WO2022131831A1 - Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치 - Google Patents

Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치 Download PDF

Info

Publication number
WO2022131831A1
WO2022131831A1 PCT/KR2021/019227 KR2021019227W WO2022131831A1 WO 2022131831 A1 WO2022131831 A1 WO 2022131831A1 KR 2021019227 W KR2021019227 W KR 2021019227W WO 2022131831 A1 WO2022131831 A1 WO 2022131831A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
lch
mac pdu
sensing
pssch
Prior art date
Application number
PCT/KR2021/019227
Other languages
English (en)
French (fr)
Inventor
이승민
홍종우
백서영
박기원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US18/268,180 priority Critical patent/US20240057036A1/en
Priority to EP21907135.4A priority patent/EP4266776A1/en
Priority to KR1020237020156A priority patent/KR20230117579A/ko
Publication of WO2022131831A1 publication Critical patent/WO2022131831A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present disclosure relates to a wireless communication system.
  • a sidelink refers to a communication method in which a direct link is established between user equipment (UE), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • SL is being considered as a method to solve the burden of the base station due to the rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • RAT radio access technology
  • MTC massive machine type communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • a next-generation radio access technology in consideration of the like may be referred to as a new radio access technology (RAT) or a new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • SL HARQ sidelink hybrid automatic repeat request
  • sl-HARQ-FeedbackEnabled a parameter related to enabling of SL HARQ (sidelink hybrid automatic repeat request) feedback
  • PSFCH physical sidelink feedback channel
  • the UE may perform an SL HARQ feedback operation. For example, if the UE performs random selection, since there is no sensing result, if a collision occurs when receiving ACK/NACK based on PSFCH resources, the UE may have a problem with retransmission determination.
  • a method for a first device to perform wireless communication selects a first resource within a first selection window based on a first sensing, and a first MAC based on at least one logical channel (LCH) in which hybrid automatic repeat request (HARQ) feedback is enabled
  • LCH logical channel
  • HARQ hybrid automatic repeat request
  • PDU physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • a first device for performing wireless communication may include one or more memories for storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to select a first resource within a first selection window based on a first sensing, and at least one hybrid automatic repeat request (HARQ) feedback enabled.
  • HARQ hybrid automatic repeat request
  • a first medium access control (MAC) protocol data unit (PDU) is generated based on a logical channel (LCH), and to a second device, through a first physical sidelink control channel (PSCCH), a first physical sidelink shared (PSSCH) channel) for scheduling a first SCI (sidelink control information) based on the first resource, and transmits a second SCI and the first MAC PDU to the second device through the first PSSCH. It can be transmitted based on 1 resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared
  • an apparatus configured to control the first terminal may be provided.
  • one or more processors For example, one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to select a first resource within a first selection window based on a first sensing, and at least one hybrid automatic repeat request (HARQ) feedback enabled.
  • HARQ hybrid automatic repeat request
  • a first medium access control (MAC) protocol data unit (PDU) is generated based on a logical channel (LCH), and to a second terminal, through a first physical sidelink control channel (PSCCH), a first physical sidelink shared (PSSCH) channel) for scheduling a first SCI (sidelink control information) based on the first resource, and transmits a second SCI and the first MAC PDU to the second terminal through the first PSSCH. It can be transmitted based on 1 resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, cause the first device to: select, based on a first sensing, a first resource within a first selection window, wherein hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • MAC medium access control
  • PDU protocol data unit
  • LCH logical channel
  • PSCCH physical sidelink control channel
  • SCI sidelink control information
  • SCI scheduling (physical sidelink shared channel)
  • the MAC PDU may be transmitted based on the first resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • a method for a second device to perform wireless communication includes receiving, from a first device, first sidelink control information (SCI) for scheduling a first physical sidelink shared channel (PSSCH) through a first physical sidelink control channel (PSCCH), and the first device It may include receiving a second SCI and a first medium access control (MAC) protocol data unit (PDU) from the first PSSCH.
  • SCI sidelink control information
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • PDU medium access control protocol data unit
  • MAC medium access control protocol data unit
  • a first resource may be selected within a first selection window, and the first MAC PDU may be transmitted based on the first resource.
  • the first MAC PDU may be generated based on at least one logical channel (LCH) in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • a second device for performing wireless communication may include one or more memories to store instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to schedule, from a first device, a first physical sidelink shared channel (PSSCH), via a first physical sidelink control channel (PSCCH), a first sidelink (SCI). control information), and may receive a second SCI and a first medium access control (MAC) protocol data unit (PDU) from the first device through the first PSSCH.
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • SCI first sidelink
  • control information control information
  • PDU medium access control protocol data unit
  • a first resource may be selected within a first selection window, and the first MAC PDU may be transmitted based on the first resource.
  • the first MAC PDU may be generated based on at least one logical channel (LCH) in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • LCH logical channel
  • HARQ hybrid automatic repeat request
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • HARQ feedback When HARQ feedback is enabled, by disallowing random selection for the UE, it is possible to prevent collision with resources for receiving HARQ feedback.
  • FIG. 1 shows the structure of an NR system according to an embodiment of the present disclosure.
  • FIG. 2 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • FIG. 3 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • FIG. 4 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG 5 shows an example of a BWP according to an embodiment of the present disclosure.
  • FIG. 6 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • FIG 7 illustrates three types of casts according to an embodiment of the present disclosure.
  • FIG 8 shows an example in which a transmission resource to which the present disclosure can be applied is selected.
  • FIG 9 illustrates a procedure in which a transmitting terminal transmits a MAC PDU according to an embodiment of the present disclosure.
  • FIG. 10 illustrates a procedure in which a transmitting terminal retransmits a MAC PDU according to an embodiment of the present disclosure.
  • FIG. 11 illustrates a procedure for a transmitting terminal to transmit a plurality of MAC PDUs according to an embodiment of the present disclosure.
  • FIG. 12 illustrates a method for a first device to transmit a MAC PDU according to an embodiment of the present disclosure
  • FIG. 13 illustrates a method for a second device to receive a MAC PDU according to an embodiment of the present disclosure.
  • FIG. 14 shows a communication system 1 according to an embodiment of the present disclosure.
  • FIG. 15 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 16 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • FIG 17 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 18 illustrates a portable device according to an embodiment of the present disclosure.
  • FIG 19 illustrates a vehicle or an autonomous driving vehicle according to an embodiment of the present disclosure.
  • a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
  • a or B (A or B) may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B”, or “both A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “A and B (at least one of A and B)”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • the higher layer parameter may be a parameter set for the terminal, preset, or a predefined parameter.
  • the base station or the network may transmit higher layer parameters to the terminal.
  • the higher layer parameter may be transmitted through radio resource control (RRC) signaling or medium access control (MAC) signaling.
  • RRC radio resource control
  • MAC medium access control
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink - Adopt FDMA.
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a successor technology of LTE-A, and is a new clean-slate type mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz, to intermediate frequency bands from 1 GHz to 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • FIG. 1 shows the structure of an NR system according to an embodiment of the present disclosure.
  • the embodiment of FIG. 1 may be combined with various embodiments of the present disclosure.
  • a Next Generation-Radio Access Network may include a base station 20 that provides user plane and control plane protocol termination to a terminal 10 .
  • the base station 20 may include a next generation-Node B (gNB) and/or an evolved-NodeB (eNB).
  • the terminal 10 may be fixed or mobile, and other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device can be called
  • the base station may be a fixed station communicating with the terminal 10 , and may be referred to as a base transceiver system (BTS), an access point, or other terms.
  • BTS base transceiver system
  • the embodiment of FIG. 1 exemplifies a case including only gNB.
  • the base stations 20 may be connected to each other through an Xn interface.
  • the base station 20 may be connected to a 5G core network (5G Core Network: 5GC) through an NG interface. More specifically, the base station 20 may be connected to an access and mobility management function (AMF) 30 through an NG-C interface, and may be connected to a user plane function (UPF) 30 through an NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems. layer), L2 (layer 2, second layer), and L3 (layer 3, third layer).
  • OSI Open System Interconnection
  • L2 layer 2, second layer
  • L3 layer 3, third layer
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer is a radio resource between the terminal and the network. plays a role in controlling To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 2 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • the embodiment of FIG. 2 may be combined with various embodiments of the present disclosure.
  • Fig. 2 (a) shows a radio protocol stack of a user plane for Uu communication
  • Fig. 2 (b) is a radio protocol of a control plane for Uu communication.
  • FIG. 2C shows a radio protocol stack of a user plane for SL communication
  • FIG. 2D shows a radio protocol stack of a control plane for SL communication.
  • a physical layer provides an information transmission service to an upper layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel.
  • Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC service data units (SDUs).
  • SDUs RLC service data units
  • the RLC layer has a transparent mode (Transparent Mode, TM), an unacknowledged mode (Unacknowledged Mode, UM) and an acknowledged mode (Acknowledged Mode).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB is in the first layer (physical layer or PHY layer) and second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer, SDAP (Service Data Adaptation Protocol) layer) for data transfer between the terminal and the network.
  • Logical path provided by
  • Functions of the PDCP layer in the user plane include delivery of user data, header compression and ciphering.
  • Functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • the SDAP Service Data Adaptation Protocol
  • the SDAP layer performs mapping between QoS flows and data radio bearers, and marking QoS flow identifiers (IDs) in downlink and uplink packets.
  • Setting the RB means defining the characteristics of a radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the terminal When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the base station, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • the RRC_INACTIVE state is additionally defined, and the UE in the RRC_INACTIVE state may release the connection to the base station while maintaining the connection to the core network.
  • a downlink transmission channel for transmitting data from the network to the terminal there are a BCH (Broadcast Channel) for transmitting system information and a downlink SCH (Shared Channel) for transmitting user traffic or control messages.
  • BCH Broadcast Channel
  • SCH Shared Channel
  • downlink multicast or broadcast service traffic or control messages they may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • RACH random access channel
  • SCH uplink shared channel
  • the logical channels that are located above the transport channel and are mapped to the transport channel include a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH), and a Multicast Traffic Channel (MTCH). Channel), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • FIG. 3 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 3 may be combined with various embodiments of the present disclosure.
  • radio frames may be used in uplink and downlink transmission in NR.
  • the radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • a half-frame may include 5 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots in a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol), a single carrier-FDMA (SC-FDMA) symbol (or a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) symbol).
  • Table 1 below shows the number of symbols per slot (N slot symb ), the number of slots per frame (N frame,u slot ) and the number of slots per subframe (N subframe, u slot ) is exemplified.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, a subframe, a slot, or a TTI
  • a TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported. For example, when SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when SCS is 30 kHz/60 kHz, dense-urban, lower latency) and a wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band may be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed.
  • the two types of frequency ranges may be as shown in Table 3 below.
  • FR1 may mean "sub 6GHz range”
  • FR2 may mean “above 6GHz range”
  • mmW millimeter wave
  • FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
  • FIG. 4 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 4 may be combined with various embodiments of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier wave may include a maximum of N (eg, 5) BWPs. Data communication may be performed through the activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • a BWP (Bandwidth Part) may be a contiguous set of PRBs (physical resource blocks) in a given neurology.
  • the PRB may be selected from a contiguous subset of a common resource block (CRB) for a given neuronology on a given carrier.
  • CRB common resource block
  • the BWP may be at least one of an active BWP, an initial BWP, and/or a default BWP.
  • the UE may not monitor downlink radio link quality in a DL BWP other than an active DL BWP on a PCell (primary cell).
  • the UE may not receive a PDCCH, a physical downlink shared channel (PDSCH), or a reference signal (CSI-RS) (except for RRM) outside of the active DL BWP.
  • the UE may not trigger a CSI (Channel State Information) report for the inactive DL BWP.
  • CSI Channel State Information
  • the UE may not transmit a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) outside the active UL BWP.
  • the initial BWP may be given as a set of contiguous RBs for a maintaining minimum system information (RMSI) CORESET (control resource set) (set by a physical broadcast channel (PBCH)).
  • RMSI minimum system information
  • PBCH physical broadcast channel
  • the initial BWP may be given by a system information block (SIB) for a random access procedure.
  • SIB system information block
  • the default BWP may be set by a higher layer.
  • the initial value of the default BWP may be the initial DL BWP.
  • DCI downlink control information
  • BWP may be defined for SL.
  • the same SL BWP can be used for transmission and reception.
  • the transmitting terminal may transmit an SL channel or an SL signal on a specific BWP
  • the receiving terminal may receive an SL channel or an SL signal on the specific BWP.
  • the SL BWP may be defined separately from the Uu BWP, and the SL BWP may have separate configuration signaling from the Uu BWP.
  • the terminal may receive the configuration for the SL BWP from the base station / network.
  • the terminal may receive the configuration for Uu BWP from the base station/network.
  • the SL BWP may be configured (in advance) for the out-of-coverage NR V2X terminal and the RRC_IDLE terminal within the carrier. For a UE in RRC_CONNECTED mode, at least one SL BWP may be activated in a carrier.
  • FIG. 5 shows an example of a BWP according to an embodiment of the present disclosure.
  • the embodiment of FIG. 5 may be combined with various embodiments of the present disclosure.
  • a common resource block may be a numbered carrier resource block from one end to the other end of a carrier band.
  • the PRB may be a numbered resource block within each BWP.
  • Point A may indicate a common reference point for a resource block grid (resource block grid).
  • BWP may be set by a point A, an offset from the point A (N start BWP ), and a bandwidth (N size BWP ).
  • the point A may be an external reference point of the PRB of the carrier to which subcarrier 0 of all neumonologies (eg, all neumannologies supported by the network in that carrier) is aligned.
  • the offset may be the PRB spacing between point A and the lowest subcarrier in a given numerology.
  • the bandwidth may be the number of PRBs in a given neurology.
  • V2X or SL communication will be described.
  • a Sidelink Synchronization Signal is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS)
  • S-SSS Sidelink Secondary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences may be used for S-PSS
  • length-127 Gold sequences may be used for S-SSS.
  • the terminal may detect an initial signal using S-PSS and may obtain synchronization.
  • the UE may acquire detailed synchronization using S-PSS and S-SSS, and may detect a synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information is information related to SLSS, duplex mode (Duplex Mode, DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, It may be a subframe offset, broadcast information, or the like.
  • the payload size of PSBCH may be 56 bits including 24-bit CRC (Cyclic Redundancy Check).
  • S-PSS, S-SSS, and PSBCH may be included in a block format supporting periodic transmission (eg, SL SS (Synchronization Signal)/PSBCH block, hereinafter S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (ie, SCS and CP length) as a Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH) in the carrier, and the transmission bandwidth is (pre)set SL Sidelink (BWP) BWP).
  • the bandwidth of the S-SSB may be 11 resource blocks (RBs).
  • the PSBCH may span 11 RBs.
  • the frequency position of the S-SSB may be set (in advance). Therefore, the UE does not need to perform hypothesis detection in frequency in order to discover the S-SSB in the carrier.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode in LTE may be referred to as an LTE transmission mode
  • a transmission mode in NR may be referred to as an NR resource allocation mode.
  • (a) of FIG. 6 shows a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 6 shows a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • (b) of FIG. 6 shows a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of FIG. 6 shows a terminal operation related to NR resource allocation mode 2.
  • the base station may schedule an SL resource to be used by the terminal for SL transmission.
  • the base station may transmit information related to the SL resource and/or information related to the UL resource to the first terminal.
  • the UL resource may include a PUCCH resource and/or a PUSCH resource.
  • the UL resource may be a resource for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to a dynamic grant (DG) resource and/or information related to a configured grant (CG) resource from the base station.
  • the CG resource may include a CG type 1 resource or a CG type 2 resource.
  • the DG resource may be a resource configured/allocated by the base station to the first terminal through downlink control information (DCI).
  • the CG resource may be a (periodic) resource configured/allocated by the base station to the first terminal through DCI and/or RRC message.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message including information related to the CG resource to the first terminal, and the base station transmits DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
  • the first terminal may transmit a PSCCH (eg, sidelink control information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH eg, sidelink control information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (eg, 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information eg, NACK information or ACK information
  • the first terminal may transmit/report HARQ feedback information to the base station through PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information generated by the first terminal based on a preset rule.
  • the DCI may be a DCI for scheduling of an SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1.
  • DCI format 3_0 is used for scheduling NR PSCCH and NR PSSCH in one cell.
  • the following information is transmitted through DCI format 3_0 having CRC scrambled by SL-RNTI or SL-CS-RNTI.
  • N fb_timing is the number of entries of the upper layer parameter sl-PSFCH-ToPUCCH.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station / network or the preset SL resource.
  • the configured SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the UE may perform SL communication by selecting a resource by itself within a set resource pool.
  • the terminal may select a resource by itself within the selection window by performing a sensing (sensing) and resource (re)selection procedure.
  • the sensing may be performed in units of subchannels.
  • a first terminal that has selected a resource from the resource pool by itself may transmit a PSCCH (eg, SCI (Sidelink Control Information) or 1 st -stage SCI) to a second terminal using the resource.
  • a PSCCH eg, SCI (Sidelink Control Information) or 1 st -stage SCI
  • the first terminal may transmit a PSSCH (eg, 2nd -stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal. Referring to (a) or (b) of FIG. 6 , for example, a first terminal may transmit an SCI to a second terminal on a PSCCH.
  • the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) to the second terminal on the PSCCH and/or the PSSCH.
  • the second terminal may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the first terminal.
  • SCI transmitted on PSCCH may be referred to as 1 st SCI, 1 st SCI, 1 st -stage SCI or 1 st -stage SCI format
  • SCI transmitted on PSSCH is 2 nd SCI, 2 nd SCI, 2 It may be referred to as nd -stage SCI or 2nd -stage SCI format.
  • 1 st -stage SCI format may include SCI format 1-A
  • 2 nd -stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • SCI format 1-A is used for scheduling of 2nd -stage SCI on PSSCH and PSSCH.
  • the following information is transmitted using SCI format 1-A.
  • N rsv_period is the number of entries in the upper layer parameter sl-ResourceReservePeriodList if the upper layer parameter sl-MultiReserveResource is set; Otherwise, 0 bit
  • N pattern is the number of DMRS patterns set by the upper layer parameter sl-PSSCH-DMRS-TimePatternList
  • Additional MCS table indicator - 1 bit if one MCS table is set by the upper layer parameter sl-Additional-MCS-Table; 2 bits if two MCS tables are set by the upper layer parameter sl-Additional-MCS-Table; otherwise 0 bit
  • SCI format 2-A In HARQ operation, when HARQ-ACK information includes ACK or NACK, or when HARQ-ACK information includes only NACK, or feedback of HARQ-ACK information In the absence of this, SCI format 2-A is used for decoding the PSSCH.
  • the following information is transmitted through SCI format 2-A.
  • SCI format 2-B is used for decoding PSSCH, and is used together with HARQ operation when HARQ-ACK information includes only NACK or there is no feedback of HARQ-ACK information. do.
  • SCI format 2-B is used for decoding PSSCH.
  • the following information is transmitted through SCI format 2-B.
  • the first terminal may receive the PSFCH.
  • the first terminal and the second terminal may determine the PSFCH resource, and the second terminal may transmit the HARQ feedback to the first terminal using the PSFCH resource.
  • step In S640 the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH.
  • the UE In order for the UE to transmit a PSFCH including HARQ-ACK information in response to PSSCH reception, it may be indicated by an SCI format for scheduling PSSCH reception in one or more subchannels from N PSSCH subchannels .
  • the UE provides HARQ-ACK information including ACK or NACK, or only NACK.
  • the UE may be instructed by a higher layer not to transmit the PSFCH in response to receiving the PSSCH.
  • the UE receives a PSSCH from the resource pool and the HARQ feedback activation/deactivation indicator field included in the associated SCI format 2-A or SCI format 2-B has a value of 1, the UE receives HARQ through PSFCH transmission from the resource pool.
  • - Provides ACK information.
  • the UE transmits a PSFCH in a first slot, wherein the first slot contains a PSFCH resource and is a slot after the minimum number of slots provided by sl-MinTimeGapPSFCH-r16 of the resource pool after the last slot of PSSCH reception.
  • the UE is provided with a set M PSFCH PRB,set of a PRB in the resource pool for PSFCH transmission in the PRB of the resource pool by sl-PSFCH-RB-Set-r16.
  • M PSFCH subch,slot M PSFCH PRB,set / (N subch N PSFCH PSSCH ), 0 ⁇ i ⁇ N PSFCH PSSCH , 0 ⁇ j ⁇ N subch , and assignment of j starting in ascending order of i continues in ascending order.
  • the UE expects M PSFCH PRB,set to be a multiple of N subch ⁇ N PSFCH PSSCH .
  • N PSFCH CS is the number of cyclic shift pairs for the resource pool, and based on an indication by a higher layer,
  • slot PRB is associated with the start subchannel of the corresponding PSSCH
  • N PSFCH type N PSSCH subch and N PSSCH subch ⁇ M PSFCH subch,slot PRB is associated with one or more subchannels among N PSSCH subch subchannels of the corresponding PSSCH.
  • PSFCH resources are first indexed in ascending order of PRB index among N PSFCH type ⁇ M PSFCH subch,slot PRBs, and then indexed in ascending order of cyclic shift pair index among N PSFCH CS cyclic shift pairs.
  • the UE determines an index of a PSFCH resource for PSFCH transmission in response to PSSCH reception as (P ID + M ID ) mod R PSFCH PRB,CS .
  • P ID is a physical layer source ID provided by SCI format 2-A or 2-B for scheduling PSSCH reception
  • M ID is the UE detects SCI format 2-A in which the cast type indicator field value is “01”. In one case, it is the ID of the UE receiving the PSSCH indicated by the upper layer, otherwise M ID is 0.
  • the UE determines the m 0 value for calculating the cyclic shift ⁇ value from the N PSFCH CS and from the cyclic shift pair index corresponding to the PSFCH resource index using Table 8.
  • Cyclic shift pair index 0 Cyclic shift pair index 1
  • Cyclic shift pair index 2 Cyclic shift pair index 3
  • Cyclic shift pair index 4 Cyclic shift pair index 5 One 0 - - - - - 2 0 3 - - - - 3 0 2 4 - - - 6 0 One 2 3 4 5
  • the UE determines a value m cs for calculating the cyclic shift ⁇ value.
  • the UE applies one cyclic shift among cyclic shift pairs to a sequence used for PSFCH transmission.
  • FIG. 7 illustrates three types of casts according to an embodiment of the present disclosure.
  • the embodiment of FIG. 7 may be combined with various embodiments of the present disclosure.
  • FIG. 7(a) shows broadcast type SL communication
  • FIG. 7(b) shows unicast type SL communication
  • FIG. 7(c) shows groupcast type SL communication.
  • the terminal may perform one-to-one communication with another terminal.
  • the terminal may perform SL communication with one or more terminals in a group to which the terminal belongs.
  • SL groupcast communication may be replaced with SL multicast communication, SL one-to-many communication, or the like.
  • SL congestion control sidelink congestion control
  • the terminal determines whether the energy measured in the unit time/frequency resource is above a certain level, and determines the amount and frequency of its transmission resource according to the ratio of the unit time/frequency resource in which the energy of the predetermined level or more is observed.
  • a ratio of time/frequency resources in which energy of a certain level or higher is observed may be defined as a channel congestion ratio (CBR).
  • CBR channel congestion ratio
  • the UE may measure CBR for a channel/frequency. Additionally, the UE may transmit the measured CBR to the network/base station.
  • CBR means the number of sub-channels in which the UE measures a Received Signal Strength Indicator (RSSI) in sub-channel units for a specific period (eg, 100 ms) and has a value greater than or equal to a preset threshold value as a result of the measurement of RSSI.
  • RSSI Received Signal Strength Indicator
  • the CBR may mean a ratio of subchannels having a value greater than or equal to a preset threshold among subchannels during a specific period.
  • the UE may perform one CBR measurement for one resource pool.
  • the PSFCH resource may be excluded from the CBR measurement.
  • the terminal may measure a channel occupancy ratio (CR). Specifically, the terminal measures the CBR, and the terminal according to the CBR, the maximum value (CRlimitk) of the channel occupancy ratio (Channel occupancy Ratio k, CRk) that can be occupied by traffic corresponding to each priority (eg, k) ) can be determined. For example, the terminal may derive the maximum value (CRlimitk) of the channel occupancy for each traffic priority based on a predetermined table of CBR measurement values. For example, in the case of traffic having a relatively high priority, the terminal may derive a maximum value of a relatively large channel occupancy.
  • CR channel occupancy ratio
  • the terminal may perform congestion control by limiting the sum of the channel occupancy rates of traffic having a priority k of traffic lower than i to a predetermined value or less. According to this method, a stronger channel occupancy limit may be applied to traffic having a relatively low priority.
  • the terminal may perform SL congestion control by using methods such as adjusting the size of transmission power, dropping packets, determining whether to retransmit, and adjusting the size of the transmission RB (MCS adjustment).
  • Table 11 shows an example of SL CBR and SL RSSI.
  • the slot index may be based on a physical slot index.
  • FIG 8 shows an example in which a transmission resource to which the present disclosure can be applied is selected.
  • two transmissions per MAC PDU may be made.
  • a resource for initial transmission when a resource for initial transmission is selected, a resource for retransmission may be reserved with a predetermined time gap.
  • the terminal can identify transmission resources reserved by another terminal or resources used by other terminals through sensing within the sensing window, and after excluding them within the selection window, randomly select from among the remaining resources with little interference. You can choose a resource.
  • the UE may decode the PSCCH including information on the period of the reserved resources within the sensing window, and measure the PSSCH RSRP from the resources determined periodically based on the PSCCH.
  • the UE may exclude resources in which the PSSCH RSRP value exceeds a threshold within the selection window. Thereafter, the terminal may randomly select a sidelink resource from among the remaining resources within the selection window.
  • the terminal may measure a received signal strength indication (RSSI) of periodic resources within the sensing window to determine resources with little interference (eg, resources corresponding to the lower 20%).
  • the terminal may randomly select a sidelink resource from among the resources included in the selection window among the periodic resources. For example, when the UE fails to decode the PSCCH, the UE may use the above method.
  • RSSI received signal strength indication
  • the SL DRX configuration may include one or more pieces of information listed below.
  • SL drx-onDurationTimer may be information on the duration at the beginning of a DRX Cycle.
  • the start period of the DRX cycle may be information on the period in which the terminal operates in the active mode to transmit or receive sidelink data.
  • SL drx-SlotOffset may be information on the delay before starting the drx-onDurationTimer of the DRX-on duration timer.
  • SL drx-InactivityTimer indicates a new sidelink transmission and reception for the MAC entity after the duration after the PSCCH occasion in which a PSCCH indicates a new sidelink transmission and reception for the MAC. entity).
  • the transmitting terminal instructs PSSCH transmission through the PSCCH
  • the transmitting terminal operates in an active mode while SL drx-InactivityTimer is operating, so that the transmitting terminal may transmit the PSSCH to the receiving terminal.
  • the receiving terminal when the receiving terminal is instructed that the transmitting terminal transmits the PSSCH through PSCCH reception, the receiving terminal operates in an active mode while SL drx-InactivityTimer is operating, so that the receiving terminal receives the PSSCH from the transmitting terminal can do.
  • SL drx-RetransmissionTimer may be information on the maximum duration until a retransmission is received.
  • the SL drx-RetransmissionTimer may be set for each HARQ process.
  • SL drx-LongCycleStartOffset defines the subframe where the Long and Short DRX cycle begins. Cycle starts).
  • SL drx-ShortCycle may be information on the Short DRX cycle.
  • SL drx-ShortCycle may be optional information.
  • the SL drx-ShortCycleTimer may be information on the duration the UE shall follow the Short DRX cycle.
  • SL drx-ShortCycleTimer may be optional information.
  • the SL drx-HARQ-RTT-Timer may be information on the minimum duration before an assignment for HARQ retransmission is expected by the MAC entity.
  • the SL drx-HARQ-RTT-Timer may be configured for each HARQ process.
  • NR V2X of release 16 did not support a power saving operation of UE (user equipment), and NR V2X of release 17 UE (eg, power saving UE) of the power saving operation can be supported.
  • a sidelink (Sidelink, hereinafter SL) discontinuous reception (DRX) pattern (eg, DRX cycle (Cycle), DRX onduration (Onduration), DRX offduration) (Offduration)
  • DRX discontinuous reception
  • DRX configuration Configuration
  • SL DRX cycle Cycle
  • SL DRX onduration Onduration
  • SL DRX offduration Offduration
  • a timer for supporting SL DRX operation etc.
  • on-duration interval in which sidelink reception/transmission can be performed
  • off-duration interval operating in a sleep mode
  • the operation of the transmitting terminal and the receiving terminal needs to be defined.
  • the names of timers are exemplary, and timers performing the same/similar function based on the contents described in each timer are the same regardless of the name It can be considered a similar timer.
  • SL-P2X-ResourceSelectionConfig-r14 SEQUENCE ⁇ partialSensing-r14 ENUMERATED ⁇ true ⁇ OPTIONAL, -- Need OR randomSelection-r14 ENUMERATED ⁇ true ⁇ OPTIONAL -- Need OR
  • LTE V2X operation of Release 14 may be applied as it is in NR.
  • a parameter related to enabling of SL HARQ feedback eg, sl-HARQ-FeedbackEnabled
  • the UE may perform an SL HARQ feedback operation. For example, if the UE performs random selection, since there is no sensing result, if a collision occurs when receiving ACK/NACK based on PSFCH resources, the UE may have a problem with retransmission determination.
  • partial sensing or random selection may be configured for each logical channel or logical channel group.
  • partial sensing or random selection for each service provided by the V2X layer may be set for the logical channel.
  • the terminal when performing Logical Channel Prioritization (LCP), the terminal may perform LCP only with logical channels configured based on partial sensing.
  • LCP Logical Channel Prioritization
  • the UE may perform LCP only with logical channels configured based on random selection.
  • the terminal may disable a parameter (eg, sl-HARQ-Feedback) related to whether SL HARQ feedback is enabled in consideration of collision with other resources. . That is, by configuring the LCP only with logical channels selected through partial sensing, the UE can prioritize in preparation for resource selection based on random selection.
  • a parameter eg, sl-HARQ-Feedback
  • the parameter related to the LCH when a parameter related to an LCH is configured, only “partial sensing” for an LCH set to “HARQ feedback enabled” may be allowed/configured for the corresponding LCH.
  • the parameter related to the LCH may include at least one of a parameter related to whether HARQ feedback is enabled, a parameter related to partial sensing, a parameter related to random selection, or a parameter related to SL priority.
  • the LCH set to “HARQ feedback enabled” has a higher priority than the preset priority, and when it is related to a service with tight requirements (eg, latency, reliability), the LCH and Based on at least one of the case where the CBR measurement value of the related resource pool is greater than the preset threshold or the remaining battery amount of the terminal is greater than the preset threshold, only “partial sensing” can be allowed/set for the LCH have.
  • tight requirements eg, latency, reliability
  • only partial sensing may be allowed/configured for the LCH.
  • an LCH for which HARQ feedback is enabled is related to a service with tight requirements (eg, latency, reliability)
  • only partial sensing may be allowed/configured for the LCH.
  • the CBR measurement value of the resource pool related to the LCH in the LCH for which HARQ feedback is enabled is greater than a preset threshold
  • only partial sensing may be allowed/configured for the LCH.
  • the LCH for which HARQ feedback is enabled has a remaining battery amount of the terminal related to the LCH greater than a preset threshold, only partial sensing may be allowed/configured for the LCH.
  • the parameter related to the LCH may include at least one of a parameter related to whether HARQ feedback is enabled, a parameter related to partial sensing, a parameter related to random selection, or a parameter related to SL priority.
  • the LCH set to “HARQ feedback disabled” has a lower priority than the preset priority, if it is related to a service with loose requirements (eg latency, reliability) , "random selection" is allowed for the LCH based on at least one of the case where the CBR measurement value of the resource pool related to the LCH is less than the preset threshold, or the remaining battery amount of the terminal is less than the preset threshold. can be set.
  • partial sensing and random selection may be configured for the LCH set to “HARQ feedback disabled”.
  • an LCH set to “HARQ feedback disabled” has a lower priority than a preset priority, if it is related to a service with loose requirements (eg latency, reliability) , partial sensing and random selection are allowed for the LCH based on at least one of the case where the CBR measurement value of the resource pool related to the LCH is less than the preset threshold, or the remaining battery amount of the terminal is less than the preset threshold /can be set.
  • partial sensing and random selection which one of the two is selected/applied by the UE may be defined by implementation.
  • the terminal is configured with an LCH having a higher priority than a preset priority, an LCH related to a service with tight requirements (eg, latency, reliability), and the LCH “Partial sensing” may be performed based on at least one of an LCH in which the CBR measurement value of the related resource pool is greater than a preset threshold value, or a case in which the remaining battery amount of the terminal is greater than a preset threshold value.
  • the resource selection type may include partial sensing and random selection.
  • the data may be data related to the SL LCH. That is, it may be a form of reusing the operation of Release-16.
  • a resource selection type related to the SL LCH of the highest priority on the MAC PDU may be applied.
  • a resource selection type related to SL LCH may be a resource selection type related to SL LCH data.
  • a preset resource selection type may be applied.
  • a partial sensing operation may always be applied.
  • a random selection operation may always be applied.
  • a partial sensing operation may be applied.
  • a random selection operation may be applied.
  • the resource selection type may be determined according to the UE implementation.
  • a resource selection type related to LCH of data having a relatively small remaining packet delay budget (PDB) value is applied. can do.
  • PDB packet delay budget
  • data of the same resource selection type may be multiplexed into the same MAC PDU.
  • the data may be data related to the SL LCH. That is, for example, even though data of the same destination ID and/or data of the same cast type exist, different resource selection types may generate separate or independent MAC PDUs.
  • LCH data with HARQ feedback enabled and LCH data with HARQ feedback disabled may not be multiplexed into the same MAC PDU.
  • an SL LCH configured with partial sensing may be preferentially reflected in the MAC PDU. That is, the SL LCH in which partial sensing is configured may be determined with a relatively high priority.
  • the SL LCH in which the random selection is configured may be preferentially reflected in the MAC PDU. That is, the SL LCH in which the random selection is configured may be determined with a relatively high priority.
  • the terminal may perform the partial sensing operation to select a transmission resource related to the LCH. For example, if a partial sensing operation is configured for an LCH having the highest priority among LCHs mapped to the SL grant, the UE may perform a partial sensing operation to select a transmission resource related to the LCH.
  • the SL grant may include the selected SL grant.
  • the terminal may perform the partial sensing operation to select a transmission resource related to the LCH. For example, if a partial sensing operation is configured for an LCH having the highest priority among LCHs mapped to the SL process, the UE may perform a partial sensing operation to select a transmission resource related to the LCH.
  • the terminal performs a partial sensing operation to select a transmission resource related to the LCH.
  • a partial sensing operation is configured for an LCH having the highest priority in at least one LCH for which data is available among LCHs mapped to the SL grant
  • the terminal is partially configured to select a transmission resource related to the LCH.
  • a sensing operation may be performed.
  • the SL grant may include a selected SL grant.
  • the terminal performs a partial sensing operation to select a transmission resource related to the LCH.
  • a partial sensing operation is configured for an LCH having the highest priority in at least one LCH for which data is available among LCHs mapped to the SL process
  • the terminal is partially configured to select a transmission resource related to the LCH.
  • a sensing operation may be performed.
  • the terminal may perform the partial sensing operation to select a transmission resource related to the service. For example, if a partial sensing operation is set for a service having the highest priority among the services in which the terminal is interested, the terminal may perform the partial sensing operation to select a transmission resource related to the service.
  • the data may be data related to the SL LCH. That is, for example, the operation of Release-16 may be reused.
  • SL DRX related to the SL LCH of the highest priority is applied and/or a parameter related to SL DRX may be considered.
  • the MAC PDU may be transmitted based on whether SL DRX related to the SL LCH of the highest priority on the MAC PDU is applied and/or based on a parameter related to SL DRX.
  • the SL LCH may be data related to the SL LCH.
  • whether preset SL DRX is applied and/or parameters related to SL DRX may be considered.
  • whether preset SL DRX is applied and/or parameters related to SL DRX may not be considered.
  • the MAC PDU may be transmitted based on whether a preset SL DRX is applied and/or a parameter related to SL DRX.
  • the data may include data related to SL LSH.
  • the UE transmits data corresponding to whether different SL DRX is applied and/or a parameter related to SL DRX is transmitted as an independent or separate MAC PDU.
  • the SL LCH may include data related to the SL LCH.
  • the UE implements the application of SL DRX It is possible to determine whether and/or parameters related to SL DRX.
  • the UE transmits data with a relatively small remaining PDB value. Whether or not SL DRX related to the LCH is applied and/or a parameter related to SL DRX may be followed.
  • the terminal has a relatively long minimum required communication distance Whether SL DRX related to LCH of data is applied and/or parameters related to SL DRX may be followed.
  • LCH data with HARQ feedback enabled and LCH data with HARQ feedback disabled may not be multiplexed into the same MAC PDU.
  • the SL LCH in which the SL DRX operation is configured may be preferentially reflected in the MAC PDU. That is, the SL LCH on which the SL DRX operation is configured may be determined with a relatively high priority.
  • the SL LCH in which the SL DRX operation is not configured may be preferentially reflected in the MAC PDU. That is, the SL LCH in which the SL DRX operation is not configured may be determined with a relatively high priority.
  • the same logical channel group (LCG) ID may not be configured for LCHs in which different resource selection types are configured or allowed. That is, the UE may not expect the same LCG ID for LCHs in which different resource selection types are configured or allowed.
  • service type For example, service type, priority, requirement, HARQ feedback enabled (enabled), HARQ feedback disabled (disabled), LCH / MAC PDU, CBR measurement value of the resource pool, SL cast type (eg, uni Cast, groupcast, broadcast), SL grabcast HARQ feedback option (eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback), SL mode 1 CG type (eg, SL Among elements/parameters such as CG type 1/2)), partial sensing may be specifically or differently set or allowed for at least one.
  • SL cast type eg, uni Cast, groupcast, broadcast
  • SL grabcast HARQ feedback option eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback
  • SL mode 1 CG type eg, SL Among elements/parameters such as CG type 1/2
  • partial sensing may be specifically or differently set or allowed for at least one.
  • service type For example, service type, priority, requirement, HARQ feedback enabled (enabled), HARQ feedback disabled (disabled), LCH / MAC PDU, CBR measurement value of the resource pool, SL cast type (eg, uni Cast, groupcast, broadcast), SL grabcast HARQ feedback option (eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback), SL mode 1 CG type (eg, SL Among the elements/parameters such as CG type 1/2)), random selection may be specifically or differently set or allowed for at least one.
  • SL cast type eg, uni Cast, groupcast, broadcast
  • SL grabcast HARQ feedback option eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback
  • SL mode 1 CG type eg, SL Among the elements/parameters such as CG type 1/2
  • random selection may be specifically or differently set or allowed for at least one.
  • service type For example, service type, priority, requirement, HARQ feedback enabled (enabled), HARQ feedback disabled (disabled), LCH / MAC PDU, CBR measurement value of the resource pool, SL cast type (eg, uni Cast, groupcast, broadcast), SL grabcast HARQ feedback option (eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback), SL mode 1 CG type (eg, SL Among the elements/parameters such as CG type 1/2)), partial sensing and random selection for at least one may be specifically or differently set or allowed.
  • SL cast type eg, uni Cast, groupcast, broadcast
  • SL grabcast HARQ feedback option eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback
  • SL mode 1 CG type eg, SL Among the elements/parameters such as CG type 1/2
  • partial sensing and random selection for at least one may be
  • service type For example, service type, priority, requirement, HARQ feedback enabled (enabled), HARQ feedback disabled (disabled), LCH / MAC PDU, CBR measurement value of the resource pool, SL cast type (eg, uni Cast, groupcast, broadcast), SL grabcast HARQ feedback option (eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback), SL mode 1 CG type (eg, SL Among elements/parameters such as CG type 1/2)), various embodiments of the present disclosure may be specifically or differently set or allowed for at least one.
  • SL cast type eg, uni Cast, groupcast, broadcast
  • SL grabcast HARQ feedback option eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback
  • SL mode 1 CG type eg, SL Among elements/parameters such as CG type 1/2
  • various embodiments of the present disclosure may be specifically or differently set
  • service type For example, service type, priority, requirement, HARQ feedback enabled (enabled), HARQ feedback disabled (disabled), LCH / MAC PDU, CBR measurement value of the resource pool, SL cast type (eg, uni Cast, groupcast, broadcast), SL grabcast HARQ feedback option (eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback), SL mode 1 CG type (eg, SL Among elements/parameters such as CG type 1/2)), parameters related to various embodiments of the present disclosure may be specifically or differently set or allowed for at least one.
  • SL cast type eg, uni Cast, groupcast, broadcast
  • SL grabcast HARQ feedback option eg, NACK only feedback, ACK/NACK feedback, TX-RX distance-based NACK only feedback
  • SL mode 1 CG type eg, SL Among elements/parameters such as CG type 1/2
  • parameters related to various embodiments of the present disclosure
  • setting means that the base station informs the terminal through a predefined physical layer channel/signal or higher layer channel/signal (eg, SIB, RRC, MAC CE). form may be included.
  • configuration or “designation” is provided through pre-configuration or another UE is provided through a pre-defined physical layer channel/signal or higher layer channel/signal (eg, SL MAC CE, PC5 RRC). It may include a form to inform.
  • various embodiments of the present disclosure may be combined with each other.
  • the SL DRX timer mentioned below may be used for the following purposes.
  • the SL DRX on-duration timer may be used in a period in which a UE performing SL DRX operation should basically operate as an active time to receive a PSCCH/PSSCH of a counterpart UE.
  • the SL DRX deactivation timer may be used in a period for extending the SL DRX duration period, which is a period in which a UE performing SL DRX operation should basically operate as an active time for PSCCH/PSSCH reception of a counterpart UE. That is, for example, the SL DRX on-duration timer may be extended by the SL DRX deactivation timer period.
  • the UE may start the SL DRX deactivation timer to extend the SL DRX duration timer.
  • the SL DRX HARQ RTT timer may be used in a sleep mode operation period until a UE performing SL DRX operation receives a retransmission packet (or PSSCH assignment) transmitted from a counterpart UE. That is, for example, when the UE starts the SL DRX HARQ RTT timer, the other UE determines that it will not transmit a sidelink retransmission packet to itself until the SL DRX HARQ RTT timer expires, and the UE determines that during the timer It can operate in sleep mode.
  • the SL DRX retransmission timer may be used during an active time period for a UE performing SL DRX operation to receive a retransmission packet (or PSSCH assignment) transmitted from a counterpart UE.
  • the UE may monitor reception of a retransmission sidelink packet (or PSSCH allocation) transmitted by the counterpart UE.
  • Various embodiments of the present disclosure include parameters or default/common SL DRX settings included in Default/Common SL DRX settings, Default/Common SL DRX patterns, Default/Common SL DRX settings
  • the timer included in the common (Default / Common) SL DRX configuration the UE-Pair Specific SL DRX configuration, the UE-pair specific SL DRX pattern, and the parameters included in the UE-pair specific SL DRX configuration, It may be applied to a timer included in the UE-pair specific SL DRX configuration.
  • 'Onduration' may be an active time (Active Time) period.
  • the active time may be a period in which a wake-up state (the RF module is “on”) operates in order to receive/transmit a wireless signal.
  • 'Offduration may be a sleep time period.
  • the sleep time period may be a period in which the sleep mode state (the RF module is “off”) is operated for power saving.
  • the terminal may be allowed to operate as an active time for a short time for a sensing operation/transmission operation even in a sleep time.
  • parameters (eg, threshold values) related to various embodiments of the present disclosure may include resource pools, congestion levels, service priorities, service types, QoS requirements (eg, latency). ), reliability (Reliability)), PQI, traffic type (eg, periodic generation, aperiodic generation), or SL transmission resource allocation mode (mode 1, mode 2) according to, can be set differently or independently .
  • a resource pool eg, a resource pool in which PSFCH is configured, a resource pool in which PSFCH is not configured
  • service/packet type e.g, URLLC/EMBB traffic, reliability, latency
  • PQI e.g., URLLC/EMBB traffic, reliability, latency
  • PQI e.g., URLLC/EMBB traffic, reliability, latency
  • PQI e.g., URLLC/EMBB traffic, reliability, latency
  • PQI eg unicast, groupcast, broadcast
  • congestion level eg CBR
  • HARQ feedback enabled MAC PDU transmission HARQ feedback disabled MAC PDU transmission
  • PUCCH-based SL HARQ feedback reporting operation Whether to set, whether to perform pre-emption, whether to perform re-evaluation, whether to perform re-evaluation, whether to perform preemption-based
  • parameter setting values related to various embodiments of the present disclosure include resource pool (eg, resource pool in which PSFCH is configured, resource pool in which PSFCH is not configured), service/packet type, priority, QoS requirements ( For example, URLLC/EMBB traffic, reliability, latency), PQI, PFI, cast type (eg unicast, groupcast, broadcast), congestion level (eg CBR), resource pool congestion level, SL HARQ feedback scheme (eg, NACK feedback only, ACK/NACK feedback scheme), HARQ feedback enabled MAC PDU transmission, HARQ feedback disabled MAC PDU transmission, PUCCH-based SL HARQ feedback Whether to set the reporting operation, whether to perform pre-emption, whether to perform re-evaluation, whether to perform re-evaluation, preemption-based resource reselection, in case, re-evaluation-based resource reselection, L1 source identifier, L1 Destination Identifier, L2 Source Identifier, L2 Destination Identifier,
  • “constant time” operates as an active time (Active Time) for a predefined time for the UE to receive a sidelink signal or sidelink data from a counterpart UE. It may be time to For example, "a period of time” is a timer (SL DRX retransmission timer, SL DRX inactivity timer, RX UE's DRX operation) for the UE to receive a sidelink signal or sidelink data from the other UE as active time. It may be a time that operates as an active time as much as the timer) time guaranteed to be able to do so.
  • Various embodiments of the present disclosure may be applied to a millimeter wave (mmWave) SL operation. Whether to apply various embodiments of the present disclosure may be applied to a millimeter wave (mmWave) SL operation. Parameter setting values related to various embodiments of the present disclosure may be applied to a millimeter wave (mmWave) SL operation.
  • FIG. 9 illustrates a procedure in which a transmitting terminal transmits a MAC PDU according to an embodiment of the present disclosure.
  • the embodiment of FIG. 9 may be combined with various embodiments of the present disclosure.
  • the transmitting terminal may select a first resource.
  • the transmitting terminal may select the first resource within the first selection window based on sensing. Or, for example, the transmitting terminal may randomly select the first resource.
  • the transmitting terminal may generate a MAC (medium access control) protocol data unit (PDU) based on at least one logical channel (LCH).
  • PDU protocol data unit
  • the transmitting terminal may generate a MAC PDU based on at least one LCH in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • the transmitting terminal may generate a MAC PDU based on at least one LCH in which HARQ feedback is disabled.
  • step S930 the transmitting terminal transmits first sidelink control information (SCI) for scheduling a first physical sidelink shared channel (PSSCH) to the receiving terminal through a first physical sidelink control channel (PSCCH) based on the first resource can be sent to
  • the transmitting terminal may transmit the second SCI and the MAC PDU to the receiving terminal through the first PSSCH based on the first resource.
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • random selection of the first resource may be allowed based on the fact that the at least one LCH has HARQ feedback disabled.
  • random selection and partial sensing of the first resource may be allowed based on that HARQ feedback is disabled for the at least one LCH.
  • the sensing may include partial sensing.
  • the transmitting terminal may determine at least one first candidate slot within the first selection window.
  • the transmitting terminal may perform the sensing for at least one first sensing slot related to the at least one first candidate slot.
  • the first LCH related to the MAC PDU may be an LCH having the highest priority among the at least one LCH.
  • the priority of the first LCH may be higher than a preset threshold value.
  • the sensing may be allowed based on the first LCH having a priority higher than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • the remaining battery amount of the transmitting terminal may be greater than a preset threshold value.
  • the sensing may be permitted based on the fact that the at least one LCH has HARQ feedback enabled and the remaining battery amount of the transmitting terminal is greater than a preset threshold value.
  • a channel busy ratio (CBR) measurement value of the resource pool related to the first LCH may be greater than a preset threshold value.
  • the sensing may be allowed based on a first LCH having a CBR value of a resource pool greater than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • FIG. 10 illustrates a procedure in which a transmitting terminal retransmits a MAC PDU according to an embodiment of the present disclosure.
  • the embodiment of FIG. 10 may be combined with various embodiments of the present disclosure.
  • the transmitting terminal may select a first resource.
  • the transmitting terminal may select the first resource within the first selection window based on sensing. Or, for example, the transmitting terminal may randomly select the first resource.
  • the transmitting terminal may generate a MAC PDU based on at least one LCH.
  • the transmitting terminal may generate a MAC PDU based on at least one LCH for which HARQ feedback is enabled.
  • the transmitting terminal may transmit the first SCI for scheduling the first PSSCH to the receiving terminal through the first PSCCH based on the first resource.
  • the transmitting terminal may transmit the second SCI and the MAC PDU to the receiving terminal through the first PSSCH based on the first resource.
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • the sensing may include partial sensing.
  • the transmitting terminal may determine at least one first candidate slot within the first selection window.
  • the transmitting terminal may perform the sensing for at least one first sensing slot related to the at least one first candidate slot.
  • the first LCH related to the MAC PDU may be an LCH having the highest priority among the at least one LCH.
  • the priority of the first LCH may be higher than a preset threshold value.
  • the sensing may be permitted based on the first LCH having a priority higher than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • the remaining battery amount of the transmitting terminal may be greater than a preset threshold value.
  • the sensing may be permitted based on the fact that the at least one LCH has HARQ feedback enabled and the remaining battery amount of the transmitting terminal is greater than a preset threshold value.
  • the CBR measurement value of the resource pool related to the first LCH may be greater than a preset threshold value.
  • the sensing may be allowed based on a first LCH having a CBR value of a resource pool greater than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • the transmitting terminal may receive the HARQ NACK for the MAC PDU from the receiving terminal through a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the transmitting terminal may select a second resource for retransmitting the MAC PDU. For example, the transmitting terminal may perform sensing to select a second resource for retransmitting the MAC PDU based on the received HARQ NACK. For example, the transmitting terminal may select the second resource for retransmitting the MAC PDU within the second selection window based on sensing.
  • step S1070 the transmitting terminal may retransmit the MAC PDU to the receiving terminal.
  • FIG. 11 illustrates a procedure for a transmitting terminal to transmit a plurality of MAC PDUs according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • the transmitting terminal may generate a plurality of MAC PDUs.
  • the transmitting terminal may select the first resource.
  • the transmitting terminal may select the first resource within the first selection window based on the first sensing.
  • the transmitting terminal may randomly select the third resource.
  • the transmitting terminal may generate the first MAC PDU based on at least one LCH in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • the transmitting terminal may generate the second MAC PDU based on at least one LCH in which HARQ feedback is disabled.
  • HARQ hybrid automatic repeat request
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for at least one LCH.
  • a random selection of the third resource may be allowed based on that at least one LCH has HARQ feedback disabled.
  • random selection and partial sensing of the third resource may be allowed based on the fact that at least one LCH has HARQ feedback disabled.
  • the first sensing may include partial sensing.
  • the transmitting terminal may determine at least one first candidate slot within the first selection window.
  • the transmitting terminal may perform the first sensing for at least one first sensing slot related to the at least one first candidate slot.
  • the first LCH associated with the first MAC PDU may be an LCH having the highest priority among the at least one LCH.
  • the priority of the first LCH may be higher than a preset threshold value.
  • the first sensing may be permitted based on the first LCH having a priority higher than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • the remaining battery amount of the transmitting terminal may be greater than a preset threshold value.
  • the first sensing may be allowed based on the fact that the at least one LCH has HARQ feedback enabled and the remaining battery amount of the transmitting terminal is greater than a preset threshold value.
  • a channel busy ratio (CBR) measurement value of the resource pool related to the first LCH may be greater than a preset threshold value.
  • the first sensing may be allowed based on a first LCH having a CBR value of a resource pool greater than a preset threshold value among at least one LCH in which the HARQ feedback is enabled.
  • sensing of a third resource for transmitting the second MAC PDU may be allowed.
  • the third resource may be selected based on a resource selection type for at least one LCH in which the HARQ feedback is disabled.
  • the resource selection type may include a type of selecting a resource by sensing and a type of selecting a resource by random selection.
  • the resource selection type may be set based on a sidelink service from a higher layer.
  • the at least one LCH may be multiplexed into the same MAC PDU.
  • the at least one LCH may be multiplexed into the same MAC PDU.
  • a resource for transmitting the multiplexed MAC PDU may be selected based on a resource selection type related to the LCH of the highest priority among the at least one LCH.
  • the transmitting terminal may transmit a plurality of MAC PDUs to the receiving terminal.
  • the transmitting terminal may transmit to the receiving terminal through the first PSCCH, first sidelink control information (SCI) for scheduling the first PSSCH based on the first resource.
  • the transmitting terminal may transmit third sidelink control information (SCI) for scheduling the second PSSCH to the receiving terminal through the second PSCCH based on the third resource.
  • SCI format of the first SCI and the third SCI may be 1-A.
  • the first SCI and the third SCI may be 1 st -step-SCI.
  • the transmitting terminal may transmit the second SCI and the first MAC PDU to the receiving terminal through the first PSSCH based on the first resource.
  • the transmitting terminal may transmit the fourth SCI and the second MAC PDU to the receiving terminal through the second PSSCH based on the third resource.
  • the SCI format of the second SCI and the fourth SCI may be 2-A or 2-B.
  • the second SCI and the fourth SCI may be 2 nd -step-SCI.
  • the transmitting terminal may receive the HARQ feedback for the first MAC PDU from the receiving terminal through the PSFCH. For example, based on that the HARQ feedback is NACK, the transmitting terminal may perform the second sensing to select a second resource for retransmitting the first MAC PDU. For example, the transmitting terminal may select the second resource within a second selection window based on the second sensing.
  • FIG. 12 illustrates a method for a first device to transmit a MAC PDU according to an embodiment of the present disclosure.
  • the embodiment of FIG. 12 may be combined with various embodiments of the present disclosure.
  • the first device 100 may select a first resource within the first selection window based on the first sensing.
  • the first device 100 may generate a first MAC PDU based on at least one LCH for which HARQ feedback is enabled.
  • the first device 100 may transmit the first SCI for scheduling the first PSSCH to the second device 200 through the first PSCCH based on the first resource.
  • the first device 100 may transmit the second SCI and the first MAC PDU to the second device 200 through the first PSSCH based on the first resource.
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • the first device 100 may receive the HARQ feedback for the first MAC PDU through a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the first sensing may include partial sensing.
  • second sensing may be performed to select a second resource for retransmitting the first MAC PDU based on the HARQ feedback being negative-acknowledgement (NACK).
  • the second resource may be selected within a second selection window based on the second sensing.
  • the first LCH associated with the first MAC PDU may be an LCH having the highest priority among the at least one LCH.
  • the priority of the first LCH may be higher than a preset threshold value.
  • a channel busy ratio (CBR) measurement value of the resource pool related to the first LCH may be greater than a preset threshold value.
  • the remaining battery amount of the first device 100 may be greater than a preset threshold value.
  • the first device 100 may transmit a third SCI for scheduling the second PSSCH to the second device 200 through the second PSCCH.
  • the first device 100 may transmit the fourth SCI and the second MAC PDU to the second device 200 through the second PSSCH.
  • the second MAC PDU may be generated based on at least one LCH in which HARQ feedback is disabled. For example, based on a priority associated with the second MAC PDU being higher than a preset threshold, sensing of a third resource for transmitting the second MAC PDU may be allowed. For example, random selection of the third resource for transmitting the second MAC PDU may be allowed. For example, sensing and random selection of a third resource for transmitting the second MAC PDU may be allowed.
  • the third resource may be selected based on a resource selection type for at least one LCH in which the HARQ feedback is disabled.
  • the resource selection type may include a type of selecting a resource by sensing and a type of selecting a resource by random selection.
  • the resource selection type may be configured based on a sidelink service from a higher layer.
  • the processor 102 of the first device 100 may select the first resource within the first selection window based on the first sensing. And, for example, the processor 102 of the first device 100 may generate a first MAC PDU based on at least one LCH in which HARQ feedback is enabled. And, for example, the processor 102 of the first device 100 provides the second device 200 with a first SCI for scheduling the first PSSCH through the first PSCCH based on the first resource.
  • the transceiver 106 may be controlled to transmit. And, for example, the processor 102 of the first device 100 sends the second SCI and the first MAC PDU to the second device 200 through the first PSSCH based on the first resource.
  • the transceiver 106 may be controlled to transmit.
  • a first device for performing wireless communication may include one or more memories for storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to select a first resource within a first selection window based on a first sensing, and at least one hybrid automatic repeat request (HARQ) feedback enabled.
  • HARQ hybrid automatic repeat request
  • a first medium access control (MAC) protocol data unit (PDU) is generated based on a logical channel (LCH), and to a second device, through a first physical sidelink control channel (PSCCH), a first physical sidelink shared (PSSCH) channel) for scheduling a first SCI (sidelink control information) based on the first resource, and transmits a second SCI and the first MAC PDU to the second device through the first PSSCH. It can be transmitted based on 1 resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared
  • an apparatus configured to control the first terminal may be provided.
  • one or more processors For example, one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to select a first resource within a first selection window based on a first sensing, and at least one hybrid automatic repeat request (HARQ) feedback enabled.
  • HARQ hybrid automatic repeat request
  • a first medium access control (MAC) protocol data unit (PDU) is generated based on a logical channel (LCH), and to a second terminal, through a first physical sidelink control channel (PSCCH), a first physical sidelink shared (PSSCH) channel) for scheduling a first SCI (sidelink control information) based on the first resource, and transmits a second SCI and the first MAC PDU to the second terminal through the first PSSCH. It can be transmitted based on 1 resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, cause the first device to: select, based on a first sensing, a first resource within a first selection window, wherein hybrid automatic repeat request (HARQ) feedback is enabled.
  • HARQ hybrid automatic repeat request
  • MAC medium access control
  • PDU protocol data unit
  • LCH logical channel
  • PSCCH physical sidelink control channel
  • SCI sidelink control information
  • SCI scheduling (physical sidelink shared channel)
  • the MAC PDU may be transmitted based on the first resource. For example, random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • FIG. 13 illustrates a method for a second device to receive a MAC PDU according to an embodiment of the present disclosure.
  • the embodiment of FIG. 13 may be combined with various embodiments of the present disclosure.
  • the second device 200 may receive the first SCI for scheduling the first PSSCH from the first device 100 through the first PSCCH.
  • the second device 200 may receive the second SCI and the first MAC PDU from the first device 100 through the first PSSCH.
  • the first resource may be selected within the first selection window.
  • the first MAC PDU may be transmitted based on the first resource.
  • the first MAC PDU may be generated based on at least one logical channel (LCH) in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • LCH logical channel
  • HARQ hybrid automatic repeat request
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • the second device 200 may transmit HARQ feedback for the first MAC PDU through a physical sidelink feedback channel (PSFCH).
  • PSFCH physical sidelink feedback channel
  • the first sensing may include partial sensing.
  • second sensing may be performed to select a second resource for retransmitting the first MAC PDU based on the HARQ feedback being negative-acknowledgement (NACK).
  • the second resource may be selected within a second selection window based on the second sensing.
  • the first LCH associated with the first MAC PDU may be an LCH having the highest priority among the at least one LCH.
  • the priority of the first LCH may be higher than a preset threshold value.
  • a channel busy ratio (CBR) measurement value of the resource pool related to the first LCH may be greater than a preset threshold value.
  • the second device 200 may receive a third SCI for scheduling the second PSSCH from the first device 100 through the second PSCCH.
  • the second device 200 may receive the fourth SCI and the second MAC PDU from the first device 100 through the second PSSCH.
  • the second MAC PDU may be generated based on at least one LCH in which HARQ feedback is disabled. For example, based on a priority associated with the second MAC PDU being higher than a preset threshold, sensing of a third resource for transmitting the second MAC PDU may be allowed. For example, random selection of the third resource for transmitting the second MAC PDU may be allowed. For example, sensing and random selection of a third resource for transmitting the second MAC PDU may be allowed.
  • the third resource may be selected based on a resource selection type for at least one LCH in which the HARQ feedback is disabled.
  • the resource selection type may include a type of selecting a resource by sensing and a type of selecting a resource by random selection.
  • the resource selection type may be configured based on a sidelink service from a higher layer.
  • the processor 202 of the second device 200 configures the transceiver 206 to receive the first SCI for scheduling the first PSSCH from the first device 100 via the first PSCCH. can be controlled And, for example, the processor 202 of the second device 200 may control the transceiver 206 to receive the second SCI and the first MAC PDU from the first device 100 through the first PSSCH. can
  • a second device for performing wireless communication may include one or more memories to store instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to schedule, from a first device, a first physical sidelink shared channel (PSSCH), via a first physical sidelink control channel (PSCCH), a first sidelink (SCI). control information), and may receive a second SCI and a first medium access control (MAC) protocol data unit (PDU) from the first device through the first PSSCH.
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • SCI first sidelink
  • control information control information
  • PDU medium access control protocol data unit
  • a first resource may be selected within a first selection window, and the first MAC PDU may be transmitted based on the first resource.
  • the first MAC PDU may be generated based on at least one logical channel (LCH) in which hybrid automatic repeat request (HARQ) feedback is enabled.
  • LCH logical channel
  • HARQ hybrid automatic repeat request
  • random selection for the first resource may not be allowed based on HARQ feedback enabled for the at least one LCH.
  • Various embodiments of the present disclosure may be implemented independently. Alternatively, various embodiments of the present disclosure may be implemented in combination with or merged with each other. For example, although various embodiments of the present disclosure have been described based on a 3GPP system for convenience of description, various embodiments of the present disclosure may be extendable to systems other than the 3GPP system. For example, various embodiments of the present disclosure are not limited only to direct communication between terminals, and may be used in uplink or downlink, and in this case, a base station or a relay node may use the method proposed according to various embodiments of the present disclosure.
  • information on whether the method according to various embodiments of the present disclosure is applied may be provided by the base station to the terminal or the second device 200 to the receiving terminal using a predefined signal (eg, a physical layer). signal or higher layer signal).
  • a predefined signal eg, a physical layer. signal or higher layer signal
  • information on rules according to various embodiments of the present disclosure may include a pre-defined signal (eg, a physical layer signal or a higher layer signal) from the base station to the terminal or the second device 200 to the receiving terminal. Signal) can be defined to notify.
  • 14 shows a communication system 1 according to an embodiment of the present disclosure. 14 may be combined with various embodiments of the present disclosure.
  • a communication system 1 to which various embodiments of the present disclosure are applied includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. not.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication.
  • LPWAN Low Power Wide Area Network
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), communication between base stations 150c (e.g. relay, IAB (Integrated Access Backhaul), etc.)
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • FIG. 15 illustrates a wireless device according to an embodiment of the present disclosure.
  • the embodiment of FIG. 15 may be combined with various embodiments of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 14 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled to the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • FIG. 16 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • the embodiment of FIG. 16 may be combined with various embodiments of the present disclosure.
  • the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 .
  • the operations/functions of FIG. 16 may be performed by the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 15 .
  • the hardware elements of FIG. 16 may be implemented in the processors 102 , 202 and/or transceivers 106 , 206 of FIG. 15 .
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 15 .
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 15
  • block 1060 may be implemented in the transceivers 106 and 206 of FIG. 15 .
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 16 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
  • the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 16 .
  • the wireless device eg, 100 and 200 in FIG. 15
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
  • FIG. 17 illustrates a wireless device according to an embodiment of the present disclosure.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 14 ).
  • the embodiment of FIG. 17 may be combined with various embodiments of the present disclosure.
  • wireless devices 100 and 200 correspond to wireless devices 100 and 200 of FIG. 15 , and various elements, components, units/units, and/or modules ) can be composed of
  • the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
  • the communication unit may include communication circuitry 112 and transceiver(s) 114 .
  • communication circuitry 112 may include one or more processors 102 , 202 and/or one or more memories 104 , 204 of FIG. 15 .
  • the transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 15 .
  • the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 .
  • control unit 120 transmits information stored in the memory unit 130 to the outside (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally (eg, through the communication unit 110 ) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
  • the additional element 140 may be configured in various ways according to the type of the wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • a wireless device may include a robot ( FIGS. 14 and 100a ), a vehicle ( FIGS. 14 , 100b-1 , 100b-2 ), an XR device ( FIGS. 14 and 100c ), a mobile device ( FIGS. 14 and 100d ), and a home appliance. (FIG. 14, 100e), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device ( FIGS. 14 and 400 ), a base station ( FIGS. 14 and 200 ), and a network node.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be all interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
  • each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 17 will be described in more detail with reference to the drawings.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c . ) may be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 17 .
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling the components of the portable device 100 .
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support a connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
  • various forms eg, text, voice, image, video, haptic
  • FIG. 19 illustrates a vehicle or an autonomous driving vehicle according to an embodiment of the present disclosure.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
  • the embodiment of FIG. 19 may be combined with various embodiments of the present disclosure.
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 17, respectively.
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomous driving vehicles.

Abstract

일 실시 예에 있어서, 제 1 장치가 무선 통신을 수행하는 방법이 제안된다. 상기 방법은, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하는 단계를 포함할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.

Description

NR V2X에서 LCH에 기반하여 자원을 선택하는 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것이다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
한편, 사이드링크 통신에서, 단말에게 풀을 설정하는 경우, 랜덤 선택 또는 부분 센싱(partial sensing)인지 여부가 항상 설정될 수 있다. 이때, 예를 들어, 단말이 랜덤 선택 또는 부분 센싱(partial sensing)을 수행하는 경우, SL HARQ(sidelink hybrid automatic repeat request) 피드백의 인에이블과 관련된 파라미터(예를 들어, sl-HARQ-FeedbackEnabled)가 인에이블(enabled)되고, PSFCH(physical sidelink feedback channel)가 설정되면, 단말은 SL HARQ 피드백 동작을 수행할 수 있다. 예를 들어, 만약 단말이 랜덤 선택을 수행하면, 센싱 결과가 없기 때문에, PSFCH 자원을 기반으로 ACK/NACK 수신 시 충돌이 발생할 경우, 단말은 재전송 판단에 대한 문제가 발생할 수 있다.
본 개시의 일 실시 예에 따르면, 제 1 장치가 무선 통신을 수행하는 방법이 제안된다. 상기 방법은, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하는 단계를 포함할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 1 장치가 제공될 수 있다. 예를 들어, 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 제 1 단말을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 단말에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 단말에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 명령들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령들은, 실행될 때, 제 1 장치로 하여금: 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하게 하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하게 하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하게 하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하게 할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 제 2 장치가 무선 통신을 수행하는 방법이 제안된다. 상기 방법은, 제 1 장치로부터, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 수신하고, 상기 제 1 장치로부터, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC(medium access control) PDU(protocol data unit)를 수신하는 단계를 포함할 수 있다. 예를 들어, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택되고, 상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송될 수 있다. 예를 들어, 상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성될 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 2 장치가 제공될 수 있다. 예를 들어, 제 2 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 장치로부터, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 수신하고, 상기 제 1 장치로부터, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC(medium access control) PDU(protocol data unit)를 수신할 수 있다. 예를 들어, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택되고, 상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송될 수 있다. 예를 들어, 상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성될 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
HARQ 피드백이 인에이블된 경우, 랜덤 선택을 단말에 대해 허용하지 않음으로써, HARQ 피드백을 수신하는 자원에 대한 충돌을 방지할 수 있다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다.
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다.
도 8은 본 개시가 적용될 수 있는 전송 자원이 선택되는 예를 나타낸다.
도 9는 본 개시의 일 실시 예에 따른, 전송 단말이 MAC PDU를 전송하는 절차를 나타낸다.
도 10은 본 개시의 일 실시 예에 따른, 전송 단말이 MAC PDU를 재전송하는 절차를 나타낸다.
도 11은 본 개시의 일 실시 예에 따른, 전송 단말이 복수의 MAC PDU들을 전송하는 절차를 나타낸다.
도 12는 본 개시의 일 실시 예에 따른, 제 1 장치가 MAC PDU를 전송하는 방법을 나타낸다
도 13은 본 개시의 일 실시 예에 따른, 제 2 장치가 MAC PDU를 수신하는 방법을 나타낸다.
도 14는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 15는 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 16은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 17은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 18은 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다.
도 19는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDCCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
이하의 설명에서 '~일 때, ~ 경우(when, if, in case of)'는 '~에 기초하여/기반하여(based on)'로 대체될 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
본 명세서에서, 상위 계층 파라미터(higher layer parameter)는 단말에 대하여 설정되거나, 사전에 설정되거나, 사전에 정의된 파라미터일 수 있다. 예를 들어, 기지국 또는 네트워크는 상위 계층 파라미터를 단말에게 전송할 수 있다. 예를 들어, 상위 계층 파라미터는 RRC(radio resource control) 시그널링 또는 MAC(medium access control) 시그널링을 통해서 전송될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 사용된 용어 및 기술 중에서 구체적으로 설명되지 않은 용어 및 기술에 대해서는, 본 명세서가 출원되기 전에 공개된 무선 통신 표준 문서가 참조될 수 있다.
도 1은 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다. 도 1의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 1을 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1의 실시 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer 1, 제 1 계층), L2(layer 2, 제 2 계층), L3(layer 3, 제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 2는 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 2의 (a)는 Uu 통신을 위한 사용자 평면(user plane)의 무선 프로토콜 스택(stack)을 나타내고, 도 2의 (b)는 Uu 통신을 위한 제어 평면(control plane)의 무선 프로토콜 스택을 나타낸다. 도 2의 (c)는 SL 통신을 위한 사용자 평면의 무선 프로토콜 스택을 나타내고, 도 2의 (d)는 SL 통신을 위한 제어 평면의 무선 프로토콜 스택을 나타낸다.
도 2를 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층, SDAP(Service Data Adaptation Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 3은 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 3을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수(Nslot symb), 프레임 별 슬롯의 개수(Nframe,u slot)와 서브프레임 별 슬롯의 개수(Nsubframe,u slot)를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 450MHz - 6000MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 4는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
이하, BWP(Bandwidth Part) 및 캐리어에 대하여 설명한다.
BWP(Bandwidth Part)는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH(physical downlink shared channel) 또는 CSI-RS(reference signal)(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH(physical broadcast channel)에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI(downlink control information)를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 예를 들어, 단말은 Uu BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 5는 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 5의 실시 예에서, BWP는 세 개라고 가정한다.
도 5를 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart BWP) 및 대역폭(Nsize BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
SLSS(Sidelink Synchronization Signal)는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC(Cyclic Redundancy Check)를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
도 6은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 6의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 6의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 6의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 6의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S600에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.
단계 S610에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S640에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다.
이하, DCI 포맷 3_0의 일 예를 설명한다.
DCI 포맷 3_0은 하나의 셀에서 NR PSCCH와 NR PSSCH의 스케줄링을 위해 사용된다.
다음 정보는 SL-RNTI 또는 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 통해 전송된다.
- 자원 풀 인덱스 - ceiling (log2 I) 비트, 여기서 I는 상위 계층 파라미터 sl-TxPoolScheduling에 의해 설정된 전송을 위한 자원 풀의 개수이다.
- 시간 갭 - 상위 계층 파라미터 sl-DCI-ToSL-Trans에 의해 결정된 3 비트
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 초기 전송에 대한 서브채널 할당의 가장 낮은 인덱스 - ceiling (log2(NSL subChannel)) 비트
- SCI 포맷 1-A 필드: 주파수 자원 할당, 시간 자원 할당
- PSFCH-to-HARQ 피드백 타이밍 지시자 - ceiling (log2 Nfb_timing) 비트, 여기서 Nfb_timing은 상위 계층 파라미터 sl-PSFCH-ToPUCCH의 엔트리의 개수이다.
- PUCCH 자원 지시자 - 3 비트
- 설정 인덱스(configuration index) - UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되지 않은 경우 0비트; 그렇지 않으면, 3 비트이다. UE가 SL-CS-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 모니터링하도록 설정되는 경우, 이 필드는 SL-RNTI에 의해 스크램블된 CRC를 가지는 DCI 포맷 3_0을 위해 예약된다.
- 카운터 사이드링크 할당 인덱스 - 2 비트, UE가 pdsch-HARQ-ACK-Codebook = dynamic으로 설정된 경우 2 비트, UE가 pdsch-HARQ-ACK-Codebook = semi-static으로 설정된 경우 2 비트
- 필요한 경우, 패딩 비트
도 6의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S610에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S620에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S630에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 도 6의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다.
이하, SCI 포맷 1-A의 일 예를 설명한다.
SCI 포맷 1-A는 PSSCH 및 PSSCH 상의 2nd-stage SCI의 스케줄링을 위해 사용된다.
다음 정보는 SCI 포맷 1-A를 사용하여 전송된다.
- 우선 순위 - 3 비트
- 주파수 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 ceiling (log2(NSL subChannel(NSL subChannel+1)/2)) 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 ceiling log2(NSL subChannel(NSL subChannel+1)(2NSL subChannel+1)/6) 비트
- 시간 자원 할당 - 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 2로 설정된 경우 5 비트; 그렇지 않으면, 상위 계층 파라미터 sl-MaxNumPerReserve의 값이 3으로 설정된 경우 9 비트
- 자원 예약 주기 - ceiling (log2 Nrsv_period) 비트, 여기서 Nrsv_period는 상위 계층 파라미터 sl-MultiReserveResource가 설정된 경우 상위 계층 파라미터 sl-ResourceReservePeriodList의 엔트리의 개수; 그렇지 않으면, 0 비트
- DMRS 패턴 - ceiling (log2 Npattern) 비트, 여기서 Npattern은 상위 계층 파라미터 sl-PSSCH-DMRS-TimePatternList에 의해 설정된 DMRS 패턴의 개수
- 2nd-stage SCI 포맷 - 표 5에 정의된 대로 2 비트
- 베타_오프셋 지시자 - 상위 계층 파라미터 sl-BetaOffsets2ndSCI에 의해 제공된 대로 2 비트
- DMRS 포트의 개수 - 표 6에 정의된 대로 1 비트
- 변조 및 코딩 방식 - 5 비트
- 추가 MCS 테이블 지시자 - 한 개의 MCS 테이블이 상위 계층 파라미터 sl-Additional-MCS-Table에 의해 설정된 경우 1 비트; 두 개의 MCS 테이블이 상위 계층 파라미터 sl- Additional-MCS-Table에 의해 설정된 경우 2 비트; 그렇지 않으면 0 비트
- PSFCH 오버헤드 지시자 - 상위 계층 파라미터 sl-PSFCH-Period = 2 또는 4인 경우 1 비트; 그렇지 않으면 0 비트
- 예약된 비트 - 상위 계층 파라미터 sl-NumReservedBits에 의해 결정된 비트 수로, 값은 0으로 설정된다.
Value of 2nd-stage SCI format field 2nd-stage SCI format
00 SCI format 2-A
01 SCI format 2-B
10 Reserved
11 Reserved
Value of the Number of DMRS port field Antenna ports
0 1000
1 1000 and 1001
이하, SCI 포맷 2-A의 일 예를 설명한다.HARQ 동작에서, HARQ-ACK 정보가 ACK 또는 NACK을 포함하는 경우, 또는 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-A는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-A를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 캐스트 타입 지시자 - 표 7에 정의된 대로 2 비트
- CSI 요청 - 1 비트
Value of Cast type indicator Cast type
00 Broadcast
01 Groupcast when HARQ-ACK information includes ACK or NACK
10 Unicast
11 Groupcast when HARQ-ACK information includes only NACK
이하, SCI 포맷 2-B의 일 예를 설명한다.SCI 포맷 2-B는 PSSCH의 디코딩에 사용되며, HARQ-ACK 정보가 NACK만을 포함하거나 HARQ-ACK 정보의 피드백이 없을 때 HARQ 동작과 함께 사용된다.
HARQ 동작에서 HARQ-ACK 정보가 NACK만을 포함하는 경우, 또는 HARQ-ACK 정보의 피드백이 없는 경우, SCI 포맷 2-B는 PSSCH의 디코딩에 사용된다.
다음 정보는 SCI 포맷 2-B를 통해 전송된다.
- HARQ 프로세스 넘버 - 4 비트
- 새로운 데이터 지시자(new data indicator) - 1 비트
- 중복 버전(redundancy version) - 2 비트
- 소스 ID - 8 비트
- 데스티네이션 ID - 16 비트
- HARQ 피드백 활성화/비활성화 지시자 - 1 비트
- 존 ID - 12 비트
- 통신 범위 요구 사항 - 상위 계층 파라미터 sl-ZoneConfigMCR-Index에 의해 결정되는 4 비트
도 6의 (a) 또는 (b)를 참조하면, 단계 S630에서, 제 1 단말은 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.도 6의 (a)를 참조하면, 단계 S640에서, 제 1 단말은 PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
이하, 사이드링크에서 HARQ-ACK을 보고하는 UE 절차에 대하여 설명한다.
UE는 PSSCH 수신에 대한 응답으로, HARQ-ACK 정보를 포함하는 PSFCH를 전송하기 위해, NPSSCH subch 개의 서브채널부터 하나 이상의 서브채널에서 PSSCH 수신을 스케줄링하는 SCI 포맷에 의해 지시될 수 있다. UE는 ACK 또는 NACK, 또는 NACK만을 포함하는 HARQ-ACK 정보를 제공한다.
UE는 sl-PSFCH-Period-r16에 의해 PSFCH 전송 기회 자원(transmission occasion resources)에 대한 자원 풀 내 슬롯의 개수를 제공받을 수 있다. 개수가 0이면 자원 풀에서 UE로부터의 PSFCH 전송이 비활성화된다. UE는 k mod NPSFCH PSSCH = 0인 경우 슬롯 t'k SL (0 ≤ k < T'max)에 PSFCH 전송 기회 자원이 있을 것으로 기대하며, 여기서 t'k SL은 자원 풀에 속하는 슬롯이고, 및 T'max는 10240 msec 내의 자원 풀에 속하는 슬롯의 개수이며, NPSFCH PSSCH는 sl-PSFCH-Period-r16에서 제공된다. UE는 PSSCH 수신에 대한 응답으로 PSFCH를 전송하지 않도록 상위 계층에 의해 지시될 수 있다. UE가 자원 풀에서 PSSCH를 수신하고 및 연관된 SCI 포맷 2-A 또는 SCI 포맷 2-B에 포함된 HARQ 피드백 활성화/비활성화 지시자 필드가 1의 값을 갖는 경우, UE는 자원 풀에서 PSFCH 전송을 통해서 HARQ-ACK 정보를 제공한다. UE는 제 1 슬롯에서 PSFCH를 전송하고, 여기서 상기 제 1 슬롯은 PSFCH 자원을 포함하고 및 PSSCH 수신의 마지막 슬롯 이후 자원 풀의 sl-MinTimeGapPSFCH-r16에 의해 제공되는 최소 슬롯의 개수 이후의 슬롯이다.
UE는 자원 풀의 PRB에서 PSFCH 전송을 위한 자원 풀 내의 PRB의 세트 MPSFCH PRB,set를 sl-PSFCH-RB-Set-r16에 의해 제공받는다. sl-NumSubchannel에 의해 제공되는 자원 풀에 대한 서브채널의 개수 Nsubch 및 NPSFCH PSSCH보다 작거나 같은 PSFCH 슬롯과 관련된 PSSCH 슬롯의 개수에 대해, UE는 MPRB,set PSFCH PRB 중에서 [(i+j·NPSFCH PSSCH)·MPSFCH subch,slot, (i+1+j·NPSFCH PSSCH)·MPSFCH subch,slot-1] PRB를 PSFCH 슬롯과 연동된 PSSCH 슬롯 중 슬롯 i 및 서브채널 j에 대하여 할당한다. 여기서, MPSFCH subch,slot = MPSFCH PRB,set / (Nsubch·NPSFCH PSSCH), 0 ≤ i < NPSFCH PSSCH, 0 ≤ j < Nsubch 이고, 및 할당은 i의 오름차순으로 시작하여 j의 오름차순으로 계속된다. UE는 MPSFCH PRB,set가 Nsubch·NPSFCH PSSCH의 배수일 것으로 기대한다.
UE는 PSFCH 전송에 포함되는 HARQ-ACK 정보를 멀티플렉싱하기 위해 사용 가능한 PSFCH 자원의 개수를 RPSFCH PRB,CS = NPSFCH type·MPSFCH subch,slot·NPSFCH CS로 결정한다. 여기서, NPSFCH CS는 자원 풀에 대한 순환 시프트 페어의 개수이고, 및 상위 계층에 의한 지시를 기반으로,
- NPSFCH type = 1이고 및 MPSFCH subch,slot PRB는 해당 PSSCH의 시작 서브채널과 연관되고,
- NPSFCH type = NPSSCH subch이고 및 NPSSCH subch·MPSFCH subch,slot PRB는 해당 PSSCH의 NPSSCH subch 서브채널 중에서 하나 이상의 서브채널과 연관된다.
PSFCH 자원은 먼저 NPSFCH type·MPSFCH subch,slot PRB 중에서 PRB 인덱스의 오름차순으로 인덱싱된 다음, NPSFCH CS 순환 시프트 페어 중에서 순환 시프트 페어 인덱스(cyclic shift pair index)의 오름차순으로 인덱싱된다.
UE는 PSSCH 수신에 대한 응답으로 PSFCH 전송을 위한 PSFCH 자원의 인덱스를 (PID + MID) mod RPSFCH PRB,CS로 결정한다. 여기서 PID는 PSSCH 수신을 스케줄링하는 SCI 포맷 2-A 또는 2-B에 의해 제공되는 물리 계층 소스 ID이고, MID는 UE가 캐스트 타입 지시자 필드 값이 "01"인 SCI 포맷 2-A를 검출한 경우 상위 계층에서 지시되는 PSSCH를 수신하는 UE의 ID이고, 그렇지 않으면 MID는 0이다.
UE는 표 8을 사용하여 NPSFCH CS로부터 및 PSFCH 자원 인덱스에 대응하는 순환 시프트 페어 인덱스로부터 순환 시프트 α 값을 계산하기 위한 m0 값을 결정한다.
NPSFCH CS m0
순환 시프트 페어 인덱스 0 순환 시프트 페어 인덱스 1 순환 시프트 페어 인덱스 2 순환 시프트 페어 인덱스 3 순환 시프트 페어 인덱스 4 순환 시프트 페어 인덱스 5
1 0 - - - - -
2 0 3 - - - -
3 0 2 4 - - -
6 0 1 2 3 4 5
UE가 "01" 또는 "10"의 캐스트 타입 지시자 필드 값을 갖는 SCI 포맷 2-A를 검출하는 경우 표 9와 같이, 또는 UE가 캐스트 타입 지시자 필드 값이 "11"인 SCI 포맷 2-B 또는 SCI 포맷 2-A를 검출하는 경우 표 10과 같이, UE는 순환 시프트 α 값을 계산하기 위한 값 mcs를 결정한다. UE는 순환 시프트 페어 중에서 하나의 순환 시프트를 PSFCH 전송에 사용되는 시퀀스에 적용한다.
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 6
HARQ-ACK Value 0 (NACK) 1 (ACK)
Sequence cyclic shift 0 N/A
도 7은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 7의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 7의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 7의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, SL 혼잡 제어(sidelink congestion control)에 대하여 설명한다.
예를 들어, 단말은 단위 시간/주파수 자원에서 측정된 에너지가 일정 수준 이상인지 여부를 판단하고, 일정 수준 이상의 에너지가 관찰된 단위 시간/주파수 자원의 비율에 따라서 자신의 전송 자원의 양 및 빈도를 조절할 수 있다. 본 명세서에서, 일정 수준 이상의 에너지가 관찰된 시간/주파수 자원의 비율을 채널 혼잡 비율(Channel Busy Ratio, CBR)이라고 정의할 수 있다. 단말은 채널/주파수에 대하여 CBR을 측정할 수 있다. 부가적으로, 단말은 측정된 CBR을 네트워크/기지국에게 전송할 수 있다.
CBR은 단말이 특정 구간(예를 들어, 100ms) 동안 서브채널 단위로 RSSI(Received Signal Strength Indicator)를 측정한 결과, RSSI의 측정 결과 값이 미리 설정된 임계치 이상의 값을 가지는 서브채널의 개수를 의미할 수 있다. 또는, CBR은 특정 구간 동안의 서브채널 중 미리 설정된 임계치 이상의 값을 가지는 서브채널의 비율을 의미할 수 있다.
예를 들어, PSCCH와 PSSCH가 주파수 영역에서 멀티플렉싱되는 경우, 단말은 하나의 자원 풀에 대하여 하나의 CBR 측정을 수행할 수 있다. 여기서, 만약 PSFCH 자원이 설정되거나 사전에 설정된다면, 상기 PSFCH 자원은 상기 CBR 측정에서 제외될 수 있다.
나아가, 트래픽(예를 들어, 패킷)의 우선 순위를 고려한 혼잡 제어가 필요할 수 있다. 이를 위해, 예를 들어, 단말은 채널 점유율(Channel occupancy Ratio, CR)을 측정할 수 있다. 구체적으로, 단말은 CBR을 측정하고, 단말은 상기 CBR에 따라서 각각의 우선 순위(예를 들어, k)에 해당하는 트래픽이 점유할 수 있는 채널 점유율(Channel occupancy Ratio k, CRk)의 최댓값(CRlimitk)을 결정할 수 있다. 예를 들어, 단말은 CBR 측정값 미리 정해진 표를 기반으로, 각각의 트래픽의 우선 순위에 대한 채널 점유율의 최댓값(CRlimitk)을 도출할 수 있다. 예를 들어, 상대적으로 우선 순위가 높은 트래픽의 경우, 단말은 상대적으로 큰 채널 점유율의 최댓값을 도출할 수 있다. 그 후, 단말은 트래픽의 우선 순위 k가 i보다 낮은 트래픽들의 채널 점유율의 총합을 일정 값 이하로 제한함으로써, 혼잡 제어를 수행할 수 있다. 이러한 방법에 의하면, 상대적으로 우선 순위가 낮은 트래픽들에 더 강한 채널 점유율 제한이 걸릴 수 있다.
그 이외에, 단말은 전송 전력의 크기 조절, 패킷의 드롭(drop), 재전송 여부의 결정, 전송 RB 크기 조절(MCS 조정) 등의 방법을 이용하여, SL 혼잡 제어를 수행할 수 있다.
표 11은 SL CBR 및 SL RSSI의 일 예를 나타낸다.
Figure PCTKR2021019227-appb-I000001
표 11을 참조하면, 슬롯 인덱스는 물리 슬롯 인덱스(physical slot index)를 기반으로 할 수 있다.
도 8은 본 개시가 적용될 수 있는 전송 자원이 선택되는 예를 나타낸다.
V2X 통신에서, MAC PDU 별 2회의 전송이 이루어질 수 있다. 예를 들어, 도 A14를 참조하면, 최초 전송을 위한 자원 선택 시, 재전송을 위한 자원이 일정한 시간 간격(time gap)을 두고 예약될 수 있다. 단말은 센싱 윈도우 내에서 센싱을 통해 다른 단말이 예약한 전송 자원들 또는 다른 단말이 사용하고 있는 자원들을 파악할 수 있고, 선택 윈도우 내에서 이를 배제한 후, 남아 있는 자원들 중 간섭이 적은 자원에서 랜덤하게 자원을 선택할 수 있다.
예를 들어, 단말은 센싱 윈도우 내에서, 예약된 자원들의 주기에 대한 정보를 포함하는 PSCCH를 디코딩하고, 상기 PSCCH를 기반으로 주기적으로 결정된 자원들에서 PSSCH RSRP를 측정할 수 있다. 단말은 상기 PSSCH RSRP 값이 임계치를 초과하는 자원들을 선택 윈도우 내에서 제외할 수 있다. 그 후, 단말은 선택 윈도우 내의 남은 자원들 중에서 사이드링크 자원을 랜덤하게 선택할 수 있다.
또는, 단말은 센싱 윈도우 내에서 주기적인 자원들의 RSSI(Received signal strength indication)를 측정하여 간섭이 적은 자원들(예를 들어, 하위 20%에 해당하는 자원들)을 결정할 수 있다. 그리고, 단말은 상기 주기적인 자원들 중 선택 윈도우에 포함된 자원들 중에서 사이드링크 자원을 랜덤하게 선택할 수도 있다. 예를 들어, 단말이 PSCCH의 디코딩을 실패한 경우, 단말은 위와 같은 방법을 사용할 수 있다.
예를 들어, SL DRX 설정은 아래 열거된 하나 이상의 정보를 포함할 수 있다.
예를 들어, SL drx-onDurationTimer는 DRX 사이클의 시작 구간(the duration at the beginning of a DRX Cycle)에 대한 정보일 수 있다. 예를 들어, DRX 사이클의 시작 구간은 단말이 사이드링크 데이터를 전송 또는 수신하기 위해 활성 모드로 동작하는 구간에 대한 정보일 수 있다.
예를 들어, SL drx-SlotOffset은 DRX-온 듀레이션 타이머의 시작 전 지연(the delay before starting the drx-onDurationTimer)에 대한 정보일 수 있다.
예를 들어, SL drx-InactivityTimer는 MAC 엔티티에 대한 새로운 사이드링크 전송 및 사이드링크 수신을 지시하는 PSCCH 발생 이후의 구간(the duration after the PSCCH occasion in which a PSCCH indicates a new sidelink transmission and reception for the MAC entity)에 대한 정보일 수 있다. 예를 들어, 전송 단말이 PSCCH를 통해 PSSCH 전송을 지시하면, 전송 단말은 SL drx-InactivityTimer가 동작하는 동안 활성 모드로 동작함으로써, 전송 단말은 수신 단말에게 PSSCH를 전송할 수 있다. 또한, 예를 들어, 수신 단말은 PSCCH 수신을 통해 전송 단말이 PSSCH를 전송함을 지시받으면, 수신 단말은 SL drx-InactivityTimer가 동작하는 동안 활성 모드로 동작함으로써, 수신 단말은 전송 단말로부터 PSSCH를 수신할 수 있다.
예를 들어, SL drx-RetransmissionTimer는 재전송이 수신될 때까지의 최대 기간(the maximum duration until a retransmission is received)에 대한 정보일 수 있다. 예를 들어, SL drx-RetransmissionTimer는 HARQ 프로세스 별로 설정될 수 있다.
예를 들어, SL drx-LongCycleStartOffset는 긴 DRX 사이클 및 짧은 DRX 사이클이 시작되는 서브 프레임을 정의하는 긴 DRX 사이클 및 DRX-StartOffset(the Long DRX cycle and drx-StartOffset which defines the subframe where the Long and Short DRX Cycle starts)에 대한 정보일 수 있다.
예를 들어, SL drx-ShortCycle는 짧은 DRX 사이클(the Short DRX cycle)에 대한 정보일 수 있다. 예를 들어, SL drx-ShortCycle는 선택적인(optional) 정보일 수 있다.
예를 들어, SL drx-ShortCycleTimer는 단말이 짧은 DRX 사이클을 따르는 구간(the duration the UE shall follow the Short DRX cycle)에 대한 정보일 수 있다. 예를 들어, SL drx-ShortCycleTimer는 선택적인(optional) 정보일 수 있다.
예를 들어, SL drx-HARQ-RTT-Timer는 MAC 엔터티가 HARQ 재전송을 위한 할당을 예상하기 전의 최소 기간(the minimum duration before an assignment for HARQ retransmission is expected by the MAC entity)에 대한 정보일 수 있다. 예를 들어, SL drx-HARQ-RTT-Timer는 HARQ 프로세스 별로 설정될 수 있다.
한편, 릴리즈(release) 16의 NR V2X에서는 UE(user equipment)의 파워 세이빙(power saving) 동작을 지원하지 않았으며, 릴리즈 17의 NR V2X에서는 UE(예를 들어, 전력 절감(power saving) UE)의 파워 세이빙 동작을 지원할 수 있다.
예를 들어, UE는, 파워 세이빙 동작을 수행하기 위해, 사이드링크 (Sidelink, 이하 SL) DRX(discontinuous reception) 패턴 (예를 들어, DRX 사이클(Cycle), DRX 온듀레이션(Onduration), DRX 오프듀레이션(Offduration))을 기반으로, 사이드링크 DRX 동작을 수행할 수 있다. 예를 들어, SL DRX 동작을 위해서, P-UE(Power Saving UE)가 사용할 SL DRX 설정(Configuration)(예를 들어, SL DRX 사이클(Cycle), SL DRX 온듀레이션(Onduration), SL DRX 오프듀레이션(Offduration), SL DRX 동작을 지원하기 위한 타이머 등)이 정의될 필요가 있다. 또한, 온듀레이션(사이드링크 수신/송신을 수행할 수 있는 구간)/오프듀레이션(슬립 모드(Sleep Mode)로 동작하는 구간)에서, 전송 단말과 수신 단말의 동작이 정의될 필요가 있다. 이하의 설명에서 '~~한 경우(when, if, in case of)'는 '~~한 것에 기초하여(based on)'로 대체될 수 있다. 이하의 설명에서 타이머의 명칭(Uu DRX HARQ RTT TimerSL, Uu DRX Retransmission TimerSL 등)은 예시적인 것이며, 각 타이머에서 설명되는 내용에 기초하여 동일/유사한 기능을 수행하는 타이머는 그 명칭과 무관하게 동일/유사한 타이머로 간주될 수 있다.
한편, 릴리즈 14의 LTE V2X에서, 하기 표 12를 참조하면, P2X UE에게 풀을 설정하는 경우, 랜덤 선택 또는 부분 센싱(partial sensing)인지 여부가 항상 설정될 수 있다.
SL-P2X-ResourceSelectionConfig-r14 ::= SEQUENCE {
partialSensing-r14 ENUMERATED {true} OPTIONAL, -- Need OR
randomSelection-r14 ENUMERATED {true} OPTIONAL -- Need OR
예를 들어, 릴리즈 14의 LTE V2X 동작을 NR에서 그대로 적용할 수 있다. 이때, 단말이 랜덤 선택 또는 부분 센싱(partial sensing)을 수행하는 경우, SL HARQ 피드백의 인에이블과 관련된 파라미터(예를 들어, sl-HARQ-FeedbackEnabled)가 인에이블(enabled)되고, PSFCH가 설정되면, 단말은 SL HARQ 피드백 동작을 수행할 수 있다. 예를 들어, 만약 단말이 랜덤 선택을 수행하면, 센싱 결과가 없기 때문에, PSFCH 자원을 기반으로 ACK/NACK 수신 시 충돌이 발생할 경우, 단말은 재전송 판단에 대한 문제가 발생할 수 있다.
본 개시의 일 실시 예에 따르면, 논리적 채널이 설정되는 경우, 각 논리적 채널(Logical channel) 또는 논리적 채널 그룹(logical channel group) 별로 부분 센싱(partial sensing) 또는 랜덤 선택이 설정될 수 있다.
또는, 예를 들어, 논리적 채널이 설정되는 경우, V2X 계층에서 내려주는 서비스 별로 부분 센싱 또는 랜덤 선택을 논리적 채널에 대해 설정될 수 있다.
본 개시의 일 실시 예에 따르면, LCP(Logical Channel Prioritization)를 수행하는 경우, 단말은 부분 센싱(partial sensing)을 기반으로 설정된 논리적 채널들로만 LCP를 수행할 수 있다.
또는, 예를 들어, LCP를 수행하는 경우, 단말은 랜덤 선택을 기반으로 설정된 논리적 채널들로만 LCP를 수행할 수 있다.
이를 통해서, 랜덤 선택을 수행한 논리적 채널의 경우, 단말은 다른 자원과의 충돌을 고려하여 SL HARQ 피드백의 인에이블 여부와 관련된 파라미터(예를 들어, sl-HARQ-Feedback)를 디스에이블 시킬 수 있다. 즉, 부분 센싱(partial sensing)을 통해서 선택한 논리적 채널들로만 LCP를 구성함으로써, 단말은 랜덤 선택에 기반한 자원 선택에 대비하여 우선 순위화(prioritization)가 가능하다.
본 개시의 일 실시 예에 따르면, LCH와 관련된 파라미터가 설정되는 경우, “HARQ 피드백 인에이블(enabled)”로 설정된 LCH에 대해 “부분 센싱”만이 해당 LCH에 대해 허용/설정될 수 있다. 여기서, 예를 들어, LCH와 관련된 파라미터는 HARQ 피드백의 인에이블 여부와 관련된 파라미터, 부분 센싱과 관련된 파라미터, 랜덤 선택과 관련된 파라미터 또는 SL 우선 순위와 관련된 파라미터 중 적어도 하나를 포함할 수 있다.
예를 들어, “HARQ 피드백 인에이블(enabled)”로 설정된 LCH는 사전 설정된 우선 순위보다 높은 우선 순위를 가진 경우, 타이트한 요구 사항(예를 들어, 레이턴시, 신뢰도)을 가진 서비스와 관련된 경우, LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 큰 경우, 또는 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 경우 중 적어도 하나에 기반하여 “부분 센싱”만이 해당 LCH에 대해 허용/설정될 수 있다.
즉, 예를 들어, HARQ 피드백이 인에이블된 LCH가 사전 설정된 우선 순위보다 높은 우선 순위를 가진 경우, 상기 LCH에 대해 부분 센싱만이 허용/설정될 수 있다. 예를 들어, HARQ 피드백이 인에이블된 LCH가 타이트한 요구 사항(예를 들어, 레이턴시, 신뢰도)을 가진 서비스와 관련된 경우, 상기 LCH에 대해 부분 센싱만이 허용/설정될 수 있다. 예를 들어, HARQ 피드백이 인에이블된 LCH가 LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 큰 경우, 상기 LCH에 대해 부분 센싱만이 허용/설정될 수 있다. 예를 들어, HARQ 피드백이 인에이블된 LCH가 상기 LCH와 관련된 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 경우, 상기 LCH에 대해 부분 센싱만이 허용/설정될 수 있다.
예를 들어, LCH와 관련된 파라미터가 설정되는 경우, “HARQ 피드백 디스에이블(disabled)”로 설정된 LCH에 대해 랜덤 선택이 설정될 수 있다. 여기서, 예를 들어, LCH와 관련된 파라미터는 HARQ 피드백의 인에이블 여부와 관련된 파라미터, 부분 센싱과 관련된 파라미터, 랜덤 선택과 관련된 파라미터 또는 SL 우선 순위와 관련된 파라미터 중 적어도 하나를 포함할 수 있다.
예를 들어, “HARQ 피드백 디스에이블(disabled)”로 설정된 LCH가 사전 설정된 우선 순위보다 낮은 우선 순위를 가진 경우, 느슨한(loose) 요구 사항(예를 들어, 레이턴시, 신뢰도)을 가진 서비스와 관련된 경우, LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 작은 경우, 또는 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 작은 경우 중 적어도 하나에 기반하여 “랜덤 선택”이 해당 LCH에 대해 허용/설정될 수 있다.
예를 들어, LCH와 관련된 파라미터가 설정되는 경우, “HARQ 피드백 디스에이블(disabled)”로 설정된 LCH에 대해 부분 센싱 및 랜덤 선택이 설정될 수 있다. 예를 들어, “HARQ 피드백 디스에이블(disabled)”로 설정된 LCH는 사전 설정된 우선 순위보다 낮은 우선 순위를 가진 경우, 느슨한(loose) 요구 사항(예를 들어, 레이턴시, 신뢰도)을 가진 서비스와 관련된 경우, LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 작은 경우, 또는 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 작은 경우 중 적어도 하나에 기반하여 부분 센싱 및 랜덤 선택이 해당 LCH에 대해 허용/설정될 수 있다. 여기서, 예를 들어, “부분 센싱 및 랜덤 선택”이 설정된 경우, 둘 중에 어떤 것을 단말이 선택/적용할지는 구현으로 정의될 수 있다. 예를 들어, “부분 센싱 및 랜덤 선택”이 설정되면, 단말은 사전 설정된 우선 순위보다 높은 우선 순위를 가진 LCH, 타이트한 요구 사항(예를 들어, 레이턴시, 신뢰도)을 가진 서비스와 관련된 LCH, LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 큰 LCH, 또는 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 경우 중 적어도 하나에 기반하여 “부분 센싱”을 수행할 수 있다.
본 개시의 일 실시 예에 따르면, LCP 동작을 기반으로 MAC PDU를 생성하는 경우, 예를 들어, 동일한 데스티네이션 ID의 데이터 및/또는 동일한 캐스트 타입의 데이터가 상이한 자원 선택 타입(resource selection type)을 가짐에도 불구하고, 동일한 MAC PDU로 멀티플렉스될 수 있다. 여기서, 예를 들어, 자원 선택 타입은 부분 센싱 및 랜덤 선택을 포함할 수 있다. 여기서 예를 들어, 데이터는 SL LCH와 관련된 데이터일 수 있다. 즉, 릴리즈-16의 동작을 재이용하는 형태일 수 있다. 예를 들어, 이때, 멀티플렉스된 MAC PDU의 전송을 위해, 상기 MAC PDU 상의 가장 높은 우선 순위의 SL LCH와 관련된 자원 선택 타입을 적용할 수 있다. 여기서, 예를 들어, SL LCH와 관련된 자원 선택 타입은 SL LCH 데이터와 관련된 자원 선택 타입일 수 있다. 또는, 예를 들어, 멀티플렉스된 MAC PDU의 전송을 위해, 사전에 설정된 자원 선택 타입을 적용할 수 있다. 예를 들어, 멀티플렉스된 MAC PDU의 전송을 위해, 부분 센싱 동작을 항상 적용할 수 있다. 예를 들어, 멀티플렉스된 MAC PDU의 전송을 위해, 랜덤 선택 동작을 항상 적용할 수 있다.
여기서, 예를 들어, 만약 가장 높은 우선 순위의 SL LCH가 복수 개가 존재하고, LCH와 관련된 자원 선택 타입이 상이한 경우, 부분 센싱 동작을 적용할 수 있다. 예를 들어, 만약 가장 높은 우선 순위의 SL LCH가 복수 개가 존재하고, LCH와 관련된 자원 선택 타입이 상이한 경우, 랜덤 선택 동작을 적용할 수 있다. 예를 들어, 만약 가장 높은 우선 순위의 SL LCH가 복수 개가 존재하고, LCH와 관련된 자원 선택 타입이 상이한 경우, 단말 구현적으로 자원 선택 타입이 결정될 수 있다. 예를 들어, 만약 가장 높은 우선 순위의 SL LCH가 복수 개가 존재하고, LCH와 관련된 자원 선택 타입이 상이한 경우, 남은 PDB(packet delay budget) 값이 상대적으로 작은 데이터의 LCH와 관련된 자원 선택 타입을 적용할 수 있다. 예를 들어, 만약 가장 높은 우선 순위의 SL LCH가 복수 개가 존재하고, LCH와 관련된 자원 선택 타입이 상이한 경우, 최소 요구 통신 거리가 상대적으로 긴 데이터의 LCH와 관련된 자원 선택 타입을 적용할 수 있다.
또는, 예를 들어, LCP 동작 관점에서, 동일한 데스티네이션 ID의 데이터 및/또는 동일한 캐스트 타입의 데이터가 존재하는 경우, 동일한 자원 선택 타입의 데이터가 동일한 MAC PDU로 멀티플렉스 될 수 있다. 여기서, 데이터는 SL LCH와 관련된 데이터일 수 있다. 즉, 예를 들어, 동일한 데스티네이션 ID의 데이터 및/또는 동일한 캐스트 타입의 데이터가 존재함에도 불구하고, 상이한 자원 선택 타입은 별도의 또는 독립된 MAC PDU를 생성할 수 있다.
여기서, 예를 들어, 상술한 실시 예들을 적용하는 경우, HARQ 피드백 인에이블(enabled)된 LCH 데이터와 HARQ 피드백이 디스에이블(disabled)된 LCH 데이터는 동일한 MAC PDU로 멀티플렉스 되지 않을 수 있다.
여기서, 예를 들어, 상술한 실시 예들을 적용하는 경우, LCP 동작에서, 동일한 우선 순위를 가진 SL LCH에 대해, 부분 센싱이 설정된 SL LCH를 MAC PDU에 우선적으로 반영할 수 있다. 즉, 부분 센싱이 설정된 SL LCH를 상대적으로 높은 우선 순위로 결정할 수 있다. 또는, 예를 들어, 상술한 실시 예를 적용하는 경우, LCP 동작에서, 동일한 우선 순위를 가진 SL LCH에 대해, 랜덤 선택이 설정된 SL LCH를 MAC PDU에 우선적으로 반영할 수 있다. 즉, 랜덤 선택이 설정된 SL LCH를 상대적으로 높은 우선 순위로 결정할 수 있다.
본 개시의 일 실시 예에 따르면, 단말은 SL 그랜트에 맵핑된 LCH들 중에서, 최소한 하나라도 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, 단말은 SL 그랜트에 맵핑된 LCH들 중에서 가장 높은 우선 순위를 가진 LCH에 대해 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 여기서, 예를 들어, SL 그랜트는 선택된 SL 그랜트를 포함할 수 있다. 예를 들어, 단말은 SL 프로세스에 맵핑된 LCH들 중에서, 최소한 하나라도 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, 단말은 SL 프로세스에 맵핑된 LCH들 중에서 가장 높은 우선 순위를 가진 LCH에 대해 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다.
예를 들어, 단말은 SL 그랜트에 맵핑된 LCH들 중에서 데이터가 이용가능한 적어도 하나의 LCH에 대해, 최소한 하나라도 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, 단말은 SL 그랜트에 맵핑된 LCH들 중에서 데이터가 이용가능한 적어도 하나의 LCH에서, 가장 높은 우선 순위를 가진 LCH에 대해 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, SL 그랜트는 선택된 SL 그랜트를 포함할 수 있다.
예를 들어, 단말은 SL 프로세스에 맵핑된 LCH들 중에서 데이터가 이용가능한 적어도 하나의 LCH에 대해, 최소한 하나라도 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, 단말은 SL 프로세스에 맵핑된 LCH들 중에서 데이터가 이용가능한 적어도 하나의 LCH에서, 가장 높은 우선 순위를 가진 LCH에 대해 부분 센싱 동작이 설정되었으면, LCH와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다.
예를 들어, 단말은 자신이 관심있는 서비스 중에서, 최소한 하나라도 부분 센싱 동작이 설정되었으면, 서비스와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다. 예를 들어, 단말은 자신이 관심있는 서비스 중에서, 가장 높은 우선 순위를 가진 서비스에 대해 부분 센싱 동작이 설정되었으면, 서비스와 관련된 전송 자원을 선택하기 위해서 부분 센싱 동작을 수행할 수 있다.
본 개시의 일 실시 예에 따르면, 동일한 데스티네이션 ID의 데이터 및/또는 동일한 캐스트 타입의 데이터에 대해, SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터가 상이하게 지정된 경우, 동일한 MAC PDU로 멀티플렉스될 수 있다. 여기서 예를 들어, 데이터는 SL LCH와 관련된 데이터일 수 있다. 즉, 예를 들어, 릴리즈-16의 동작을 재이용하는 형태일 수 있다. 예를 들어, 멀티플렉스된 동일한 MAC PDU를 전송하기 위해, 가장 높은 우선 순위의 SL LCH와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 고려할 수 있다. 예를 들어, 상기 MAC PDU 상의 가장 높은 우선 순위의 SL LCH와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터에 기반하여 상기 MAC PDU를 전송할 수 있다. 여기서, 예를 들어, SL LCH는 SL LCH와 관련된 데이터일 수 있다.
또는, 예를 들어, 멀티플렉스된 동일한 MAC PDU를 전송하기 위해, 사전 설정된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 고려할 수 있다. 예를 들어, 멀티플렉스된 동일한 MAC PDU를 전송하기 위해, 사전 설정된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 고려하지 않을 수 있다. 예를 들어, 사전 설정된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터에 기반하여 상기 MAC PDU를 전송할 수 있다.
또는, 예를 들어, LCP 동작 관점에서, 동일한 데스티네이션 ID의 데이터들 및/또는 동일한 캐스트 타입의 데이터들이 존재할 때, 동일한 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터의 데이터들만이 동일한 MAC PDU로 멀티플렉스될 수 있다. 여기서, 예를 들어, 데이터는 SL LSH와 관련된 데이터를 포함할 수 있다. 예를 들어, 동일한 데스티네이션 ID의 데이터들 및/또는 동일한 캐스트 타입의 데이터들이라도, 단말은 상이한 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터에 해당하는 데이터들은 독립된 또는 별도의 MAC PDU로 생성할 수 있다.
여기서, 예를 들어, 가장 높은 우선 순위의 SL LCH가 복수 개인 경우, 상기 복수 개의 SL LCH들과 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터가 상이하면, SL DRX 동작을 적용할 수 있다. 여기서, 예를 들어, SL LCH는 SL LCH와 관련된 데이터를 포함할 수 있다. 예를 들어, 가장 높은 우선 순위의 SL LCH가 복수 개인 경우, 상기 복수 개의 SL LCH들와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터가 상이하면, 단말은 단말 구현적으로 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 결정할 수 있다. 예를 들어, 가장 높은 우선 순위의 SL LCH가 복수 개인 경우, 상기 복수 개의 SL LCH들와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터가 상이하면, 단말은 남은 PDB 값이 상대적으로 적은 데이터의 LCH와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 따를 수 있다. 예를 들어, 가장 높은 우선 순위의 SL LCH가 복수 개인 경우, 상기 복수 개의 SL LCH들와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터가 상이하면, 단말은 최소 요구 통신 거리가 상대적으로 긴 데이터의 LCH와 관련된 SL DRX의 적용 여부 및/또는 SL DRX와 관련된 파라미터를 따를 수 있다.
여기서, 예를 들어, 상술한 실시 예들을 적용하는 경우, HARQ 피드백 인에이블(enabled)된 LCH 데이터와 HARQ 피드백이 디스에이블(disabled)된 LCH 데이터는 동일한 MAC PDU로 멀티플렉스 되지 않을 수 있다.
여기서, 예를 들어, 상술한 실시 예들을 적용하는 경우, LCP 동작에서, 동일한 우선 순위를 가진 SL LCH에 대해, SL DRX 동작이 설정된 SL LCH를 MAC PDU에 우선적으로 반영할 수 있다. 즉, SL DRX 동작이 설정된 SL LCH를 상대적으로 높은 우선 순위로 결정할 수 있다. 또는, 예를 들어, 상술한 실시 예를 적용하는 경우, LCP 동작에서, 동일한 우선 순위를 가진 SL LCH에 대해, SL DRX 동작이 설정되지 않은 SL LCH를 MAC PDU에 우선적으로 반영할 수 있다. 즉, SL DRX 동작이 설정되지 않은 SL LCH를 상대적으로 높은 우선 순위로 결정할 수 있다.
본 개시의 일 실시 예에 따르면, 상이한 자원 선택 타입이 설정 또는 허용된 LCH들에 대해, 동일한 LCG(logical channel group) ID가 설정되지 않을 수 있다. 즉, 단말은 상이한 자원 선택 타입이 설정 또는 허용된 LCH들에 대해 동일한 LCG ID를 기대하지 않을 수 있다.
예를 들어, 서비스 타입, 우선 순위, 요구 사항, HARQ 피드백 인에이블(enabled), HARQ 피드백 디스에이블(disabled), LCH/MAC PDU, 자원 풀의 CBR 측정 값, SL 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), SL 그랩캐스트 HARQ 피드백 옵션(예를 들어, NACK만 피드백, ACK/NACK 피드백, TX-RX 거리 기반 NACK 만 피드백), SL 모드 1 CG 타입(예를 들어, SL CG 타입 1/2)) 등의 요소/파라미터 중에, 최소한 하나에 대해 부분 센싱이 특정적으로 또는 상이하게 설정 또는 허용될 수 있다. 예를 들어, 서비스 타입, 우선 순위, 요구 사항, HARQ 피드백 인에이블(enabled), HARQ 피드백 디스에이블(disabled), LCH/MAC PDU, 자원 풀의 CBR 측정 값, SL 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), SL 그랩캐스트 HARQ 피드백 옵션(예를 들어, NACK만 피드백, ACK/NACK 피드백, TX-RX 거리 기반 NACK 만 피드백), SL 모드 1 CG 타입(예를 들어, SL CG 타입 1/2)) 등의 요소/파라미터 중에, 최소한 하나에 대해 랜덤 선택이 특정적으로 또는 상이하게 설정 또는 허용될 수 있다. 예를 들어, 서비스 타입, 우선 순위, 요구 사항, HARQ 피드백 인에이블(enabled), HARQ 피드백 디스에이블(disabled), LCH/MAC PDU, 자원 풀의 CBR 측정 값, SL 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), SL 그랩캐스트 HARQ 피드백 옵션(예를 들어, NACK만 피드백, ACK/NACK 피드백, TX-RX 거리 기반 NACK 만 피드백), SL 모드 1 CG 타입(예를 들어, SL CG 타입 1/2)) 등의 요소/파라미터 중에, 최소한 하나에 대해 부분 센싱 및 랜덤 선택이 특정적으로 또는 상이하게 설정 또는 허용될 수 있다.
예를 들어, 서비스 타입, 우선 순위, 요구 사항, HARQ 피드백 인에이블(enabled), HARQ 피드백 디스에이블(disabled), LCH/MAC PDU, 자원 풀의 CBR 측정 값, SL 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), SL 그랩캐스트 HARQ 피드백 옵션(예를 들어, NACK만 피드백, ACK/NACK 피드백, TX-RX 거리 기반 NACK 만 피드백), SL 모드 1 CG 타입(예를 들어, SL CG 타입 1/2)) 등의 요소/파라미터 중에, 최소한 하나에 대해 본 개시의 다양한 실시 예들이 특정적으로 또는 상이하게 설정 또는 허용될 수 있다. 예를 들어, 서비스 타입, 우선 순위, 요구 사항, HARQ 피드백 인에이블(enabled), HARQ 피드백 디스에이블(disabled), LCH/MAC PDU, 자원 풀의 CBR 측정 값, SL 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), SL 그랩캐스트 HARQ 피드백 옵션(예를 들어, NACK만 피드백, ACK/NACK 피드백, TX-RX 거리 기반 NACK 만 피드백), SL 모드 1 CG 타입(예를 들어, SL CG 타입 1/2)) 등의 요소/파라미터 중에, 최소한 하나에 대해 본 개시의 다양한 실시 예들과 관련된 파라미터가 특정적으로 또는 상이하게 설정 또는 허용될 수 있다.
예를 들어, 본 개시에서 “설정” 또는 “지정”은 기지국이 사전에 정의된 물리 계층 채널/시그널 또는 상위 계층 채널/시그널(예를 들어, SIB, RRC, MAC CE)을 통해서 단말에게 알려주는 형태를 포함할 수 있다. 예를 들어, “설정” 또는 “지정”은 사전-설정을 통해서 제공되거나 단말이 사전에 정의된 물리 계층 채널/시그널 또는 상위 계층 채널/시그널(예, SL MAC CE, PC5 RRC)을 통해서 다른 단말에게 알려주는 형태를 포함할 수 있다. 또한, 본 개시의 다양한 실시 예들은 상호 조합될 수 있다.
본 개시의 다양한 실시 예들에서, 언급한 아래 SL DRX 타이머는 다음과 같은 용도로 사용될 수 있다.
예를 들어, SL DRX 온듀레이션 타이머는 SL DRX 동작을 수행중인 UE가 상대 UE의 PSCCH/PSSCH 수신을 위해 기본적으로 활성 시간으로 동작해야 하는 구간에서 사용될 수 있다.
예를 들어, SL DRX 비활성화 타이머는 SL DRX 동작을 수행중인 UE가 상대 UE의 PSCCH/PSSCH 수신을 위해 기본적으로 활성 시간으로 동작해야 하는 구간인 SL DRX 온듀레이션 구간을 연장하는 구간에서 사용될 수 있다. 즉, 예를 들어, SL DRX 비활성화 타이머 구간만큼 SL DRX 온듀레이션 타이머를 연장할 수 있다. 또한, UE는 상대 UE로부터 새로운 패킷(예를 들어, 새로운 PSSCH)을 수신하면, SL DRX 비활성화 타이머를 시작시켜 SL DRX 온듀레이션 타이머를 연장시킬 수 있다. 예를 들어, SL DRX HARQ RTT 타이머는 SL DRX 동작을 수행중인 UE가 상대 UE가 전송하는 재전송 패킷 (또는 PSSCH 할당(assignment))을 수신하기 전까지 슬립 모드로 동작하는 구간에서 사용될 수 있다. 즉, 예를 들어, UE는 SL DRX HARQ RTT 타이머를 시작시키면, 상대 UE가 SL DRX HARQ RTT 타이머가 만료될 때까지, 자신에게 사이드링크 재전송 패킷을 전송하지 않을 것이라고 판단하고, UE는 해당 타이머 동안 슬립 모드로 동작할 수 있다.
예를 들어, SL DRX 재전송 타이머는 SL DRX 동작을 수행중인 UE가 상대 UE가 전송하는 재전송 패킷 (또는 PSSCH 할당(assignment))을 수신하기 위해 활성 시간으로 동작하는 구간에서 사용될 수 있다. 예를 들어, SL DRX 재전송 타이머 구간 동안 UE는 상대 UE가 전송하는 재전송 사이드링크 패킷 (또는 PSSCH 할당) 수신을 모니터할 수 있다.
본 개시의 다양한 실시 예들은, 기본/공통(Default/Common) SL DRX 설정, 기본/공통(Default/Common) SL DRX 패턴, 기본/공통(Default/Common) SL DRX 설정에 포함된 파라미터 또는 기본/공통(Default/Common) SL DRX 설정에 포함된 타이머뿐만 아니라, UE-페어 특정(UE-Pair Specific) SL DRX 설정, UE-페어 특정 SL DRX 패턴, UE-페어 특정 SL DRX 설정에 포함된 파라미터, UE-페어 특정 SL DRX 설정에 포함된 타이머에 대해 적용될 수 있다.
또한, 본 개시에서, 예를 들어, '온듀레이션(Onduration)'은 활성 시간(활성 시간(Active Time)) 구간일 수 있다. 예를 들어, 활성 시간은 무선 시그널을 수신/송신하기 위해 웨이크 업(wake up) 상태 (RF 모듈이 “온”)로 동작하는 구간일 수 있다. 예를 들어, '오프듀레이션(Offduration)은 슬립 시간(Sleep Time) 구간일 수 있다. 예를 들어, 슬립 시간 구간은 파워 세이빙을 위해 슬립 모드 상태 (RF 모듈이 “오프”)로 동작하는 구간일 수 있다. 예를 들어, 전송 UE는 슬립 시간 구간에 의무적으로 슬립 모드로 동작해야 함을 의미하지는 않을 수 있다. 예를 들어, 필요한 경우, 단말은 슬립 시간일지라도 센싱 동작/전송 동작을 위해 잠시 활성 시간으로 동작하는 것이 허락될 수 있다.
또한, 예를 들어, 본 개시의 다양한 실시 예들의 적용 여부는 자원 풀, 혼잡 레벨(Congestion Level), 서비스 우선 순위, 서비스 타입, QoS 요구 사항(예를 들어, 레이턴시(Latency), 신뢰도(Reliability)), PQI, 트래픽 타입(예를 들어, 주기적 생성, 비주기적 생성) 또는 SL 전송자원할당 모드 (모드 1, 모드 2)에 따라, 상이하게 또는 독립적으로 설정될 수 있다. 예를 들어, 본 개시의 다양한 실시 예들과 관련된 파라미터(예를 들어, 임계 값)는 자원 풀, 혼잡 레벨(Congestion Level), 서비스 우선 순위, 서비스 타입, QoS 요구 사항(예를 들어, 레이턴시(Latency), 신뢰도(Reliability)), PQI, 트래픽 타입(예를 들어, 주기적 생성, 비주기적 생성), 또는 SL 전송자원할당 모드 (모드 1, 모드 2)에 따라, 상이하게 또는 독립적으로 설정될 수 있다.
예를 들어, 본 개시의 다양한 실시 예들의 적용 여부는 자원 풀(예를 들어, PSFCH가 설정된 자원 풀, PSFCH가 설정되지 않은 자원 풀), 서비스/패킷 타입, 우선 순위, QoS 요구 사항(예를 들어, URLLC/EMBB 트래픽, 신뢰도, 레이턴시), PQI, PFI, 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), 혼잡도 레벨(예를 들어, CBR), 자원 풀 혼잡도 레벨, SL HARQ 피드백 방식(예를 들어, NACK만을 피드백하는 방식, ACK/NACK을 피드백하는 방식), HARQ 피드백이 인에이블된 MAC PDU 전송, HARQ 피드백이 디스에이블된 MAC PDU 전송, PUCCH 기반의 SL HARQ 피드백 보고 동작 설정 여부, 프리엠션(Pre-emption) 수행 여부, 재-평가(Re-Evaluation) 수행 여부, 프리엠션 기반의 자원 재선택, 경우, 재-평가 기반의 자원 재선택, L1 소스 식별자, L1 데스티네이션 식별자, L2 소스 식별자, L2 데스티네이션 식별자, L1 소스 계층 ID와 L1 데스티네이션 계층 ID의 조합 식별자, L2 소스 계층 ID와 L2 데스티네이션 계층 ID의 조합 식별자, L1 소스 계층 ID 및 L1 데스티네이션 계층 ID의 페어와 캐스트 타입의 조합 식별자, L2 소스 계층 ID 및 L2 데스티네이션 계층 ID의 페어와 캐스트 타입의 조합 식별자, PC5 RRC 연결/링크, SL DRX 수행 여부, SL DRX 지원 여부, SL 모드 타입(자원 할당모드 1, 자원할당 모드 2), 주기적 자원의 예약 수행 또는 비주기적 자원의 예약 수행 중 적어도 하나에 대해, 독립적으로 또는 상이하게 설정될 수 있다.
예를 들어, 본 개시의 다양한 실시 예들과 관련된 파라미터 설정 값은 자원 풀(예를 들어, PSFCH가 설정된 자원 풀, PSFCH가 설정되지 않은 자원 풀), 서비스/패킷 타입, 우선 순위, QoS 요구 사항(예를 들어, URLLC/EMBB 트래픽, 신뢰도, 레이턴시), PQI, PFI, 캐스트 타입(예를 들어, 유니캐스트, 그룹캐스트, 브로드캐스트), 혼잡도 레벨(예를 들어, CBR), 자원 풀 혼잡도 레벨, SL HARQ 피드백 방식(예를 들어, NACK만을 피드백하는 방식, ACK/NACK을 피드백하는 방식), HARQ 피드백이 인에이블된 MAC PDU 전송, HARQ 피드백이 디스에이블된 MAC PDU 전송, PUCCH 기반의 SL HARQ 피드백 보고 동작 설정 여부, 프리엠션(Pre-emption) 수행 여부, 재-평가(Re-Evaluation) 수행 여부, 프리엠션 기반의 자원 재선택, 경우, 재-평가 기반의 자원 재선택, L1 소스 식별자, L1 데스티네이션 식별자, L2 소스 식별자, L2 데스티네이션 식별자, L1 소스 계층 ID와 L1 데스티네이션 계층 ID의 조합 식별자, L2 소스 계층 ID와 L2 데스티네이션 계층 ID의 조합 식별자, L1 소스 계층 ID 및 L1 데스티네이션 계층 ID의 페어와 캐스트 타입의 조합 식별자, L2 소스 계층 ID 및 L2 데스티네이션 계층 ID의 페어와 캐스트 타입의 조합 식별자, PC5 RRC 연결/링크, SL DRX 수행 여부, SL DRX 지원 여부, SL 모드 타입(자원 할당모드 1, 자원할당 모드 2), 주기적 자원의 예약 수행 또는 비주기적 자원의 예약 수행 중 적어도 하나에 대해, 독립적으로 또는 상이하게 설정될 수 있다.
본 개시에서, 예를 들어, “일정시간”은 UE가 상대 UE로부터 사이드링크 신호 또는 사이드링크 데이터를 수신하기 위해 사전 정의된 시간(predefined time)만큼 활성 시간(활성 시간(Active Time))으로 동작하는 시간일 수 있다. 예를 들어, “일정시간”은 UE가 상대 UE로부터 사이드링크 신호 또는 사이드링크 데이터를 수신하기 위해 타이머(SL DRX 재전송 타이머, SL DRX 비활성화(Inactivity) 타이머, RX UE의 DRX 동작에서 활성 시간으로 동작할 수 있도록 보장하는 타이머)시간만큼 활성 시간으로 동작하는 시간일 수 있다.
본 개시의 다양한 실시 예들은 밀리미터 웨이브(mmWave) SL 동작에 적용될 수 있다. 본 개시의 다양한 실시 예들의 적용 여부는 은 밀리미터 웨이브(mmWave) SL 동작에 적용될 수 있다. 본 개시의 다양한 실시 예들과 관련된 파라미터 설정 값은 밀리미터 웨이브(mmWave) SL 동작에 적용될 수 있다.
도 9는 본 개시의 일 실시 예에 따른, 전송 단말이 MAC PDU를 전송하는 절차를 나타낸다. 도 9의 실시 예는 본 개시의 다양한 실시 예들과 결합될 수 있다.
도 9를 참조하면, 단계 S910에서, 전송 단말은 제 1 자원을 선택할 수 있다. 예를 들어, 전송 단말은 센싱을 기반으로 제 1 선택 윈도우 내에서 제 1 자원을 선택할 수 있다. 또는, 예를 들어, 전송 단말은 제 1 자원을 랜덤하게 선택할 수 있다.
단계 S920에서, 전송 단말은 적어도 하나의 LCH(logical channel)을 기반으로 MAC(medium access control) PDU(protocol data unit)를 생성할 수 있다. 예를 들어, 전송 단말은 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH를 기반으로 MAC PDU를 생성할 수 있다. 또는, 예를 들어, 전송 단말은 HARQ 피드백이 디스에이블된 적어도 하나의 LCH를 기반으로 MAC PDU를 생성할 수 있다.
단계 S930에서, 전송 단말은 수신 단말에게 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송할 수 있다.
단계 S940에서, 전송 단말은 수신 단말에게 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다.
예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 디스에이블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용될 수 있다.
또는, 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 디스에이블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택 및 부분 센싱이 허용될 수 있다.
예를 들어, 상기 센싱은 부분 센싱을 포함할 수 있다. 예를 들어, 부분 센싱을 위해, 전송 단말은 상기 제 1 선택 윈도우 내에서 적어도 하나의 제 1 후보 슬롯이 결정할 수 있다. 예를 들어, 전송 단말은 상기 적어도 하나의 제 1 후보 슬롯과 관련된 적어도 하나의 제 1 센싱 슬롯에 대해 상기 센싱을 수행할 수 있다.
예를 들어, 상기 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH일 수 있다. 예를 들어, 상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위일 수 있다. 예를 들어, 상기 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 높은 우선 순위를 가진 상기 제 1 LCH에 기반하여 허용될 수 있다.
예를 들어, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많을 수 있다. 예를 들어, 상기 센싱은, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에이블되고, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 것에 기반하여 허용될 수 있다.
예를 들어, 상기 제 1 LCH와 관련된 자원 풀의 CBR(channel busy ratio) 측정 값이 사전 설정된 임계 값보다 클 수 있다. 예를 들어, 상기 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 큰 자원 풀의 CBR 값을 가진 제 1 LCH에 기반하여 허용될 수 있다.
도 10은 본 개시의 일 실시 예에 따른, 전송 단말이 MAC PDU를 재전송하는 절차를 나타낸다. 도 10의 실시 예는 본 개시의 다양한 실시 예들과 결합될 수 있다.
도 10을 참조하면, 단계 S1010에서, 전송 단말은 제 1 자원을 선택할 수 있다. 예를 들어, 전송 단말은 센싱을 기반으로 제 1 선택 윈도우 내에서 제 1 자원을 선택할 수 있다. 또는, 예를 들어, 전송 단말은 제 1 자원을 랜덤하게 선택할 수 있다.
단계 S1020에서, 전송 단말은 적어도 하나의 LCH를 기반으로 MAC PDU를 생성할 수 있다. 예를 들어, 전송 단말은 HARQ 피드백이 인에이블된 적어도 하나의 LCH를 기반으로 MAC PDU를 생성할 수 있다.
단계 S1030에서, 전송 단말은 수신 단말에게 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI를 상기 제 1 자원을 기반으로 전송할 수 있다.
단계 S1040에서, 전송 단말은 수신 단말에게 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다.
예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
예를 들어, 상기 센싱은 부분 센싱을 포함할 수 있다. 예를 들어, 부분 센싱을 위해, 전송 단말은 상기 제 1 선택 윈도우 내에서 적어도 하나의 제 1 후보 슬롯이 결정할 수 있다. 예를 들어, 전송 단말은 상기 적어도 하나의 제 1 후보 슬롯과 관련된 적어도 하나의 제 1 센싱 슬롯에 대해 상기 센싱을 수행할 수 있다.
예를 들어, 상기 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH일 수 있다. 예를 들어, 상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위일 수 있다. 예를 들어, 상기 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 높은 우선 순위를 가진 상기 제 1 LCH에 기반하여 허용될 수 있다.
예를 들어, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많을 수 있다. 예를 들어, 상기 센싱은, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에이블되고, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 것에 기반하여 허용될 수 있다.
예를 들어, 상기 제 1 LCH와 관련된 자원 풀의 CBR 측정 값이 사전 설정된 임계 값보다 클 수 있다. 예를 들어, 상기 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 큰 자원 풀의 CBR 값을 가진 제 1 LCH에 기반하여 허용될 수 있다.
단계 S1050에서, 전송 단말은 수신 단말로부터 MAC PDU에 대한 HARQ NACK을 PSFCH(physical sidelink feedback channel)을 통해 수신할 수 있다.
단계 S1060에서, 전송 단말은 MAC PDU를 재전송하기 위한 제 2 자원을 선택할 수 있다. 예를 들어, 전송 단말은 수신한 HARQ NACK에 기반하여, MAC PDU를 재전송하기 위한 제 2 자원을 선택하기 위해 센싱을 수행할 수 있다. 예를 들어, 전송 단말은 센싱을 기반으로 제 2 선택 윈도우 내에서 MAC PDU를 재전송하기 위한 제 2 자원을 선택할 수 있다.
단계 S1070에서, 전송 단말은 수신 단말에게 MAC PDU를 재전송할 수 있다.
도 11은 본 개시의 일 실시 예에 따른, 전송 단말이 복수의 MAC PDU들을 전송하는 절차를 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예들과 결합될 수 있다.
도 11을 참조하면, 단계 S1110에서, 전송 단말은 복수의 MAC PDU를 생성할 수 있다.
예를 들어, 전송 단말은 제 1 자원을 선택할 수 있다. 예를 들어, 전송 단말은 제 1 센싱을 기반으로 제 1 선택 윈도우 내에서 제 1 자원을 선택할 수 있다. 예를 들어, 전송 단말은 제 3 자원을 랜덤하게 선택할 수 있다.
예를 들어, 전송 단말은 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH를 기반으로 제 1 MAC PDU를 생성할 수 있다. 예를 들어, 전송 단말은 HARQ 피드백이 디스에이블된 적어도 하나의 LCH를 기반으로 제 2 MAC PDU를 생성할 수 있다.
예를 들어, 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다. 예를 들어, 적어도 하나의 LCH가 HARQ 피드백이 디스에이블된 것을 기반으로, 상기 제 3 자원에 대한 랜덤 선택이 허용될 수 있다. 또는, 예를 들어, 적어도 하나의 LCH가 HARQ 피드백이 디스에이블된 것을 기반으로, 상기 제 3 자원에 대한 랜덤 선택 및 부분 센싱이 허용될 수 있다.
예를 들어, 상기 제 1 센싱은 부분 센싱을 포함할 수 있다. 예를 들어, 부분 센싱을 위해, 전송 단말은 상기 제 1 선택 윈도우 내에서 적어도 하나의 제 1 후보 슬롯이 결정할 수 있다. 예를 들어, 전송 단말은 상기 적어도 하나의 제 1 후보 슬롯과 관련된 적어도 하나의 제 1 센싱 슬롯에 대해 상기 제 1 센싱을 수행할 수 있다.
예를 들어, 상기 제 1 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH일 수 있다. 예를 들어, 상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위일 수 있다. 예를 들어, 상기 제 1 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 높은 우선 순위를 가진 상기 제 1 LCH에 기반하여 허용될 수 있다.
예를 들어, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많을 수 있다. 예를 들어, 상기 제 1 센싱은, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에이블되고, 전송 단말의 잔여 배터리 양이 사전 설정된 임계 값보다 많은 것에 기반하여 허용될 수 있다.
예를 들어, 상기 제 1 LCH와 관련된 자원 풀의 CBR(channel busy ratio) 측정 값이 사전 설정된 임계 값보다 클 수 있다. 예를 들어, 상기 제 1 센싱은, 상기 HARQ 피드백이 인에이블된 적어도 하나의 LCH 중에서, 사전 설정된 임계 값보다 큰 자원 풀의 CBR 값을 가진 제 1 LCH에 기반하여 허용될 수 있다.
예를 들어, 상기 제 2 MAC PDU와 관련된 우선 순위가 사전 설정된 임계 값보다 높은 우선 순위인 것에 기반하여, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱이 허용될 수 있다.
예를 들어, 상기 HARQ 피드백이 디스에이블된 적어도 하나의 LCH에 대한 자원 선택 타입에 기반하여, 상기 제 3 자원이 선택될 수 있다. 예를 들어, 상기 자원 선택 타입은 센싱에 의해 자원을 선택하는 타입 및 랜덤 선택에 의해 자원을 선택하는 타입을 포함할 수 있다. 예를 들어, 자원 선택 타입은 상위 계층으로부터 사이드링크 서비스에 기반하여 설정될 수 있다.
예를 들어, 상기 적어도 하나의 LCH가 동일한 데스티네이션 ID를 가진 것에 기반하여, 동일한 MAC PDU로 멀티플렉스 될 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 동일한 캐스트 타입인 것에 기반하여, 동일한 MAC PDU로 멀티플렉스 될 수 있다. 예를 들어, 상기 적어도 하나의 LCH 중 가장 높은 우선 순위의 LCH와 관련된 자원 선택 타입에 기반하여, 멀티플렉스된 MAC PDU를 전송하기 위한 자원이 선택될 수 있다.
단계 S1120에서, 전송 단말은 수신 단말에게 복수의 MAC PDU를 전송할 수 있다.
예를 들어, 전송 단말은 수신 단말에게 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 전송 단말은 수신 단말에게 제 2 PSCCH를 통해, 제 2 PSSCH를 스케줄링하기 위한 제 3 SCI(sidelink control information)를 상기 제 3 자원을 기반으로 전송할 수 있다. 여기서, 예를 들어, 제 1 SCI 및 제 3 SCI는 SCI 포맷이 1-A일 수 있다. 예를 들어, 제 1 SCI 및 제 3 SCI는 1st-단계-SCI일 수 있다.
예를 들어, 전송 단말은 수신 단말에게 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 전송 단말은 수신 단말에게 상기 제 2 PSSCH를 통해, 제 4 SCI 및 상기 제 2 MAC PDU를 상기 제 3 자원을 기반으로 전송할 수 있다. 여기서, 예를 들어, 제 2 SCI 및 제 4 SCI는 SCI 포맷이 2-A 또는 2-B일 수 있다. 예를 들어, 제 2 SCI 및 제 4 SCI는 2nd-단계-SCI일 수 있다.
예를 들어, 전송 단말은 상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH를 통해서 수신 단말로부터 수신할 수 있다. 예를 들어, 상기 HARQ 피드백이 NACK인 것에 기반하여, 전송 단말은 상기 제 1 MAC PDU를 재전송하기 위한 제 2 자원을 선택하기 위해 제 2 센싱이 수행할 수 있다. 예를 들어, 전송 단말은 상기 제 2 센싱에 기반하여 제 2 선택 윈도우 내에서 상기 제 2 자원이 선택할 수 있다.
도 12는 본 개시의 일 실시 예에 따른, 제 1 장치가 MAC PDU를 전송하는 방법을 나타낸다. 도 12의 실시 예는 본 개시의 다양한 실시 예들과 결합될 수 있다.
도 12를 참조하면, 단계 S1210에서, 제 1 장치(100)는 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택할 수 있다.
단계 S1220에서, 제 1 장치(100)는 HARQ 피드백이 인에이블된 적어도 하나의 LCH를 기반으로 제 1 MAC PDU를 생성할 수 있다.
단계 S1230에서, 제 1 장치(100)는 제 2 장치(200)에게, 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI를 상기 제 1 자원을 기반으로 전송할 수 있다.
단계 S1240에서, 제 1 장치(100)는 제 2 장치(200)에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다.
예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
예를 들어, 제 1 장치(100)는 상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH(physical sidelink feedback channel)를 통해서 수신할 수 있다.
예를 들어, 상기 제 1 센싱은 부분 센싱을 포함할 수 있다.
예를 들어, 상기 HARQ 피드백이 NACK(negative-acknowledgement)인 것에 기반하여, 상기 제 1 MAC PDU를 재전송하기 위한 제 2 자원을 선택하기 위해 제 2 센싱이 수행될 수 있다. 예를 들어, 상기 제 2 센싱에 기반하여 제 2 선택 윈도우 내에서 상기 제 2 자원이 선택될 수 있다.
예를 들어, 상기 제 1 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH일 수 있다. 예를 들어, 상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위일 수 있다. 예를 들어, 상기 제 1 LCH와 관련된 자원 풀의 CBR(channel busy ratio) 측정 값이 사전 설정된 임계 값보다 클 수 있다.
예를 들어, 제 1 장치(100)의 잔여 배터리 양이 사전 설정된 임계 값보다 많을 수 있다.
예를 들어, 제 1 장치(100)는 제 2 장치(200)에게, 제 2 PSCCH를 통해 제 2 PSSCH를 스케줄링하기 위한 제 3 SCI를 전송할 수 있다. 예를 들어, 제 1 장치(100)는 제 2 장치(200)에게, 상기 제 2 PSSCH를 통해 제 4 SCI 및 제 2 MAC PDU를 전송할 수 있다. 예를 들어, HARQ 피드백이 디스에이블된 적어도 하나의 LCH를 기반으로 상기 제 2 MAC PDU가 생성될 수 있다. 예를 들어, 상기 제 2 MAC PDU와 관련된 우선 순위가 사전 설정된 임계 값보다 높은 우선 순위인 것에 기반하여, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱이 허용될 수 있다. 예를 들어, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 랜덤 선택이 허용될 수 있다. 예를 들어, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱 및 랜덤 선택이 허용될 수 있다. 예를 들어, 상기 HARQ 피드백이 디스에이블된 적어도 하나의 LCH에 대한 자원 선택 타입에 기반하여, 상기 제 3 자원이 선택될 수 있다. 상기 자원 선택 타입은 센싱에 의해 자원을 선택하는 타입 및 랜덤 선택에 의해 자원을 선택하는 타입을 포함할 수 있다. 예를 들어, 상기 자원 선택 타입은 상위 계층으로부터 사이드링크 서비스에 기반하여 설정될 수 있다.
상술한 실시 예는 이하 설명되는 다양한 장치에 대하여 적용될 수 있다. 예를 들어, 제 1 장치(100)의 프로세서(102)는 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택할 수 있다. 그리고, 예를 들어, 제 1 장치(100)의 프로세서(102)는 HARQ 피드백이 인에이블된 적어도 하나의 LCH를 기반으로 제 1 MAC PDU를 생성할 수 있다. 그리고, 예를 들어, 제 1 장치(100)의 프로세서(102)는 제 2 장치(200)에게, 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI를 상기 제 1 자원을 기반으로 전송하도록 송수신기(106)를 제어할 수 있다. 그리고, 예를 들어, 제 1 장치(100)의 프로세서(102)는 제 2 장치(200)에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하도록 송수신기(106)를 제어할 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 1 장치가 제공될 수 있다. 예를 들어, 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 제 1 단말을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고, 제 2 단말에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고, 상기 제 2 단말에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 일 실시 예에 따르면, 명령들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령들은, 실행될 때, 제 1 장치로 하여금: 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하게 하고, HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하게 하고, 제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하게 하고, 상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하게 할 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
도 13은 본 개시의 일 실시 예에 따른, 제 2 장치가 MAC PDU를 수신하는 방법을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예들과 결합될 수 있다.
도 13을 참조하면, 단계 S1310에서, 제 2 장치(200)는 제 1 장치(100)로부터, 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI를 수신할 수 있다.
단계 S1320에서, 제 2 장치(200)는 제 1 장치(100)로부터, 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC PDU를 수신할 수 있다.
예를 들어, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택될 수 있다. 예를 들어, 상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송될 수 있다. 예를 들어, 상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성될 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
예를 들어, 제 2 장치(200)는 상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH(physical sidelink feedback channel)를 통해서 전송할 수 있다.
예를 들어, 상기 제 1 센싱은 부분 센싱을 포함할 수 있다.
예를 들어, 상기 HARQ 피드백이 NACK(negative-acknowledgement)인 것에 기반하여, 상기 제 1 MAC PDU를 재전송하기 위한 제 2 자원을 선택하기 위해 제 2 센싱이 수행될 수 있다. 예를 들어, 상기 제 2 센싱에 기반하여 제 2 선택 윈도우 내에서 상기 제 2 자원이 선택될 수 있다.
예를 들어, 상기 제 1 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH일 수 있다. 예를 들어, 상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위일 수 있다. 예를 들어, 상기 제 1 LCH와 관련된 자원 풀의 CBR(channel busy ratio) 측정 값이 사전 설정된 임계 값보다 클 수 있다.
예를 들어, 제 2 장치(200)는 제 1 장치(100)로부터, 제 2 PSCCH를 통해 제 2 PSSCH를 스케줄링하기 위한 제 3 SCI를 수신할 수 있다. 예를 들어, 제 2 장치(200)는 제 1 장치(100)로부터,, 상기 제 2 PSSCH를 통해 제 4 SCI 및 제 2 MAC PDU를 수신할 수 있다. 예를 들어, HARQ 피드백이 디스에이블된 적어도 하나의 LCH를 기반으로 상기 제 2 MAC PDU가 생성될 수 있다. 예를 들어, 상기 제 2 MAC PDU와 관련된 우선 순위가 사전 설정된 임계 값보다 높은 우선 순위인 것에 기반하여, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱이 허용될 수 있다. 예를 들어, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 랜덤 선택이 허용될 수 있다. 예를 들어, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱 및 랜덤 선택이 허용될 수 있다. 예를 들어, 상기 HARQ 피드백이 디스에이블된 적어도 하나의 LCH에 대한 자원 선택 타입에 기반하여, 상기 제 3 자원이 선택될 수 있다. 상기 자원 선택 타입은 센싱에 의해 자원을 선택하는 타입 및 랜덤 선택에 의해 자원을 선택하는 타입을 포함할 수 있다. 예를 들어, 상기 자원 선택 타입은 상위 계층으로부터 사이드링크 서비스에 기반하여 설정될 수 있다.
상술한 실시 예는 이하 설명되는 다양한 장치에 대하여 적용될 수 있다. 먼저, 예를 들어, 제 2 장치(200)의 프로세서(202)는 제 1 장치(100)로부터, 제 1 PSCCH를 통해, 제 1 PSSCH를 스케줄링하기 위한 제 1 SCI를 수신하도록 송수신기(206)를 제어할 수 있다. 그리고, 예를 들어, 제 2 장치(200)의 프로세서(202)는 제 1 장치(100)로부터, 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC PDU를 수신하도록 송수신기(206)를 제어할 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 2 장치가 제공될 수 있다. 예를 들어, 제 2 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 장치로부터, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 수신하고, 상기 제 1 장치로부터, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC(medium access control) PDU(protocol data unit)를 수신할 수 있다. 예를 들어, 제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택되고, 상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송될 수 있다. 예를 들어, 상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성될 수 있다. 예를 들어, 상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않을 수 있다.
본 개시의 다양한 실시 예는 상호 결합될 수 있다.
본 개시의 다양한 실시예는 독립적으로 구현될 수 있다. 또는, 본 개시의 다양한 실시예는 상호 조합 또는 병합되어 구현될 수 있다. 예를 들어, 본 개시의 다양한 실시예는 설명의 편의를 위해 3GPP 시스템을 기반으로 설명되었지만, 본 개시의 다양한 실시예는 3GPP 시스템 외에 다른 시스템으로도 확장 가능할 수 있다. 예를 들어, 본 개시의 다양한 실시예는 단말간 직접 통신에만 제한되는 것은 아니고, 상향링크 또는 하향링크에서도 사용될 수 있으며, 이때 기지국이나 중계 노드 등이 본 개시의 다양한 실시예에 따른 제안한 방법을 사용할 수 있다. 예를 들어, 본 개시의 다양한 실시예에 따른 방법이 적용되는지 여부에 대한 정보는, 기지국이 단말에게 또는 제 2 장치(200)이 수신 단말에게, 사전에 정의된 시그널(예를 들어, 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 정의될 수 있다. 예를 들어, 본 개시의 다양한 실시예에 따른 규칙에 대한 정보는, 기지국이 단말에게 또는 제 2 장치(200)이 수신 단말에게, 사전에 정의된 시그널(예를 들어, 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 정의될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 14는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다. 도 14의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 14를 참조하면, 본 개시의 다양한 실시 예가 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 15는 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 도 15의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 15를 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 14의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 16은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다. 도 16의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 16을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 16의 동작/기능은 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 16의 하드웨어 요소는 도 15의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 15의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 15의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 15의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 16의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 16의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 15의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 17은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 14 참조). 도 17의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 17을 참조하면, 무선 기기(100, 200)는 도 15의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 15의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 15의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 14, 100a), 차량(도 14, 100b-1, 100b-2), XR 기기(도 14, 100c), 휴대 기기(도 14, 100d), 가전(도 14, 100e), IoT 기기(도 14, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 14, 400), 기지국(도 14, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 17에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 17의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 18은 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다. 도 18의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 18을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 17의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 19는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다. 도 19의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 19를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 17의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (20)

  1. 제 1 장치가 무선 통신을 수행하는 방법에 있어서,
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하는 단계;
    HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하는 단계;
    제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하는 단계; 및
    상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하는 단계;를 포함하되,
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 방법.
  2. 제 1 항에 있어서,
    상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH(physical sidelink feedback channel)를 통해서 수신하는 단계;를 더 포함하되,
    상기 제 1 센싱은 부분 센싱을 포함하는, 방법.
  3. 제 2 항에 있어서,
    상기 HARQ 피드백이 NACK(negative-acknowledgement)인 것에 기반하여, 상기 제 1 MAC PDU를 재전송하기 위한 제 2 자원을 선택하기 위해 제 2 센싱이 수행되고,
    상기 제 2 센싱에 기반하여 제 2 선택 윈도우 내에서 상기 제 2 자원이 선택되는, 방법.
  4. 제 1 항에 있어서,
    상기 제 1 MAC PDU와 관련된 제 1 LCH는 상기 적어도 하나의 LCH 중에서 가장 높은 우선 순위를 가지는 LCH인, 방법.
  5. 제 4 항에 있어서,
    상기 제 1 LCH의 우선 순위는 사전 설정된 임계 값보다 높은 우선 순위인, 방법.
  6. 제 1 항에 있어서,
    상기 제 1 장치의 잔여 배터리 양이 사전 설정된 임계 값보다 많은, 방법.
  7. 제 4 항에 있어서,
    상기 제 1 LCH와 관련된 자원 풀의 CBR(channel busy ratio) 측정 값이 사전 설정된 임계 값보다 큰, 방법.
  8. 제 1 항에 있어서,
    상기 제 2 장치에게, 제 2 PSCCH를 통해 제 2 PSSCH를 스케줄링하기 위한 제 3 SCI를 전송하는 단계; 및
    상기 제 2 장치에게, 상기 제 2 PSSCH를 통해 제 4 SCI 및 제 2 MAC PDU를 전송하는 단계;를 더 포함하되,
    HARQ 피드백이 디스에이블된 적어도 하나의 LCH를 기반으로 상기 제 2 MAC PDU가 생성되는, 방법.
  9. 제 8 항에 있어서,
    상기 제 2 MAC PDU와 관련된 우선 순위가 사전 설정된 임계 값보다 높은 우선 순위인 것에 기반하여, 상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱이 허용되는, 방법.
  10. 제 8 항에 있어서,
    상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 랜덤 선택이 허용되는, 방법.
  11. 제 8 항에 있어서,
    상기 제 2 MAC PDU를 전송하기 위한 제 3 자원에 대한 센싱 및 랜덤 선택이 허용되는, 방법.
  12. 제 11 항에 있어서,
    상기 HARQ 피드백이 디스에이블된 적어도 하나의 LCH에 대한 자원 선택 타입에 기반하여, 상기 제 3 자원이 선택되고, 및
    상기 자원 선택 타입은 센싱에 의해 자원을 선택하는 타입 및 랜덤 선택에 의해 자원을 선택하는 타입을 포함하는, 방법.
  13. 제 12 항에 있어서,
    상기 자원 선택 타입은 상위 계층으로부터 사이드링크 서비스에 기반하여 설정되는, 방법.
  14. 무선 통신을 수행하는 제 1 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고,
    HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고,
    제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고,
    상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하되,
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 제 1 장치.
  15. 제 1 단말을 제어하도록 설정된 장치(apparatus)에 있어서, 상기 장치는,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하고,
    HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하고,
    제 2 단말에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하고,
    상기 제 2 단말에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하되,
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 장치.
  16. 명령들을 기록하고 있는 비-일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령들은, 실행될 때, DRX (Discontinuous Reception) 설정을 설정 받은 제 1 장치로 하여금:
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원을 선택하게 하고,
    HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 제 1 MAC(medium access control) PDU(protocol data unit)를 생성하게 하고,
    제 2 장치에게, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 상기 제 1 자원을 기반으로 전송하게 하고,
    상기 제 2 장치에게, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 상기 제 1 MAC PDU를 상기 제 1 자원을 기반으로 전송하게 하되,
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 비-일시적 컴퓨터 판독가능 저장 매체.
  17. 제 2 장치가 무선 통신을 수행하는 방법에 있어서,
    제 1 장치로부터, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 수신하는 단계; 및
    상기 제 1 장치로부터, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC(medium access control) PDU(protocol data unit)를 수신하는 단계;를 포함하되,
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택되고,
    상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송되고,
    상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성되고,
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 방법.
  18. 제 17 항에 있어서,
    상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH(physical sidelink feedback channel)를 통해서 전송하는 단계;를 더 포함하되,
    상기 제 1 센싱은 부분 센싱을 포함하는, 방법.
  19. 무선 통신을 수행하는 제 2 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    제 1 장치로부터, 제 1 PSCCH(physical sidelink control channel)를 통해, 제 1 PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 수신하고,
    상기 제 1 장치로부터, 상기 제 1 PSSCH를 통해, 제 2 SCI 및 제 1 MAC(medium access control) PDU(protocol data unit)를 수신하되,
    제 1 센싱을 기반으로, 제 1 선택 윈도우 내에서 제 1 자원이 선택되고,
    상기 제 1 자원을 기반으로 상기 제 1 MAC PDU가 전송되고,
    상기 제 1 MAC PDU는 HARQ(hybrid automatic repeat request) 피드백이 인에이블된 적어도 하나의 LCH(logical channel)를 기반으로 생성되고, 및
    상기 적어도 하나의 LCH가 HARQ 피드백이 인에블된 것을 기반으로, 상기 제 1 자원에 대한 랜덤 선택이 허용되지 않는, 제 2 장치.
  20. 제 19 항에 있어서,
    상기 제 1 MAC PDU에 대한 HARQ 피드백을 PSFCH(physical sidelink feedback channel)를 통해서 전송하고, 및
    상기 제 1 센싱은 부분 센싱을 포함하는, 제 2 장치.
PCT/KR2021/019227 2020-12-16 2021-12-16 Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치 WO2022131831A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/268,180 US20240057036A1 (en) 2020-12-16 2021-12-16 Method and device for selecting resource on basis of lch in nr v2x
EP21907135.4A EP4266776A1 (en) 2020-12-16 2021-12-16 Method and device for selecting resource on basis of lch in nr v2x
KR1020237020156A KR20230117579A (ko) 2020-12-16 2021-12-16 Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200176688 2020-12-16
KR10-2020-0176688 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022131831A1 true WO2022131831A1 (ko) 2022-06-23

Family

ID=82059367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019227 WO2022131831A1 (ko) 2020-12-16 2021-12-16 Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치

Country Status (4)

Country Link
US (1) US20240057036A1 (ko)
EP (1) EP4266776A1 (ko)
KR (1) KR20230117579A (ko)
WO (1) WO2022131831A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190051057A (ko) * 2016-09-28 2019-05-14 엘지전자 주식회사 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190051057A (ko) * 2016-09-28 2019-05-14 엘지전자 주식회사 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.2.1, 5 October 2020 (2020-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 154, XP051961393 *
ITL, KRRI: "Resource allocation for power saving with partial sensing in NR sidelink enhancement", 3GPP DRAFT; R1-2009222, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945535 *
LG ELECTRONICS: "Discussion on resource allocation for power saving", 3GPP DRAFT; R1-2007895, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946543 *
SAMSUNG: "On resource allocation for power saving", 3GPP DRAFT; R1-2008189, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945353 *

Also Published As

Publication number Publication date
EP4266776A1 (en) 2023-10-25
US20240057036A1 (en) 2024-02-15
KR20230117579A (ko) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2021206529A1 (ko) Nr v2x에서 dci를 기반으로 통신을 수행하는 방법 및 장치
WO2021221363A1 (ko) Nr v2x에서 psfch 오버헤드를 기반으로 sl 통신을 수행하는 방법 및 장치
WO2022139491A1 (ko) Nr v2x에서 디폴트 drx 설정에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022149821A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치
WO2022203438A1 (ko) Nr v2x에서 sl harq 피드백을 전송하는 방법 및 장치
WO2022131761A1 (ko) Nr v2x에서 자원 할당 정보에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022154475A1 (ko) Nr v2x에서 자원 할당 모드 2 동작 기반의 sl drx 타이머 동작 방법 및 장치
WO2023063668A1 (ko) Nr v2x에서 단말 간 조정 정보를 기반으로 통신을 수행하는 방법 및 장치
WO2023022488A1 (ko) Nr v2x에서 사이드링크 전송 상태 지시 기반의 sl drx 동작 방법 및 장치
WO2022154413A1 (ko) Nr v2x에서 단말의 모빌리티에 기반하여 sl drx를 수행하는 방법 및 장치
WO2021230695A1 (ko) Nr v2x에서 sl harq 피드백을 기지국에게 보고하는 방법 및 장치
WO2022131831A1 (ko) Nr v2x에서 lch에 기반하여 자원을 선택하는 방법 및 장치
WO2022131881A1 (ko) Nr v2x에서 sl drx 설정을 기반으로 sl 통신을 수행하는 방법 및 장치
WO2022231141A1 (ko) Nr v2x에서 sl drx에 기반한 lcp를 수행하는 방법 및 장치
WO2022225310A1 (ko) Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
WO2023048487A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2023059159A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2022139492A1 (ko) Nr v2x에서 harq 피드백에 기반하여 sl drx 동작을 수행하는 방법 및 장치
WO2022191678A1 (ko) Nr v2x에서 재평가 또는 프리엠션을 수행하는 방법 및 장치
WO2022235115A1 (ko) Nr v2x에서 dci를 기반으로 sl drx 타이머를 개시하는 방법 및 장치
WO2023113498A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2023038496A1 (ko) Nr v2x에서 모드 1 단말의 sl drx 활성 시간 동작 방법 및 장치
WO2023059162A1 (ko) Nr v2x에서 sl drx와 관련된 무선 통신을 수행하는 방법 및 장치
WO2022149945A1 (ko) Nr v2x에서 자원 예약 주기 기반의 sl drx 동작 방법 및 장치
WO2023101539A1 (ko) Nr v2x에서 sl drx 타이머를 선택하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21907135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237020156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18268180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021907135

Country of ref document: EP

Effective date: 20230717