WO2022235115A1 - Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치 - Google Patents

Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치 Download PDF

Info

Publication number
WO2022235115A1
WO2022235115A1 PCT/KR2022/006493 KR2022006493W WO2022235115A1 WO 2022235115 A1 WO2022235115 A1 WO 2022235115A1 KR 2022006493 W KR2022006493 W KR 2022006493W WO 2022235115 A1 WO2022235115 A1 WO 2022235115A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
timer
harq
information related
drx
Prior art date
Application number
PCT/KR2022/006493
Other languages
English (en)
French (fr)
Inventor
박기원
서한별
이승민
백서영
홍종우
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2023568355A priority Critical patent/JP2024516861A/ja
Priority to KR1020237037619A priority patent/KR20240004422A/ko
Priority to CN202280038943.6A priority patent/CN117480847A/zh
Priority to EP22799158.5A priority patent/EP4322678A1/en
Publication of WO2022235115A1 publication Critical patent/WO2022235115A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a wireless communication system.
  • a sidelink refers to a communication method in which a direct link is established between user equipment (UE), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • SL is being considered as one way to solve the burden of the base station due to the rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • next-generation radio access technology in consideration of the above may be referred to as a new radio access technology (RAT) or a new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • a UE performing SL communication based on resource allocation mode 1 may receive an SL grant from a base station and may perform SL transmission based on the SL grant.
  • the UE when the Uu DRX configuration and/or the SL DRX configuration is configured for the UE, the UE must operate as an active time to receive the SL grant and/or the reception of the SL grant This unexpected time interval needs to be clearly defined.
  • a method for a first device to perform wireless communication includes: obtaining a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer; Based on a physical downlink control channel (PDCCH) resource, receiving downlink control information (DCI) including information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource from the base station ; and based on that the PUCCH resource is not configured for the first device, starting the HARQ RTT timer after the time domain of the PDCCH resource; including, wherein the HARQ RTT timer is set by the first device It may be the minimum duration before the retransmission grant is expected.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • a first device for performing wireless communication may include one or more memories storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to obtain a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer;
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • an apparatus configured to control a first terminal.
  • the device may include one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to obtain a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer;
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • FIG. 1 shows a structure of an NR system according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • FIG. 3 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • FIG. 4 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG 5 shows an example of a BWP according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • FIG 7 illustrates three types of casts according to an embodiment of the present disclosure.
  • FIG. 8 illustrates a procedure for a UE to start a Uu DRX timer based on an SL grant, according to an embodiment of the present disclosure.
  • FIG. 9 illustrates a method for a UE to initiate a MODE 1 DCI monitoring-related Uu DRX timer based on a MODE 1 SL grant-related resource when a PUCCH resource is not configured according to an embodiment of the present disclosure.
  • FIG. 10 shows a case in which the UE starts the HARQ RTT timer based on the SL resource rather than the PDCCH resource.
  • 11 is a diagram for explaining a problem in that, when the transmission pools between UEs performing sidelink transmission and reception are different, the RX UE cannot correctly derive the next transmission resource information included in the SCI transmitted by the TX UE.
  • FIG. 12 illustrates a method for a first device to perform wireless communication, according to an embodiment of the present disclosure.
  • FIG. 13 illustrates a method for a base station to perform wireless communication according to an embodiment of the present disclosure.
  • FIG. 14 shows a communication system 1 according to an embodiment of the present disclosure.
  • FIG. 15 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 16 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • FIG 17 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 18 illustrates a portable device according to an embodiment of the present disclosure.
  • FIG 19 illustrates a vehicle or an autonomous driving vehicle according to an embodiment of the present disclosure.
  • a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
  • a or B (A or B)” herein may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A,” “only B,” or “both A and B.”
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “A and B (at least one of A and B)”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • a higher layer parameter may be a parameter set for the terminal, preset, or a predefined parameter.
  • the base station or the network may transmit higher layer parameters to the terminal.
  • the higher layer parameter may be transmitted through radio resource control (RRC) signaling or medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in the downlink and SC in the uplink.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • E-UMTS evolved UMTS
  • E-UTRA evolved-UMTS terrestrial radio access
  • OFDMA OFDMA
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a successor technology of LTE-A, and is a new clean-slate type mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz to intermediate frequency bands from 1 GHz to 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • FIG. 1 shows a structure of an NR system according to an embodiment of the present disclosure.
  • the embodiment of FIG. 1 may be combined with various embodiments of the present disclosure.
  • a Next Generation-Radio Access Network may include a base station 20 that provides user plane and control plane protocol termination to a terminal 10 .
  • the base station 20 may include a next generation-Node B (gNB) and/or an evolved-NodeB (eNB).
  • the terminal 10 may be fixed or mobile, and other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device can be called
  • the base station may be a fixed station communicating with the terminal 10 , and may be referred to as a base transceiver system (BTS), an access point, or other terms.
  • BTS base transceiver system
  • the embodiment of FIG. 1 exemplifies a case including only gNB.
  • the base stations 20 may be connected to each other through an Xn interface.
  • the base station 20 may be connected to a 5G core network (5G Core Network: 5GC) through an NG interface. More specifically, the base station 20 may be connected to an access and mobility management function (AMF) 30 through an NG-C interface, and may be connected to a user plane function (UPF) 30 through an NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model widely known in communication systems. layer), L2 (layer 2, second layer), and L3 (layer 3, third layer).
  • OSI Open System Interconnection
  • L2 layer 2, second layer
  • L3 layer 3, third layer
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer is a radio resource between the terminal and the network. plays a role in controlling To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 2 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • the embodiment of FIG. 2 may be combined with various embodiments of the present disclosure.
  • (a) of FIG. 2 shows a radio protocol stack of a user plane for Uu communication
  • (b) of FIG. 2 is a radio protocol of a control plane for Uu communication.
  • FIG. 2C shows a radio protocol stack of a user plane for SL communication
  • FIG. 2D shows a radio protocol stack of a control plane for SL communication.
  • a physical layer provides an information transmission service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel.
  • Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC service data units (SDUs).
  • SDUs RLC service data units
  • the RLC layer is a transparent mode (Transparent Mode, TM), an unacknowledged mode (Unacknowledged Mode, UM) and an acknowledged mode (Acknowledged Mode).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • the RB is in the first layer (physical layer or PHY layer) and second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer, SDAP (Service Data Adaptation Protocol) layer) for data transfer between the terminal and the network.
  • Logical path provided by
  • Functions of the PDCP layer in the user plane include delivery of user data, header compression and ciphering.
  • the functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • the SDAP Service Data Adaptation Protocol
  • the SDAP layer performs mapping between QoS flows and data radio bearers, and marking QoS flow identifiers (IDs) in downlink and uplink packets.
  • Setting the RB means defining the characteristics of a radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • an RRC_INACTIVE state is additionally defined, and a UE in an RRC_INACTIVE state may release a connection to a base station while maintaining a connection to the core network.
  • a downlink transmission channel for transmitting data from the network to the terminal there are a BCH (Broadcast Channel) for transmitting system information and a downlink SCH (Shared Channel) for transmitting user traffic or control messages. Traffic or control messages of downlink multicast or broadcast services may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • a random access channel RACH
  • SCH uplink shared channel
  • the logical channels that are located above the transport channel and are mapped to the transport channel include a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH), and a Multicast Traffic Channel (MTCH). channels), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • FIG. 3 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 3 may be combined with various embodiments of the present disclosure.
  • radio frames may be used in uplink and downlink transmission in NR.
  • a radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • a half-frame may include 5 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots in a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol), a single carrier-FDMA (SC-FDMA) symbol (or a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) symbol).
  • Table 1 shows the number of symbols per slot (N slot symb ), the number of slots per frame (N frame,u slot ), and the number of slots per subframe (N subframe, u slot ).
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, a subframe, a slot, or a TTI
  • a TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported. For example, when SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when SCS is 30 kHz/60 kHz, dense-urban, lower latency) and a wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band may be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed, for example, the two types of frequency ranges may be as shown in Table 3 below.
  • FR1 may mean "sub 6GHz range”
  • FR2 may mean “above 6GHz range”
  • mmW millimeter wave
  • FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or more. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
  • FIG. 4 illustrates a slot structure of an NR frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 4 may be combined with various embodiments of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication may be performed through the activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • a BWP (Bandwidth Part) may be a contiguous set of PRBs (physical resource blocks) in a given neurology.
  • the PRB may be selected from a contiguous subset of a common resource block (CRB) for a given neurology on a given carrier.
  • CRB common resource block
  • the BWP may be at least one of an active BWP, an initial BWP, and/or a default BWP.
  • the UE may not monitor downlink radio link quality in a DL BWP other than an active DL BWP on a PCell (primary cell).
  • the UE may not receive a PDCCH, a physical downlink shared channel (PDSCH), or a reference signal (CSI-RS) (except for RRM) outside of the active DL BWP.
  • the UE may not trigger CSI (Channel State Information) reporting for the inactive DL BWP.
  • CSI Channel State Information
  • the UE may not transmit a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) outside the active UL BWP.
  • the initial BWP may be given as a contiguous set of RBs for a maintaining minimum system information (RMSI) CORESET (control resource set) (set by a physical broadcast channel (PBCH)).
  • RMSI minimum system information
  • PBCH physical broadcast channel
  • the initial BWP may be given by a system information block (SIB) for a random access procedure.
  • SIB system information block
  • the default BWP may be set by a higher layer.
  • the initial value of the default BWP may be the initial DL BWP.
  • DCI downlink control information
  • BWP may be defined for SL.
  • the same SL BWP can be used for transmission and reception.
  • the transmitting terminal may transmit an SL channel or an SL signal on a specific BWP
  • the receiving terminal may receive an SL channel or an SL signal on the specific BWP.
  • the SL BWP may be defined separately from the Uu BWP, and the SL BWP may have separate configuration signaling from the Uu BWP.
  • the terminal may receive the configuration for the SL BWP from the base station / network.
  • the terminal may receive the configuration for Uu BWP from the base station/network.
  • the SL BWP may be configured (in advance) for the out-of-coverage NR V2X terminal and the RRC_IDLE terminal within the carrier. For a UE in RRC_CONNECTED mode, at least one SL BWP may be activated in a carrier.
  • FIG. 5 shows an example of a BWP according to an embodiment of the present disclosure.
  • the embodiment of FIG. 5 may be combined with various embodiments of the present disclosure.
  • a common resource block may be a numbered carrier resource block from one end to the other end of a carrier band.
  • the PRB may be a numbered resource block within each BWP.
  • Point A may indicate a common reference point for a resource block grid (resource block grid).
  • BWP may be set by a point A, an offset from the point A (N start BWP ), and a bandwidth (N size BWP ).
  • the point A may be an external reference point of the PRB of the carrier to which subcarrier 0 of all neumatologies (eg, all neumatologies supported by the network in that carrier) is aligned.
  • the offset may be the PRB spacing between point A and the lowest subcarrier in a given numerology.
  • the bandwidth may be the number of PRBs in a given numerology.
  • V2X or SL communication will be described.
  • a Sidelink Synchronization Signal is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS)
  • S-SSS Sidelink Secondary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences may be used for S-PSS
  • length-127 Gold sequences may be used for S-SSS.
  • the terminal may detect an initial signal using S-PSS and may obtain synchronization.
  • the UE may acquire detailed synchronization using S-PSS and S-SSS, and may detect a synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information is information related to SLSS, duplex mode (Duplex Mode, DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, It may be a subframe offset, broadcast information, or the like.
  • the payload size of PSBCH may be 56 bits including 24-bit Cyclic Redundancy Check (CRC).
  • S-PSS, S-SSS, and PSBCH may be included in a block format supporting periodic transmission (eg, SL SS (Synchronization Signal)/PSBCH block, hereinafter S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (ie, SCS and CP length) as a Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH) in the carrier, and the transmission bandwidth is (pre)set SL BWP (Sidelink) BWP).
  • the bandwidth of the S-SSB may be 11 resource blocks (RBs).
  • the PSBCH may span 11 RBs.
  • the frequency position of the S-SSB may be set (in advance). Therefore, the UE does not need to perform hypothesis detection in frequency to discover the S-SSB in the carrier.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode in LTE may be referred to as an LTE transmission mode
  • a transmission mode in NR may be referred to as an NR resource allocation mode.
  • (a) of FIG. 6 shows a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 6 shows a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • (b) of FIG. 6 shows a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of FIG. 6 shows a terminal operation related to NR resource allocation mode 2.
  • the base station may schedule an SL resource to be used by the terminal for SL transmission.
  • the base station may transmit information related to the SL resource and/or information related to the UL resource to the first terminal.
  • the UL resource may include a PUCCH resource and/or a PUSCH resource.
  • the UL resource may be a resource for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to a dynamic grant (DG) resource and/or information related to a configured grant (CG) resource from the base station.
  • the CG resource may include a CG type 1 resource or a CG type 2 resource.
  • the DG resource may be a resource configured/allocated by the base station to the first terminal through downlink control information (DCI).
  • the CG resource may be a (periodic) resource configured/allocated by the base station to the first terminal through a DCI and/or RRC message.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal, and the base station transmits DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
  • the first terminal may transmit a PSCCH (eg, sidelink control information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH eg, sidelink control information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (eg, 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information eg, NACK information or ACK information
  • the first terminal may transmit/report HARQ feedback information to the base station through PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on a preset rule.
  • the DCI may be a DCI for scheduling of an SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1.
  • DCI format 3_0 is used for scheduling NR PSCCH and NR PSSCH in one cell.
  • the following information is transmitted through DCI format 3_0 with CRC scrambled by SL-RNTI or SL-CS-RNTI.
  • N fb_timing is the number of entries of the upper layer parameter sl-PSFCH-ToPUCCH.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station / network or the preset SL resource.
  • the configured SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the terminal may perform SL communication by selecting a resource by itself within a set resource pool.
  • the terminal may select a resource by itself within the selection window by performing a sensing (sensing) and resource (re)selection procedure.
  • the sensing may be performed in units of subchannels.
  • a first terminal that has selected a resource from the resource pool by itself may transmit a PSCCH (eg, SCI (Sidelink Control Information) or 1 st -stage SCI) to a second terminal using the resource.
  • a PSCCH eg, SCI (Sidelink Control Information) or 1 st -stage SCI
  • the first terminal may transmit a PSSCH (eg, 2nd -stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • a first terminal may transmit an SCI to a second terminal on a PSCCH.
  • the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) to the second terminal on the PSCCH and/or the PSSCH.
  • the second terminal may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the first terminal.
  • SCI transmitted on PSCCH may be referred to as 1 st SCI, 1 st SCI, 1 st -stage SCI or 1 st -stage SCI format
  • SCI transmitted on PSSCH is 2 nd SCI, 2 nd SCI, 2 It may be referred to as nd -stage SCI or 2nd -stage SCI format.
  • 1 st -stage SCI format may include SCI format 1-A
  • 2 nd -stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • SCI format 1-A is used for scheduling of 2nd -stage SCI on PSSCH and PSSCH.
  • the following information is transmitted using SCI format 1-A.
  • N rsv_period is the number of entries in the upper layer parameter sl-ResourceReservePeriodList if the upper layer parameter sl-MultiReserveResource is set; Otherwise, 0 bit
  • N pattern is the number of DMRS patterns set by the upper layer parameter sl-PSSCH-DMRS-TimePatternList
  • Additional MCS table indicator - 1 bit if one MCS table is set by the upper layer parameter sl-Additional-MCS-Table; 2 bits if two MCS tables are set by the upper layer parameter sl-Additional-MCS-Table; otherwise 0 bit
  • SCI format 2-A is for decoding of PSSCH used
  • the following information is transmitted through SCI format 2-A.
  • SCI format 2-B is used for decoding the PSSCH.
  • the following information is transmitted through SCI format 2-B.
  • the first terminal may receive the PSFCH.
  • the first terminal and the second terminal may determine the PSFCH resource, and the second terminal may transmit the HARQ feedback to the first terminal using the PSFCH resource.
  • the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH.
  • FIG. 7 illustrates three types of casts according to an embodiment of the present disclosure.
  • the embodiment of FIG. 7 may be combined with various embodiments of the present disclosure.
  • FIG. 7(a) shows broadcast type SL communication
  • FIG. 7(b) shows unicast type SL communication
  • FIG. 7(c) shows groupcast type SL communication.
  • the terminal may perform one-to-one communication with another terminal.
  • the terminal may perform SL communication with one or more terminals in a group to which the terminal belongs.
  • SL groupcast communication may be replaced with SL multicast communication, SL one-to-many communication, or the like.
  • HARQ Hybrid Automatic Repeat Request
  • SL HARQ feedback may be enabled for unicast.
  • the receiving terminal in non-CBG (non-Code Block Group) operation, when the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal HARQ-ACK may be generated. And, the receiving terminal may transmit the HARQ-ACK to the transmitting terminal.
  • the receiving terminal after the receiving terminal decodes the PSCCH targeting the receiving terminal, if the receiving terminal does not successfully decode the transport block related to the PSCCH, the receiving terminal may generate a HARQ-NACK. And, the receiving terminal may transmit the HARQ-NACK to the transmitting terminal.
  • SL HARQ feedback may be enabled for groupcast.
  • two HARQ feedback options may be supported for groupcast.
  • Groupcast option 1 After the receiving terminal decodes the PSCCH targeting the receiving terminal, if the receiving terminal fails to decode the transport block related to the PSCCH, the receiving terminal transmits the HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. On the other hand, if the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may not transmit the HARQ-ACK to the transmitting terminal.
  • (2) groupcast option 2 If the receiving terminal fails to decode the transport block related to the PSCCH after the receiving terminal decodes the PSCCH targeting the receiving terminal, the receiving terminal transmits the HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. And, when the receiving terminal decodes the PSCCH targeted to the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may transmit an HARQ-ACK to the transmitting terminal through the PSFCH.
  • all terminals performing groupcast communication may share a PSFCH resource.
  • terminals belonging to the same group may transmit HARQ feedback using the same PSFCH resource.
  • each terminal performing groupcast communication may use different PSFCH resources for HARQ feedback transmission.
  • terminals belonging to the same group may transmit HARQ feedback using different PSFCH resources.
  • HARQ-ACK may be referred to as ACK, ACK information, or positive-ACK information
  • HARQ-NACK may be referred to as NACK, NACK information, or negative-ACK information.
  • the UE In order for the UE to transmit a PSFCH including HARQ-ACK information in response to PSSCH reception, it may be indicated by an SCI format for scheduling PSSCH reception in one or more subchannels from N PSSCH subchannels .
  • the UE provides HARQ-ACK information including ACK or NACK, or only NACK.
  • the UE may be instructed by a higher layer not to transmit the PSFCH in response to receiving the PSSCH.
  • the UE receives a PSSCH from the resource pool and the HARQ feedback activation/deactivation indicator field included in the associated SCI format 2-A or SCI format 2-B has a value of 1, the UE transmits HARQ through PSFCH transmission in the resource pool.
  • - Provides ACK information.
  • the UE transmits a PSFCH in a first slot, wherein the first slot contains a PSFCH resource and is a slot after the minimum number of slots provided by sl-MinTimeGapPSFCH-r16 of the resource pool after the last slot of PSSCH reception.
  • the UE is provided with a set M PSFCH PRB,set of a PRB in the resource pool for PSFCH transmission in the PRB of the resource pool by sl-PSFCH-RB-Set-r16.
  • the UE selects [(i+j) from among M PRB,set PSFCH PRBs.
  • N PSFCH PSSCH M PSFCH subch,slot , (i+1+j N PSFCH PSSCH ) M PSFCH subch,slot -1] PRB for slot i and subchannel j among PSSCH slots interlocked with the PSFCH slot allocate
  • M PSFCH subch,slot M PSFCH PRB,set / (N subch N PSFCH PSSCH ), 0 ⁇ i ⁇ N PSFCH PSSCH , 0 ⁇ j ⁇ N subch , and assignment of j starting in ascending order of i continues in ascending order.
  • the UE expects M PSFCH PRB,set to be a multiple of N subch ⁇ N PSFCH PSSCH .
  • N PSFCH CS is the number of cyclic shift pairs for the resource pool, and based on an indication by a higher layer,
  • slot PRB is associated with the start subchannel of the corresponding PSSCH
  • N PSFCH type N PSSCH subch and N PSSCH subch ⁇ M PSFCH subch,slot PRB is associated with one or more subchannels among N PSSCH subch subchannels of the corresponding PSSCH.
  • PSFCH resources are first indexed in an ascending order of PRB index among N PSFCH type ⁇ M PSFCH subch, slot PRBs, and then indexed in ascending order of cyclic shift pair index among N PSFCH CS cyclic shift pairs.
  • the UE determines an index of a PSFCH resource for PSFCH transmission in response to PSSCH reception as (P ID + M ID ) mod R PSFCH PRB,CS .
  • P ID is a physical layer source ID provided by SCI format 2-A or 2-B for scheduling PSSCH reception
  • M ID is the UE detects SCI format 2-A in which the cast type indicator field value is “01”. In one case, it is the ID of the UE receiving the PSSCH indicated by the upper layer, otherwise M ID is 0.
  • the UE uses Table 8 to determine the m 0 value for calculating the cyclic shift ⁇ value from the N PSFCH CS and from the cyclic shift pair index corresponding to the PSFCH resource index.
  • Cyclic shift pair index 0 Cyclic shift pair index 1
  • Cyclic shift pair index 2 Cyclic shift pair index 3
  • Cyclic shift pair index 4 Cyclic shift pair index 5 One 0 - - - - - 2 0 3 - - - - 3 0 2 4 - - - 6 0 One 2 3 4 5
  • the UE determines a value m cs for calculating the cyclic shift ⁇ value.
  • the UE applies one cyclic shift among the cyclic shift pairs to a sequence used for PSFCH transmission.
  • the SL DRX setting eg, SL DRX cycle, SL DRX on-duration timer, SL DRX to be used by the P-UE (Power Saving UE) Off-duration timer, SL DRX slot offset (eg, an offset indicating the start time of the SL DRX on-duration timer), SL DRX start offset (eg, an offset indicating the start of the SL DRX cycle) ), a timer for supporting SL DRX operation, etc.) should be defined.
  • TX transmitting
  • UE and RX in on-duration eg, a section in which sidelink reception/transmission can be performed
  • off-duration eg, a section operating in a sleep mode
  • the Uu DRX operation of Release 16 supports the Uu DRX operation interlocked with the operation of UL transmission or DL reception between the UE and the base station.
  • the Uu DRX operation of Release 16 does not support the Uu DRX operation for NR SL TX and NR SL RX. Accordingly, there is a need to propose a method for operating Uu DRX interlocked with sidelink transmission and sidelink reception of the UE and an apparatus supporting the same.
  • a UE performing SL communication based on resource allocation mode 1 may receive an SL grant from a base station and may perform SL transmission based on the SL grant.
  • the UE when the Uu DRX configuration and/or the SL DRX configuration is configured for the UE, the UE must operate as an active time to receive the SL grant and/or the reception of the SL grant This unexpected time interval needs to be clearly defined.
  • FIG. 8 illustrates a procedure for a UE to start a Uu DRX timer based on an SL grant, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 8 may be combined with various embodiments of the present disclosure.
  • the TX UE may acquire a DRX configuration.
  • the DRX configuration may include a Uu DRX configuration and/or an SL DRX configuration.
  • the TX UE may receive the DRX configuration from the base station.
  • the DRX configuration may be configured for a TX UE or configured in advance.
  • the Uu DRX configuration may include information related to a drx-HARQ-RTT-TimerSL timer (hereinafter, HARQ RTT timer) and/or information related to a drx-RetransmissionTimerSL timer (hereinafter, a retransmission timer).
  • HARQ RTT timer information related to a drx-HARQ-RTT-TimerSL timer
  • a retransmission timer drx-RetransmissionTimerSL timer
  • the timer may be used for the following purposes.
  • drx-HARQ-RTT-TimerSL timer TX UE (UE supporting Uu DRX operation) performing sidelink communication based on sidelink resource allocation mode 1 PDCCH for sidelink mode 1 resource allocation from the base station (or DCI) section in which monitoring is not performed
  • drx-HARQ-RTT-TimerSL may be operated for each SL HARQ process.
  • drx-HARQ-RTT-TimerSL may be the minimum duration before an SL retransmission grant is expected by the MAC entity.
  • (2) drx-RetransmissionTimerSL timer TX UE (UE supporting Uu DRX operation) performing sidelink communication based on sidelink resource allocation mode 1 PDCCH (or DCI) for sidelink mode 1 resource allocation from the base station section to be monitored
  • drx-RetransmissionTimerSL may be operated for each SL HARQ process.
  • drx-RetransmissionTimerSL may be a maximum duration until a grant for SL retransmission is received.
  • the SL DRX configuration referred to in the present disclosure may include at least one or more parameters/information among the following.
  • SL drx-InactivityTimer The duration after the PSCCH occasion in which a PSCCH indicates a new SL transmission for the MAC entity
  • SL drx-HARQ-RTT-Timer The minimum duration before PSCCH (sidelink control information) and PSSCH for SL HARQ retransmission are expected by the MAC entity PSCCH (Sidelink Control Information) & PSSCH for SL HARQ retransmission is expected by the MAC entity)
  • SL DRX timer mentioned in the present disclosure may be used for the following purposes.
  • SL DRX on-duration timer a period in which the UE performing SL DRX operation should basically operate as an active time for PSCCH/PSSCH reception of the other UE
  • (2) SL DRX inactivity timer A section for extending the SL DRX onduration section, which is a section in which the UE performing SL DRX operation should basically operate as an active time to receive PSCCH/PSSCH of the other UE
  • the UE may extend the SL DRX on-duration timer by the SL DRX inactivity timer period. Also, when the UE receives a new packet (eg, new PSSCH transmission) from the counterpart UE, the UE may start an SL DRX inactivity timer to extend the SL DRX on-duration timer.
  • a new packet eg, new PSSCH transmission
  • the SL DRX inactivity timer is a period in which an RX UE performing an SL DRX operation should basically operate as an active time for PSCCH / PSSCH reception of a counterpart TX UE.
  • the SL DRX on-duration timer may be extended by the SL DRX inactivity timer period.
  • the RX UE may start an SL DRX inactivity timer to extend the SL DRX duration timer.
  • SL DRX HARQ RTT timer A period in which the UE performing SL DRX operation operates in a sleep mode until it receives a retransmission packet (or PSSCH assignment) transmitted by the other UE
  • the UE may determine that the other UE will not transmit a sidelink retransmission packet to itself until the SL DRX HARQ RTT timer expires, and the timer is driven It can operate in sleep mode while it is running. For example, if the UE starts the SL DRX HARQ RTT timer, the UE may not monitor the sidelink retransmission packets from the counterpart UE until the SL DRX HARQ RTT timer expires.
  • the RX UE may start the SL DRX HARQ RTT timer.
  • the RX UE may determine that the counterpart TX UE will not transmit a sidelink retransmission packet to itself until the SL DRX HARQ RTT timer expires, and the RX UE operates in sleep mode while the corresponding timer is running.
  • SL DRX retransmission timer a timer that starts when the SL DRX HARQ RTT timer expires, and a retransmission packet (or PSSCH assignment) transmitted by a counterpart UE by a UE performing SL DRX operation interval operating as active time for
  • the UE may receive or monitor a retransmission sidelink packet (or PSSCH assignment) transmitted by the counterpart UE.
  • the RX UE may receive or monitor a retransmission sidelink packet (or PSSCH assignment) transmitted by the counterpart TX UE while the SL DRX retransmission timer is running.
  • timers Uu DRX HARQ RTT TimerSL, Uu DRX Retransmission TimerSL, Sidelink DRX Onduration Timer, Sidelink DRX Inactivity Timer, Sidelink DRX HARQ RTT Timer, Sidelink DRX Retransmission Timer, etc.
  • timers Uu DRX HARQ RTT TimerSL, Uu DRX Retransmission TimerSL, Sidelink DRX Onduration Timer, Sidelink DRX Inactivity Timer, Sidelink DRX HARQ RTT Timer, Sidelink DRX Retransmission Timer, etc.
  • the TX UE may receive the SL grant from the base station.
  • the PUCCH resource is not configured for the TX UE.
  • the PUCCH resource related to the SL grant may not be configured for the TX UE.
  • whether the PUCCH resource is configured may be indicated to the TX UE based on Table 11.
  • the TX UE may start a Uu DRX timer. For example, based on that the PUCCH resource for the SL HARQ feedback report is not configured for the TX UE, the TX UE may determine when to start the Uu DRX timer. For example, the TX UE may start the HARQ RTT timer at the determined time point. And, when the HARQ RTT timer expires, the TX UE may start a retransmission timer.
  • the operation (eg, start) and/or parameter value of the Uu DRX timer (eg, HARQ RTT timer, retransmission timer) for MODE 1 DCI monitoring is the MODE 1 SL grant PSFCH resource is set It may be set differently depending on whether it is allocated/scheduled on the pool.
  • the operation (eg, start) and/or parameter value of the Uu DRX timer (eg, HARQ RTT timer, retransmission timer) for MODE 1 DCI monitoring is different depending on whether the PSFCH is set in the MODE 1 SL grant. can be set.
  • the operation (eg, start) and/or parameter values of the Uu DRX timer (eg, HARQ RTT timer, retransmission timer) for MODE 1 DCI monitoring (required (minimum) time between resources related to the MODE 1 SL grant) It may be set differently depending on whether there is a PSFCH resource that satisfies the gap).
  • the UE in the case of a MODE 1 SL grant allocated/scheduled on a pool in which PSFCH resources are configured and/or a MODE 1 SL grant in which PSFCH is configured, the UE (actually, through the corresponding MODE 1 SL grant, HARQ feedback ENABLED / It may be configured to (always) start a MODE 1 DCI monitoring-related Uu DRX timer (eg, HARQ RTT timer) and/or Uu retransmission timer based on the time of the PSFCH resource (regardless of whether DISABLED MAC PDU is transmitted).
  • a MODE 1 DCI monitoring-related Uu DRX timer eg, HARQ RTT timer
  • the UE (regardless of whether HARQ feedback ENABLED / DISABLED MAC PDU is actually transmitted through the corresponding MODE 1 SL grant)
  • MODE 1 DCI monitoring based on the resource related to the MODE 1 SL grant of the preset location / sequence number It may be configured to (always) start an associated Uu DRX timer (eg, HARQ RTT timer) and/or Uu retransmission timer.
  • the MODE 1 SL grant-related resource may be a resource (ie, a PDCCH resource) from which the MODE 1 SL grant is received.
  • FIG. 9 illustrates a method for a UE to initiate a MODE 1 DCI monitoring-related Uu DRX timer based on a MODE 1 SL grant-related resource when a PUCCH resource is not configured according to an embodiment of the present disclosure.
  • the embodiment of FIG. 9 may be combined with various embodiments of the present disclosure.
  • the UE may receive a MODE 1 SL grant from the base station. And, the UE may start the HARQ RTT timer in the first symbol after the end of the MODE 1 SL grant-related resource (ie, PDCCH resource). In this case, while the HARQ RTT timer is running, the UE may expect/determine that the SL retransmission grant related to the HARQ process associated with the HARQ RTT timer will not be transmitted by the base station. Additionally, the UE may perform PSCCH/PSSCH transmission based on the MODE 1 SL grant.
  • the UE may perform PSCCH/PSSCH transmission based on the MODE 1 SL grant.
  • the UE may start a retransmission timer, and the UE may monitor the MODE 1 SL grant transmitted by the base station. If the UE receives the MODE 1 SL grant from the base station, the UE may start the HARQ RTT timer in the first symbol after the end of the MODE 1 SL grant-related resource (ie, the PDCCH resource).
  • the UE may start the HARQ RTT timer in the first symbol after the end of the MODE 1 SL grant-related resource (ie, the PDCCH resource).
  • the SL DRX operation needs to be defined differently according to the SL HARQ feedback mode. That is, when transmitting the HARQ feedback-enabled MAC PDU, the TX UE carries the SL HARQ feedback (ie, NACK) and drx-HARQ-RTT for the corresponding HARQ process ID in the first symbol after the PSFCH reception ends. -TimerSL can be started.
  • the TX UE when transmitting a MAC PDU with HARQ feedback disabled, the TX UE sends a drx-HARQ-RTT for the corresponding HARQ process ID in the first symbol after the last (or first) transmission (in the bundle) of the corresponding PSSCH transmission is finished.
  • -TimerSL or drx-RetransmissionTimerSL can be started.
  • drx-HARQ-RTT-TimerSL when the SL PUCCH configuration is not configured for the UE, when transmitting a MAC PDU with HARQ feedback disabled, drx-HARQ-RTT-TimerSL may be supported for the UE.
  • drx-HARQ-RTT-TimerSL when the SL PUCCH configuration is not configured for the UE, when transmitting a MAC PDU with HARQ feedback disabled, drx-HARQ-RTT-TimerSL may not be supported for the UE.
  • the SL DRX operation may be defined differently according to the SL HARQ feedback mode.
  • the TX UE when transmitting a HARQ feedback-enabled MAC PDU, the TX UE carries the SL HARQ feedback (ie, NACK) after the PSFCH reception is terminated. You can start the drx-HARQ-RTT-TimerSL for the corresponding HARQ process ID in the symbol.
  • the Tx UE when transmitting the HARQ feedback-enabled MAC PDU using only the HARQ feedback-enabled LCH and the mapped SL CG grant, the Tx UE transmits the SL HARQ feedback (that is, , NACK), drx-HARQ-RTT-TimerSL for the corresponding HARQ process ID may be started in the first symbol after the reception of the corresponding PSFCH is terminated.
  • the SL HARQ feedback that is, , NACK
  • drx-HARQ-RTT-TimerSL for the corresponding HARQ process ID may be started in the first symbol after the reception of the corresponding PSFCH is terminated.
  • the TX UE when transmitting a MAC PDU with HARQ feedback disabled, transmits the last (or first) of the PSSCH transmission (in the bundle) after the first transmission ends. You can start drx-HARQ-RTT-TimerSL or drx-RetransmissionTimerSL for the corresponding HARQ process ID in the symbol.
  • the HARQ feedback disabled MAC PDU is transmitted using only the HARQ feedback disabled LCH and the mapped SL CG grant.
  • drx-HARQ-RTT-TimerSL or drx-RetransmissionTimerSL for the corresponding HARQ process ID can be started from the first symbol after the last transmission is finished.
  • the TX UE may transmit the second SCI and the first SCI for scheduling of the PSSCH to the RX UE through the PSCCH based on the SL grant.
  • the TX UE may transmit the second SCI and MAC PDU to the RX UE through the PSCCH based on the SL grant.
  • the TX UE may receive the SL grant from the base station. For example, while the HARQ RTT timer initiated in step S820 expires and the retransmission timer is running, the TX UE may monitor the SL grant transmitted by the base station, and the TX UE may receive the SL grant from the base station. have. In this case, if the PUCCH resource related to the SL grant is not configured for the TX UE, the TX UE may determine the start time of the Uu DRX timer based on the method proposed in this disclosure, and in step S860, the TX UE The Uu DRX timer may be started at the determined start time.
  • FIG. 10 shows a case in which the UE starts the HARQ RTT timer based on the SL resource rather than the PDCCH resource.
  • the embodiment of FIG. 10 may be combined with various embodiments of the present disclosure.
  • the UE starts the HARQ RTT timer based on the PSSCH/PSCCH resource.
  • the SL grant is not transmitted by the base station during the T1 period, the UE may have to perform monitoring for the SL grant, which may cause unnecessary power consumption in the UE.
  • the base station may not be able to allocate an SL grant to the UE. That is, the base station may not allocate an SL grant to the UE due to the operation of the HARQ RTT timer of the UE, even though the base station has an allocable SL resource during time T2. Due to this, the SL transmission of the UE may be delayed, and in particular, the reliability of the SL transmission requiring low delay may not be corrected.
  • the flexibility of the SL resource allocation of the base station may be unreasonably limited.
  • the UE may omit monitoring for the SL grant from immediately after receiving the SL grant for a time in which transmission of the SL grant from the base station is not expected. Accordingly, it is possible to obtain the effect of reducing the power consumption of the UE. Furthermore, if the PUCCH resource is not configured for the UE, the UE starts the HARQ RTT timer based on the PDCCH resource, thereby obtaining the power saving gain of the UE and at the same time ensuring the reliability of SL communication requiring low delay. .
  • the SL HARQ RTT timer may be derived from the retransmission resource timing when the SCI indicates the retransmission resource. And, an explicitly set SL HARQ RTT timer may still be needed.
  • the SL DRX operation based on the above assumption may not operate correctly. If the transmission pools between UEs performing sidelink transmission and reception are different, the RX UE may have a problem in that it cannot correctly derive the next transmission resource information included in the SCI transmitted by the TX UE.
  • FIG. 11 is a diagram for explaining a problem in that, when the transmission pools between UEs performing sidelink transmission and reception are different, the RX UE cannot correctly derive the next transmission resource information included in the SCI transmitted by the TX UE.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • UE 1/2 uses physical slot indexes 1, 3, 5, 7, 9, 11, 13, 15 .. as a transmission pool
  • UE 3 uses physical slot indexes 2, 6 , 10, 14 .. are used as the transport pool
  • UE 1 uses physical slot indexes 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 .. including all transmission pools of UE 1/2/3 as reception pools.
  • UE 1 checks that the TRIV (ie, Time Resource Indicator Value) included in the SCI transmitted by UE 2 is indicated by 2, and monitors reception of the next SCI in the reception pool index 4. Since UE 1 uses the same transport pool as UE 2, resource information included in SCI can be accurately derived by UE 1.
  • TRIV Time Resource Indicator Value
  • UE 1 uses a different transport pool than UE 3 .
  • the location of the reception pool is its own reception It is calculated based on the pool. That is, UE 1 determines that UE 3 will transmit the next SCI at physical slot index point 6 (reception pool “5” of UE 1), and will perform SCI monitoring operation of UE 3 at that point.
  • the next SCI transmission time of UE 3 is the physical slot index point 14 (reception pool “11” of UE 1). Therefore, when different transport pools are used between terminals, the next resource information included in the SCI may be misinterpreted, and a problem may occur when performing the SL DRX operation based on the next resource information included in the SCI.
  • both the transmit pool and the receive pool of two UEs performing SL TX/RX may be aligned.
  • the following operation may be considered.
  • the SCI may provide the transport pool index information used for its own transmission, and the linkage between the indices of the transport pool (of different gNBs) may be (pre)configured. That is, the TX UE may provide the transmission pool information it uses to the RX UE.
  • a mechanism that allows sleep as many as slots in the receive pool where misalignment has occurred may be considered as follows.
  • next resource time information designating the next resource time information as an absolute time in SCI.
  • the RX UE may infer an approximate next resource information point by additionally using absolute time information.
  • the RX UE may not correctly derive the next resource information included in the SCI delivered by the TX UE.
  • the RX UE may need to align the resource pool between the UEs.
  • a mechanism in which the SL DRX HARQ RTT timer value is derived directly from the TRIV value of the SCI a mechanism in which the SL DRX HARQ RTT timer value is derived according to a predefined function based on the corresponding TRIV value on the SCI may be considered. have.
  • SCI includes 1 to 2 pieces of the following resource information.
  • the SL DRX HARQ RTT/retransmission timer is set in consideration of only the first next resource information or only the second next resource information. For example, in order to avoid unnecessary power consumption on the RX UE side, if the RX UE fails to decode the SCI in the second resource (indicated by the previous SCI received in the first resource), the SL DRX retransmission timer is set to the second It can be driven after the resource and up to the third resource (indicated by the previous SCI received from the first resource).
  • the SL DRX operation may be affected. For example, when the Tx UE reselects a resource at a time earlier than the resource indicated by the previous SCI for resource reselection due to preemption, when the RX UE wakes up after the resource indicated by the SCI, the RX UE may not receive the transmission of the TX UE. In addition, when the TX UE performs resource reselection after the resource indicated by the SCI, there may be a problem in not satisfying the PDB of the SL data. One possible solution to solve this problem is to instruct the TX UE through the SCI so that the RX UE does not perform a sleep operation when the remaining selection window is short or the remaining PDB is short.
  • an SL DRX operation based on resource information included in SCI may affect the above-mentioned resource selection procedure.
  • the RX UE may not receive the SCI on the resource indicated by the previous SCI by the TX UE. Therefore, when the TX UE reselects the resource indicated by the previous SCI, it is necessary to consider whether the RX UE can properly receive the data of the TX UE in the time domain in which the resource reselection of the TX UE must be performed. For example, when the TX UE performs reselection of a resource reserved by the previous SCI, the RX UE may not receive the SCI on the resource indicated by the previous SCI of the TX UE. Therefore, it is necessary to consider whether the RX UE can properly receive the data of the TX UE in the time domain in which the resource reselection of the TX UE is performed.
  • the TX UE may start an SL DRX retransmission timer (eg, a timer of the TX UE to synchronize with the timer of the RX UE) based on the most recently received NACK, and preemption-based resource retransmission The selection may be performed while the SL DRX retransmission timer of the RX UE is running.
  • an SL DRX retransmission timer eg, a timer of the TX UE to synchronize with the timer of the RX UE
  • the TX UE and the RX UE may perform an additional power saving operation based on PSFCH reception and transmission.
  • the TX UE may reduce power consumption by operating in the sidelink DRX sleep mode from the PSCCH/PSSCH transmission time to the PSFCH reception time.
  • the TX UE may wake up at the time of receiving the PSFCH and monitor the PSFCH transmitted by the RX UE.
  • the RX UE may reduce additional power consumption by performing a sleep operation related to the SL HARQ process in the time interval between the initial PSSCH reception and the PSFCH transmission time.
  • the RX UE may reduce additional power consumption by performing a sleep mode operation related to the SL HARQ process in a time interval between the PSFCH transmission time and the PSSCH retransmission reception time.
  • the TX UE may reduce power consumption by operating in the sidelink DRX sleep mode from a PSCCH/PSSCH transmission time to a PSFCH reception time.
  • the RX UE may reduce additional power consumption by performing a sleep operation related to the SL HARQ process in the time interval between the initial PSSCH reception and the PSFCH transmission time.
  • the unicast-specific SL DRX configuration may be configured for each pair of source/destination IDs.
  • unicast characteristics eg, PQI, etc.
  • parameters may be considered.
  • the UE-specific SL DRX configuration for SL unicast takes into account the QoS class (eg PQI) associated with a specific PC5 unicast link (or PC5 RRC) for a PC5 unicast connection (eg, source ID/destination ID). of pairs) can be set.
  • the UE-specific SL DRX configuration should be configured in consideration of the QoS class (eg, PQI) of SL data serviced through a specific unicast link.
  • the UE-specific SL DRX configuration may be configured in consideration of a QoS class (eg, PQI) of SL data serviced through a specific unicast link.
  • a QoS class eg, PQI
  • the UE-specific SL DRX configuration for SL unicast should be set in consideration of the QoS class (eg, PQI) per PC5 RRC connection (eg, the direction of the source layer 2 ID/destination layer 2 ID pair).
  • the QoS class eg, PQI
  • PC5 RRC connection eg, the direction of the source layer 2 ID/destination layer 2 ID pair.
  • the RX UE receiving the SCI transmitted by the TX UE may perform a power saving operation with reference to the following resource information included in the SCI. For example, if the RX UE normally receives the SCI and decodes it successfully, the RX UE may operate in a sleep state (or a state that does not need to monitor the PSCCH / PSSCH of the TX UE) until the next transmission resource point included in the SCI. . Alternatively, if the RX UE fails to receive SCI at the transmission resource location taken in the previous SCI, the RX UE may be awake until the next transmission resource point indicated by the SCI (to monitor the PSCCH/PSSCH transmitted by the TX UE).
  • the RX UE misinterprets the resource information taken by the TX UE in the SCI, so that the SL DRX operation cannot be performed normally may occur.
  • the transmission pool of UE "A” and the transmission pool of UE “B” are different from each other and the reception pool includes both the transmission pools (super set)
  • the following is indicated in the SCI transmitted by UE "A" "B” UE cannot accurately derive resource information (time/frequency point). That is, for this reason (because the RX UE can derive the next resource information (time/frequency) taken by the TX UE differently), the RX UE supporting the SL DRX operation is based on the next resource information of the SCI delivered by the TX UE. SL DRX operation cannot be performed normally.
  • UE 1/2 uses resource pool indexes 1, 3, 5, 7, 9, 11, 13, 16 .. as a transport pool and UE 3 uses resource pool indexes 2, 6, 10, 14 Use .. as the transport pool.
  • UE 1 uses the resource pool indexes 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 .. including all the transmission pools of UE 1/2/3 as the reception pool.
  • UE 1 confirms that TRIV (time frequency information for the next transmission resource) included in the SCI transmitted by UE 2 is indicated as 2
  • UE 1 (by interpreting the TRIV based on the slot of the transmission pool) Monitor the next SCI reception at the receive pool index 4 point.
  • UE 1 Since UE 1 uses the same transmission pool as UE 2, it is possible to correctly derive the transmission resource information included in the SCI. However, a problem arises when UE 1 uses a different transport pool than UE 3 . For example, if UE 1 receives the SCI transmitted by UE 3 and confirms that TRIV (time/frequency information for the next transmission resource) is indicated as 3, UE 1 interprets the TRIV based on its reception pool. do. That is, UE 1 determines that UE 3 will transmit the next SCI at the resource pool index point 6 (reception pool "5" of UE 1) and performs the SCI monitoring operation of UE 3 at the corresponding point. However, the next SCI transmission resource point of the actual UE 3 is the resource pool index 14 (reception pool "11" of UE 1).
  • TRIV time/frequency information for the next transmission resource
  • SL DRX operation based on transmission resource information included in SCI (eg, based on the next transmission resource information included in SCI)
  • a problem may occur when performing awake and sleep operations or the following transmission resource information-based timers (SL DRX HARQ RTT Timer, SL DRX retransmission timer, SL DRX Inactivity timer) included in SCI.
  • the present disclosure proposes the following operations to solve the above-described problems.
  • the UE transmits information about the resource pool (resource pool information used by the UE) and resource pool utilization / change information to the other UE (RX UE and / or TX UE) /signaling is possible.
  • the information is, if the UE that has checked the resource pool information (eg, resource pool index) of the counterpart UE delivered by the counterpart UE does not match its own resource pool information, the UE that has transmitted the resource pool information returns the resource pool It may be information used to change the information. For example, the UE may transmit utilization information to apply the resource pool "+1".
  • the proposed resource pool information and resource pool utilization/change information to be used may be transmitted by the UE to the UE, but the UE that has received the resource pool information and resource pool utilization/change information used by the serving base station of the UE and used from the base station is The information may be delivered to a counterpart peer UE.
  • UE “A” uses resource pool index “1” as a transport pool and UE “B” uses resource pool index “2” as a transport pool. It is also assumed that UE “B” uses a resource pool including both resource pool indexes “1” and “2” as a reception pool.
  • UE “A” may transmit resource pool information (eg, resource pool index “1”) used by UE “A” to UE “B”. For example, the information may be delivered through SCI and/or PC5 RRC messages.
  • “B” UE has different information about its transmission pool (resource pool index 2) and the transmission pool (resource pool index 1) used by UE "A” Information may be misinterpreted.
  • the resource pool index "2" (applying +1 or notifying the "2" value directly) rather than the resource pool index "1" is transmitted.
  • the SCI it is possible to instruct the SCI to include the next transmission resource information (via SCI/MAC CE/PC5 RRC message).
  • the RX UE can correctly interpret the transmission resource information included in the SCI delivered by the TX UE by synchronizing the transmission pool of the TX UE with the transmission pool it uses. Through this, the RX UE may perform the SL DRX operation by accurately referring to the transmission resource information included in the SCI.
  • the serving base station, resource pool (location) information set by another base station eg, a form of including this as one candidate resource pool set by the serving base station to its own terminal
  • Inter-index mapping/linkage information may be signaled/transmitted to its own terminal.
  • the UE receives the SCI from the counterpart UE at the end of the SL active time (eg, the period in which the UE monitors the SL channel or signal), and at the active time
  • the next transmission resource reserved through the received SCI is SL inactive time (eg, a period in which the UE does not need to monitor an SL channel or signal, or a period in which it can operate in a power saving mode) can be applied in case of
  • various embodiments of the present disclosure may be equally applied to the SL active time period and the SL inactive time period of the UE.
  • the proposal of the present disclosure can also be applied and extended as a method of solving a problem in which loss occurs due to interruption occurring during Uu BWP switching.
  • the proposal of the present disclosure is applied and extended as a method for solving the problem of loss due to interruption occurring during SL BWP switching when a plurality of SL BWPs are supported for the terminal can do.
  • the proposal of the present disclosure provides parameters (eg, timers) included in default / common SL DRX settings, default / common SL DRX patterns or default / common SL DRX settings, as well as UE-pair specific SL DRX settings.
  • a UE-pair-specific SL DRX pattern or a parameter (eg, timer) included in a UE-pair-specific SL DRX configuration may also be extended and applied.
  • the on-duration mentioned in the proposal of the present disclosure is an active time (eg, a time in which a wake-up state (eg, an RF module is turned on) to receive/transmit a wireless signal is operated) interval.
  • An extended analysis may be performed, and the off-duration may be extended and interpreted as a sleep time (eg, a time in which a sleep mode state (eg, a state in which the RF module is turned off) is operated for power saving). It does not mean that the TX UE is obligated to operate in the sleep mode in the sleep time interval. If necessary, the TX UE may be allowed to operate in an active time for a while for a sensing operation and/or a transmission operation, even if it is a sleep time.
  • a sleep time eg, a time in which a sleep mode state (eg, a state in which the RF module is turned off) is operated for power saving. It does not mean that the TX UE is obligated to operate in the sleep mode in the sleep time interval. If necessary, the TX UE may be allowed to operate in an active time for a while for a sensing operation and/or a transmission operation, even if it is a sleep time.
  • whether the (some) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) may be set specifically (or differently or independently) of the resource pool.
  • whether the (some) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) may be specifically (or differently or independently) set to a congestion level.
  • whether or not the (partial) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) may be set specifically (or differently or independently) in the priority of the service.
  • whether the (part) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) may be set specifically (or differently or independently) of the type of service.
  • whether the (some) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) are specifically (or differently or independently) QoS requirements (eg, latency, reliability) can be set.
  • QoS requirements eg, latency, reliability
  • QoS requirements eg, latency, reliability
  • QoS requirements eg, latency, reliability
  • QoS requirements eg, latency, reliability
  • QoS requirements eg, latency, reliability
  • whether the (some) proposed method/rule of the present disclosure is applied and/or related parameters (eg, threshold values) are PQI (5G QoS identifier (5QI) for PC5) specifically (or differently or independently) ) can be set.
  • a traffic type eg, periodic generation or aperiodic generation
  • a traffic type e.g., periodic generation or aperiodic generation
  • SL transmission resource allocation mode e.g. mode 1 or mode 2
  • whether or not the proposed rule of the present disclosure is applied and/or a related parameter setting value may be set specifically (or differently or independently) of the resource pool.
  • whether the proposed rule of the present disclosure is applied and/or a related parameter setting value may be set specifically (or differently or independently) of a service/packet type.
  • whether or not the proposed rule of the present disclosure is applied and/or a related parameter setting value may be set specifically (or differently or independently) in the priority of a service/packet.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set to QoS requirements (eg, URLLC/EMBB traffic, reliability, latency). .
  • QoS requirements eg, URLLC/EMBB traffic, reliability, latency.
  • whether or not the proposed rule of the present disclosure is applied and/or a related parameter setting value may be set specifically (or differently or independently) for PQI.
  • whether or not the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set to a cast type (eg, unicast, groupcast, broadcast).
  • whether or not the proposed rule of the present disclosure is applied and/or a related parameter setting value may be specifically (or differently or independently) set to a (resource pool) congestion level (eg, CBR).
  • SL HARQ feedback scheme eg, NACK-only feedback, ACK/NACK feedback
  • HARQ Feedback Enabled MAC PDU transmission whether the proposed rule of the present disclosure is applied and/or related parameter setting values are specifically (or differently or independently) for HARQ Feedback Enabled MAC PDU transmission.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) configured according to whether a PUCCH-based SL HARQ feedback reporting operation is configured.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) pre-emption or pre-emption-based resource reselection.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set for re-evaluation or re-evaluation-based resource reselection.
  • the proposed rule of the present disclosure is applied and/or related parameter setting values may be set specifically (or differently or independently) for (L2 or L1) (source and/or destination) identifiers.
  • (L2 or L1) source and/or destination) identifiers.
  • whether or not the proposed rule of the present disclosure is applied and/or related parameter setting values (L2 or L1) (combination of source ID and destination ID) identifier can be specifically (or differently or independently) set have.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values are (L2 or L1) (a combination of a pair of source ID and destination ID and a cast type) identifier-specifically (or differently or independently) ) can be set.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set in the direction of a pair of source layer ID and destination layer ID. .
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be configured specifically (or differently or independently) for PC5 RRC connection/link.
  • whether or not the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set for the case of performing SL DRX.
  • whether or not the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set to an SL mode type (eg, resource allocation mode 1 or resource allocation mode 2) have.
  • whether the proposed rule of the present disclosure is applied and/or related parameter setting values may be specifically (or differently or independently) set with respect to the case of performing (non) periodic resource reservation.
  • the predetermined time referred to in the proposal of the present disclosure may refer to a time during which the UE operates as an active time for a predefined time in order to receive a sidelink signal or sidelink data from a counterpart UE.
  • the predetermined time mentioned in the proposal of this disclosure is an active time in a specific timer (eg, sidelink DRX retransmission timer, sidelink DRX inactivity timer, or DRX operation of the RX UE) in order for the UE to receive a sidelink signal or sidelink data from a counterpart UE. It may refer to a time that operates as an active time as much as a timer that guarantees that it can be operated).
  • whether the proposal and proposal rule of the present disclosure are applied may also be applied to mmWave SL operation.
  • FIG. 12 illustrates a method for a first device to perform wireless communication, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 12 may be combined with various embodiments of the present disclosure.
  • the first device may obtain a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer.
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • the first device based on a physical downlink control channel (PDCCH) resource, information related to at least one sidelink (SL) resource and a physical uplink control channel (PUCCH) resource including information related to a downlink control (DCI) resource information) can be received from the base station.
  • the first device may start the HARQ RTT timer after the time domain of the PDCCH resource based on that the PUCCH resource is not configured for the first device.
  • the HARQ RTT timer may be a minimum duration before a retransmission grant is expected by the first device.
  • the PUCCH resource may not be configured for the first device.
  • the HARQ RTT timer may be started in the first symbol after the end of the PDCCH resource.
  • the at least one SL resource may be related to the PUCCH resource.
  • the DCI may include an index of the resource pool.
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • the first device may start a retransmission timer after the HARQ RTT timer expires.
  • the retransmission timer may be a maximum duration until the retransmission grant is received.
  • the retransmission grant may be a DCI including information related to at least one SL resource allocated by the base station for SL retransmission of the first device.
  • the HARQ RTT timer and the retransmission timer may be timers set for each HARQ process between the first device and the base station.
  • the DCI may be a cyclic redundancy check (CRC) scrambled DCI by a radio network temporary identifier (SL-RNTI).
  • CRC cyclic redundancy check
  • SL-RNTI radio network temporary identifier
  • the DCI may be a cyclic redundancy check (CRC) scrambled DCI by configured scheduling (SL-CS)-radio network temporary identifier (RNTI).
  • CRC cyclic redundancy check
  • SL-CS configured scheduling
  • RNTI radio network temporary identifier
  • the first device schedules a physical sidelink shared channel (PSSCH) and a second sidelink control information (SCI) through a physical sidelink control channel (PSCCH) based on the at least one SL resource. may transmit the first SCI to the second device. Additionally, for example, the first device may transmit the second SCI or MAC medium access control protocol data unit (PDU) to the second device through the PSSCH based on the at least one SL resource.
  • PSSCH physical sidelink shared channel
  • SCI second sidelink control information
  • PDU medium access control protocol data unit
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • PDCCH physical sidelink feedback channel
  • the processor 102 of the first device 100 may obtain a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer. And, the processor 102 of the first device 100 is based on a physical downlink control channel (PDCCH) resource, information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource.
  • the transceiver 106 may be controlled to receive the included downlink control information (DCI) from the base station.
  • DCI downlink control information
  • the processor 102 of the first device 100 may start the HARQ RTT timer after the time domain of the PDCCH resource based on the fact that the PUCCH resource is not configured for the first device.
  • the HARQ RTT timer may be a minimum duration before a retransmission grant is expected by the first device.
  • a first device configured to perform wireless communication may be provided.
  • the first device may include one or more memories storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to obtain a discontinuous reception (DRX) configuration that includes information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer; Based on a physical downlink control channel (PDCCH) resource, downlink control information (DCI) including information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource is received from the base station; and based on that the PUCCH resource is not configured for the first device, the HARQ RTT timer may be started after the time domain of the PDCCH resource. For example, the HARQ RTT timer may be a minimum duration before a retransmission grant is expected by the first device.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • a device may include one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to obtain a discontinuous reception (DRX) configuration that includes information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer;
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • the HARQ RTT timer may be a minimum duration before a retransmission grant is expected by the first terminal.
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, cause the first device to: obtain a discontinuous reception (DRX) configuration comprising information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer and ;
  • a PDCCH physical downlink control channel
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • the HARQ RTT timer may be a minimum duration before a retransmission grant is expected by the first device.
  • FIG. 13 illustrates a method for a base station to perform wireless communication according to an embodiment of the present disclosure.
  • the embodiment of FIG. 13 may be combined with various embodiments of the present disclosure.
  • the base station may transmit a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer to the first device.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • the base station based on a physical downlink control channel (PDCCH) resource, information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource.
  • DCI Downlink control information including information related to a resource may be transmitted to the first device.
  • the HARQ RTT timer may be started by the first device after a time domain of the PDCCH resource, and the HARQ RTT timer is It may be the minimum duration before the retransmission grant is expected by the first device.
  • the PUCCH resource may not be configured for the first device.
  • the HARQ RTT timer may be started in the first symbol after the end of the PDCCH resource.
  • the at least one SL resource may be related to the PUCCH resource.
  • the DCI may include an index of the resource pool.
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • the first device may start a retransmission timer after the HARQ RTT timer expires.
  • the retransmission timer may be a maximum duration until the retransmission grant is received.
  • the retransmission grant may be a DCI including information related to at least one SL resource allocated by the base station for SL retransmission of the first device.
  • the HARQ RTT timer and the retransmission timer may be timers set for each HARQ process between the first device and the base station.
  • the DCI may be a cyclic redundancy check (CRC) scrambled DCI by a radio network temporary identifier (SL-RNTI).
  • CRC cyclic redundancy check
  • SL-RNTI radio network temporary identifier
  • the DCI may be a cyclic redundancy check (CRC) scrambled DCI by configured scheduling (SL-CS)-radio network temporary identifier (RNTI).
  • CRC cyclic redundancy check
  • SL-CS configured scheduling
  • RNTI radio network temporary identifier
  • the first device schedules a physical sidelink shared channel (PSSCH) and a second sidelink control information (SCI) through a physical sidelink control channel (PSCCH) based on the at least one SL resource. may transmit the first SCI to the second device. Additionally, for example, the first device may transmit the second SCI or MAC medium access control protocol data unit (PDU) to the second device through the PSSCH based on the at least one SL resource.
  • PSSCH physical sidelink shared channel
  • SCI second sidelink control information
  • PDU medium access control protocol data unit
  • the HARQ RTT timer may be started after the time domain of the PDCCH resource.
  • PDCCH physical sidelink feedback channel
  • the processor 202 of the base station 200 transmits a DRX (discontinuous reception) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer to the first device. 206) can be controlled. And, the processor 202 of the base station 200 is based on a physical downlink control channel (PDCCH) resource, information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource.
  • the transceiver 206 may be controlled to transmit downlink control information (DCI) to the first device.
  • DCI downlink control information
  • the HARQ RTT timer may be started by the first device after a time domain of the PDCCH resource, and the HARQ RTT timer is It may be the minimum duration before the retransmission grant is expected by the first device.
  • a base station configured to perform wireless communication may be provided.
  • the base station may include one or more memories to store instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to transmit a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer to the first device.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip timer
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • PUCCH physical downlink control channel
  • the HARQ RTT timer may be started by the first device after a time domain of the PDCCH resource, and the HARQ RTT timer is It may be the minimum duration before the retransmission grant is expected by the first device.
  • an apparatus configured to control a base station may be provided.
  • a device may include one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to transmit a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer to the first terminal.
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • the first terminal can be sent to For example, based on that the PUCCH resource is not configured for the first terminal, the HARQ RTT timer may be started by the first terminal after the time domain of the PDCCH resource, and the HARQ RTT timer is It may be the minimum duration before the retransmission grant is expected by the first terminal.
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • PUCCH physical downlink control channel
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, cause the base station to: transmit a discontinuous reception (DRX) configuration including information related to a hybrid automatic repeat request (HARQ) round trip time (RTT) timer to the first device to do; and downlink control information (DCI) including information related to at least one sidelink (SL) resource and information related to a physical uplink control channel (PUCCH) resource based on a physical downlink control channel (PDCCH) resource to the first device can be sent to
  • DRX discontinuous reception
  • HARQ hybrid automatic repeat request
  • RTT round trip time
  • DCI downlink control information
  • SL sidelink
  • PUCCH physical uplink control channel
  • PDCCH physical downlink control channel
  • the HARQ RTT timer may be started by the first device after a time domain of the PDCCH resource, and the HARQ RTT timer is It may be the minimum duration before the retransmission grant is expected by the first device.
  • FIG. 14 shows a communication system 1 according to an embodiment of the present disclosure.
  • the embodiment of FIG. 14 may be combined with various embodiments of the present disclosure.
  • a communication system 1 to which various embodiments of the present disclosure are applied includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a wireless access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names not.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine It may be implemented in at least one of various standards such as Type Communication, and/or 7) LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication.
  • LPWAN Low Power Wide Area Network
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • Artificial intelligence (AI) technology may be applied to the wireless devices 100a to 100f , and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300 .
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (eg, Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), communication between base stations 150c (e.g. relay, IAB (Integrated Access Backhaul), etc.)
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • FIG. 15 illustrates a wireless device according to an embodiment of the present disclosure.
  • the embodiment of FIG. 15 may be combined with various embodiments of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 14 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or flowcharts of operation disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or sets of instructions.
  • One or more memories 104 , 204 may be coupled to one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
  • one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, proposals, methods and/or operation flowcharts, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • FIG. 16 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • the embodiment of FIG. 16 may be combined with various embodiments of the present disclosure.
  • the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 .
  • the operations/functions of FIG. 16 may be performed by the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 15 .
  • the hardware elements of FIG. 16 may be implemented in the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 15 .
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 15 .
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 15
  • block 1060 may be implemented in the transceivers 106 and 206 of FIG. 15 .
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 16 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
  • the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • a signal processing process for a received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 16 .
  • the wireless device eg, 100 and 200 in FIG. 15
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal reconstructor, a resource de-mapper, a post coder, a demodulator, a de-scrambler, and a decoder.
  • FIG. 17 illustrates a wireless device according to an embodiment of the present disclosure.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 14 ).
  • the embodiment of FIG. 17 may be combined with various embodiments of the present disclosure.
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 15 , and various elements, components, units/units, and/or modules ) may consist of
  • the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
  • the communication unit may include communication circuitry 112 and transceiver(s) 114 .
  • communication circuitry 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 15 .
  • transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 15 .
  • the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, another communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
  • the outside eg, another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130 .
  • the additional element 140 may be configured in various ways according to the type of the wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • a wireless device may include a robot ( FIGS. 14 and 100a ), a vehicle ( FIGS. 14 , 100b-1 , 100b-2 ), an XR device ( FIGS. 14 and 100c ), a mobile device ( FIGS. 14 and 100d ), and a home appliance. (FIG. 14, 100e), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device ( FIGS. 14 and 400 ), a base station ( FIGS. 14 and 200 ), and a network node.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be all interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
  • each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 17 will be described in more detail with reference to the drawings.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT). 18 may be combined with various embodiments of the present disclosure.
  • the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c . ) may be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 17 .
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may control components of the portable device 100 to perform various operations.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal.
  • the restored information/signal may be stored in the memory unit 130 and output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
  • FIG. 19 illustrates a vehicle or an autonomous driving vehicle according to an embodiment of the present disclosure.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
  • the embodiment of FIG. 19 may be combined with various embodiments of the present disclosure.
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 17, respectively.
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may make the vehicle or the autonomous driving vehicle 100 run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

제 1 장치가 무선 통신을 수행하는 방법 및 이를 지원하는 장치가 제공된다. 상기 방법은, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하는 단계; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하는 단계; 및 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하는 단계;를 포함하되, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.

Description

NR V2X에서 DCI를 기반으로 SL DRX 타이머를 개시하는 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것이다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
한편, 자원 할당 모드 1을 기반으로 SL 통신을 수행하는 UE는 기지국으로부터 SL 그랜트(grant)를 수신할 수 있고, 상기 SL 그랜트를 기반으로 SL 전송을 수행할 수 있다. 한편, UE의 전력 절약을 위해, Uu DRX 설정 및/또는 SL DRX 설정이 상기 UE에 대하여 설정되는 경우, UE가 SL 그랜트를 수신하기 위해 활성 시간으로 동작해야 하는 시간 구간 및/또는 SL 그랜트의 수신이 기대되지 않는 시간 구간이 명확하게 정의될 필요가 있다.
일 실시 예에 있어서, 제 1 장치가 무선 통신을 수행하는 방법이 제공된다. 상기 방법은, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하는 단계; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하는 단계; 및 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하는 단계;를 포함하되, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
일 실시 예에 있어서, 무선 통신을 수행하는 제 1 장치가 제공된다. 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하되, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
일 실시 예에 있어서, 제 1 단말을 제어하도록 설정된 장치(apparatus)가 제공된다. 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및 상기 PUCCH 자원이 상기 제 1 단말에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하되, 상기 HARQ RTT 타이머는 상기 제 1 단말에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
단말의 파워 세이빙 이득을 최대화할 수 있고, SL 통신의 신뢰성을 확보할 수 있다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다.
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다.
도 8은 본 개시의 일 실시 예에 따라, UE가 SL 그랜트를 기반으로 Uu DRX 타이머를 개시하는 절차를 나타낸다.
도 9는 본 개시의 일 실시 예에 따라, PUCCH 자원이 설정되지 않은 경우에, UE가 MODE 1 SL 그랜트 관련 자원을 기준으로 MODE 1 DCI 모니터링 관련 Uu DRX 타이머를 개시하는 방법을 나타낸다.
도 10은 UE가 PDCCH 자원이 아닌 SL 자원을 기준으로 HARQ RTT 타이머를 개시하는 경우를 나타낸다.
도 11은 사이드링크 송수신을 수행하는 UE 간의 전송 풀이 다른 경우, RX UE는 TX UE가 전송하는 SCI에 포함된 다음 전송 자원 정보를 올바르게 도출할 수 없는 문제를 설명하기 위한 도면이다.
도 12는 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다.
도 13은 본 개시의 일 실시 예에 따라, 기지국이 무선 통신을 수행하는 방법을 나타낸다.
도 14는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 15는 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 16은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 17은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 18은 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다.
도 19는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDCCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
이하의 설명에서 '~일 때, ~ 경우(when, if, in case of)'는 '~에 기초하여/기반하여(based on)'로 대체될 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서에서, 상위 계층 파라미터(higher layer parameter)는 단말에 대하여 설정되거나, 사전에 설정되거나, 사전에 정의된 파라미터일 수 있다. 예를 들어, 기지국 또는 네트워크는 상위 계층 파라미터를 단말에게 전송할 수 있다. 예를 들어, 상위 계층 파라미터는 RRC(radio resource control) 시그널링 또는 MAC(medium access control) 시그널링을 통해서 전송될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다. 도 1의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 1을 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1의 실시 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer 1, 제 1 계층), L2(layer 2, 제 2 계층), L3(layer 3, 제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 2의 (a)는 Uu 통신을 위한 사용자 평면(user plane)의 무선 프로토콜 스택(stack)을 나타내고, 도 2의 (b)는 Uu 통신을 위한 제어 평면(control plane)의 무선 프로토콜 스택을 나타낸다. 도 2의 (c)는 SL 통신을 위한 사용자 평면의 무선 프로토콜 스택을 나타내고, 도 2의 (d)는 SL 통신을 위한 제어 평면의 무선 프로토콜 스택을 나타낸다.
도 2를 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층, SDAP(Service Data Adaptation Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 3을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수(Nslot symb), 프레임 별 슬롯의 개수(Nframe,u slot)와 서브프레임 별 슬롯의 개수(Nsubframe,u slot)를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 450MHz - 6000MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
이하, BWP(Bandwidth Part) 및 캐리어에 대하여 설명한다.
BWP(Bandwidth Part)는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH(physical downlink shared channel) 또는 CSI-RS(reference signal)(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH(physical broadcast channel)에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI(downlink control information)를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 예를 들어, 단말은 Uu BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 5의 실시 예에서, BWP는 세 개라고 가정한다.
도 5를 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart BWP) 및 대역폭(Nsize BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
SLSS(Sidelink Synchronization Signal)는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC(Cyclic Redundancy Check)를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 6의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 6의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 6의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S600에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.
단계 S610에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S640에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다.
이하, DCI 포맷 3_0의 일 예를 설명한다.
DCI 포맷 3_0은 하나의 셀에서 NR PSCCH와 NR PSSCH의 스케줄링을 위해 사용된다.
다음 정보는 SL-RNTI 또는 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 통해 전송된다.
- 자원 풀 인덱스 - ceiling (log2 I) 비트, 여기서 I는 상위 계층 파라미터 sl-TxPoolScheduling에 의해 설정된 전송을 위한 자원 풀의 개수이다.
- 시간 갭 - 상위 계층 파라미터 sl-DCI-ToSL-Trans에 의해 결정된 3 비트
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 초기 전송에 대한 서브채널 할당의 가장 낮은 인덱스 - ceiling (log2(NSL subChannel)) 비트
- SCI 포맷 1-A 필드: 주파수 자원 할당, 시간 자원 할당
- PSFCH-to-HARQ 피드백 타이밍 지시자 - ceiling (log2 Nfb_timing) 비트, 여기서 Nfb_timing은 상위 계층 파라미터 sl-PSFCH-ToPUCCH의 엔트리의 개수이다.
- PUCCH 자원 지시자 - 3 비트
- 설정 인덱스(configuration index) - UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되지 않은 경우 0비트; 그렇지 않으면, 3 비트이다. UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되는 경우, 이 필드는 SL-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 위해 예약된다.
- 카운터 사이드링크 할당 인덱스 - 2 비트, UE가 pdsch-HARQ-ACK-Codebook = dynamic으로 설정된 경우 2 비트, UE가 pdsch-HARQ-ACK-Codebook = semi-static으로 설정된 경우 2 비트
- 필요한 경우, 패딩 비트
도 6의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S610에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다.
도 6의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다.
이하, SCI 포맷 1-A의 일 예를 설명한다.
SCI 포맷 1-A는 PSSCH 및 PSSCH 상의 2nd-stage SCI의 스케줄링을 위해 사용된다.
다음 정보는 SCI 포맷 1-A를 사용하여 전송된다.
- 우선 순위 - 3 비트
- 주파수 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 ceiling (log2(NSL subChannel(NSL subChannel+1)/2)) 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 ceiling log2(NSL subChannel(NSL subChannel+1)(2NSL subChannel+1)/6) 비트
- 시간 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 5 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 9 비트
- 자원 예약 주기 - ceiling (log2 Nrsv_period) 비트, 여기서 Nrsv_period는 상위 계층 파라미터 sl-MultiReserveResource가 설정된 경우 상위 계층 파라미터 sl-ResourceReservePeriodList의 엔트리의 개수; 그렇지 않으면, 0 비트
- DMRS 패턴 - ceiling (log2 Npattern) 비트, 여기서 Npattern은 상위 계층 파라미터 sl-PSSCH-DMRS-TimePatternList에 의해 설정된 DMRS 패턴의 개수
- 2nd-stage SCI 포맷 - 표 5에 정의된 대로 2 비트
- 베타_오프셋 지시자 - 상위 계층 파라미터 sl-BetaOffsets2ndSCI에 의해 제공된 대로 2 비트
- DMRS 포트의 개수 - 표 6에 정의된 대로 1 비트
- 변조 및 코딩 방식 - 5 비트
- 추가 MCS 테이블 지시자 - 한 개의 MCS 테이블이 상위 계층 파라미터 sl-Additional-MCS-Table에 의해 설정된 경우 1 비트; 두 개의 MCS 테이블이 상위 계층 파라미터 sl- Additional-MCS-Table에 의해 설정된 경우 2 비트; 그렇지 않으면 0 비트
- PSFCH 오버헤드 지시자 - 상위 계층 파라미터 sl-PSFCH-Period = 2 또는 4인 경우 1 비트; 그렇지 않으면 0 비트
- 예약된 비트 - 상위 계층 파라미터 sl-NumReservedBits에 의해 결정된 비트 수로, 값은 0으로 설정된다.
Value of 2nd-stage SCI format field 2nd-stage SCI format
00 SCI format 2-A
01 SCI format 2-B
10 Reserved
11 Reserved
Value of the Number of DMRS port field Antenna ports
0 1000
1 1000 and 1001
이하, SCI 포맷 2-A의 일 예를 설명한다.
HARQ 동작에서, HARQ-ACK 정보가 ACK 또는 NACK을 포함하는 경우, 또는 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-A는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-A를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 캐스트 타입 지시자 - 표 7에 정의된 대로 2 비트
- CSI 요청 - 1 비트
Value of Cast type indicator Cast type
00 Broadcast
01 Groupcast when HARQ-ACK information includes ACK or NACK
10 Unicast
11 Groupcast when HARQ-ACK information includes only NACK
이하, SCI 포맷 2-B의 일 예를 설명한다.
HARQ 동작에서 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-B는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-B를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 존 ID - 12 비트
- 통신 범위 요구 사항 - 상위 계층 파라미터 sl-ZoneConfigMCR-Index에 의해 결정되는 4 비트
도 6의 (a) 또는 (b)를 참조하면, 단계 S630에서, 제 1 단말은 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.
도 6의 (a)를 참조하면, 단계 S640에서, 제 1 단말은 PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 7의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 7의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 7의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
본 명세서에서, HARQ-ACK은 ACK, ACK 정보 또는 긍정(positive)-ACK 정보라고 칭할 수 있고, HARQ-NACK은 NACK, NACK 정보 또는 부정(negative)-ACK 정보라고 칭할 수 있다.
이하, 사이드링크에서 HARQ-ACK을 보고하는 UE 절차에 대하여 설명한다.
UE는 PSSCH 수신에 대한 응답으로, HARQ-ACK 정보를 포함하는 PSFCH를 전송하기 위해, NPSSCH subch 개의 서브채널부터 하나 이상의 서브채널에서 PSSCH 수신을 스케줄링하는 SCI 포맷에 의해 지시될 수 있다. UE는 ACK 또는 NACK, 또는 NACK만을 포함하는 HARQ-ACK 정보를 제공한다.
UE는 sl-PSFCH-Period-r16에 의해 PSFCH 전송 기회 자원(transmission occasion resources)에 대한 자원 풀 내 슬롯의 개수를 제공받을 수 있다. 개수가 0이면 자원 풀에서 UE로부터의 PSFCH 전송이 비활성화된다. UE는 k mod NPSFCH PSSCH = 0인 경우 슬롯 t'k SL (0 ≤ k < T'max)에 PSFCH 전송 기회 자원이 있을 것으로 기대하며, 여기서 t'k SL은 자원 풀에 속하는 슬롯이고, 및 T'max는 10240 msec 내의 자원 풀에 속하는 슬롯의 개수이며, NPSFCH PSSCH는 sl-PSFCH-Period-r16에서 제공된다. UE는 PSSCH 수신에 대한 응답으로 PSFCH를 전송하지 않도록 상위 계층에 의해 지시될 수 있다. UE가 자원 풀에서 PSSCH를 수신하고 및 연관된 SCI 포맷 2-A 또는 SCI 포맷 2-B에 포함된 HARQ 피드백 활성화/비활성화 지시자 필드가 1의 값을 갖는 경우, UE는 자원 풀에서 PSFCH 전송을 통해서 HARQ-ACK 정보를 제공한다. UE는 제 1 슬롯에서 PSFCH를 전송하고, 여기서 상기 제 1 슬롯은 PSFCH 자원을 포함하고 및 PSSCH 수신의 마지막 슬롯 이후 자원 풀의 sl-MinTimeGapPSFCH-r16에 의해 제공되는 최소 슬롯의 개수 이후의 슬롯이다.
UE는 자원 풀의 PRB에서 PSFCH 전송을 위한 자원 풀 내의 PRB의 세트 MPSFCH PRB,set를 sl-PSFCH-RB-Set-r16에 의해 제공받는다. sl-NumSubchannel에 의해 제공되는 자원 풀에 대한 서브채널의 개수 Nsubch 및 NPSFCH PSSCH보다 작거나 같은 PSFCH 슬롯과 관련된 PSSCH 슬롯의 개수에 대해, UE는 MPRB,set PSFCH PRB 중에서 [(i+j·NPSFCH PSSCH)·MPSFCH subch,slot, (i+1+j·NPSFCH PSSCH)·MPSFCH subch,slot-1] PRB를 PSFCH 슬롯과 연동된 PSSCH 슬롯 중 슬롯 i 및 서브채널 j에 대하여 할당한다. 여기서, MPSFCH subch,slot = MPSFCH PRB,set / (Nsubch·NPSFCH PSSCH), 0 ≤ i < NPSFCH PSSCH, 0 ≤ j < Nsubch 이고, 및 할당은 i의 오름차순으로 시작하여 j의 오름차순으로 계속된다. UE는 MPSFCH PRB,set가 Nsubch·NPSFCH PSSCH의 배수일 것으로 기대한다.
UE는 PSFCH 전송에 포함되는 HARQ-ACK 정보를 멀티플렉싱하기 위해 사용 가능한 PSFCH 자원의 개수를 RPSFCH PRB,CS = NPSFCH type·MPSFCH subch,slot·NPSFCH CS로 결정한다. 여기서, NPSFCH CS는 자원 풀에 대한 순환 시프트 페어의 개수이고, 및 상위 계층에 의한 지시를 기반으로,
- NPSFCH type = 1이고 및 MPSFCH subch,slot PRB는 해당 PSSCH의 시작 서브채널과 연관되고,
- NPSFCH type = NPSSCH subch이고 및 NPSSCH subch·MPSFCH subch,slot PRB는 해당 PSSCH의 NPSSCH subch 서브채널 중에서 하나 이상의 서브채널과 연관된다.
PSFCH 자원은 먼저 NPSFCH type·MPSFCH subch,slot PRB 중에서 PRB 인덱스의 오름차순으로 인덱싱된 다음, NPSFCH CS 순환 시프트 페어 중에서 순환 시프트 페어 인덱스(cyclic shift pair index)의 오름차순으로 인덱싱된다.
UE는 PSSCH 수신에 대한 응답으로 PSFCH 전송을 위한 PSFCH 자원의 인덱스를 (PID + MID) mod RPSFCH PRB,CS로 결정한다. 여기서 PID는 PSSCH 수신을 스케줄링하는 SCI 포맷 2-A 또는 2-B에 의해 제공되는 물리 계층 소스 ID이고, MID는 UE가 캐스트 타입 지시자 필드 값이 "01"인 SCI 포맷 2-A를 검출한 경우 상위 계층에서 지시되는 PSSCH를 수신하는 UE의 ID이고, 그렇지 않으면 MID는 0이다.
UE는 표 8을 사용하여 NPSFCH CS로부터 및 PSFCH 자원 인덱스에 대응하는 순환 시프트 페어 인덱스로부터 순환 시프트 α 값을 계산하기 위한 m0 값을 결정한다.
NPSFCH CS m0
순환 시프트 페어 인덱스 0 순환 시프트 페어 인덱스 1 순환 시프트 페어 인덱스 2 순환 시프트 페어 인덱스 3 순환 시프트 페어 인덱스 4 순환 시프트 페어 인덱스 5
1 0 - - - - -
2 0 3 - - - -
3 0 2 4 - - -
6 0 1 2 3 4 5
UE가 "01" 또는 "10"의 캐스트 타입 지시자 필드 값을 갖는 SCI 포맷 2-A를 검출하는 경우 표 9와 같이, 또는 UE가 캐스트 타입 지시자 필드 값이 "11"인 SCI 포맷 2-B 또는 SCI 포맷 2-A를 검출하는 경우 표 10과 같이, UE는 순환 시프트 α 값을 계산하기 위한 값 mcs를 결정한다. UE는 순환 시프트 페어 중에서 하나의 순환 시프트를 PSFCH 전송에 사용되는 시퀀스에 적용한다.
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 6
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 N/A
한편, Release 16의 NR V2X에서, UE의 파워 세이빙(power saving) 동작은 지원되지 않았다. 반면, Release 17의 NR V2X에서부터, UE(예, Power Saving UE)의 파워 세이빙 동작이 지원될 예정이다.
한편, UE의 파워 세이빙 동작(예, SL DRX 동작)을 위해서는, P-UE(Power Saving UE)가 사용할 SL DRX 설정(예, SL DRX 사이클, SL DRX 온듀레이션(on-duration) 타이머, SL DRX 오프듀레이션(off-duration) 타이머, SL DRX 슬롯 오프셋(예, SL DRX 온듀레이션 타이머의 시작 시점을 표시하는 오프셋), SL DRX 시작(start) 오프셋(예, SL DRX 사이클의 시작 시점을 표시하는 오프셋), SL DRX 동작 지원을 위한 타이머 등)이 정의되어야 한다. 또한, 온듀레이션(예, 사이드링크 수신/송신을 수행할 수 있는 구간) 및/또는 오프듀레이션(off-duration)(예, 슬립(sleep) 모드로 동작하는 구간)에서 TX(transmitting) UE와 RX(receiving) UE의 동작이 정의되어야 한다.
한편, Release 16의 Uu DRX 동작은 단말과 기지국 간의 UL 전송 또는 DL 수신의 동작과 연동된 Uu DRX 동작을 지원한다. 하지만, Release 16의 Uu DRX 동작은 NR SL TX와 NR SL RX를 위한 Uu DRX 동작을 지원하지 않는다. 따라서, UE의 사이드링크 전송 및 사이드링크 수신과 연동된 Uu DRX 동작 방법 및 이를 지원하는 장치가 제안될 필요가 있다.
한편, 자원 할당 모드 1을 기반으로 SL 통신을 수행하는 UE는 기지국으로부터 SL 그랜트(grant)를 수신할 수 있고, 상기 SL 그랜트를 기반으로 SL 전송을 수행할 수 있다. 한편, UE의 전력 절약을 위해, Uu DRX 설정 및/또는 SL DRX 설정이 상기 UE에 대하여 설정되는 경우, UE가 SL 그랜트를 수신하기 위해 활성 시간으로 동작해야 하는 시간 구간 및/또는 SL 그랜트의 수신이 기대되지 않는 시간 구간이 명확하게 정의될 필요가 있다.
도 8은 본 개시의 일 실시 예에 따라, UE가 SL 그랜트를 기반으로 Uu DRX 타이머를 개시하는 절차를 나타낸다. 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 8을 참조하면, 단계 S800에서, TX UE는 DRX 설정을 획득할 수 있다. 예를 들어, 상기 DRX 설정은 Uu DRX 설정 및/또는 SL DRX 설정을 포함할 수 있다. 예를 들어, TX UE는 상기 DRX 설정을 기지국으로부터 수신할 수 있다. 예를 들어, 상기 DRX 설정은 TX UE에 대하여 설정되거나 사전에 설정될 수 있다.
예를 들어, 상기 Uu DRX 설정은 drx-HARQ-RTT-TimerSL 타이머(이하, HARQ RTT 타이머)와 관련된 정보 및/또는 drx-RetransmissionTimerSL 타이머(이하, 재전송 타이머)와 관련된 정보를 포함할 수 있다. 예를 들어, 상기 타이머는 다음과 같은 용도로 사용될 수 있다.
(1) drx-HARQ-RTT-TimerSL 타이머: 사이드링크 자원 할당 모드 1을 기반으로 사이드링크 통신을 수행하는 TX UE(Uu DRX 동작을 지원하는 UE)가 기지국으로부터 사이드링크 모드 1 자원 할당을 위해 PDCCH (또는 DCI) 모니터링을 수행하지 않는 구간
예를 들어, drx-HARQ-RTT-TimerSL은 SL HARQ 프로세스 별로 동작될 수 있다. 예를 들어, drx-HARQ-RTT-TimerSL은 SL 재전송 그랜트가 MAC 엔티티에 의해 예상되기 전의 최소 기간(duration)일 수 있다.
(2) drx-RetransmissionTimerSL 타이머: 사이드링크 자원 할당 모드 1을 기반으로 사이드링크 통신을 수행하는 TX UE(Uu DRX 동작을 지원하는 UE)가 기지국으로부터 사이드링크 모드 1 자원 할당을 위해 PDCCH (또는 DCI) 모니터링을 수행하는 구간
예를 들어, drx-RetransmissionTimerSL은 SL HARQ 프로세스 별로 동작될 수 있다. 예를 들어, drx-RetransmissionTimerSL은 SL 재전송을 위한 그랜트가 수신될 때까지의 최대 기간(duration)일 수 있다.
본 개시에서 언급하는 SL DRX 설정은 다음 중 적어도 하나 이상의 파라미터/정보를 포함할 수 있다.
(1) SL drx-onDurationTimer: SL DRX 사이클의 시작에서 기간(the duration at the beginning of a SL DRX Cycle)
(2) SL drx-SlotOffset: sl drx-onDurationTimer를 시작하기 전의 지연(the delay before starting the sl drx-onDurationTimer)
(3) SL drx-InactivityTimer: PSCCH가 MAC 엔티티에 대한 새로운 SL 전송을 나타내는 PSCCH 기회 이후의 기간(the duration after the PSCCH occasion in which a PSCCH indicates a new SL transmission for the MAC entity)
(4) (HARQ 프로세스 별 또는 사이드링크 프로세스 별) SL drx-RetransmissionTimer: 재전송이 수신될 때까지의 최대 기간(the maximum duration until a retransmission is received)
(5) (HARQ 프로세스 별 또는 사이드링크 프로세스 별) SL drx-HARQ-RTT-Timer: SL HARQ 재전송을 위한 PSCCH(sidelink control information) 및 PSSCH가 MAC 엔티티에 의해 예상되기 전의 최소 기간(the minimum duration before PSCCH (Sidelink Control Information) & PSSCH for SL HARQ retransmission is expected by the MAC entity)
(6) SL drx-LongCycleStartOffset: 긴 및 짧은 DRX 사이클이 시작되는 서브프레임을 정의하는 긴 DRX 사이클 및 drx-StartOffset(the Long DRX cycle and drx-StartOffset which defines the subframe where the Long and Short DRX Cycle starts)
(7) SL drx-ShortCycle (optional): 짧은 DRX 사이클(the Short DRX cycle)
(8) SL drx-ShortCycleTimer (optional): UE가 짧은 DRX 주기를 따라야 하는 기간(the duration the UE shall follow the Short DRX cycle)
(9) (사이드링크 프로세스 별) SL drx-HARQ-RTT-Timer: HARQ 재전송을 위한 할당이 MAC 엔티티에 의해 예상되기 전의 최소 기간(the minimum duration before an assignment for HARQ retransmission is expected by the MAC entity)
(10) SL drx-StartOffset: SL DRX 사이클이 시작되는 서브프레임(the subframe where the SL DRX cycle start)
(11) SL drx-Cycle: SL DRX 사이클
본 개시에서 언급하는 아래 SL DRX 타이머는 다음과 같은 용도로 사용될 수 있다.
(1) SL DRX 온듀레이션 타이머: SL DRX 동작을 수행 중인 UE가 상대 UE의 PSCCH/PSSCH 수신을 위해 기본적으로 활성 시간(active time)으로 동작해야 하는 구간
(2) SL DRX 비활성(inactivity) 타이머: SL DRX 동작을 수행 중인 UE가 상대 UE의 PSCCH/PSSCH 수신을 위해 기본적으로 활성 시간으로 동작해야 하는 구간인 SL DRX 온듀레이션 구간을 연장하는 구간
예를 들어, UE는 SL DRX 비활성(inactivity) 타이머 구간만큼 SL DRX 온듀레이션 타이머를 연장할 수 있다. 또한 UE가 상대 UE로부터 새로운 패킷(new packet)(예, 새로운 PSSCH 전송)을 수신하면, UE는 SL DRX 비활성(inactivity) 타이머를 시작시켜서 SL DRX 온듀레이션 타이머를 연장시킬 수 있다.
예를 들어, SL DRX 비활성(inactivity) 타이머는 SL DRX 동작을 수행중인 RX UE가 상대 TX UE의 PSCCH/PSSCH 수신을 위해 기본적으로 활성 시간으로 동작해야 하는 구간인 SL DRX 온듀레이션 타이머 구간을 연장하는 용도로 사용될 수 있다. 즉, SL DRX 비활성(inactivity) 타이머 구간만큼 SL DRX 온듀레이션 타이머는 연장될 수 있다. 또한 RX UE가 상대 TX UE로부터 새로운 패킷(new packet)(예, 새로운 PSSCH 전송)을 수신하면, RX UE는 SL DRX 비활성(inactivity) 타이머를 시작시켜서 SL DRX 온듀레이션 타이머를 연장시킬 수 있다.
(3) SL DRX HARQ RTT 타이머: SL DRX 동작을 수행 중인 UE가 상대 UE가 전송하는 재전송 패킷 (또는 PSSCH 할당(assignment))을 수신하기 전까지 슬립 모드(sleep mode)로 동작하는 구간
예를 들어, UE가 SL DRX HARQ RTT 타이머를 시작시키면, UE는 상대 UE가 SL DRX HARQ RTT 타이머가 만료될 때까지 자신에게 사이드링크 재전송 패킷을 전송하지 않을 것이라고 판단할 수 있고, 해당 타이머가 구동 중인 동안에 슬립 모드로 동작할 수 있다. 예를 들어, UE가 SL DRX HARQ RTT 타이머를 시작시키면, UE는 SL DRX HARQ RTT 타이머가 만료될 때까지 상대 UE로부터의 사이드링크 재전송 패킷을 모니터하지 않을 수 있다. 예를 들어, TX UE에 의해 전송된 PSCCH/PSSCH를 수신한 RX UE가 SL HARQ NACK 피드백을 전송하는 경우, RX UE는 SL DRX HARQ RTT 타이머를 시작시킬 수 있다. 이 경우, RX UE는 상대 TX UE가 SL DRX HARQ RTT 타이머가 만료될 때까지 자신에게 사이드링크 재전송 패킷을 전송하지 않을 것이라고 판단할 수 있고, RX UE는 해당 타이머가 구동 중인 동안에 슬립 모드로 동작할 수 있다.
(4) SL DRX 재전송(retransmission) 타이머: SL DRX HARQ RTT 타이머가 만료되면 시작하는 타이머, 및 SL DRX 동작을 수행 중인 UE가 상대 UE가 전송하는 재전송 패킷 (또는 PSSCH 할당(assignment))을 수신하기 위해 활성 시간으로 동작하는 구간
예를 들어, 해당 타이머 구간 동안, UE는 상대 UE가 전송하는 재전송 사이드링크 패킷 (또는 PSSCH 할당(assignment))을 수신 또는 모니터할 수 있다. 예를 들어, RX UE는 SL DRX 재전송 타이머가 동작하는 동안에 상대 TX UE가 전송하는 재전송 사이드링크 패킷 (또는 PSSCH 할당(assignment))을 수신 또는 모니터할 수 있다.
본 개시에서, 타이머의 명칭(Uu DRX HARQ RTT TimerSL, Uu DRX Retransmission TimerSL, Sidelink DRX Onduration Timer, Sidelink DRX Inactivity Timer, Sidelink DRX HARQ RTT Timer, Sidelink DRX Retransmission Timer 등)은 예시적인 것이며, 각 타이머에서 설명되는 내용에 기초하여 동일/유사한 기능을 수행하는 타이머는 그 명칭과 무관하게 동일/유사한 타이머로 간주될 수 있다.
단계 S810에서, TX UE는 SL 그랜트를 기지국으로부터 수신할 수 있다. 이 경우, PUCCH 자원은 상기 TX UE에 대하여 설정되지 않는다고 가정한다. 예를 들어, 상기 SL 그랜트와 관련된 PUCCH 자원은 상기 TX UE에 대하여 설정되지 않을 수 있다. 예를 들어, PUCCH 자원이 설정되는지 여부는 표 11을 기반으로 TX UE에게 지시될 수 있다.
Figure PCTKR2022006493-appb-T000001
단계 S820에서, TX UE는 Uu DRX 타이머를 개시할 수 있다. 예를 들어, SL HARQ 피드백 보고를 위한 PUCCH 자원이 TX UE에 대하여 설정되지 않는 것을 기반으로, TX UE는 Uu DRX 타이머를 개시하는 시점을 결정할 수 있다. 예를 들어, TX UE는 상기 결정된 시점에서 HARQ RTT 타이머를 개시할 수 있다. 그리고, 상기 HARQ RTT 타이머가 만료되면, TX UE는 재전송 타이머를 개시할 수 있다.
이하, PUCCH가 설정되지 않은 경우의 Uu DRX 동작에 대하여 구체적으로 설명한다.
본 개시의 일 실시 예에 따르면, MODE 1 DCI 모니터링을 위한 Uu DRX 타이머(예, HARQ RTT 타이머, 재전송 타이머)의 운영(예, 시작) 및/또는 파라미터 값은 MODE 1 SL 그랜트가 PSFCH 자원이 설정된 풀 상에 할당/스케줄링되는지 여부에 따라서 상이하게 설정될 수 있다. 예를 들어, MODE 1 DCI 모니터링을 위한 Uu DRX 타이머(예, HARQ RTT 타이머, 재전송 타이머)의 운영(예, 시작) 및/또는 파라미터 값은 MODE 1 SL 그랜트에 PSFCH가 설정되는지 여부에 따라서 상이하게 설정될 수 있다. 예를 들어, MODE 1 DCI 모니터링을 위한 Uu DRX 타이머(예, HARQ RTT 타이머, 재전송 타이머)의 운영(예, 시작) 및/또는 파라미터 값은 MODE 1 SL 그랜트 관련 자원 사이에 (필요한 (최소) 시간 갭을 만족시키는) PSFCH 자원이 존재하는지 여부에 따라서 상이하게 설정될 수 있다.
구체적으로, 예를 들어, PSFCH 자원이 설정된 풀 상에 할당/스케줄링된 MODE 1 SL 그랜트 및/또는 PSFCH가 설정된 MODE 1 SL 그랜트의 경우, UE는 (실제 해당 MODE 1 SL 그랜트를 통해서 HARQ 피드백 ENABLED/DISABLED MAC PDU가 전송되는지와 상관없이) PSFCH 자원의 시점을 기준으로 MODE 1 DCI 모니터링 관련 Uu DRX 타이머(예, HARQ RTT 타이머) 및/또는 Uu 재전송 타이머를 (항상) 시작시키도록 설정될 수 있다. 그렇지 않는 경우에는, UE는 (실제 해당 MODE 1 SL 그랜트를 통해서 HARQ 피드백 ENABLED/DISABLED MAC PDU가 전송되는지와 상관없이) 사전에 설정된 위치/순번의 MODE 1 SL 그랜트 관련 자원을 기준으로 MODE 1 DCI 모니터링 관련 Uu DRX 타이머(예, HARQ RTT 타이머) 및/또는 Uu 재전송 타이머를 (항상) 시작하도록 설정될 수 있다. 예를 들어, 상기 MODE 1 SL 그랜트 관련 자원은 상기 MODE 1 SL 그랜트가 수신되는 자원(즉, PDCCH 자원)일 수 있다.
도 9는 본 개시의 일 실시 예에 따라, PUCCH 자원이 설정되지 않은 경우에, UE가 MODE 1 SL 그랜트 관련 자원을 기준으로 MODE 1 DCI 모니터링 관련 Uu DRX 타이머를 개시하는 방법을 나타낸다. 도 9의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 9를 참조하면, UE는 MODE 1 SL 그랜트를 기지국으로부터 수신할 수 있다. 그리고, UE는 MODE 1 SL 그랜트 관련 자원(즉, PDCCH 자원)의 끝 이후의 첫 번째 심볼에서 HARQ RTT 타이머를 개시할 수 있다. 이 경우, 상기 HARQ RTT 타이머가 구동 중인 동안에, UE는 상기 HARQ RTT 타이머와 연관된 HARQ 프로세스와 관련된 SL 재전송 그랜트가 기지국에 의해 전송되지 않을 것이라고 기대/결정할 수 있다. 부가적으로, UE는 상기 MODE 1 SL 그랜트를 기반으로 PSCCH/PSSCH 전송을 수행할 수 있다. 그리고, 상기 HARQ RTT 타이머가 만료되면, UE는 재전송 타이머를 개시할 수 있고, UE는 기지국에 의해 전송되는 MODE 1 SL 그랜트를 모니터링할 수 있다. 만약 UE가 MODE 1 SL 그랜트 기지국으로부터 수신하면, UE는 MODE 1 SL 그랜트 관련 자원(즉, PDCCH 자원)의 끝 이후의 첫 번째 심볼에서 HARQ RTT 타이머를 개시할 수 있다.
본 개시의 일 실시 예에 따르면, SL PUCCH 설정이 UE에 대하여 설정되지 않은 경우, SL DRX 동작은 SL HARQ 피드백 모드에 따라 다르게 정의될 필요가 있다. 즉, HARQ 피드백 인에이블된 MAC PDU를 전송하는 경우, TX UE는 SL HARQ 피드백(즉, NACK)을 나르는(carrying) 해당 PSFCH 수신 종료 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL을 시작할 수 있다. 또한, HARQ 피드백 디스에이블된 MAC PDU를 전송하는 경우, TX UE는 해당 PSSCH 전송의 (번들 내) 마지막 (또는 첫 번째) 전송이 끝난 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL 또는 drx-RetransmissionTimerSL을 시작할 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않은 경우, HARQ 피드백 디스에이블된 MAC PDU를 전송할 때, drx-HARQ-RTT-TimerSL은 UE에 대하여 지원될 수 있다. 예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않은 경우, HARQ 피드백 디스에이블된 MAC PDU를 전송할 때, drx-HARQ-RTT-TimerSL은 UE에 대하여 지원되지 않을 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않은 경우, SL DRX 동작은 SL HARQ 피드백 모드에 따라 다르게 정의될 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않으면, HARQ 피드백 인에이블된 MAC PDU를 전송하는 경우, TX UE는 SL HARQ 피드백(즉, NACK)을 나르는(carrying) 해당 PSFCH 수신 종료 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL을 시작할 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않으면, HARQ 피드백 인에이블된 LCH와 매핑된 SL CG 그랜트만을 이용하여 HARQ 피드백 인에이블된 MAC PDU를 전송하는 경우, Tx UE는 SL HARQ 피드백(즉, NACK)을 나르는 해당 PSFCH 수신 종료 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL을 시작할 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않으면, HARQ 피드백 디스에이블된 MAC PDU를 전송하는 경우, TX UE는 해당 PSSCH 전송의 (번들 내) 마지막 (또는 첫 번째) 전송이 끝난 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL 또는 drx-RetransmissionTimerSL을 시작할 수 있다.
예를 들어, SL PUCCH 설정이 UE에 대하여 설정되지 않으면, HARQ 피드백 디스에이블된 LCH와 매핑된 SL CG 그랜트만을 사용하여 HARQ 피드백 디스에이블된 MAC PDU를 전송하는 경우, TX UE는 해당 PSSCH 전송의 (번들 내) 마지막 전송이 끝난 후 첫 번째 심볼에서 해당 HARQ 프로세스 ID에 대한 drx-HARQ-RTT-TimerSL 또는 drx-RetransmissionTimerSL을 시작할 수 있다.
단계 S830에서, TX UE는 상기 SL 그랜트를 기반으로 PSCCH를 통해서, 제 2 SCI 및 PSSCH의 스케줄링을 위한 제 1 SCI를 RX UE에게 전송할 수 있다.
단계 S840에서, TX UE는 상기 SL 그랜트를 기반으로 PSCCH를 통해서, 제 2 SCI 및 MAC PDU를 RX UE에게 전송할 수 있다.
단계 S850에서, TX UE는 SL 그랜트를 기지국으로부터 수신할 수 있다. 예를 들어, 단계 S820에서 개시된 HARQ RTT 타이머가 만료되고, 및 재전송 타이머가 구동 중인 동안에, TX UE는 기지국에 의해 전송되는 SL 그랜트를 모니터링할 수 있고, TX UE는 SL 그랜트를 기지국으로부터 수신할 수 있다. 이 경우, 상기 SL 그랜트와 관련된 PUCCH 자원이 TX UE에 대하여 설정되지 않은 경우, TX UE는 본 개시에서 제안된 방법을 기반으로 Uu DRX 타이머의 시작 시점을 결정할 수 있고, 단계 S860에서, TX UE는 결정된 시작 시점에서 Uu DRX 타이머를 개시할 수 있다.
도 10은 UE가 PDCCH 자원이 아닌 SL 자원을 기준으로 HARQ RTT 타이머를 개시하는 경우를 나타낸다. 도 10의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 10을 참조하면, UE는 PSSCH/PSCCH 자원을 기준으로 HARQ RTT 타이머를 개시한다고 가정한다. 이 경우, UE는 T1 구간 동안에 SL 그랜트가 기지국에 의해 전송되지 않음에도 불구하고, SL 그랜트에 대한 모니터링을 수행해야할 수 있고, 이는 UE는 불필요한 전력 소모를 유발할 수 있다. 또한, HARQ RTT 타이머가 구동 중인 T2 시간 동안에, 기지국은 UE에게 SL 그랜트를 할당하지 못할 수 있다. 즉, 기지국은 T2 시간 동안에 할당 가능한 SL 자원이 있음에도 불구하고, UE의 HARQ RTT 타이머 구동으로 인하여, 기지국은 UE에게 SL 그랜트를 할당하지 못할 수 있다. 이로 인해 UE의 SL 전송이 지연될 수 있고, 특히 저지연을 요구하는 SL 전송의 신뢰성을 보정하지 못할 수 있다. 나아가, 기지국의 SL 자원 할당의 유연성이 부당하게 제한될 수 있다.
반면에, 본 개시의 다양한 실시 예에 따르면, UE는 SL 그랜트를 수신한 시점 직후부터, 기지국으로부터 SL 그랜트의 전송이 기대되지 않는 시간 동안에 SL 그랜트에 대한 모니터링을 생략할 수 있다. 따라서, UE의 전력 소모를 줄이는 효과를 얻을 수 있다. 나아가, PUCCH 자원이 UE에 대하여 설정되지 않은 경우에, UE는 PDCCH 자원을 기준으로 HARQ RTT 타이머를 개시함으로써, UE의 전력 절약 이득을 얻는 동시에 저지연을 요구하는 SL 통신의 신뢰성을 보장할 수 있다.
본 개시의 일 실시 예에 따르면, SL HARQ RTT 타이머는 SCI가 재전송 자원을 나타낼 때 재전송 자원 타이밍에서 유도될 수 있다. 그리고, 명시적으로 설정된 SL HARQ RTT 타이머가 여전히 필요할 수 있다.
한편, 상기 가정에 기반한 SL DRX 동작은 올바르게 동작하지 않을 수 있다. 사이드링크 송수신을 수행하는 UE 간의 전송 풀이 다른 경우, RX UE는 TX UE가 전송하는 SCI에 포함된 다음 전송 자원 정보를 올바르게 도출할 수 없는 문제가 있을 수 있다.
도 11은 사이드링크 송수신을 수행하는 UE 간의 전송 풀이 다른 경우, RX UE는 TX UE가 전송하는 SCI에 포함된 다음 전송 자원 정보를 올바르게 도출할 수 없는 문제를 설명하기 위한 도면이다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
예를 들어, 도 11을 참조하면, UE 1/2는 물리적 슬롯 인덱스 1, 3, 5, 7, 9, 11, 13, 15 ..를 전송 풀로 사용하고, UE 3은 물리적 슬롯 인덱스 2, 6, 10, 14 ..를 전송 풀로 사용한다. UE 1은 UE 1/2/3의 모든 전송 풀을 포함하는 물리적 슬롯 인덱스 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 ..를 수신 풀로 사용한다. 이때, UE 1은 UE 2가 전송한 SCI에 포함된 TRIV(즉, Time Resource Indicator Value)가 2로 표시된 것을 확인하고, 수신 풀 인덱스 4에서 다음 SCI의 수신을 모니터링한다. UE 1은 UE 2와 동일한 전송 풀을 사용하므로 SCI에 포함된 자원 정보는 UE 1에 의해 정확하게 도출될 수 있다. 하지만, UE 1이 UE 3과 다른 전송 풀을 사용하는 경우 문제가 발생한다. 예를 들어, UE 1이 UE 3이 전송한 SCI를 수신하고 TRIV가 3으로 표시된 것을 확인하면, (예, UE 3의 전송 풀이 UE 1의 전송 풀과 다르기 때문에) 수신 풀의 위치는 자신의 수신 풀을 기반으로 계산된다. 즉, UE 1은 UE 3가 물리적 슬롯 인덱스 6 지점(UE 1의 수신 풀 "5")에서 다음 SCI를 전송할 것이라고 결정하고, 그 지점에서 UE 3의 SCI 모니터링 동작을 수행할 것이다. 하지만, UE 3의 다음 SCI 전송 시점은 물리적 슬롯 인덱스 14 지점(UE 1의 수신 풀 "11")이다. 따라서, 단말 간에 서로 다른 전송 풀을 사용하는 경우, SCI에 포함된 다음 자원 정보가 잘못 해석되어, SCI에 포함된 다음 자원 정보를 기반으로 SL DRX 동작을 수행할 때 문제가 발생할 수 있다.
이 문제를 해결하기 위해, SL TX/RX를 수행하는 두 UE의 전송 풀과 수신 풀을 모두 정렬할 수 있다. SCI 정보를 기반으로 하는 SL DRX 타이머 동작이 언급된 제한 없이 보장되도록 하기 위해 다음과 같은 동작을 고려할 수 있다.
한 가지 방법으로, SCI는 자신의 전송에 사용되는 전송 풀 인덱스 정보를 제공할 수 있으며, (서로 다른 gNB의) 전송 풀의 인덱스 간의 링키지는 (사전) 설정될 수 있다. 즉, TX UE는 자신이 사용하는 전송 풀 정보를 RX UE에게 제공할 수 있다.
또는 다음과 같이 오정렬이 발생한 수신 풀의 슬롯만큼 슬립을 허용하는 메커니즘을 고려할 수 있다.
- (SCI에서 TRIV에 의해 지시되는 값 - 1)*(SL 슬롯의 길이)
- 물리적 슬롯의 (SCI에서 TRIV에 의해 지시되는 값 - 1)
- 수신 풀에 속하는 SL 슬롯의 (SCI에서 TRIV에 의해 지시되는 값 - 1)
또는 SCI에서 다음 자원 시간 정보를 절대 시간으로 지정하여 RX UE에게 알려주는 것도 가능하다. RX UE는 절대 시간 정보를 추가적으로 이용하여 대략적인 다음 자원 정보 지점을 유추할 수 있다.
예를 들어, SL 송수신을 수행하는 UE가 서로 다른 전송 풀을 사용하는 경우, RX UE는 TX UE가 전달하는 SCI에 포함된 다음 자원 정보를 올바르게 유도하지 못할 수 있다.
예를 들어, RX UE가 SCI로부터 다음 자원 정보를 올바르게 유도하기 위해서는 UE 간에 자원 풀을 정렬해야 할 수 있다. 이러한 제약 없이 올바르게 작동하기 위해서는 서로 다른 자원 풀의 인덱스 간의 연결 정보를 제공할 수 있다.
예를 들어, SL DRX HARQ RTT 타이머 값이 SCI의 TRIV 값에서 직접 유도되는 메커니즘 대신, SL DRX HARQ RTT 타이머 값이 SCI 상의 해당 TRIV 값을 기반으로 미리 정의된 기능에 따라 유도되는 메커니즘이 고려될 수 있다.
예를 들어, SCI에는 다음 자원 정보가 1 ~ 2 개까지 포함된다. 위 가정 하에, SL DRX HARQ RTT/재전송 타이머가 첫 번째 다음 자원 정보만을 고려하여 설정되는지 아니면 두 번째 다음 자원 정보만을 고려하여 설정되는지에 대한 추가적인 논의와 검증이 필요하다. 예를 들어, RX UE 측에서 불필요한 전력 소모를 피하기 위해, RX UE가 (첫 번째 자원에서 수신한 이전 SCI에 의해 지시된) 두 번째 자원에서 SCI를 디코딩하지 못한 경우, SL DRX 재전송 타이머는 두 번째 자원 이후 및 (첫 번째 자원에서 수신한 이전 SCI에 의해 지시된) 세 번째 자원까지 구동될 수 있다.
프리엠션(pre-emption)으로 인해 이전 SCI에 예약된 자원이 재선택되면 SL DRX 동작에 영향을 미칠 수 있다. 예를 들어, Tx UE가 프리엠션으로 인해 자원 재선택을 위해 이전 SCI가 지시하는 자원보다 앞선 시간에 자원을 재선택하는 경우, RX UE가 SCI에 의해 지시된 자원 이후에 깨어났을 때, RX UE는 TX UE의 전송을 수신하지 못할 수 있다. 또한, TX UE가 SCI가 지시하는 자원 이후에 자원 재선택을 수행하는 경우, SL 데이터의 PDB를 만족하지 못하는 문제가 있을 수 있다. 이 문제를 해결하기 위한 한 가지 가능한 해결책은 남은 선택 윈도우가 짧거나 남은 PDB가 짧은 경우, TX UE가 RX UE가 슬립 동작을 수행하지 않도록 SCI를 통해 지시하는 것이다.
예를 들어, SCI에 포함된 자원 정보를 기반으로 하는 SL DRX 동작은 상기 언급한 자원 선택 절차에 영향을 미칠 수 있다.
본 개시의 일 실시 예에 따르면, RX UE는 TX UE가 이전 SCI로 지시한 자원 상에서 SCI를 수신하지 못할 수 있다. 따라서, TX UE가 이전 SCI가 지시하는 자원을 재선택할 때, RX UE가 TX UE의 자원 재선택을 수행해야 하는 시간 영역에서 TX UE의 데이터를 적절하게 수신할 수 있는지 여부를 고려할 필요가 있다. 예를 들어, TX UE가 이전 SCI에 의해 예약된 자원의 재선택을 수행할 때, RX UE는 TX UE의 이전 SCI가 지시하는 자원 상에서 SCI를 수신하지 못할 수 있다. 따라서, RX UE가 TX UE의 자원 재선택이 수행되는 시간 영역에서 TX UE의 데이터를 제대로 수신할 수 있는지 여부를 고려할 필요가 있다.
예를 들어, TX UE는 가장 최근에 수신한 NACK을 기반으로 SL DRX 재전송 타이머(예를 들어, RX UE의 타이머와 동기를 맞추기 위한 TX UE의 타이머)를 시작할 수 있고, 프리엠션 기반의 자원 재선택은 RX UE의 SL DRX 재전송 타이머가 동작하는 동안에 수행될 수 있다.
본 개시의 일 실시 예에 따르면, TX UE와 RX UE는 PSFCH 수신 및 전송을 기반으로 추가적인 전력 절약(power saving) 동작을 수행할 수 있다. TX UE는 PSCCH/PSSCH 전송 시점부터 PSFCH 수신 시점까지 사이드링크 DRX 슬립 모드로 동작하여 전력 소모를 줄일 수 있다. 또한, TX UE는 PSFCH를 수신하는 시점에 깨어나서 RX UE가 전송한 PSFCH를 모니터링할 수 있다. RX UE는 초기 PSSCH 수신과 PSFCH 전송 시점 사이의 시간 간격에서 SL HARQ 프로세스와 관련된 슬립 동작을 수행하여 추가적인 전력 소모를 줄일 수 있다. 또한, RX UE는 PSFCH 전송 시점과 PSSCH 재전송 수신 시점 사이의 시간 간격에서 SL HARQ 프로세스와 관련된 슬립 모드 동작을 수행하여 추가적인 전력 소모를 줄일 수 있다.
예를 들어, TX UE는 PSCCH/PSSCH 전송 시점부터 PSFCH 수신 시점까지 사이드링크 DRX 슬립 모드로 동작함으로써 전력 소모를 줄일 수 있다. RX UE는 초기 PSSCH 수신과 PSFCH 전송 시점 사이의 시간 간격에서 SL HARQ 프로세스와 관련된 슬립 동작을 수행하여 추가적인 전력 소모를 줄일 수 있다.
예를 들어, 유니캐스트 특정 SL DRX 설정은 한 쌍의 소스/데스티네이션 ID 별로 설정될 수 있다. 예를 들어, UE 특정 SL DRX 설정을 구성할 때, 유니캐스트 특성(예, PQI 등) 및 파라미터가 고려될 수 있다. 예를 들어, SL 유니캐스트를 위한 UE 특정 SL DRX 설정은 특정 PC5 유니캐스트 링크 (또는 PC5 RRC)와 연관된 QoS 클래스(예, PQI)를 고려하여 PC5 유니캐스트 연결(예, 소스 ID/데스티네이션 ID의 쌍) 별로 설정될 수 있다. UE 특정 SL DRX 설정은 특정 유니캐스트 링크를 통해 서비스되는 SL 데이터의 QoS 클래스(예, PQI)를 고려하여 설정되어야 한다.
예를 들어, UE 특정 SL DRX 설정은 특정 유니캐스트 링크를 통해 서비스되는 SL 데이터의 QoS 클래스(예, PQI)를 고려하여 설정할 수 있다.
예를 들어, SL 유니캐스트를 위한 UE 특정 SL DRX 설정은 PC5 RRC 연결 별 QoS 클래스(예, PQI)(예, 소스 레이어 2 ID/데스티네이션 레이어 2 ID 쌍의 방향)를 고려하여 설정되어야 한다.
한편, TX UE가 전송한 SCI를 수신한 RX UE는 SCI에 포함된 다음 자원 정보를 참고하여 전력 절약(power saving) 동작을 수행할 수 있다. 예를 들어, RX UE가 SCI를 정상적으로 수신하여 디코딩 성공하면, RX UE는 SCI에 포함된 다음 전송 자원 지점까지 슬립 상태 (또는 TX UE의 PSCCH/PSSCH를 모니터링하지 않아도 되는 상태)로 동작할 수 있다. 또는 RX UE가 이전 SCI에 찍어준 전송 자원 위치에서 SCI 수신을 실패하면, RX UE는 (TX UE가 전송하는 PSCCH/PSSCH를 모니터링하기 위해) SCI에서 지시한 다음 전송 자원 지점까지 깨어 있을 수 있다.
하지만, 도 11의 실시 예와 같이, 자원 풀의 비동기 문제 때문에, RX UE가 TX UE가 SCI에서 찍어준 다음 자원 정보를 잘못 해석하여 SL DRX 동작을 정상적으로 수행하지 못하는 문제가 발생할 수 있다.
예를 들어, "A" UE의 전송 풀과 "B" UE의 전송 풀이 서로 상이하고 수신 풀이 상기 두 전송 풀을 모두 포함(super set)하는 경우, "A" UE가 전송한 SCI에서 지시된 다음 자원 정보 (시간/주파수 지점)을 "B" UE가 정확하게 도출할 수 없다. 즉, 이런 이유로 (TX UE가 찍어준 다음 자원 정보 (시간/주파수)를 RX UE가 다르게 도출할 수 있기 때문에) SL DRX 동작을 지원하는 RX UE는 TX UE가 전달한 SCI의 다음 자원 정보를 기반으로 SL DRX 동작을 정상적으로 수행할 수 없다.
구체적으로, 예를 들어, UE 1/2는 자원 풀 인덱스 1, 3, 5, 7, 9, 11, 13, 16 ..을 전송 풀 사용하고 UE 3은 자원 풀 인덱스 2, 6, 10, 14 ..를 전송 풀로 사용한다. UE 1은 UE 1/2/3의 전송 풀을 모두 포함하는 자원 풀 인덱스 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 ..를 수신 풀로 사용한다. 이때, UE 1이 UE 2가 전송한 SCI에 포함된 TRIV (다음 전송 자원에 대한 시간 주파수 정보)가 2로 지시된 것을 확인하면, UE 1은 (전송 풀의 슬롯을 기반으로 TRIV를 해석하여) 수신 풀 인덱스 4 지점에서 다음 SCI 수신을 모니터한다. UE 1은 UE 2와 동일한 전송 풀을 사용하기 때문에 SCI에 포함된 전송 자원 정보를 올바르게 도출할 수 있다. 하지만 UE 1이 UE 3과 상이한 전송 풀을 사용하는 경우 문제가 발생한다. 예를 들어, UE 1이 UE 3이 전송한 SCI를 수신하고 TRIV (다음 전송 자원에 대한 시간/주파수 정보)가 3으로 지시된 것을 확인하면, UE 1은 자신의 수신 풀을 기준으로 TRIV를 해석한다. 즉, UE 1은 자원 풀 인덱스 6 지점 (UE 1의 수신 풀 "5")에서 UE 3이 다음 SCI를 전송할 것이라고 판단하고 해당 지점에서 UE 3의 SCI 모니터링 동작을 수행할 것이다. 하지만 실제 UE 3의 다음 SCI 전송 자원 지점은 자원 풀 인덱스 14 지점 (UE 1의 수신 풀 "11")이다.
따라서, UE 간에 서로 상이한 전송 풀을 사용할 경우 SCI에 포함된 전송 자원 정보를 잘못 해석할 수 있기 때문에, SCI에 포함된 전송 자원 정보 기반으로 SL DRX 동작(예, SCI에 포함된 다음 전송 자원 정보 기반 awake 및 sleep 동작 또는 SCI에 포함된 다음 전송 자원 정보 기반 타이머 (SL DRX HARQ RTT Timer, SL DRX retransmission timer, SL DRX Inactivity timer) 값 설정)을 수행할 때 문제가 발생할 수 있다.
본 개시에서는 상술한 문제점을 해결하기 위해 다음과 같은 동작을 제안한다.
예를 들어, UE (TX UE 및/또는 RX UE)는 상대 UE (RX UE 및/또는 TX UE)에게 자원 풀에 대한 정보 (UE가 사용하는 자원 풀 정보) 및 자원 풀 활용/변경 정보를 전송/시그널링할 수 있다. 예를 들어, 상기 정보는, 상대 UE가 전달한 상대 UE의 자원 풀 정보(예, 자원 풀 인덱스)를 확인한 UE가 자신의 자원 풀 정보와 일치하지 않는 경우, 자원 풀 정보를 전달한 UE가 다시 자원 풀 정보를 변경하도록 하기 위해 사용되는 정보일 수 있다. 예를 들어, UE는 자원 풀 "+1" 해서 적용하라는 활용 정보를 전달할 수 있다. 제안된 사용하는 자원 풀 정보 및 자원 풀 활용/변경 정보는 UE가 UE에게 전달할 수도 있지만 UE의 서빙 기지국이 UE에 전달하고 사용하는 자원 풀 정보 및 자원 풀 활용/변경 정보를 기지국으로부터 수신한 UE는 상대 피어(peer) UE에게 상기 정보를 전달할 수도 있다.
예를 들어, "A" UE는 전송 풀로 자원 풀 인덱스 "1"을 사용하고 "B" UE는 전송 풀로 자원 풀 인덱스 “2”를 사용한다고 가정한다. 또한 "B" UE는 수신 풀로 자원 풀 인덱스 "1" 및 "2"를 모두 포함하는 자원 풀을 사용한다고 가정한다. 이때 "A" UE는 "B" UE에게 "A" UE가 사용하는 자원 풀 정보(예, 자원 풀 인덱스 "1")를 전달할 수 있다. 예를 들어, 상기 정보는 SCI 및/또는 PC5 RRC 메시지를 통해 전달될 수 있다. "B" UE는 자신의 전송 풀 (자원 풀 인덱스 2)과 "A" UE가 사용하는 전송 풀 (자원 풀 인덱스 1) 정보가 상이하여 자신이 "A" UE가 전달하는 SCI에 포함된 전송 자원 정보를 잘못 해석할 수 있다고 판단할 수 있다. 이 경우, "B" UE는 "A" UE 에게 전송 풀을 사용할 때 자원 풀 인덱스 "1"이 아닌 자원 풀 인덱스 "2" (+1을 적용 또는 "2" 값을 직접 알려줌)에 해당하는 전송 풀을 사용하여 SCI에 다음 전송 자원 정보를 포함할 것을 (SCI/MAC CE/PC5 RRC 메시지를 통해서) 지시할 수 있다.
제안 방법을 통해, RX UE는 TX UE의 전송 풀과 자신이 사용하는 전송 풀의 동기를 맞춰 TX UE가 전달하는 SCI에 포함된 전송 자원 정보를 올바르게 해석할 수 있다. 이를 통해, RX UE는 SCI에 포함된 전송 자원 정보를 정확하게 참고하여 SL DRX 동작을 수행할 수 있다.
또한 다른 실시 예로, 서빙 기지국은, 다른 기지국에 의해 설정된 자원 풀 (위치) 정보(예, 이를 자신의 단말에게 서빙 기지국이 설정하는 하나의 후보 자원 풀로 포함시키는 형태) 및/또는 상이한 기지국의 자원 풀 간의 인덱스 맵핑/링키지 정보를, 자신의 단말에게 시그널링/전송할 수 있다.
본 개시의 다양한 실시 예는, UE가 SL 활성 시간(active time)(예, UE가 SL 채널 또는 신호(signal)를 모니터하는 구간)의 끝부분에서 상대 UE로부터 SCI를 수신하고, 및 활성 시간에서 수신된 SCI를 통해 예약된 다음 전송 자원이 SL 비활성 시간(inactive time)(예, UE가 SL 채널 또는 신호를 모니터하지 않아도 되는 구간, 또는 파워 세이빙 모드(power saving mode)로 동작할 수 있는 구간)인 경우에 적용될 수 있다. 또한 본 개시의 다양한 실시 예는 UE의 SL 활성 시간(active time) 구간과 SL 비활성 시간(inactive time) 구간에서 동일하게 적용될 수 있다.
본 개시의 제안은 Uu BWP 스위칭 시 발생하는 중단(interruption)으로 인해 손실(loss)이 발생하는 문제를 해결하는 방안으로도 적용 및 확장할 수 있다. 또한, 본 개시의 제안은, 복수의 SL BWP가 단말에 대하여 지원되는 경우에, SL BWP 스위칭 시 발생하는 중단(interruption)으로 인해 손실(loss)이 발생하는 문제를 해결하는 방안으로도 적용 및 확장할 수 있다.
본 개시의 제안은 디폴트(default)/공통(common) SL DRX 설정, 디폴트/공통 SL DRX 패턴 또는 디폴트/공통 SL DRX 설정에 포함된 파라미터(예, 타이머)뿐만 아니라, UE-페어 특정한 SL DRX 설정, UE-페어 특정한 SL DRX 패턴 또는 UE-페어 특정한 SL DRX 설정에 포함된 파라미터(예, 타이머) 등에도 확장 적용될 수 있다. 또한, 본 개시의 제안에서 언급된 on-duration은 활성 시간(active time)(예, 무선 신호를 수신/송신하기 위해 wake-up 상태(예, RF 모듈이 켜진 상태)로 동작하는 시간) 구간으로 확장 해석될 수 있으며, off-duration은 슬립 시간(sleep time)(예, 파워 세이빙을 위해 슬립 모드 상태(예, RF 모듈이 꺼진 상태)로 동작하는 시간) 구간으로 확장 해석될 수 있다. TX UE가 슬립 시간 구간에 의무적으로 슬립 모드로 동작해야 함을 의미하지는 않는다. 필요한 경우, TX UE는 슬립 시간일지라도 센싱 동작(sensing operation) 및/또는 전송 동작(transmission operation)을 위해 잠시 활성 시간(active time)으로 동작하는 것이 허락될 수 있다.
예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 자원 풀 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 혼잡 레벨(congestion level) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 서비스의 우선 순위 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 서비스의 타입 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 QoS 요구 사항(예, latency, reliability) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 PQI(5QI(5G QoS identifier) for PC5) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 트래픽 타입(예, 주기적 생성 또는 비주기적 생성) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 (일부) 제안 방식/규칙의 적용 여부 및/또는 관련 파라미터(예, 임계값)는 SL 전송 자원 할당 모드(예, 모드 1 또는 모드 2) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다.
예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 자원 풀 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 서비스/패킷의 타입 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 서비스/패킷의 우선 순위 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 QoS 요구 사항(예, URLLC/EMBB 트래픽, reliability, latency) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 PQI 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 캐스트 타입(예, unicast, groupcast, broadcast) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 (자원 풀) 혼잡도 레벨(예, CBR) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 SL HARQ 피드백 방식(예, NACK-only feedback, ACK/NACK feedback) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 HARQ Feedback Enabled MAC PDU 전송 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 HARQ Feedback Disabled MAC PDU 전송 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 PUCCH 기반의 SL HARQ 피드백 보고 동작이 설정되는지 여부에 따라서 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 프리엠션(pre-emption) 또는 프리엠션 기반의 자원 재선택 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 재-평가(re-evaluation) 또는 재-평가 기반의 자원 재선택 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 (L2 또는 L1) (소스 및/또는 데스티네이션) 식별자 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 (L2 또는 L1) (소스 ID 및 데스티네이션 ID의 조합) 식별자 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 (L2 또는 L1) (소스 ID 및 데스티네이션 ID의 페어와 캐스트 타입의 조합) 식별자 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 소스 레이어 ID 및 데스티네이션 레이어 ID의 페어의 방향(direction) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 PC5 RRC 연결/링크 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 SL DRX를 수행하는 경우에 대하여 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 SL 모드 타입(예, 자원 할당 모드 1 또는 자원 할당 모드 2) 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다. 예를 들어, 본 개시의 제안 규칙의 적용 여부 및/또는 관련 파라미터 설정 값은 (비)주기적 자원 예약을 수행하는 경우에 대하여 특정적으로 (또는 상이하게 또는 독립적으로) 설정될 수 있다.
본 개시의 제안에서 언급된 일정 시간은 UE가 상대 UE로부터 사이드링크 신호 또는 사이드링크 데이터를 수신하기 위해 사전에 정의된 시간만큼 활성 시간(active time)으로 동작하는 시간을 지칭할 수 있다. 본 개시의 제안에서 언급된 일정 시간은 UE가 상대 UE로부터 사이드링크 신호 또는 사이드링크 데이터를 수신하기 위해 특정 타이머(예, sidelink DRX retransmission timer, sidelink DRX inactivity timer 또는 RX UE의 DRX 동작에서 활성 시간으로 동작할 수 있도록 보장하는 타이머) 시간만큼 활성 시간으로 동작하는 시간을 지칭할 수 있다. 또한, 본 개시의 제안 및 제안 규칙의 적용 여부 (및/또는 관련 파라미터 설정 값)은 mmWave SL 동작에도 적용될 수 있다.
도 12는 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 12의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 12를 참조하면, 단계 S1210에서, 제 1 장치는 HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득할 수 있다. 단계 S1220에서, 제 1 장치는 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신할 수 있다. 단계 S1230에서, 제 1 장치는 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시할 수 있다. 예를 들어, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
예를 들어, 상기 PUCCH 자원과 관련된 정보가 영인 것을 기반으로, 상기 PUCCH 자원은 상기 제 1 장치에 대하여 설정되지 않을 수 있다.
예를 들어, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 끝 이후의 첫 번째 심볼에서 개시될 수 있다.
예를 들어, 상기 적어도 하나의 SL 자원은 상기 PUCCH 자원과 관련될 수 있다.
예를 들어, 상기 DCI는 자원 풀의 인덱스를 포함할 수 있다. 예를 들어, 상기 자원 풀에 대하여 설정된 PSFCH(physical sidelink feedback channel) 자원의 주기가 영인 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 HARQ RTT 타이머가 만료된 이후에, 재전송 타이머를 개시할 수 있다. 예를 들어, 상기 재전송 타이머는 상기 재전송 그랜트가 수신될 때까지의 최대 구간(duration)일 수 있다. 예를 들어, 상기 재전송 그랜트는 상기 제 1 장치의 SL 재전송을 위해 상기 기지국에 의해 할당되는 적어도 하나의 SL 자원과 관련된 정보를 포함하는 DCI일 수 있다. 예를 들어, 상기 HARQ RTT 타이머 및 상기 재전송 타이머는 상기 제 1 장치 및 상기 기지국 사이에서 HARQ 프로세스 별로 설정되는 타이머일 수 있다.
예를 들어, 상기 DCI는 SL-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI일 수 있다.
예를 들어, 상기 DCI는 SL-CS(configured scheduling)-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI일 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 적어도 하나의 SL 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)를 스케줄링하기 위한 제 1 SCI를 제 2 장치에게 전송할 수 있다. 부가적으로, 예를 들어, 제 1 장치는 상기 적어도 하나의 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 또는 MAC PDU(medium access control protocol data unit)를 상기 제 2 장치에게 전송할 수 있다.
예를 들어, PSFCH(physical sidelink feedback channel) 자원이 자원 풀에 대하여 설정되는지 여부와 무관하게, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시될 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 1 장치(100)의 프로세서(102)는 HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하도록 송수신기(106)를 제어할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시할 수 있다. 예를 들어, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하도록 설정된 제 1 장치가 제공될 수 있다. 예를 들어, 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시할 수 있다. 예를 들어, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 제 1 단말을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및 상기 PUCCH 자원이 상기 제 1 단말에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시할 수 있다. 예를 들어, 상기 HARQ RTT 타이머는 상기 제 1 단말에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 1 장치로 하여금: HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하게 하고; PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하게 하고; 및 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하게 할 수 있다. 예를 들어, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
도 13은 본 개시의 일 실시 예에 따라, 기지국이 무선 통신을 수행하는 방법을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 13을 참조하면, 단계 S1310에서, 기지국은 HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송할 수 있다. 단계 S1320에서, 기지국은 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송할 수 있다. 예를 들어, 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시될 수 있고, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
예를 들어, 상기 PUCCH 자원과 관련된 정보가 영인 것을 기반으로, 상기 PUCCH 자원은 상기 제 1 장치에 대하여 설정되지 않을 수 있다.
예를 들어, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 끝 이후의 첫 번째 심볼에서 개시될 수 있다.
예를 들어, 상기 적어도 하나의 SL 자원은 상기 PUCCH 자원과 관련될 수 있다.
예를 들어, 상기 DCI는 자원 풀의 인덱스를 포함할 수 있다. 예를 들어, 상기 자원 풀에 대하여 설정된 PSFCH(physical sidelink feedback channel) 자원의 주기가 영인 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 HARQ RTT 타이머가 만료된 이후에, 재전송 타이머를 개시할 수 있다. 예를 들어, 상기 재전송 타이머는 상기 재전송 그랜트가 수신될 때까지의 최대 구간(duration)일 수 있다. 예를 들어, 상기 재전송 그랜트는 상기 제 1 장치의 SL 재전송을 위해 상기 기지국에 의해 할당되는 적어도 하나의 SL 자원과 관련된 정보를 포함하는 DCI일 수 있다. 예를 들어, 상기 HARQ RTT 타이머 및 상기 재전송 타이머는 상기 제 1 장치 및 상기 기지국 사이에서 HARQ 프로세스 별로 설정되는 타이머일 수 있다.
예를 들어, 상기 DCI는 SL-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI일 수 있다.
예를 들어, 상기 DCI는 SL-CS(configured scheduling)-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI일 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 적어도 하나의 SL 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)를 스케줄링하기 위한 제 1 SCI를 제 2 장치에게 전송할 수 있다. 부가적으로, 예를 들어, 제 1 장치는 상기 적어도 하나의 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 또는 MAC PDU(medium access control protocol data unit)를 상기 제 2 장치에게 전송할 수 있다.
예를 들어, PSFCH(physical sidelink feedback channel) 자원이 자원 풀에 대하여 설정되는지 여부와 무관하게, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시될 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 기지국(200)의 프로세서(202)는 HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하도록 송수신기(206)를 제어할 수 있다. 그리고, 기지국(200)의 프로세서(202)는 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송하도록 송수신기(206)를 제어할 수 있다. 예를 들어, 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시될 수 있고, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하도록 설정된 기지국이 제공될 수 있다. 예를 들어, 기지국은 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하고; 및 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송할 수 있다. 예를 들어, 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시될 수 있고, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 기지국을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 단말에게 전송하고; 및 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 단말에게 전송할 수 있다. 예를 들어, 상기 PUCCH 자원이 상기 제 1 단말에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 단말에 의해 개시될 수 있고, 상기 HARQ RTT 타이머는 상기 제 1 단말에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 기지국으로 하여금: HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하게 하고; 및 PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송하게 할 수 있다. 예를 들어, 상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시될 수 있고, 상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)일 수 있다.
본 개시의 다양한 실시 예는 상호 결합될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 14는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다. 도 14의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 14를 참조하면, 본 개시의 다양한 실시 예가 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 15는 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 도 15의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 15를 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 14의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 16은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다. 도 16의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 16을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 16의 동작/기능은 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 16의 하드웨어 요소는 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 15의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 15의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 15의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 16의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 16의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 15의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 17은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 14 참조). 도 17의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 17을 참조하면, 무선 기기(100, 200)는 도 15의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 15의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204)를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 15의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 14, 100a), 차량(도 14, 100b-1, 100b-2), XR 기기(도 14, 100c), 휴대 기기(도 14, 100d), 가전(도 14, 100e), IoT 기기(도 14, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 14, 400), 기지국(도 14, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 17에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 17의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 18은 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다. 도 18의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 18을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 17의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 19는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다. 도 19의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 19를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 17의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (20)

  1. 제 1 장치가 무선 통신을 수행하는 방법에 있어서,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하는 단계;
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하는 단계; 및
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하는 단계;를 포함하되,
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 방법.
  2. 제 1 항에 있어서,
    상기 PUCCH 자원과 관련된 정보가 영인 것을 기반으로, 상기 PUCCH 자원은 상기 제 1 장치에 대하여 설정되지 않는, 방법.
  3. 제 1 항에 있어서,
    상기 HARQ RTT 타이머는 상기 PDCCH 자원의 끝 이후의 첫 번째 심볼에서 개시되는, 방법.
  4. 제 1 항에 있어서,
    상기 적어도 하나의 SL 자원은 상기 PUCCH 자원과 관련되는, 방법.
  5. 제 1 항에 있어서,
    상기 DCI는 자원 풀의 인덱스를 포함하는, 방법.
  6. 제 5 항에 있어서,
    상기 자원 풀에 대하여 설정된 PSFCH(physical sidelink feedback channel) 자원의 주기가 영인 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시되는, 방법.
  7. 제 1 항에 있어서,
    상기 HARQ RTT 타이머가 만료된 이후에, 재전송 타이머를 개시하는 단계;를 더 포함하되,
    상기 재전송 타이머는 상기 재전송 그랜트가 수신될 때까지의 최대 구간(duration)인, 방법.
  8. 제 7 항에 있어서,
    상기 재전송 그랜트는 상기 제 1 장치의 SL 재전송을 위해 상기 기지국에 의해 할당되는 적어도 하나의 SL 자원과 관련된 정보를 포함하는 DCI인, 방법.
  9. 제 7 항에 있어서,
    상기 HARQ RTT 타이머 및 상기 재전송 타이머는 상기 제 1 장치 및 상기 기지국 사이에서 HARQ 프로세스 별로 설정되는 타이머인, 방법.
  10. 제 1 항에 있어서,
    상기 DCI는 SL-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI인, 방법.
  11. 제 1 항에 있어서,
    상기 DCI는 SL-CS(configured scheduling)-RNTI(radio network temporary identifier)에 의해 CRC(cyclic redundancy check) 스크램블된 DCI인, 방법.
  12. 제 1 항에 있어서,
    상기 적어도 하나의 SL 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel) 및 제 2 SCI(sidelink control information)를 스케줄링하기 위한 제 1 SCI를 제 2 장치에게 전송하는 단계; 및
    상기 적어도 하나의 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 또는 MAC PDU(medium access control protocol data unit)를 상기 제 2 장치에게 전송하는 단계;를 더 포함하는, 방법.
  13. 제 1 항에 있어서,
    PSFCH(physical sidelink feedback channel) 자원이 자원 풀에 대하여 설정되는지 여부와 무관하게, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 개시되는, 방법.
  14. 무선 통신을 수행하는 제 1 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고;
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하되,
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 제 1 장치.
  15. 제 1 단말을 제어하도록 설정된 장치(apparatus)에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하고;
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하고; 및
    상기 PUCCH 자원이 상기 제 1 단말에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하되,
    상기 HARQ RTT 타이머는 상기 제 1 단말에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 장치.
  16. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 제 1 장치로 하여금:
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 획득하게 하고;
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 기지국으로부터 수신하게 하고; 및
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 PDCCH 자원의 시간 영역 이후에 상기 HARQ RTT 타이머를 개시하게 하되,
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 비일시적 컴퓨터 판독가능 저장 매체.
  17. 기지국이 무선 통신을 수행하는 방법에 있어서,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하는 단계; 및
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송하는 단계;를 포함하되,
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시되고, 및
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 방법.
  18. 무선 통신을 수행하는 기지국에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하고; 및
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송하되,
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시되고, 및
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 기지국.
  19. 기지국을 제어하도록 설정된 장치(apparatus)에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 단말에게 전송하고; 및
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 단말에게 전송하되,
    상기 PUCCH 자원이 상기 제 1 단말에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 단말에 의해 개시되고, 및
    상기 HARQ RTT 타이머는 상기 제 1 단말에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 장치.
  20. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 기지국으로 하여금:
    HARQ(hybrid automatic repeat request) RTT(round trip time) 타이머와 관련된 정보를 포함하는 DRX(discontinuous reception) 설정(configuration)을 제 1 장치에게 전송하게 하고; 및
    PDCCH(physical downlink control channel) 자원을 기반으로, 적어도 하나의 SL(sidelink) 자원과 관련된 정보 및 PUCCH(physical uplink control channel) 자원과 관련된 정보를 포함하는 DCI(downlink control information)를 상기 제 1 장치에게 전송하게 하되,
    상기 PUCCH 자원이 상기 제 1 장치에 대하여 설정되지 않는 것을 기반으로, 상기 HARQ RTT 타이머는 상기 PDCCH 자원의 시간 영역 이후에 상기 제 1 장치에 의해 개시되고, 및
    상기 HARQ RTT 타이머는 상기 제 1 장치에 의해 재전송 그랜트가 기대되기 이전의 최소 구간(duration)인, 비일시적 컴퓨터 판독가능 저장 매체.
PCT/KR2022/006493 2021-05-06 2022-05-06 Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치 WO2022235115A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023568355A JP2024516861A (ja) 2021-05-06 2022-05-06 Nr v2xにおけるdciに基づいてsl drxタイマーを開始する方法及び装置
KR1020237037619A KR20240004422A (ko) 2021-05-06 2022-05-06 Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는방법 및 장치
CN202280038943.6A CN117480847A (zh) 2021-05-06 2022-05-06 在nr v2x中基于dci启动sl drx定时器的方法和设备
EP22799158.5A EP4322678A1 (en) 2021-05-06 2022-05-06 Method and apparatus for starting sl drx timer on basis of dci in nr v2x

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202163185351P 2021-05-06 2021-05-06
US63/185,351 2021-05-06
US202163186781P 2021-05-10 2021-05-10
US63/186,781 2021-05-10
KR20210060028 2021-05-10
KR10-2021-0060028 2021-05-10
KR10-2021-0060649 2021-05-11
KR20210060649 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022235115A1 true WO2022235115A1 (ko) 2022-11-10

Family

ID=83932271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006493 WO2022235115A1 (ko) 2021-05-06 2022-05-06 Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치

Country Status (4)

Country Link
EP (1) EP4322678A1 (ko)
JP (1) JP2024516861A (ko)
KR (1) KR20240004422A (ko)
WO (1) WO2022235115A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093517A (ko) * 2019-01-23 2020-08-05 엘지전자 주식회사 Nr v2x의 사이드링크 제어 정보의 전송
WO2021067583A2 (en) * 2019-10-01 2021-04-08 Ofinno, Llc Sidelink operation in new radio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093517A (ko) * 2019-01-23 2020-08-05 엘지전자 주식회사 Nr v2x의 사이드링크 제어 정보의 전송
WO2021067583A2 (en) * 2019-10-01 2021-04-08 Ofinno, Llc Sidelink operation in new radio

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "[AT113bis-e][707][V2X/SL] Uu DRX impact to support SL", 3GPP DRAFT; R2-2104473, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210412 - 20210420, 19 April 2021 (2021-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051996194 *
HUAWEI, HISILICON: "Discussion on SL communication impact on Uu DRX", 3GPP DRAFT; R2-2104113, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic Meeting; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052175377 *
VIVO: "SL DRX Configuration Impact on RAN1 and RAN2", 3GPP DRAFT; R2-2102815, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174399 *

Also Published As

Publication number Publication date
KR20240004422A (ko) 2024-01-11
JP2024516861A (ja) 2024-04-17
EP4322678A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2022154450A1 (ko) Nr v2x에서 harq 피드백에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022139491A1 (ko) Nr v2x에서 디폴트 drx 설정에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022149821A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치
WO2022203413A1 (ko) Nr v2x에서 수신 단말이 psfch를 기반으로 파워 세이빙 동작을 수행하는 방법 및 장치
WO2022203438A1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
WO2022131761A1 (ko) Nr v2x에서 자원 할당 정보에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022154475A1 (ko) Nr v2x에서 자원 할당 모드 2 동작 기반의 sl drx 타이머 동작 방법 및 장치
WO2022060201A1 (ko) Nr v2x에서 단말들 사이의 drx를 동기화하는 방법 및 장치
WO2022065927A1 (ko) Nr v2x에서 사이드링크 자원 풀 설정을 통해 사이드링크 drx를 스케줄링하는 방법 및 장치
WO2022060118A1 (ko) Nr v2x에서 sl drx를 기반으로 통신을 수행하는 방법 및 장치
WO2022154413A1 (ko) Nr v2x에서 단말의 모빌리티에 기반하여 sl drx를 수행하는 방법 및 장치
WO2022191576A1 (ko) Nr v2x에서 자원을 재선택하는 방법 및 장치
WO2022060119A1 (ko) Nr v2x에서 sl drx를 기반으로 통신을 수행하는 방법 및 장치
WO2022071765A1 (ko) Nr v2x에서 기본 sl drx 설정을 사용한 sl drx 동작 방법 및 장치
WO2022235115A1 (ko) Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치
WO2022149945A1 (ko) Nr v2x에서 자원 예약 주기 기반의 sl drx 동작 방법 및 장치
WO2022231141A1 (ko) Nr v2x에서 sl drx에 기반한 lcp를 수행하는 방법 및 장치
WO2022139492A1 (ko) Nr v2x에서 harq 피드백에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022131881A1 (ko) Nr v2x에서 sl drx 설정을 기반으로 sl 통신을 수행하는 방법 및 장치
WO2022225310A1 (ko) Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
WO2022131831A1 (ko) Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치
WO2022216127A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치
WO2022177167A1 (ko) Nr v2x에서 보조 정보를 전송하는 방법 및 장치
WO2023132743A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2022131732A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18559235

Country of ref document: US

Ref document number: 2023568355

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022799158

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022799158

Country of ref document: EP

Effective date: 20231110

WWE Wipo information: entry into national phase

Ref document number: 202280038943.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE