WO2022234789A1 - Polarizing plate and organic el display device - Google Patents

Polarizing plate and organic el display device Download PDF

Info

Publication number
WO2022234789A1
WO2022234789A1 PCT/JP2022/018910 JP2022018910W WO2022234789A1 WO 2022234789 A1 WO2022234789 A1 WO 2022234789A1 JP 2022018910 W JP2022018910 W JP 2022018910W WO 2022234789 A1 WO2022234789 A1 WO 2022234789A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light absorption
layer
carbon atoms
film
Prior art date
Application number
PCT/JP2022/018910
Other languages
French (fr)
Japanese (ja)
Inventor
晋也 渡邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023518667A priority Critical patent/JPWO2022234789A1/ja
Publication of WO2022234789A1 publication Critical patent/WO2022234789A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate and an organic EL (electroluminescence) display device.
  • An organic EL display device is a self-luminous thin display device, and has the advantages of display performance such as high visibility and less dependency on viewing angle compared to a liquid crystal display device (LCD).
  • LCD liquid crystal display device
  • the use of flexible substrates has the potential to realize display devices with shapes that could not be realized so far.
  • the organic EL display device has the excellent features described above.
  • the electrodes are made of a transparent conductive material with a high refractive index, such as ITO (indium tin oxide), and layers with different refractive indexes are laminated, or a metal material with a high reflectance is used. Reflections at their interfaces can cause problems such as reduced contrast and glare due to internal reflection.
  • Patent Document 1 discloses a broadband ⁇ /4 plate (retardation film) and a broadband circularly polarizing plate using the same.
  • An object of the present invention is to provide a polarizing plate that is applied to an organic EL display device and that exhibits a low reflectance when viewed from an oblique direction and suppresses black tint when displaying black.
  • Another object of the present invention is to provide an organic EL display device.
  • the present inventors have applied a light absorption anisotropic layer in which the angle ⁇ between the transmittance central axis and the film normal line is 0 to 45° and the retardation in the thickness direction and the absorption anisotropy are controlled to a circularly polarizing plate. By combining them, the inventors have found that the reflectance and color when viewed from an oblique direction can be improved, and have completed the present invention.
  • a polarizer a light absorption anisotropic layer having at least one dye compound, and a ⁇ /4 retardation film
  • the angle formed by the transmittance central axis of the anisotropic light absorption layer and the normal to the layer plane of the anisotropic light absorption layer is 0 to 45°, and the thickness direction of the anisotropic light absorption layer
  • the phase difference Rth is -20 to -160 nm at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 630 nm
  • a polarizing plate wherein A( ⁇ ) of the light absorption anisotropic layer represented by formula (1) is 20 to 200 nm at any of wavelengths of 450 nm, 550 nm and 630 nm.
  • d is the thickness of the light absorption anisotropic layer
  • kx( ⁇ ) and ky( ⁇ ) are the in-plane orthogonal x-axis and y-axis of the light absorption anisotropic layer, respectively.
  • kz( ⁇ ) is the absorption coefficient for light with wavelength ⁇ in the z-axis direction perpendicular to the plane containing the x-axis and y-axis.
  • the unit of the thickness of the light absorption anisotropic layer represented by d is nm.
  • A( ⁇ ) is 40 to 150 nm at a wavelength of 450 nm, 550 nm and 630 nm.
  • the polarizer, the light absorption anisotropic layer and the ⁇ / 4 retardation film are laminated in this order, or the polarizer, the ⁇ / 4 retardation film and the light absorption anisotropy
  • a polarizing plate that is applied to an organic EL display device and has a low reflectance when viewed from an oblique direction and suppresses black tint when displaying black, and an image display device. can be provided.
  • a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • parallel and orthogonal do not mean parallel and orthogonal in a strict sense, but mean a range of ⁇ 5° from parallel or orthogonal.
  • liquid crystalline composition and “liquid crystalline compound” also conceptually includes those that no longer exhibit liquid crystallinity due to curing or the like.
  • each component may be a substance corresponding to each component either singly or in combination of two or more.
  • the content of the component refers to the total content of the substances used in combination unless otherwise specified.
  • (meth)acrylate” is a notation representing “acrylate” or “methacrylate”
  • (meth)acrylic is a notation representing "acrylic” or “methacrylic”
  • (Meth)acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
  • the refractive indices nx and ny are respectively the refractive indices in the in-plane direction of the optical member. is the refractive index in the orthogonal orientation).
  • nz is the refractive index in the thickness direction.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent the in-plane retardation and the thickness direction retardation at the wavelength ⁇ , respectively, and the refractive indices nx, ny, and nz, and the film thickness d ( ⁇ m ), it is represented by the following equations (1) and (2).
  • Formula (1): Re( ⁇ ) (nx ⁇ ny) ⁇ d ⁇ 1000 (nm)
  • Formula (2): Rth( ⁇ ) ((nx+ny)/2 ⁇ nz) ⁇ d ⁇ 1000 (nm)
  • the wavelength ⁇ is 550 nm.
  • the slow axis orientation, Re( ⁇ ), and Rth( ⁇ ) can be measured using, for example, AxoScan OPMF-1 (manufactured by Optoscience).
  • the polarizing plate of the present invention includes a polarizer, a light absorption anisotropic layer having at least one dye compound, and a ⁇ / 4 retardation film, and the transmittance center of the light absorption anisotropic layer
  • the angle formed by the axis and the normal to the layer plane of the anisotropic light absorption layer is 0 to 45°, and the retardation Rth in the thickness direction of the anisotropic light absorption layer is 450 nm, 550 nm, and 630 nm.
  • A( ⁇ ) of the light absorption anisotropic layer represented by the following formula (1) is 20 to 200 nm at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 630 nm.
  • d is the thickness of the anisotropic light absorption layer
  • kx and ky are absorption coefficients for light of wavelength ⁇ in the directions of the x-axis and y-axis that are orthogonal to each other in the plane of the anisotropic light absorption layer.
  • kz is the absorption coefficient for light of wavelength ⁇ in the z-axis direction perpendicular to the plane containing the x-axis and the y-axis.
  • the unit of the thickness of the light absorption anisotropic layer represented by d is nm. Structures included in the polarizing plate of the present invention will be described below.
  • the polarizing plate of the present invention contains a ⁇ /4 retardation film.
  • the ⁇ /4 retardation film is not particularly limited, and may consist of a single optically anisotropic layer, or may consist of a plurality of optically anisotropic layers. That is, the ⁇ /4 retardation film may have a single layer structure or a multilayer structure.
  • the ⁇ /4 retardation film composed of a plurality of optically anisotropic layers for example, the description in paragraphs [0008] to [0053] of JP-A-2014-209219 can be referred to.
  • such a ⁇ /4 retardation film and a light absorption anisotropic film described later may be provided in contact with each other, or another layer may be provided between them.
  • Such a layer includes an adhesive layer and an adhesive layer for securing adhesion.
  • the ⁇ / 4 plate retardation film used in the polarizing plate of the present invention is a film having the function of generating a phase difference of ⁇ / 4, specifically, linearly polarized light with a specific wavelength is circularly polarized (or circularly polarized light into linearly polarized light).
  • the in-plane retardation Re(550) at a wavelength of 550 nm of the ⁇ /4 plate retardation film used in the polarizing plate of the present invention is preferably 100 to 200 nm, more preferably 120 to 160 nm.
  • the ⁇ /4 retardation film has a single layer structure
  • a stretched polymer film specifically, a retardation film having an optically anisotropic layer having a ⁇ /4 function on a support, and the like.
  • a broadband ⁇ /4 plate formed by laminating a ⁇ /4 plate and a ⁇ /2 plate can be mentioned.
  • the polarizing plate of the present invention includes a light absorption anisotropic layer.
  • the angle between the transmittance center axis of the light absorption anisotropic layer and the normal to the layer plane of the light absorption anisotropic layer is 0 to 45°.
  • the central axis of transmittance refers to the angle of inclination with respect to the normal to the layer plane of the anisotropic light absorption layer (the normal direction of the film), and the highest transmittance when the transmittance is measured by changing the inclination direction. means the angle and direction shown.
  • the angle between the central axis of transmittance and the normal to the film is preferably 0 to 10°, more preferably 0 to 5°, even more preferably 0 to 2°.
  • the transmittance when viewed from the front direction can be increased, and the front luminance of the image display device can be increased.
  • AxoScan OPMF-1 manufactured by Optoscience is used to measure the transmittance of the light absorption anisotropic layer for P-polarized light having a wavelength of 550 nm.
  • the azimuth angle at which the transmittance central axis is tilted is first searched, and then the in-plane While changing the polar angle, which is the angle with respect to the normal direction of the light absorption anisotropic layer surface, from ⁇ 70 to 70° in increments of 5° in (a plane that includes the transmittance central axis and is orthogonal to the layer surface), P-polarized light with a wavelength of 550 nm is incident and the transmittance of the light absorption anisotropic layer is measured.
  • the direction with the highest transmittance is defined as the center axis of transmittance.
  • the azimuth angle for changing the polar angle may be in any direction.
  • the light absorption anisotropic layer has at least one dye compound.
  • the dye compound is preferably a dichroic dye compound (hereinafter simply referred to as a dichroic dye) having a different absorption rate depending on the direction. The dye compound will be described in detail later.
  • a mode for controlling the central axis of the transmission axis of the light absorption anisotropic layer a mode in which the dichroic dye is oriented is preferable, and a mode in which the dichroic dye is oriented using the alignment of the liquid crystalline compound is more preferable.
  • An example of the light absorption anisotropic layer that satisfies the relationship regarding the transmittance center axis is a light absorption anisotropic layer in which at least one kind of dichroic dye is oriented perpendicularly to the layer plane of the light absorption anisotropic layer. layer.
  • the technology to orient the dichroic dyes in the desired orientation it is possible to refer to the technology for manufacturing polarizers using dichroic dyes and the technology for manufacturing guest-host liquid crystal cells.
  • the method for producing a dichroic polarizing element described in JP-A-11-305036 and JP-A-2002-090526, and the guest host described in JP-A-2002-099388 and JP-A-2016-027387 The technology used in the manufacturing method of the type liquid crystal display device can also be used in manufacturing the light absorption anisotropic layer used in the present invention.
  • dichroic dye molecules can be oriented as desired along with the orientation of the host liquid crystal.
  • a guest dichroic dye and a rod-like liquid crystalline compound serving as a host liquid crystal are mixed, the host liquid crystal is aligned, and the molecules of the dichroic dye are aligned along the alignment of the liquid crystal molecules.
  • the light absorption anisotropic layer for use in the present invention can be produced by allowing the layers to align and fixing the orientation state.
  • the orientation of the dichroic dye can be fixed by advancing the polymerization of the host liquid crystal, the dichroic dye, or the optionally added polymerizable component.
  • a guest-host type liquid crystal cell itself having a liquid crystal layer containing at least a dichroic dye and a host liquid crystal on a pair of substrates may be used as the light absorption anisotropic layer used in the present invention.
  • the orientation of the host liquid crystal (and the accompanying dichroic dye molecule orientation) can be controlled by an orientation film formed on the inner surface of the substrate, and the orientation state is maintained unless an external stimulus such as an electric field is applied.
  • the light absorption characteristics of the light absorption anisotropic layer used in the present invention can be made constant.
  • the light absorption anisotropic layer used in the present invention it is also possible to prepare polymer films that satisfy the light absorption properties of Specifically, it can be produced by applying a solution of a dichroic dye to the surface of a polymer film and allowing it to permeate into the film.
  • the orientation of the dichroic dye can be adjusted by the orientation of the polymer chains in the polymer film, the properties thereof (chemical and physical properties such as the polymer chains or functional groups possessed by the polymer chains), the coating method, and the like. Details of this method are described in JP-A-2002-090526.
  • the thickness direction retardation Rth of the light absorption anisotropic layer used in the polarizing plate of the present invention is ⁇ 20 to ⁇ 160 nm, and ⁇ 20 to ⁇ 100 nm at any of wavelengths of 450 nm, 550 nm and 630 nm. It is preferably -40 to -80 nm, more preferably -40 to -80 nm.
  • the polarizing plate of the present invention uses a light absorption anisotropic layer that satisfies the above requirements.
  • the degree of absorption anisotropy of the light absorption anisotropic layer can be expressed by various parameters, one example of which is A( ⁇ ) defined below.
  • the light-absorbing anisotropic layer satisfies the relationship described below with respect to A( ⁇ ).
  • A( ⁇ ) ⁇ kz( ⁇ ) ⁇ (kx( ⁇ )+ky( ⁇ ))/2 ⁇ d
  • d is the thickness (unit: nm) of the light absorption anisotropic layer
  • kx( ⁇ ) and ky( ⁇ ) are the in-plane orthogonal x-axes of the light absorption anisotropic layer, respectively.
  • kz( ⁇ ) is an absorption coefficient for light of wavelength ⁇ in the z-axis direction perpendicular to the plane containing the x-axis and the y-axis.
  • the x-axis is the direction in which the refractive index is the largest at wavelength ⁇ (450 nm wavelength, 550 nm wavelength, or 630 nm wavelength)
  • the y-axis is the in-plane direction orthogonal to the x-axis.
  • the absorption coefficient k (kx, ky and kz), also called an attenuation index, is a value related to how much light energy is absorbed in a substance.
  • the real component n of the complex refractive index (n+ik (i is an imaginary unit)) is the so-called refractive index
  • the imaginary component k is the absorption coefficient. Note that k described in the present invention is a physical property value different from the so-called attenuation coefficient ⁇ .
  • the attenuation index and attenuation coefficient are described in detail, for example, in Max Born and Emil Wolf's “Principles of Optics, 7th (expanded) edition", 4.11.2 “Beam propagation in an absorbing maximn”, pp. 218-219. be.
  • the value of A( ⁇ ) is 20 to 200 nm, more preferably 20 to 150 nm, at any of wavelengths of 450 nm, 550 nm and 630 nm. 40 to 150 nm is more preferred, and 40 to 80 nm is even more preferred.
  • the magnitude relationship between the absorption coefficients kx( ⁇ ), ky( ⁇ ), and kz( ⁇ ) can be known from the value of the absorption anisotropy (Diattenuation) of the sample measured using AxosScan of Axometics.
  • the degree of absorption anisotropy A ( ⁇ ) is measured using the above-described measuring device, and the polar angle in the fast axis direction is set within a predetermined range (eg, ⁇ 50 to 5°) at predetermined intervals (eg, every 10°). can be obtained by measuring and fitting Mueller matrices at a plurality of wavelengths ⁇ .
  • the light absorption anisotropic layer used in the present invention preferably has a transmittance of 80% or more, more preferably 85% or more, in the central axis direction of the transmission axis. As a result, the brightness at the center of the viewing angle of the image display device can be increased, and the visibility can be improved.
  • the ⁇ /4 retardation film and the light absorption anisotropic layer are preferably arranged on the same side as viewed from the polarizer. That is, the polarizer, the light absorption anisotropic layer and the ⁇ / 4 retardation film are laminated in this order, or the polarizer, the ⁇ / 4 retardation film and the light absorption anisotropic layer are laminated in this order. It is preferable that More preferably, the polarizer, the light absorption anisotropic layer and the ⁇ /4 retardation film are laminated in this order. By adopting such a configuration, it is possible to reduce the generation of reflected light caused by external light incident from an oblique direction, and suppress the change in color of the reflected light.
  • the components contained in the light absorption anisotropic layer are described below.
  • the light absorption anisotropic layer preferably contains a liquid crystalline compound. That is, it is preferable to form the anisotropic light absorption layer using a composition for forming an anisotropic light absorption layer containing a liquid crystalline compound and a dye compound. By containing the liquid crystalline compound, it is possible to align the dye compound (preferably dichroic dye) with a high degree of alignment while suppressing precipitation of the dye compound (preferably dichroic dye).
  • the liquid crystalline compound is preferably a liquid crystalline compound that does not exhibit dichroism in the visible region.
  • liquid crystal compound it is possible to use either a low-molecular-weight liquid crystal compound or a high-molecular-weight liquid crystal compound, and it is also preferable to use both together.
  • low-molecular-weight liquid crystalline compound refers to a liquid crystalline compound having no repeating unit in its chemical structure.
  • polymeric liquid crystalline compound refers to a liquid crystalline compound having a repeating unit in its chemical structure.
  • low-molecular-weight liquid crystalline compounds examples include liquid crystalline compounds described in JP-A-2013-228706.
  • polymer liquid crystalline compounds examples include thermotropic liquid crystalline polymers described in JP-A-2011-237513.
  • the polymer liquid crystalline compound preferably has a repeating unit having a crosslinkable group at the terminal from the viewpoint of excellent strength (in particular, bending resistance) of the light absorption anisotropic film.
  • the crosslinkable group examples include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038. Among these, acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferred, and acryloyl group and methacryloyl group are more preferred, from the viewpoint of improving reactivity and synthesis suitability.
  • the liquid crystallinity exhibited by the liquid crystalline compound may be either a nematic phase or a smectic phase, or may exhibit both a nematic phase and a smectic phase, and preferably exhibits at least a nematic phase.
  • the smectic phase may be a higher order smectic phase.
  • the higher-order smectic phases referred to herein include smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase, and smectic L.
  • a smectic B phase, a smectic F phase, or a smectic I phase is preferable. If the smectic phase exhibited by the liquid crystalline compound is one of these high-order smectic phases, a light absorption anisotropic layer with a higher degree of orientational order can be produced. In addition, a light absorption anisotropic layer formed from a high-order smectic phase having a high degree of orientational order gives a Bragg peak derived from a high-order structure such as a hexatic phase and a crystal phase in X-ray diffraction measurement.
  • the above-mentioned Bragg peak is a peak derived from the plane periodic structure of molecular orientation, and a light absorption anisotropic layer having a periodic interval of 3.0 to 5.0 ⁇ is preferable.
  • the temperature range showing the nematic phase is preferably room temperature (23° C.) to 450° C., and preferably 50 to 400° C. from the viewpoint of handling and production suitability.
  • the content of the liquid crystalline compound is preferably 25 to 2000 parts by mass, more preferably 100 to 1300 parts by mass, with respect to 100 parts by mass of the dye compound (preferably dichroic dye) content, and 200 to 900 parts by mass. is more preferred.
  • the degree of orientation of the dye compound is further improved.
  • the liquid crystalline compound may be contained individually by 1 type, and may be contained 2 or more types. When two or more kinds of liquid crystalline compounds are contained, the content of the liquid crystalline compounds means the total content of the liquid crystalline compounds.
  • the liquid crystalline compound is preferably a polymeric liquid crystalline compound containing a repeating unit represented by the following formula (1L) (hereinafter also referred to as "repeating unit (1L)”) because of its superior degree of orientation.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogenic group
  • T1 represents a terminal group.
  • main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D).
  • a group represented by the following formula (P1-A) is preferable from the viewpoint of diversity and ease of handling.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms. represents an alkoxy group.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group).
  • the number of carbon atoms in the alkyl group is preferably 1 to 5.
  • the group represented by formula (P1-A) is preferably one unit of the partial structure of poly(meth)acrylic acid ester obtained by polymerization of (meth)acrylic acid ester.
  • the group represented by formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of an oxetane group of a compound having an oxetane group.
  • the group represented by formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of a compound having at least one of an alkoxysilyl group and a silanol group.
  • compounds having at least one of an alkoxysilyl group and a silanol group include compounds having a group represented by the formula SiR 4 (OR 5 ) 2 —.
  • R 4 has the same definition as R 4 in (P1-D), and each of a plurality of R 5 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • L1 is a single bond or a divalent linking group.
  • the divalent linking group represented by L1 includes -C(O)O-, -OC(O)-, -O-, -S-, -C(O)NR 3 -, and -NR 3 C(O). -, -SO 2 -, and -NR 3 R 4 -.
  • R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent W (described later).
  • P1 is a group represented by formula (P1-A)
  • L1 is preferably a group represented by -C(O)O- for the reason that the degree of orientation is superior.
  • P1 is a group represented by formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond because the degree of orientation is superior.
  • the spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and an alkylene fluoride structure, for reasons such as the ease of exhibiting liquid crystallinity and the availability of raw materials. It preferably contains a seed structure.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *--(CH 2 --CH 2 O) n1 --*.
  • n1 represents an integer of 1 to 20
  • * represents the bonding position with L1 or M1 in the above formula (1L).
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and most preferably 3, because the degree of orientation is more excellent.
  • the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH(CH 3 )-CH 2 O) n2 --* because of its superior degree of orientation.
  • n2 represents an integer of 1 to 3
  • * represents the bonding position with L1 or M1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 -O) n3 -* because of its superior degree of orientation.
  • n3 represents an integer of 6 to 10 * represents the bonding position with L1 or M1.
  • alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4 -* because of its superior degree of orientation.
  • n4 represents an integer of 6 to 10
  • * represents the bonding position with L1 or M1.
  • the mesogenic group represented by M1 is a group showing the main skeleton of liquid crystal molecules that contributes to liquid crystal formation.
  • Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • mesogenic group for example, "Flussige Kristalle in Tabellen II” (VEB Manual Verlag fur Grundstoff Industrie, Leipzig, 1984), especially the descriptions on pages 7 to 16 and Liquid Crystal Handbook Editorial Committee ed., Liquid Crystal Handbook (Maruzen, 2000), especially the description in Chapter 3.
  • the mesogenic group is preferably, for example, a group having at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups.
  • the mesogenic group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, and has 3 aromatic hydrocarbon groups for the reason that the degree of orientation is better. is more preferred.
  • the mesogenic group As the mesogenic group, the following formula (M1-A) or the following formula (M1-B) is used from the viewpoint of liquid crystal development, adjustment of the liquid crystal phase transition temperature, availability of raw materials and synthesis suitability, and superior degree of orientation.
  • a group represented by is preferable, and a group represented by formula (M1-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with an alkyl group, a fluorinated alkyl group, an alkoxy group, or a substituent W (described later).
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring. Also, the divalent group represented by A1 may be monocyclic or condensed. * represents the binding position with SP1 or T1.
  • the divalent aromatic hydrocarbon group represented by A1 includes a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group and a tetracene-diyl group.
  • a phenylene group or a naphthylene group is preferred, and a phenylene group is more preferred, from the viewpoint of properties and the like.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation, it is preferably a divalent aromatic heterocyclic group.
  • Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
  • divalent aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group ), isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimide-diyl group, thienothiazole-diyl group , thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
  • pyridylene group pyridine-diy
  • divalent alicyclic group represented by A1 examples include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer of 1-10. When a1 is 2 or more, multiple A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in formula (M1-A), so description thereof is omitted.
  • a2 represents an integer of 1 to 10, and when a2 is 2 or more, multiple A2 may be the same or different, and multiple A3 may be the same or different.
  • a plurality of LA1 may be the same or different.
  • a2 is preferably an integer of 2 or more, more preferably 2, because the degree of orientation is better.
  • LA1 is a divalent linking group.
  • each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group.
  • a2 is 2 or more, each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group.
  • a2 is 2, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond because the degree of orientation is superior.
  • M1 include the following structures.
  • Ac represents an acetyl group.
  • Terminal groups represented by T1 include a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, alkoxycarbonyloxy group having 1 to 10 carbon atoms, alkoxycarbonyl group having 1 to 10 carbon atoms (ROC(O)-: R is an alkyl group), acyloxy group having 1 to 10 carbon atoms, acylamino group having 1 to 10 carbon atoms , an alkoxycarbonylamino group having 1 to 10 carbon atoms, a sulfonylamino group having 1 to 10 carbon atoms, a sulfamoyl group having 1 to 10 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, a sulfinyl group having 1 to 10 carbon
  • (meth)acryloyloxy group-containing group for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above.
  • A is (meth) represents an acryloyloxy group).
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, because the degree of orientation is superior. These terminal groups may be further substituted with these groups or the crosslinkable groups described above.
  • the number of atoms in the main chain of T1 is preferably from 1 to 20, more preferably from 1 to 15, even more preferably from 1 to 10, and particularly preferably from 1 to 7, because the degree of orientation is superior.
  • the degree of orientation of the light absorption anisotropic layer is further improved.
  • the "main chain" in T1 means the longest molecular chain that binds to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1.
  • T1 is an n-butyl group
  • the number of atoms in the main chain is 4
  • T1 is a sec-butyl group
  • the number of atoms in the main chain is 3.
  • the content is preferably 20 to 100% by mass with respect to 100% by mass of all repeating units in the polymer liquid crystalline compound, since the degree of orientation is more excellent.
  • the content of each repeating unit contained in the polymer liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
  • the repeating unit (1L) may be contained singly or in combination of two or more in the polymer liquid crystalline compound. Among them, it is preferable that two kinds of repeating units (1L) are contained in the polymer liquid crystalline compound for the reason that the degree of orientation is more excellent.
  • the terminal group represented by T1 in one (repeating unit A) is an alkoxy group, and in the other (repeating unit B), the orientation degree is more excellent.
  • the terminal group represented by T1 is preferably a group other than an alkoxy group.
  • the terminal group represented by T1 in the repeating unit B is preferably an alkoxycarbonyl group, a cyano group, or a (meth)acryloyloxy group-containing group for the reason that the degree of orientation is better, and an alkoxycarbonyl group or a cyano more preferably a group.
  • the ratio (A/B) between the content of the repeating unit A in the liquid crystalline polymer compound and the content of the repeating unit B in the liquid crystalline polymer compound is 50/50 for the reason that the degree of orientation is more excellent. 95/5 is preferred, 60/40 to 93/7 is more preferred, and 70/30 to 90/10 is even more preferred.
  • the polymer liquid crystalline compound may have a repeating unit having no mesogenic group.
  • Repeating units having no mesogenic group include repeating units in which M1 in formula (1L) is a single bond.
  • the degree of orientation is more excellent, and therefore the amount is more than 0% by mass and 30% by mass or less with respect to 100% by mass of all repeating units possessed by the polymer liquid crystalline compound. is preferable, and more than 10% by mass and 20% by mass or less is more preferable.
  • the weight-average molecular weight (Mw) of the polymer liquid crystalline compound is preferably 1,000 to 500,000, more preferably 2,000 to 300,000, because the degree of orientation is better.
  • the Mw of the liquid crystalline polymer compound is within the above range, the liquid crystalline polymer compound can be easily handled.
  • the weight average molecular weight (Mw) of the polymer liquid crystalline compound is preferably 10,000 or more, more preferably 10,000 to 300,000.
  • the weight average molecular weight (Mw) of the polymer liquid crystalline compound is preferably less than 10,000, more preferably 2,000 or more and less than 10,000.
  • the weight average molecular weight and number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method.
  • the substituent W in the present specification will be explained.
  • the substituent W include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, isopropyl group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group), alkenyl group (preferably having 2 to 20 carbon atoms) , more preferably an alkenyl group having 2 to 12 carbon atoms, particularly preferably an alkenyl group having 2 to 8 carbon atoms, such as a vinyl group, an aryl group, a 2-butenyl group, and a 3-pentenyl group), alkynyl a group (preferably an
  • sulfonylamino group preferably 1 to 20 carbon atoms, more preferably carbon 1 to 10, particularly preferably 1 to 6 carbon atoms, such as methanesulfonylamino group and benzenesulfonylamino group
  • sulfamoyl group preferably 0 to 20 carbon atoms, more preferably carbon Number 0 to 10, particularly preferably 0 to 6 carbon atoms, examples include sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group), carbamoyl group (preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms, such as unsubstituted carbamoyl group, methyl
  • an alkylthio group preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a methylthio group and an ethylthio group
  • Arylthio group preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenylthio group
  • a sulfonyl group preferably having 1 to 1 carbon atoms) 20, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as mesyl group and tosyl group
  • sulfinyl group preferably 1 to 20 carbon atoms, more preferably 1 to 20 carbon atoms
  • hydroxy group mercapto group, halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, and iodine atom), cyano group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, azo group, a heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably a heterocyclic group having 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.) , for example, an epoxy group, an oxetanyl group, an imidazolyl group, a pyridyl group, a quinolyl group, a furyl group, a piperidyl group, a morpholino group, a maleimide group, a benzoxazolyl group, a benzimidazo
  • the light absorption anisotropic layer contains a dye compound.
  • the dye compound is preferably a dichroic dye compound (dichroic dye).
  • Dichroic dyes are not particularly limited, and include visible light absorbing substances (organic dichroic dyes, dichroic azo compounds), light emitting substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, infrared absorbing substances, nonlinear optical substances. , carbon nanotubes, inorganic substances (for example, quantum rods), and the like, and conventionally known dichroic dyes can be used.
  • the dichroic dye means a dye compound having different absorbance depending on the direction.
  • a particularly preferred dichroic dye is a dichroic azo dye compound.
  • the dichroic azo dye compound is not particularly limited, and conventionally known dichroic azo dyes can be used, but the compounds described below are preferably used.
  • a dichroic azo dye compound means an azo dye compound having different absorbance depending on the direction.
  • the dichroic azo dye compound may or may not exhibit liquid crystallinity.
  • the dichroic azo dye compound When the dichroic azo dye compound exhibits liquid crystallinity, it may exhibit nematicity or smecticity.
  • the temperature range showing the liquid crystal phase is preferably room temperature (about 20 to 28°C) to 300°C, and more preferably 50 to 200°C from the viewpoint of handleability and production suitability.
  • the light absorption anisotropic layer contains at least one dye compound having a maximum absorption wavelength in the wavelength range of 560 to 700 nm (hereinafter, “first dichroic azo dye compound”) and at least one dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm (hereinafter also abbreviated as “second dichroic azo dye compound”).
  • first dichroic azo dye compound at least one dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm
  • second dichroic azo dye compound Specifically, it has at least a dichroic azo dye compound represented by formula (3) described later and a dichroic azo dye compound represented by formula (4) described later. more preferably.
  • dichroic azo dye compounds may be used in combination.
  • dichroic azo dye compound and at least one dye compound having a maximum absorption wavelength in the wavelength range of 380 nm or more and less than 455 nm (hereinafter also abbreviated as "third dichroic azo dye compound”). is preferred.
  • the dichroic azo dye compound preferably has a crosslinkable group from the viewpoint of better pressure resistance.
  • the crosslinkable group include a (meth)acryloyl group, an epoxy group, an oxetanyl group, a styryl group, etc. Among them, a (meth)acryloyl group is preferred.
  • the first dichroic azo dye compound is preferably a compound having a chromophore as a nucleus and a side chain bonded to the terminal of the chromophore.
  • the chromophore include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups), azo groups and the like, and structures having both an aromatic ring group and an azo group are preferred.
  • a bisazo structure having an aromatic heterocyclic group (preferably a thienothiazole group) and two azo groups is more preferred.
  • the side chain is not particularly limited, and includes groups represented by L3, R2 or L4 in formula (3) described below.
  • the first dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 to 700 nm. and more preferably a dichroic azo dye compound having a maximum absorption wavelength in the range of 560 to 640 nm.
  • the maximum absorption wavelength (nm) of the dichroic azo dye compound in this specification is a solution of the dichroic azo dye compound dissolved in a good solvent, and is measured with a spectrophotometer at a wavelength of 380 to 800 nm. It is determined from the UV-visible spectrum in the range.
  • the first dichroic azo dye compound is preferably a compound represented by the following formula (3) for the reason that the degree of orientation of the light absorption anisotropic layer to be formed is further improved. .
  • Ar1 and Ar2 each independently represent an optionally substituted phenylene group or an optionally substituted naphthylene group, preferably a phenylene group.
  • R1 is a hydrogen atom, an optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkylthio group, an alkylsulfonyl group, an alkylcarbonyl group.
  • alkyloxycarbonyl group alkyloxycarbonyl group, acyloxy group, alkyl carbonate group, alkylamino group, acylamino group, alkylcarbonylamino group, alkoxycarbonylamino group, alkylsulfonylamino group, alkylsulfamoyl group, alkylcarbamoyl group, alkylsulfinyl group, alkyl It represents a ureido group, an alkylphosphoamide group, an alkylimino group, or an alkylsilyl group.
  • R1 is a group other than a hydrogen atom
  • R1' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R1' are present, they may be the same or different.
  • R2 and R3 are each independently a hydrogen atom, an optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms, an alkoxy group, an acyl group, an alkyl represents an oxycarbonyl group, an alkylamide group, an alkylsulfonyl group, an aryl group, an arylcarbonyl group, an arylsulfonyl group, an aryloxycarbonyl group, or an arylamide group; —CH 2 — constituting the alkyl group is —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, —C(O) -S-, -S-C(O)-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -, -NR2'-, -NR2'-CO-, -CO-NR2'-, -, -
  • R2 and R3 are groups other than hydrogen atoms
  • R2' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when there are multiple R2's, they may be the same or different.
  • R2 and R3 may combine with each other to form a ring, or R2 or R3 may combine with Ar2 to form a ring.
  • R1 is preferably an electron-withdrawing group
  • R2 and R3 are preferably groups with low electron-donating properties.
  • R1 include an alkylsulfonyl group, an alkylcarbonyl group, an alkyloxycarbonyl group, an acyloxy group, an alkylsulfonylamino group, an alkylsulfamoyl group, an alkylsulfinyl group, an alkylureido group, and the like.
  • R2 and R3 include groups having the following structures. The group having the structure below is shown in the above formula (3) in a form containing the nitrogen atom to which R2 and R3 are bonded.
  • first dichroic azo dye compound examples include but are not limited thereto.
  • the second dichroic azo dye compound is a different compound from the first dichroic azo dye compound, specifically in its chemical structure.
  • the second dichroic azo dye compound is preferably a compound having a chromophore that is the nucleus of the dichroic azo dye compound and a side chain that binds to the terminal of the chromophore.
  • Specific examples of the chromophore include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups), azo groups and the like, and structures having both an aromatic hydrocarbon group and an azo group are preferred. , a bisazo or trisazo structure having an aromatic hydrocarbon group and two or three azo groups is more preferred.
  • the side chain is not particularly limited, and includes groups represented by R4, R5 or R6 in formula (4) described below.
  • the second dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the range of wavelength 455 nm or more and less than 560 nm.
  • a dichroic azo dye compound having a maximum absorption wavelength in the range of 555 nm is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 to 550 nm is more preferable.
  • first dichroic azo dye compound having a maximum absorption wavelength of 560 to 700 nm and a second dichroic azo dye compound having a maximum absorption wavelength of 455 nm or more and less than 560 nm light absorption anisotropy It becomes easier to adjust the color tone of the layer.
  • the second dichroic azo dye compound is preferably a compound represented by the formula (4) from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
  • n 1 or 2.
  • Ar3, Ar4 and Ar5 are each independently a phenylene group optionally having substituent(s), a naphthylene group optionally having substituent(s) or a heterocyclic group optionally having substituent(s) represents a cyclic group.
  • Heterocyclic groups can be either aromatic or non-aromatic. Atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
  • aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), and isoquinolylene.
  • R4 is the same as that of R1 in formula (3).
  • definitions of R5 and R6 are the same as those of R2 and R3 in formula (3).
  • R4 is preferably an electron-withdrawing group
  • R5 and R6 are preferably groups with low electron-donating properties.
  • specific examples in which R4 is an electron-withdrawing group are the same as specific examples in which R1 is an electron-withdrawing group
  • R5 and R6 are groups with low electron-donating properties.
  • R2 and R3 are low electron-donating groups, specific examples are the same as the specific examples.
  • the logP value is an index that expresses the hydrophilic and hydrophobic properties of a chemical structure.
  • the absolute value of the difference between the logP value of the side chain of the first dichroic azo dye compound and the logP value of the side chain of the second dichroic azo dye compound (hereinafter also referred to as "logP difference"). is preferably 2.30 or less, more preferably 2.0 or less, still more preferably 1.5 or less, and particularly preferably 1.0 or less. If the logP difference is 2.30 or less, the affinity between the first dichroic azo dye compound and the second dichroic azo dye compound increases, making it easier to form an array structure. The degree of orientation of the anisotropic layer is further improved.
  • the side chain of the first dichroic azo dye compound and the second dichroic azo dye compound means a group that binds to the end of the chromophore described above.
  • the first dichroic azo dye compound is a compound represented by formula (3)
  • R1, R2 and R3 in formula (3) are side chains
  • the second dichroic azo dye When the compound is represented by formula (4), R4, R5 and R6 in formula (4) are side chains.
  • R1 and R4 At least one of the logP value difference between R1 and R5, the logP value difference between R2 and R4, and the logP value difference between R2 and R5 preferably fulfilled.
  • the logP value is an index that expresses the hydrophilicity and hydrophobicity of the chemical structure, and is sometimes called the hydrophilicity/hydrophobicity parameter.
  • LogP values can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver.4.1.07). Also, OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like. In the present invention, unless otherwise specified, the value calculated by inputting the structural formula of the compound into HSPiP (Ver.4.1.07) is employed as the logP value.
  • the third dichroic azo dye compound is a dichroic azo dye compound other than the first dichroic azo dye compound and the second dichroic azo dye compound, specifically, the first dichroic azo dye compound
  • the chemical structure is different from that of the chromatic azo dye compound and the second dichroic azo dye compound. If the composition for forming an anisotropic light absorption layer contains the third dichroic azo dye compound, there is an advantage that the color of the anisotropic light absorption layer can be easily adjusted.
  • the maximum absorption wavelength of the third dichroic azo dye compound is 380 nm or more and less than 455 nm, preferably 385 to 454 nm.
  • the third dichroic azo dye compound preferably contains a dichroic azo dye represented by the following formula (6).
  • a and B each independently represent a crosslinkable group.
  • a and b each independently represent 0 or 1. Both a and b are preferably 0 in terms of the degree of orientation of the light absorption anisotropic layer.
  • Ar 1 represents a (n1+2)-valent aromatic hydrocarbon group or heterocyclic group
  • Ar 2 represents a (n2+2)-valent aromatic hydrocarbon group or heterocyclic group
  • Ar 3 represents ( represents an n3+2)-valent aromatic hydrocarbon group or heterocyclic group
  • R 1 , R 2 and R 3 each independently represent a monovalent substituent.
  • n1 ⁇ 2 the plurality of R1 may be the same or different
  • n2 ⁇ 2 the plurality of R2 may be the same or different
  • n3 ⁇ 2. may be the same or different from each other.
  • k represents an integer of 1-4.
  • Examples of the crosslinkable groups represented by A and B in formula (6) include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038.
  • acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferred from the viewpoint of improving reactivity and synthesis aptitude, and acryloyl group and methacryloyl group are preferred from the viewpoint of further improving solubility. more preferred.
  • L2 represents a monovalent substituent
  • L2 represents a single bond or a divalent linking group
  • the monovalent substituent represented by L 1 and L 2 includes a group introduced to increase the solubility of the dichroic dye, or an electron-donating or electron-donating group introduced to adjust the color tone of the dye.
  • Groups with attractive properties are preferred.
  • an alkyl group preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group, etc.), alkenyl group (preferably an alkenyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as vinyl, ally
  • a phosphate amide group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a diethyl phosphate amide group, a phenyl phosphate amide group, etc.
  • a heterocyclic group preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, and a sulfur atom, such as , imidazolyl group, pyridyl group, quinolyl group, furyl group, piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, and benzthiazolyl group),
  • a silyl group preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably a silyl group having 3 to 24 carbon atoms, such as a trimethylsilyl group and a triphenylsilyl group
  • halogen atoms e.g.
  • a hydroxy group, a mercapto group, a cyano group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, an azo group, and the like can be used.
  • These substituents may be further substituted by these substituents.
  • when it has two or more substituents they may be the same or different.
  • they may be bonded to each other to form a ring.
  • R B (OR A ) na — groups, which are groups in which an alkoxy group is substituted with an alkyl group.
  • R A represents an alkylene group having 1 to 5 carbon atoms
  • R B represents an alkyl group having 1 to 5 carbon atoms
  • na is 1 to 10 (preferably 1 to 5, more preferably 1 to 3) represents an integer.
  • the monovalent substituents represented by L 1 and L 2 include alkyl groups, alkenyl groups, alkoxy groups, and groups in which these groups are further substituted with these groups (for example, R B —(OR A ) na — group) is preferred, and alkyl groups, alkoxy groups, and groups in which these groups are further substituted with these groups (for example, R B —(OR A ) na described above). - group) is more preferred.
  • Examples of divalent linking groups represented by L 1 and L 2 include -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N —, —O—CO—NR N —, —NR N —CO—NR N —, —SO 2 —, —SO—, an alkylene group, a cycloalkylene group, an alkenylene group, and two of these groups The group which combined above etc. is mentioned. Among these, a group obtained by combining an alkylene group and one or more groups selected from the group consisting of -O-, -COO-, -OCO- and -O-CO-O- is preferred.
  • RN represents a hydrogen atom or an alkyl group. When there are multiple RNs , the multiple RNs may be the same or different.
  • the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 3 or more, more preferably 5 or more. Preferably, the number is 7 or more, and particularly preferably 10 or more.
  • the upper limit of the number of atoms in the main chain is preferably 20 or less, more preferably 12 or less.
  • the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
  • the “main chain” in L 1 means the “O” atom that connects L 1 and “A”, It refers to a moiety, and "the number of atoms in the main chain” refers to the number of atoms constituting the moiety.
  • the “main chain” in L 2 means the “O” atom that connects L 2 and “B”.
  • the number of atoms in the main chain refers to the number of atoms constituting the moiety.
  • the “number of atoms in the main chain” does not include the number of branched chain atoms, which will be described later.
  • the number of atoms in the main chain in L1 means the number of atoms in L1 that does not contain branched chains.
  • the " number of atoms in the main chain” in L2 refers to the number of atoms in L2 not including branched chains.
  • the number of atoms in the main chain of L 1 is 5 (the number of atoms in the dotted frame on the left side of the following formula (D1))
  • the main chain of L 2 The number of atoms of is 5 (the number of atoms in the dotted frame on the right side of formula (D1) below).
  • the number of atoms in the main chain of L 1 is 7 (the number of atoms in the dotted frame on the left side of the formula (D10) below), and the number of atoms in the main chain of L 2 is The number is 5 (the number of atoms in the dotted frame on the right side of formula (D10) below).
  • L 1 and L 2 may have a branched chain.
  • the “branched chain” in L 1 means that the “O” atom that connects L 1 in formula (6) and “A” are directly connected. It means the part other than the part necessary for
  • the “branched chain” in L 2 means that the “O” atom that connects L 2 in formula (6) and “B” are directly connected It means the part other than the part necessary for
  • the “branched chain” in L 1 means the longest atomic chain extending starting from the “O” atom connected to L 1 in formula (6) (that is, the main chain).
  • the “branched chain” in L2 means the longest atomic chain extending from the “O” atom connecting L2 in formula (6) (i.e. main chain).
  • the number of atoms in the branched chain is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved.
  • the number of branched chain atoms does not include the number of hydrogen atoms.
  • Ar 1 is (n1+2)-valent (e.g., trivalent when n1 is 1)
  • Ar 2 is (n2+2)-valent (e.g., trivalent when n2 is 1)
  • Ar 3 represents an (n3+2)-valent (for example, trivalent when n3 is 1) aromatic hydrocarbon group or heterocyclic group.
  • each of Ar 1 to Ar 3 can be rephrased as a divalent aromatic hydrocarbon group or a divalent heterocyclic group substituted with n1 to n3 substituents (R 1 to R 3 described later).
  • the divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be monocyclic or have a condensed ring structure of two or more rings.
  • the ring number of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and even more preferably 1 (that is, a phenylene group) from the viewpoint of further improving the solubility.
  • the divalent aromatic hydrocarbon group include a phenylene group, an azulene-diyl group, a naphthylene group, a fluorene-diyl group, anthracene-diyl group and a tetracene-diyl group, which further improve solubility. From this point of view, a phenylene group and a naphthylene group are preferable, and a phenylene group is more preferable.
  • Specific examples of the third dichroic dye compound are shown below, but the present invention is not limited to these. In the following specific examples, n represents an integer of 1-10.
  • a structure in which the third dye does not have a radically polymerizable group is preferable from the viewpoint of excellent orientation of the light absorption anisotropic layer. Examples include the following structures.
  • the third dichroic azo dye compound is more preferably a dichroic dye having a structure represented by the following formula (1-1) in that the degree of orientation of the light absorption anisotropic layer is particularly excellent. .
  • R 1 , R 3 , R 4 , R 5 , n1, n3, L 1 and L 2 are defined respectively as R 1 , R 3 , R 4 and R 5 in formula (3) , n1, n3 , L1 and L2.
  • definitions of R 21 and R 22 are each independently the same as R 2 in formula (3).
  • definitions of n21 and n22 are independently the same as n2 in formula (3).
  • n1+n21+n22+n3 ⁇ 1, and n1+n21+n22+n3 is preferably 1-9, more preferably 1-5.
  • the content of the dichroic dye is preferably 10 to 30% by mass with respect to the total solid mass of the light absorption anisotropic layer. , more preferably 15 to 30% by mass, and even more preferably 18 to 28% by mass. If the content of the dichroic dye is within the above range, it is possible to obtain an anisotropic light absorption layer with a high degree of orientation even when the anisotropic light absorption layer is a thin film. Therefore, it is easy to obtain a light absorption anisotropic layer having excellent flexibility.
  • the content of the first dichroic azo dye compound is preferably 40 to 90 parts by mass with respect to 100 parts by mass of the total dichroic dye content in the composition for forming a light absorption anisotropic layer, and 45 parts by mass. ⁇ 75 parts by mass is more preferred.
  • the content of the second dichroic azo dye compound is preferably 6 to 50 parts by mass with respect to 100 mass of the total dichroic dye content in the composition for forming a light absorption anisotropic layer, and 8 to 50 parts by mass. 35 parts by mass is more preferable.
  • the content of the third dichroic azo dye compound is preferably 3 to 35 parts by mass with respect to the content of 100 mass of the dichroic azo dye compound in the composition for forming the light absorption anisotropic layer, and 5 ⁇ 30 parts by mass is more preferable.
  • the content ratio of the first dichroic azo dye compound, the second dichroic azo dye compound, and the optionally used third dichroic azo dye compound is the light absorption anisotropy It can be arbitrarily set in order to adjust the color tone of the layer.
  • the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound is in terms of moles , is preferably 0.1 to 10, more preferably 0.2 to 5, and particularly preferably 0.3 to 0.8. If the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound is within the above range, the degree of orientation is enhanced.
  • the total solid content means the components capable of forming an anisotropic organic film, excluding the solvent. In addition, even if the property of the said component is liquid, it is calculated as solid content.
  • the anisotropic light absorption layer in the present invention can be produced using, for example, the composition for forming an anisotropic light absorption layer containing the dye compound.
  • the composition for forming an anisotropic light absorption layer may contain components other than the dye compound, for example, a liquid crystalline compound, a solvent, a vertical alignment agent, an interface modifier, a polymerizable component, a polymerization initiator (e.g., radical polymerization initiator) and the like.
  • the light absorption anisotropic layer in the present invention contains a solid component other than the liquid component (solvent etc.) or a component derived from the solid component.
  • the composition for forming a light absorption anisotropic layer will be described below.
  • the liquid crystalline compound and dye compound are as described above.
  • the composition for forming a light absorption anisotropic layer of the present invention preferably contains a solvent from the viewpoint of workability and the like.
  • solvents include ketones (e.g., acetone, 2-butanone, methylisobutyl ketone, cyclopentanone, cyclohexanone, etc.), ethers (e.g., dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentylmethyl ether, tetrahydropyran, and dioxolane, etc.), aliphatic hydrocarbons (e.g., hexane, etc.), alicyclic hydrocarbons (e.g., cyclohexane, etc.), aromatic hydrocarbons (e.g., benzene, toluene, xylene, trimethylbenzene, etc.) ), halogenated carbons (e.g., dichloromethane,
  • solvents may be used singly or in combination of two or more.
  • ketones especially cyclopentanone and cyclohexanone
  • ethers especially tetrahydrofuran, cyclopentyl methyl ether, tetrahydropyran and dioxolane
  • amides especially dimethylformamide, dimethyl Acetamide, N-methylpyrrolidone and N-ethylpyrrolidone
  • the content of the solvent is preferably 80 to 99% by mass, preferably 83 to 99% by mass, based on the total mass of the composition for forming an anisotropic light absorption layer. 98% by mass is more preferable, and 85 to 96% by mass is even more preferable.
  • the content of the solvent means the total content of the solvents.
  • the composition for forming a light absorption anisotropic layer may contain a polymerizable component.
  • Polymerizable components include compounds containing acrylates (eg, acrylate monomers).
  • the light absorption anisotropic layer in the present invention contains polyacrylate obtained by polymerizing the compound containing the acrylate.
  • Examples of the polymerizable component include compounds described in paragraph 0058 of JP-A-2017-122776.
  • the content of the polymerizable component is the same as the dichroic dye compound and the liquid crystalline compound in the composition for forming a light absorption anisotropic layer. 3 to 20 parts by mass is preferable for a total of 100 parts by mass.
  • the composition for forming a light absorption anisotropic layer preferably contains a vertical alignment agent.
  • Vertical alignment agents include boronic acid compounds and onium salts.
  • a compound represented by formula (30) is preferable as the boronic acid compound.
  • R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R3 represents a substituent containing a ( meth)acryl group.
  • Specific examples of boronic acid compounds include boronic acid compounds represented by general formula (I) described in paragraphs 0023 to 0032 of JP-A-2008-225281. As the boronic acid compound, compounds exemplified below are also preferable.
  • ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocyclic ring.
  • X represents an anion.
  • L 1 represents a divalent linking group.
  • L2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • onium salts include onium salts described in paragraphs 0052 to 0058 of JP-A-2012-208397, onium salts described in paragraphs 0024-0055 of JP-A-2008-026730, and JP-A Onium salts described in 2002-037777 can be mentioned.
  • the content of the vertical alignment agent in the composition is preferably 0.1 to 400% by mass, more preferably 0.5 to 350% by mass, based on the total mass of the liquid crystalline compound.
  • the vertical alignment agents may be used alone or in combination of two or more. When two or more vertical alignment agents are used, the total amount thereof is preferably within the above range.
  • the composition for forming a light absorption anisotropic layer preferably contains the following leveling agent.
  • the composition for forming an anisotropic light absorption layer contains a leveling agent, surface roughening due to drying air applied to the surface of the anisotropic light absorption layer is suppressed, and the dichroic dye is oriented more uniformly.
  • the leveling agent is not particularly limited, and is preferably a leveling agent containing fluorine atoms (fluorine leveling agent) or a leveling agent containing silicon atoms (silicone leveling agent), more preferably a fluorine leveling agent.
  • fluorine-based leveling agents include fatty acid esters of polyvalent carboxylic acids in which a portion of the fatty acid is substituted with a fluoroalkyl group, and polyacrylates having fluoro substituents.
  • fatty acid esters of polyvalent carboxylic acids in which a portion of the fatty acid is substituted with a fluoroalkyl group
  • polyacrylates having fluoro substituents in particular, when a rod-shaped compound is used as the dichroic dye and the liquid crystalline compound, from the viewpoint of promoting the vertical alignment of the dichroic dye and the liquid crystalline compound, leveling containing a repeating unit derived from the compound represented by formula (40) agents are preferred.
  • R 0 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L represents a divalent linking group. L is preferably an alkylene group having 2 to 16 carbon atoms, and any —CH 2 — that is not adjacent in the alkylene group is substituted with —O—, —COO—, —CO—, or —CONH—. may n represents an integer from 1 to 18;
  • the leveling agent having repeating units derived from the compound represented by formula (40) may further contain other repeating units.
  • Other repeating units include repeating units derived from the compound represented by formula (41).
  • R 11 represents a hydrogen atom, a halogen atom, or a methyl group.
  • X represents an oxygen atom, a sulfur atom, or -N(R 13 )-.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 12 represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aromatic group.
  • the number of carbon atoms in the alkyl group is preferably 1-20.
  • the alkyl group may be linear, branched, or cyclic. Further, examples of substituents that the alkyl group may have include a poly(alkyleneoxy) group and a polymerizable group. The definition of the polymerizable group is as described above.
  • repeating units derived from the compound represented by formula (40) is preferably 10 to 90 mol %, more preferably 15 to 95 mol %, based on the total repeating units contained in the leveling agent.
  • repeating units derived from the compound represented by formula (41) is preferably 10 to 90 mol %, more preferably 5 to 85 mol %, based on the total repeating units contained in the leveling agent.
  • the leveling agent also includes a leveling agent containing repeating units derived from the compound represented by formula (42) instead of repeating units derived from the compound represented by formula (40) described above.
  • R2 represents a hydrogen atom, a halogen atom, or a methyl group.
  • L2 represents a divalent linking group.
  • n represents an integer from 1 to 18;
  • leveling agent examples include compounds exemplified in paragraphs 0046 to 0052 of JP-A-2004-331812 and compounds described in paragraphs 0038-0052 of JP-A-2008-257205.
  • the content of the leveling agent in the composition for forming an anisotropic light absorption layer is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the liquid crystalline compound.
  • a leveling agent may be used independently and may be used in combination of 2 or more type. When two or more leveling agents are used, the total amount thereof is preferably within the above range.
  • the composition for forming a light absorption anisotropic layer preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, it is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
  • Various compounds can be used as the photopolymerization initiator without any particular limitation. Examples of photoinitiators include ⁇ -carbonyl compounds (US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (US Pat. No. 2,448,828), ⁇ -hydrocarbon-substituted aromatic acyloins, compounds (US Pat. No. 2,722,512), polynuclear quinone compounds (US Pat.
  • photopolymerization initiator commercially available products can also be used, and BASF Irgacure-184, Irgacure-907, Irgacure-369, Irgacure-651, Irgacure-819, Irgacure-OXE-01 and Irgacure- OXE-02 and the like.
  • the content of the polymerization initiator is the above dye compound (preferably a dichroic dye) in the composition for forming a light absorption anisotropic layer. It is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 15 parts by mass, based on a total of 100 parts by mass of the above liquid crystalline compound (eg, polymer liquid crystalline compound).
  • the content of the polymerization initiator is 0.01 parts by mass or more, the durability of the light absorption anisotropic film is improved, and when it is 30 parts by mass or less, the orientation degree of the light absorption anisotropic layer is be better.
  • a polymerization initiator may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization initiators are included, the total amount is preferably within the above range.
  • the method for forming the anisotropic light absorption layer is not particularly limited, and the step of applying the composition for forming an anisotropic light absorption layer to form a coating film (hereinafter also referred to as the “coating film forming step”). and a step of orienting the liquid crystalline component or dichroic dye contained in the coating film (hereinafter also referred to as an “orientation step”), in this order.
  • the liquid crystalline component is a component containing not only the liquid crystalline compound described above but also a dichroic dye having liquid crystallinity when the dichroic dye described above has liquid crystallinity.
  • the coating film forming step is a step of applying a composition for forming a light absorption anisotropic layer to form a coating film.
  • a composition for forming a light absorption anisotropic layer containing the above-mentioned solvent, or by using a liquid such as a melt by heating the composition for forming a light absorption anisotropic layer, It becomes easy to apply the composition for forming a light-absorbing anisotropic layer.
  • Specific examples of the coating method of the composition for forming a light-absorbing anisotropic layer include roll coating, gravure printing, spin coating, wire bar coating, extrusion coating, direct gravure coating, and reverse coating. Known methods such as a gravure coating method, a die coating method, a spray method, and an inkjet method can be used.
  • the alignment step is a step of orienting the liquid crystalline component contained in the coating film. Thereby, a light absorption anisotropic layer is obtained.
  • the orientation step may include drying. Components such as the solvent can be removed from the coating film by the drying treatment.
  • the drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined period of time (for example, natural drying), or by a method of heating and/or blowing air.
  • the liquid crystalline component contained in the composition for forming a light absorption anisotropic layer may be oriented by the coating film forming step or drying treatment described above.
  • the coating film is dried to remove the solvent from the coating film, thereby obtaining the anisotropic light absorption.
  • a coating film (that is, a light absorption anisotropic film) is obtained.
  • the transition temperature of the liquid crystalline component contained in the coating film to the liquid crystal phase is preferably 10 to 250°C, more preferably 25 to 190°C, from the standpoint of production suitability.
  • the transition temperature is 10° C. or higher, cooling treatment or the like for lowering the temperature to the temperature range where the liquid crystal phase is exhibited is not required, which is preferable.
  • the transition temperature is 250° C. or less, a high temperature is not required even when the isotropic liquid state is converted to an isotropic liquid state at a temperature higher than the temperature range in which the liquid crystal phase is once exhibited. This is preferable because it can reduce deformation, deterioration, and the like.
  • the orientation step preferably includes heat treatment.
  • the liquid crystalline component contained in the coating film can be oriented, so that the coating film after heat treatment can be suitably used as a light absorption anisotropic film.
  • the heat treatment is preferably from 10 to 250° C., more preferably from 25 to 190° C., from the standpoint of suitability for production.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the orientation step may have a cooling treatment performed after the heat treatment.
  • the cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25° C.). Thereby, the orientation of the liquid crystalline component contained in the coating film can be fixed.
  • a cooling means is not particularly limited, and a known method can be used. Through the above steps, a light absorption anisotropic film can be obtained. In this embodiment, drying treatment, heat treatment, and the like are mentioned as methods for orienting the liquid crystalline component contained in the coating film.
  • the method for forming the anisotropic light absorption layer may include a step of curing the anisotropic light absorption layer (hereinafter also referred to as a “curing step”) after the alignment step.
  • the curing step is carried out by heating and/or light irradiation (exposure), for example, when the light absorption anisotropic layer has a crosslinkable group (polymerizable group).
  • the curing step is preferably carried out by light irradiation.
  • Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferred.
  • ultraviolet rays may be irradiated while being heated during curing, or ultraviolet rays may be irradiated through a filter that transmits only specific wavelengths.
  • the heating temperature during exposure is preferably 25 to 140° C., depending on the transition temperature of the liquid crystalline component contained in the liquid crystal film to the liquid crystal phase.
  • the exposure may be performed in a nitrogen atmosphere.
  • radical polymerization it is preferable to perform exposure in a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.
  • the thickness of the light absorption anisotropic layer to be formed is not particularly limited, but is preferably 100 to 8000 nm, more preferably 300 to 5000 nm, from the viewpoint of flexibility when the laminate of the present invention described later is used in a polarizing element. more preferred.
  • the polarizing plate of the present invention contains a polarizer.
  • the polarizer is not particularly limited, and conventionally known polarizers can be used.
  • the polarizer may be, for example, a polarizer horizontally oriented by dyeing polyvinyl alcohol or other polymer resin with a dichroic dye and stretching it, or a light absorption anisotropic layer of the present invention.
  • a polarizer in which a dichroic dye is horizontally oriented by utilizing the orientation of a liquid crystalline compound may be used, but a polarizer in which a dichroic dye is oriented using the orientation of a liquid crystal without stretching is available. Especially preferred.
  • a polarizer in which a dichroic dye is oriented using the orientation of a liquid crystal can be made very thin with a thickness of about 0.1 to 5 ⁇ m, as described in JP-A-2019-194685. It is difficult to crack when bent, has little thermal deformation, and has excellent durability even in a polarizing plate having a high transmittance of more than 50% as described in Japanese Patent No. 6483486. have advantages. Taking advantage of these advantages, the polarizing plate of the present invention using a polarizer in which a dichroic dye is oriented by utilizing the orientation of liquid crystals can be used for applications requiring high brightness, small size and light weight, and applications for fine optical systems. , molding applications for curved parts, and applications for flexible parts.
  • the polarizing plate of the invention may have a transparent substrate film.
  • the transparent substrate film is preferably arranged on the surface of the anisotropic light absorption layer opposite to the surface on which the polarizer is provided.
  • a known transparent resin film, transparent resin plate, transparent resin sheet, or the like can be used, and there is no particular limitation.
  • transparent resin films include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), cyclic olefin resin films, and polyethylene.
  • Terephthalate film polyethersulfone film, polyacrylic resin film, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, and (meth)acrylonitrile film etc. can be used.
  • a cellulose acylate film which is highly transparent, has a low optical birefringence, is easy to manufacture, and is generally used as a protective film for polarizing plates, is preferred, and a cellulose triacetate film is particularly preferred.
  • the thickness of the transparent substrate film is usually 20-100 ⁇ m.
  • the polarizing plate of the invention may have an alignment film between the transparent substrate film and the light absorption anisotropic layer.
  • the alignment film may be any layer as long as the dye compound (preferably dichroic dye) can be oriented in a desired state on the alignment film.
  • the alignment film for example, a film formed from a polyfunctional acrylate compound or polyvinyl alcohol may be used.
  • the polarizing plate of the present invention preferably has a barrier layer together with the light absorption anisotropic layer.
  • the barrier layer is also called a gas barrier layer (oxygen barrier layer), and protects the polarizing plate member of the present invention from gases such as oxygen in the atmosphere, moisture, or compounds contained in adjacent layers.
  • the polarizing plate of the invention may have a refractive index adjusting layer.
  • the polarizing plate of the present invention may have a problem of internal reflection due to the high refractive index of the light absorption anisotropic layer. In that case, it is preferable that the refractive index adjusting layer is present.
  • the refractive index adjusting layer is a layer arranged so as to be in contact with the light absorption anisotropic layer, and preferably has an in-plane average refractive index of 1.55 to 1.70 at a wavelength of 550 nm. That is, it is preferably a refractive index adjustment layer for performing so-called index matching.
  • the polarizing plate of the present invention may contain a color tone adjusting layer containing at least one kind of color tone adjusting dye compound.
  • the coloring compound for color adjustment contained in the color adjustment layer is preferably in a non-oriented state.
  • the amount of dye in the light absorption anisotropic layer is adjusted, the change in color when viewed from an oblique direction with respect to the central axis of transmittance may increase.
  • This tint adjustment layer may have only the function of the tint adjustment layer alone, or may have the functions integrated with those of other layers.
  • the absorption peak wavelength of the colorant compound for color adjustment contained in the color adjustment layer used in the present invention is preferably 500 to 650 nm, more preferably 550 to 600 nm.
  • Color adjusting dye compounds contained in the color adjusting layer include, for example, azo, methine, anthraquinone, triarylmethane, oxazine, azomethine, phthalocyanine, porphyrin, perylene, pyrrolopyrrole, and squarylium.
  • Azo, phthalocyanine and anthraquinone are preferred, and anthraquinone is particularly preferred, from the viewpoint of excellent corrugation, heat resistance and light resistance.
  • coloring compound for color adjustment used in the present invention are shown below, but the present invention is not limited to these.
  • An example of the method for producing the polarizing plate of the present invention includes a step of coating the composition for forming an alignment film on the transparent substrate film to form an alignment film, and applying the composition for forming an anisotropic light absorption layer.
  • a step of applying a composition for forming a barrier layer to obtain a laminate, a step of bonding a separately prepared polarizer to the barrier layer side of the laminate, and a separately formed ⁇ / 4 retardation film is laminated.
  • a method including the step of laminating on the transparent substrate film side of the body in this order is mentioned.
  • a polarizing plate having a polarizer, a barrier layer, a light absorption anisotropic layer, an alignment film, a transparent substrate film, and a ⁇ /4 retardation film in this order is obtained by carrying out the above steps.
  • the polarizer, the light absorption anisotropic layer, and the ⁇ / 4 retardation film, a barrier layer, an oriented film, and a transparent substrate film in addition to the polarizer, the light absorption anisotropic layer, and the ⁇ / 4 retardation film, a barrier layer, an oriented film, and a transparent substrate film.
  • a step of forming members other than the barrier layer, the alignment film, and the transparent substrate film may be included.
  • Each step can be carried out according to a known method and is not particularly limited.
  • the order of each step may be changed as long as the polarizing plate can be formed.
  • the lamination or the like in the method for manufacturing the polarizing plate is performed using an adhesive layer. That is, the polarizing plate of the invention may have an adhesive layer.
  • the adhesive layer in the present invention is preferably a transparent and optically isotropic adhesive like those used in ordinary liquid crystal display devices, and usually a pressure-sensitive adhesive is used.
  • the adhesive layer in the present invention includes a base material (adhesive), conductive particles, and optionally thermally expandable particles, as well as a cross-linking agent (e.g., isocyanate-based cross-linking agent, epoxy-based cross-linking agent, etc.). , tackifiers (e.g., rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.), plasticizers, fillers, anti-aging agents, surfactants, UV absorbers, light stabilizers, antioxidants, etc. Appropriate additives may be blended.
  • a cross-linking agent e.g., isocyanate-based cross-linking agent, epoxy-based cross-linking agent, etc.
  • tackifiers e.g., rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.
  • plasticizers e.g., rosin derivative resins, poly
  • the thickness of the adhesive layer is usually 20-500 ⁇ m, preferably 20-250 ⁇ m. If the thickness is less than 20 ⁇ m, the required adhesion and reworkability may not be obtained, and if the thickness exceeds 500 ⁇ m, the adhesive may protrude or ooze out from the peripheral edges of the image display device.
  • the protective member for example, a configuration in which conductive particles are added to the configuration of the heat-peelable pressure-sensitive adhesive sheet described in Japanese Patent Application Laid-Open No. 2003-292916 can be applied.
  • a commercial product such as "Riva Alpha” manufactured by Nitto Denko Co., Ltd., in which conductive particles are dispersed on the surface of the adhesive layer, may be used.
  • the lamination or the like in the method for manufacturing the polarizing plate is performed by an adhesive layer. That is, the polarizing plate of the invention may have an adhesive layer.
  • An adhesive layer refers to a layer containing an adhesive.
  • the adhesive used in the present invention preferably develops adhesiveness by drying or reaction after bonding.
  • a polyvinyl alcohol-based adhesive (PVA-based adhesive) develops adhesiveness when dried, making it possible to bond materials together.
  • curable adhesives that exhibit adhesiveness through reaction include active energy ray curable adhesives such as (meth)acrylate adhesives and cationic polymerization curable adhesives.
  • (Meth)acrylate means acrylate and/or methacrylate.
  • the curable component in the (meth)acrylate adhesive includes, for example, a compound having a (meth)acryloyl group and a compound having a vinyl group.
  • Compounds having an epoxy group or an oxetanyl group can also be used as cationic polymerization curing adhesives.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used.
  • Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds), and compounds having at least two epoxy groups in the molecule, at least one of which Examples include compounds (alicyclic epoxy compounds) formed between two adjacent carbon atoms constituting an alicyclic ring.
  • an ultraviolet curable adhesive that is cured by ultraviolet irradiation is preferably used.
  • Each layer of the adhesive layer and the adhesive layer is treated with UV absorbers such as salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds. It may be a material having absorptive ability or the like.
  • Attachment of the adhesive layer and adhesive layer to the film can be performed by an appropriate method.
  • a base polymer or a composition thereof is dissolved or dispersed in a suitable solvent such as toluene and ethyl acetate alone or in a mixture to prepare a pressure-sensitive adhesive solution of about 10 to 40% by weight.
  • a method of directly attaching it to the object to be laminated by an appropriate development method such as a casting method or a coating method
  • a method of forming an adhesive layer on the separator according to the above method and applying it to the object to be laminated A method of transferring to the top and the like can be mentioned.
  • the adhesive layer and adhesive layer can also be provided on the object to be bonded as superimposed layers of different compositions or types. Also, the adhesive layer and the adhesive layer may be provided on both sides of the opposing surfaces of the object to be bonded. When the adhesive layer or adhesive layer is provided on both sides of the object to be laminated, the adhesive layer or adhesive layer provided on both sides may be the same layer, or may be a layer with different composition, type, thickness, etc. good.
  • the object to be laminated may be subjected to surface modification treatment for the purpose of improving adhesiveness, etc., before attaching the adhesive and pressure-sensitive adhesive.
  • Specific treatments include corona treatment, plasma treatment, primer treatment, saponification treatment, and the like.
  • the organic EL display device of the present invention is a display device in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer are formed between a pair of electrodes of an anode and a cathode. It has a polarizing plate, and the polarizing plate is arranged so that the polarizer is on the viewing side of the ⁇ /4 retardation film.
  • the organic EL display device of the present invention has a polarizer, a ⁇ / 4 retardation film, and an anisotropic light absorption layer in this order from the viewing side, or a polarizer, an anisotropic light absorption layer, and a ⁇ /4 retardation film in this order, or a light absorption anisotropic layer, a polarizer, and a ⁇ /4 retardation film in this order.
  • the organic EL display device preferably has a structure including an organic EL display element including the organic compound thin film described above and a polarizing plate.
  • the organic compound thin film may have a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like. It may be provided with the function of Each layer such as an electrode and an organic compound thin film of an organic EL display device can be formed by known materials and methods.
  • the organic EL display device of the present invention has improved reflectance and color when viewed obliquely.
  • Example 1 (Formation of alignment film)
  • the surface of a cellulose acylate film (40 ⁇ m thick TAC film; TG40, Fuji Film Co., Ltd.) was saponified with an alkaline solution, and the following alignment film forming composition 1 was applied thereon with a wire bar to form a coating film.
  • the TAC film on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form an alignment film AL1, and TAC film 1 with an alignment film was obtained.
  • the film thickness was 1 ⁇ m.
  • composition P1 for forming light absorption anisotropic layer Dichroic dye D-1 0.63 parts by mass Dichroic dye D-2 0.17 parts by mass Dichroic dye D-3 1.13 parts by mass Polymer liquid crystalline compound P-1 8. 18 parts by weight IRGACUREOXE-02 (manufactured by BASF) 0.16 parts by weight Compound E-1 0.12 parts by weight Compound E-2 0.12 parts by weight Surfactant F-1 0.005 parts by weight Cyclopentanone 85.00 parts by mass Benzyl alcohol 4.50 parts by mass ⁇
  • barrier layer B1 On the light absorption anisotropic layer P1 of the obtained TAC film P1, the following barrier layer forming composition B1 was continuously applied with a wire bar to form a coating film. Next, the support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form a barrier layer B1, thereby obtaining an optical film P1.
  • the film thickness of the barrier layer was 0.5 ⁇ m.
  • ⁇ (Barrier layer-forming composition B1) ⁇ ⁇ Modified polyvinyl alcohol PVA-1 3.80 parts by mass ⁇ IRGACURE 2959 0.20 parts by mass ⁇ Water 70 parts by mass ⁇ Methanol 30 parts by mass ⁇ ⁇
  • a composition PA1 for forming a photo-alignment film having the following composition was continuously applied on a film of the same type as the TAC film described above with a wire bar to form a coating film.
  • the TAC film on which the coating film was formed was dried with hot air at 140°C for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ/cm 2 , using an ultra-high pressure mercury lamp) to obtain a thickness of 0.2 ⁇ m. to obtain a TAC film with a photo-alignment film.
  • Composition A-1 having the following composition was applied onto the photo-alignment film PA1 of the TAC film with a photo-alignment film using a bar coater to form a coating film.
  • the coating film formed on the photo-alignment film PA1 is heated to 120°C with warm air, then cooled to 60°C, and then irradiated with ultraviolet rays of 100 mJ/cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere.
  • the orientation of the liquid crystalline compound is fixed, and the ⁇ / 4 retardation layer A1 ( ⁇ / 4 position A TAC film A1 having a retardation film) was produced.
  • the ⁇ /4 retardation layer A1 had a thickness of 2.5 ⁇ m and Re(550) of 144 nm. Also, the ⁇ /4 retardation layer A1 satisfied the relationship Re(450) ⁇ Re(550) ⁇ Re(650). In the ⁇ /4 retardation layer, Re(450)/Re(550) was 0.82.
  • composition A-1 ⁇ 43.50 parts by mass of polymerizable liquid crystalline compound LA-1 below 43.50 parts by mass of polymerizable liquid crystalline compound LA-2 below 8.00 parts by mass of polymerizable liquid crystalline compound LA-3 below Polymerizable liquid crystal below 5.00 parts by mass of the chemical compound LA-4 ⁇ 0.55 parts by mass of the following polymerization initiator PI-1 ⁇ 0.20 parts by mass of the following leveling agent T-1 ⁇ 235.00 parts by mass of cyclopentanone ⁇
  • An acrylate-based polymer was prepared according to the following procedure. 95 parts by weight of butyl acrylate and 5 parts by weight of acrylic acid are polymerized by a solution polymerization method in a reaction vessel equipped with a cooling tube, a nitrogen inlet tube, a thermometer and a stirring device, and the average molecular weight is 2,000,000 and the molecular weight distribution (Mw/ An acrylate polymer A1 having Mn) of 3.0 was obtained.
  • This composition was applied using a die coater to a separate film surface-treated with a silicone-based release agent and dried for 1 minute at 90° C. to obtain an acrylate-based pressure-sensitive adhesive sheet 1 .
  • the film thickness was 15 ⁇ m and the storage modulus was 0.1 MPa.
  • UV adhesive composition having the following composition was prepared.
  • ⁇ UV adhesive composition ⁇ ⁇ CEL2021P (manufactured by Daicel) 70 parts by mass ⁇ 1,4-Butanediol diglycidyl ether 20 parts by mass ⁇ 2-Ethylhexyl glycidyl ether 10 parts by mass ⁇ CPI-100P 2.25 parts by mass ⁇ ⁇
  • a polarizer 1 having a thickness of 8 ⁇ m and one surface of which is exposed was produced in the same manner as the polarizing plate 02 with a single-sided protective film described in WO 2015/166991.
  • the surface of the polarizer 1 where the polarizer is exposed and the barrier layer B1 side of the optical film P1 including the light absorption anisotropic layer P1 prepared above were bonded together with the pressure-sensitive adhesive sheet 1 described above.
  • the TAC film side of the optical film P1 containing the light absorption anisotropic layer P1 and the ⁇ / 4 retardation layer A1 side of the TAC film A1 containing the ⁇ / 4 retardation layer A1 are combined with the UV adhesive composition
  • An object was coated, bonded together, and cured by UV irradiation at 600 mJ/cm 2 to form a UV adhesive layer.
  • the thickness of the UV adhesive layer was 3 ⁇ m.
  • Each surface to be bonded with the UV adhesive was subjected to corona treatment.
  • the photo-alignment film PA1 and TAC film 1 on the ⁇ /4 retardation layer A1 side were removed to obtain a polarizing plate C1.
  • the layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the adhesive sheet 1, the barrier layer B1, the light absorption anisotropic layer P1, the alignment film AL1, the TAC film, the UV adhesive layer, and ⁇ /4 retardation layer A1.
  • Example 2 A polarizing plate C2 of Example 2 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer P1 in the optical film P1 of Example 1 was changed to 0.18 ⁇ m.
  • Example 3 A polarizing plate C3 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer P1 in the optical film P1 of Example 1 was changed to 0.70 ⁇ m.
  • Example 4 In the preparation of the polarizing plate C1 of Example 1, the polarizer 1 and the TAC film A1 are bonded together with a UV adhesive so that the exposed surface of the polarizer of the polarizer 1 and the surface of the ⁇ /4 retardation layer A1 face each other. After removing the photo-alignment film PA1 and TAC film 1, the surface of the ⁇ / 4 retardation layer A1 on the side opposite to the polarizer 1 side and the surface of the optical film P1 on the barrier layer B1 side are adhered. A polarizing plate C4 was obtained by sticking so that the agent sheet 1 faced each other.
  • the layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the UV adhesive layer, the ⁇ /4 retardation layer A1, the adhesive sheet 1, the barrier layer B1, and the light absorption anisotropic layer P1.
  • a polarizing plate C4 was produced in the same manner as in Example 1, except that the alignment film AL1 and the TAC film were used.
  • Example 5 In the preparation of the polarizing plate C1 of Example 1, the optical film P1 and the polarizer 1 are placed together so that the surface of the optical film P1 on the TAC film 1 side faces the surface of the polarizer 1 where the polarizer is exposed. pasted with an adhesive, and then pasted with a UV adhesive so that the surface of the polarizer 1 opposite to the optical film P1 side faces the surface of the ⁇ /4 retardation layer A1 of the TAC film A1, The photo-alignment film PA1 and TAC film 1 were removed to obtain a polarizing plate C5.
  • the layer structure of the polarizing plate C1 is, in order from the barrier layer B1 side, the barrier layer B1, the light absorption anisotropic layer P1, the alignment film AL1, the TAC film 1, the UV adhesive, the polarizer 1, the UV adhesive layer, A polarizing plate C5 was produced in the same manner as in Example 1, except that the ⁇ /4 retardation layer A1 was used.
  • Example 1 In the production of the polarizing plate C1 of Example 1, the polarizing plate was produced without using the optical film P1. That is, in the same manner as in Example 1, except that the layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the UV adhesive layer, and the ⁇ / 4 retardation layer A1. C6 was produced.
  • composition P1 for forming an anisotropic light absorption layer was changed to the composition P2 for forming an anisotropic light absorption layer described below, and the film thickness was changed to 0.5 ⁇ m.
  • a polarizing plate C7 was produced in the same manner as in Example 1.
  • the composition P2 for forming an anisotropic light absorption layer contained no dye compound.
  • Composition of Composition P2 for Forming Light-Absorbing Anisotropic Layer 8.18 parts by mass of the polymer liquid crystal compound P-1 IRGACUREOXE-02 (manufactured by BASF) 0.16 parts by mass 0.12 parts by mass of the compound E-1 0.12 parts by mass of the compound E-2 Part ⁇
  • Example 3 A polarizing plate C8 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 0.09 ⁇ m.
  • a polarizing plate C9 was produced in the same manner as in Example 1, except that the film thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 1.20 ⁇ m.
  • Example 5 A polarizing plate C10 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 3.50 ⁇ m.
  • the polarization characteristics of the obtained anisotropic light absorption layer were measured at the wavelength ⁇ at the polar angle in the in-plane slow axis direction of the anisotropic light absorption layer. It was obtained by measuring while changing the direction.
  • the wavelength ⁇ means a wavelength of 450 nm, a wavelength of 550 nm, or a wavelength of 630 nm.
  • Axoscan manufactured by Axometics is used as the measuring device, and the Mueller matrix is measured every 5° from -70 to 70° in the in-plane slow axis direction, and the degree A of the absorption anisotropy is measured. , was obtained by fitting The value of A( ⁇ ) represented by the above formula was obtained at three wavelengths of 450 nm, 550 nm, and 630 nm.
  • the Rth of the anisotropic light absorption layer including the anisotropic light absorption layer was 450 nm and the wavelength
  • the value of A( ⁇ ) is from 20 to 200 nm at all of the wavelengths of 450 nm, 550 nm and 630 nm
  • the display performance is excellent. was confirmed (Examples 1 to 5).
  • the Rth of the optically anisotropic absorption layer is within the above range but the A is not within the above range (Comparative Example 2), and the configuration where both Rth and A are not within the above range (Comparative Examples 3 to 5) was confirmed to be inferior in display performance.

Abstract

The present invention addresses the problem of providing a polarizing plate whereby, when the polarizing plate is applied to an organic EL display device and black display is performed, reflectance during view from an oblique direction is reduced, and coloration of black is suppressed. The present invention also addresses the problem of providing an organic EL display device. This polarizing plate includes a light absorption anisotropic layer having at least one type of pigment compound, and a λ/4 retardation film, the angle formed by the transmittance center axis of the light absorption anisotropic layer and a line normal to the layer plane of the light absorption anisotropic layer being 0-45°, the retardation Rth in the thickness direction of the light absorption anisotropic layer being -20 to -160 nm for each of wavelengths of 450 nm, 550 nm, and 630 nm, and A(λ) of the light absorption anisotropic layer indicated by formula (1) being 20 to 200 nm for each of wavelengths of 450 nm, 550 nm, and 630 nm. Formula (1): A(λ) = [kz(λ) – (kx(λ) + ky(λ))/2] × d

Description

偏光板及び有機EL表示装置Polarizing plate and organic EL display device
 本発明は、偏光板及び有機EL(エレクトロルミネッセンス)表示装置に関する。 The present invention relates to a polarizing plate and an organic EL (electroluminescence) display device.
 有機EL表示装置は、自発光型の薄型表示装置であり、液晶表示装置(LCD)と比較して視認性が高い、視野角依存性が少ないといった表示性能の利点を有する。また、ディスプレイを軽量化、薄型化できるといった利点に加え、フレキシブルな基板を用いることで、これまで実現できなかった形状の表示装置を実現できる可能性を持っている。 An organic EL display device is a self-luminous thin display device, and has the advantages of display performance such as high visibility and less dependency on viewing angle compared to a liquid crystal display device (LCD). In addition to the advantage of making the display lighter and thinner, the use of flexible substrates has the potential to realize display devices with shapes that could not be realized so far.
 有機EL表示装置は上述したような優れた特徴を有する。しかし、電極にITO(インジウム酸化スズ)などの高屈折率の透明導電性材料を用いて、屈折率の異なる層を積層したり、反射率の高い金属材料などを用いたりするため、外光がそれらの界面で反射し、コントラスト低下や内部反射による映り込みの問題が生じることがある。 The organic EL display device has the excellent features described above. However, the electrodes are made of a transparent conductive material with a high refractive index, such as ITO (indium tin oxide), and layers with different refractive indexes are laminated, or a metal material with a high reflectance is used. Reflections at their interfaces can cause problems such as reduced contrast and glare due to internal reflection.
 上記反射による問題を解消するため、λ/4位相差フィルムを用いた円偏光板が用いられることがある。例えば、特許文献1では、広帯域λ/4板(位相差フィルム)及びそれを用いた広帯域円偏光板が開示されている。 A circularly polarizing plate using a λ/4 retardation film is sometimes used to solve the problem caused by the above reflection. For example, Patent Document 1 discloses a broadband λ/4 plate (retardation film) and a broadband circularly polarizing plate using the same.
特開2001-004837号公報Japanese Patent Application Laid-Open No. 2001-004837
 特許文献1に記載の広帯域円偏光板を有機EL表示装置に適用したところ、黒表示時において、斜め方向から見たときに反射率が高くなり、黒色の色味付きが生じる問題があった。 When the broadband circularly polarizing plate described in Patent Document 1 was applied to an organic EL display device, there was a problem that when black was displayed, the reflectance increased when viewed from an oblique direction, resulting in a black tint.
 本発明は、有機EL表示装置に適用し、黒表示とした際に、斜め方向から見た反射率が低く、かつ、黒色の色味付きが抑制される偏光板を提供することを課題とする。
 また、本発明は、有機EL表示装置を提供することも課題とする。
An object of the present invention is to provide a polarizing plate that is applied to an organic EL display device and that exhibits a low reflectance when viewed from an oblique direction and suppresses black tint when displaying black. .
Another object of the present invention is to provide an organic EL display device.
 本発明者は、透過率中心軸とフィルム法線とのなす角度θが0~45°であり、厚み方向の位相差及び吸収異方性を制御した光吸収異方性層を円偏光板に組み合わせることで、斜め方向から見た反射率及び色味を改良できることを見出し、本発明を完成させるに至った。 The present inventors have applied a light absorption anisotropic layer in which the angle θ between the transmittance central axis and the film normal line is 0 to 45° and the retardation in the thickness direction and the absorption anisotropy are controlled to a circularly polarizing plate. By combining them, the inventors have found that the reflectance and color when viewed from an oblique direction can be improved, and have completed the present invention.
 すなわち、以下の構成により上記課題を解決できることを見出した。 That is, we have found that the above problems can be solved by the following configuration.
 〔1〕 偏光子と、少なくとも1種の色素化合物を有する光吸収異方性層と、λ/4位相差フィルムと、を含んでおり、
 上記光吸収異方性層の透過率中心軸と、上記光吸収異方性層の層平面の法線とがなす角度が0~45°であり、上記光吸収異方性層の厚み方向の位相差Rthが、波長450nm、波長550nm及び波長630nmのいずれにおいても-20~-160nmであり、
 式(1)で示される上記光吸収異方性層のA(λ)が、波長450nm、波長550nm及び波長630nmのいずれにおいても20~200nmである、偏光板。
 式(1) A(λ)={kz(λ)-(kx(λ)+ky(λ))/2}×d
 式(1)中、dは上記光吸収異方性層の厚みであり、kx(λ)及びky(λ)はそれぞれ、上記光吸収異方性層の面内の直交するx軸及びy軸それぞれの方向における波長λの光に対する吸収係数であり、kz(λ)は、x軸及びy軸を含む面に対して直交するz軸方向における波長λの光に対する吸収係数である。
 ただし、dで表される上記光吸収異方性層の厚みの単位はnmである。
 〔2〕 上記A(λ)が、波長450nm、波長550nm及び波長630nmのいずれにおいても40~150nmである、〔1〕に記載の偏光板。
 〔3〕 上記光吸収異方性層が、液晶性化合物と、少なくとも1種の二色性色素化合物とを有する、〔1〕又は〔2〕に記載の偏光板。
 〔4〕 上記偏光子と上記光吸収異方性層と上記λ/4位相差フィルムとがこの順で積層されているか、上記偏光子と上記λ/4位相差フィルムと上記光吸収異方性層とがこの順で積層されている、〔1〕~〔3〕のいずれか一つに記載の偏光板。
 〔5〕 上記偏光子と上記光吸収異方性層と上記λ/4位相差フィルムとがこの順で積層されている、〔1〕~〔4〕のいずれか一つに記載の偏光板。
 〔6〕 〔1〕~〔5〕のいずれか一つに記載の偏光板を有しており、上記偏光子が視認側になるように配置されている、有機EL表示装置。
[1] A polarizer, a light absorption anisotropic layer having at least one dye compound, and a λ/4 retardation film,
The angle formed by the transmittance central axis of the anisotropic light absorption layer and the normal to the layer plane of the anisotropic light absorption layer is 0 to 45°, and the thickness direction of the anisotropic light absorption layer The phase difference Rth is -20 to -160 nm at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 630 nm,
A polarizing plate, wherein A(λ) of the light absorption anisotropic layer represented by formula (1) is 20 to 200 nm at any of wavelengths of 450 nm, 550 nm and 630 nm.
Formula (1) A(λ)={kz(λ)−(kx(λ)+ky(λ))/2}×d
In formula (1), d is the thickness of the light absorption anisotropic layer, and kx(λ) and ky(λ) are the in-plane orthogonal x-axis and y-axis of the light absorption anisotropic layer, respectively. is the absorption coefficient for light with wavelength λ in each direction, and kz(λ) is the absorption coefficient for light with wavelength λ in the z-axis direction perpendicular to the plane containing the x-axis and y-axis.
However, the unit of the thickness of the light absorption anisotropic layer represented by d is nm.
[2] The polarizing plate of [1], wherein A(λ) is 40 to 150 nm at a wavelength of 450 nm, 550 nm and 630 nm.
[3] The polarizing plate of [1] or [2], wherein the light absorption anisotropic layer contains a liquid crystalline compound and at least one dichroic dye compound.
[4] The polarizer, the light absorption anisotropic layer and the λ / 4 retardation film are laminated in this order, or the polarizer, the λ / 4 retardation film and the light absorption anisotropy The polarizing plate of any one of [1] to [3], wherein the layers are laminated in this order.
[5] The polarizing plate of any one of [1] to [4], wherein the polarizer, the light absorption anisotropic layer and the λ/4 retardation film are laminated in this order.
[6] An organic EL display device comprising the polarizing plate according to any one of [1] to [5], wherein the polarizer is arranged on the viewing side.
 本発明によれば、有機EL表示装置に適用し、黒表示とした際に、斜め方向から見た反射率が低く、かつ、黒色の色味付きが抑制される偏光板、及び、画像表示装置を提供することができる。 According to the present invention, a polarizing plate that is applied to an organic EL display device and has a low reflectance when viewed from an oblique direction and suppresses black tint when displaying black, and an image display device. can be provided.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、平行、直交とは厳密な意味での平行、直交を意味するのではなく、平行又は直交から±5°の範囲を意味する。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Moreover, in the present specification, parallel and orthogonal do not mean parallel and orthogonal in a strict sense, but mean a range of ±5° from parallel or orthogonal.
 また、本明細書において、液晶性組成物、液晶性化合物とは、硬化等により、もはや液晶性を示さなくなったものも概念として含まれる。 In this specification, the term "liquid crystalline composition" and "liquid crystalline compound" also conceptually includes those that no longer exhibit liquid crystallinity due to curing or the like.
 また、本明細書において、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」又は「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」又は「メタクリロイル」を表す表記である。
In addition, in the present specification, each component may be a substance corresponding to each component either singly or in combination of two or more. Here, when two or more substances are used in combination for each component, the content of the component refers to the total content of the substances used in combination unless otherwise specified.
Further, in this specification, "(meth)acrylate" is a notation representing "acrylate" or "methacrylate", "(meth)acrylic" is a notation representing "acrylic" or "methacrylic", and " (Meth)acryloyl” is a notation representing “acryloyl” or “methacryloyl”.
 本発明において、屈折率nx及びnyは、それぞれ、光学部材の面内方向における屈折率であり、通常、nxが遅相軸方位の屈折率、nyが進相軸方位(すなわち、遅相軸と直交する方位)の屈折率である。また、nzは厚み方向における屈折率である。nx、ny、及びnzは、例えば、アッベ屈折計(NAR-4T、アタゴ(株)製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定することができる。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ(株)製)にて、干渉フィルタとの組合せで測定できる。また、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。 In the present invention, the refractive indices nx and ny are respectively the refractive indices in the in-plane direction of the optical member. is the refractive index in the orthogonal orientation). Also, nz is the refractive index in the thickness direction. nx, ny, and nz can be measured, for example, using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) using a sodium lamp (λ=589 nm) as the light source. Further, in the case of measuring the wavelength dependence, it can be measured by using a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.) in combination with an interference filter. Also, the values in the polymer handbook (John Wiley & Sons, Inc.) and various optical film catalogs can be used.
 本明細書において、Re(λ)及びRth(λ)は、各々、波長λにおける面内の位相差及び厚み方向の位相差を表し、屈折率nx、ny、及びnzと、膜厚d(μm)を用いて、以下の式(1)及び式(2)で表される。
 式(1) : Re(λ)=(nx-ny)×d×1000(nm)
 式(2) : Rth(λ)=((nx+ny)/2-nz)×d×1000(nm)
 特に記載がないとき、波長λは550nmとする。
 遅相軸方位、Re(λ)、及びRth(λ)は、例えば、AxoScan OPMF-1(オプトサイエンス社製)を用いて測定することができる。
In the present specification, Re (λ) and Rth (λ) represent the in-plane retardation and the thickness direction retardation at the wavelength λ, respectively, and the refractive indices nx, ny, and nz, and the film thickness d (μm ), it is represented by the following equations (1) and (2).
Formula (1): Re(λ)=(nx−ny)×d×1000 (nm)
Formula (2): Rth(λ)=((nx+ny)/2−nz)×d×1000 (nm)
Unless otherwise specified, the wavelength λ is 550 nm.
The slow axis orientation, Re(λ), and Rth(λ) can be measured using, for example, AxoScan OPMF-1 (manufactured by Optoscience).
 本発明の偏光板は、偏光子と、少なくとも1種の色素化合物を有する光吸収異方性層と、λ/4位相差フィルムと、を含んでおり、光吸収異方性層の透過率中心軸と、光吸収異方性層の層平面の法線とがなす角度が0~45°であり、光吸収異方性層の厚み方向の位相差Rthが、波長450nm、波長550nm及び波長630nmのいずれにおいても-20~-160nmであり、下記式(1)で示される光吸収異方性層のA(λ)が、波長450nm、波長550nm及び波長630nmのいずれにおいても20~200nmである。
 式(1) A(λ)={kz(λ)-(kx(λ)+ky(λ))/2}×d
 ここで、dは光吸収異方性層の厚みであり、kx及びkyはそれぞれ、光吸収異方性層の面内の直交するx軸及びy軸それぞれの方向における波長λの光に対する吸収係数であり、kzは、x軸及びy軸を含む面に対して直交するz軸方向における波長λの光に対する吸収係数である。ただし、dで表される光吸収異方性層の厚みの単位はnmである。
 以下、本発明の偏光板が含む構成について説明する。
The polarizing plate of the present invention includes a polarizer, a light absorption anisotropic layer having at least one dye compound, and a λ / 4 retardation film, and the transmittance center of the light absorption anisotropic layer The angle formed by the axis and the normal to the layer plane of the anisotropic light absorption layer is 0 to 45°, and the retardation Rth in the thickness direction of the anisotropic light absorption layer is 450 nm, 550 nm, and 630 nm. is −20 to −160 nm in any of the above, and A(λ) of the light absorption anisotropic layer represented by the following formula (1) is 20 to 200 nm at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 630 nm. .
Formula (1) A(λ)={kz(λ)−(kx(λ)+ky(λ))/2}×d
Here, d is the thickness of the anisotropic light absorption layer, and kx and ky are absorption coefficients for light of wavelength λ in the directions of the x-axis and y-axis that are orthogonal to each other in the plane of the anisotropic light absorption layer. and kz is the absorption coefficient for light of wavelength λ in the z-axis direction perpendicular to the plane containing the x-axis and the y-axis. However, the unit of the thickness of the light absorption anisotropic layer represented by d is nm.
Structures included in the polarizing plate of the present invention will be described below.
〔λ/4位相差フィルム〕
 本発明の偏光板は、λ/4位相差フィルムを含む。
 λ/4位相差フィルムは、特に制限されず、単一の光学異方性層からなっていてもよく、複数の光学異方性層からなっていてもよい。すなわち、λ/4位相差フィルムは、単層構造であってもよく、複層構造であってもよい。複数の光学異方性層からなるλ/4位相差フィルムについては、例えば、特開2014-209219号公報の[0008]~[0053]段落の記載を参照できる。
 また、このようなλ/4位相差フィルムと後述する光吸収異方性膜とは、接して設けられていてもよいし、間に他の層が設けられていてもよい。このような層としては、密着性担保のための粘着層及び接着層が挙げられる。
[λ/4 retardation film]
The polarizing plate of the present invention contains a λ/4 retardation film.
The λ/4 retardation film is not particularly limited, and may consist of a single optically anisotropic layer, or may consist of a plurality of optically anisotropic layers. That is, the λ/4 retardation film may have a single layer structure or a multilayer structure. Regarding the λ/4 retardation film composed of a plurality of optically anisotropic layers, for example, the description in paragraphs [0008] to [0053] of JP-A-2014-209219 can be referred to.
Further, such a λ/4 retardation film and a light absorption anisotropic film described later may be provided in contact with each other, or another layer may be provided between them. Such a layer includes an adhesive layer and an adhesive layer for securing adhesion.
 本発明の偏光板に用いられるλ/4板位相差フィルムとは、λ/4分の位相差を発生させる機能を有するフィルムであり、具体的には、ある特定の波長の直線偏光を円偏光に(又は円偏光を直線偏光に)変換する機能を有するフィルムである。
 なかでも、本発明の偏光板に用いられるλ/4板位相差フィルムの波長550nmにおける面内レタデーションRe(550)は、100~200nmが好ましく、120~160nmがより好ましい。
 例えば、λ/4位相差フィルムが単層構造である態様としては、具体的には、延伸ポリマーフィルムや、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルムなどが挙げられる。また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
The λ / 4 plate retardation film used in the polarizing plate of the present invention is a film having the function of generating a phase difference of λ / 4, specifically, linearly polarized light with a specific wavelength is circularly polarized (or circularly polarized light into linearly polarized light).
Among them, the in-plane retardation Re(550) at a wavelength of 550 nm of the λ/4 plate retardation film used in the polarizing plate of the present invention is preferably 100 to 200 nm, more preferably 120 to 160 nm.
For example, embodiments in which the λ/4 retardation film has a single layer structure include, specifically, a stretched polymer film, a retardation film having an optically anisotropic layer having a λ/4 function on a support, and the like. are mentioned. Further, as a mode in which the λ/4 plate has a multi-layer structure, specifically, a broadband λ/4 plate formed by laminating a λ/4 plate and a λ/2 plate can be mentioned.
〔光吸収異方性層〕
 本発明の偏光板は、光吸収異方性層を含む。
 本発明の偏光板に用いられる光吸収異方性層は、光吸収異方性層の透過率中心軸と光吸収異方性層の層平面の法線がなす角度が0~45°である。ここで透過率中心軸とは、光吸収異方性層の層平面の法線(フィルム法線方向)に対する傾き角度と、傾き方向を変化させて透過率を測定した際に最も高い透過率を示す角度と方向を意味する。透過率中心軸とフィルム法線の角度は、0~10°が好ましく、0~5°が更に好ましく、0~2°が更に好ましい。なす角度を上記範囲にすることで、正面方向から視認した時の透過率を高めることができ、画像表示装置の正面輝度を高めることができる。
 透過率中心軸の求め方としては、AxoScan OPMF-1(オプトサイエンス社製)を用いて、波長550nmのP偏光における光吸収異方性層の透過率を測定する。より具体的には、測定の際には、透過率中心軸が傾いている方位角を最初に探し、次に、その方位角に沿った光吸収異方性層の法線方向を含む面内(透過率中心軸を含み、層表面に直交する平面)内で、光吸収異方性層表面の法線方向に対する角度である極角を-70~70°まで5°毎に変更しつつ、波長550nmのP偏光を入射して、光吸収異方性層の透過率を測定する。この結果、最も透過率の高い方向を透過率中心軸とする。
 ただし、透過率中心軸が光吸収異方性層の層平面の法線と平行である場合には、上記極角を変更する方位角は、いずれの方向であってもよい。
 また、光吸収異方性層は、少なくとも1種の色素化合物を有する。色素化合物は、方向によって吸収率に差がある二色性色素化合物(以下、単に二色性色素ともいう。)が好ましい。色素化合物については、後段で詳述する。
 光吸収異方性層の透過軸中心軸を制御する態様としては、二色性色素を配向させる態様が好ましく、液晶性化合物の配向を利用して二色性色素を配向させる態様が更に好ましい。
 上記透過率中心軸に関する関係を満たす光吸収異方性層の一例としては、少なくとも一種の二色性色素を光吸収異方性層の層平面に対して垂直に配向させた光吸収異方性層が挙げられる。
[Light absorption anisotropic layer]
The polarizing plate of the present invention includes a light absorption anisotropic layer.
In the light absorption anisotropic layer used in the polarizing plate of the present invention, the angle between the transmittance center axis of the light absorption anisotropic layer and the normal to the layer plane of the light absorption anisotropic layer is 0 to 45°. . Here, the central axis of transmittance refers to the angle of inclination with respect to the normal to the layer plane of the anisotropic light absorption layer (the normal direction of the film), and the highest transmittance when the transmittance is measured by changing the inclination direction. means the angle and direction shown. The angle between the central axis of transmittance and the normal to the film is preferably 0 to 10°, more preferably 0 to 5°, even more preferably 0 to 2°. By setting the angle within the above range, the transmittance when viewed from the front direction can be increased, and the front luminance of the image display device can be increased.
As a method for obtaining the transmittance central axis, AxoScan OPMF-1 (manufactured by Optoscience) is used to measure the transmittance of the light absorption anisotropic layer for P-polarized light having a wavelength of 550 nm. More specifically, in the measurement, the azimuth angle at which the transmittance central axis is tilted is first searched, and then the in-plane While changing the polar angle, which is the angle with respect to the normal direction of the light absorption anisotropic layer surface, from −70 to 70° in increments of 5° in (a plane that includes the transmittance central axis and is orthogonal to the layer surface), P-polarized light with a wavelength of 550 nm is incident and the transmittance of the light absorption anisotropic layer is measured. As a result, the direction with the highest transmittance is defined as the center axis of transmittance.
However, when the transmittance center axis is parallel to the normal to the layer plane of the light absorption anisotropic layer, the azimuth angle for changing the polar angle may be in any direction.
Also, the light absorption anisotropic layer has at least one dye compound. The dye compound is preferably a dichroic dye compound (hereinafter simply referred to as a dichroic dye) having a different absorption rate depending on the direction. The dye compound will be described in detail later.
As a mode for controlling the central axis of the transmission axis of the light absorption anisotropic layer, a mode in which the dichroic dye is oriented is preferable, and a mode in which the dichroic dye is oriented using the alignment of the liquid crystalline compound is more preferable.
An example of the light absorption anisotropic layer that satisfies the relationship regarding the transmittance center axis is a light absorption anisotropic layer in which at least one kind of dichroic dye is oriented perpendicularly to the layer plane of the light absorption anisotropic layer. layer.
 二色性色素を所望の配向とする技術は、二色性色素を利用した偏光子の作製技術や、ゲスト-ホスト液晶セルの作製技術などを参考にすることができる。例えば、特開平11-305036号公報や特開2002-090526号公報に記載の二色性偏光素子の作製方法、及び特開2002-099388号公報や特開2016-027387号公報に記載のゲストホスト型液晶表示装置の作製方法で利用されている技術を、本発明に用いられる光吸収異方性層の作製にも利用することができる。 For the technology to orient the dichroic dyes in the desired orientation, it is possible to refer to the technology for manufacturing polarizers using dichroic dyes and the technology for manufacturing guest-host liquid crystal cells. For example, the method for producing a dichroic polarizing element described in JP-A-11-305036 and JP-A-2002-090526, and the guest host described in JP-A-2002-099388 and JP-A-2016-027387 The technology used in the manufacturing method of the type liquid crystal display device can also be used in manufacturing the light absorption anisotropic layer used in the present invention.
 例えば、ゲストホスト型液晶セルの技術を利用して、ホスト液晶の配向に付随させて二色性色素の分子を、上記のような所望の配向にすることができる。具体的には、ゲストとなる二色性色素と、ホスト液晶となる棒状液晶性化合物とを混合し、ホスト液晶を配向させるとともに、その液晶分子の配向に沿って二色性色素の分子を配向させて、その配向状態を固定することで、本発明に用いられる光吸収異方性層を作製することができる。 For example, using guest-host type liquid crystal cell technology, dichroic dye molecules can be oriented as desired along with the orientation of the host liquid crystal. Specifically, a guest dichroic dye and a rod-like liquid crystalline compound serving as a host liquid crystal are mixed, the host liquid crystal is aligned, and the molecules of the dichroic dye are aligned along the alignment of the liquid crystal molecules. The light absorption anisotropic layer for use in the present invention can be produced by allowing the layers to align and fixing the orientation state.
 本発明に用いられる光吸収異方性層の光吸収特性の使用環境による変動を防止するために、二色性色素の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、二色性色素、又は所望により添加される重合性成分の重合を進行させることで、配向を固定することができる。 In order to prevent the light absorption characteristics of the light absorption anisotropic layer used in the present invention from varying depending on the usage environment, it is preferable to fix the orientation of the dichroic dye by forming chemical bonds. For example, the orientation can be fixed by advancing the polymerization of the host liquid crystal, the dichroic dye, or the optionally added polymerizable component.
 また、一対の基板に、二色性色素とホスト液晶とを少なくとも含む液晶層を有するゲストホスト型液晶セルそのものを、本発明に用いられる光吸収異方性層として利用してもよい。ホスト液晶の配向(及びそれに付随する二色性色素分子の配向)は、基板内面に形成された配向膜によって制御することができ、電界等の外部刺激を与えない限り、その配向状態は維持され、本発明に用いられる光吸収異方性層の光吸収特性を一定にすることができる。 Further, a guest-host type liquid crystal cell itself having a liquid crystal layer containing at least a dichroic dye and a host liquid crystal on a pair of substrates may be used as the light absorption anisotropic layer used in the present invention. The orientation of the host liquid crystal (and the accompanying dichroic dye molecule orientation) can be controlled by an orientation film formed on the inner surface of the substrate, and the orientation state is maintained unless an external stimulus such as an electric field is applied. , the light absorption characteristics of the light absorption anisotropic layer used in the present invention can be made constant.
 また、ポリマーフィルム中に二色性色素を浸透させて、ポリマーフィルム中のポリマー分子の配向に沿って二色性色素を配向させることで、本発明に用いられる光吸収異方性層に要求される光吸収特性を満足するポリマーフィルムを作製することもできる。
 具体的には、二色性色素の溶液をポリマーフィルムの表面に塗布して、フィルム中に浸透させて、作製することができる。二色性色素の配向は、ポリマーフィルム中のポリマー鎖の配向、その性質(ポリマー鎖又はそれが有する官能基等の化学的及び物理的性質)、塗布方法、などによって調整することができる。この方法の詳細については、特開2002-090526号公報に記載されている。
In addition, by permeating the dichroic dye into the polymer film and orienting the dichroic dye along the orientation of the polymer molecules in the polymer film, the light absorption anisotropic layer used in the present invention It is also possible to prepare polymer films that satisfy the light absorption properties of
Specifically, it can be produced by applying a solution of a dichroic dye to the surface of a polymer film and allowing it to permeate into the film. The orientation of the dichroic dye can be adjusted by the orientation of the polymer chains in the polymer film, the properties thereof (chemical and physical properties such as the polymer chains or functional groups possessed by the polymer chains), the coating method, and the like. Details of this method are described in JP-A-2002-090526.
 本発明の偏光板に用いられる光吸収異方性層の厚み方向の位相差Rthは、波長450nm、波長550nm及び波長630nmのいずれにおいても、-20~-160nmであり、-20~-100nmが好ましく、-40~-80nmがより好ましい。厚み方向の位相差Rthを上記範囲に制御することで、λ/4位相差フィルムの厚み方向の位相差を補償し、斜め方向から入射した光の反射率を低減することができる。 The thickness direction retardation Rth of the light absorption anisotropic layer used in the polarizing plate of the present invention is −20 to −160 nm, and −20 to −100 nm at any of wavelengths of 450 nm, 550 nm and 630 nm. It is preferably -40 to -80 nm, more preferably -40 to -80 nm. By controlling the retardation Rth in the thickness direction within the above range, the retardation in the thickness direction of the λ/4 retardation film can be compensated, and the reflectance of light incident from an oblique direction can be reduced.
 本発明の偏光板では、上記要件を満たす光吸収異方性層を用いる。
 光吸収異方性層の吸収異方性の程度は、種々のパラメータで表現することができるが、その一例として、下記で定義されるA(λ)が挙げられ、本発明の偏光板に用いられる光吸収異方性層は、A(λ)に関して後述する関係を充足する。
 A(λ)={kz(λ)-(kx(λ)+ky(λ))/2}×d
 式中、ここでdは光吸収異方性層の厚み(単位:nm)であり、kx(λ)及びky(λ)はそれぞれ、上記光吸収異方性層の面内の直交するx軸及びy軸それぞれの方向における波長λの光に対する吸収係数であり、kz(λ)は、x軸及びy軸を含む面に対して直交するz軸方向における波長λの光に対する吸収係数である。
 なお、x軸とは波長λ(波長450nm、波長550nm、又は、波長630nm)における屈折率が最も大きい方向であり、y軸はx軸に直交する面内方向である。ただし、面内方向のいずれの方位角においても屈折率が変化しない場合、任意の一方向をx軸とし、y軸はx軸に直交する面内方向とする。
 ここで、吸収係数k(kx、ky及びkz)は、消衰係数(attenuation index)とも呼ばれ、物質中でどれくらいの光のエネルギーが吸収されるかに関係した値である。一般には、複素屈折率(n+ik(iは虚数単位))の実数成分nがいわゆる屈折率であり、虚数成分kが吸収係数である。なお、本発明で述べられているkは、いわゆるattenuation coefficient αとは別の物性値である。attenuation indexとattenuation coefficientについては、例えばMax Born and Emil Wolf著 “Principles of Optics, 7th(expanded) edition"の4.11.2 "Beam propagation in an absorbing mediun"の218~219頁に詳細な記載がある。
The polarizing plate of the present invention uses a light absorption anisotropic layer that satisfies the above requirements.
The degree of absorption anisotropy of the light absorption anisotropic layer can be expressed by various parameters, one example of which is A(λ) defined below. The light-absorbing anisotropic layer satisfies the relationship described below with respect to A(λ).
A(λ)={kz(λ)−(kx(λ)+ky(λ))/2}×d
In the formula, d is the thickness (unit: nm) of the light absorption anisotropic layer, and kx(λ) and ky(λ) are the in-plane orthogonal x-axes of the light absorption anisotropic layer, respectively. and y-axes, and kz(λ) is an absorption coefficient for light of wavelength λ in the z-axis direction perpendicular to the plane containing the x-axis and the y-axis.
Note that the x-axis is the direction in which the refractive index is the largest at wavelength λ (450 nm wavelength, 550 nm wavelength, or 630 nm wavelength), and the y-axis is the in-plane direction orthogonal to the x-axis. However, if the refractive index does not change at any azimuth angle in the in-plane direction, any one direction is defined as the x-axis, and the y-axis is defined as the in-plane direction perpendicular to the x-axis.
Here, the absorption coefficient k (kx, ky and kz), also called an attenuation index, is a value related to how much light energy is absorbed in a substance. In general, the real component n of the complex refractive index (n+ik (i is an imaginary unit)) is the so-called refractive index, and the imaginary component k is the absorption coefficient. Note that k described in the present invention is a physical property value different from the so-called attenuation coefficient α. The attenuation index and attenuation coefficient are described in detail, for example, in Max Born and Emil Wolf's "Principles of Optics, 7th (expanded) edition", 4.11.2 "Beam propagation in an absorbing mediun", pp. 218-219. be.
 本発明の偏光板に用いられる光吸収異方性層では、波長450nm、波長550nm及び波長630nmのいずれにおいても、上記A(λ)の値が20~200nmであり、20~150nmがより好ましく、40~150nmがより好ましく、40~80nmが更に好ましい。A(λ)の値をこの範囲に制御することで、斜め方向から入射した外光起因の反射光を低減し、更に反射光の色味変化を抑制できる。
 また、A(λ)の値をこの範囲に制御することで、ディスプレイから出射する光の吸収を抑制し、輝度低下を抑制できる。
In the light absorption anisotropic layer used in the polarizing plate of the present invention, the value of A(λ) is 20 to 200 nm, more preferably 20 to 150 nm, at any of wavelengths of 450 nm, 550 nm and 630 nm. 40 to 150 nm is more preferred, and 40 to 80 nm is even more preferred. By controlling the value of A(λ) within this range, it is possible to reduce the reflected light due to external light entering from an oblique direction, and further suppress the color change of the reflected light.
Also, by controlling the value of A(λ) within this range, it is possible to suppress the absorption of light emitted from the display, thereby suppressing a decrease in luminance.
 吸収係数kx(λ)、ky(λ)及びkz(λ)は、Axometics社のAxosScanを用いて計測されたサンプルの吸収異方性(Diattenuation)の値により大小関係を知ることができる。また、その吸収異方性の程度A(λ)は、上記計測装置を用い、進相軸方向で極角を所定の範囲(例えば-50~5°)、所定の間隔(例えば10°毎)で、複数の波長λにおける、ミューラーマトリックスを計測し、フィッティングすることにより求めることができる。 The magnitude relationship between the absorption coefficients kx(λ), ky(λ), and kz(λ) can be known from the value of the absorption anisotropy (Diattenuation) of the sample measured using AxosScan of Axometics. In addition, the degree of absorption anisotropy A (λ) is measured using the above-described measuring device, and the polar angle in the fast axis direction is set within a predetermined range (eg, −50 to 5°) at predetermined intervals (eg, every 10°). can be obtained by measuring and fitting Mueller matrices at a plurality of wavelengths λ.
 本発明に用いられる光吸収異方性層は、透過軸中心軸方向での透過率が80%以上であることが好ましく、85%以上であることがより好ましい。これにより、画像表示装置の視角中心の輝度を上げて、視認性を良好とすることができる。 The light absorption anisotropic layer used in the present invention preferably has a transmittance of 80% or more, more preferably 85% or more, in the central axis direction of the transmission axis. As a result, the brightness at the center of the viewing angle of the image display device can be increased, and the visibility can be improved.
 本発明では、λ/4位相差フィルムと光吸収異方性層が、偏光子から見て同じ側に配置されていることが好ましい。すなわち、偏光子と光吸収異方性層とλ/4位相差フィルムとがこの順で積層されているか、偏光子とλ/4位相差フィルムと光吸収異方性層とがこの順で積層されていることが好ましい。また、偏光子と光吸収異方性層とλ/4位相差フィルムがこの順で積層されていることが、より好ましい。このような構成にすることで、斜め方向から入射した外光起因の反射光の発生を低減し、反射光の色味変化を抑制できる。
 以下、光吸収異方性層に含まれる成分について説明する。
In the present invention, the λ/4 retardation film and the light absorption anisotropic layer are preferably arranged on the same side as viewed from the polarizer. That is, the polarizer, the light absorption anisotropic layer and the λ / 4 retardation film are laminated in this order, or the polarizer, the λ / 4 retardation film and the light absorption anisotropic layer are laminated in this order. It is preferable that More preferably, the polarizer, the light absorption anisotropic layer and the λ/4 retardation film are laminated in this order. By adopting such a configuration, it is possible to reduce the generation of reflected light caused by external light incident from an oblique direction, and suppress the change in color of the reflected light.
The components contained in the light absorption anisotropic layer are described below.
[液晶性化合物]
 光吸収異方性層は、液晶性化合物を含有することが好ましい。すなわち、液晶性化合物及び色素化合物を含む光吸収異方性層形成用組成物を用いて光吸収異方性層を形成することが好ましい。液晶性化合物を含有することで、色素化合物(好ましくは二色性色素)の析出を抑止しながら、色素化合物(好ましくは二色性色素)を高い配向度で配向させることができる。
 液晶性化合物は、可視領域で二色性を示さない液晶性化合物が好ましい。
 液晶性化合物としては、低分子液晶性化合物及び高分子液晶性化合物のいずれを用いることも可能であり、両方を併用することも好ましい。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
[Liquid crystal compound]
The light absorption anisotropic layer preferably contains a liquid crystalline compound. That is, it is preferable to form the anisotropic light absorption layer using a composition for forming an anisotropic light absorption layer containing a liquid crystalline compound and a dye compound. By containing the liquid crystalline compound, it is possible to align the dye compound (preferably dichroic dye) with a high degree of alignment while suppressing precipitation of the dye compound (preferably dichroic dye).
The liquid crystalline compound is preferably a liquid crystalline compound that does not exhibit dichroism in the visible region.
As the liquid crystal compound, it is possible to use either a low-molecular-weight liquid crystal compound or a high-molecular-weight liquid crystal compound, and it is also preferable to use both together. Here, the term "low-molecular-weight liquid crystalline compound" refers to a liquid crystalline compound having no repeating unit in its chemical structure. Further, the term "polymeric liquid crystalline compound" refers to a liquid crystalline compound having a repeating unit in its chemical structure.
 低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。 Examples of low-molecular-weight liquid crystalline compounds include liquid crystalline compounds described in JP-A-2013-228706.
 高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、光吸収異方性膜の強度(特に、耐屈曲性)が優れるという観点から、末端に架橋性基を有する繰り返し単位を有することが好ましい。架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性及び合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、及び、スチリル基が好ましく、アクリロイル基及びメタクリロイル基がより好ましい。 Examples of polymer liquid crystalline compounds include thermotropic liquid crystalline polymers described in JP-A-2011-237513. In addition, the polymer liquid crystalline compound preferably has a repeating unit having a crosslinkable group at the terminal from the viewpoint of excellent strength (in particular, bending resistance) of the light absorption anisotropic film. Examples of the crosslinkable group include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038. Among these, acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferred, and acryloyl group and methacryloyl group are more preferred, from the viewpoint of improving reactivity and synthesis suitability.
 液晶性化合物の示す液晶性は、ネマチック相であってもスメクチック相であってもよく、ネマチック相とスメクチック相の両方を示してもよく、少なくともネマチック相を示すことが好ましい。
 スメクチック相としては、高次スメクチック相であってもよい。ここでいう高次スメクチック相とは、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相、及び、スメクチックL相が挙げられ、中でもスメクチックB相、スメクチックF相、又は、スメクチックI相が好ましい。
 液晶性化合物が示すスメクチック相がこれらの高次スメクチック相であると、配向秩序度のより高い光吸収異方性層を作製できる。また、このように配向秩序度の高い高次スメクチック相から作製した光吸収異方性層はX線回折測定においてヘキサチック相及びクリスタル相といった高次構造由来のブラッグピークが得られるものである。上記ブラッグピークとは、分子配向の面周期構造に由来するピークであり、周期間隔が3.0~5.0Åである光吸収異方性層が好ましい。
 ネマチック相を示す温度範囲は、室温(23℃)~450℃が好ましく、取り扱いや製造適性の観点から、50~400℃が好ましい。
The liquid crystallinity exhibited by the liquid crystalline compound may be either a nematic phase or a smectic phase, or may exhibit both a nematic phase and a smectic phase, and preferably exhibits at least a nematic phase.
The smectic phase may be a higher order smectic phase. The higher-order smectic phases referred to herein include smectic B phase, smectic D phase, smectic E phase, smectic F phase, smectic G phase, smectic H phase, smectic I phase, smectic J phase, smectic K phase, and smectic L. Among them, a smectic B phase, a smectic F phase, or a smectic I phase is preferable.
If the smectic phase exhibited by the liquid crystalline compound is one of these high-order smectic phases, a light absorption anisotropic layer with a higher degree of orientational order can be produced. In addition, a light absorption anisotropic layer formed from a high-order smectic phase having a high degree of orientational order gives a Bragg peak derived from a high-order structure such as a hexatic phase and a crystal phase in X-ray diffraction measurement. The above-mentioned Bragg peak is a peak derived from the plane periodic structure of molecular orientation, and a light absorption anisotropic layer having a periodic interval of 3.0 to 5.0 Å is preferable.
The temperature range showing the nematic phase is preferably room temperature (23° C.) to 450° C., and preferably 50 to 400° C. from the viewpoint of handling and production suitability.
 液晶性化合物の含有量は、色素化合物(好ましくは二色性色素)の含有量100質量部に対して、25~2000質量部が好ましく、100~1300質量部がより好ましく、200~900質量部が更に好ましい。液晶性化合物の含有量が上記範囲内にあることで、色素化合物の配向度がより向上する。
 液晶性化合物は、1種単独で含まれていてもよいし、2種以上含まれていてもよい。液晶性化合物が2種以上含まれる場合、上記液晶性化合物の含有量は、液晶性化合物の含有量の合計を意味する。
The content of the liquid crystalline compound is preferably 25 to 2000 parts by mass, more preferably 100 to 1300 parts by mass, with respect to 100 parts by mass of the dye compound (preferably dichroic dye) content, and 200 to 900 parts by mass. is more preferred. When the content of the liquid crystalline compound is within the above range, the degree of orientation of the dye compound is further improved.
The liquid crystalline compound may be contained individually by 1 type, and may be contained 2 or more types. When two or more kinds of liquid crystalline compounds are contained, the content of the liquid crystalline compounds means the total content of the liquid crystalline compounds.
 液晶性化合物は、配向度がより優れる理由から、下記式(1L)で表される繰り返し単位(以下、「繰り返し単位(1L)」とも言う)を含む高分子液晶性化合物が好ましい。 The liquid crystalline compound is preferably a polymeric liquid crystalline compound containing a repeating unit represented by the following formula (1L) (hereinafter also referred to as "repeating unit (1L)") because of its superior degree of orientation.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1L)中、P1は繰り返し単位の主鎖を表し、L1は単結合又は2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。 In the above formula (1L), P1 represents the main chain of the repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogenic group, and T1 represents a terminal group. .
 P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性及び取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。 Specific examples of the main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D). A group represented by the following formula (P1-A) is preferable from the viewpoint of diversity and ease of handling.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(P1-A)~(P1-D)において、「*」は、式(1L)におけるL1との結合位置を表す。式(P1-A)~(P1-D)において、R、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖又は分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 式(P1-D)で表される基は、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基及びシラノール基の少なくとも一方の基を有する化合物としては、式SiR(OR-で表される基を有する化合物が挙げられる。式中、Rは、(P1-D)におけるRと同義であり、複数のRはそれぞれ独立に、水素原子又は炭素数1~10のアルキル基を表す。
In formulas (P1-A) to (P1-D), "*" represents the bonding position with L1 in formula (1L). In formulas (P1-A) to (P1-D), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms. represents an alkoxy group. The alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Moreover, the number of carbon atoms in the alkyl group is preferably 1 to 5.
The group represented by formula (P1-A) is preferably one unit of the partial structure of poly(meth)acrylic acid ester obtained by polymerization of (meth)acrylic acid ester.
The group represented by formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
The group represented by formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of an oxetane group of a compound having an oxetane group.
The group represented by formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of a compound having at least one of an alkoxysilyl group and a silanol group. Here, compounds having at least one of an alkoxysilyl group and a silanol group include compounds having a group represented by the formula SiR 4 (OR 5 ) 2 —. In the formula, R 4 has the same definition as R 4 in (P1-D), and each of a plurality of R 5 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
 L1は、単結合又は2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR-、-NRC(O)-、-SO-、及び、-NR-などが挙げられる。式中、R及びRはそれぞれ独立に、水素原子、置換基W(後述)を有していてもよい炭素数1~6のアルキル基を表わす。
 P1が式(P1-A)で表される基である場合には、配向度がより優れる理由から、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、配向度がより優れる理由から、L1は単結合が好ましい。
L1 is a single bond or a divalent linking group.
The divalent linking group represented by L1 includes -C(O)O-, -OC(O)-, -O-, -S-, -C(O)NR 3 -, and -NR 3 C(O). -, -SO 2 -, and -NR 3 R 4 -. In the formula, R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent W (described later).
When P1 is a group represented by formula (P1-A), L1 is preferably a group represented by -C(O)O- for the reason that the degree of orientation is superior.
When P1 is a group represented by formulas (P1-B) to (P1-D), L1 is preferably a single bond because the degree of orientation is superior.
 SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造及びフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1L)中のL1又はM1との結合位置を表す。n1は、配向度がより優れる理由から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが最も好ましい。
 また、SP1が表すオキシプロピレン構造は、配向度がより優れる理由から、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1又はM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、配向度がより優れる理由から、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1又はM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、配向度がより優れる理由から、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1又はM1との結合位置を表す。
The spacer group represented by SP1 is at least one selected from the group consisting of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and an alkylene fluoride structure, for reasons such as the ease of exhibiting liquid crystallinity and the availability of raw materials. It preferably contains a seed structure.
Here, the oxyethylene structure represented by SP1 is preferably a group represented by *--(CH 2 --CH 2 O) n1 --*. In the formula, n1 represents an integer of 1 to 20, * represents the bonding position with L1 or M1 in the above formula (1L). n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and most preferably 3, because the degree of orientation is more excellent.
In addition, the oxypropylene structure represented by SP1 is preferably a group represented by *-(CH(CH 3 )-CH 2 O) n2 --* because of its superior degree of orientation. In the formula, n2 represents an integer of 1 to 3, and * represents the bonding position with L1 or M1.
Moreover, the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 -O) n3 -* because of its superior degree of orientation. In the formula, n3 represents an integer of 6 to 10, * represents the bonding position with L1 or M1.
In addition, the alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4 -* because of its superior degree of orientation. In the formula, n4 represents an integer of 6 to 10, and * represents the bonding position with L1 or M1.
 M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、及び、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、及び脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基は、配向度がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのが更に好ましい。
The mesogenic group represented by M1 is a group showing the main skeleton of liquid crystal molecules that contributes to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state. There are no particular restrictions on the mesogenic group, for example, "Flussige Kristalle in Tabellen II" (VEB Deutsche Verlag fur Grundstoff Industrie, Leipzig, 1984), especially the descriptions on pages 7 to 16 and Liquid Crystal Handbook Editorial Committee ed., Liquid Crystal Handbook (Maruzen, 2000), especially the description in Chapter 3.
The mesogenic group is preferably, for example, a group having at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups.
The mesogenic group preferably has an aromatic hydrocarbon group, more preferably has 2 to 4 aromatic hydrocarbon groups, and has 3 aromatic hydrocarbon groups for the reason that the degree of orientation is better. is more preferred.
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性及び合成適性という観点、並びに、配向度がより優れるから、下記式(M1-A)又は下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。 As the mesogenic group, the following formula (M1-A) or the following formula (M1-B) is used from the viewpoint of liquid crystal development, adjustment of the liquid crystal phase transition temperature, availability of raw materials and synthesis suitability, and superior degree of orientation. A group represented by is preferable, and a group represented by formula (M1-B) is more preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基又は置換基W(後述)で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1又はT1との結合位置を表す。
In formula (M1-A), A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with an alkyl group, a fluorinated alkyl group, an alkoxy group, or a substituent W (described later).
The divalent group represented by A1 is preferably a 4- to 6-membered ring. Also, the divalent group represented by A1 may be monocyclic or condensed.
* represents the binding position with SP1 or T1.
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基及びテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。 The divalent aromatic hydrocarbon group represented by A1 includes a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group and a tetracene-diyl group. A phenylene group or a naphthylene group is preferred, and a phenylene group is more preferred, from the viewpoint of properties and the like.
 A1が表す2価の複素環基としては、芳香族又は非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、及び、チエノオキサゾール-ジイル基などが挙げられる。
The divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but from the viewpoint of further improving the degree of orientation, it is preferably a divalent aromatic heterocyclic group. .
Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
Specific examples of divalent aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group ), isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimide-diyl group, thienothiazole-diyl group , thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基及びシクロへキシレン基などが挙げられる。 Specific examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。 In formula (M1-A), a1 represents an integer of 1-10. When a1 is 2 or more, multiple A1s may be the same or different.
 式(M1-B)中、A2及びA3はそれぞれ独立に、芳香族炭化水素基、複素環基及び脂環式基からなる群より選択される2価の基である。A2及びA3の具体例及び好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、配向度がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合又は2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、配向度がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
In formula (M1-B), A2 and A3 are each independently a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in formula (M1-A), so description thereof is omitted.
In formula (M1-B), a2 represents an integer of 1 to 10, and when a2 is 2 or more, multiple A2 may be the same or different, and multiple A3 may be the same or different. A plurality of LA1 may be the same or different. a2 is preferably an integer of 2 or more, more preferably 2, because the degree of orientation is better.
In formula (M1-B), when a2 is 1, LA1 is a divalent linking group. When a2 is 2 or more, each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group. When a2 is 2, it is preferable that one of the two LA1s is a divalent linking group and the other is a single bond because the degree of orientation is superior.
 式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、炭素数1~4のアルキル基、シクロアルキル基、アリール基、シアノ基、又は、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、及び、-C(O)S-などが挙げられる。なかでも、配向度がより優れる理由から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。 In formula (M1-B), the divalent linking group represented by LA1 includes -O-, -(CH 2 ) g -, -(CF 2 ) g -, -Si(CH 3 ) 2 -, -( Si(CH 3 ) 2 O) g -, -(OSi(CH 3 ) 2 ) g - (g represents an integer of 1 to 10), -N(Z)-, -C(Z)=C( Z')-, -C(Z)=N-, -N=C(Z)-, -C(Z) 2 -C(Z') 2 -, -C(O)-, -OC(O) -, -C(O)O-, -OC(O)O-, -N(Z)C(O)-, -C(O)N(Z)-, -C(Z)=C( Z')-C(O)O-,-OC(O)-C(Z)=C(Z')-,-C(Z)=N-,-N=C(Z)-,- C(Z)=C(Z')-C(O)N(Z'')-,-N(Z'')-C(O)-C(Z)=C(Z')-,-C(Z )=C(Z')-C(O)-S-,-S-C(O)-C(Z)=C(Z')-,-C(Z)=N-N=C(Z' )—(Z, Z′, and Z″ independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom.), —C≡C—, -N=N-, -S-, -S(O)-, -S(O)(O)-, -(O)S(O)O-, -O(O)S(O)O-, -SC(O)-, and -C(O)S-, etc. Among them, -C(O)O- is preferable because the degree of orientation is more excellent. It may be a group in which two or more are combined.
 M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。 Specific examples of M1 include the following structures. In addition, in the following specific examples, "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、及び、炭素数1~10のウレイド基、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合又は連結基を表す。連結基の具体例は上述したL1及びSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
 T1は、配向度がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基が更に好ましい。これらの末端基は、これらの基、又は、上述の架橋性基によって、更に置換されていてもよい。
 T1の主鎖の原子数は、配向度がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10が更に好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、光吸収異方性層の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
Terminal groups represented by T1 include a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, alkoxycarbonyloxy group having 1 to 10 carbon atoms, alkoxycarbonyl group having 1 to 10 carbon atoms (ROC(O)-: R is an alkyl group), acyloxy group having 1 to 10 carbon atoms, acylamino group having 1 to 10 carbon atoms , an alkoxycarbonylamino group having 1 to 10 carbon atoms, a sulfonylamino group having 1 to 10 carbon atoms, a sulfamoyl group having 1 to 10 carbon atoms, a carbamoyl group having 1 to 10 carbon atoms, a sulfinyl group having 1 to 10 carbon atoms, and , a ureido group having 1 to 10 carbon atoms, a (meth)acryloyloxy group-containing group, and the like. As the (meth)acryloyloxy group-containing group, for example, -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above. A is (meth) represents an acryloyloxy group).
T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, because the degree of orientation is superior. These terminal groups may be further substituted with these groups or the crosslinkable groups described above.
The number of atoms in the main chain of T1 is preferably from 1 to 20, more preferably from 1 to 15, even more preferably from 1 to 10, and particularly preferably from 1 to 7, because the degree of orientation is superior. When the number of atoms in the main chain of T1 is 20 or less, the degree of orientation of the light absorption anisotropic layer is further improved. Here, the "main chain" in T1 means the longest molecular chain that binds to M1, and hydrogen atoms are not counted in the number of atoms in the main chain of T1. For example, when T1 is an n-butyl group, the number of atoms in the main chain is 4, and when T1 is a sec-butyl group, the number of atoms in the main chain is 3.
 含有量は、配向度がより優れる理由から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましい。
 本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
 繰り返し単位(1L)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、配向度がより優れる理由から、繰り返し単位(1L)が高分子液晶性化合物中に2種含まれているのがよい。
The content is preferably 20 to 100% by mass with respect to 100% by mass of all repeating units in the polymer liquid crystalline compound, since the degree of orientation is more excellent.
In the present invention, the content of each repeating unit contained in the polymer liquid crystalline compound is calculated based on the charged amount (mass) of each monomer used to obtain each repeating unit.
The repeating unit (1L) may be contained singly or in combination of two or more in the polymer liquid crystalline compound. Among them, it is preferable that two kinds of repeating units (1L) are contained in the polymer liquid crystalline compound for the reason that the degree of orientation is more excellent.
 高分子液晶性化合物が繰り返し単位(1L)を2種含む場合、配向度がより優れる理由から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
 上記繰り返し単位BにおいてT1が表す末端基は、配向度がより優れる理由から、アルコキシカルボニル基、シアノ基、又は、(メタ)アクリロイルオキシ基含有基であることが好ましく、アルコキシカルボニル基、又は、シアノ基であることがより好ましい。
 高分子液晶性化合物中の上記繰り返し単位Aの含有量と高分子液晶性化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、配向度がより優れる理由から、50/50~95/5であることが好ましく、60/40~93/7であることがより好ましく、70/30~90/10であることが更に好ましい。
When the polymeric liquid crystalline compound contains two kinds of repeating units (1L), the terminal group represented by T1 in one (repeating unit A) is an alkoxy group, and in the other (repeating unit B), the orientation degree is more excellent. The terminal group represented by T1 is preferably a group other than an alkoxy group.
The terminal group represented by T1 in the repeating unit B is preferably an alkoxycarbonyl group, a cyano group, or a (meth)acryloyloxy group-containing group for the reason that the degree of orientation is better, and an alkoxycarbonyl group or a cyano more preferably a group.
The ratio (A/B) between the content of the repeating unit A in the liquid crystalline polymer compound and the content of the repeating unit B in the liquid crystalline polymer compound is 50/50 for the reason that the degree of orientation is more excellent. 95/5 is preferred, 60/40 to 93/7 is more preferred, and 70/30 to 90/10 is even more preferred.
 また、高分子液晶性化合物は、繰り返し単位(1L)とともに、メソゲン基を有しない繰り返し単位を有していてもよい。メソゲン基を有しない繰り返し単位としては、式(1L)におけるM1が単結合である繰り返し単位が挙げられる。
 高分子液晶性化合物がメソゲン基を有しない繰り返し単位を有する場合、配向度がより優れる理由から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、0質量%超30質量%以下が好ましく、10質量%超20質量%以下がより好ましい。
In addition to the repeating unit (1L), the polymer liquid crystalline compound may have a repeating unit having no mesogenic group. Repeating units having no mesogenic group include repeating units in which M1 in formula (1L) is a single bond.
When the polymer liquid crystalline compound has a repeating unit having no mesogenic group, the degree of orientation is more excellent, and therefore the amount is more than 0% by mass and 30% by mass or less with respect to 100% by mass of all repeating units possessed by the polymer liquid crystalline compound. is preferable, and more than 10% by mass and 20% by mass or less is more preferable.
(重量平均分子量)
 高分子液晶性化合物の重量平均分子量(Mw)は、配向度がより優れる理由から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量及び数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
(Weight average molecular weight)
The weight-average molecular weight (Mw) of the polymer liquid crystalline compound is preferably 1,000 to 500,000, more preferably 2,000 to 300,000, because the degree of orientation is better. When the Mw of the liquid crystalline polymer compound is within the above range, the liquid crystalline polymer compound can be easily handled.
In particular, from the viewpoint of suppressing cracks during coating, the weight average molecular weight (Mw) of the polymer liquid crystalline compound is preferably 10,000 or more, more preferably 10,000 to 300,000.
Moreover, from the viewpoint of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymer liquid crystalline compound is preferably less than 10,000, more preferably 2,000 or more and less than 10,000.
Here, the weight average molecular weight and number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method.
・Solvent (eluent): N-methylpyrrolidone ・Device name: TOSOH HLC-8220GPC
・Column: 3 TOSOH TSKgelSuperAWM-H (6mm×15cm) are connected and used ・Column temperature: 25℃
・Sample concentration: 0.1% by mass
・Flow rate: 0.35 mL/min
・ Calibration curve: TOSOH TSK standard polystyrene Mw = 2800000 to 1050 (Mw / Mn = 1.03 to 1.06) using a calibration curve from 7 samples
 本明細書における置換基Wについて説明する。
 置換基Wとしては、例えば、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、及び、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、及び、3-ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、及び、3-ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、及び、ビフェニル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、及び、アニリノ基などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、及び、ブトキシ基などが挙げられる)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、及び、フェノキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基、及び、メタクリロイル基などが挙げられる)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、アセチルアミノ基、及び、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、及び、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、及び、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、及び、フェニルカルバモイル基などが挙げられる)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、及び、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、及び、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、及び、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、及び、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、及び、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、マレイミド基、ベンゾオキサゾリル基、ベンズイミダゾリル基、及び、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、及び、トリフェニルシリル基などが挙げられる)、カルボキシ基、スルホン酸基、及び、リン酸基などが挙げられる。
The substituent W in the present specification will be explained.
Examples of the substituent W include an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably an alkyl group having 1 to 8 carbon atoms, such as a methyl group, an ethyl group, isopropyl group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group), alkenyl group (preferably having 2 to 20 carbon atoms) , more preferably an alkenyl group having 2 to 12 carbon atoms, particularly preferably an alkenyl group having 2 to 8 carbon atoms, such as a vinyl group, an aryl group, a 2-butenyl group, and a 3-pentenyl group), alkynyl a group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as a propargyl group and a 3-pentynyl group); An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenyl group, 2,6-diethylphenyl group, 3,5 -ditrifluoromethylphenyl group, styryl group, naphthyl group, and biphenyl group), substituted or unsubstituted amino group (preferably having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably is an amino group having 0 to 6 carbon atoms, such as an unsubstituted amino group, a methylamino group, a dimethylamino group, a diethylamino group, and an anilino group), an alkoxy group (preferably having 1 to 20 carbon atoms , more preferably 1 to 15 carbon atoms, for example, methoxy group, ethoxy group, and butoxy group), oxycarbonyl group (preferably 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms , Particularly preferably 2 to 10, for example, a methoxycarbonyl group, an ethoxycarbonyl group, and a phenoxycarbonyl group), an acyloxy group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms , Particularly preferably 2 to 6, for example, an acetoxy group, a benzoyloxy group, an acryloyl group, and a methacryloyl group), an acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 2 carbon atoms) 10, particularly preferably having 2 to 6 carbon atoms, such as acetylamino group and benzoylamino group), alkoxycarbonylamino group (preferably carbon 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms. , more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as a phenyloxycarbonylamino group), a sulfonylamino group (preferably 1 to 20 carbon atoms, more preferably carbon 1 to 10, particularly preferably 1 to 6 carbon atoms, such as methanesulfonylamino group and benzenesulfonylamino group), sulfamoyl group (preferably 0 to 20 carbon atoms, more preferably carbon Number 0 to 10, particularly preferably 0 to 6 carbon atoms, examples include sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group), carbamoyl group (preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and particularly preferably 1 to 6 carbon atoms, such as unsubstituted carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, and phenylcarbamoyl group. ), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a methylthio group and an ethylthio group), Arylthio group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenylthio group), a sulfonyl group (preferably having 1 to 1 carbon atoms) 20, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as mesyl group and tosyl group), sulfinyl group (preferably 1 to 20 carbon atoms, more preferably 1 to 20 carbon atoms) has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as methanesulfinyl group and benzenesulfinyl group), ureido group (preferably 1 to 20 carbon atoms, more preferably carbon Number 1 to 10, particularly preferably 1 to 6 carbon atoms, for example, unsubstituted ureido group, methylureido group, and phenylureido group, etc.), phosphate amide group (preferably carbon number 1 to 20, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. ), hydroxy group, mercapto group, halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, and iodine atom), cyano group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, azo group, a heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably a heterocyclic group having 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.) , for example, an epoxy group, an oxetanyl group, an imidazolyl group, a pyridyl group, a quinolyl group, a furyl group, a piperidyl group, a morpholino group, a maleimide group, a benzoxazolyl group, a benzimidazolyl group, and a benzthiazolyl group), A silyl group (preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably a silyl group having 3 to 24 carbon atoms, such as a trimethylsilyl group and a triphenylsilyl group) ), a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
[色素化合物]
 光吸収異方性層は、色素化合物を含む。
 色素化合物は、二色性色素化合物(二色性色素)が好ましい。二色性色素は、特に限定されず、可視光吸収物質(有機二色性色素、二色性アゾ化合物)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、無機物質(例えば量子ロッド)、などが挙げられ、従来公知の二色性色素を使用することができる。
 なお、二色性色素とは、方向によって吸光度が異なる色素化合物をいう。
[Dye compound]
The light absorption anisotropic layer contains a dye compound.
The dye compound is preferably a dichroic dye compound (dichroic dye). Dichroic dyes are not particularly limited, and include visible light absorbing substances (organic dichroic dyes, dichroic azo compounds), light emitting substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, infrared absorbing substances, nonlinear optical substances. , carbon nanotubes, inorganic substances (for example, quantum rods), and the like, and conventionally known dichroic dyes can be used.
In addition, the dichroic dye means a dye compound having different absorbance depending on the direction.
 特に好ましく用いられる二色性色素は、二色性アゾ色素化合物である。
 二色性アゾ色素化合物は、特に限定されず、従来公知の二色性アゾ色素を使用することができるが、後述の化合物が好ましく用いられる。
A particularly preferred dichroic dye is a dichroic azo dye compound.
The dichroic azo dye compound is not particularly limited, and conventionally known dichroic azo dyes can be used, but the compounds described below are preferably used.
 本発明において、二色性アゾ色素化合物とは、方向によって吸光度が異なるアゾ色素化合物を意味する。
 二色性アゾ色素化合物は、液晶性を示してもよいし、液晶性を示さなくてもよい。
 二色性アゾ色素化合物が液晶性を示す場合には、ネマチック性又はスメクチック性のいずれを示してもよい。液晶相を示す温度範囲は、室温(約20~28℃)~300℃が好ましく、取扱い性及び製造適性の観点から、50~200℃であることがより好ましい。
In the present invention, a dichroic azo dye compound means an azo dye compound having different absorbance depending on the direction.
The dichroic azo dye compound may or may not exhibit liquid crystallinity.
When the dichroic azo dye compound exhibits liquid crystallinity, it may exhibit nematicity or smecticity. The temperature range showing the liquid crystal phase is preferably room temperature (about 20 to 28°C) to 300°C, and more preferably 50 to 200°C from the viewpoint of handleability and production suitability.
 本発明においては、色味調整の観点から、光吸収異方性層が、波長560~700nmの範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第1の二色性アゾ色素化合物」とも略す。)と、波長455nm以上560nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第2の二色性アゾ色素化合物」とも略す。)とを少なくとも有していることが好ましく、具体的には、後述する式(3)で表される二色性アゾ色素化合物と、後述する式(4)で表される二色性アゾ色素化合物とを少なくとも有していることがより好ましい。 In the present invention, from the viewpoint of color adjustment, the light absorption anisotropic layer contains at least one dye compound having a maximum absorption wavelength in the wavelength range of 560 to 700 nm (hereinafter, “first dichroic azo dye compound”) and at least one dye compound having a maximum absorption wavelength in the wavelength range of 455 nm or more and less than 560 nm (hereinafter also abbreviated as “second dichroic azo dye compound”). Specifically, it has at least a dichroic azo dye compound represented by formula (3) described later and a dichroic azo dye compound represented by formula (4) described later. more preferably.
 本発明においては、3種以上の二色性アゾ色素化合物を併用してもよく、例えば、光吸収異方性層を黒色に近づける観点から、第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、波長380nm以上455nm未満の範囲に極大吸収波長を有する少なくとも1種の色素化合物(以下、「第3の二色性アゾ色素化合物」とも略す。)とを併用することが好ましい。 In the present invention, three or more dichroic azo dye compounds may be used in combination. dichroic azo dye compound and at least one dye compound having a maximum absorption wavelength in the wavelength range of 380 nm or more and less than 455 nm (hereinafter also abbreviated as "third dichroic azo dye compound"). is preferred.
 本発明においては、耐押圧性がより良好となる観点からは、二色性アゾ色素化合物が架橋性基を有していることが好ましい。
 架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、スチリル基などが挙げられ、中でも、(メタ)アクリロイル基が好ましい。
In the present invention, the dichroic azo dye compound preferably has a crosslinkable group from the viewpoint of better pressure resistance.
Specific examples of the crosslinkable group include a (meth)acryloyl group, an epoxy group, an oxetanyl group, a styryl group, etc. Among them, a (meth)acryloyl group is preferred.
(第1の二色性アゾ色素化合物)
 第1の二色性アゾ色素化合物は、核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
 発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族環基及びアゾ基の両方を有する構造が好ましく、芳香族複素環基(好ましくはチエノチアゾール基)と2つのアゾ基を有するビスアゾ構造がより好ましい。
 側鎖としては、特に限定されず、後述の式(3)のL3、R2又はL4で表される基が挙げられる。
(First dichroic azo dye compound)
The first dichroic azo dye compound is preferably a compound having a chromophore as a nucleus and a side chain bonded to the terminal of the chromophore.
Specific examples of the chromophore include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups), azo groups and the like, and structures having both an aromatic ring group and an azo group are preferred. A bisazo structure having an aromatic heterocyclic group (preferably a thienothiazole group) and two azo groups is more preferred.
The side chain is not particularly limited, and includes groups represented by L3, R2 or L4 in formula (3) described below.
 第1の二色性アゾ色素化合物は、波長560~700nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長560~650nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長560~640nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることがより好ましい。
 本明細書における二色性アゾ色素化合物の最大吸収波長(nm)は、二色性アゾ色素化合物を良溶媒中に溶解させた溶液を用いて、分光光度計によって測定される波長380~800nmの範囲における紫外可視光スペクトルから求められる。
The first dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 560 to 700 nm. and more preferably a dichroic azo dye compound having a maximum absorption wavelength in the range of 560 to 640 nm.
The maximum absorption wavelength (nm) of the dichroic azo dye compound in this specification is a solution of the dichroic azo dye compound dissolved in a good solvent, and is measured with a spectrophotometer at a wavelength of 380 to 800 nm. It is determined from the UV-visible spectrum in the range.
 本発明においては、形成される光吸収異方性層の配向度が更に向上する理由から、第1の二色性アゾ色素化合物が、下記式(3)で表される化合物であることが好ましい。 In the present invention, the first dichroic azo dye compound is preferably a compound represented by the following formula (3) for the reason that the degree of orientation of the light absorption anisotropic layer to be formed is further improved. .
 式(3)
Figure JPOXMLDOC01-appb-C000006
Formula (3)
Figure JPOXMLDOC01-appb-C000006
 式(3)中、Ar1及びAr2はそれぞれ独立に、置換基を有していてもよいフェニレン基、又は、置換基を有していてもよいナフチレン基を表し、フェニレン基が好ましい。 In formula (3), Ar1 and Ar2 each independently represent an optionally substituted phenylene group or an optionally substituted naphthylene group, preferably a phenylene group.
 式(3)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐鎖状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、又は、アルキルシリル基を表す。
 上記アルキル基を構成する-CH-は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH-O-Si(CH-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-、又は、-O-C(O)-O-によって置換されていてもよい。
 R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)、アミノ基、-C(R1’)=C(R1’)-NO、-C(R1’)=C(R1’)-CN、又は、-C(R1’)=C(CN)、によって置換されていてもよい。
 R1’は、水素原子又は炭素数1~6の直鎖もしくは分岐鎖状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
In formula (3), R1 is a hydrogen atom, an optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkylthio group, an alkylsulfonyl group, an alkylcarbonyl group. , alkyloxycarbonyl group, acyloxy group, alkyl carbonate group, alkylamino group, acylamino group, alkylcarbonylamino group, alkoxycarbonylamino group, alkylsulfonylamino group, alkylsulfamoyl group, alkylcarbamoyl group, alkylsulfinyl group, alkyl It represents a ureido group, an alkylphosphoamide group, an alkylimino group, or an alkylsilyl group.
—CH 2 — constituting the alkyl group is —O—, —CO—, —C(O)—O—, —O—C(O)—, —Si(CH 3 ) 2 —O—Si( CH 3 ) 2 -, -N(R1')-, -N(R1')-CO-, -CO-N(R1')-, -N(R1')-C(O)-O-,- O—C(O)—N(R1′)—, —N(R1′)—C(O)—N(R1′)—, —CH=CH—, —C≡C—, —N=N— , —C(R1′)=CH—C(O)—, or —O—C(O)—O—.
When R1 is a group other than a hydrogen atom, the hydrogen atom possessed by each group is a halogen atom, a nitro group, a cyano group, —N(R1′) 2 , an amino group, —C(R1′)=C(R1′ )—NO 2 , —C(R1′)=C(R1′)—CN, or —C(R1′)=C(CN) 2 .
R1' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when a plurality of R1' are present, they may be the same or different.
 式(3)中、R2及びR3は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐鎖状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、又は、アリールアミド基を表す。
 上記アルキル基を構成する-CH-は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH-O-Si(CH-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、又は、-O-C(O)-O-、によって置換されていてもよい。
 R2及びR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)、アミノ基、-C(R2’)=C(R2’)-NO、-C(R2’)=C(R2’)-CN、又は、-C(R2’)=C(CN)によって置換されていてもよい。
 R2’は、水素原子又は炭素数1~6の直鎖もしくは分岐鎖状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
 R2及びR3は、互いに結合して環を形成してもよいし、R2又はR3は、Ar2と結合して環を形成してもよい。
In formula (3), R2 and R3 are each independently a hydrogen atom, an optionally substituted linear or branched alkyl group having 1 to 20 carbon atoms, an alkoxy group, an acyl group, an alkyl represents an oxycarbonyl group, an alkylamide group, an alkylsulfonyl group, an aryl group, an arylcarbonyl group, an arylsulfonyl group, an aryloxycarbonyl group, or an arylamide group;
—CH 2 — constituting the alkyl group is —O—, —S—, —C(O)—, —C(O)—O—, —O—C(O)—, —C(O) -S-, -S-C(O)-, -Si(CH 3 ) 2 -O-Si(CH 3 ) 2 -, -NR2'-, -NR2'-CO-, -CO-NR2'-, -NR2'-C(O)-O-, -O-C(O)-NR2'-, -NR2'-C(O)-NR2'-, -CH=CH-, -C≡C-, - optionally substituted by N=N-, -C(R2')=CH-C(O)-, or -O-C(O)-O-.
When R2 and R3 are groups other than hydrogen atoms, the hydrogen atoms possessed by each group are halogen atoms, nitro groups, cyano groups, —OH groups, —N(R2′) 2 , amino groups, —C(R2′ )=C(R2′)—NO 2 , —C(R2′)=C(R2′)—CN, or —C(R2′)=C(CN) 2 .
R2' represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. In each group, when there are multiple R2's, they may be the same or different.
R2 and R3 may combine with each other to form a ring, or R2 or R3 may combine with Ar2 to form a ring.
 耐光性の観点からは、R1は電子吸引性基であることが好ましく、R2及びR3は電子供与性が低い基であることが好ましい。
 このような基の具体例として、R1としては、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルスルフィニル基、及び、アルキルウレイド基などが挙げられ、R2及びR3としては、下記の構造の基などが挙げられる。なお下記の構造の基は、上記式(3)において、R2及びR3が結合する窒素原子を含む形で示す。
From the viewpoint of light resistance, R1 is preferably an electron-withdrawing group, and R2 and R3 are preferably groups with low electron-donating properties.
Specific examples of such groups as R1 include an alkylsulfonyl group, an alkylcarbonyl group, an alkyloxycarbonyl group, an acyloxy group, an alkylsulfonylamino group, an alkylsulfamoyl group, an alkylsulfinyl group, an alkylureido group, and the like. and R2 and R3 include groups having the following structures. The group having the structure below is shown in the above formula (3) in a form containing the nitrogen atom to which R2 and R3 are bonded.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 第1の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。 Specific examples of the first dichroic azo dye compound are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000009
(第2の二色性アゾ色素化合物)
 第2の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物異なる化合物であり、具体的にはその化学構造が異なっている。
 第2の二色性アゾ色素化合物は、二色性アゾ色素化合物の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
 発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族炭化水素基及びアゾ基の両方を有する構造が好ましく、芳香族炭化水素基と2又は3つのアゾ基とを有するビスアゾ又はトリスアゾ構造がより好ましい。
 側鎖としては、特に限定されず、後述の式(4)のR4、R5又はR6で表される基が挙げられる。
(Second dichroic azo dye compound)
The second dichroic azo dye compound is a different compound from the first dichroic azo dye compound, specifically in its chemical structure.
The second dichroic azo dye compound is preferably a compound having a chromophore that is the nucleus of the dichroic azo dye compound and a side chain that binds to the terminal of the chromophore.
Specific examples of the chromophore include aromatic ring groups (e.g., aromatic hydrocarbon groups, aromatic heterocyclic groups), azo groups and the like, and structures having both an aromatic hydrocarbon group and an azo group are preferred. , a bisazo or trisazo structure having an aromatic hydrocarbon group and two or three azo groups is more preferred.
The side chain is not particularly limited, and includes groups represented by R4, R5 or R6 in formula (4) described below.
 第2の二色性アゾ色素化合物は、波長455nm以上560nm未満の範囲に最大吸収波長を有する二色性アゾ色素化合物であり、光吸収異方性層の色味調整の観点から、波長455~555nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることが好ましく、波長455~550nmの範囲に最大吸収波長を有する二色性アゾ色素化合物であることがより好ましい。
 特に、最大吸収波長が560~700nmである第1の二色性アゾ色素化合物と、最大吸収波長が455nm以上560nm未満の第2の二色性アゾ色素化合物と、を用いれば、光吸収異方性層の色味調整がより容易になる。
The second dichroic azo dye compound is a dichroic azo dye compound having a maximum absorption wavelength in the range of wavelength 455 nm or more and less than 560 nm. A dichroic azo dye compound having a maximum absorption wavelength in the range of 555 nm is preferable, and a dichroic azo dye compound having a maximum absorption wavelength in the wavelength range of 455 to 550 nm is more preferable.
In particular, by using a first dichroic azo dye compound having a maximum absorption wavelength of 560 to 700 nm and a second dichroic azo dye compound having a maximum absorption wavelength of 455 nm or more and less than 560 nm, light absorption anisotropy It becomes easier to adjust the color tone of the layer.
 第2の二色性アゾ色素化合物は、光吸収異方性層配向度がより向上する点から、式(4)で表される化合物であるのが好ましい。 The second dichroic azo dye compound is preferably a compound represented by the formula (4) from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer.
 式(4)
Figure JPOXMLDOC01-appb-C000010
Formula (4)
Figure JPOXMLDOC01-appb-C000010
 式(4)中、nは1又は2を表す。
 式(4)中、Ar3、Ar4及びAr5はそれぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基又は置換基を有していてもよい複素環基を表す。
 複素環基としては、芳香族又は非芳香族のいずれであってもよい。
 芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子及び酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、及び、チエノオキサゾール-ジイル基などが挙げられる。
In formula (4), n represents 1 or 2.
In formula (4), Ar3, Ar4 and Ar5 are each independently a phenylene group optionally having substituent(s), a naphthylene group optionally having substituent(s) or a heterocyclic group optionally having substituent(s) represents a cyclic group.
Heterocyclic groups can be either aromatic or non-aromatic.
Atoms other than carbon constituting the aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
Specific examples of aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group), and isoquinolylene. group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimido-diyl group, thienothiazole-diyl group, thiazolo A thiazole-diyl group, a thienothiophene-diyl group, a thienooxazole-diyl group, and the like can be mentioned.
 式(4)中、R4の定義は、式(3)中のR1と同様である。
 式(4)中、R5及びR6の定義はそれぞれ、式(3)中のR2及びR3と同様である。
In formula (4), the definition of R4 is the same as that of R1 in formula (3).
In formula (4), definitions of R5 and R6 are the same as those of R2 and R3 in formula (3).
 耐光性の観点からは、R4は電子吸引性基であることが好ましく、R5及びR6は電子供与性が低い基であることが好ましい。
 このような基のうち、R4が電子吸引性基である場合の具体例は、R1が電子吸引性基である場合の具体例と同様であり、R5及びR6が電子供与性の低い基である場合の具体例は、R2及びR3が電子供与性の低い基である場合の具体例と同様である。
From the viewpoint of light resistance, R4 is preferably an electron-withdrawing group, and R5 and R6 are preferably groups with low electron-donating properties.
Among such groups, specific examples in which R4 is an electron-withdrawing group are the same as specific examples in which R1 is an electron-withdrawing group, and R5 and R6 are groups with low electron-donating properties. When R2 and R3 are low electron-donating groups, specific examples are the same as the specific examples.
 第2の二色性アゾ色素化合物の具体例を以下に示すが、これに限定されるものではない。 Specific examples of the second dichroic azo dye compound are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
 (logP値の差)
 logP値は、化学構造の親水性及び疎水性の性質を表現する指標である。第1の二色性アゾ色素化合物の側鎖のlogP値と、第2の二色性アゾ色素化合物の側鎖のlogP値と、の差の絶対値(以下、「logP差」ともいう。)は、2.30以下が好ましく、2.0以下がより好ましく、1.5以下が更に好ましく、1.0以下が特に好ましい。logP差が2.30以下であれば、第1の二色性アゾ色素化合物と第2の二色性アゾ色素化合物との親和性が高まって、配列構造をより形成しやすくなるため、光吸収異方性層の配向度がより向上する。
 なお、第1の二色性アゾ色素化合物又は第2の二色性アゾ色素化合物の側鎖が複数ある場合、少なくとも1つのlogP差が上記値を満たすことが好ましい。
 ここで、第1の二色性アゾ色素化合物及び第2の二色性アゾ色素化合物の側鎖とは、上述した発色団の末端に結合する基を意味する。例えば、第1の二色性アゾ色素化合物が式(3)で表される化合物である場合、式(3)中のR1、R2及びR3が側鎖であり、第2の二色性アゾ色素化合物が式(4)で表される化合物である場合、式(4)中のR4、R5及びR6が側鎖である。特に、第1の二色性アゾ色素化合物が式(3)で表される化合物であり、第2の二色性アゾ色素化合物が式(4)で表される化合物である場合、R1とR4とのlogP値の差、R1とR5とのlogP値の差、R2とR4とのlogP値の差、及び、R2とR5とのlogP値の差のうち、少なくとも1つのlogP差が上記値を満たすことが好ましい。
(difference in logP value)
The logP value is an index that expresses the hydrophilic and hydrophobic properties of a chemical structure. The absolute value of the difference between the logP value of the side chain of the first dichroic azo dye compound and the logP value of the side chain of the second dichroic azo dye compound (hereinafter also referred to as "logP difference"). is preferably 2.30 or less, more preferably 2.0 or less, still more preferably 1.5 or less, and particularly preferably 1.0 or less. If the logP difference is 2.30 or less, the affinity between the first dichroic azo dye compound and the second dichroic azo dye compound increases, making it easier to form an array structure. The degree of orientation of the anisotropic layer is further improved.
When the first dichroic azo dye compound or the second dichroic azo dye compound has a plurality of side chains, at least one logP difference preferably satisfies the above value.
Here, the side chain of the first dichroic azo dye compound and the second dichroic azo dye compound means a group that binds to the end of the chromophore described above. For example, when the first dichroic azo dye compound is a compound represented by formula (3), R1, R2 and R3 in formula (3) are side chains, and the second dichroic azo dye When the compound is represented by formula (4), R4, R5 and R6 in formula (4) are side chains. In particular, when the first dichroic azo dye compound is a compound represented by formula (3) and the second dichroic azo dye compound is a compound represented by formula (4), R1 and R4 At least one of the logP value difference between R1 and R5, the logP value difference between R2 and R4, and the logP value difference between R2 and R5 preferably fulfilled.
 ここで、logP値は、化学構造の親水性及び疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw Ultra又はHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。 Here, the logP value is an index that expresses the hydrophilicity and hydrophobicity of the chemical structure, and is sometimes called the hydrophilicity/hydrophobicity parameter. LogP values can be calculated using software such as ChemBioDraw Ultra or HSPiP (Ver.4.1.07). Also, OECD Guidelines for the Testing of Chemicals, Sections 1, Test No. It can also be obtained experimentally by the method of 117 or the like. In the present invention, unless otherwise specified, the value calculated by inputting the structural formula of the compound into HSPiP (Ver.4.1.07) is employed as the logP value.
(第3の二色性アゾ色素化合物)
 第3の二色性アゾ色素化合物は、第1の二色性アゾ色素化合物及び第2の二色性アゾ色素化合物以外の二色性アゾ色素化合物であり、具体的には、第1の二色性アゾ色素化合物及び第2の二色性アゾ色素化合物とは化学構造が異なっている。光吸収異方性層形成用組成物が第3の二色性アゾ色素化合物を含有すれば、光吸収異方性層の色味の調整が容易になるという利点がある。
 第3の二色性アゾ色素化合物の最大吸収波長は、380nm以上455nm未満であり、385~454nmが好ましい。
(Third dichroic azo dye compound)
The third dichroic azo dye compound is a dichroic azo dye compound other than the first dichroic azo dye compound and the second dichroic azo dye compound, specifically, the first dichroic azo dye compound The chemical structure is different from that of the chromatic azo dye compound and the second dichroic azo dye compound. If the composition for forming an anisotropic light absorption layer contains the third dichroic azo dye compound, there is an advantage that the color of the anisotropic light absorption layer can be easily adjusted.
The maximum absorption wavelength of the third dichroic azo dye compound is 380 nm or more and less than 455 nm, preferably 385 to 454 nm.
 第3の二色性アゾ色素化合物は、下記式(6)で表される二色性アゾ色素を含有することが好ましい。 The third dichroic azo dye compound preferably contains a dichroic azo dye represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(6)中、A及びBは、それぞれ独立に、架橋性基を表す。
 式(6)中、a及びbは、それぞれ独立に、0又は1を表す。光吸収異方性層の配向度に優れる点においては、a及びbは、ともに0であることが好ましい。
 式(6)中、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合又は2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合又は2価の連結基を表す。
 式(6)中、Arは(n1+2)価の芳香族炭化水素基又は複素環基を表し、Arは(n2+2)価の芳香族炭化水素基又は複素環基を表し、Arは(n3+2)価の芳香族炭化水素基又は複素環基を表す。
 式(6)中、R、R及びRは、それぞれ独立に、1価の置換基を表す。n1≧2である場合には複数のRは互いに同一でも異なっていてもよく、n2≧2である場合には複数のRは互いに同一でも異なっていてもよく、n3≧2である場合には複数のRは互いに同一でも異なっていてもよい。
 式(6)中、kは、1~4の整数を表す。k≧2の場合には、複数のArは互いに同一でも異なっていてもよく、複数のRは互いに同一でも異なっていてもよい。
 式(6)中、n1、n2及びn3は、それぞれ独立に、0~4の整数を表す。ただし、k=1の場合にはn1+n2+n3≧0であり、k≧2の場合にはn1+n2+n3≧1である。
In formula (6), A and B each independently represent a crosslinkable group.
In formula (6), a and b each independently represent 0 or 1. Both a and b are preferably 0 in terms of the degree of orientation of the light absorption anisotropic layer.
In formula (6), L1 represents a monovalent substituent when a=0, and L1 represents a single bond or a divalent linking group when a= 1 . When b= 0 , L2 represents a monovalent substituent, and when b=1, L2 represents a single bond or a divalent linking group.
In formula (6), Ar 1 represents a (n1+2)-valent aromatic hydrocarbon group or heterocyclic group, Ar 2 represents a (n2+2)-valent aromatic hydrocarbon group or heterocyclic group, and Ar 3 represents ( represents an n3+2)-valent aromatic hydrocarbon group or heterocyclic group;
In formula (6), R 1 , R 2 and R 3 each independently represent a monovalent substituent. When n1≥2, the plurality of R1 may be the same or different; when n2≥2, the plurality of R2 may be the same or different; and when n3≥2. may be the same or different from each other.
In formula (6), k represents an integer of 1-4. When k≧2, a plurality of Ar 2 may be the same or different, and a plurality of R 2 may be the same or different.
In formula (6), n1, n2 and n3 each independently represent an integer of 0 to 4. However, when k=1, n1+n2+n3≧0, and when k≧2, n1+n2+n3≧1.
 式(6)において、A及びBが表す架橋性基としては、例えば、特開2010-244038号公報の[0040]~[0050]段落に記載された重合性基が挙げられる。これらの中でも、反応性及び合成適性の向上の観点から、アクリロイル基、メタクリロイル基、エポキシ基、オキセタニル基、及び、スチリル基が好ましく、溶解性をより向上できるという観点から、アクリロイル基及びメタクリロイル基がより好ましい。 Examples of the crosslinkable groups represented by A and B in formula (6) include polymerizable groups described in paragraphs [0040] to [0050] of JP-A-2010-244038. Among these, acryloyl group, methacryloyl group, epoxy group, oxetanyl group, and styryl group are preferred from the viewpoint of improving reactivity and synthesis aptitude, and acryloyl group and methacryloyl group are preferred from the viewpoint of further improving solubility. more preferred.
 式(6)において、a=0の場合にはLは1価の置換基を表し、a=1の場合にはLは単結合又は2価の連結基を表す。また、b=0の場合にはLは1価の置換基を表し、b=1の場合にはLは単結合又は2価の連結基を表す。 In formula (6), L1 represents a monovalent substituent when a=0, and L1 represents a single bond or a divalent linking group when a= 1 . When b= 0 , L2 represents a monovalent substituent, and when b=1, L2 represents a single bond or a divalent linking group.
 L及びLが表す1価の置換基としては、二色性色素の溶解性を高めるために導入される基、又は、色素としての色調を調節するために導入される電子供与性や電子吸引性を有する基が好ましい。
 例えば、置換基としては、
 アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、及び、シクロヘキシル基などが挙げられる)、
 アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリル基、2-ブテニル基、及び、3-ペンテニル基などが挙げられる)、
 アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、及び、3-ペンチニル基などが挙げられる)、
 アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、ナフチル基、及び、ビフェニル基などが挙げられる)、
 置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、及び、アニリノ基などが挙げられる)、
 アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、及び、ブトキシ基などが挙げられる)、
 オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、及び、フェノキシカルボニル基などが挙げられる)、
 アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基及びベンゾイルオキシ基などが挙げられる)、
 アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えばアセチルアミノ基及びベンゾイルアミノ基などが挙げられる)、
 アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、
 アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、
 スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、及び、ベンゼンスルホニルアミノ基などが挙げられる)、
 スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、及び、フェニルスルファモイル基などが挙げられる)、
 カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、及び、フェニルカルバモイル基などが挙げられる)、
 アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、及び、エチルチオ基などが挙げられる)、
 アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、
 スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、及び、トシル基などが挙げられる)、
 スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、及び、ベンゼンスルフィニル基などが挙げられる)、
 ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、及び、フェニルウレイド基などが挙げられる)、
 リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、及び、フェニルリン酸アミド基などが挙げられる)、
 ヘテロ環基(好ましくは炭素数1~30、より好ましくは1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、及び、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、ベンゾオキサゾリル基、ベンズイミダゾリル基、及び、ベンズチアゾリル基などが挙げられる)、
 シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、及び、トリフェニルシリル基などが挙げられる)、
 ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、及び、ヨウ素原子)、
 ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、及び、アゾ基、などを用いることができる。
 これらの置換基は、更にこれらの置換基によって置換されていてもよい。また、置換基を2つ以上有する場合は、同じでも異なってもよい。また、可能な場合には互いに結合して環を形成していてもよい。
 上記置換基が更に上記置換基によって置換された基としては、例えば、アルコキシ基がアルキル基で置換された基である、R-(O-Rna-基が挙げられる。ここで、式中、Rは炭素数1~5のアルキレン基を表し、Rは炭素数1~5のアルキル基を表し、naは1~10(好ましくは1~5、より好ましくは1~3)の整数を表す。
 これらの中でも、L及びLが表す1価の置換基としては、アルキル基、アルケニル基、アルコキシ基、及び、これらの基が更にこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)が好ましく、アルキル基、アルコキシ基、及び、これらの基が更にこれらの基によって置換された基(例えば、上述したR-(O-Rna-基)がより好ましい。
The monovalent substituent represented by L 1 and L 2 includes a group introduced to increase the solubility of the dichroic dye, or an electron-donating or electron-donating group introduced to adjust the color tone of the dye. Groups with attractive properties are preferred.
For example, as a substituent,
an alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, such as a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group, etc.),
alkenyl group (preferably an alkenyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as vinyl, allyl, 2-butenyl, and 3 - pentenyl group, etc.),
alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as a propargyl group and a 3-pentynyl group); ,
An aryl group (preferably an aryl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenyl group, 2,6-diethylphenyl group, 3,5 -ditrifluoromethylphenyl group, naphthyl group, and biphenyl group, etc.),
A substituted or unsubstituted amino group (preferably an amino group having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably an amino group having 0 to 6 carbon atoms, such as an unsubstituted amino group, a methylamino group, dimethylamino group, diethylamino group, and anilino group, etc.),
an alkoxy group (preferably having 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, examples of which include methoxy, ethoxy, and butoxy groups),
Oxycarbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 15 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as methoxycarbonyl group, ethoxycarbonyl group, and phenoxycarbonyl group) ,
an acyloxy group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, examples of which include an acetoxy group and a benzoyloxy group);
an acylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, such as an acetylamino group and a benzoylamino group);
an alkoxycarbonylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, particularly preferably 2 to 6 carbon atoms, such as a methoxycarbonylamino group);
an aryloxycarbonylamino group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as a phenyloxycarbonylamino group),
Sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, examples thereof include methanesulfonylamino group and benzenesulfonylamino group) ,
A sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms, particularly preferably 0 to 6 carbon atoms, such as sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group, etc.),
A carbamoyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as an unsubstituted carbamoyl group, a methylcarbamoyl group, a diethylcarbamoyl group, and a phenyl carbamoyl group, etc.),
an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a methylthio group and an ethylthio group),
an arylthio group (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as a phenylthio group);
a sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a mesyl group and a tosyl group),
a sulfinyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a methanesulfinyl group and a benzenesulfinyl group);
Ureido group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as an unsubstituted ureido group, a methylureido group, a phenylureido group, etc. ),
A phosphate amide group (preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as a diethyl phosphate amide group, a phenyl phosphate amide group, etc. ),
A heterocyclic group (preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, for example, a heterocyclic group having a heteroatom such as a nitrogen atom, an oxygen atom, and a sulfur atom, such as , imidazolyl group, pyridyl group, quinolyl group, furyl group, piperidyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, and benzthiazolyl group),
A silyl group (preferably a silyl group having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably a silyl group having 3 to 24 carbon atoms, such as a trimethylsilyl group and a triphenylsilyl group) can be used),
halogen atoms (e.g. fluorine, chlorine, bromine and iodine atoms),
A hydroxy group, a mercapto group, a cyano group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an imino group, an azo group, and the like can be used.
These substituents may be further substituted by these substituents. Moreover, when it has two or more substituents, they may be the same or different. In addition, when possible, they may be bonded to each other to form a ring.
Examples of groups in which the above substituents are further substituted with the above substituents include R B —(OR A ) na — groups, which are groups in which an alkoxy group is substituted with an alkyl group. Here, in the formula, R A represents an alkylene group having 1 to 5 carbon atoms, R B represents an alkyl group having 1 to 5 carbon atoms, na is 1 to 10 (preferably 1 to 5, more preferably 1 to 3) represents an integer.
Among these, the monovalent substituents represented by L 1 and L 2 include alkyl groups, alkenyl groups, alkoxy groups, and groups in which these groups are further substituted with these groups (for example, R B —(OR A ) na — group) is preferred, and alkyl groups, alkoxy groups, and groups in which these groups are further substituted with these groups (for example, R B —(OR A ) na described above). - group) is more preferred.
 L及びLが表す2価の連結基としては、例えば、-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NR-、-O-CO-NR-、-NR-CO-NR-、-SO-、-SO-、アルキレン基、シクロアルキレン基、及び、アルケニレン基、並びに、これらの基を2つ以上組み合わせた基などが挙げられる。
 これらの中でも、アルキレン基と、-O-、-COO-、-OCO-及び-O-CO-O-からなる群より選択される1種以上の基と、を組み合わせた基が好ましい。
 ここで、Rは、水素原子又はアルキル基を表す。Rが複数存在する場合には、複数のRは互いに同一でも異なっていてもよい。
Examples of divalent linking groups represented by L 1 and L 2 include -O-, -S-, -CO-, -COO-, -OCO-, -O-CO-O-, -CO-NR N —, —O—CO—NR N —, —NR N —CO—NR N —, —SO 2 —, —SO—, an alkylene group, a cycloalkylene group, an alkenylene group, and two of these groups The group which combined above etc. is mentioned.
Among these, a group obtained by combining an alkylene group and one or more groups selected from the group consisting of -O-, -COO-, -OCO- and -O-CO-O- is preferred.
Here, RN represents a hydrogen atom or an alkyl group. When there are multiple RNs , the multiple RNs may be the same or different.
 二色性色素の溶解性がより向上するという観点からは、L及びLの少なくとも一方の主鎖の原子の数は、3個以上であることが好ましく、5個以上であることがより好ましく、7個以上であることが更に好ましく、10個以上であることが特に好ましい。また、主鎖の原子の数の上限値は、20個以下であることが好ましく、12個以下であることがより好ましい。
 一方で、光吸収異方性層の配向度がより向上するという観点からは、L及びLの少なくとも一方の主鎖の原子の数は、1~5個であることが好ましい。
 ここで、式(6)におけるAが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「A」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の個数のことを指す。同様に、式(6)におけるBが存在する場合には、Lにおける「主鎖」とは、Lと連結する「O」原子と、「B」と、を直接連結するために必要な部分を指し、「主鎖の原子の数」とは、上記部分を構成する原子の数のことを指す。なお、「主鎖の原子の数」には、後述する分岐鎖の原子の数は含まない。
 また、Aが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。Bが存在しない場合には、Lにおける「主鎖の原子の数」とは、分岐鎖を含まないLの原子の個数のことをいう。
 具体的には、下記式(D1)においては、Lの主鎖の原子の数は5個(下記式(D1)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D1)の右側の点線枠内の原子の数)である。また、下記式(D10)においては、Lの主鎖の原子の数は7個(下記式(D10)の左側の点線枠内の原子の数)であり、Lの主鎖の原子の数は5個(下記式(D10)の右側の点線枠内の原子の数)である。
From the viewpoint of further improving the solubility of the dichroic dye, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 3 or more, more preferably 5 or more. Preferably, the number is 7 or more, and particularly preferably 10 or more. The upper limit of the number of atoms in the main chain is preferably 20 or less, more preferably 12 or less.
On the other hand, from the viewpoint of further improving the degree of orientation of the light absorption anisotropic layer, the number of atoms in the main chain of at least one of L 1 and L 2 is preferably 1 to 5.
Here, when A in formula (6) exists, the “main chain” in L 1 means the “O” atom that connects L 1 and “A”, It refers to a moiety, and "the number of atoms in the main chain" refers to the number of atoms constituting the moiety. Similarly, when B in formula (6) is present, the “main chain” in L 2 means the “O” atom that connects L 2 and “B”. When referring to a moiety, "the number of atoms in the main chain" refers to the number of atoms constituting the moiety. The "number of atoms in the main chain" does not include the number of branched chain atoms, which will be described later.
Further, when A does not exist, "the number of atoms in the main chain" in L1 means the number of atoms in L1 that does not contain branched chains. When B is absent, the " number of atoms in the main chain" in L2 refers to the number of atoms in L2 not including branched chains.
Specifically, in the following formula (D1), the number of atoms in the main chain of L 1 is 5 (the number of atoms in the dotted frame on the left side of the following formula (D1)), and the main chain of L 2 The number of atoms of is 5 (the number of atoms in the dotted frame on the right side of formula (D1) below). In the formula (D10) below, the number of atoms in the main chain of L 1 is 7 (the number of atoms in the dotted frame on the left side of the formula (D10) below), and the number of atoms in the main chain of L 2 is The number is 5 (the number of atoms in the dotted frame on the right side of formula (D10) below).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 L及びLは、分岐鎖を有していてもよい。
 ここで、式(6)においてAが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「A」と、を直接連結するために必要な部分以外の部分をいう。同様に、式(6)においてBが存在する場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子と、「B」と、を直接連結するために必要な部分以外の部分をいう。
 また、式(6)においてAが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。同様に、式(6)においてBが存在しない場合には、Lにおける「分岐鎖」とは、式(6)におけるLと連結する「O」原子を起点として延びる最長の原子鎖(すなわち主鎖)以外の部分をいう。
 分岐鎖の原子の数は、3以下であることが好ましい。分岐鎖の原子の数が3以下であることで、光吸収異方性層の配向度がより向上するなどの利点がある。なお、分岐鎖の原子の数には、水素原子の数は含まれない。
L 1 and L 2 may have a branched chain.
Here, when A is present in formula (6), the “branched chain” in L 1 means that the “O” atom that connects L 1 in formula (6) and “A” are directly connected. It means the part other than the part necessary for Similarly, when B is present in formula (6), the “branched chain” in L 2 means that the “O” atom that connects L 2 in formula (6) and “B” are directly connected It means the part other than the part necessary for
Further, when A does not exist in formula (6), the “branched chain” in L 1 means the longest atomic chain extending starting from the “O” atom connected to L 1 in formula (6) (that is, the main chain). Similarly, when B is absent in formula ( 6 ), the “branched chain” in L2 means the longest atomic chain extending from the “O” atom connecting L2 in formula (6) (i.e. main chain).
The number of atoms in the branched chain is preferably 3 or less. When the number of branched chain atoms is 3 or less, there is an advantage that the degree of orientation of the light absorption anisotropic layer is further improved. The number of branched chain atoms does not include the number of hydrogen atoms.
 式(6)において、Arは(n1+2)価(例えば、n1が1である時は3価)、Arは(n2+2)価(例えば、n2が1である時は3価)、Arは(n3+2)価(例えば、n3が1である時は3価)、の芳香族炭化水素基又は複素環基を表す。ここで、Ar~Arはそれぞれ、n1~n3個の置換基(後述するR~R)で置換された2価の芳香族炭化水素基又は2価の複素環基と換言できる。
 Ar~Arが表す2価の芳香族炭化水素基としては、単環であっても、2環以上の縮環構造を有していてもよい。2価の芳香族炭化水素基の環数は、溶解性がより向上するという観点から、1~4が好ましく、1~2がより好ましく、1(すなわちフェニレン基であること)が更に好ましい。
 2価の芳香族炭化水素基の具体例としては、フェニレン基、アズレン-ジイル基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基及びテトラセン-ジイル基などが挙げられ、溶解性がより向上するという観点から、フェニレン基及びナフチレン基が好ましく、フェニレン基がより好ましい。
 以下に、第3の二色性色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。なお、下記具体例中、nは、1~10の整数を表す。
In formula (6), Ar 1 is (n1+2)-valent (e.g., trivalent when n1 is 1), Ar 2 is (n2+2)-valent (e.g., trivalent when n2 is 1), Ar 3 represents an (n3+2)-valent (for example, trivalent when n3 is 1) aromatic hydrocarbon group or heterocyclic group. Here, each of Ar 1 to Ar 3 can be rephrased as a divalent aromatic hydrocarbon group or a divalent heterocyclic group substituted with n1 to n3 substituents (R 1 to R 3 described later).
The divalent aromatic hydrocarbon group represented by Ar 1 to Ar 3 may be monocyclic or have a condensed ring structure of two or more rings. The ring number of the divalent aromatic hydrocarbon group is preferably 1 to 4, more preferably 1 to 2, and even more preferably 1 (that is, a phenylene group) from the viewpoint of further improving the solubility.
Specific examples of the divalent aromatic hydrocarbon group include a phenylene group, an azulene-diyl group, a naphthylene group, a fluorene-diyl group, anthracene-diyl group and a tetracene-diyl group, which further improve solubility. From this point of view, a phenylene group and a naphthylene group are preferable, and a phenylene group is more preferable.
Specific examples of the third dichroic dye compound are shown below, but the present invention is not limited to these. In the following specific examples, n represents an integer of 1-10.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 光吸収異方性層の配向度に優れる点では、第3の色素がラジカル重合性基を有さない構造が好ましい。例えば、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-I000020
A structure in which the third dye does not have a radically polymerizable group is preferable from the viewpoint of excellent orientation of the light absorption anisotropic layer. Examples include the following structures.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-I000020
 第3の二色性アゾ色素化合物は、光吸収異方性層の配向度に特に優れる点で、下記式(1-1)で表される構造を有する二色性色素であるのがより好ましい。 The third dichroic azo dye compound is more preferably a dichroic dye having a structure represented by the following formula (1-1) in that the degree of orientation of the light absorption anisotropic layer is particularly excellent. .
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1-1)中、R、R、R、R、n1、n3、L及びLの定義はそれぞれ、式(3)のR、R、R、R、n1、n3、L及びLと同義である。
 式(1-1)中、R21及びR22の定義はそれぞれ独立に、式(3)のRと同義である。
 式(1-1)中、n21及びn22の定義はそれぞれ独立に、式(3)のn2と同義である。
 n1+n21+n22+n3≧1であり、n1+n21+n22+n3は、1~9が好ましく、1~5がより好ましい。
In formula (1-1), R 1 , R 3 , R 4 , R 5 , n1, n3, L 1 and L 2 are defined respectively as R 1 , R 3 , R 4 and R 5 in formula (3) , n1, n3 , L1 and L2.
In formula (1-1), definitions of R 21 and R 22 are each independently the same as R 2 in formula (3).
In formula (1-1), definitions of n21 and n22 are independently the same as n2 in formula (3).
n1+n21+n22+n3≧1, and n1+n21+n22+n3 is preferably 1-9, more preferably 1-5.
 以下に、第3の二色性アゾ色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of the third dichroic azo dye compound are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(二色性色素の含有量)
 光吸収異方性層に用いられる色素化合物が二色性色素の場合、二色性色素の含有量は、光吸収異方性層の全固形分質量に対して、10~30質量%が好ましく、15~30質量%がより好ましく、18~28質量%が更に好ましい。二色性色素の含有量が上記範囲内にあれば、光吸収異方性層を薄膜にした場合であっても、高配向度の光吸収異方性層を得ることができる。そのため、フレキシブル性に優れた光吸収異方性層が得られやすい。
 第1の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性色素全体の含有量100質量部に対して、40~90質量部が好ましく、45~75質量部がより好ましい。
 第2の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性色素全体の含有量100質量に対して、6~50質量部が好ましく、8~35質量部がより好ましい。
 第3の二色性アゾ色素化合物の含有量は、光吸収異方性層形成用組成物中の二色性アゾ色素化合物の含有量100質量に対して、3~35質量部が好ましく、5~30質量部がより好ましい。
 第1の二色性アゾ色素化合物と、第2の二色性アゾ色素化合物と、及び必要に応じて用いられる第3の二色性アゾ色素化合物と、の含有比は、光吸収異方性層の色味調整するために、任意に設定することができる。ただし、第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比(第2の二色性アゾ色素化合物/第1の二色性アゾ色素化合物)は、モル換算で、0.1~10が好ましく、0.2~5がより好ましく、0.3~0.8が特に好ましい。第1の二色性アゾ色素化合物に対する第2の二色性アゾ色素化合物の含有比が上記範囲内にあれば、配向度が高められる。
 なお、上記全固形分とは、溶媒を除く、異方性有機膜を形成し得る成分を意味する。なお、上記成分の性状が液体状であっても、固形分として計算する。
(Content of dichroic dye)
When the dye compound used in the light absorption anisotropic layer is a dichroic dye, the content of the dichroic dye is preferably 10 to 30% by mass with respect to the total solid mass of the light absorption anisotropic layer. , more preferably 15 to 30% by mass, and even more preferably 18 to 28% by mass. If the content of the dichroic dye is within the above range, it is possible to obtain an anisotropic light absorption layer with a high degree of orientation even when the anisotropic light absorption layer is a thin film. Therefore, it is easy to obtain a light absorption anisotropic layer having excellent flexibility.
The content of the first dichroic azo dye compound is preferably 40 to 90 parts by mass with respect to 100 parts by mass of the total dichroic dye content in the composition for forming a light absorption anisotropic layer, and 45 parts by mass. ~75 parts by mass is more preferred.
The content of the second dichroic azo dye compound is preferably 6 to 50 parts by mass with respect to 100 mass of the total dichroic dye content in the composition for forming a light absorption anisotropic layer, and 8 to 50 parts by mass. 35 parts by mass is more preferable.
The content of the third dichroic azo dye compound is preferably 3 to 35 parts by mass with respect to the content of 100 mass of the dichroic azo dye compound in the composition for forming the light absorption anisotropic layer, and 5 ~30 parts by mass is more preferable.
The content ratio of the first dichroic azo dye compound, the second dichroic azo dye compound, and the optionally used third dichroic azo dye compound is the light absorption anisotropy It can be arbitrarily set in order to adjust the color tone of the layer. However, the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound (second dichroic azo dye compound / first dichroic azo dye compound) is in terms of moles , is preferably 0.1 to 10, more preferably 0.2 to 5, and particularly preferably 0.3 to 0.8. If the content ratio of the second dichroic azo dye compound to the first dichroic azo dye compound is within the above range, the degree of orientation is enhanced.
In addition, the total solid content means the components capable of forming an anisotropic organic film, excluding the solvent. In addition, even if the property of the said component is liquid, it is calculated as solid content.
[光吸収異方性層形成用組成物]
 本発明における光吸収異方性層は、例えば、上記色素化合物を含む光吸収異方性層形成用組成物を用いて作製できる。
 光吸収異方性層形成用組成物は、色素化合物以外の成分を含んでいてもよく、例えば、液晶性化合物、溶媒、垂直配向剤、界面改良剤、重合性成分、重合開始剤(例えば、ラジカル重合開始剤)等が挙げられる。この場合、本発明における光吸収異方性層は、液状成分(溶媒等)以外の固形成分又は固形成分に由来する成分を含む。
 以下、光吸収異方性層形成用組成物について説明する。
 液晶性化合物、及び、色素化合物(好ましくは二色性色素)は上述した通りである。
[Composition for forming light absorption anisotropic layer]
The anisotropic light absorption layer in the present invention can be produced using, for example, the composition for forming an anisotropic light absorption layer containing the dye compound.
The composition for forming an anisotropic light absorption layer may contain components other than the dye compound, for example, a liquid crystalline compound, a solvent, a vertical alignment agent, an interface modifier, a polymerizable component, a polymerization initiator (e.g., radical polymerization initiator) and the like. In this case, the light absorption anisotropic layer in the present invention contains a solid component other than the liquid component (solvent etc.) or a component derived from the solid component.
The composition for forming a light absorption anisotropic layer will be described below.
The liquid crystalline compound and dye compound (preferably dichroic dye) are as described above.
(溶媒)
 本発明の光吸収異方性層形成用組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、及び、ジオキソランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、及び、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン、ジクロロエタン、ジクロロベンゼン、及び、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、及び、酢酸ブチル、乳酸エチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール、イソペンチルアルコール、ネオペンチルアルコール、ジアセトンアルコール、及び、ベンジルアルコールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、及び、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド、及び、N-メチルピロリドン、N-エチルピロリドンなど)、及び、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、ケトン類(特に、シクロペンタノン、及び、シクロヘキサノン)、エーテル類(特に、テトラヒドロフラン、シクロペンチルメチルエーテル、テトラヒドロピラン、及び、ジオキソラン)、及び、アミド類(特に、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、及び、N-エチルピロリドン)が好ましい。
 光吸収異方性層形成用組成物が溶媒を含有する場合、溶媒の含有量は、光吸収異方性層形成用組成物の全質量に対して、80~99質量%が好ましく、83~98質量%がより好ましく、85~96質量%が更に好ましい。
 溶媒が2種以上含まれる場合、上記溶媒の含有量は、溶媒の含有量の合計を意味する。
(solvent)
The composition for forming a light absorption anisotropic layer of the present invention preferably contains a solvent from the viewpoint of workability and the like.
Examples of solvents include ketones (e.g., acetone, 2-butanone, methylisobutyl ketone, cyclopentanone, cyclohexanone, etc.), ethers (e.g., dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentylmethyl ether, tetrahydropyran, and dioxolane, etc.), aliphatic hydrocarbons (e.g., hexane, etc.), alicyclic hydrocarbons (e.g., cyclohexane, etc.), aromatic hydrocarbons (e.g., benzene, toluene, xylene, trimethylbenzene, etc.) ), halogenated carbons (e.g., dichloromethane, trichloromethane, dichloroethane, dichlorobenzene, and chlorotoluene, etc.), esters (e.g., methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, etc.), alcohols ( (e.g., ethanol, isopropanol, butanol, cyclohexanol, isopentyl alcohol, neopentyl alcohol, diacetone alcohol, benzyl alcohol, etc.), cellosolves (e.g., methyl cellosolve, ethyl cellosolve, 1,2-dimethoxyethane, etc.) ), cellosolve acetates, sulfoxides (e.g., dimethylsulfoxide, etc.), amides (e.g., dimethylformamide, dimethylacetamide, and N-methylpyrrolidone, N-ethylpyrrolidone, etc.), and heterocyclic compounds (e.g., pyridine etc.), as well as water. These solvents may be used singly or in combination of two or more.
Among these solvents, ketones (especially cyclopentanone and cyclohexanone), ethers (especially tetrahydrofuran, cyclopentyl methyl ether, tetrahydropyran and dioxolane) and amides (especially dimethylformamide, dimethyl Acetamide, N-methylpyrrolidone and N-ethylpyrrolidone) are preferred.
When the composition for forming an anisotropic light absorption layer contains a solvent, the content of the solvent is preferably 80 to 99% by mass, preferably 83 to 99% by mass, based on the total mass of the composition for forming an anisotropic light absorption layer. 98% by mass is more preferable, and 85 to 96% by mass is even more preferable.
When two or more solvents are contained, the content of the solvent means the total content of the solvents.
(重合性成分)
 光吸収異方性層形成用組成物は、重合性成分を含んでいてもよい。重合性成分としては、アクリレートを含む化合物(例えば、アクリレートモノマー)が挙げられる。この場合、本発明における光吸収異方性層は、上記アクリレートを含む化合物を重合させて得られるポリアクリレートを含む。
 重合性成分としては、例えば、特開2017-122776号公報の段落0058に記載の化合物が挙げられる。
 光吸収異方性層形成用組成物が重合性成分を含む場合、重合性成分の含有量は、光吸収異方性層形成用組成物中の上記2色性色素化合物と上記液晶性化合物との合計100質量部に対し、3~20質量部が好ましい。
(Polymerizable component)
The composition for forming a light absorption anisotropic layer may contain a polymerizable component. Polymerizable components include compounds containing acrylates (eg, acrylate monomers). In this case, the light absorption anisotropic layer in the present invention contains polyacrylate obtained by polymerizing the compound containing the acrylate.
Examples of the polymerizable component include compounds described in paragraph 0058 of JP-A-2017-122776.
When the composition for forming a light absorption anisotropic layer contains a polymerizable component, the content of the polymerizable component is the same as the dichroic dye compound and the liquid crystalline compound in the composition for forming a light absorption anisotropic layer. 3 to 20 parts by mass is preferable for a total of 100 parts by mass.
(垂直配向剤)
 光吸収異方性層形成用組成物は、垂直配向剤を含むことが好ましい。垂直配向剤としては、ボロン酸化合物、及び、オニウム塩が挙げられる。
(vertical alignment agent)
The composition for forming a light absorption anisotropic layer preferably contains a vertical alignment agent. Vertical alignment agents include boronic acid compounds and onium salts.
 ボロン酸化合物としては、式(30)で表される化合物が好ましい。 A compound represented by formula (30) is preferable as the boronic acid compound.
 式(30)
Figure JPOXMLDOC01-appb-C000025
formula (30)
Figure JPOXMLDOC01-appb-C000025
 式(30)中、R及びRは、それぞれ独立に、水素原子、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換のアリール基、又は、置換若しくは無置換のヘテロ環基を表す。
 Rは、(メタ)アクリル基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の段落0023~0032に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 ボロン酸化合物としては、以下に例示する化合物も好ましい。
In formula (30), R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. show.
R3 represents a substituent containing a ( meth)acryl group.
Specific examples of boronic acid compounds include boronic acid compounds represented by general formula (I) described in paragraphs 0023 to 0032 of JP-A-2008-225281.
As the boronic acid compound, compounds exemplified below are also preferable.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 オニウム塩としては、式(31)で表される化合物が好ましい。 As the onium salt, a compound represented by formula (31) is preferable.
 式(31)
Figure JPOXMLDOC01-appb-C000027
Equation (31)
Figure JPOXMLDOC01-appb-C000027
 式(31)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、又は、2価の連結基を表す。Yは、5又は6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。P及びPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 オニウム塩の具体例としては、特開2012-208397号公報の段落0052~0058号公報に記載のオニウム塩、特開2008-026730号公報の段落0024~0055に記載のオニウム塩、及び、特開2002-037777号公報に記載のオニウム塩が挙げられる。
In formula (31), ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocyclic ring. X represents an anion. L 1 represents a divalent linking group. L2 represents a single bond or a divalent linking group. Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure. Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure. P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
Specific examples of onium salts include onium salts described in paragraphs 0052 to 0058 of JP-A-2012-208397, onium salts described in paragraphs 0024-0055 of JP-A-2008-026730, and JP-A Onium salts described in 2002-037777 can be mentioned.
 組成物中の垂直配向剤の含有量は、液晶性化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
 垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
The content of the vertical alignment agent in the composition is preferably 0.1 to 400% by mass, more preferably 0.5 to 350% by mass, based on the total mass of the liquid crystalline compound.
The vertical alignment agents may be used alone or in combination of two or more. When two or more vertical alignment agents are used, the total amount thereof is preferably within the above range.
(垂直配向に適したレベリング剤)
 垂直配向の場合は、光吸収異方性層形成用組成物は、以下のレベリング剤を含むことが好ましい。光吸収異方性層形成用組成物がレベリング剤を含むと、光吸収異方性層の表面にかかる乾燥風による面状の荒れを抑制し、二色性色素がより均一に配向する。
 レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、又は、ケイ素原子を含むレベリング剤(シリコーン系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
(Leveling agent suitable for vertical alignment)
In the case of vertical alignment, the composition for forming a light absorption anisotropic layer preferably contains the following leveling agent. When the composition for forming an anisotropic light absorption layer contains a leveling agent, surface roughening due to drying air applied to the surface of the anisotropic light absorption layer is suppressed, and the dichroic dye is oriented more uniformly.
The leveling agent is not particularly limited, and is preferably a leveling agent containing fluorine atoms (fluorine leveling agent) or a leveling agent containing silicon atoms (silicone leveling agent), more preferably a fluorine leveling agent.
 フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、及び、フルオロ置換基を有するポリアクリレート類が挙げられる。特に、二色性色素及び液晶性化合物として棒状化合物を用いる場合、二色性色素及び液晶性化合物の垂直配向を促進する点から、式(40)で表される化合物由来の繰り返し単位を含むレベリング剤が好ましい。 Examples of fluorine-based leveling agents include fatty acid esters of polyvalent carboxylic acids in which a portion of the fatty acid is substituted with a fluoroalkyl group, and polyacrylates having fluoro substituents. In particular, when a rod-shaped compound is used as the dichroic dye and the liquid crystalline compound, from the viewpoint of promoting the vertical alignment of the dichroic dye and the liquid crystalline compound, leveling containing a repeating unit derived from the compound represented by formula (40) agents are preferred.
 式(40)
Figure JPOXMLDOC01-appb-C000028
Equation (40)
Figure JPOXMLDOC01-appb-C000028
 Rは、水素原子、ハロゲン原子、又は、メチル基を表す。
 Lは、2価の連結基を表す。Lとしては、炭素数2~16のアルキレン基が好ましく、上記アルキレン基において隣接しない任意の-CH-は、-O-、-COO-、-CO-、又は、-CONH-に置換されていてもよい。
 nは、1~18の整数を表す。
R 0 represents a hydrogen atom, a halogen atom, or a methyl group.
L represents a divalent linking group. L is preferably an alkylene group having 2 to 16 carbon atoms, and any —CH 2 — that is not adjacent in the alkylene group is substituted with —O—, —COO—, —CO—, or —CONH—. may
n represents an integer from 1 to 18;
 式(40)で表される化合物由来の繰り返し単位を有するレベリング剤は、更に他の繰り返し単位を含んでいてもよい。
 他の繰り返し単位としては、式(41)で表される化合物由来の繰り返し単位が挙げられる。
The leveling agent having repeating units derived from the compound represented by formula (40) may further contain other repeating units.
Other repeating units include repeating units derived from the compound represented by formula (41).
 式(41)
Figure JPOXMLDOC01-appb-C000029
Equation (41)
Figure JPOXMLDOC01-appb-C000029
 R11は、水素原子、ハロゲン原子、又は、メチル基を表す。
 Xは、酸素原子、硫黄原子、又は、-N(R13)-を表す。R13は、水素原子、又は、炭素数1~8のアルキル基を表す。
 R12は、水素原子、置換基を有してもよいアルキル基、又は、置換基を有していてもよい芳香族基を表す。上記アルキル基の炭素数は、1~20が好ましい。上記アルキル基は、直鎖状、分岐鎖状、及び、環状のいずれであってもよい。
 また、上記アルキル基の有していてもよい置換基としては、ポリ(アルキレンオキシ)基、及び、重合性基が挙げられる。重合性基の定義は、上述した通りである。
R 11 represents a hydrogen atom, a halogen atom, or a methyl group.
X represents an oxygen atom, a sulfur atom, or -N(R 13 )-. R 13 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
R 12 represents a hydrogen atom, an optionally substituted alkyl group, or an optionally substituted aromatic group. The number of carbon atoms in the alkyl group is preferably 1-20. The alkyl group may be linear, branched, or cyclic.
Further, examples of substituents that the alkyl group may have include a poly(alkyleneoxy) group and a polymerizable group. The definition of the polymerizable group is as described above.
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、及び、式(41)で表される化合物由来の繰り返し単位を含む場合、式(40)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、15~95モル%がより好ましい。
 レベリング剤が、式(40)で表される化合物由来の繰り返し単位、及び、式(41)で表される化合物由来の繰り返し単位を含む場合、式(41)で表される化合物由来の繰り返し単位の含有量は、レベリング剤が含む全繰り返し単位に対して、10~90モル%が好ましく、5~85モル%がより好ましい。
When the leveling agent contains repeating units derived from the compound represented by formula (40) and repeating units derived from the compound represented by formula (41), repeating units derived from the compound represented by formula (40) is preferably 10 to 90 mol %, more preferably 15 to 95 mol %, based on the total repeating units contained in the leveling agent.
When the leveling agent contains repeating units derived from the compound represented by formula (40) and repeating units derived from the compound represented by formula (41), repeating units derived from the compound represented by formula (41) is preferably 10 to 90 mol %, more preferably 5 to 85 mol %, based on the total repeating units contained in the leveling agent.
 また、レベリング剤としては、上述した式(40)で表される化合物由来の繰り返し単位に代えて、式(42)で表される化合物由来の繰り返し単位を含むレベリング剤も挙げられる。 The leveling agent also includes a leveling agent containing repeating units derived from the compound represented by formula (42) instead of repeating units derived from the compound represented by formula (40) described above.
 式(42)
Figure JPOXMLDOC01-appb-C000030
Equation (42)
Figure JPOXMLDOC01-appb-C000030
 Rは、水素原子、ハロゲン原子、又は、メチル基を表す。
 Lは、2価の連結基を表す。
 nは、1~18の整数を表す。
R2 represents a hydrogen atom, a halogen atom, or a methyl group.
L2 represents a divalent linking group.
n represents an integer from 1 to 18;
 レベリング剤の具体例としては、特開2004-331812号公報の段落0046~0052に例示される化合物、及び、特開2008-257205号公報の段落0038~0052に記載の化合物が挙げられる。 Specific examples of the leveling agent include compounds exemplified in paragraphs 0046 to 0052 of JP-A-2004-331812 and compounds described in paragraphs 0038-0052 of JP-A-2008-257205.
 光吸収異方性層形成用組成物中のレベリング剤の含有量は、液晶性化合物全質量に対して、0.001~10質量%が好ましく、0.01~5質量%がより好ましい。
 レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
The content of the leveling agent in the composition for forming an anisotropic light absorption layer is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the liquid crystalline compound.
A leveling agent may be used independently and may be used in combination of 2 or more type. When two or more leveling agents are used, the total amount thereof is preferably within the above range.
(重合開始剤)
 光吸収異方性層形成用組成物は、重合開始剤を含むことが好ましい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号及び同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジン及びフェナジン化合物(特開昭60-105667号公報及び米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、o-アシルオキシム化合物(特開2016-027384明細書の段落[0065])及び、アシルフォスフィンオキシド化合物(特公昭63-040799号公報、特公平5-029234号公報、特開平10-095788号公報及び特開平10-029997号公報)などが挙げられる。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア-184、イルガキュア-907、イルガキュア-369、イルガキュア-651、イルガキュア-819、イルガキュア-OXE-01及びイルガキュア-OXE-02等が挙げられる。
(Polymerization initiator)
The composition for forming a light absorption anisotropic layer preferably contains a polymerization initiator.
Although the polymerization initiator is not particularly limited, it is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
Various compounds can be used as the photopolymerization initiator without any particular limitation. Examples of photoinitiators include α-carbonyl compounds (US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (US Pat. No. 2,448,828), α-hydrocarbon-substituted aromatic acyloins, compounds (US Pat. No. 2,722,512), polynuclear quinone compounds (US Pat. Nos. 3,046,127 and 2,951,758), combinations of triarylimidazole dimers and p-aminophenyl ketones (US Pat. No. 3,549,367) book), acridine and phenazine compounds (JP-A-60-105667 and US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,212,970), o-acyloxime compounds (JP-A 2016- 027384, paragraph [0065]) and acylphosphine oxide compounds (JP-B-63-040799, JP-B-5-029234, JP-A-10-095788 and JP-A-10-029997), etc. is mentioned.
As such a photopolymerization initiator, commercially available products can also be used, and BASF Irgacure-184, Irgacure-907, Irgacure-369, Irgacure-651, Irgacure-819, Irgacure-OXE-01 and Irgacure- OXE-02 and the like.
 光吸収異方性層形成用組成物が重合開始剤を含有する場合、重合開始剤の含有量は、光吸収異方性層形成用組成物中の上記色素化合物(好ましくは二色性色素)と上記液晶性化合物(例えば、高分子液晶性化合物)との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であることで、光吸収異方性膜の耐久性が良好となり、30質量部以下であることで、光吸収異方性層の配向度がより良好となる。
 重合開始剤は、1種単独で用いても2種以上を併用してもよい。重合開始剤を2種以上含む場合、その合計量が上記範囲内であるのが好ましい。
When the composition for forming a light absorption anisotropic layer contains a polymerization initiator, the content of the polymerization initiator is the above dye compound (preferably a dichroic dye) in the composition for forming a light absorption anisotropic layer. It is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 15 parts by mass, based on a total of 100 parts by mass of the above liquid crystalline compound (eg, polymer liquid crystalline compound). When the content of the polymerization initiator is 0.01 parts by mass or more, the durability of the light absorption anisotropic film is improved, and when it is 30 parts by mass or less, the orientation degree of the light absorption anisotropic layer is be better.
A polymerization initiator may be used individually by 1 type, or may use 2 or more types together. When two or more polymerization initiators are included, the total amount is preferably within the above range.
[光吸収異方性層の形成方法]
 光吸収異方性層の形成方法は特に限定されず、上述した光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、塗布膜に含まれる液晶性成分や二色性色素を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に含む方法が挙げられる。
 なお、液晶性成分とは、上述した液晶性化合物だけでなく、上述した二色性色素が液晶性を有している場合は、液晶性を有する二色性色素も含む成分である。
[Method for forming light absorption anisotropic layer]
The method for forming the anisotropic light absorption layer is not particularly limited, and the step of applying the composition for forming an anisotropic light absorption layer to form a coating film (hereinafter also referred to as the “coating film forming step”). and a step of orienting the liquid crystalline component or dichroic dye contained in the coating film (hereinafter also referred to as an “orientation step”), in this order.
The liquid crystalline component is a component containing not only the liquid crystalline compound described above but also a dichroic dye having liquid crystallinity when the dichroic dye described above has liquid crystallinity.
(塗布膜形成工程)
 塗布膜形成工程は、光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
 上述した溶媒を含有する光吸収異方性層形成用組成物を用いたり、光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、光吸収異方性層形成用組成物を塗布することが容易になる。
 光吸収異方性層形成用組成物の塗布方法としては、具体的には、例えば、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、及び、インクジェット法などの公知の方法が挙げられる。
(Coating film forming step)
The coating film forming step is a step of applying a composition for forming a light absorption anisotropic layer to form a coating film.
By using the composition for forming a light absorption anisotropic layer containing the above-mentioned solvent, or by using a liquid such as a melt by heating the composition for forming a light absorption anisotropic layer, It becomes easy to apply the composition for forming a light-absorbing anisotropic layer.
Specific examples of the coating method of the composition for forming a light-absorbing anisotropic layer include roll coating, gravure printing, spin coating, wire bar coating, extrusion coating, direct gravure coating, and reverse coating. Known methods such as a gravure coating method, a die coating method, a spray method, and an inkjet method can be used.
(配向工程)
 配向工程は、塗布膜に含まれる液晶性成分を配向させる工程である。これにより、光吸収異方性層が得られる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱及び/又は送風する方法によって行われてもよい。
 ここで、光吸収異方性層形成用組成物に含まれる液晶性成分は、上述した塗布膜形成工程又は乾燥処理によって、配向する場合がある。例えば、光吸収異方性層形成用組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、光吸収異方性を持つ塗布膜(すなわち、光吸収異方性膜)が得られる。
 乾燥処理が塗布膜に含まれる液晶性成分の液晶相への転移温度以上の温度により行われる場合には、後述する加熱処理は実施しなくてもよい。
(Orientation process)
The alignment step is a step of orienting the liquid crystalline component contained in the coating film. Thereby, a light absorption anisotropic layer is obtained.
The orientation step may include drying. Components such as the solvent can be removed from the coating film by the drying treatment. The drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined period of time (for example, natural drying), or by a method of heating and/or blowing air.
Here, the liquid crystalline component contained in the composition for forming a light absorption anisotropic layer may be oriented by the coating film forming step or drying treatment described above. For example, in an aspect in which the composition for forming an anisotropic light absorption layer is prepared as a coating liquid containing a solvent, the coating film is dried to remove the solvent from the coating film, thereby obtaining the anisotropic light absorption. A coating film (that is, a light absorption anisotropic film) is obtained.
When the drying treatment is performed at a temperature equal to or higher than the transition temperature of the liquid crystalline component contained in the coating film to the liquid crystal phase, the heat treatment described later may not be performed.
 塗布膜に含まれる液晶性成分の液晶相への転移温度は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。上記転移温度が10℃以上であると、液晶相を呈する温度範囲にまで温度を下げるための冷却処理等が必要とならず、好ましい。また、上記転移温度が250℃以下であると、一旦液晶相を呈する温度範囲よりも更に高温の等方性液体状態にする場合にも高温を要さず、熱エネルギーの浪費、並びに、基板の変形及び変質等を低減できるため、好ましい。 The transition temperature of the liquid crystalline component contained in the coating film to the liquid crystal phase is preferably 10 to 250°C, more preferably 25 to 190°C, from the standpoint of production suitability. When the transition temperature is 10° C. or higher, cooling treatment or the like for lowering the temperature to the temperature range where the liquid crystal phase is exhibited is not required, which is preferable. Further, when the transition temperature is 250° C. or less, a high temperature is not required even when the isotropic liquid state is converted to an isotropic liquid state at a temperature higher than the temperature range in which the liquid crystal phase is once exhibited. This is preferable because it can reduce deformation, deterioration, and the like.
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる液晶性成分を配向させることができるため、加熱処理後の塗布膜を光吸収異方性膜として好適に使用できる。
 加熱処理は、製造適性等の面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
The orientation step preferably includes heat treatment. As a result, the liquid crystalline component contained in the coating film can be oriented, so that the coating film after heat treatment can be suitably used as a light absorption anisotropic film.
The heat treatment is preferably from 10 to 250° C., more preferably from 25 to 190° C., from the standpoint of suitability for production. Also, the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含まれる液晶性成分の配向を固定することができる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、光吸収異方性膜を得ることができる。
 なお、本態様では、塗布膜に含まれる液晶性成分を配向する方法として、乾燥処理及び加熱処理などを挙げているが、これに限定されず、公知の配向処理によって実施できる。
The orientation step may have a cooling treatment performed after the heat treatment. The cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25° C.). Thereby, the orientation of the liquid crystalline component contained in the coating film can be fixed. A cooling means is not particularly limited, and a known method can be used.
Through the above steps, a light absorption anisotropic film can be obtained.
In this embodiment, drying treatment, heat treatment, and the like are mentioned as methods for orienting the liquid crystalline component contained in the coating film.
(他の工程)
 光吸収異方性層の形成方法は、上記配向工程後に、光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
 硬化工程は、例えば、光吸収異方性層が架橋性基(重合性基)を有している場合には、加熱及び/又は光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光又は紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 露光が加熱しながら行われる場合、露光時の加熱温度は、液晶膜に含まれる液晶性成分の液晶相への転移温度にもよるが、25~140℃であることが好ましい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって液晶膜の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
(Other processes)
The method for forming the anisotropic light absorption layer may include a step of curing the anisotropic light absorption layer (hereinafter also referred to as a “curing step”) after the alignment step.
The curing step is carried out by heating and/or light irradiation (exposure), for example, when the light absorption anisotropic layer has a crosslinkable group (polymerizable group). Among these, the curing step is preferably carried out by light irradiation.
Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferred. Further, ultraviolet rays may be irradiated while being heated during curing, or ultraviolet rays may be irradiated through a filter that transmits only specific wavelengths.
When exposure is performed while heating, the heating temperature during exposure is preferably 25 to 140° C., depending on the transition temperature of the liquid crystalline component contained in the liquid crystal film to the liquid crystal phase.
Also, the exposure may be performed in a nitrogen atmosphere. When curing of the liquid crystal film proceeds by radical polymerization, it is preferable to perform exposure in a nitrogen atmosphere because inhibition of polymerization by oxygen is reduced.
 形成される光吸収異方性層の厚さは、特に限定されないが、後述する本発明の積層体を偏光素子に用いた場合のフレキシブル性の観点から、100~8000nmが好ましく、300~5000nmがより好ましい。 The thickness of the light absorption anisotropic layer to be formed is not particularly limited, but is preferably 100 to 8000 nm, more preferably 300 to 5000 nm, from the viewpoint of flexibility when the laminate of the present invention described later is used in a polarizing element. more preferred.
〔偏光子〕
 本発明の偏光板は、偏光子を含む。偏光子は、特に限定されず、従来公知の偏光子を利用できる。偏光子は、例えば、ポリビニルアルコールやその他の高分子樹脂に二色性色素を染着して延伸することで水平に配向させた偏光子でもよいし、本発明の光吸収異方性層のように液晶性化合物の配向を活用して二色性色素を水平に配向させた偏光子でもよいが、延伸を行わず、液晶の配向性を利用して二色性色素を配向させた偏光子が特に好ましい。
 液晶の配向性を利用して二色性色素を配向させた偏光子は、厚みが0.1~5μm程度と非常に薄層化できること、特開2019-194685号公報に記載されているように折り曲げた時のクラックが入りにくいことや熱変形が小さいこと、及び、特許6483486号公報に記載されるように50%を超えるような透過率の高い偏光板でも耐久性に優れること等、多くの長所を有する。
 これらの長所を生かして、液晶の配向性を利用して二色性色素を配向させた偏光子を用いた本発明の偏光板は、高輝度や小型軽量が求められる用途、微細な光学系用途、曲面を有する部位への成形用途、フレキシブルな部位への用途が可能である。
[Polarizer]
The polarizing plate of the present invention contains a polarizer. The polarizer is not particularly limited, and conventionally known polarizers can be used. The polarizer may be, for example, a polarizer horizontally oriented by dyeing polyvinyl alcohol or other polymer resin with a dichroic dye and stretching it, or a light absorption anisotropic layer of the present invention. A polarizer in which a dichroic dye is horizontally oriented by utilizing the orientation of a liquid crystalline compound may be used, but a polarizer in which a dichroic dye is oriented using the orientation of a liquid crystal without stretching is available. Especially preferred.
A polarizer in which a dichroic dye is oriented using the orientation of a liquid crystal can be made very thin with a thickness of about 0.1 to 5 μm, as described in JP-A-2019-194685. It is difficult to crack when bent, has little thermal deformation, and has excellent durability even in a polarizing plate having a high transmittance of more than 50% as described in Japanese Patent No. 6483486. have advantages.
Taking advantage of these advantages, the polarizing plate of the present invention using a polarizer in which a dichroic dye is oriented by utilizing the orientation of liquid crystals can be used for applications requiring high brightness, small size and light weight, and applications for fine optical systems. , molding applications for curved parts, and applications for flexible parts.
〔透明基材フィルム〕
 本発明の偏光板は、透明基材フィルムを有してもよい。
 透明基材フィルムは、光吸収異方性層における偏光子が設けられた面とは反対側の面に配置されるのが好ましい。
 透明基材フィルムとしては、公知の透明樹脂フィルム、透明樹脂板、透明樹脂シートなどを用いることができ、特に限定は無い。透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、環状オレフィン系樹脂フィルム、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、及び、(メタ)アクリルニトリルフィルム等が使用できる。
[Transparent substrate film]
The polarizing plate of the invention may have a transparent substrate film.
The transparent substrate film is preferably arranged on the surface of the anisotropic light absorption layer opposite to the surface on which the polarizer is provided.
As the transparent substrate film, a known transparent resin film, transparent resin plate, transparent resin sheet, or the like can be used, and there is no particular limitation. Examples of transparent resin films include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), cyclic olefin resin films, and polyethylene. Terephthalate film, polyethersulfone film, polyacrylic resin film, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, and (meth)acrylonitrile film etc. can be used.
 その中でも、透明性が高く、光学的に複屈折が少なく、製造が容易であり、偏光板の保護フィルムとして一般に用いられているセルロースアシレートフィルムが好ましく、セルローストリアセテートフィルムが特に好ましい。
 透明基材フィルムの厚さは、通常、20~100μmである。
Among them, a cellulose acylate film, which is highly transparent, has a low optical birefringence, is easy to manufacture, and is generally used as a protective film for polarizing plates, is preferred, and a cellulose triacetate film is particularly preferred.
The thickness of the transparent substrate film is usually 20-100 μm.
〔配向膜〕
 本発明の偏光板は、透明基材フィルムと光吸収異方性層との間に、配向膜を有していてもよい。
 配向膜は、配向膜上において色素化合物(好ましくは二色性色素)を所望の配向状態とすることができるのであれば、どのような層でもよい。
 配向膜としては、例えば、多官能アクリレート化合物から形成される膜やポリビニルアルコールを用いてもよい。
[Alignment film]
The polarizing plate of the invention may have an alignment film between the transparent substrate film and the light absorption anisotropic layer.
The alignment film may be any layer as long as the dye compound (preferably dichroic dye) can be oriented in a desired state on the alignment film.
As the alignment film, for example, a film formed from a polyfunctional acrylate compound or polyvinyl alcohol may be used.
〔バリア層〕
 本発明の偏光板は、光吸収異方性層とともに、バリア層を有していることが好ましい。
 ここで、バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、又は、隣接する層に含まれる化合物等から、本発明の偏光板の部材を保護する機能を有する。
 バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
[Barrier layer]
The polarizing plate of the present invention preferably has a barrier layer together with the light absorption anisotropic layer.
Here, the barrier layer is also called a gas barrier layer (oxygen barrier layer), and protects the polarizing plate member of the present invention from gases such as oxygen in the atmosphere, moisture, or compounds contained in adjacent layers. It has the function to
Regarding the barrier layer, for example, paragraphs [0014] to [0054] of JP-A-2014-159124, paragraphs [0042]-[0075] of JP-A-2017-121721, [ 0045] to [0054] paragraphs, paragraphs [0010] to [0061] of JP-A-2012-213938, and paragraphs [0021] to [0031] of JP-A-2005-169994 can be referred to.
〔屈折率調整層〕
 本発明の偏光板は、屈折率調整層を有していてもよい。
 本発明の偏光板は、光吸収異方性層の高屈折率に起因する内部反射が問題となる場合がある。その場合に、屈折率調整層が存在することが好ましい。屈折率調整層は、光吸収異方性層に接するように配置される層であり、波長550nmにおける面内平均屈折率が1.55~1.70であることが好ましい。すなわち、いわゆるインデックスマッチングを行うための屈折率調整層であることが好ましい。
[Refractive index adjusting layer]
The polarizing plate of the invention may have a refractive index adjusting layer.
The polarizing plate of the present invention may have a problem of internal reflection due to the high refractive index of the light absorption anisotropic layer. In that case, it is preferable that the refractive index adjusting layer is present. The refractive index adjusting layer is a layer arranged so as to be in contact with the light absorption anisotropic layer, and preferably has an in-plane average refractive index of 1.55 to 1.70 at a wavelength of 550 nm. That is, it is preferably a refractive index adjustment layer for performing so-called index matching.
〔色味調整層〕
 本発明の偏光板は、少なくとも1種の色味調整用色素化合物を有する色味調整層を含んでいてもよい。色味調整層に含まれる色味調整用色素化合物は無配向状態のものが好ましい。
 光吸収異方性層の色素量を調整した場合、透過率中心軸に対して、そこより斜め方向から見た色味の変化が大きくなる場合があるが、色味調整層を用いて色味を調整することで、透過率中心軸の色味変化に対する斜め方向からの色味変化を抑制することができる。
 この色味調整層は、色味調整層単独の機能のみ有してもよいし、他の層と機能を統合したものであってもよい。
[Color adjustment layer]
The polarizing plate of the present invention may contain a color tone adjusting layer containing at least one kind of color tone adjusting dye compound. The coloring compound for color adjustment contained in the color adjustment layer is preferably in a non-oriented state.
When the amount of dye in the light absorption anisotropic layer is adjusted, the change in color when viewed from an oblique direction with respect to the central axis of transmittance may increase. By adjusting , it is possible to suppress the color change from the oblique direction with respect to the color change of the transmittance central axis.
This tint adjustment layer may have only the function of the tint adjustment layer alone, or may have the functions integrated with those of other layers.
 本発明で用いられる色味調整層に含まれる色味調整用色素化合物の吸収ピーク波長は、500~650nmが好ましく、550~600nmがより好ましい。色素化合物の吸収をこの範囲に設定することで、本発明における偏光板及び有機EL表示装置の色味をよりニュートラルに調整することができる。 The absorption peak wavelength of the colorant compound for color adjustment contained in the color adjustment layer used in the present invention is preferably 500 to 650 nm, more preferably 550 to 600 nm. By setting the absorption of the dye compound within this range, the color of the polarizing plate and the organic EL display device of the present invention can be adjusted to be more neutral.
 色味調整層に含まれる色味調整用色素化合物として、例えば、アゾ、メチン、アントラキノン、トリアリールメタン、オキサジン、アゾメチン、フタロシアニン、ポルフィリン、ペリレン、ピロロピロール、及び、スクアリリウムなどが挙げられるが、吸収波形、耐熱性、耐光性に優れる観点からアゾ、フタロシアニン及びアントラキノンが好ましく、特にアントラキノンが好ましい。例えば、大川原信、松岡賢、平島恒亮、北尾悌次郎共著、機能性色素、講談社、1992年、時田澄男監修、エレクトロニクス関連材料、シーエムシー社、1998年に記載の色素化合物などが挙げられる。 Color adjusting dye compounds contained in the color adjusting layer include, for example, azo, methine, anthraquinone, triarylmethane, oxazine, azomethine, phthalocyanine, porphyrin, perylene, pyrrolopyrrole, and squarylium. Azo, phthalocyanine and anthraquinone are preferred, and anthraquinone is particularly preferred, from the viewpoint of excellent corrugation, heat resistance and light resistance. For example, Shin Okawara, Ken Matsuoka, Tsunesuke Hirashima, Teijiro Kitao, Functional Dyes, Kodansha, 1992, Supervised by Sumio Tokita, Electronics Related Materials, CMC, 1998, and the like.
 以下に、本発明に用いられる色味調整用色素化合物の具体例を示すが、本発明はこれらに限定されるわけではない。 Specific examples of the coloring compound for color adjustment used in the present invention are shown below, but the present invention is not limited to these.
・アントラキノン
Figure JPOXMLDOC01-appb-C000031
・Anthraquinone
Figure JPOXMLDOC01-appb-C000031
・アゾ
Figure JPOXMLDOC01-appb-C000032
・Azo
Figure JPOXMLDOC01-appb-C000032
・トリアリールメタン
Figure JPOXMLDOC01-appb-C000033
・Triarylmethane
Figure JPOXMLDOC01-appb-C000033
・オキサジン
Figure JPOXMLDOC01-appb-C000034
・Oxazine
Figure JPOXMLDOC01-appb-C000034
・フタロシアニン
Figure JPOXMLDOC01-appb-C000035
・Phthalocyanine
Figure JPOXMLDOC01-appb-C000035
〔偏光板の製造方法〕
 本発明の偏光板の製造方法の一例としては、配向膜形成用組成物を上記透明基材フィルム上に塗布して配向膜を形成する工程と、上記光吸収異方性層形成用組成物を配向膜上に塗布し、上記塗布膜に含まれる色素化合物(好ましくは二色性色素)を配向させて上記光吸収異方性層を得る工程と、光吸収異方性層上にバリア層形成用組成物を塗布してバリア層を形成して積層体を得る工程と、別途作製した偏光子を積層体のバリア層側に貼合する工程と、別途形成したλ/4位相差フィルムを積層体の透明基材フィルム側に貼合する工程をこの順に含む方法が挙げられる。上記各工程を実施すると、偏光子、バリア層、光吸収異方性層、配向膜、透明基材フィルム、及び、λ/4位相差フィルムをこの順に有する偏光板が得られる。
 なお、上記製造方法の一例では、偏光子、光吸収異方性層、及び、λ/4位相差フィルムの他に、バリア層、配向膜、及び、透明基材フィルムを有する態様の製造方法であったが、バリア層、配向膜、及び、透明基材フィルム以外の部材を形成する工程が含まれていてもよい。
 各工程は、公知の方法にしたがって実施でき、特に限定されるものではない。また、各工程の順序等は、偏光板を形成できる限り変更してもよい。
[Method for producing polarizing plate]
An example of the method for producing the polarizing plate of the present invention includes a step of coating the composition for forming an alignment film on the transparent substrate film to form an alignment film, and applying the composition for forming an anisotropic light absorption layer. A step of coating on an alignment film and orienting the dye compound (preferably dichroic dye) contained in the coating film to obtain the light absorption anisotropic layer, and forming a barrier layer on the light absorption anisotropic layer. A step of applying a composition for forming a barrier layer to obtain a laminate, a step of bonding a separately prepared polarizer to the barrier layer side of the laminate, and a separately formed λ / 4 retardation film is laminated. A method including the step of laminating on the transparent substrate film side of the body in this order is mentioned. A polarizing plate having a polarizer, a barrier layer, a light absorption anisotropic layer, an alignment film, a transparent substrate film, and a λ/4 retardation film in this order is obtained by carrying out the above steps.
In one example of the above production method, in addition to the polarizer, the light absorption anisotropic layer, and the λ / 4 retardation film, a barrier layer, an oriented film, and a transparent substrate film. However, a step of forming members other than the barrier layer, the alignment film, and the transparent substrate film may be included.
Each step can be carried out according to a known method and is not particularly limited. Moreover, the order of each step may be changed as long as the polarizing plate can be formed.
〔粘着層〕
 上記偏光板の製造方法における貼合等は、粘着層によって行われることも好ましい。すなわち、本発明の偏光板は、粘着層を有していてもよい。
 本発明における粘着層は、通常の液晶表示装置に使用されるものと同様に、透明で光学的に等方性の接着剤が好ましく、通常は感圧型接着剤が使用される。
[Adhesive layer]
It is also preferable that the lamination or the like in the method for manufacturing the polarizing plate is performed using an adhesive layer. That is, the polarizing plate of the invention may have an adhesive layer.
The adhesive layer in the present invention is preferably a transparent and optically isotropic adhesive like those used in ordinary liquid crystal display devices, and usually a pressure-sensitive adhesive is used.
 本発明における粘着層には、母材(粘着剤)、導電性粒子、及び必要に応じて用いられる熱膨張性粒子の他に、架橋剤(例えば、イソシアネート系架橋剤、エポキシ系架橋剤など)、粘着付与剤(例えば、ロジン誘導体樹脂、ポリテルペン樹脂、石油樹脂、油溶性フェノール樹脂など)、可塑剤、充填剤、老化防止剤、界面活性剤、紫外線吸収剤、光安定剤、酸化防止剤等の適宜な添加剤を配合してもよい。 The adhesive layer in the present invention includes a base material (adhesive), conductive particles, and optionally thermally expandable particles, as well as a cross-linking agent (e.g., isocyanate-based cross-linking agent, epoxy-based cross-linking agent, etc.). , tackifiers (e.g., rosin derivative resins, polyterpene resins, petroleum resins, oil-soluble phenolic resins, etc.), plasticizers, fillers, anti-aging agents, surfactants, UV absorbers, light stabilizers, antioxidants, etc. Appropriate additives may be blended.
 粘着層の厚みは通常、20~500μmであり、好ましくは20~250μmである。20μm未満では必要な接着力やリワーク適性が得られない場合があり、500μmを越えると画像表示装置の周辺端部から粘着剤がはみ出したり、滲み出したりする場合がある。 The thickness of the adhesive layer is usually 20-500 μm, preferably 20-250 μm. If the thickness is less than 20 μm, the required adhesion and reworkability may not be obtained, and if the thickness exceeds 500 μm, the adhesive may protrude or ooze out from the peripheral edges of the image display device.
 その他、保護部材としては、例えば特開2003-292916号公報等に記載の熱剥離性粘着シートの構成に、導電性粒子を添加した構成を適用することができる。
 また、保護部材としては、日東電工(株)製「リバアルファ」などの市販品中の粘着層表面に導電性粒子を散布したものを用いてもよい。
In addition, as the protective member, for example, a configuration in which conductive particles are added to the configuration of the heat-peelable pressure-sensitive adhesive sheet described in Japanese Patent Application Laid-Open No. 2003-292916 can be applied.
As the protective member, a commercial product such as "Riva Alpha" manufactured by Nitto Denko Co., Ltd., in which conductive particles are dispersed on the surface of the adhesive layer, may be used.
〔接着層〕
 上記偏光板の製造方法における貼合等は、接着層によって行われることも好ましい。すなわち、本発明の偏光板は、接着層を有していてもよい。
 接着層は、接着剤を含む層をいう。本発明における接着剤は、貼り合わせた後の乾燥又は反応により接着性を発現するものが好ましい。
 例えば、ポリビニルアルコール系接着剤(PVA系接着剤)は、乾燥により接着性が発現し、材料どうしを接着することが可能となる。
 反応により接着性を発現する硬化型接着剤の具体例としては、(メタ)アクリレート系接着剤のような活性エネルギー線硬化型接着剤やカチオン重合硬化型接着剤が挙げられる。なお、(メタ)アクリレートとは、アクリレート及び/又はメタクリレートを意味する。(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。また、カチオン重合硬化型接着剤としては、エポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物(芳香族系エポキシ化合物)や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物(脂環式エポキシ化合物)等が例として挙げられる。
 中でも、加熱変形耐性の観点から、紫外線照射で硬化する紫外線硬化型接着剤が好ましく用いられる。
[Adhesive layer]
It is also preferable that the lamination or the like in the method for manufacturing the polarizing plate is performed by an adhesive layer. That is, the polarizing plate of the invention may have an adhesive layer.
An adhesive layer refers to a layer containing an adhesive. The adhesive used in the present invention preferably develops adhesiveness by drying or reaction after bonding.
For example, a polyvinyl alcohol-based adhesive (PVA-based adhesive) develops adhesiveness when dried, making it possible to bond materials together.
Specific examples of curable adhesives that exhibit adhesiveness through reaction include active energy ray curable adhesives such as (meth)acrylate adhesives and cationic polymerization curable adhesives. (Meth)acrylate means acrylate and/or methacrylate. The curable component in the (meth)acrylate adhesive includes, for example, a compound having a (meth)acryloyl group and a compound having a vinyl group. Compounds having an epoxy group or an oxetanyl group can also be used as cationic polymerization curing adhesives. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used. Preferred epoxy compounds include compounds having at least two epoxy groups and at least one aromatic ring in the molecule (aromatic epoxy compounds), and compounds having at least two epoxy groups in the molecule, at least one of which Examples include compounds (alicyclic epoxy compounds) formed between two adjacent carbon atoms constituting an alicyclic ring.
Among them, from the viewpoint of thermal deformation resistance, an ultraviolet curable adhesive that is cured by ultraviolet irradiation is preferably used.
 接着層、及び粘着層の各層は、サリチル酸エステル系化合物、ベンゾフェノール系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、及び、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式等の方式により紫外線吸収能をもたせたもの等であってもよい。 Each layer of the adhesive layer and the adhesive layer is treated with UV absorbers such as salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds. It may be a material having absorptive ability or the like.
 フィルムへの粘着層及び接着層の付設は、適当な方式で行いうる。その例としては、例えばトルエン及び酢酸エチル等の適当な溶剤の単独物又は混合物からなる溶媒に、ベースポリマー又はその組成物を溶解又は分散させた10~40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で被貼合物上に直接付設する方式、及び、上記方式に準じてセパレータ上に粘着層を形成し、それを被貼合物上に移着する方式等が挙げられる。 Attachment of the adhesive layer and adhesive layer to the film can be performed by an appropriate method. For example, a base polymer or a composition thereof is dissolved or dispersed in a suitable solvent such as toluene and ethyl acetate alone or in a mixture to prepare a pressure-sensitive adhesive solution of about 10 to 40% by weight. , a method of directly attaching it to the object to be laminated by an appropriate development method such as a casting method or a coating method, and a method of forming an adhesive layer on the separator according to the above method and applying it to the object to be laminated A method of transferring to the top and the like can be mentioned.
 粘着層及び接着層は、異なる組成又は種類等のものの重畳層として被貼合物に設けることもできる。また、粘着層及び接着層は、被貼合物の対向する面の両側に設けられていてもよい。被貼合物の両側に粘着層又は接着層を設ける場合、両側に設けられる粘着層又は接着層は、同様の層であってもよく、組成、種類及び厚さ等が異なる層であってもよい。 The adhesive layer and adhesive layer can also be provided on the object to be bonded as superimposed layers of different compositions or types. Also, the adhesive layer and the adhesive layer may be provided on both sides of the opposing surfaces of the object to be bonded. When the adhesive layer or adhesive layer is provided on both sides of the object to be laminated, the adhesive layer or adhesive layer provided on both sides may be the same layer, or may be a layer with different composition, type, thickness, etc. good.
 また、被貼合物は、接着剤及び粘着剤を付設する前に、接着性の向上等を目的として、表面改質処理を行ってもよい。具体的な処理としてば、コロナ処理、プラズマ処理、プライマー処理、ケン化処理等が挙げられる。 In addition, the object to be laminated may be subjected to surface modification treatment for the purpose of improving adhesiveness, etc., before attaching the adhesive and pressure-sensitive adhesive. Specific treatments include corona treatment, plasma treatment, primer treatment, saponification treatment, and the like.
〔有機EL表示装置〕
 本発明の有機EL表示装置は、陽極、陰極の一対の電極間に発光層若しくは発光層を含む複数の有機化合物薄膜を形成した表示装置であり、有機EL表示装置の視認側に、本発明の偏光板を有し、偏光板は、偏光子がλ/4位相差フィルムよりも視認側となるように配置される。したがって、本発明の有機EL表示装置は、視認側から順に、偏光子、λ/4位相差フィルム、及び、光吸収異方性層をこの順に有するか、偏光子、光吸収異方性層、及び、λ/4位相差フィルムをこの順に有するか、光吸収異方性層、偏光子、及び、λ/4位相差フィルムをこの順に有する。
 なお、有機EL表示装置は、上述した有機化合物薄膜を含む有機EL表示素子と、偏光板とを含む構成であることが好ましい。
 また、有機化合物薄膜は、発光層のほかに正孔注入層、正孔輸送層、電子注入層、電子輸送層、及び、保護層などを有していてもよく、これらの各層は、それぞれ他の機能を備えたものであってもよい。有機EL表示装置の電極及び有機化合物薄膜等の各層は、公知の材料及び方法により形成することができる。
 本発明の有機EL表示装置は、斜め方向から見た反射率及び色味が改良される。
[Organic EL display device]
The organic EL display device of the present invention is a display device in which a light-emitting layer or a plurality of organic compound thin films including a light-emitting layer are formed between a pair of electrodes of an anode and a cathode. It has a polarizing plate, and the polarizing plate is arranged so that the polarizer is on the viewing side of the λ/4 retardation film. Therefore, the organic EL display device of the present invention has a polarizer, a λ / 4 retardation film, and an anisotropic light absorption layer in this order from the viewing side, or a polarizer, an anisotropic light absorption layer, and a λ/4 retardation film in this order, or a light absorption anisotropic layer, a polarizer, and a λ/4 retardation film in this order.
The organic EL display device preferably has a structure including an organic EL display element including the organic compound thin film described above and a polarizing plate.
In addition to the light-emitting layer, the organic compound thin film may have a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a protective layer, and the like. It may be provided with the function of Each layer such as an electrode and an organic compound thin film of an organic EL display device can be formed by known materials and methods.
The organic EL display device of the present invention has improved reflectance and color when viewed obliquely.
 以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。 The present invention will be specifically described below based on examples. The materials, reagents, amounts and ratios of substances, operations, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the present invention is limited and not restricted to the following examples.
[実施例1]
(配向膜の形成)
 セルロースアシレートフィルム(厚み40μmのTACフィルム;TG40 富士フイルム社)の表面をアルカリ液で鹸化し、その上に下記配向膜形成用組成物1をワイヤーバーで塗布して塗膜を形成した。塗膜が形成されたTACフィルムを60℃の温風で60秒間、更に100℃の温風で120秒間乾燥して配向膜AL1を形成し、配向膜付きTACフィルム1を得た。膜厚は1μmであった。
[Example 1]
(Formation of alignment film)
The surface of a cellulose acylate film (40 μm thick TAC film; TG40, Fuji Film Co., Ltd.) was saponified with an alkaline solution, and the following alignment film forming composition 1 was applied thereon with a wire bar to form a coating film. The TAC film on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form an alignment film AL1, and TAC film 1 with an alignment film was obtained. The film thickness was 1 μm.
―――――――――――――――――――――――――――――――――
(配向膜形成用組成物1)
―――――――――――――――――――――――――――――――――
・変性ポリビニルアルコールPVA-1        3.80質量部
・IRGACURE2959             0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Orientation film-forming composition 1)
―――――――――――――――――――――――――――――――――
・Modified polyvinyl alcohol PVA-1 3.80 parts by mass ・IRGACURE 2959 0.20 parts by mass ・Water 70 parts by mass ・Methanol 30 parts by mass ―――――――――――――――――――――― ――――――――――――
 変性ポリビニルアルコールPVA-1
Figure JPOXMLDOC01-appb-C000036
Modified polyvinyl alcohol PVA-1
Figure JPOXMLDOC01-appb-C000036
(光吸収異方性層P1の形成)
 得られた配向膜付きTACフィルム1の配向膜AL1上に、下記の光吸収異方性層形成用組成物P1をワイヤーバーで連続的に塗布し、120℃で60秒間加熱した後、室温(23℃)になるまで冷却した。
 次いで、80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で2秒間照射することにより、配向膜AL1上に光吸収異方性層P1を作製し、光吸収異方性層P1を有するTACフィルムP1を得た。光吸収異方性層P1の膜厚は0.35μmであった。
(Formation of light absorption anisotropic layer P1)
On the alignment film AL1 of the obtained TAC film 1 with an alignment film, the following composition P1 for forming an anisotropic light absorption layer was continuously applied with a wire bar, heated at 120 ° C. for 60 seconds, and then cooled to room temperature ( 23° C.).
Then, it was heated at 80° C. for 60 seconds and cooled again to room temperature.
After that, an anisotropic light absorption layer P1 was formed on the alignment film AL1 by irradiating for 2 seconds under irradiation conditions of an illuminance of 200 mW/cm 2 using an LED lamp (center wavelength of 365 nm). A TAC film P1 with P1 was obtained. The film thickness of the light absorption anisotropic layer P1 was 0.35 μm.
―――――――――――――――――――――――――――――――――
(光吸収異方性層形成用組成物P1)
―――――――――――――――――――――――――――――――――
・二色性色素D-1                 0.63質量部
・二色性色素D-2                 0.17質量部
・二色性色素D-3                 1.13質量部
・高分子液晶性化合物P-1             8.18質量部
・IRGACUREOXE-02(BASF社製)   0.16質量部
・化合物E-1                   0.12質量部
・化合物E-2                   0.12質量部
・界面活性剤F-1                0.005質量部
・シクロペンタノン                85.00質量部
・ベンジルアルコール                4.50質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Composition P1 for forming light absorption anisotropic layer)
―――――――――――――――――――――――――――――――――
Dichroic dye D-1 0.63 parts by mass Dichroic dye D-2 0.17 parts by mass Dichroic dye D-3 1.13 parts by mass Polymer liquid crystalline compound P-1 8. 18 parts by weight IRGACUREOXE-02 (manufactured by BASF) 0.16 parts by weight Compound E-1 0.12 parts by weight Compound E-2 0.12 parts by weight Surfactant F-1 0.005 parts by weight Cyclopentanone 85.00 parts by mass Benzyl alcohol 4.50 parts by mass ――――――――――――――――――――――――――――――――
 二色性色素D-1
Figure JPOXMLDOC01-appb-C000037
Dichroic dye D-1
Figure JPOXMLDOC01-appb-C000037
 二色性色素D-2
Figure JPOXMLDOC01-appb-C000038
Dichroic dye D-2
Figure JPOXMLDOC01-appb-C000038
 二色性色素D-3
Figure JPOXMLDOC01-appb-C000039
Dichroic dye D-3
Figure JPOXMLDOC01-appb-C000039
 高分子液晶性化合物P-1
Figure JPOXMLDOC01-appb-C000040
Polymer liquid crystalline compound P-1
Figure JPOXMLDOC01-appb-C000040
 化合物E-1
Figure JPOXMLDOC01-appb-C000041
Compound E-1
Figure JPOXMLDOC01-appb-C000041
 化合物E-2
Figure JPOXMLDOC01-appb-C000042
Compound E-2
Figure JPOXMLDOC01-appb-C000042
 界面活性剤F-1
Figure JPOXMLDOC01-appb-C000043
Surfactant F-1
Figure JPOXMLDOC01-appb-C000043
(バリア層B1の形成)
 得られたTACフィルムP1の光吸収異方性層P1上に、下記のバリア層形成用組成物B1をワイヤーバーで連続的に塗布し、塗膜を形成した。
 次いで、塗膜が形成された支持体を60℃の温風で60秒間、更に100℃の温風で120秒間乾燥してバリア層B1を形成し、光学フィルムP1とした。バリア層の膜厚は0.5μmであった。
―――――――――――――――――――――――――――――――――
(バリア層形成用組成物B1)
―――――――――――――――――――――――――――――――――
・変性ポリビニルアルコールPVA-1        3.80質量部
・IRGACURE2959             0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
(Formation of barrier layer B1)
On the light absorption anisotropic layer P1 of the obtained TAC film P1, the following barrier layer forming composition B1 was continuously applied with a wire bar to form a coating film.
Next, the support with the coating film formed thereon was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form a barrier layer B1, thereby obtaining an optical film P1. The film thickness of the barrier layer was 0.5 μm.
―――――――――――――――――――――――――――――――――
(Barrier layer-forming composition B1)
―――――――――――――――――――――――――――――――――
・Modified polyvinyl alcohol PVA-1 3.80 parts by mass ・IRGACURE 2959 0.20 parts by mass ・Water 70 parts by mass ・Methanol 30 parts by mass ―――――――――――――――――――――― ――――――――――――
(λ/4位相差フィルムの作製)
 下記組成の光配向膜形成用組成物PA1を、上述したTACフィルムと同種のフィルム上にワイヤーバーで連続的に塗布して塗膜を形成した。塗膜が形成されたTACフィルムを140℃の温風で120秒間乾燥し、続いて、塗膜に対して偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、0.2μmの厚みの光配向膜PA1を形成し、光配向膜付きTACフィルムを得た。
(Preparation of λ/4 retardation film)
A composition PA1 for forming a photo-alignment film having the following composition was continuously applied on a film of the same type as the TAC film described above with a wire bar to form a coating film. The TAC film on which the coating film was formed was dried with hot air at 140°C for 120 seconds, and then the coating film was irradiated with polarized ultraviolet rays (10 mJ/cm 2 , using an ultra-high pressure mercury lamp) to obtain a thickness of 0.2 µm. to obtain a TAC film with a photo-alignment film.
―――――――――――――――――――――――――――――――――
(光配向膜形成用組成物PA1)
―――――――――――――――――――――――――――――――――
・下記重合体PA-1              100.00質量部
・下記酸発生剤PAG-1              5.00質量部
・下記酸発生剤CPI-110TF         0.005質量部
・イソプロピルアルコール             16.50質量部
・酢酸ブチル                 1072.00質量部
・メチルエチルケトン              268.00質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Composition PA1 for photo-alignment film formation)
―――――――――――――――――――――――――――――――――
・Polymer PA-1 below 100.00 parts by mass ・Acid generator PAG-1 below 5.00 parts by mass ・Acid generator CPI-110TF below 0.005 parts by mass ・Isopropyl alcohol 16.50 parts by mass ・Butyl acetate 1072 .00 parts by mass Methyl ethyl ketone 268.00 parts by mass ――――――――――――――――――――――――――――――――――
 重合体PA-1
Figure JPOXMLDOC01-appb-C000044
Polymer PA-1
Figure JPOXMLDOC01-appb-C000044
 酸発生剤PAG-1
Figure JPOXMLDOC01-appb-C000045
Acid generator PAG-1
Figure JPOXMLDOC01-appb-C000045
 酸発生剤CPI-110TF
Figure JPOXMLDOC01-appb-C000046
Acid generator CPI-110TF
Figure JPOXMLDOC01-appb-C000046
 下記組成の組成物A-1を、光配向膜付きTACフィルムの上記光配向膜PA1上にバーコーターを用いて塗布して塗膜を形成した。光配向膜PA1上に形成された塗膜を温風にて120℃に加熱し、その後60℃に冷却した後に、窒素雰囲気下で高圧水銀灯を用いて波長365nmにて100mJ/cmの紫外線を塗膜に照射し、続いて120℃に加熱しながら500mJ/cmの紫外線を塗膜に照射することで、液晶性化合物の配向を固定化し、λ/4位相差層A1(λ/4位相差フィルムに該当)を有するTACフィルムA1を作製した。
 λ/4位相差層A1の厚みは2.5μmであり、Re(550)は144nmであった。また、λ/4位相差層A1は、Re(450)≦Re(550)≦Re(650)の関係を満たしていた。また、λ/4位相差層において、Re(450)/Re(550)は、0.82であった。
Composition A-1 having the following composition was applied onto the photo-alignment film PA1 of the TAC film with a photo-alignment film using a bar coater to form a coating film. The coating film formed on the photo-alignment film PA1 is heated to 120°C with warm air, then cooled to 60°C, and then irradiated with ultraviolet rays of 100 mJ/cm 2 at a wavelength of 365 nm using a high-pressure mercury lamp in a nitrogen atmosphere. By irradiating the coating film and then irradiating the coating film with ultraviolet rays of 500 mJ/cm 2 while heating to 120 ° C., the orientation of the liquid crystalline compound is fixed, and the λ / 4 retardation layer A1 (λ / 4 position A TAC film A1 having a retardation film) was produced.
The λ/4 retardation layer A1 had a thickness of 2.5 μm and Re(550) of 144 nm. Also, the λ/4 retardation layer A1 satisfied the relationship Re(450)≦Re(550)≦Re(650). In the λ/4 retardation layer, Re(450)/Re(550) was 0.82.
―――――――――――――――――――――――――――――――――
(組成物A-1)
―――――――――――――――――――――――――――――――――
・下記重合性液晶性化合物LA-1         43.50質量部
・下記重合性液晶性化合物LA-2         43.50質量部
・下記重合性液晶性化合物LA-3          8.00質量部
・下記重合性液晶性化合物LA-4          5.00質量部
・下記重合開始剤PI-1              0.55質量部
・下記レベリング剤T-1              0.20質量部
・シクロペンタノン               235.00質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Composition A-1)
―――――――――――――――――――――――――――――――――
43.50 parts by mass of polymerizable liquid crystalline compound LA-1 below 43.50 parts by mass of polymerizable liquid crystalline compound LA-2 below 8.00 parts by mass of polymerizable liquid crystalline compound LA-3 below Polymerizable liquid crystal below 5.00 parts by mass of the chemical compound LA-4 · 0.55 parts by mass of the following polymerization initiator PI-1 · 0.20 parts by mass of the following leveling agent T-1 · 235.00 parts by mass of cyclopentanone ―――――――――――――――――――――――――――
 重合性液晶性化合物LA-1(tBuはターシャリーブチル基を表す)
Figure JPOXMLDOC01-appb-C000047
Polymerizable liquid crystalline compound LA-1 (tBu represents a tertiary butyl group)
Figure JPOXMLDOC01-appb-C000047
 重合性液晶性化合物LA-2
Figure JPOXMLDOC01-appb-C000048
Polymerizable liquid crystalline compound LA-2
Figure JPOXMLDOC01-appb-C000048
 重合性液晶性化合物LA-3
Figure JPOXMLDOC01-appb-C000049
Polymerizable liquid crystalline compound LA-3
Figure JPOXMLDOC01-appb-C000049
 重合性液晶性化合物LA-4(Meはメチル基を表す)
Figure JPOXMLDOC01-appb-C000050
Polymerizable liquid crystalline compound LA-4 (Me represents a methyl group)
Figure JPOXMLDOC01-appb-C000050
 重合開始剤PI-1
Figure JPOXMLDOC01-appb-C000051
Polymerization initiator PI-1
Figure JPOXMLDOC01-appb-C000051
 レベリング剤T-1
Figure JPOXMLDOC01-appb-C000052
Leveling agent T-1
Figure JPOXMLDOC01-appb-C000052
(粘着剤シート1の作製)
 以下の手順に従い、アクリレート系ポリマーを調製した。
 冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸ブチル95重量部、アクリル酸5重量部を溶液重合法により重合させて、平均分子量200万、分子量分布(Mw/Mn)3.0のアクリレート系重合体A1を得た。
(Preparation of adhesive sheet 1)
An acrylate-based polymer was prepared according to the following procedure.
95 parts by weight of butyl acrylate and 5 parts by weight of acrylic acid are polymerized by a solution polymerization method in a reaction vessel equipped with a cooling tube, a nitrogen inlet tube, a thermometer and a stirring device, and the average molecular weight is 2,000,000 and the molecular weight distribution (Mw/ An acrylate polymer A1 having Mn) of 3.0 was obtained.
 次に得られたアクリレート系ポリマーA1(100質量部)に加えて、コロネートL(トリレンジイソシアネ-トのトリメチロールプロパン付加物の75質量%酢酸エチル溶液、1分子中のイソシアネート基数:3個、日本ポリウレタン工業株式会社製)(1.0質量部)、及び、シランカップリング剤KBM-403(信越化学工業社製)(0.2質量部)を混合し、最後に全固形分濃度が10質量%となるように酢酸エチルを添加して、粘着剤形成用組成物を調製した。この組成物を、シリコーン系剥離剤で表面処理したセパレートフィルムにダイコーターを用いて塗布し90℃の環境下で1分間乾燥させ、アクリレート系の粘着剤シート1を得た。膜厚は15μm、貯蔵弾性率が0.1MPaであった。 Next, in addition to the obtained acrylate polymer A1 (100 parts by mass), Coronate L (75% by mass ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate, number of isocyanate groups in one molecule: 3 , Nippon Polyurethane Industry Co., Ltd.) (1.0 parts by mass), and silane coupling agent KBM-403 (Shin-Etsu Chemical Co., Ltd.) (0.2 parts by mass) are mixed, and finally the total solid concentration is Ethyl acetate was added so as to be 10% by mass to prepare a pressure-sensitive adhesive-forming composition. This composition was applied using a die coater to a separate film surface-treated with a silicone-based release agent and dried for 1 minute at 90° C. to obtain an acrylate-based pressure-sensitive adhesive sheet 1 . The film thickness was 15 μm and the storage modulus was 0.1 MPa.
(UV接着剤の作製)
 下記組成のUV接着剤組成物を調製した。
─────────────────────────────────
 UV接着剤組成物
―――――――――――――――――――――――――――――――――
・CEL2021P(ダイセル社製)           70質量部
・1、4-ブタンジオールジグリシジルエーテル      20質量部
・2-エチルヘキシルグリシジルエーテル         10質量部
・CPI-100P                 2.25質量部
─────────────────────────────────
(Preparation of UV adhesive)
A UV adhesive composition having the following composition was prepared.
──────────────────────────────────
UV adhesive composition ――――――――――――――――――――――――――――――――
・CEL2021P (manufactured by Daicel) 70 parts by mass ・1,4-Butanediol diglycidyl ether 20 parts by mass ・2-Ethylhexyl glycidyl ether 10 parts by mass ・CPI-100P 2.25 parts by mass ────────── ────────────────────────
 CPI-100P
Figure JPOXMLDOC01-appb-C000053
CPI-100P
Figure JPOXMLDOC01-appb-C000053
(偏光板C1の作製)
 国際公開第2015/166991号記載の片面保護膜付偏光板02と同様の方法で、偏光子の厚さが8μmで、偏光子の片面がむき出しの偏光子1を作製した。
 上記偏光子1の偏光子がむき出しの面と、上記作製した光吸収異方性層P1を含む光学フィルムP1のバリア層B1側とを上記の粘着剤シート1で貼合した。
 更に、光吸収異方性層P1を含む光学フィルムP1のTACフィルム側と、上記λ/4位相差層A1を含むTACフィルムA1のλ/4位相差層A1側とを、上記UV接着剤組成物を塗布して貼り合わせ、600mJ/cmのUV照射を行って硬化してUV接着剤層とした。UV接着剤層の厚みは3μmであった。なお、UV接着剤で貼り合わせる表面には、それぞれコロナ処理を行った。
 次に、λ/4位相差層A1側の光配向膜PA1とTACフィルム1を除去し、偏光板C1を得た。なお、偏光板C1の層構成は、偏光子1側から順に、偏光子1、粘着剤シート1、バリア層B1、光吸収異方性層P1、配向膜AL1、TACフィルム、UV接着剤層、及び、λ/4位相差層A1であった。
(Production of polarizing plate C1)
A polarizer 1 having a thickness of 8 μm and one surface of which is exposed was produced in the same manner as the polarizing plate 02 with a single-sided protective film described in WO 2015/166991.
The surface of the polarizer 1 where the polarizer is exposed and the barrier layer B1 side of the optical film P1 including the light absorption anisotropic layer P1 prepared above were bonded together with the pressure-sensitive adhesive sheet 1 described above.
Furthermore, the TAC film side of the optical film P1 containing the light absorption anisotropic layer P1 and the λ / 4 retardation layer A1 side of the TAC film A1 containing the λ / 4 retardation layer A1 are combined with the UV adhesive composition An object was coated, bonded together, and cured by UV irradiation at 600 mJ/cm 2 to form a UV adhesive layer. The thickness of the UV adhesive layer was 3 μm. Each surface to be bonded with the UV adhesive was subjected to corona treatment.
Next, the photo-alignment film PA1 and TAC film 1 on the λ/4 retardation layer A1 side were removed to obtain a polarizing plate C1. The layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the adhesive sheet 1, the barrier layer B1, the light absorption anisotropic layer P1, the alignment film AL1, the TAC film, the UV adhesive layer, and λ/4 retardation layer A1.
(有機EL表示装置の作製)
 有機ELパネル(有機EL表示素子)搭載のSAMSUNG社製GALAXY(登録商標) S5を分解し、有機EL表示装置から、円偏光板付きタッチパネルを剥離し、更にタッチパネルから円偏光板を剥がし、有機EL表示素子、タッチパネル及び円偏光板をそれぞれ単離した。続いて、単離したタッチパネルを有機EL表示素子と再度貼合し、更に上記で作製した偏光板C1を、偏光子1側が視認側となるように、上記粘着剤シート1を用いて空気が入らないようにしてタッチパネル上に貼合し、有機EL表示装置を作製した。
(Fabrication of organic EL display device)
SAMSUNG's GALAXY (registered trademark) S5 equipped with an organic EL panel (organic EL display element) is disassembled, the touch panel with a circularly polarizing plate is peeled off from the organic EL display device, the circularly polarizing plate is further peeled off from the touch panel, and the organic EL A display element, a touch panel and a circularly polarizing plate were isolated. Subsequently, the isolated touch panel was again bonded to the organic EL display element, and the polarizing plate C1 prepared above was air-filled using the adhesive sheet 1 so that the polarizer 1 side was on the viewing side. The organic EL display device was produced by laminating on a touch panel so as not to be exposed.
[実施例2]
 実施例1の光学フィルムP1において、光吸収異方性層P1の膜厚を0.18μmに変更した以外は、実施例1と同様にして、実施例2の偏光板C2を作製した。
[Example 2]
A polarizing plate C2 of Example 2 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer P1 in the optical film P1 of Example 1 was changed to 0.18 μm.
[実施例3]
 実施例1の光学フィルムP1において、光吸収異方性層P1の膜厚を0.70μmに変更した以外は、実施例1と同様にして、偏光板C3を作製した。
[Example 3]
A polarizing plate C3 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer P1 in the optical film P1 of Example 1 was changed to 0.70 μm.
[実施例4]
 実施例1の偏光板C1の作製において、偏光子1の偏光子がむき出しの表面とλ/4位相差層A1の表面とが対向するように、偏光子1とTACフィルムA1とをUV接着剤で貼り付け、光配向膜PA1とTACフィルム1を除去した後、λ/4位相差層A1の偏光子1側とは反対側の表面と、光学フィルムP1のバリア層B1側の表面とを粘着剤シート1とが対向するように貼り付け、偏光板C4を得た。
 すなわち、偏光板C1の層構成を、偏光子1側から順に、偏光子1、UV接着剤層、λ/4位相差層A1、粘着剤シート1、バリア層B1、光吸収異方性層P1、配向膜AL1、TACフィルム、とした以外は、実施例1と同様にして、偏光板C4を作製した。
[Example 4]
In the preparation of the polarizing plate C1 of Example 1, the polarizer 1 and the TAC film A1 are bonded together with a UV adhesive so that the exposed surface of the polarizer of the polarizer 1 and the surface of the λ/4 retardation layer A1 face each other. After removing the photo-alignment film PA1 and TAC film 1, the surface of the λ / 4 retardation layer A1 on the side opposite to the polarizer 1 side and the surface of the optical film P1 on the barrier layer B1 side are adhered. A polarizing plate C4 was obtained by sticking so that the agent sheet 1 faced each other.
That is, the layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the UV adhesive layer, the λ/4 retardation layer A1, the adhesive sheet 1, the barrier layer B1, and the light absorption anisotropic layer P1. A polarizing plate C4 was produced in the same manner as in Example 1, except that the alignment film AL1 and the TAC film were used.
[実施例5]
 実施例1の偏光板C1の作製において、光学フィルムP1のTACフィルム1側の表面と、偏光子1の偏光子がむき出しの表面とが対向するように、光学フィルムP1と偏光子1とをUV接着剤で貼り付け、次いで、偏光子1の光学フィルムP1側とは反対側の表面と、TACフィルムA1のλ/4位相差層A1の表面とが対向するようにUV接着剤で貼り付け、光配向膜PA1とTACフィルム1を除去し、偏光板C5を得た。
 すなわち、偏光板C1の層構成を、バリア層B1側から順に、バリア層B1、光吸収異方性層P1、配向膜AL1、TACフィルム1、UV接着剤、偏光子1、UV接着剤層、及び、λ/4位相差層A1とした以外は、実施例1と同様にして、偏光板C5を作製した。
[Example 5]
In the preparation of the polarizing plate C1 of Example 1, the optical film P1 and the polarizer 1 are placed together so that the surface of the optical film P1 on the TAC film 1 side faces the surface of the polarizer 1 where the polarizer is exposed. pasted with an adhesive, and then pasted with a UV adhesive so that the surface of the polarizer 1 opposite to the optical film P1 side faces the surface of the λ/4 retardation layer A1 of the TAC film A1, The photo-alignment film PA1 and TAC film 1 were removed to obtain a polarizing plate C5.
That is, the layer structure of the polarizing plate C1 is, in order from the barrier layer B1 side, the barrier layer B1, the light absorption anisotropic layer P1, the alignment film AL1, the TAC film 1, the UV adhesive, the polarizer 1, the UV adhesive layer, A polarizing plate C5 was produced in the same manner as in Example 1, except that the λ/4 retardation layer A1 was used.
[比較例1]
 実施例1の偏光板C1の作製において、光学フィルムP1を用いずに偏光板を作製した。すなわち、偏光板C1の層構成を、偏光子1側から順に、偏光子1、UV接着剤層、及び、λ/4位相差層A1とした以外は、実施例1と同様にして、偏光板C6を作製した。
[Comparative Example 1]
In the production of the polarizing plate C1 of Example 1, the polarizing plate was produced without using the optical film P1. That is, in the same manner as in Example 1, except that the layer structure of the polarizing plate C1 is, in order from the polarizer 1 side, the polarizer 1, the UV adhesive layer, and the λ / 4 retardation layer A1. C6 was produced.
[比較例2]
 実施例1の偏光板C1の作製において、光吸収異方性層形成用組成物P1を下記光吸収異方性層形成用組成物P2に変更し、膜厚を0.5μmとした以外は、実施例1と同様にして、偏光板C7を作製した。なお、光吸収異方性層形成用組成物P2には、色素化合物が含まれていなかった。
―――――――――――――――――――――――――――――――――
 光吸収異方性層形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・上記高分子液晶性化合物P-1           8.18質量部
・IRGACUREOXE-02(BASF社製)   0.16質量部
・上記化合物E-1                 0.12質量部
・上記化合物E-2                 0.12質量部
・上記界面活性剤F-1              0.005質量部
・シクロペンタノン                85.00質量部
・ベンジルアルコール                4.50質量部
―――――――――――――――――――――――――――――――――
[Comparative Example 2]
In the preparation of the polarizing plate C1 of Example 1, the composition P1 for forming an anisotropic light absorption layer was changed to the composition P2 for forming an anisotropic light absorption layer described below, and the film thickness was changed to 0.5 μm. A polarizing plate C7 was produced in the same manner as in Example 1. The composition P2 for forming an anisotropic light absorption layer contained no dye compound.
―――――――――――――――――――――――――――――――――
Composition of Composition P2 for Forming Light-Absorbing Anisotropic Layer――――――――――――――――――――――――――――――――
8.18 parts by mass of the polymer liquid crystal compound P-1 IRGACUREOXE-02 (manufactured by BASF) 0.16 parts by mass 0.12 parts by mass of the compound E-1 0.12 parts by mass of the compound E-2 Part · Surfactant F-1 0.005 parts by mass · Cyclopentanone 85.00 parts by mass · Benzyl alcohol 4.50 parts by mass ――――――――――――――――――― ――――――――――――――
[比較例3]
 実施例1の光学フィルムP1において、光吸収異方性層の膜厚を0.09μmに変更した以外は、実施例1と同様にして、偏光板C8を作製した。
[Comparative Example 3]
A polarizing plate C8 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 0.09 μm.
[比較例4]
 実施例1の光学フィルムP1において、光吸収異方性層の膜厚を1.20μmに変更した以外は、実施例1と同様にして、偏光板C9を作製した。
[Comparative Example 4]
A polarizing plate C9 was produced in the same manner as in Example 1, except that the film thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 1.20 μm.
[比較例5]
 実施例1の光学フィルムP1において、光吸収異方性層の膜厚を3.50μmに変更した以外は、実施例1と同様にして、偏光板C10を作製した。
[Comparative Example 5]
A polarizing plate C10 was produced in the same manner as in Example 1, except that the thickness of the light absorption anisotropic layer in the optical film P1 of Example 1 was changed to 3.50 μm.
〔評価〕
(1)透過率中心軸及びRth
 得られた光吸収異方性層を用い、AxoScan OPMF-1(オプトサイエンス社製)において、波長λにおける、光吸収異方性層のミューラーマトリックスを極角を-70°~70°まで5°毎に計測した。この計測結果より、透過率が極大となる透過率中心軸と光吸収異方性層の層平面の法線とがなす角度θと、Rthを求めた。なお、Rthの算出においては平均屈折率の仮定値1.60と膜厚を入力した。なす角度θ、及び、Rthを求める方法は上述した通りである。なお、波長λとは、波長450nm、波長550nm、又は、波長630nmを意味する。
〔evaluation〕
(1) Transmittance central axis and Rth
Using the obtained light absorption anisotropic layer, the polar angle of the Mueller matrix of the light absorption anisotropic layer was changed from -70° to 70° to 5° at the wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). measured each time. From this measurement result, the angle θ formed by the transmittance center axis at which the transmittance is maximum and the normal to the layer plane of the light absorption anisotropic layer and Rth were obtained. In calculating Rth, an assumed value of 1.60 for the average refractive index and the film thickness were input. The method of obtaining the angle θ and Rth is as described above. Note that the wavelength λ means a wavelength of 450 nm, a wavelength of 550 nm, or a wavelength of 630 nm.
(2)A(λ)
 光吸収異方性層の吸収異方性を特定するために、得られた光吸収異方性層の偏光特性を、波長λにおける光吸収異方性層の面内遅相軸方向における極角方向を変化させて計測することより求めた。なお、波長λとは、波長450nm、波長550nm、又は、波長630nmを意味する。
 具体的には、計測装置にはAxometics社のAxoscanを用い、面内遅相軸方向で極角を-70~70°まで5°毎にミューラーマトリックスを計測し、吸収異方性の程度Aを、フィッティングすることで求めた。波長450nm、波長550nm、及び、波長630nmの3波長で、上記式で表されるA(λ)の値を求めた。
(2) A(λ)
In order to specify the absorption anisotropy of the anisotropic light absorption layer, the polarization characteristics of the obtained anisotropic light absorption layer were measured at the wavelength λ at the polar angle in the in-plane slow axis direction of the anisotropic light absorption layer. It was obtained by measuring while changing the direction. Note that the wavelength λ means a wavelength of 450 nm, a wavelength of 550 nm, or a wavelength of 630 nm.
Specifically, Axoscan manufactured by Axometics is used as the measuring device, and the Mueller matrix is measured every 5° from -70 to 70° in the in-plane slow axis direction, and the degree A of the absorption anisotropy is measured. , was obtained by fitting The value of A(λ) represented by the above formula was obtained at three wavelengths of 450 nm, 550 nm, and 630 nm.
[表示性能]
 作製した有機EL表示装置について、明光下にて視認性及び表示品位を評価した。
 具体的には、表示装置の表示画面を黒表示にして、極角45度から蛍光灯を映しこんだときの反射光を観察した。すなわち、斜め方向から見た反射率及び色味を評価した。評価は、下記の基準に基づいて表示性能を評価した。評価結果を下記表1に示す。
(評価基準)
 A:黒色で色づきが全く視認されない
 B:わずかに着色が視認されるが、反射率が非常に低い
 C:わずかに着色が視認されるが、反射率が低い
 D:わずかに着色が視認され、かつ反射率が高い
 E:着色が明らかに視認され、かつ反射率が非常に高い
[Display performance]
Visibility and display quality of the produced organic EL display device were evaluated under bright light.
Specifically, the display screen of the display device was displayed in black, and the reflected light was observed when a fluorescent lamp was projected from a polar angle of 45 degrees. That is, the reflectance and color when viewed from an oblique direction were evaluated. The evaluation evaluated the display performance based on the following criteria. The evaluation results are shown in Table 1 below.
(Evaluation criteria)
A: Black coloration is not visible at all B: Coloring is slightly visible, but the reflectance is very low C: Coloring is slightly visible, but the reflectance is low D: Coloring is slightly visible, And high reflectance E: Coloring is clearly visible, and reflectance is very high
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 上記表1に示す結果から、光吸収異方性層を含まない構成(比較例1)に対して、光吸収異方性層を含み、光吸収異方性層のRthが、波長450nm、波長550nm及び波長630nmのいずれにおいても-20~-160nmであり、A(λ)の値が、波長450nm、波長550nm及び波長630nmのいずれにおいても20~200nmである場合には、表示性能が優れることが確認された(実施例1~5)。
 また、光異方性吸収層のRthは上記範囲であるが、Aが上記範囲でない構成(比較例2)、並びに、Rth及びAがともに上記の範囲でない構成(比較例3~5)の場合は、表示性能が劣ることが確認された。また、偏光板の構成において、偏光子と光吸収異方性層とλ/4位相差層とをこの順で積層している構成(実施例1)である場合、そうでない構成(実施例4及び5)と比較して、より表示性能に優れることが確認された。
From the results shown in Table 1 above, it was found that the Rth of the anisotropic light absorption layer including the anisotropic light absorption layer was 450 nm and the wavelength When the value of A(λ) is from 20 to 200 nm at all of the wavelengths of 450 nm, 550 nm and 630 nm, the display performance is excellent. was confirmed (Examples 1 to 5).
In addition, in the case where the Rth of the optically anisotropic absorption layer is within the above range but the A is not within the above range (Comparative Example 2), and the configuration where both Rth and A are not within the above range (Comparative Examples 3 to 5) was confirmed to be inferior in display performance. Further, in the configuration of the polarizing plate, when the configuration (Example 1) in which the polarizer, the light absorption anisotropic layer and the λ / 4 retardation layer are laminated in this order, the other configuration (Example 4 and 5), it was confirmed to be more excellent in display performance.

Claims (6)

  1.  偏光子と、少なくとも1種の色素化合物を有する光吸収異方性層と、λ/4位相差フィルムと、を含んでおり、
     前記光吸収異方性層の透過率中心軸と、前記光吸収異方性層の層平面の法線とがなす角度が0~45°であり、前記光吸収異方性層の厚み方向の位相差Rthが、波長450nm、波長550nm及び波長630nmのいずれにおいても-20~-160nmであり、
     式(1)で示される前記光吸収異方性層のA(λ)が、波長450nm、波長550nm及び波長630nmのいずれにおいても20~200nmである、偏光板。
     式(1) A(λ)={kz(λ)-(kx(λ)+ky(λ))/2}×d
     式(1)中、dは前記光吸収異方性層の厚みであり、kx(λ)及びky(λ)はそれぞれ、前記光吸収異方性層の面内の直交するx軸及びy軸それぞれの方向における波長λの光に対する吸収係数であり、kz(λ)は、x軸及びy軸を含む面に対して直交するz軸方向における波長λの光に対する吸収係数である。
     ただし、dで表される前記光吸収異方性層の厚みの単位はnmである。
    A polarizer, a light absorption anisotropic layer having at least one dye compound, and a λ / 4 retardation film,
    The angle formed by the transmittance central axis of the anisotropic light absorption layer and the normal to the layer plane of the anisotropic light absorption layer is 0 to 45°, and the thickness direction of the anisotropic light absorption layer The phase difference Rth is -20 to -160 nm at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 630 nm,
    The polarizing plate, wherein A(λ) of the light absorption anisotropic layer represented by formula (1) is 20 to 200 nm at any of wavelengths of 450 nm, 550 nm and 630 nm.
    Formula (1) A(λ)={kz(λ)−(kx(λ)+ky(λ))/2}×d
    In formula (1), d is the thickness of the light absorption anisotropic layer, and kx(λ) and ky(λ) are the in-plane orthogonal x-axis and y-axis of the light absorption anisotropic layer, respectively. is the absorption coefficient for light with wavelength λ in each direction, and kz(λ) is the absorption coefficient for light with wavelength λ in the z-axis direction perpendicular to the plane containing the x-axis and y-axis.
    However, the unit of the thickness of the light absorption anisotropic layer represented by d is nm.
  2.  前記A(λ)が、波長450nm、波長550nm及び波長630nmのいずれにおいても40~150nmである、請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein said A(λ) is 40 to 150 nm at any of wavelengths of 450 nm, 550 nm and 630 nm.
  3.  前記光吸収異方性層が、液晶性化合物と、少なくとも1種の二色性色素化合物とを有する、請求項1又は2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the light absorption anisotropic layer comprises a liquid crystalline compound and at least one dichroic dye compound.
  4.  前記偏光子と前記光吸収異方性層と前記λ/4位相差フィルムとがこの順で積層されているか、前記偏光子と前記λ/4位相差フィルムと前記光吸収異方性層とがこの順で積層されている、請求項1又は2に記載の偏光板。 The polarizer, the light absorption anisotropic layer and the λ / 4 retardation film are laminated in this order, or the polarizer, the λ / 4 retardation film and the light absorption anisotropic layer 3. The polarizing plate according to claim 1, which is laminated in this order.
  5.  前記偏光子と前記光吸収異方性層と前記λ/4位相差フィルムとがこの順で積層されている、請求項1又は2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the polarizer, the light absorption anisotropic layer, and the λ/4 retardation film are laminated in this order.
  6.  請求項1又は2に記載の偏光板を有しており、前記偏光子が視認側になるように配置されている、有機EL表示装置。 An organic EL display device comprising the polarizing plate according to claim 1 or 2, wherein the polarizer is arranged on the viewing side.
PCT/JP2022/018910 2021-05-07 2022-04-26 Polarizing plate and organic el display device WO2022234789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518667A JPWO2022234789A1 (en) 2021-05-07 2022-04-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021078921 2021-05-07
JP2021-078921 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234789A1 true WO2022234789A1 (en) 2022-11-10

Family

ID=83932180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018910 WO2022234789A1 (en) 2021-05-07 2022-04-26 Polarizing plate and organic el display device

Country Status (2)

Country Link
JP (1) JPWO2022234789A1 (en)
WO (1) WO2022234789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022153A (en) * 2016-07-21 2018-02-08 富士フイルム株式会社 Laminate and liquid crystal display
WO2019235355A1 (en) * 2018-06-04 2019-12-12 富士フイルム株式会社 Display device
WO2020095831A1 (en) * 2018-11-09 2020-05-14 住友化学株式会社 Perpendicularly aligned liquid crystal cured film and laminate including same
WO2020175569A1 (en) * 2019-02-27 2020-09-03 富士フイルム株式会社 Optical anisotropic film, layered body, circularly polarizing plate, and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022153A (en) * 2016-07-21 2018-02-08 富士フイルム株式会社 Laminate and liquid crystal display
WO2019235355A1 (en) * 2018-06-04 2019-12-12 富士フイルム株式会社 Display device
WO2020095831A1 (en) * 2018-11-09 2020-05-14 住友化学株式会社 Perpendicularly aligned liquid crystal cured film and laminate including same
WO2020175569A1 (en) * 2019-02-27 2020-09-03 富士フイルム株式会社 Optical anisotropic film, layered body, circularly polarizing plate, and display device

Also Published As

Publication number Publication date
JPWO2022234789A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
JP7109476B2 (en) OPTICAL LAMINATED PRODUCTION METHOD, OPTICAL LAMINATED PRODUCT AND IMAGE DISPLAY DEVICE
JP6896890B2 (en) Light absorption anisotropic film, optical laminate and image display device
WO2020045216A1 (en) Layered body and image display device
WO2018186500A1 (en) Polarizing element, circularly polarizing plate and image display device
JP7428785B2 (en) liquid crystal display device
US20230118336A1 (en) Viewing angle control system and image display device
US20200355847A1 (en) Laminate
JP2022068164A (en) Polarizer and image display device
WO2022138555A1 (en) Light absorption anisotropic film, viewing angle control system, and image display device
US20220204856A1 (en) Polarizer and image display device
WO2021246441A1 (en) Optical film, optical laminate, and image display device
JP2024026152A (en) Light absorption anisotropic layer, laminate, optical film, image display device, backlight module
JP2021192095A (en) Optical element and display device
JP7062770B2 (en) Laminates and image display devices
WO2022138548A1 (en) Light absorbing anisotropic film, viewing angle control system, and image display device
WO2022138504A1 (en) Optical film, viewing angle control system, and image display device
WO2022234789A1 (en) Polarizing plate and organic el display device
WO2019203192A1 (en) Polarizer, circularly polarizing plate, and image display device
WO2023085255A1 (en) Organic el display device
WO2022181414A1 (en) Laminate, antireflection system, and image display device
WO2022270466A1 (en) Optical film, method for manufacturing light absorption anisotropic layer, and image display device
JP7454695B2 (en) Composition for photo-alignment film, photo-alignment film and optical laminate
WO2022215751A1 (en) Light absorption anisotropic layer, laminate, display device, infrared light irradiation device, and infrared light sensing device
WO2022202268A1 (en) Viewing angle control system, image display device, optically anisotropic layer, and laminate
WO2021166694A1 (en) Optical layered body and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518667

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE