量,请参阅图5c:
图5c对比了微调CLC Pi型TMN电路参数,功放gain vs Pout(AM)曲线的差异:Cp1对中高功率区域AM曲线的gain扩展/压缩有较大影响,根据反馈信息调整,一驱四DPD实测线性改善~2dB。
三、对每个功放的输入信号进行模拟预失真,消除每个功放的非线性特性差异。
本实施例中,基于图1所示的数字预失真的系统架构的数字预失真通道框架,在多个功放中每个功放前放置一个模拟预失真(analog pre-distortion,APD)模块,得到如图6a所示的数字预失真的系统架构。
请参阅图6a,功率分配信号通过DSA后,在APD模块中进行模拟预失真,得到多个模拟预失真信号,将多个模拟预失真信号作为功率放大器的输入。APD模块也有对应的反馈通道,从功率放大器的耦合器得到模拟预失真的反馈信号。
请参阅图6b,本实施例中APD模块的架构如图6b所示,PA出口经过耦合器获得反馈信号,反馈信号经过静态功率控制(Variable Gain Amplifier,VGA)模块调整功率后与APD的输入信号相减获得射频误差信号,包络功率检测模块检测射频误差信号的包络功率获得误差功率,误差功率经过ADC转换成数字误差功率后送给APD Trainer,APD Trainer是一个数字模块,用于训练APD的参数,APD Trainer的目标是训练APD参数使得误差功率最小。训练好的APD参数送给APD Core并应用到APD模型中,APD Core的输入基带信号经过APD模型处理的输出信号送给功放。
基于图6a和图6b所示的数字预失真的系统架构,下面介绍本实施例中的信号处理方法,请参阅图6c:
601、根据目标数字预失真参数对基带信号进行数字预失真,得到数字预失真信号。
602、根据数字预失真信号获取第一功率分配信号和第二功率分配信号。
603、根据第一衰减参数对第一功率分配信号进行功率衰减,得到第一功放输入信号。
604、根据第二衰减参数对第二功率分配信号进行功率衰减,得到第二功放输入信号。
需要说明的是,本实施例中步骤601至604与图3b所示实施例中步骤301至304类似,具体此处不再赘述。
605、根据第一反馈信号对第一功放输入信号进行模拟预失真,得到第一模拟预失真信号。
基于图6b所示的APD架构,将使用耦合器获取的第一反馈信号作为APD反馈通道的输入,得到APD参数,一个DPD校正多路功放非线性,用来吸收多路功放非线性的共性部分,而每个功放前面的小型APD模块用来吸收不同功放非线性的差异部分。
为了不冲突,DPD和APD需要异步协同工作,DPD和APD工作时序如图6d所示:
首先,DPD完成一轮或者多轮迭代(每轮迭代完成所有功放反馈信号处理、DPD解算和 DPD系数应用到DPD),然后,各个APD模块再并行工作一段时间,之后DPD又开始工作,如此交替反复。
606、根据第二反馈信号对第二功放输入信号进行模拟预失真,得到第一模拟预失真信号。
需要说明的是,本实施例中步骤606与本实施例中步骤605类似,具体此处不再赘述。
图6a至图6d所示实施例可以提高多个功放信号的一致性,并进一步提升信号质量,实验数据请参阅图6e和图6f:
图6e为不使用APD的ACPR,图6f为使用APD的ACPR,无APD时,仅靠一个DPD校正两个功放的非线性,ACPR只有-37dBc,而增加APD时,ACPR性能达到-41dBc,性能提升4dB+。
结合上述介绍,下面对本申请实施例中信号处理方法的一个应用场景进行介绍:
本申请实施例中信号处理方法可以应用于室内小基站极简头端系统场景,请参阅图:
室内小基站是安装在室内(如体育馆、机场等)的尺寸较小的基站系统。传统室内小基站和室外宏站一样,都采用的一个功放对应一个DPD的中射频架构,但传统室内小基站成本、功耗仍然较高,运营商一般布置在人流较集中的区域。这种部署方案会造成某些角落覆盖能力不足甚至根本无法覆盖。为了解决这个问题,华为公司已经提出了一种一驱多小基站系统,如图7所示。在这个系统中,头端RRU的尺寸、功耗和成本都极低,可以部署到任意区域,以提高网络覆盖能力。
结合上述介绍,下面对本申请实施例中信号处理方法的另一应用场景进行介绍:
本申请实施例中信号处理方法还可以应用在模拟混合波束赋型场景,请参阅图8:
AHBF是在5G massive MIMO中对单流数据进行波束赋型的一种技术,单流数据在DAC变换到模拟后进行模拟一分多,每一路经过调相后送给功放并进行滤波发射,功放前的一组调相器用于控制发射信号的相位从而对波束进行控制。因此AHBF同样也是一个DPD驱动多个功放的典型应用场景。
需要说明的是,以上两个应用场景仅仅是举例说明,本申请实施例中信号处理方法可以应用在任何一个DPD处理器对应多个功率放大器的场景下。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (16)

  1. 一种信号处理方法,其特征在于,包括:
    获取第一反馈模拟信号和第二反馈模拟信号,所述第一反馈模拟信号是根据数字预失真信号和第一功放获取的信号,所述第二反馈模拟信号是根据所述数字预失真信号和第二功放获取的信号,所述第二功放和所述第一功放不同;
    当处于第一时间段时,根据所述第一反馈模拟信号获取目标时刻的第一信号参数;
    当处于第二时间段时,根据所述第二反馈模拟信号获取所述目标时刻的第二信号参数;
    根据所述第一信号参数和所述第二信号参数获取目标数字预失真参数。
  2. 根据权利要求1所述的信号处理方法,其特征在于,所述根据所述第一反馈模拟信号获取目标时刻的第一信号参数,包括:
    将所述第一反馈模拟信号转换为第一反馈数字信号;
    根据第一补偿参数对所述第一反馈数字信号进行补偿,得到第一补偿信号,所述第一补偿参数和所述第一反馈数字信号对应;
    根据所述第一补偿信号和基带信号获取第一误差信号,所述基带信号是所述数字预失真信号的输入信号;
    根据所述第一误差信号获取所述目标时刻的所述第一信号参数。
  3. 根据权利要求1或2所述的信号处理方法,其特征在于,所述根据所述第二反馈模拟信号获取所述目标时刻的第二信号参数,包括:
    将所述第二反馈模拟信号转换为第二反馈数字信号;
    根据第二补偿参数对所述第二反馈数字信号进行补偿,得到第二补偿信号,所述第二补偿参数和所述第二反馈数字信号对应;
    根据所述第二补偿信号和基带信号获取第二误差信号,所述基带信号是所述数字预失真信号的输入信号;
    根据所述第二误差信号获取所述目标时刻的所述第二信号参数。
  4. 根据权利要求3所述的信号处理方法,其特征在于,所述方法还包括:
    根据所述数字预失真信号获取第一功率分配信号和第二功率分配信号,所述第一功率分配信号和所述第一功放对应,所述第二功率分配信号和所述第二功放对应;
    根据第一衰减参数对所述第一功率分配信号进行功率衰减,得到第一功放输入信号;
    根据第二衰减参数对所述第二功率分配信号进行所述功率衰减,得到第二功放输入信号,所述第一功放输入信号和所述第二功放输入信号的功率相同。
  5. 根据权利要求4所述的信号处理方法,其特征在于,所述方法还包括:
    获取第一信号功率和第二信号功率,所述第一信号功率对应所述第一功放输入信号,所述第二信号功率对应所述第二功放输入信号;
    根据所述第一补偿信号和所述第一信号功率获取第一幅度-幅度-幅度曲线;
    根据所述第二补偿信号和所述第二信号功率获取第二幅度-幅度曲线;
    根据所述第一幅度-幅度曲线和所述第二幅度-幅度曲线获取第一功放栅压参数和第二功放栅压参数,所述第一功放栅压参数用于获取所述第一功放出口信号,所述第二功放栅 压参数用于获取所述第二功放出口信号。
  6. 根据权利要求4所述的信号处理方法,其特征在于,所述方法还包括:
    根据所述基带信号和所述第一补偿信号获取第一匹配可调网络TMN控制参数,所述第一TMN控制信号用于获取所述第一功放出口信号;
    根据所述基带信号和所述第二补偿信号获取第二TMN控制参数,所述第二TMN用于获取所述第二功放出口信号。
  7. 根据权利要求4所述的信号处理方法,其特征在于,所述方法还包括:
    根据所述第一反馈模拟信号对所述第一功放输入信号进行第一模拟预失真,得到第一模拟预失真信号,所述第一模拟预失真信号用于获取所述第一功放出口信号;
    根据所述第二反馈模拟信号对所述第二功放输入信号进行第二模拟预失真,得到第二模拟预失真信号,所述第二模拟预失真信号用于获取所述第二功放出口信号。
  8. 一种数字预失真系统,其特征在于,包括:
    获取单元,用于获取第一反馈模拟信号和第二反馈模拟信号,所述第一反馈模拟信号是根据数字预失真信号和第一功放获取的信号,所述第二反馈模拟信号是根据所述数字预失真信号和第二功放获取的信号,所述第二功放和所述第一功放不同;
    所述获取单元,还用于当处于第一时间段时,根据所述第一反馈模拟信号获取目标时刻的第一信号参数;
    所述获取单元,还用于当处于第二时间段时,根据所述第二反馈模拟信号获取所述目标时刻的第二信号参数;
    所述获取单元,还用于根据所述第一信号参数和所述第二信号参数获取目标数字预失真参数。
  9. 根据权利要求8所述的数字预失真系统,其特征在于,包括:
    转换单元,用于将所述第一反馈模拟信号转换为第一反馈数字信号;
    补偿单元,用于根据第一补偿参数对所述第一反馈数字信号进行补偿,得到第一补偿信号,所述第一补偿参数和所述第一反馈数字信号对应;
    所述获取单元,还用于根据所述第一补偿信号和基带信号获取第一误差信号,所述基带信号是所述数字预失真信号的输入信号;
    所述获取单元,还用于根据所述第一误差信号获取所述目标时刻的所述第一信号参数。
  10. 根据权利要求8或9所述的数字预失真系统,其特征在于,包括:
    所述转换单元,还用于将所述第二反馈模拟信号转换为第二反馈数字信号;
    所述补偿单元,还用于根据第二补偿参数对所述第二反馈数字信号进行补偿,得到第二补偿信号,所述第二补偿参数和所述第二反馈数字信号对应;
    所述获取单元,还用于根据所述第二补偿信号和基带信号获取第二误差信号,所述基带信号是所述数字预失真信号的输入信号;
    所述获取单元,还用于根据所述第二误差信号获取所述目标时刻的所述第二信号参数。
  11. 根据权利要求10所述的数字预失真系统,其特征在于,包括:
    所述获取单元,还用于根据所述数字预失真信号获取第一功率分配信号和第二功率分 配信号,所述第一功率分配信号和所述第一功放对应,所述第二功率分配信号和所述第二功放对应;
    功率衰减单元,用于根据第一衰减参数对所述第一功率分配信号进行功率衰减,得到第一功放输入信号;
    所述功率衰减单元,还用于根据第二衰减参数对所述第二功率分配信号进行所述功率衰减,得到第二功放输入信号,所述第一功放输入信号和所述第二功放输入信号的功率相同。
  12. 根据权利要求11所述的数字预失真系统,其特征在于,包括:
    所述获取单元,还用于获取第一信号功率和第二信号功率,所述第一信号功率对应所述第一功放输入信号,所述第二信号功率对应所述第二功放输入信号;
    所述获取单元,还用于根据所述第一补偿信号和所述第一信号功率获取第一幅度-幅度曲线;
    所述获取单元,还用于根据所述第二补偿信号和所述第二信号功率获取第二幅度-幅度曲线;
    所述获取单元,还用于根据所述第一幅度-幅度曲线和所述第二幅度-幅度曲线获取第一功放栅压参数和第二功放栅压参数,所述第一功放栅压参数用于获取所述第一功放出口信号,所述第二功放栅压参数用于获取所述第二功放出口信号。
  13. 根据权利要求12所述的数字预失真系统,其特征在于,包括:
    所述获取单元,还用于根据所述基带信号和所述第一补偿信号获取第一匹配可调网络TMN控制参数,所述第一TMN控制信号用于获取所述第一功放出口信号;
    所述获取单元,还用于根据所述基带信号和所述第二补偿信号获取第二TMN控制参数,所述第二TMN用于获取所述第二功放出口信号。
  14. 根据权利要求13所述的数字预失真系统,其特征在于,包括:
    模拟预失真单元,用于根据所述第一反馈模拟信号对所述第一功放输入信号进行第一模拟预失真,得到第一模拟预失真信号,所述第一模拟预失真信号用于获取所述第一功放出口信号;
    所述模拟预失真单元,还用于根据所述第二反馈模拟信号对所述第二功放输入信号进行第二模拟预失真,得到第二模拟预失真信号,所述第二模拟预失真信号用于获取所述第二功放出口信号。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中保存有程序,当所述计算机执行所述程序时,执行如权利要求1至7中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上执行时,所述计算机执行如权利要求1至7中任一项所述的方法。
PCT/CN2021/093884 2021-05-14 2021-05-14 一种信号处理方法以及相关设备 WO2022236821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093884 WO2022236821A1 (zh) 2021-05-14 2021-05-14 一种信号处理方法以及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093884 WO2022236821A1 (zh) 2021-05-14 2021-05-14 一种信号处理方法以及相关设备

Publications (1)

Publication Number Publication Date
WO2022236821A1 true WO2022236821A1 (zh) 2022-11-17

Family

ID=84028732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093884 WO2022236821A1 (zh) 2021-05-14 2021-05-14 一种信号处理方法以及相关设备

Country Status (1)

Country Link
WO (1) WO2022236821A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055411A (zh) * 2010-12-22 2011-05-11 成都凯腾四方数字广播电视设备有限公司 基于多通道反馈的功率放大器线性化校正电路及方法
WO2014088367A1 (en) * 2012-12-06 2014-06-12 Samsung Electronics Co., Ltd. High frequency amplifier and method of compensating for distortion
US8982995B1 (en) * 2013-11-05 2015-03-17 Microelectronics Technology Inc. Communication device and method of multipath compensation for digital predistortion linearization
CN111865228A (zh) * 2019-04-30 2020-10-30 中兴通讯股份有限公司 一种信号失真预校正方法及装置、系统及复合系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055411A (zh) * 2010-12-22 2011-05-11 成都凯腾四方数字广播电视设备有限公司 基于多通道反馈的功率放大器线性化校正电路及方法
WO2014088367A1 (en) * 2012-12-06 2014-06-12 Samsung Electronics Co., Ltd. High frequency amplifier and method of compensating for distortion
US8982995B1 (en) * 2013-11-05 2015-03-17 Microelectronics Technology Inc. Communication device and method of multipath compensation for digital predistortion linearization
CN111865228A (zh) * 2019-04-30 2020-10-30 中兴通讯股份有限公司 一种信号失真预校正方法及装置、系统及复合系统

Similar Documents

Publication Publication Date Title
EP3032737B1 (en) Envelope tracking path delay fine tuning and calibration
JP5275973B2 (ja) 複合増幅器の信号歪みを補償するための方法
US20140199949A1 (en) Method for improving tx gain in envelope tracking systems
CN104363191B (zh) 一种跳频通信系统的数字预失真方法
CN107359864B (zh) 频率捷变功率放大器的自适应捷变数字预失真方法
CN111434056A (zh) 用于发射器阵列的线性化的方法、装置和布置
JP7281558B2 (ja) 信号歪み事前補正方法、装置、システム及び複合システム
KR101679230B1 (ko) 전력증폭기의 비선형 특성을 보상하는 다항식 디지털 전치왜곡 장치 및 그 방법
WO2006059372A1 (ja) 信号取出回路およびそれを有する歪み補償増幅器
CN102143108A (zh) 一种改进的自适应预失真技术
CN101114811A (zh) 基于模拟预失真的线性功率放大电路及方法
CN102545796B (zh) 一种行波管线性化器
JP2020136772A (ja) 電力増幅回路及びアンテナ装置
CN101741787A (zh) 一种预失真快速收敛的训练数据采集方法及系统
Tripathi et al. Swish activation based deep neural network predistorter for RF-PA
CN101807886B (zh) 一种射频功率放大装置及其模拟预失真校正方法
CN114189413A (zh) 一种基于fpga的多载波宽带数字预失真装置
EP2752995B1 (en) Modeling transmitter and/or transmit observation receiver frequency response and utilization thereof
WO2022236821A1 (zh) 一种信号处理方法以及相关设备
CN102983820A (zh) 一种非线性注入式线性化系统及数字预失真方法
CN105720931A (zh) 一种自适应前馈预失真系统及方法
CN202435344U (zh) 一种行波管线性化器
JP2020088528A (ja) 歪補償回路、送信装置および歪補償方法
CN115102509A (zh) 数字预失真方法和数字预失真系统
CN113659938B (zh) 一种模拟预失真器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941390

Country of ref document: EP

Kind code of ref document: A1