WO2022202268A1 - Viewing angle control system, image display device, optically anisotropic layer, and laminate - Google Patents

Viewing angle control system, image display device, optically anisotropic layer, and laminate Download PDF

Info

Publication number
WO2022202268A1
WO2022202268A1 PCT/JP2022/009847 JP2022009847W WO2022202268A1 WO 2022202268 A1 WO2022202268 A1 WO 2022202268A1 JP 2022009847 W JP2022009847 W JP 2022009847W WO 2022202268 A1 WO2022202268 A1 WO 2022202268A1
Authority
WO
WIPO (PCT)
Prior art keywords
light absorption
anisotropic layer
absorption anisotropic
viewing angle
liquid crystal
Prior art date
Application number
PCT/JP2022/009847
Other languages
French (fr)
Japanese (ja)
Inventor
直良 山田
伸一 吉成
晋也 渡邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023508930A priority Critical patent/JPWO2022202268A1/ja
Publication of WO2022202268A1 publication Critical patent/WO2022202268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a viewing angle control system, an image display device, an optically anisotropic layer, and a laminate.
  • Image display devices are used in a variety of situations, and depending on their use, it may be necessary to prevent others from looking into them or to control viewing angles, such as the reflection of images.
  • an in-vehicle display such as a car navigation system
  • Patent Document 1 discloses a film in which a polarizer having an absorption axis in the in-plane direction and a light absorption anisotropic layer in which a dichroic material is vertically aligned is combined, and a display device provided with this film. describes that a good dark state is achieved in any orientation.
  • the present invention provides a viewing angle control system that, when applied to a display device that requires viewing angle control, has higher viewing angle controllability with respect to azimuth angles, such as making it invisible from a specific azimuth angle, and excellent transmittance in the front direction.
  • the task is to provide Another object of the present invention is to provide an image display device.
  • Another object of the present invention is to provide a light absorption anisotropic layer that can constitute the viewing angle control system by combining with a polarizer.
  • another object of the present invention is to provide a laminate including the light absorption anisotropic layer.
  • the polarizer has an absorption axis in the in-plane direction
  • the angle formed by the azimuth with the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer and the absorption axis of the polarizer is 0° or more and less than 45°
  • the first light absorption anisotropic layer has a plurality of regions along the thickness direction, each having an absorption axis tilted with respect to the normal direction of the surface of the first light absorption anisotropic layer, A viewing angle control system in which the angles of inclination of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer are different in the plurality of regions.
  • the inclination angles of the absorption axes of the plurality of regions with respect to the normal direction of the surface of the first light absorption anisotropic layer continuously change along the thickness direction. viewing angle control system.
  • An image display device including the viewing angle control system according to any one of (1) to (4).
  • the image display device including a self-luminous display device and a viewing angle control system arranged on the viewing side of the self-luminous display device.
  • the present invention when applied to a display device that requires viewing angle control, viewing angle control with higher viewing angle controllability with respect to azimuth angles, such as making it invisible from a specific azimuth angle, and superior transmittance in the front direction. system can be provided. Further, according to the present invention, an image display device can be provided. Further, according to the present invention, it is possible to provide a light absorption anisotropic layer that can constitute the viewing angle control system by combining with a polarizer. Furthermore, according to the present invention, it is possible to provide a laminate including the light absorption anisotropic layer.
  • FIG. 1 is a sectional view conceptually showing an example of a viewing angle control system of the present invention
  • FIG. 2 is a plan view of the viewing angle control system shown in FIG. 1
  • FIG. FIG. 4 is a diagram for explaining a method of obtaining an evaluation sample in an example
  • FIG. 4 is a diagram for explaining a method of measuring the direction of the absorption axis in an evaluation sample
  • It is a sectional view for explaining the pasting state of a light absorption anisotropic film.
  • FIG. 4 is a diagram for explaining a method of evaluating reflection
  • a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • parallel does not mean parallel in a strict sense, but means a range of ⁇ 5° from parallel.
  • orthogonal does not mean orthogonal in a strict sense, but means a range of ⁇ 5° from orthogonal.
  • (meth)acryl is used to mean “one or both of acrylic and methacrylic".
  • (Meth)acryloyl is used in the sense of "one or both of acryloyl and methacryloyl”.
  • the bonding direction of the divalent group (e.g., -COO-) described herein is not particularly limited. For example, when L in XLY is -COO-, If the position where *1 is attached and *2 is the position where the good too.
  • a feature of the viewing angle control system of the present invention is that the angle formed by the absorption axis of the polarizer and the direction having the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer is a predetermined angle. point (hereinafter also referred to as “characteristic point 1”), and a point in which the first light absorption anisotropic layer has a plurality of regions with different absorption axis tilt angles along the thickness direction (hereinafter, “characteristic point 1”). Also referred to as “point 2”). By satisfying feature point 1, the frontal transmittance of the viewing angle control system is excellent.
  • the center of the viewing angle (the most visible position) can be freely changed.
  • FIG. 1 shows a sectional view conceptually showing an example of the viewing angle control system of the present invention.
  • FIG. 2 shows a plan view of the viewing angle control system shown in FIG.
  • a plan view is a view of the viewing angle control system 10 viewed from above in FIG. 1 is a cross-sectional view taken along line A--A in FIG.
  • direction X and direction Z indicate directions of two coordinate axes orthogonal to each other on the viewing plane.
  • Direction Z is parallel to the thickness direction of viewing angle control system 10 .
  • direction X and direction Y indicate directions of two coordinate axes orthogonal to each other on the viewing plane.
  • the viewing angle control system 10 has a polarizer 12 and a first light absorption anisotropic layer 14 .
  • the first light absorption anisotropic layer 14 contains a dichroic substance 16 and a liquid crystal compound (not shown). As shown in FIGS. 1 and 2, when the first light absorption anisotropic layer 14 is observed from the normal direction of its surface, the dichroic substances 16 are arranged in a certain direction. More specifically, the direction of projection of the major axis direction of the dichroic substance 16 onto the surface of the first light absorption anisotropic layer 14 is parallel to the X-axis direction (horizontal direction on the paper surface). Therefore, as shown in FIG.
  • the X-axis direction corresponds to the direction in which the transmittance for linearly polarized light is the lowest in the in-plane direction of the first light absorption anisotropic layer 14 . That is, the direction of the white arrow (horizontal direction of the paper surface) shown in FIG. 2 is the direction D (hereinafter referred to as the “specific Also referred to as “direction D”).
  • the absorption axis A of the polarizer 12 is arranged parallel to the X-axis direction (horizontal direction on the paper surface). Therefore, the specific orientation D and the absorption axis A of the polarizer 12 are arranged in parallel.
  • the specific orientation D and the absorption axis A of the polarizer 12 are parallel (0°), but in the present invention, the specific orientation and the absorption axis of the polarizer
  • the angle should be 0° or more and less than 45°.
  • the angle formed by the specific orientation and the absorption axis of the polarizer is preferably 0° or more and less than 10°, more preferably 0°, because the transmittance in the front direction of the viewing angle control system is more excellent.
  • the method for measuring the specific orientation D is as follows.
  • the first light absorption anisotropic layer 14 is peeled off from the polarizer 12, and the peeled first light absorption anisotropic layer 14 is placed on a rotating stage of a polarizing microscope. Next, with the linear polarizer of the polarizing microscope set and the analyzer removed, the rotating stage is rotated to find the direction with the lowest brightness. It is estimated that the specific orientation D of the first light absorption anisotropic layer 14 and the absorption axis of the polarizer of the polarizing microscope are orthogonal to each other when the luminance is the lowest. is determined.
  • the first light absorption anisotropic layer 14 has three regions 14A to 14C.
  • the long axis direction of the dichroic substance 16 is tilted.
  • the inclination of the long axis direction of the dichroic substance 16 with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 in each region continuously decreases along the thickness direction as the distance from the polarizer 12 increases.
  • the direction parallel to the long axis direction of the dichroic substance 16 is the direction of the absorption axis, so the absorption axis is located in the direction of the white arrow in each region. do. Therefore, in FIG.
  • the angle of inclination of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 in each of the three regions 14A to 14C is different, and the first light absorption anisotropic layer
  • the inclination angle of the absorption axis with respect to the normal direction of the 14 surface decreases continuously along the thickness direction as the distance from the polarizer 12 increases.
  • the three regions have described the mode in which the absorption axes are different in inclination angle with respect to the normal direction of the surface of the first optical absorption anisotropic layer 14, but in the present invention, the first optical absorption anisotropy It is sufficient that the anisotropic layer has a plurality of (two or more) regions having absorption axes with different tilt angles with respect to the normal direction of the surface of the first light absorption anisotropic layer.
  • the number of regions is not particularly limited, and may be two or more, preferably three or more, and more preferably five or more. It is also preferable that the inclination angle of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 changes continuously along the thickness direction.
  • a method for measuring the direction of the absorption axis in each region is not particularly limited, and known methods can be used. For example, as shown in FIG. 1, by preparing a cross section of the viewing angle control system and observing the cross section with a polarizing microscope while rotating the first light absorption anisotropic layer in the measurement sample, the light absorption anisotropic The direction of the absorption axis in each region arranged in the thickness direction in the organic layer can be determined.
  • the viewing angle control system When obtaining the cross section of the viewing angle control system, the viewing angle control system is measured along a direction parallel to a plane including the central axis of transmittance of the viewing angle control system and the normal direction of the surface of the first light absorption anisotropic layer. It is preferable to disconnect the system.
  • the transmittance central axis is defined as the transmittance central axis in the direction in which the transmittance is the highest when the transmittance is measured by changing the tilt angle and the tilt direction with respect to the normal direction to the surface of the first light absorption anisotropic layer. .
  • AxoScan OPMF-1 (manufactured by Optoscience) is used to measure the transmittance of the first light absorption anisotropic layer for P-polarized light with a wavelength of 550 nm. More specifically, during the measurement, the azimuth angle at which the transmittance central axis is tilted is first searched, and then the normal direction of the first light absorption anisotropic layer along that azimuth angle is included. The polar angle, which is the angle with respect to the normal direction of the surface of the first light absorption anisotropic layer, within the plane (the plane including the transmittance center axis and perpendicular to the layer surface) is changed in increments of 5° from 0 to 60°.
  • FIG. 1 describes a mode in which the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 continuously changes along the thickness direction.
  • the invention is not limited to this aspect.
  • the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 may change discontinuously along the thickness direction.
  • the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer is not particularly limited. ° is preferred, and 50 to 80° is more preferred.
  • the directions (orientation of the absorption axes in the in-plane direction) obtained by orthographically projecting the absorption axes of the respective regions onto the surface of the first light absorption anisotropic layer 14 are all the same direction.
  • the invention is not limited to this embodiment.
  • the same direction is not limited to being exactly the same, but also includes the case where the angle formed by the directions obtained by orthogonally projecting the respective absorption axes in each region onto the surface of the first light absorption anisotropic layer 14 is within 5°. .
  • the angle formed by the azimuth with the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer and the absorption axis of the polarizer is 0° or more and less than 45°, in each region
  • the orthogonal projection of each absorption axis onto the surface of the first light absorption anisotropic layer may be different.
  • FIG. 1 shows an embodiment in which the viewing angle control system includes only one first light absorption anisotropic layer 14, the present invention is not limited to this embodiment, and the viewing angle control system includes a plurality of first light An absorption anisotropic layer may be included.
  • the first optical absorption anisotropic layer 14 shown in FIGS. It can be produced by so-called hybrid orientation of the liquid crystal compound (not shown) in the layer 14 .
  • the dichroic substance 16 in the first light absorption anisotropic layer 14 is aligned along the alignment direction of the liquid crystal compound. In other words, the dichroic substance also undergoes hybrid orientation. Therefore, as shown in FIGS. 1 and 2, as the dichroic substance 16 moves away from the polarizer 12, the longitudinal direction of the dichroic substance 16 and the normal direction of the surface of the first light absorption anisotropic layer 14 The angle to make becomes smaller continuously.
  • the hybrid alignment of the liquid crystal compound means an alignment in which the tilt angle of the liquid crystal compound changes continuously from one surface to the other surface
  • hybrid alignment of a dichroic substance. is an orientation in which the tilt angle of a dichroic material changes continuously from one surface to the other.
  • Techniques for aligning a dichroic substance in a desired manner include a technique for producing a polarizer using a dichroic material and a technique for producing a guest-host liquid crystal cell.
  • a technique for producing a dichroic polarizing element described in JP-A-11-305036 and JP-A-2002-090526, and the guests described in JP-A-2002-099388 and JP-A-2016-027387 The technique used in the manufacturing method of the host-type liquid crystal display device can also be used in manufacturing the first light absorption anisotropic layer used in the present invention.
  • the orientation of the dichroic substance can be fixed by proceeding with the polymerization of the host liquid crystal, the dichroic substance, or the optionally added polymerizable component.
  • the light absorption required for the first light absorption anisotropic layer can be achieved.
  • a polymer film can be produced that satisfies the properties.
  • the first light absorption anisotropic layer may be produced by laminating a plurality of light absorption anisotropic layers containing a dichroic substance and having absorption axes with different inclination angles.
  • the polarizer used in the present invention is not particularly limited as long as it has an absorption axis in the in-plane direction, and conventionally known polarizers can be used.
  • polarizers include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers.
  • Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretching-type polarizers, and both can be applied.
  • a coated polarizer a polarizer in which a dichroic organic dye is oriented using the orientation of a liquid crystal compound is preferable.
  • a polarizer made by as a method of obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a substrate, there are disclosed in Japanese Patent Nos.
  • polyvinyl alcohol-based resins (polymers containing —CH 2 —CHOH— as repeating units, particularly polyvinyl alcohol and ethylene-vinyl alcohol copolymers are selected from the group consisting of polyvinyl alcohol resins, which are readily available and excellent in the degree of polarization. It is preferable that the polarizer includes at least one
  • the thickness of the polarizer is not particularly limited, it is preferably 3 to 60 ⁇ m, more preferably 5 to 20 ⁇ m, even more preferably 5 to 10 ⁇ m.
  • the first light absorption anisotropic layer has a plurality of regions along the thickness direction, which have absorption axes tilted with respect to the normal direction of the surface of the first light absorption anisotropic layer.
  • the material contained in the first light absorption anisotropic layer is not particularly limited as long as it exhibits the properties described above, but the first light absorption anisotropic layer preferably contains a dichroic substance.
  • This first light absorption anisotropic layer can constitute the above-described viewing angle control system by combining with a polarizer.
  • a dichroic substance means a dye that absorbs differently depending on the direction.
  • the dichroic substance may be polymerized in the first light absorption anisotropic layer.
  • the dichroic substance is not particularly limited, and includes visible light absorbing substances (dichroic dyes), luminescent substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, infrared absorbing substances, nonlinear optical substances, carbon nanotubes, and inorganic Substances (for example, quantum rods) can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
  • two or more dichroic substances may be used in combination. and at least one dichroic substance having a maximum absorption wavelength in the wavelength range of 500 nm or more and less than 700 nm.
  • the first light absorption anisotropic layer can be formed using the composition for forming the first light absorption anisotropic layer.
  • the dichroic substance may have a crosslinkable group.
  • the dichroic substance has a crosslinkable group
  • the dichroic substance in a predetermined orientation state can be immobilized.
  • the crosslinkable group include (meth)acryloyl groups, epoxy groups, oxetanyl groups, and styryl groups, among which (meth)acryloyl groups are preferred.
  • the content of the dichroic substance in the first light absorption anisotropic layer is not particularly limited, but at least one of superior transmittance in the front direction of the viewing angle control system and superior viewing angle controllability. (hereinafter also simply referred to as "the point where the effect of the present invention is more excellent"), it is preferably 1 to 50% by mass, and 10 to 25% by mass is more preferred.
  • the first light absorption anisotropic layer preferably contains a liquid crystal compound. This makes it possible to orient the dichroic substance with a higher degree of orientation while suppressing precipitation of the dichroic substance.
  • a liquid crystal compound both a polymer liquid crystal compound and a low-molecular liquid crystal compound can be used, and a polymer liquid crystal compound is preferable because the degree of orientation can be increased.
  • a high-molecular liquid crystal compound and a low-molecular liquid crystal compound may be used in combination.
  • the term "polymeric liquid crystal compound” refers to a liquid crystal compound having repeating units in its chemical structure.
  • low-molecular-weight liquid crystal compound refers to a liquid crystal compound having no repeating unit in its chemical structure.
  • polymer liquid crystal compound examples include thermotropic liquid crystalline polymers described in JP-A-2011-237513, and high molecular weight compounds described in paragraphs [0012] to [0042] of International Publication No. 2018/199096. Examples include molecular liquid crystal compounds.
  • low-molecular-weight liquid crystal compounds include liquid crystal compounds described in paragraphs [0072] to [0088] of JP-A-2013-228706, among which liquid crystal compounds exhibiting smectic properties are preferred.
  • a repeating unit represented by the following formula (1) (hereinafter also abbreviated as “repeating unit (1)”) is used because the degree of orientation of the obtained first light absorption anisotropic layer is higher. It is preferably a polymer liquid crystal compound containing.
  • P1 represents the main chain of the repeating unit
  • L1 represents a single bond or a divalent linking group
  • SP1 represents a spacer group
  • M1 represents a mesogenic group
  • T1 represents a terminal group.
  • main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D).
  • a group represented by the following formula (P1-A) is preferable in terms of diversity and ease of handling.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, Alternatively, it represents an alkoxy group having 1 to 10 carbon atoms.
  • the alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group).
  • the number of carbon atoms in the alkyl group is preferably 1 to 5.
  • the group represented by the above formula (P1-A) is preferably one unit of the partial structure of the poly(meth)acrylic acid ester obtained by polymerization of the (meth)acrylic acid ester.
  • the group represented by the above formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
  • the group represented by the above formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of an oxetane group of a compound having an oxetane group.
  • the group represented by formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of a compound having at least one of an alkoxysilyl group and a silanol group.
  • the compound having at least one of an alkoxysilyl group and a silanol group includes a compound having a group represented by the formula SiR 14 (OR 15 ) 2 —.
  • R 14 has the same definition as R 14 in (P1-D), and each of a plurality of R 15 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • L1 is a single bond or a divalent linking group.
  • Divalent linking groups represented by L1 include -C(O)O-, -O-, -S-, -C(O)NR 3 -, -SO 2 -, and -NR 3 R 4 -. is mentioned.
  • R 3 and R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms.
  • P1 is a group represented by formula (P1-A)
  • L1 is represented by -C(O)O- because the degree of orientation of the first light absorption anisotropic layer is higher. groups are preferred.
  • P1 is a group represented by formulas (P1-B) to (P1-D)
  • L1 is preferably a single bond because the degree of orientation of the first light absorption anisotropic layer becomes higher.
  • the spacer group represented by SP1 is composed of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and an alkylene fluoride structure in view of the ease of exhibiting liquid crystallinity and the availability of raw materials. It preferably contains at least one structure selected from the group.
  • the oxyethylene structure represented by SP1 is preferably a group represented by *--(CH 2 --CH 2 O) n1 --*.
  • n1 represents an integer of 1 to 20
  • * represents the bonding position with L1 or M1 in the above formula (1).
  • n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and more preferably 3, in order to increase the degree of orientation of the first light absorption anisotropic layer.
  • the oxypropylene structure represented by SP1 has a higher degree of orientation of the first light absorption anisotropic layer, so the group represented by *-(CH(CH 3 )-CH 2 O) n2 -* is preferable.
  • n2 represents an integer of 1 to 3
  • * represents the bonding position with L1 or M1.
  • the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 -O) n3 -* because the degree of orientation of the first light absorption anisotropic layer is higher.
  • n3 represents an integer of 6 to 10
  • * represents the bonding position with L1 or M1.
  • the alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4 -* because the degree of orientation of the first light absorption anisotropic layer is higher.
  • n4 represents an integer of 6 to 10 * represents the bonding position with L1 or M1.
  • the mesogenic group represented by M1 is a group showing the main skeleton of the liquid crystal molecule that contributes to liquid crystal formation.
  • Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state.
  • the mesogenic group for example, a group having at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups is preferred.
  • the mesogenic group preferably has an aromatic hydrocarbon group, more preferably 2 to 4 aromatic hydrocarbon groups, from the viewpoint that the degree of orientation of the first light absorption anisotropic layer is higher, More preferably it has 3 aromatic hydrocarbon groups.
  • the mesogenic group the following formula (M1-A ) or a group represented by the following formula (M1-B) is preferable, and a group represented by the formula (M1-B) is more preferable.
  • A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with alkyl groups, fluorinated alkyl groups, alkoxy groups or substituents.
  • the divalent group represented by A1 is preferably a 4- to 6-membered ring. Also, the divalent group represented by A1 may be monocyclic or condensed. * represents the binding position with SP1 or T1.
  • the divalent aromatic hydrocarbon group represented by A1 includes a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group and a tetracene-diyl group.
  • a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable, from the viewpoint of properties and the like.
  • the divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation.
  • Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom.
  • the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
  • divalent aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group ), isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimide-diyl group, thienothiazole-diyl group , thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
  • pyridylene group pyridine-diy
  • divalent alicyclic group represented by A1 examples include a cyclopentylene group and a cyclohexylene group.
  • a1 represents an integer of 1-10. When a1 is 2 or more, multiple A1s may be the same or different.
  • A2 and A3 are each independently a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in formula (M1-A), so description thereof is omitted.
  • a2 represents an integer of 1 to 10, and when a2 is 2 or more, multiple A2 may be the same or different, and multiple A3 may be the same or different.
  • a plurality of LA1 may be the same or different.
  • a2 is preferably an integer of 2 or more, more preferably 2, from the viewpoint that the degree of orientation of the first light absorption anisotropic layer becomes higher.
  • LA1 is a divalent linking group.
  • each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group.
  • a2 is 2, it is preferable that one of the two LA1 is a divalent linking group and the other is a single bond because the degree of orientation of the first light absorption anisotropic layer is higher. .
  • M1 include the following structures.
  • Ac represents an acetyl group.
  • the terminal group represented by T1 includes a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms.
  • 1 to 10 alkylthio group 1 to 10 carbon alkoxycarbonyloxy group, 1 to 10 carbon alkoxycarbonyl group (ROC(O)-: R is an alkyl group), 1 to 10 carbon acyloxy group, carbon 1 to 10 acylamino group, 1 to 10 carbon atoms alkoxycarbonylamino group, 1 to 10 carbon atoms sulfonylamino group, 1 to 10 carbon atoms sulfamoyl group, 1 to 10 carbon atoms carbamoyl group, 1 carbon atom 10 to 10 sulfinyl groups, ureido groups with 1 to 10 carbon atoms, and (meth)acryloyloxy group-containing groups.
  • Examples of the (meth)acryloyloxy group-containing group include -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above. A is (meth) represents an acryloyloxy group).
  • T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, since the degree of orientation of the first light absorption anisotropic layer becomes higher.
  • These terminal groups may be further substituted with these groups or polymerizable groups described in JP-A-2010-244038.
  • T1 is preferably a polymerizable group from the viewpoint that the adhesiveness to the adjacent layer can be improved and the cohesive force of the film can be improved.
  • the polymerizable group is not particularly limited, but is preferably a polymerizable group capable of radical polymerization or cationic polymerization.
  • As the radically polymerizable group generally known radically polymerizable groups can be used, and acryloyl groups and methacryloyl groups are preferred. In this case, an acryloyl group is generally known to have a high polymerization rate, and an acryloyl group is preferred from the viewpoint of improving productivity, but a methacryloyl group can also be used as the polymerizable group.
  • cationically polymerizable groups generally known cationically polymerizable groups can be used. Specifically, alicyclic ether groups, cyclic acetal groups, cyclic lactone groups, cyclic thioether groups, spiroorthoester groups, and , a vinyloxy group, and the like. Among them, an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group or a vinyloxy group is preferable.
  • the weight-average molecular weight (Mw) of the polymer liquid crystal compound containing the repeating unit represented by the above formula (1) is preferably from 1000 to 500000, more preferably from 2000 to 300,000 is more preferred. If the Mw of the polymer liquid crystal compound is within the above range, the polymer liquid crystal compound can be easily handled.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 10,000 or more, more preferably 10,000 to 300,000, from the viewpoint of suppressing cracks during coating.
  • the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably less than 10,000, more preferably 2,000 or more and less than 10,000.
  • the weight average molecular weight and number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method.
  • the content of the liquid crystal compound is 50 to 99% with respect to the total mass of the first light absorption anisotropic layer, since the effect of the present invention is more excellent. % by mass is preferable, and 75 to 90% by mass is more preferable.
  • the first light absorption anisotropic layer may contain components other than the components described above.
  • Other components include, for example, vertical alignment agents and leveling agents.
  • Vertical alignment agents include boronic acid compounds and onium salts.
  • a compound represented by formula (A) is preferable as the boronic acid compound.
  • R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R3 represents a substituent containing a ( meth)acryl group.
  • Specific examples of the boronic acid compound include boronic acid compounds represented by general formula (I) described in paragraphs [0023] to [0032] of JP-A-2008-225281. As the boronic acid compound, compounds exemplified below are also preferable.
  • the compound represented by formula (B) is preferable.
  • ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocyclic ring.
  • X ⁇ represents an anion.
  • L 1 represents a divalent linking group.
  • L2 represents a single bond or a divalent linking group.
  • Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
  • onium salts include onium salts described in paragraphs [0052] to [0058] of JP-A-2012-208397, and onium described in paragraphs [0024] to [0055] of JP-A-2008-026730. salts, and onium salts described in JP-A-2002-037777.
  • the content of the vertical alignment agent is preferably 0.1 to 400% by mass, more preferably 0.5 to 350%, based on the total mass of the liquid crystal compound. % by mass is more preferred.
  • the vertical alignment agents may be used alone or in combination of two or more. When two or more vertical alignment agents are used, the total amount thereof is preferably within the above range.
  • the first light absorption anisotropic layer may contain a leveling agent.
  • the composition for forming the first light absorption anisotropic layer which will be described later, contains a leveling agent, surface roughness due to drying air applied to the surface of the first light absorption anisotropic layer is suppressed. and the dichroic material is oriented more uniformly.
  • the leveling agent is not particularly limited, and is preferably a leveling agent containing fluorine atoms (fluorine-based leveling agent) or a leveling agent containing silicon atoms (silicon-based leveling agent), more preferably a fluorine-based leveling agent.
  • fluorine-based leveling agents include fatty acid esters of polyvalent carboxylic acids in which a portion of the fatty acid is substituted with a fluoroalkyl group, and polyacrylates having fluoro substituents.
  • leveling agent examples include compounds exemplified in paragraphs [0046] to [0052] of JP-A-2004-331812, and paragraphs [0038] to [0052] of JP-A-2008-257205. and the compound of
  • the content of the leveling agent is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the liquid crystal compound. is more preferred.
  • a leveling agent may be used independently and may be used in combination of 2 or more type. When two or more leveling agents are used, the total amount thereof is preferably within the above range.
  • the first light absorption anisotropic layer is preferably formed using a composition for forming a first light absorption anisotropic layer containing a dichroic substance.
  • the composition for forming the first light absorption anisotropic layer preferably contains a liquid crystal compound, a solvent to be described later, and the like, and may further contain other components described above. .
  • the dichroic substance contained in the composition for forming the first light absorption anisotropic layer includes a dichroic substance that can be contained in the first light absorption anisotropic layer.
  • the content of the dichroic substance with respect to the total solid weight of the composition for forming the first light absorption anisotropic layer is the same as the content of the dichroic substance with respect to the total weight of the first light absorption anisotropic layer. is preferred.
  • the total solid content in the composition for forming the first light absorption anisotropic layer refers to components excluding the solvent, and specific examples of the solid content include dichroic substances, liquid crystal compounds, and Other ingredients mentioned above are included.
  • the liquid crystal compound and other components that may be contained in the composition for forming the first light absorption anisotropic layer are the same as the liquid crystal compound and other components that may be contained in the first light absorption anisotropic layer. be.
  • the contents of the liquid crystal compound and other components relative to the total solid mass of the composition for forming the first light absorption anisotropic layer are respectively the liquid crystal compound and other components relative to the total mass of the first light absorption anisotropic layer. is preferably the same as the content of the components of
  • the composition for forming the first light absorption anisotropic layer preferably contains a solvent.
  • solvents include ketones, ethers, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated carbons, esters, alcohols, cellosolves, cellosolve acetates, sulfoxides, , amides, and organic solvents such as heterocyclic compounds, as well as water. These solvents may be used singly or in combination of two or more. Among these solvents, organic solvents are preferred, and halogenated carbons or ketones are more preferred.
  • the content of the solvent is preferably 80 to 99% by mass with respect to the total mass of the composition for forming the first light absorption anisotropic layer. , more preferably 83 to 97% by mass, and even more preferably 85 to 95% by mass.
  • the composition for forming the first light absorption anisotropic layer may contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, it is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
  • a photopolymerization initiator commercially available products can also be used, and Irgacure 184, Irgacure 907, Irgacure 369, Irgacure 651, Irgacure 819, Irgacure OXE-01 and Irgacure manufactured by BASF. and OXE-02.
  • a polymerization initiator may be used individually by 1 type, or may use 2 or more types together.
  • the content of the polymerization initiator is 0.00% with respect to the total solid content of the composition for forming the first light absorption anisotropic layer. 01 to 30% by mass is preferred, and 0.1 to 15% by mass is more preferred.
  • the method for producing the first light absorption anisotropic layer is not particularly limited, but since the degree of orientation of the obtained first light absorption anisotropic layer is higher, a dichroic substance and a liquid crystal compound are added on the alignment film.
  • a step of forming a coating film by applying a composition for forming a first light absorption anisotropic layer containing the (hereinafter also referred to as "orientation step"), and a method (hereinafter also referred to as "this production method”) in this order is preferred.
  • the liquid crystal component is a component containing not only the liquid crystal compound described above but also a dichroic substance having liquid crystallinity.
  • the coating film forming step is a step of applying the composition for forming the first light absorption anisotropic layer on the alignment film to form a coating film.
  • the composition for forming the first light absorption anisotropic layer containing the above-described solvent is used, or the composition for forming the first light absorption anisotropic layer is heated to be a liquid such as a melt. This makes it easier to apply the composition for forming the first light absorption anisotropic layer onto the alignment film.
  • Examples of the method of applying the composition for forming the first light absorption anisotropic layer include a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die
  • Known methods such as a coating method, a spray method, and an inkjet method can be used.
  • the alignment film may be any film as long as it aligns the liquid crystal component that can be contained in the composition for forming the first light absorption anisotropic layer. Rubbing treatment on the film surface of an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or an organic compound (eg, ⁇ -tricosanoic acid) by the Langmuir-Blodgett method (LB film) , dioctadecylmethylammonium chloride, methyl stearate). Furthermore, an alignment film is also known in which an alignment function is produced by application of an electric field, application of a magnetic field, or irradiation of light.
  • an organic compound preferably polymer
  • LB film Langmuir-Blodgett method
  • an alignment film formed by rubbing treatment is preferable from the viewpoint of ease of control of the pretilt angle of the alignment film, and a photo-alignment film formed by light irradiation is also preferable from the viewpoint of alignment uniformity.
  • the alignment step is a step of orienting the liquid crystal component (especially dichroic substance) contained in the coating film.
  • the dichroic substance is considered to be aligned along the liquid crystal compound aligned by the alignment film.
  • the orientation step may include drying. Components such as the solvent can be removed from the coating film by the drying treatment.
  • the drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and/or blowing air.
  • the orientation step preferably includes heat treatment.
  • the heat treatment is preferably from 10 to 250° C., more preferably from 25 to 190° C., from the viewpoint of suitability for production.
  • the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
  • the orientation step may have a cooling treatment performed after the heat treatment.
  • the cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25° C.). Thereby, the orientation of the dichroic substance contained in the coating film is more fixed, and the degree of orientation of the first light absorption anisotropic layer is further increased.
  • a cooling means is not particularly limited, and a known method can be used. Through the steps described above, the anisotropic light absorption layer of the present invention can be obtained.
  • This production method may include a step of curing the first light absorption anisotropic layer (hereinafter also referred to as a “curing step”) after the alignment step.
  • the curing step is performed, for example, by heating and/or light irradiation (exposure).
  • the curing step is preferably carried out by light irradiation.
  • Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferred.
  • ultraviolet rays may be irradiated while being heated during curing, or ultraviolet rays may be irradiated through a filter that transmits only specific wavelengths.
  • the exposure may be performed in a nitrogen atmosphere. When the anisotropic light absorption layer is cured by radical polymerization, it is preferable to perform the exposure in a nitrogen atmosphere because the inhibition of polymerization by oxygen is reduced.
  • the viewing angle control system may include members other than the polarizer and the first light absorption anisotropic layer described above.
  • the viewing angle control system may further include a second optical absorption anisotropic layer having an absorption axis parallel to the thickness direction.
  • the second light absorption anisotropic layer By including the second light absorption anisotropic layer, the viewing angle controllability is further improved.
  • the absorption axis is parallel to the thickness direction. As described above, parallel does not mean parallel in a strict sense, but means a range of ⁇ 5° from parallel. Therefore, in the second light absorption anisotropic layer, the angle formed by the absorption axis and the thickness direction is in the range of 5° or less.
  • the second light absorption anisotropic layer preferably contains a dichroic substance like the first light absorption anisotropic layer.
  • the types of dichroic substances are as described above.
  • the second light absorption anisotropic layer preferably contains a liquid crystal compound, like the first light absorption anisotropic layer.
  • the types of liquid crystal compounds are as described above.
  • a preferred embodiment of the second light absorption anisotropic layer is a layer in which a dichroic substance is vertically aligned in the thickness direction. The preferred mode as described above can be formed by adding a dichroic substance to the vertically aligned liquid crystal compound.
  • a method for forming the second light absorption anisotropic layer is not particularly limited, and known methods can be used. Among them, a method using a composition for forming the second light absorption anisotropic layer containing a dichroic substance and a liquid crystal compound is preferable.
  • the present invention also relates to a laminate including a first optically anisotropic layer and a second optically anisotropic layer.
  • a viewing angle control system can be constructed.
  • the viewing angle control system may include a transparent substrate film.
  • the transparent substrate film may be used as a substrate for forming the first light absorption anisotropic layer, or may be used as a film for protecting the first light absorption anisotropic layer.
  • the transparent substrate film may also serve as the retardation layer.
  • known transparent resin films, transparent resin plates, transparent resin sheets, and the like can be used, and there is no particular limitation.
  • transparent resin films include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, and polyethersulfone.
  • the acrylic polymer film preferably contains an acrylic polymer containing at least one unit selected from lactone ring units, maleic anhydride units, and glutaric anhydride units.
  • the thickness of the transparent substrate film is preferably 20-100 ⁇ m.
  • the viewing angle control system may include an alignment film between the transparent substrate film and the first light absorption anisotropic layer.
  • the alignment film may be any layer as long as the dichroic substance can be in the desired alignment state on the alignment film, and is used in forming the above-described first light absorption anisotropic layer. oriented film.
  • the viewing angle control system may include an adhesive layer, an adhesive layer, a refractive index adjustment layer, a barrier layer, and the like, in addition to the members described above.
  • the viewing angle control system of the present invention can be used for any image display device. That is, the present invention also relates to an image display device including the viewing angle control system.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device, a self-luminous display device (organic EL (electroluminescence) display device, and a micro LED (light emitting diode) display device), and the like.
  • Display panels in image display devices include display panels including liquid crystal cells, display panels of self-luminous display devices, and the like, and a viewing angle control system is arranged on these display panels.
  • a liquid crystal display usually has a liquid crystal cell and a backlight, and polarizers are provided on both the viewing side and the backlight side of the liquid crystal cell.
  • the viewing angle control system of the present invention can be applied to either the viewing side or the backlight side of the liquid crystal display device, or can be applied to both sides.
  • Application to a liquid crystal display device can be realized by replacing the polarizers on either or both surfaces of the liquid crystal display device with the viewing angle control system of the present invention. That is, the polarizers included in the viewing angle control system of the present invention can be used as the polarizers provided on both sides of the liquid crystal cell.
  • the viewing angle control system of the present invention When the viewing angle control system of the present invention is applied to an organic EL display device, the viewing angle control system is arranged on the viewing side of the organic EL display device, and the polarizer in the viewing angle control system of the present invention is the first It is preferably arranged closer to the organic EL display device than the light absorption anisotropic layer. Further, it is preferable to place a ⁇ /4 plate between the polarizer and the organic EL display device. In addition, in the viewing angle control system in the image display device, it is preferable that the first light absorption anisotropic layer is arranged on the viewing side with respect to the polarizer.
  • the liquid crystal cell constituting the liquid crystal display device will be described in detail below.
  • Liquid crystal cells used in liquid crystal display devices are preferably in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, or TN (Twisted Nematic) mode. , but not limited to these.
  • VA Vertical Alignment
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • TN Transmission Nematic
  • the rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied, and are twisted at an angle of 60 to 120°.
  • a TN mode liquid crystal cell is most widely used as a color TFT (Thin Film Transistor) liquid crystal display device, and is described in many documents.
  • the rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • VA mode liquid crystal cells include (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied and substantially horizontally aligned when voltage is applied (Japanese Unexamined Patent Application Publication No. 2-2002). 176625), and (2) a liquid crystal cell in which the VA mode is multi-domained (MVA mode) for widening the viewing angle (SID97, Digest of tech. Papers (preliminary collection) 28 (1997) 845).
  • a liquid crystal cell in a mode in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is performed when voltage is applied (Proceedings of the Japan Liquid Crystal Forum 58-59 (1998)) and (4) Survival mode liquid crystal cells (presented at LCD International 98).
  • any of PVA (Patterned Vertical Alignment) type, optical alignment type, and PSA (Polymer-Sustained Alignment) type may be used. Details of these modes are described in Japanese Unexamined Patent Application Publication No. 2006-215326 and Japanese National Publication of International Patent Application No. 2008-538819.
  • IPS mode liquid crystal cell rod-like liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond planarly by applying an electric field parallel to the substrate surface.
  • a black display is obtained when no electric field is applied, and the absorption axes of the pair of upper and lower polarizers are perpendicular to each other.
  • a method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in Japanese Patent Application Laid-Open Nos. 10-54982, 11-202323 and 9-292522. JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
  • ⁇ Preparation of transparent support 1 with alignment film> The surface of a cellulose acylate film (TAC substrate having a thickness of 40 ⁇ m; TG40, Fuji Film Co., Ltd.) was saponified with an alkaline solution, and the following coating solution 1 for forming an alignment film was applied thereon with a wire bar.
  • the cellulose acylate film on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form an alignment film PA1, thereby obtaining a transparent support 1 with an alignment film.
  • the film thickness of the alignment film PA1 was 0.5 ⁇ m.
  • the following composition 1 for forming a light absorption anisotropic layer was continuously applied with a wire bar to form a coating film P1.
  • the coating film P1 was heated at 140° C. for 30 seconds and then cooled to room temperature (23° C.). Then, the coating film P1 was heated at 80° C. for 60 seconds and cooled to room temperature again. After that, the coating film P1 is irradiated for 2 seconds under irradiation conditions of an illuminance of 200 mW/cm 2 using an LED lamp (center wavelength 365 nm), thereby forming a light absorption anisotropic layer P1 on the alignment film PA1, and absorbing light.
  • An anisotropic film P1 was obtained.
  • the film thickness of the light absorption anisotropic layer P1 was 3 ⁇ m, and the degree of orientation was 0.96.
  • composition 1 for forming light absorption anisotropic layer
  • dichroic substance D-1 7.976 parts by mass
  • dichroic substance D-2 2.991 parts by mass
  • dichroic substance D-3 12.562 parts by mass
  • polymer liquid crystal compound P- 1 63.809 parts by mass the following low molecular weight liquid crystal compound M-1 8.973 parts by mass
  • polymerization initiator IRGACUREOXE-02 manufactured by BASF
  • 0.798 parts by mass the following compound E-1 1.196 parts by mass, below Compound E-2 1.196 parts by mass
  • Surfactant F-1 below 0.199 parts by mass Surfactant F-2 below 0.299 parts by mass
  • Cyclopentanone 937.2 parts by mass Tetrahydrofuran 937.2 parts by mass part benzyl alcohol 19.9 parts by mass ⁇
  • ⁇ Formation of light absorption anisotropic layer P2> The alignment film of the alignment film-attached transparent support 1 was subjected to a rubbing treatment, and the following composition P2 for forming a light absorption anisotropic layer was applied with a wire bar to form a coating film P2. Next, the coating film P2 was heated at 120° C. for 30 seconds, and cooled to room temperature (23° C.). Next, the coating film P2 was heated at 80° C. for 60 seconds and cooled to room temperature again.
  • the coating film P2 is irradiated for 1 second under irradiation conditions of an illuminance of 200 mW/cm 2 using an LED lamp (central wavelength of 365 nm) to form a light absorption anisotropic layer P2 on the transparent support 1 with the alignment film. Then, a light-absorbing anisotropic film P2 was obtained.
  • the film thickness of the light absorption anisotropic layer P2 was 1.4 ⁇ m, and the surface energy was 26.5 mN/m.
  • composition of Composition P2 for Forming Light-Absorbing Anisotropic Layer
  • Polymerization initiator IRGACUREOXE-02 manufactured by BASF
  • the following composition P3 for forming an anisotropic light absorption layer was continuously applied with a #4 wire bar to form a coating layer P3.
  • the coating layer P3 was heated at 120° C. for 60 seconds and cooled to room temperature (23° C.).
  • a light absorption anisotropic layer P3 was produced on the transparent support 1 with the orientation film by irradiating for 60 seconds under irradiation conditions of an illuminance of 28 mW/cm 2 using a high-pressure mercury lamp. got The film thickness of the light absorption anisotropic layer P3 was 0.7 ⁇ m.
  • composition liquid P3 for forming light absorption anisotropic layer Dichroic azo dye compound D6 below 2.7 parts by mass Dichroic azo dye compound D7 below 2.7 parts by mass Dichroic azo dye compound D8 below 2.7 parts by mass Liquid crystalline compound M4 below 75. 5 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 0.8 parts by mass The following interface improver F-4 0.6 parts by mass Cyclopentanone 274.5 parts by mass Tetrahydrofuran 640.5 parts by mass --- ⁇
  • the prepared light absorption anisotropic film P1 was prepared by placing the light absorption anisotropic film P1 horizontally on a sample table using a polarimeter AxoScan OPMF-1 manufactured by Axomerics, and P-polarized light was incident on this film.
  • the transmittance was measured while variously changing the azimuth angle and polar angle, and the azimuth angle and polar angle of the transmittance central axis of the light absorption anisotropic layer P1 in the light absorption anisotropic film P1 were investigated. Similar measurements were also performed for the light-absorbing anisotropic films P2 and P3.
  • a section which is an evaluation sample with a thickness of 2 ⁇ m, is taken from the light absorption anisotropic layer with a microtome parallel to a plane including the transmittance center axis and the film normal line. More specifically, the light absorption anisotropic layer obtained by peeling the orientation film-attached transparent support 1 from the light absorption anisotropic layer film (the light absorption anisotropic films P2 and P3) is coated with an embedding resin. From the sample 20 having the first embedding resin layer 22, the light absorption anisotropic layer 24, and the second embedding resin layer 26 in this order, as shown in FIG. A section 28, which is a 2 ⁇ m evaluation sample, is taken.
  • the evaluation sample of the light absorption anisotropic layer was obtained by peeling off the transparent support 1 with the alignment film, but it may be cut in a state in which various materials such as a support and a polarizer are adhered.
  • the section 28 is placed on the rotating table of the polarizing microscope, the linear polarizer of the polarizing microscope is set, and with the analyzer removed, the section 28 is rotated in the direction of the arrow. , the azimuth angle of the intercept (the angle at which the intercept is rotated) at which the cross section of the light absorption anisotropic layer exhibits the highest extinction with respect to the linearly polarized light incident from below the intercept (arrow in FIG. 4).
  • the absorption axis of the intercept is perpendicular to the absorption axis of the polarizer of the polarizing microscope, and from this, the inclination of the absorption axis to the normal direction of the surface of the light absorption anisotropic layer is obtained.
  • the absorption axis was oriented in the normal direction of the light absorption anisotropic layer P1 from the support side to the air side. That is, the dichroic substance was vertically aligned. The same was true for the anisotropic light absorption layer P3 in the anisotropic light absorption film P3.
  • the angle ⁇ A between the absorption axis near the interface on the support side and the normal to the surface of the anisotropic light absorption layer was 80°.
  • the angle formed by the long axis direction of the dichroic substance near the interface on the support side and the normal to the surface of the light absorption anisotropic layer was 80°.
  • the angle ⁇ B between the absorption axis near the air-side interface of the anisotropic light absorption layer P2 and the normal to the anisotropic light absorption layer was 50°.
  • the angle formed by the long axis direction of the dichroic substance near the air-side interface and the normal to the surface of the light absorption anisotropic layer was 50°.
  • the inclination angle of the absorption axis with respect to the normal direction of the surface of the anisotropic light absorption layer changed continuously from the vicinity of the interface on the support side toward the vicinity of the interface on the air side.
  • the orthogonal projection of the absorption axis of each region onto the surface of the light absorption anisotropic layer was parallel. That is, in the light absorption anisotropic layer P2, the liquid crystal compound was hybrid-oriented from the support side to the outside of the air, and the dichroic substance was also hybrid-oriented from the support side to the air side.
  • Example 1 An IPS mode liquid crystal display device, iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out.
  • the prepared light-absorbing anisotropic film P1 was laminated on the viewing side polarizer of the liquid crystal cell so that the support was on the liquid crystal cell side.
  • the prepared light-absorbing anisotropic film P2 is placed thereon so that the support is on the liquid crystal cell side, and the absorption axis of the polarizer on the viewing side and the prepared light-absorbing anisotropic film P2 It was laminated so that the direction of the lowest transmittance for linearly polarized light was parallel to the in-plane direction of the light absorption anisotropic layer P2.
  • an image display device having a viewing angle control system including the viewer side polarizer and the light absorption anisotropic layer P2 was produced.
  • the viewer-side polarizer in the iPad Air (registered trademark) manufactured by Apple Inc.
  • Example 2 An IPS mode liquid crystal display device, iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out.
  • the prepared light absorption anisotropic film P2 is placed so that the support is on the liquid crystal cell side, and the absorption axis of the viewing side polarizer and the light absorption anisotropy
  • the film P2 was laminated so that the direction having the lowest transmittance for linearly polarized light (hereinafter also referred to as "specific direction D1”) was parallel to the in-plane direction of the film P2.
  • the prepared light-absorbing anisotropic film P1 was laminated thereon so that the support was on the side of the liquid crystal cell.
  • a second light-absorbing anisotropic film P2 is placed thereon so that the support is on the viewing side, and the absorption axis of the polarizer on the viewing side and the second light-absorbing anisotropic film They were laminated so that the direction with the lowest transmittance for linearly polarized light (hereinafter also referred to as “specific direction D2”) was parallel to the in-plane direction of P2.
  • specific direction D2 the direction with the lowest transmittance for linearly polarized light
  • FIG. 5 The cross-sectional view which cut
  • the light absorption anisotropic film P1 is omitted.
  • the support 30A and the light absorption anisotropy 32A in the first light absorption anisotropic film P1, and the support 30B and the light absorption in the second light absorption anisotropic film P1 Only the anisotropic layer 32B is shown, and also the dichroic material 34 present near the opposing interfaces of the light absorbing anisotropic layers 32A and 32B.
  • FIG. 5 The cross-sectional view which cut
  • the light absorption anisotropic film P1 is omitted.
  • the dichroic substance present in regions other than near the interface between the light absorption anisotropic layers 32A and 32B is omitted.
  • the light absorption anisotropic layer 32B side in the light absorption anisotropic layer 32A with respect to the stacking direction of the light absorption anisotropic layers 32A and 32B (vertical direction of the paper surface in FIG. 5)
  • the long axis direction of the dichroic material 32 near the surface of the is located in a place rotated counterclockwise, whereas the lamination direction of the light absorption anisotropic layers 32A and 32B (vertical direction of the paper surface in FIG.
  • the long axis direction of the dichroic substance 32 near the surface of the anisotropic light absorption layer 32A in the anisotropic light absorption layer 32B is positioned at a position rotated clockwise, and The direction of rotation of the light absorption anisotropic layers 32A and 32B of the dichroic material is opposite to the stacking direction. That is, the position of the dichroic substance 32 in the light absorption anisotropic layer 32A and the position of the dichroic substance 32 in the light absorption anisotropic layer 32B are line symmetrical in the cross-sectional view. there is In this manner, an image display device having a viewing angle control system including the viewer side polarizer and the light absorption anisotropic layer P2 was produced.
  • Example 3 An image display device of Example 3 was produced in the same manner as in Example 1, except that the light-absorbing anisotropic film P1 was changed to the light-absorbing anisotropic film P3.
  • IPS mode liquid crystal display device iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out.
  • the prepared light-absorbing anisotropic film P1 was laminated on the viewing side polarizer of the liquid crystal cell so that the support was on the liquid crystal cell side.
  • an image display device of Comparative Example 1 was produced.
  • the image display device of Comparative Example 1 does not include the viewing angle control system of the present invention.
  • the image display device 40 of each example and comparative example manufactured by the above procedure is arranged such that the display surface 40A is perpendicular to the ground and the absorption axis of the polarizer on the viewing side of the image display device 40 It was fixed in a state in which the direction of was vertical to the ground. Further, as shown in FIG. 6, a glass plate 42 having a thickness of 2 mm was placed at an angle perpendicular to the screen of the display and the ground. Furthermore, the room was made into a dark room, a sample image was displayed on the display surface 40A, and reflection of the image on the glass plate 42 was visually evaluated sensorily. AA: No reflection on the glass plate is visible A: Almost no reflection on the glass plate is visible B: Some reflection on the glass plate is visible C: Reflection on the glass plate is visible D: Reflection on the glass plate is strongly visible
  • a sample image is displayed on the display surface of the image display device of each example and comparative example, and the luminance in the front direction is measured using a spectroradiometer SR-UL1R (manufactured by Topcon Technohouse), and evaluated according to the following criteria. did.
  • SR-UL1R manufactured by Topcon Technohouse
  • the viewing angle control system of the present invention exhibited the desired effect.
  • reflection from the display surface onto the glass plate arranged in an oblique direction was suppressed.
  • the display surface becomes more difficult to see at a specific azimuth angle where the reflection is suppressed, and the viewing angle controllability is higher.

Abstract

The present invention provides: a viewing angle control system which, when applied to a display device requiring viewing angle control, has higher viewing angle controllability for an azimuth angle such as that for making visual recognition impossible from a specific azimuth angle, etc., and has excellent front direction transmittance; an image display device; a light absorption anisotropic layer; and a laminate. This viewing angle control system has a polarizer and a first light absorption anisotropic layer, wherein: the polarizer has an absorption axis in the in-plane direction, and an angle formed between the absorption axis of the polarizer and the orientation having the lowest transmittance with respect to linearly polarized light in the in-plane direction of the first light absorption anisotropic layer is at least 0° but less than 45°; the first light absorption anisotropic layer has, along the thickness direction, a plurality of regions having absorption axes inclined with respect to the direction normal to the surface of the first light absorption anisotropic layer, and the inclination angles of the absorption axes in the plurality of regions with respect to the direction normal to the surface of the first absorption anisotropic layer differ from each other.

Description

視角制御システム、画像表示装置、光学異方性層、積層体viewing angle control system, image display device, optically anisotropic layer, laminate
 本発明は、視角制御システム、画像表示装置、光学異方性層、および、積層体に関する。 The present invention relates to a viewing angle control system, an image display device, an optically anisotropic layer, and a laminate.
 画像表示装置は、様々な場面で使用されており、その用途によっては、他者からの覗き込み防止や、画像の映り込みなど視角制御を必要とする場合がある。例えば、カーナビなどの車載用ディスプレイを用いる場合、表示画面から出射される光がフロントガラスや窓ガラスなどに映り込み、運転時に妨げになるという問題がある。 Image display devices are used in a variety of situations, and depending on their use, it may be necessary to prevent others from looking into them or to control viewing angles, such as the reflection of images. For example, when using an in-vehicle display such as a car navigation system, there is a problem that the light emitted from the display screen is reflected on the windshield, window glass, etc., and interferes with driving.
 特許文献1においては、面内方向に吸収軸を有する偏光子と、二色性物質が垂直配向した光吸収異方性層とを組み合わせたフィルムが開示されており、このフィルムを提供した表示装置においては、いずれの方位においても良好な暗状態が達成される旨が記載されている。 Patent Document 1 discloses a film in which a polarizer having an absorption axis in the in-plane direction and a light absorption anisotropic layer in which a dichroic material is vertically aligned is combined, and a display device provided with this film. describes that a good dark state is achieved in any orientation.
特開2001-242320号公報JP-A-2001-242320
 一方で、近年、視角をより厳密に制御することが求められている。
 本発明者らは、特許文献1に記載されるフィルムを表示装置に適用して、その視角制御性について検討したところ、ガラス板などの表示装置に隣接して配置される他の部材への映り込みが生じ、必ずしも昨今の要求レベルに対応できていなかった。特に、表示装置の表示面に対して、斜め方向において上記のような映り込みが発生する傾向が強かった。
 また、視角制御システムに関しては、適用される表示装置の画像の視認性の点から、正面方向での透過率に優れることも求められる。
On the other hand, in recent years, there has been a demand for more strict control of the viewing angle.
The present inventors applied the film described in Patent Document 1 to a display device and studied its viewing angle controllability. It was not always possible to respond to the recent demand level. In particular, there is a strong tendency for the above reflection to occur in oblique directions with respect to the display surface of the display device.
In addition, the viewing angle control system is also required to have excellent transmittance in the front direction from the viewpoint of image visibility of the display device to which it is applied.
 本発明は、視角制御を必要とする表示装置に適用した際に、特定の方位角から視認できないようにするなど方位角に対する視角制御性がより高く、正面方向の透過率に優れる視角制御システムを提供することを課題とする。
 また、本発明は、画像表示装置を提供することも課題とする。
 また、本発明は、偏光子と組み合わせることにより、上記視角制御システムを構成できる、光吸収異方性層を提供することも課題とする。
 さらに、本発明は、上記光吸収異方性層を含む積層体を提供することも課題とする。
INDUSTRIAL APPLICABILITY The present invention provides a viewing angle control system that, when applied to a display device that requires viewing angle control, has higher viewing angle controllability with respect to azimuth angles, such as making it invisible from a specific azimuth angle, and excellent transmittance in the front direction. The task is to provide
Another object of the present invention is to provide an image display device.
Another object of the present invention is to provide a light absorption anisotropic layer that can constitute the viewing angle control system by combining with a polarizer.
Furthermore, another object of the present invention is to provide a laminate including the light absorption anisotropic layer.
 本発明者らは、以下の構成により上記課題を解決できることを見出した。 The inventors have found that the above problems can be solved by the following configuration.
(1) 偏光子と、第1光吸収異方性層とを有し、
 偏光子は、面内方向に吸収軸を有し、
 第1光吸収異方性層の面内方向において直線偏光に対する透過率が最も低い方位と、偏光子の吸収軸とのなす角度が0°以上45°未満であり、
 第1光吸収異方性層が、厚み方向に沿って、第1光吸収異方性層表面の法線方向に対して傾いている吸収軸を有する複数の領域を有し、
 複数の領域において、吸収軸の第1光吸収異方性層表面の法線方向に対する傾斜角が互いに異なる、視角制御システム。
(2) 複数の領域におけるそれぞれの吸収軸の第1光吸収異方性層表面の法線方向に対する傾斜角が、厚み方向に沿って、連続的に変化している、(1)に記載の視角制御システム。
(3) 第1光吸収異方性層が、液晶化合物および二色性物質を含む、(1)または(2)に記載の視角制御システム。
(4) 厚み方向に平行な吸収軸を有する第2光吸収異方性層をさらに有する、(1)~(3)のいずれかに記載の視角制御システム。
(5) (1)~(4)のいずれかに記載の視角制御システムを含む、画像表示装置。
(6) 液晶セルと、液晶セル上に配置された視角制御システムとを含む、(5)に記載の画像表示装置。
(7) 自発光型表示装置と、自発光型表示装置の視認側に配置された視角制御システムとを含む、(5)に記載の画像表示装置。
(8) 光吸収異方性層であって、
 厚み方向に沿って、光吸収異方性層表面の法線方向に対して傾いている吸収軸を有する複数の領域を有し、
 複数の領域において、吸収軸の光吸収異方性層表面の法線方向に対する傾斜角が互いに異なる、光吸収異方性層。
(9) 複数の領域におけるそれぞれの吸収軸の光吸収異方性層表面の法線方向に対する傾斜角が、厚み方向に沿って、連続的に変化している、(8)に記載の光吸収異方性層。
(10) 光吸収異方性層が、液晶化合物および二色性物質を含む、(8)または(9)に記載の光吸収異方性層。
(11) (8)~(10)のいずれかに記載の光吸収異方性層と、
 厚み方向に平行な吸収軸を有する光吸収異方性層と、を有する、積層体。
(1) having a polarizer and a first light absorption anisotropic layer,
The polarizer has an absorption axis in the in-plane direction,
The angle formed by the azimuth with the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer and the absorption axis of the polarizer is 0° or more and less than 45°,
The first light absorption anisotropic layer has a plurality of regions along the thickness direction, each having an absorption axis tilted with respect to the normal direction of the surface of the first light absorption anisotropic layer,
A viewing angle control system in which the angles of inclination of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer are different in the plurality of regions.
(2) According to (1), the inclination angles of the absorption axes of the plurality of regions with respect to the normal direction of the surface of the first light absorption anisotropic layer continuously change along the thickness direction. viewing angle control system.
(3) The viewing angle control system according to (1) or (2), wherein the first light absorption anisotropic layer contains a liquid crystal compound and a dichroic substance.
(4) The viewing angle control system according to any one of (1) to (3), further comprising a second light absorption anisotropic layer having an absorption axis parallel to the thickness direction.
(5) An image display device including the viewing angle control system according to any one of (1) to (4).
(6) The image display device according to (5), including a liquid crystal cell and a viewing angle control system arranged on the liquid crystal cell.
(7) The image display device according to (5), including a self-luminous display device and a viewing angle control system arranged on the viewing side of the self-luminous display device.
(8) A light absorption anisotropic layer,
along the thickness direction, having a plurality of regions having absorption axes inclined with respect to the normal direction of the surface of the light absorption anisotropic layer;
An anisotropic light absorption layer in which the angles of inclination of the absorption axes with respect to the normal direction of the surface of the anisotropic light absorption layer are different in a plurality of regions.
(9) The light absorption according to (8), wherein the angles of inclination of the absorption axes of the plurality of regions with respect to the normal direction of the surface of the light absorption anisotropic layer continuously change along the thickness direction. anisotropic layer.
(10) The anisotropic light absorption layer according to (8) or (9), wherein the anisotropic light absorption layer contains a liquid crystal compound and a dichroic substance.
(11) a light absorption anisotropic layer according to any one of (8) to (10);
and a light absorption anisotropic layer having an absorption axis parallel to the thickness direction.
 本発明によれば、視角制御を必要とする表示装置に適用した際に、特定の方位角から視認できないようにするなど方位角に対する視角制御性がより高く、正面方向の透過率に優れる視角制御システムを提供できる。
 また、本発明によれば、画像表示装置を提供できる。
 また、本発明によれば、偏光子と組み合わせることにより、上記視角制御システムを構成できる、光吸収異方性層を提供できる。
 さらに、本発明によれば、上記光吸収異方性層を含む積層体を提供できる。
According to the present invention, when applied to a display device that requires viewing angle control, viewing angle control with higher viewing angle controllability with respect to azimuth angles, such as making it invisible from a specific azimuth angle, and superior transmittance in the front direction. system can be provided.
Further, according to the present invention, an image display device can be provided.
Further, according to the present invention, it is possible to provide a light absorption anisotropic layer that can constitute the viewing angle control system by combining with a polarizer.
Furthermore, according to the present invention, it is possible to provide a laminate including the light absorption anisotropic layer.
本発明の視角制御システムの一例を概念的に表す断面図である。1 is a sectional view conceptually showing an example of a viewing angle control system of the present invention; FIG. 図1に示す視角制御システムの平面図である。2 is a plan view of the viewing angle control system shown in FIG. 1; FIG. 実施例において、評価サンプルを得る方法を説明するための図である。FIG. 4 is a diagram for explaining a method of obtaining an evaluation sample in an example; 評価サンプル中の吸収軸の方向を測定する方法を説明するための図である。FIG. 4 is a diagram for explaining a method of measuring the direction of the absorption axis in an evaluation sample; 光吸収異方性フィルムの貼合状態を説明するための断面図である。It is a sectional view for explaining the pasting state of a light absorption anisotropic film. 映り込みの評価の方法を説明するための図である。FIG. 4 is a diagram for explaining a method of evaluating reflection;
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、平行は厳密な意味での平行を意味するのではなく、平行から±5°の範囲を意味する。
 また、本明細書において、直交は厳密な意味での直交を意味するのではなく、直交から±5°の範囲を意味する。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Moreover, in this specification, parallel does not mean parallel in a strict sense, but means a range of ±5° from parallel.
In this specification, orthogonal does not mean orthogonal in a strict sense, but means a range of ±5° from orthogonal.
 本明細書において、「(メタ)アクリル」は、「アクリルおよびメタクリルのいずれか一方または双方」の意味で使用される。「(メタ)アクリロイル」は、「アクリロイルおよびメタクリロイルのいずれか一方または双方」の意味で使用される。
 本明細書において表記される2価の基(例えば、-COO-)の結合方向は特に制限されず、例えば、X-L-Y中のLが-COO-である場合、X側に結合している位置を*1、Y側に結合している位置を*2とすると、Lは*1-O-CO-*2であってもよく、*1-CO-O-*2であってもよい。
In the present specification, "(meth)acryl" is used to mean "one or both of acrylic and methacrylic". "(Meth)acryloyl" is used in the sense of "one or both of acryloyl and methacryloyl".
The bonding direction of the divalent group (e.g., -COO-) described herein is not particularly limited. For example, when L in XLY is -COO-, If the position where *1 is attached and *2 is the position where the good too.
 本発明の視角制御システムの特徴点としては、第1光吸収異方性層の面内方向において直線偏光に対する最も透過率が低い方位と偏光子の吸収軸とのなす角度が所定の角度である点(以下、「特徴点1」ともいう。)、および、第1光吸収異方性層が、厚み方向に沿って、吸収軸の傾斜角が異なる複数の領域を有する点(以下、「特徴点2」ともいう。)が挙げられる。
 特徴点1を満たすことにより、視角制御システムの正面方向の透過率が優れる。また、特徴点2を満たすことにより、種々の方位角から視角制御システムを視認した際に、偏光子の吸収軸と第1光吸収異方性層に含まれる複数の吸収軸のいずれかとが交差した状態を取りやすくなるため、第1光吸収異方性層に含まれる複数の吸収軸の傾斜角を制御することにより、視角の中心(最も視認しやすい位置)を自在に変化させることができる。
A feature of the viewing angle control system of the present invention is that the angle formed by the absorption axis of the polarizer and the direction having the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer is a predetermined angle. point (hereinafter also referred to as “characteristic point 1”), and a point in which the first light absorption anisotropic layer has a plurality of regions with different absorption axis tilt angles along the thickness direction (hereinafter, “characteristic point 1”). Also referred to as “point 2”).
By satisfying feature point 1, the frontal transmittance of the viewing angle control system is excellent. Further, by satisfying characteristic point 2, when the viewing angle control system is viewed from various azimuth angles, the absorption axis of the polarizer and any of the plurality of absorption axes included in the first light absorption anisotropic layer intersect. Therefore, by controlling the tilt angles of the plurality of absorption axes included in the first light absorption anisotropic layer, the center of the viewing angle (the most visible position) can be freely changed. .
 図1に、本発明の視角制御システムの一例を概念的に表す断面図を示す。図2に、図1に示す視角制御システムの平面図を示す。なお、平面図とは、図1において、視角制御システム10を上方から見た図である。また、図1は、図2中のA線-A線での断面図である。
 図1において、方向Xおよび方向Zは、観察面において互いに直交する2つの座標軸の向きを示す。方向Zは、視角制御システム10の厚さ方向と平行である。
 図2において、方向Xおよび方向Yは、観察面において互いに直交する2つの座標軸の向きを示す。
 視角制御システム10は、偏光子12と、第1光吸収異方性層14とを有する。第1光吸収異方性層14は、二色性物質16と図示しない液晶化合物とを含む。
 図1および図2に示すように、第1光吸収異方性層14をその表面の法線方向から観察した際には、二色性物質16は一定の方向に並んでいる。より具体的には、二色性物質16の長軸方向を第1光吸収異方性層14表面に投影した方向が、X軸方向(紙面の左右方向)に平行となっている。
 そのため、図2に示すように、X軸方向(紙面の左右方向)が、第1光吸収異方性層14の面内方向において直線偏光に対する透過率が最も低くなる方位に該当する。つまり、図2に示す、白抜き矢印の方向(紙面の左右方向)が、第1光吸収異方性層14の面内方向において直線偏光に対する透過率が最も低くなる方位D(以下、「特定方位D」ともいう。)に該当する。
 それに対して、図1の黒矢印で示すように、偏光子12の吸収軸AはX軸方向(紙面の左右方向)に平行に配置されている。
 そのため、上記特定方位Dと、偏光子12の吸収軸Aとは平行となるように配置されている。特定方位Dと偏光子12の吸収軸Aとが平行に配置されることにより、視角制御システムの正面方向の透過率が優れる。
FIG. 1 shows a sectional view conceptually showing an example of the viewing angle control system of the present invention. FIG. 2 shows a plan view of the viewing angle control system shown in FIG. A plan view is a view of the viewing angle control system 10 viewed from above in FIG. 1 is a cross-sectional view taken along line A--A in FIG.
In FIG. 1, direction X and direction Z indicate directions of two coordinate axes orthogonal to each other on the viewing plane. Direction Z is parallel to the thickness direction of viewing angle control system 10 .
In FIG. 2, direction X and direction Y indicate directions of two coordinate axes orthogonal to each other on the viewing plane.
The viewing angle control system 10 has a polarizer 12 and a first light absorption anisotropic layer 14 . The first light absorption anisotropic layer 14 contains a dichroic substance 16 and a liquid crystal compound (not shown).
As shown in FIGS. 1 and 2, when the first light absorption anisotropic layer 14 is observed from the normal direction of its surface, the dichroic substances 16 are arranged in a certain direction. More specifically, the direction of projection of the major axis direction of the dichroic substance 16 onto the surface of the first light absorption anisotropic layer 14 is parallel to the X-axis direction (horizontal direction on the paper surface).
Therefore, as shown in FIG. 2, the X-axis direction (horizontal direction of the paper surface) corresponds to the direction in which the transmittance for linearly polarized light is the lowest in the in-plane direction of the first light absorption anisotropic layer 14 . That is, the direction of the white arrow (horizontal direction of the paper surface) shown in FIG. 2 is the direction D (hereinafter referred to as the “specific Also referred to as “direction D”).
On the other hand, as indicated by the black arrow in FIG. 1, the absorption axis A of the polarizer 12 is arranged parallel to the X-axis direction (horizontal direction on the paper surface).
Therefore, the specific orientation D and the absorption axis A of the polarizer 12 are arranged in parallel. By arranging the specific orientation D and the absorption axis A of the polarizer 12 in parallel, the viewing angle control system has excellent transmittance in the front direction.
 なお、図1および2においては、特定方位Dと偏光子12の吸収軸Aとが平行(0°)である態様を示したが、本発明においては特定方位と偏光子の吸収軸とのなす角度が0°以上45°未満であればよい。なかでも、視角制御システムの正面方向の透過率がより優れる点で、特定方位と偏光子の吸収軸とのなす角度は0°以上10°未満が好ましく、0°がより好ましい。
 なお、特定方位Dの測定方法は以下の通りである。
 第1光吸収異方性層14を偏光子12から剥離し、剥離した第1光吸収異方性層14を、偏光顕微鏡の回転ステージに設置する。次に、偏光顕微鏡の直線偏光子をセットし、検光子を取り外した状態で、回転ステージを回転させ、最も輝度が低くなる方位を探す。この最も輝度が低くなる方位となるとき、第1光吸収異方性層14の特定方位Dと、偏光顕微鏡の偏光子の吸収軸とが直交していると推定され、これにより、特定方位Dが決定される。
1 and 2 show an aspect in which the specific orientation D and the absorption axis A of the polarizer 12 are parallel (0°), but in the present invention, the specific orientation and the absorption axis of the polarizer The angle should be 0° or more and less than 45°. Among them, the angle formed by the specific orientation and the absorption axis of the polarizer is preferably 0° or more and less than 10°, more preferably 0°, because the transmittance in the front direction of the viewing angle control system is more excellent.
The method for measuring the specific orientation D is as follows.
The first light absorption anisotropic layer 14 is peeled off from the polarizer 12, and the peeled first light absorption anisotropic layer 14 is placed on a rotating stage of a polarizing microscope. Next, with the linear polarizer of the polarizing microscope set and the analyzer removed, the rotating stage is rotated to find the direction with the lowest brightness. It is estimated that the specific orientation D of the first light absorption anisotropic layer 14 and the absorption axis of the polarizer of the polarizing microscope are orthogonal to each other when the luminance is the lowest. is determined.
 また、図1に示すように、第1光吸収異方性層14は、3つの領域14A~14Cを有し、各領域において第1光吸収異方性層14表面の法線方向に対して二色性物質16の長軸方向が傾いている。各領域における第1光吸収異方性層14表面の法線方向に対する二色性物質16の長軸方向の傾きは、厚み方向に沿って、偏光子12から遠ざかるにつれて連続的に小さくなっている。
 第1光吸収異方性層14中、二色性物質16の長軸方向に平行な方向が吸収軸の方向となるため、各領域における白抜き矢印の方向に沿った方向に吸収軸が位置する。そのため、図1においては、3つの領域14A~14Cのそれぞれにおける吸収軸の第1光吸収異方性層14表面の法線方向に対する傾きの角度が異なっており、第1光吸収異方性層14表面の法線方向に対する吸収軸の傾きの角度が、厚み方向に沿って、偏光子12から遠ざかるにつれて連続的に小さくなっている。
Further, as shown in FIG. 1, the first light absorption anisotropic layer 14 has three regions 14A to 14C. The long axis direction of the dichroic substance 16 is tilted. The inclination of the long axis direction of the dichroic substance 16 with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 in each region continuously decreases along the thickness direction as the distance from the polarizer 12 increases. .
In the first light absorption anisotropic layer 14, the direction parallel to the long axis direction of the dichroic substance 16 is the direction of the absorption axis, so the absorption axis is located in the direction of the white arrow in each region. do. Therefore, in FIG. 1, the angle of inclination of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 in each of the three regions 14A to 14C is different, and the first light absorption anisotropic layer The inclination angle of the absorption axis with respect to the normal direction of the 14 surface decreases continuously along the thickness direction as the distance from the polarizer 12 increases.
 図1においては、3つの領域が、第1光吸収異方性層14表面の法線方向に対する傾きの角度が異なる吸収軸をそれぞれ有する態様について述べたが、本発明においては第1光吸収異方性層中に第1光吸収異方性層表面の法線方向に対する傾きの角度が異なる吸収軸を有する複数(2つ以上)の領域があればよい。
 上記領域の数は特に制限されず、2つ以上であればよく、3つ以上が好ましく、5つ以上がより好ましい。また、吸収軸の第1光吸収異方性層14表面の法線方向に対する傾斜角は、厚み方向に沿って連続的に変化していることも好ましい。この場合は、厚み方向に沿って無限個の領域に分割することができ、厚み方向に沿って異なる位置の微小領域内の吸収軸は、第1光吸収異方性層14表面の法線方向に対する傾斜角が互いに異なっている。このような態様は、二色性物質がいわゆるハイブリッド配向している態様に該当する。
 上記各領域における吸収軸の方向の測定方法は特に制限されず、公知の方法が挙げられる。例えば、図1に示すように、視角制御システムの断面を準備し、測定試料中の第1光吸収異方性層を回転させながらその断面を偏光顕微鏡にて観察することにより、光吸収異方性層中の厚み方向に配置された各領域における吸収軸の方向を決定できる。
 なお、上記視角制御システムの断面を得る際には、視角制御システムの透過率中心軸と第1光吸収異方性層表面の法線方向を包含する平面に平行な方向に沿って、視角制御システムを切断することが好ましい。
 透過率中心軸とは、第1光吸収異方性層表面に対する法線方向に対する傾き角度と傾き方向を変化させて透過率を測定した際に最も透過率の高い方向を透過率中心軸とする。より具体的には、AxoScan OPMF-1(オプトサイエンス社製)を用いて、波長550nmのP偏光における第1光吸収異方性層の透過率を測定する。より具体的には、測定の際には、透過率中心軸が傾いている方位角を最初に探し、次に、その方位角に沿った第1光吸収異方性層の法線方向を含む面内(透過率中心軸を含み、層表面に直交する平面)内で、第1光吸収異方性層表面の法線方向に対する角度である極角を0~60°まで5°毎に変更しつつ、波長550nmのP偏光を入射して、第1光吸収異方性層の透過率を測定する。この結果、最も透過率の高い方向を透過率中心軸とする。
In FIG. 1, the three regions have described the mode in which the absorption axes are different in inclination angle with respect to the normal direction of the surface of the first optical absorption anisotropic layer 14, but in the present invention, the first optical absorption anisotropy It is sufficient that the anisotropic layer has a plurality of (two or more) regions having absorption axes with different tilt angles with respect to the normal direction of the surface of the first light absorption anisotropic layer.
The number of regions is not particularly limited, and may be two or more, preferably three or more, and more preferably five or more. It is also preferable that the inclination angle of the absorption axis with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 changes continuously along the thickness direction. In this case, it can be divided into an infinite number of regions along the thickness direction. are different from each other. Such an aspect corresponds to a so-called hybrid orientation aspect of the dichroic substance.
A method for measuring the direction of the absorption axis in each region is not particularly limited, and known methods can be used. For example, as shown in FIG. 1, by preparing a cross section of the viewing angle control system and observing the cross section with a polarizing microscope while rotating the first light absorption anisotropic layer in the measurement sample, the light absorption anisotropic The direction of the absorption axis in each region arranged in the thickness direction in the organic layer can be determined.
When obtaining the cross section of the viewing angle control system, the viewing angle control system is measured along a direction parallel to a plane including the central axis of transmittance of the viewing angle control system and the normal direction of the surface of the first light absorption anisotropic layer. It is preferable to disconnect the system.
The transmittance central axis is defined as the transmittance central axis in the direction in which the transmittance is the highest when the transmittance is measured by changing the tilt angle and the tilt direction with respect to the normal direction to the surface of the first light absorption anisotropic layer. . More specifically, AxoScan OPMF-1 (manufactured by Optoscience) is used to measure the transmittance of the first light absorption anisotropic layer for P-polarized light with a wavelength of 550 nm. More specifically, during the measurement, the azimuth angle at which the transmittance central axis is tilted is first searched, and then the normal direction of the first light absorption anisotropic layer along that azimuth angle is included. The polar angle, which is the angle with respect to the normal direction of the surface of the first light absorption anisotropic layer, within the plane (the plane including the transmittance center axis and perpendicular to the layer surface) is changed in increments of 5° from 0 to 60°. Meanwhile, P-polarized light with a wavelength of 550 nm is incident, and the transmittance of the first light absorption anisotropic layer is measured. As a result, the direction with the highest transmittance is defined as the center axis of transmittance.
 また、図1においては、各領域におけるそれぞれの吸収軸の第1光吸収異方性層14表面の法線方向に対する傾斜角が、厚み方向に沿って、連続的に変化している態様について説明したが、本発明はこの態様には限定されない。
 例えば、各領域におけるそれぞれの吸収軸の第1光吸収異方性層14表面の法線方向に対する傾斜角が、厚み方向に沿って、不連続的に変化していてもよい。
 また、各領域におけるそれぞれの吸収軸の第1光吸収異方性層表面の法線方向に対する傾斜角は特に制限されないが、視角制御システムの正面方向の透過率がより優れる点から、45~85°が好ましく、50~80°がより好ましい。
In addition, FIG. 1 describes a mode in which the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 continuously changes along the thickness direction. However, the invention is not limited to this aspect.
For example, the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer 14 may change discontinuously along the thickness direction.
In addition, the inclination angle of each absorption axis in each region with respect to the normal direction of the surface of the first light absorption anisotropic layer is not particularly limited. ° is preferred, and 50 to 80° is more preferred.
 また、図1においては、各領域におけるそれぞれの吸収軸を第1光吸収異方性層14表面へ正射影した方向(吸収軸の面内方向における方位)は、いずれも同一方向であったが、本発明はこの態様には限定されない。
 なお、上記同一方向とは完全に同一だけでなく、各領域におけるそれぞれの吸収軸を第1光吸収異方性層14表面へ正射影した方向同士のなす角が5°以内である場合も含む。
 第1光吸収異方性層の面内方向において直線偏光に対する透過率が最も低い方位と、偏光子の吸収軸とのなす角度が0°以上45°未満となる要件を満たせば、各領域におけるそれぞれの吸収軸を第1光吸収異方性層表面へ正射影した方向(吸収軸の面内方向における方位)が異なっていてもよい。
In FIG. 1, the directions (orientation of the absorption axes in the in-plane direction) obtained by orthographically projecting the absorption axes of the respective regions onto the surface of the first light absorption anisotropic layer 14 are all the same direction. , the invention is not limited to this embodiment.
The same direction is not limited to being exactly the same, but also includes the case where the angle formed by the directions obtained by orthogonally projecting the respective absorption axes in each region onto the surface of the first light absorption anisotropic layer 14 is within 5°. .
If the angle formed by the azimuth with the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer and the absorption axis of the polarizer is 0° or more and less than 45°, in each region The orthogonal projection of each absorption axis onto the surface of the first light absorption anisotropic layer (orientation in the in-plane direction of the absorption axis) may be different.
 また、図1においては、視角制御システムが第1光吸収異方性層14を1つだけ含む態様であるが、本発明はこの態様には限定されず、視角制御システムは複数の第1光吸収異方性層を含んでいてもよい。 In addition, although FIG. 1 shows an embodiment in which the viewing angle control system includes only one first light absorption anisotropic layer 14, the present invention is not limited to this embodiment, and the viewing angle control system includes a plurality of first light An absorption anisotropic layer may be included.
 なお、図1および2に示す第1光吸収異方性層14のように、二色性物質の長軸方向を厚み方向に沿って連続的に変化させる態様は、第1光吸収異方性層14中の図示しない液晶化合物をいわゆるハイブリッド配向させることにより作製できる。第1光吸収異方性層14中の液晶化合物をハイブリッド配向させると、第1光吸収異方性層14中の二色性物質16が液晶化合物の配向方向に沿って配向する。つまり、二色性物質もハイブリッド配向する。そのため、図1および2に示すように、二色性物質16が偏光子12から遠ざかるにつれて、二色性物質16の長軸方向と第1光吸収異方性層14表面の法線方向とのなす角度が連続的に小さくなる。
 なお、本明細書において、液晶化合物のハイブリッド配向とは、一方の表面から他方の表面に向かって液晶化合物のチルト角が連続的に変化する配向のことであり、二色性物質のハイブリッド配向とは、一方の表面から他方の表面に向かって二色性物質のチルト角が連続的に変化する配向のことである。
In addition, as in the first optical absorption anisotropic layer 14 shown in FIGS. It can be produced by so-called hybrid orientation of the liquid crystal compound (not shown) in the layer 14 . When the liquid crystal compound in the first light absorption anisotropic layer 14 is hybrid-aligned, the dichroic substance 16 in the first light absorption anisotropic layer 14 is aligned along the alignment direction of the liquid crystal compound. In other words, the dichroic substance also undergoes hybrid orientation. Therefore, as shown in FIGS. 1 and 2, as the dichroic substance 16 moves away from the polarizer 12, the longitudinal direction of the dichroic substance 16 and the normal direction of the surface of the first light absorption anisotropic layer 14 The angle to make becomes smaller continuously.
In this specification, the hybrid alignment of the liquid crystal compound means an alignment in which the tilt angle of the liquid crystal compound changes continuously from one surface to the other surface, and hybrid alignment of a dichroic substance. is an orientation in which the tilt angle of a dichroic material changes continuously from one surface to the other.
 なお、二色性物質を所望の配向とする技術としては、二色性物質を利用した偏光子の作製技術、および、ゲスト-ホスト液晶セルの作製技術が挙げられる。例えば、特開平11-305036号公報および特開2002-090526号公報に記載の二色性偏光素子の作製方法、並びに、特開2002-099388号公報および特開2016-027387号公報に記載のゲストホスト型液晶表示装置の作製方法で利用されている技術を、本発明に用いられる第1光吸収異方性層の作製にも利用できる。 Techniques for aligning a dichroic substance in a desired manner include a technique for producing a polarizer using a dichroic material and a technique for producing a guest-host liquid crystal cell. For example, the method for producing a dichroic polarizing element described in JP-A-11-305036 and JP-A-2002-090526, and the guests described in JP-A-2002-099388 and JP-A-2016-027387 The technique used in the manufacturing method of the host-type liquid crystal display device can also be used in manufacturing the first light absorption anisotropic layer used in the present invention.
 本発明に用いられる第1光吸収異方性層の光吸収特性の使用環境による変動を防止するために、二色性物質の配向を、化学結合の形成によって固定するのが好ましい。例えば、ホスト液晶、二色性物質、または、所望により添加される重合性成分の重合を進行させることで、配向を固定できる。 In order to prevent the light absorption properties of the first light absorption anisotropic layer used in the present invention from varying depending on the usage environment, it is preferable to fix the orientation of the dichroic substance by forming chemical bonds. For example, the orientation can be fixed by proceeding with the polymerization of the host liquid crystal, the dichroic substance, or the optionally added polymerizable component.
 また、ポリマーフィルム中に二色性物質を浸透させて、ポリマーフィルム中のポリマー分子の配向に沿って二色性物質を配向させることで、第1光吸収異方性層に要求される光吸収特性を満足するポリマーフィルムを作製できる。 In addition, by infiltrating the dichroic substance into the polymer film and orienting the dichroic substance along the orientation of the polymer molecules in the polymer film, the light absorption required for the first light absorption anisotropic layer can be achieved. A polymer film can be produced that satisfies the properties.
 また、第1光吸収異方性層は、二色性物質を含み吸収軸の傾き角度が互いに異なる複数の光吸収異方性層を貼合して作製してもよい。 Also, the first light absorption anisotropic layer may be produced by laminating a plurality of light absorption anisotropic layers containing a dichroic substance and having absorption axes with different inclination angles.
 以下、視角制御システムに含まれる各部材について詳述する。 Each member included in the viewing angle control system will be described in detail below.
<偏光子>
 本発明に用いられる偏光子は、面内方向に吸収軸を有していれば特に限定されず、従来公知の偏光子を利用できる。
<Polarizer>
The polarizer used in the present invention is not particularly limited as long as it has an absorption axis in the in-plane direction, and conventionally known polarizers can be used.
 偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、および、ポリエン系偏光子が挙げられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できる。塗布型偏光子としては、液晶化合物の配向を利用して二色性有機色素を配向させた偏光子が好ましく、延伸型偏光子としては、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、および、特許第4751486号公報に記載の方法が挙げられ、これらの偏光子に関する公知の技術も好ましく利用することができる。
Examples of polarizers include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers. Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretching-type polarizers, and both can be applied. As a coated polarizer, a polarizer in which a dichroic organic dye is oriented using the orientation of a liquid crystal compound is preferable. A polarizer made by
In addition, as a method of obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a substrate, there are disclosed in Japanese Patent Nos. 5048120, 5143918, 5048120, and Methods described in Japanese Patent No. 4691205, Japanese Patent No. 4751481, and Japanese Patent No. 4751486 can be mentioned, and known techniques relating to these polarizers can also be preferably used.
 なかでも、入手が容易で偏光度に優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。 Among them, polyvinyl alcohol-based resins (polymers containing —CH 2 —CHOH— as repeating units, particularly polyvinyl alcohol and ethylene-vinyl alcohol copolymers are selected from the group consisting of polyvinyl alcohol resins, which are readily available and excellent in the degree of polarization. It is preferable that the polarizer includes at least one
 偏光子の厚みは特に限定されないが、3~60μmが好ましく、5~20μmがより好ましく、5~10μmがさらに好ましい。 Although the thickness of the polarizer is not particularly limited, it is preferably 3 to 60 μm, more preferably 5 to 20 μm, even more preferably 5 to 10 μm.
<第1光吸収異方性層>
 第1光吸収異方性層は、上述したように、厚み方向に沿って、第1光吸収異方性層表面の法線方向に対して傾いている吸収軸を有する複数の領域を有する。
 第1光吸収異方性層に含まれる材料は上述した特性を示せば特に制限されないが、第1光吸収異方性層は二色性物質を含むことが好ましい。
 この第1光吸収異方性層は、偏光子と組み合わせることにより、上述した視角制御システムを構成し得る。
<First light absorption anisotropic layer>
As described above, the first light absorption anisotropic layer has a plurality of regions along the thickness direction, which have absorption axes tilted with respect to the normal direction of the surface of the first light absorption anisotropic layer.
The material contained in the first light absorption anisotropic layer is not particularly limited as long as it exhibits the properties described above, but the first light absorption anisotropic layer preferably contains a dichroic substance.
This first light absorption anisotropic layer can constitute the above-described viewing angle control system by combining with a polarizer.
(二色性物質)
 本発明において、二色性物質とは、方向によって吸光度が異なる色素を意味する。第1光吸収異方性層中において、二色性物質は重合していてもよい。
(Dichroic substance)
In the present invention, a dichroic substance means a dye that absorbs differently depending on the direction. The dichroic substance may be polymerized in the first light absorption anisotropic layer.
 二色性物質は、特に限定されず、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば量子ロッド)などが挙げられ、従来公知の二色性物質(二色性色素)を使用できる。
 具体的には、特開2013-228706号公報の[0067]~[0071]段落、特開2013-227532号公報の[0008]~[0026]段落、特開2013-209367号公報の[0008]~[0015]段落、特開2013-14883号公報の[0045]~[0058]段落、特開2013-109090号公報の[0012]~[0029]段落、特開2013-101328号公報の[0009]~[0017]段落、特開2013-037353号公報の[0051]~[0065]段落、特開2012-063387号公報の[0049]~[0073]段落、特開平11-305036号公報の[0016]~[0018]段落、特開2001-133630号公報の[0009]~[0011]段落、特開2011-215337号公報の[0030]~[0169]、特開2010-106242号公報の[0021]~[0075]段落、特開2010-215846号公報の[0011]~[0025]段落、特開2011-048311号公報の[0017]~[0069]段落、特開2011-213610号公報の[0013]~[0133]段落、特開2011-237513号公報の[0074]~[0246]段落、特開2016-006502号公報の[0005]~[0051]段落、WO2016/060173号公報の[0005]~[0041]段落、WO2016/136561号公報の[0008]~[0062]段落、国際公開第2017/154835号の[0014]~[0033]段落、国際公開第2017/154695号の[0014]~[0033]段落、国際公開第2017/195833号の[0013]~[0037]段落、および、国際公開第2018/164252号の[0014]~[0034]段落などに記載されたものが挙げられる。
The dichroic substance is not particularly limited, and includes visible light absorbing substances (dichroic dyes), luminescent substances (fluorescent substances, phosphorescent substances), ultraviolet absorbing substances, infrared absorbing substances, nonlinear optical substances, carbon nanotubes, and inorganic Substances (for example, quantum rods) can be used, and conventionally known dichroic substances (dichroic dyes) can be used.
Specifically, [0067] to [0071] paragraphs of JP-A-2013-228706, [0008] to [0026] paragraphs of JP-A-2013-227532, [0008] of JP-A-2013-209367 ~ [0015] paragraph, JP 2013-14883 [0045] ~ [0058] paragraph, JP 2013-109090 [0012] ~ [0029] paragraph, JP 2013-101328 [0009 ] to [0017] paragraphs, [0051] to [0065] paragraphs of JP-A-2013-037353, [0049]-[0073] paragraphs of JP-A-2012-063387, [ 0016] to [0018] paragraphs, [0009] to [0011] paragraphs of JP-A-2001-133630, [0030]-[0169] of JP-A-2011-215337, [ 0021] to [0075] paragraphs, [0011] to [0025] paragraphs of JP-A-2010-215846, [0017] to [0069] paragraphs of JP-A-2011-048311, JP-A-2011-213610 [0013] to [0133] paragraphs, [0074] to [0246] paragraphs of JP-A-2011-237513, [0005] to [0051] paragraphs of JP-A-2016-006502, [ 0005] to [0041] paragraphs, [0008] to [0062] paragraphs of WO2016/136561, [0014] to [0033] paragraphs of WO2017/154835, [0014] of WO2017/154695 ] to [0033] paragraphs, [0013] to [0037] paragraphs of WO 2017/195833, and [0014] to [0034] paragraphs of WO 2018/164252, etc. be done.
 本発明においては、2種以上の二色性物質を併用してもよく、例えば、得られる第1光吸収異方性層を黒色に近づける点から、波長370nm以上500nm未満の範囲に極大吸収波長を有する少なくとも1種の二色性物質と、波長500nm以上700nm未満の範囲に極大吸収波長を有する少なくとも1種の二色性物質とを併用することが好ましい。 In the present invention, two or more dichroic substances may be used in combination. and at least one dichroic substance having a maximum absorption wavelength in the wavelength range of 500 nm or more and less than 700 nm.
 後述するように、第1光吸収異方性層は、第1光吸収異方性層形成用組成物を用いて形成できる。第1光吸収異方性層形成用組成物中において、二色性物質は架橋性基を有していてもよい。二色性物質が架橋性基を有する場合、第1光吸収異方性層形成用組成物を用いて第1光吸収異方性層を形成する際に、所定の配向状態の二色性物質を固定化することができる。
 架橋性基としては、具体的には、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、および、スチリル基などが挙げられ、なかでも、(メタ)アクリロイル基が好ましい。
As will be described later, the first light absorption anisotropic layer can be formed using the composition for forming the first light absorption anisotropic layer. In the composition for forming the first light absorption anisotropic layer, the dichroic substance may have a crosslinkable group. When the dichroic substance has a crosslinkable group, when forming the first light absorption anisotropic layer using the composition for forming the first light absorption anisotropic layer, the dichroic substance in a predetermined orientation state can be immobilized.
Specific examples of the crosslinkable group include (meth)acryloyl groups, epoxy groups, oxetanyl groups, and styryl groups, among which (meth)acryloyl groups are preferred.
 第1光吸収異方性層中における二色性物質の含有量は特に制限されないが、視角制御システムの正面方向の透過率がより優れる点、および、視角制御性がより優れる点のうち少なくとも一方の効果が得られる点(以下、単に「本発明の効果がより優れる点」ともいう。)で、第1光吸収異方性層全質量に対して、1~50質量%が好ましく、10~25質量%がより好ましい。 The content of the dichroic substance in the first light absorption anisotropic layer is not particularly limited, but at least one of superior transmittance in the front direction of the viewing angle control system and superior viewing angle controllability. (hereinafter also simply referred to as "the point where the effect of the present invention is more excellent"), it is preferably 1 to 50% by mass, and 10 to 25% by mass is more preferred.
(液晶化合物)
 第1光吸収異方性層は、液晶化合物を含むことが好ましい。これにより、二色性物質の析出を抑止しながら、二色性物質をより高い配向度で配向させることができる。
 液晶化合物としては、高分子液晶化合物および低分子液晶化合物のいずれも用いることができ、配向度を高くできる点から、高分子液晶化合物が好ましい。また、液晶化合物としては、高分子液晶化合物および低分子液晶化合物を併用してもよい。
 ここで、「高分子液晶化合物」とは、化学構造中に繰り返し単位を有する液晶化合物のことをいう。
 また、「低分子液晶化合物」とは、化学構造中に繰り返し単位を有さない液晶化合物のことをいう。
 高分子液晶化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子、国際公開第2018/199096号の[0012]~[0042]段落に記載されている高分子液晶化合物などが挙げられる。
 低分子液晶化合物としては、例えば、特開2013-228706号公報の[0072]~[0088]段落に記載されている液晶化合物が挙げられ、なかでも、スメクチック性を示す液晶化合物が好ましい。
(liquid crystal compound)
The first light absorption anisotropic layer preferably contains a liquid crystal compound. This makes it possible to orient the dichroic substance with a higher degree of orientation while suppressing precipitation of the dichroic substance.
As the liquid crystal compound, both a polymer liquid crystal compound and a low-molecular liquid crystal compound can be used, and a polymer liquid crystal compound is preferable because the degree of orientation can be increased. Further, as the liquid crystal compound, a high-molecular liquid crystal compound and a low-molecular liquid crystal compound may be used in combination.
Here, the term "polymeric liquid crystal compound" refers to a liquid crystal compound having repeating units in its chemical structure.
Further, the term "low-molecular-weight liquid crystal compound" refers to a liquid crystal compound having no repeating unit in its chemical structure.
Examples of the polymer liquid crystal compound include thermotropic liquid crystalline polymers described in JP-A-2011-237513, and high molecular weight compounds described in paragraphs [0012] to [0042] of International Publication No. 2018/199096. Examples include molecular liquid crystal compounds.
Examples of low-molecular-weight liquid crystal compounds include liquid crystal compounds described in paragraphs [0072] to [0088] of JP-A-2013-228706, among which liquid crystal compounds exhibiting smectic properties are preferred.
 液晶化合物は、得られる第1光吸収異方性層の配向度がより高くなる点から、下記式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」とも略す。)を含む高分子液晶化合物であることが好ましい。 In the liquid crystal compound, a repeating unit represented by the following formula (1) (hereinafter also abbreviated as “repeating unit (1)”) is used because the degree of orientation of the obtained first light absorption anisotropic layer is higher. It is preferably a polymer liquid crystal compound containing.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。 In the above formula (1), P1 represents the main chain of the repeating unit, L1 represents a single bond or a divalent linking group, SP1 represents a spacer group, M1 represents a mesogenic group, and T1 represents a terminal group. .
 P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である点から、下記式(P1-A)で表される基が好ましい。 Specific examples of the main chain of the repeating unit represented by P1 include groups represented by the following formulas (P1-A) to (P1-D). A group represented by the following formula (P1-A) is preferable in terms of diversity and ease of handling.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(P1-A)~(P1-D)において、「*」は、上記式(1)におけるL1との結合位置を表す。
 上記式(P1-A)~(P1-D)において、R、R、RおよびRは、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、または、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
 上記式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
 上記式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
 上記式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
 上記式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR14(OR15-で表される基を有する化合物が挙げられる。式中、R14は、(P1-D)におけるR14と同義であり、複数のR15はそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
In the above formulas (P1-A) to (P1-D), "*" represents the bonding position with L1 in the above formula (1).
In the above formulas (P1-A) to (P1-D), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, Alternatively, it represents an alkoxy group having 1 to 10 carbon atoms. The alkyl group may be a linear or branched alkyl group, or may be an alkyl group having a cyclic structure (cycloalkyl group). Moreover, the number of carbon atoms in the alkyl group is preferably 1 to 5.
The group represented by the above formula (P1-A) is preferably one unit of the partial structure of the poly(meth)acrylic acid ester obtained by polymerization of the (meth)acrylic acid ester.
The group represented by the above formula (P1-B) is preferably an ethylene glycol unit formed by ring-opening polymerization of an epoxy group of a compound having an epoxy group.
The group represented by the above formula (P1-C) is preferably a propylene glycol unit formed by ring-opening polymerization of an oxetane group of a compound having an oxetane group.
The group represented by formula (P1-D) is preferably a siloxane unit of polysiloxane obtained by condensation polymerization of a compound having at least one of an alkoxysilyl group and a silanol group. Here, the compound having at least one of an alkoxysilyl group and a silanol group includes a compound having a group represented by the formula SiR 14 (OR 15 ) 2 —. In the formula, R 14 has the same definition as R 14 in (P1-D), and each of a plurality of R 15 independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
 上記式(1)中、L1は、単結合または2価の連結基である。
 L1が表す2価の連結基としては、-C(O)O-、-O-、-S-、-C(O)NR-、-SO-、および、-NR-などが挙げられる。式中、RおよびRは、それぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 P1が式(P1-A)で表される基である場合には、第1光吸収異方性層の配向度がより高くなる点から、L1は-C(O)O-で表される基が好ましい。
 P1が式(P1-B)~(P1-D)で表される基である場合には、第1光吸収異方性層の配向度がより高くなる点から、L1は単結合が好ましい。
In formula (1) above, L1 is a single bond or a divalent linking group.
Divalent linking groups represented by L1 include -C(O)O-, -O-, -S-, -C(O)NR 3 -, -SO 2 -, and -NR 3 R 4 -. is mentioned. In the formula, R 3 and R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 6 carbon atoms.
When P1 is a group represented by formula (P1-A), L1 is represented by -C(O)O- because the degree of orientation of the first light absorption anisotropic layer is higher. groups are preferred.
When P1 is a group represented by formulas (P1-B) to (P1-D), L1 is preferably a single bond because the degree of orientation of the first light absorption anisotropic layer becomes higher.
 上記式(1)中、SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの点から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
 ここで、SP1が表すオキシエチレン構造は、*-(CH-CHO)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1)中のL1またはM1との結合位置を表す。n1は、第1光吸収異方性層の配向度がより高くなる点から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることがさらに好ましい。
 また、SP1が表すオキシプロピレン構造は、第1光吸収異方性層の配向度がより高くなる点から、*-(CH(CH)-CHO)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すポリシロキサン構造は、第1光吸収異方性層の配向度がより高くなる点から、*-(Si(CH-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
 また、SP1が表すフッ化アルキレン構造は、第1光吸収異方性層の配向度がより高くなる点から、*-(CF-CFn4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
In the above formula (1), the spacer group represented by SP1 is composed of an oxyethylene structure, an oxypropylene structure, a polysiloxane structure and an alkylene fluoride structure in view of the ease of exhibiting liquid crystallinity and the availability of raw materials. It preferably contains at least one structure selected from the group.
Here, the oxyethylene structure represented by SP1 is preferably a group represented by *--(CH 2 --CH 2 O) n1 --*. In the formula, n1 represents an integer of 1 to 20, * represents the bonding position with L1 or M1 in the above formula (1). n1 is preferably an integer of 2 to 10, more preferably an integer of 2 to 4, and more preferably 3, in order to increase the degree of orientation of the first light absorption anisotropic layer. preferable.
In addition, the oxypropylene structure represented by SP1 has a higher degree of orientation of the first light absorption anisotropic layer, so the group represented by *-(CH(CH 3 )-CH 2 O) n2 -* is preferable. In the formula, n2 represents an integer of 1 to 3, and * represents the bonding position with L1 or M1.
Further, the polysiloxane structure represented by SP1 is preferably a group represented by *-(Si(CH 3 ) 2 -O) n3 -* because the degree of orientation of the first light absorption anisotropic layer is higher. . In the formula, n3 represents an integer of 6 to 10, * represents the bonding position with L1 or M1.
Further, the alkylene fluoride structure represented by SP1 is preferably a group represented by *-(CF 2 -CF 2 ) n4 -* because the degree of orientation of the first light absorption anisotropic layer is higher. In the formula, n4 represents an integer of 6 to 10, * represents the bonding position with L1 or M1.
 上記式(1)中、M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照できる。
 メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および、脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
 メソゲン基は、第1光吸収異方性層の配向度がより高くなる点から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
In the above formula (1), the mesogenic group represented by M1 is a group showing the main skeleton of the liquid crystal molecule that contributes to liquid crystal formation. Liquid crystal molecules exhibit liquid crystallinity, which is an intermediate state (mesophase) between a crystalline state and an isotropic liquid state. There are no particular restrictions on the mesogenic group. ed., Liquid Crystal Handbook (Maruzen, 2000), especially the description in Chapter 3.
As the mesogenic group, for example, a group having at least one cyclic structure selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups, and alicyclic groups is preferred.
The mesogenic group preferably has an aromatic hydrocarbon group, more preferably 2 to 4 aromatic hydrocarbon groups, from the viewpoint that the degree of orientation of the first light absorption anisotropic layer is higher, More preferably it has 3 aromatic hydrocarbon groups.
 メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という点、並びに、光吸収異方性層の配向度がより高くなる点から、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。 As the mesogenic group, the following formula (M1-A ) or a group represented by the following formula (M1-B) is preferable, and a group represented by the formula (M1-B) is more preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基または置換基で置換されていてもよい。
 A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
 *は、SP1またはT1との結合位置を表す。
In formula (M1-A), A1 is a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. These groups may be substituted with alkyl groups, fluorinated alkyl groups, alkoxy groups or substituents.
The divalent group represented by A1 is preferably a 4- to 6-membered ring. Also, the divalent group represented by A1 may be monocyclic or condensed.
* represents the binding position with SP1 or T1.
 A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。 The divalent aromatic hydrocarbon group represented by A1 includes a phenylene group, a naphthylene group, a fluorene-diyl group, an anthracene-diyl group and a tetracene-diyl group. A phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable, from the viewpoint of properties and the like.
 A1が表す2価の複素環基としては、芳香族および非芳香族のいずれであってもよいが、配向度がより向上するという点から、2価の芳香族複素環基であることが好ましい。
 2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
 2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
The divalent heterocyclic group represented by A1 may be either aromatic or non-aromatic, but is preferably a divalent aromatic heterocyclic group from the viewpoint of further improving the degree of orientation. .
Atoms other than carbon constituting the divalent aromatic heterocyclic group include a nitrogen atom, a sulfur atom and an oxygen atom. When the aromatic heterocyclic group has a plurality of non-carbon ring-constituting atoms, these may be the same or different.
Specific examples of divalent aromatic heterocyclic groups include, for example, pyridylene group (pyridine-diyl group), pyridazine-diyl group, imidazole-diyl group, thienylene (thiophene-diyl group), quinolylene group (quinoline-diyl group ), isoquinolylene group (isoquinoline-diyl group), oxazole-diyl group, thiazole-diyl group, oxadiazole-diyl group, benzothiazole-diyl group, benzothiadiazole-diyl group, phthalimide-diyl group, thienothiazole-diyl group , thiazolothiazole-diyl group, thienothiophene-diyl group, and thienooxazole-diyl group.
 A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。 Specific examples of the divalent alicyclic group represented by A1 include a cyclopentylene group and a cyclohexylene group.
 式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。 In formula (M1-A), a1 represents an integer of 1-10. When a1 is 2 or more, multiple A1s may be the same or different.
 式(M1-B)中、A2およびA3は、それぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
 式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、第1光吸収異方性層の配向度がより高くなる点から、2以上の整数であることが好ましく、2であることがより好ましい。
 式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、第1光吸収異方性層の配向度がより高くなる点から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
In formula (M1-B), A2 and A3 are each independently a divalent group selected from the group consisting of aromatic hydrocarbon groups, heterocyclic groups and alicyclic groups. Specific examples and preferred embodiments of A2 and A3 are the same as those of A1 in formula (M1-A), so description thereof is omitted.
In formula (M1-B), a2 represents an integer of 1 to 10, and when a2 is 2 or more, multiple A2 may be the same or different, and multiple A3 may be the same or different. A plurality of LA1 may be the same or different. a2 is preferably an integer of 2 or more, more preferably 2, from the viewpoint that the degree of orientation of the first light absorption anisotropic layer becomes higher.
In formula (M1-B), when a2 is 1, LA1 is a divalent linking group. When a2 is 2 or more, each of the plurality of LA1 is independently a single bond or a divalent linking group, and at least one of the plurality of LA1 is a divalent linking group. When a2 is 2, it is preferable that one of the two LA1 is a divalent linking group and the other is a single bond because the degree of orientation of the first light absorption anisotropic layer is higher. .
 式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH-、-(CF-、-Si(CH-、-(Si(CHO)-、-(OSi(CH-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-C(Z)-C(Z’)-、-C(O)-、-OC(O)-、-O-C(O)O-、-N(Z)C(O)-、-C(Z)=C(Z’)-C(O)O-、-C(Z)=N-、-C(Z)=C(Z’)-C(O)N(Z”)-、-C(Z)=C(Z’)-C(O)-S-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は、それぞれ独立に、水素原子、C1~C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、および、-SC(O)などが挙げられる。なかでも、光吸収異方性層の配向度がより高くなる点から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。 In formula (M1-B), the divalent linking group represented by LA1 includes -O-, -(CH 2 ) g -, -(CF 2 ) g -, -Si(CH 3 ) 2 -, -( Si(CH 3 ) 2 O) g -, -(OSi(CH 3 ) 2 ) g - (g represents an integer of 1 to 10), -N(Z)-, -C(Z)=C( Z')-, -C(Z)=N-, -C(Z) 2 -C(Z') 2 -, -C(O)-, -OC(O)-, -OC(O) O-, -N(Z)C(O)-, -C(Z)=C(Z')-C(O)O-, -C(Z)=N-, -C(Z)=C( Z')-C(O)N(Z'')-, -C(Z)=C(Z')-C(O)-S-, -C(Z)=N-N=C(Z') - (Z, Z', Z" each independently represent a hydrogen atom, a C1-C4 alkyl group, a cycloalkyl group, an aryl group, a cyano group, or a halogen atom.), -C≡C-, - N=N-, -S-, -S(O)-, -S(O)(O)-, -(O)S(O)O-, -O(O)S(O)O-, and , -SC(O), and the like. Of these, -C(O)O- is preferred because the degree of orientation of the light absorption anisotropic layer is higher. LA1 may be a group in which two or more of these groups are combined.
 M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。 Specific examples of M1 include the following structures. In addition, in the following specific examples, "Ac" represents an acetyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、炭素数1~10のウレイド基、および、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合または連結基を表す。連結基の具体例は上述したL1およびSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。 In the above formula (1), the terminal group represented by T1 includes a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxy group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkoxy group having 1 to 10 carbon atoms. 1 to 10 alkylthio group, 1 to 10 carbon alkoxycarbonyloxy group, 1 to 10 carbon alkoxycarbonyl group (ROC(O)-: R is an alkyl group), 1 to 10 carbon acyloxy group, carbon 1 to 10 acylamino group, 1 to 10 carbon atoms alkoxycarbonylamino group, 1 to 10 carbon atoms sulfonylamino group, 1 to 10 carbon atoms sulfamoyl group, 1 to 10 carbon atoms carbamoyl group, 1 carbon atom 10 to 10 sulfinyl groups, ureido groups with 1 to 10 carbon atoms, and (meth)acryloyloxy group-containing groups. Examples of the (meth)acryloyloxy group-containing group include -LA (L represents a single bond or a linking group. Specific examples of the linking group are the same as L1 and SP1 described above. A is (meth) represents an acryloyloxy group).
 T1は、第1光吸収異方性層の配向度がより高くなる点から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。
 これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
T1 is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and even more preferably a methoxy group, since the degree of orientation of the first light absorption anisotropic layer becomes higher.
These terminal groups may be further substituted with these groups or polymerizable groups described in JP-A-2010-244038.
 T1は、隣接層との密着性がより良好となり、膜としての凝集力を向上させることができる点から、重合性基であることが好ましい。
 重合性基は、特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイル基またはメタクリロイル基が挙げられる。この場合、重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の点からアクリロイル基が好ましいが、メタクリロイル基も重合性基として同様に使用できる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などが挙げられる。なかでも、脂環式エーテル基、または、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が好ましい。
T1 is preferably a polymerizable group from the viewpoint that the adhesiveness to the adjacent layer can be improved and the cohesive force of the film can be improved.
The polymerizable group is not particularly limited, but is preferably a polymerizable group capable of radical polymerization or cationic polymerization.
As the radically polymerizable group, generally known radically polymerizable groups can be used, and acryloyl groups and methacryloyl groups are preferred. In this case, an acryloyl group is generally known to have a high polymerization rate, and an acryloyl group is preferred from the viewpoint of improving productivity, but a methacryloyl group can also be used as the polymerizable group.
As the cationically polymerizable group, generally known cationically polymerizable groups can be used. Specifically, alicyclic ether groups, cyclic acetal groups, cyclic lactone groups, cyclic thioether groups, spiroorthoester groups, and , a vinyloxy group, and the like. Among them, an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group or a vinyloxy group is preferable.
 上記式(1)で表される繰り返し単位を含む高分子液晶化合物の重量平均分子量(Mw)は、光吸収異方性層の配向度がより高くなる点から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶化合物のMwが上記範囲内にあれば、高分子液晶化合物の取り扱いが容易になる。
 特に、塗布時のクラック抑制の点からは、高分子液晶化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
 また、配向度の温度ラチチュードの点からは、高分子液晶化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
 ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):N-メチルピロリドン
 ・装置名:TOSOH HLC-8220GPC
 ・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
 ・カラム温度:25℃
 ・試料濃度:0.1質量%
 ・流速:0.35mL/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
The weight-average molecular weight (Mw) of the polymer liquid crystal compound containing the repeating unit represented by the above formula (1) is preferably from 1000 to 500000, more preferably from 2000 to 300,000 is more preferred. If the Mw of the polymer liquid crystal compound is within the above range, the polymer liquid crystal compound can be easily handled.
In particular, the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably 10,000 or more, more preferably 10,000 to 300,000, from the viewpoint of suppressing cracks during coating.
In view of the temperature latitude of the degree of orientation, the weight average molecular weight (Mw) of the polymer liquid crystal compound is preferably less than 10,000, more preferably 2,000 or more and less than 10,000.
Here, the weight average molecular weight and number average molecular weight in the present invention are values measured by a gel permeation chromatography (GPC) method.
・Solvent (eluent): N-methylpyrrolidone ・Device name: TOSOH HLC-8220GPC
・Column: 3 TOSOH TSKgelSuperAWM-H (6mm×15cm) are connected and used ・Column temperature: 25℃
・Sample concentration: 0.1% by mass
・Flow rate: 0.35 mL/min
・ Calibration curve: TOSOH TSK standard polystyrene Mw = 2800000 to 1050 (Mw / Mn = 1.03 to 1.06) using a calibration curve from 7 samples
 第1光吸収異方性層が液晶化合物を含む場合、液晶化合物の含有量は、本発明の効果がより優れる点で、第1光吸収異方性層の全質量に対して、50~99質量%が好ましく、75~90質量%がより好ましい。 When the first light absorption anisotropic layer contains a liquid crystal compound, the content of the liquid crystal compound is 50 to 99% with respect to the total mass of the first light absorption anisotropic layer, since the effect of the present invention is more excellent. % by mass is preferable, and 75 to 90% by mass is more preferable.
(その他の成分)
 第1光吸収異方性層は、上述した成分以外の他の成分を含んでいてもよい。他の成分としては、例えば、垂直配向剤、および、レベリング剤が挙げられる。
(other ingredients)
The first light absorption anisotropic layer may contain components other than the components described above. Other components include, for example, vertical alignment agents and leveling agents.
(垂直配向剤)
 垂直配向剤としては、ボロン酸化合物、および、オニウム塩が挙げられる。
 ボロン酸化合物としては、式(A)で表される化合物が好ましい。
(vertical alignment agent)
Vertical alignment agents include boronic acid compounds and onium salts.
A compound represented by formula (A) is preferable as the boronic acid compound.
 式(A) Expression (A)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(A)中、RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換の脂肪族炭化水素基、置換もしくは無置換のアリール基、または、置換もしくは無置換のヘテロ環基を表す。
 Rは、(メタ)アクリル基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の[0023]~[0032]段落に記載の一般式(I)で表されるボロン酸化合物が挙げられる。
 ボロン酸化合物としては、以下に例示する化合物も好ましい。
In formula (A), R 1 and R 2 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. show.
R3 represents a substituent containing a ( meth)acryl group.
Specific examples of the boronic acid compound include boronic acid compounds represented by general formula (I) described in paragraphs [0023] to [0032] of JP-A-2008-225281.
As the boronic acid compound, compounds exemplified below are also preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 オニウム塩としては、式(B)で表される化合物が好ましい。 As the onium salt, the compound represented by formula (B) is preferable.
 式(B) Formula (B)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(B)中、環Aは、含窒素複素環からなる第4級アンモニウムイオンを表す。Xは、アニオンを表す。Lは、2価の連結基を表す。Lは、単結合、または、2価の連結基を表す。Yは、5または6員環を部分構造として有する2価の連結基を表す。Zは、2~20のアルキレン基を部分構造として有する2価の連結基を表す。PおよびPは、それぞれ独立に、重合性エチレン性不飽和結合を有する一価の置換基を表す。
 オニウム塩の具体例としては、特開2012-208397号公報の[0052]~[0058]段落に記載のオニウム塩、特開2008-026730号公報の[0024]~[0055]段落に記載のオニウム塩、および、特開2002-037777号公報に記載のオニウム塩が挙げられる。
In formula (B), ring A represents a quaternary ammonium ion consisting of a nitrogen-containing heterocyclic ring. X represents an anion. L 1 represents a divalent linking group. L2 represents a single bond or a divalent linking group. Y 1 represents a divalent linking group having a 5- or 6-membered ring as a partial structure. Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure. P 1 and P 2 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated bond.
Specific examples of onium salts include onium salts described in paragraphs [0052] to [0058] of JP-A-2012-208397, and onium described in paragraphs [0024] to [0055] of JP-A-2008-026730. salts, and onium salts described in JP-A-2002-037777.
 第1光吸収異方性層が液晶化合物および垂直配向剤を含む場合、垂直配向剤の含有量は、液晶化合物全質量に対して、0.1~400質量%が好ましく、0.5~350質量%がより好ましい。
 垂直配向剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。垂直配向剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
When the first light absorption anisotropic layer contains a liquid crystal compound and a vertical alignment agent, the content of the vertical alignment agent is preferably 0.1 to 400% by mass, more preferably 0.5 to 350%, based on the total mass of the liquid crystal compound. % by mass is more preferred.
The vertical alignment agents may be used alone or in combination of two or more. When two or more vertical alignment agents are used, the total amount thereof is preferably within the above range.
(レベリング剤)
 第1光吸収異方性層は、レベリング剤を含んでいてもよい。後述する第1光吸収異方性層形成用組成物(光吸収異方性層)がレベリング剤を含むと、第1光吸収異方性層の表面にかかる乾燥風による面状の荒れを抑制し、二色性物質がより均一に配向する。
 レベリング剤は特に制限されず、フッ素原子を含むレベリング剤(フッ素系レベリング剤)、または、ケイ素原子を含むレベリング剤(ケイ素系レベリング剤)が好ましく、フッ素系レベリング剤がより好ましい。
(leveling agent)
The first light absorption anisotropic layer may contain a leveling agent. When the composition for forming the first light absorption anisotropic layer (light absorption anisotropic layer), which will be described later, contains a leveling agent, surface roughness due to drying air applied to the surface of the first light absorption anisotropic layer is suppressed. and the dichroic material is oriented more uniformly.
The leveling agent is not particularly limited, and is preferably a leveling agent containing fluorine atoms (fluorine-based leveling agent) or a leveling agent containing silicon atoms (silicon-based leveling agent), more preferably a fluorine-based leveling agent.
 フッ素系レベリング剤としては、脂肪酸の一部がフルオロアルキル基で置換された多価カルボン酸の脂肪酸エステル類、および、フルオロ置換基を有するポリアクリレート類が挙げられる。 Examples of fluorine-based leveling agents include fatty acid esters of polyvalent carboxylic acids in which a portion of the fatty acid is substituted with a fluoroalkyl group, and polyacrylates having fluoro substituents.
 レベリング剤の具体例としては、特開2004-331812号公報の[0046]~[0052]段落に例示される化合物、および、特開2008-257205号公報の[0038]~[0052]段落に記載の化合物が挙げられる。 Specific examples of the leveling agent include compounds exemplified in paragraphs [0046] to [0052] of JP-A-2004-331812, and paragraphs [0038] to [0052] of JP-A-2008-257205. and the compound of
 第1光吸収異方性層が液晶化合物およびレベリング剤を含む場合、レベリング剤の含有量は、液晶化合物全質量に対して、0.001~10質量%が好ましく、0.01~5質量%がより好ましい。
 レベリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。レベリング剤が2種以上を用いられる場合、それらの合計量が上記範囲であることが好ましい。
When the first light absorption anisotropic layer contains a liquid crystal compound and a leveling agent, the content of the leveling agent is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total mass of the liquid crystal compound. is more preferred.
A leveling agent may be used independently and may be used in combination of 2 or more type. When two or more leveling agents are used, the total amount thereof is preferably within the above range.
(第1光吸収異方性層形成用組成物)
 第1光吸収異方性層は、二色性物質を含む第1光吸収異方性層形成用組成物を用いて形成されることが好ましい。
 第1光吸収異方性層形成用組成物は、二色性物質の他に、液晶化合物、および、後述する溶媒などを含むことが好ましく、さらに、上述の他の成分を含んでいてもよい。
(Composition for forming first light absorption anisotropic layer)
The first light absorption anisotropic layer is preferably formed using a composition for forming a first light absorption anisotropic layer containing a dichroic substance.
In addition to the dichroic substance, the composition for forming the first light absorption anisotropic layer preferably contains a liquid crystal compound, a solvent to be described later, and the like, and may further contain other components described above. .
 第1光吸収異方性層形成用組成物に含まれる二色性物質としては、第1光吸収異方性層に含まれ得る二色性物質が挙げられる。
 第1光吸収異方性層形成用組成物の全固形分質量に対する二色性物質の含有量は、第1光吸収異方性層の全質量に対する二色性物質の含有量と同じであるのが好ましい。
 ここで、「第1光吸収異方性層形成用組成物における全固形分」とは、溶媒を除いた成分をいい、固形分の具体例としては、二色性物質、液晶化合物、および、上述の他の成分が挙げられる。
The dichroic substance contained in the composition for forming the first light absorption anisotropic layer includes a dichroic substance that can be contained in the first light absorption anisotropic layer.
The content of the dichroic substance with respect to the total solid weight of the composition for forming the first light absorption anisotropic layer is the same as the content of the dichroic substance with respect to the total weight of the first light absorption anisotropic layer. is preferred.
Here, "the total solid content in the composition for forming the first light absorption anisotropic layer" refers to components excluding the solvent, and specific examples of the solid content include dichroic substances, liquid crystal compounds, and Other ingredients mentioned above are included.
 第1光吸収異方性層形成用組成物に含まれ得る液晶化合物、および、他の成分はそれぞれ、第1光吸収異方性層に含まれ得る液晶化合物、および、他の成分と同様である。
 第1光吸収異方性層形成用組成物の全固形分質量に対する液晶化合物、および、他の成分の含有量はそれぞれ、第1光吸収異方性層の全質量に対する液晶化合物、および、他の成分の含有量と同じであるのが好ましい。
The liquid crystal compound and other components that may be contained in the composition for forming the first light absorption anisotropic layer are the same as the liquid crystal compound and other components that may be contained in the first light absorption anisotropic layer. be.
The contents of the liquid crystal compound and other components relative to the total solid mass of the composition for forming the first light absorption anisotropic layer are respectively the liquid crystal compound and other components relative to the total mass of the first light absorption anisotropic layer. is preferably the same as the content of the components of
 第1光吸収異方性層形成用組成物は、作業性の点から、溶媒を含むことが好ましい。
 溶媒としては、例えば、ケトン類、エーテル類、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、ハロゲン化炭素類、エステル類、アルコール類、セロソルブ類、セロソルブアセテート類、スルホキシド類、アミド類、および、ヘテロ環化合物などの有機溶媒、並びに、水が挙げられる。
 これらの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
 これらの溶媒のうち、有機溶媒が好ましく、ハロゲン化炭素類またはケトン類がより好ましい。
From the viewpoint of workability, the composition for forming the first light absorption anisotropic layer preferably contains a solvent.
Examples of solvents include ketones, ethers, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated carbons, esters, alcohols, cellosolves, cellosolve acetates, sulfoxides, , amides, and organic solvents such as heterocyclic compounds, as well as water.
These solvents may be used singly or in combination of two or more.
Among these solvents, organic solvents are preferred, and halogenated carbons or ketones are more preferred.
 第1光吸収異方性層形成用組成物が溶媒を含む場合、溶媒の含有量は、第1光吸収異方性層形成用組成物の全質量に対して、80~99質量%が好ましく、83~97質量%がより好ましく、85~95質量%がさらに好ましい。 When the composition for forming the first light absorption anisotropic layer contains a solvent, the content of the solvent is preferably 80 to 99% by mass with respect to the total mass of the composition for forming the first light absorption anisotropic layer. , more preferably 83 to 97% by mass, and even more preferably 85 to 95% by mass.
 第1光吸収異方性層形成用組成物は、重合開始剤を含んでいてもよい。
 重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
 このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュアー184、イルガキュアー907、イルガキュアー369、イルガキュアー651、イルガキュアー819、イルガキュアーOXE-01およびイルガキュアーOXE-02が挙げられる。
 重合開始剤は、1種単独で用いても2種以上を併用してもよい。
 第1光吸収異方性層形成用組成物が重合開始剤を含む場合、重合開始剤の含有量は、第1光吸収異方性層形成用組成物の全固形分に対して、0.01~30質量%が好ましく、0.1~15質量%がより好ましい。
The composition for forming the first light absorption anisotropic layer may contain a polymerization initiator.
Although the polymerization initiator is not particularly limited, it is preferably a compound having photosensitivity, that is, a photopolymerization initiator.
As such a photopolymerization initiator, commercially available products can also be used, and Irgacure 184, Irgacure 907, Irgacure 369, Irgacure 651, Irgacure 819, Irgacure OXE-01 and Irgacure manufactured by BASF. and OXE-02.
A polymerization initiator may be used individually by 1 type, or may use 2 or more types together.
When the composition for forming the first light absorption anisotropic layer contains a polymerization initiator, the content of the polymerization initiator is 0.00% with respect to the total solid content of the composition for forming the first light absorption anisotropic layer. 01 to 30% by mass is preferred, and 0.1 to 15% by mass is more preferred.
<第1光吸収異方性層の製造方法>
 第1光吸収異方性層を製造する方法は特に制限されないが、得られる第1光吸収異方性層の配向度がより高くなる点から、配向膜上に二色性物質および液晶化合物を含む第1光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、上記塗布膜に含まれる液晶成分を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に備える方法(以下、「本製造方法」ともいう。)が好ましい。
 なお、液晶成分とは、上述した液晶化合物だけでなく、液晶性を有する二色性物質も含む成分である。
 以下、各工程について説明する。
<Method for producing first light absorption anisotropic layer>
The method for producing the first light absorption anisotropic layer is not particularly limited, but since the degree of orientation of the obtained first light absorption anisotropic layer is higher, a dichroic substance and a liquid crystal compound are added on the alignment film. a step of forming a coating film by applying a composition for forming a first light absorption anisotropic layer containing the (hereinafter also referred to as "orientation step"), and a method (hereinafter also referred to as "this production method") in this order is preferred.
The liquid crystal component is a component containing not only the liquid crystal compound described above but also a dichroic substance having liquid crystallinity.
Each step will be described below.
(塗布膜形成工程)
 塗布膜形成工程は、配向膜上に上述した第1光吸収異方性層形成用組成物を塗布して塗布膜を形成する工程である。
 上述した溶媒を含む第1光吸収異方性層形成用組成物を用いたり、第1光吸収異方性層形成用組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、配向膜上に第1光吸収異方性層形成用組成物を塗布することが容易になる。
 第1光吸収異方性層形成用組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
(Coating film forming step)
The coating film forming step is a step of applying the composition for forming the first light absorption anisotropic layer on the alignment film to form a coating film.
The composition for forming the first light absorption anisotropic layer containing the above-described solvent is used, or the composition for forming the first light absorption anisotropic layer is heated to be a liquid such as a melt. This makes it easier to apply the composition for forming the first light absorption anisotropic layer onto the alignment film.
Examples of the method of applying the composition for forming the first light absorption anisotropic layer include a roll coating method, a gravure printing method, a spin coating method, a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die Known methods such as a coating method, a spray method, and an inkjet method can be used.
(配向膜)
 配向膜は、第1光吸収異方性層形成用組成物に含まれ得る液晶成分を配向させる膜であれば、どのような膜でもよい。
 有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、または、ラングミュアブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。なかでも、本発明では、配向膜のプレチルト角の制御し易さの点からはラビング処理により形成する配向膜が好ましく、配向の均一性の点からは光照射により形成する光配向膜も好ましい。
(Alignment film)
The alignment film may be any film as long as it aligns the liquid crystal component that can be contained in the composition for forming the first light absorption anisotropic layer.
Rubbing treatment on the film surface of an organic compound (preferably polymer), oblique vapor deposition of an inorganic compound, formation of a layer having microgrooves, or an organic compound (eg, ω-tricosanoic acid) by the Langmuir-Blodgett method (LB film) , dioctadecylmethylammonium chloride, methyl stearate). Furthermore, an alignment film is also known in which an alignment function is produced by application of an electric field, application of a magnetic field, or irradiation of light. Among them, in the present invention, an alignment film formed by rubbing treatment is preferable from the viewpoint of ease of control of the pretilt angle of the alignment film, and a photo-alignment film formed by light irradiation is also preferable from the viewpoint of alignment uniformity.
(配向工程)
 配向工程は、塗布膜に含まれる液晶成分(特に、二色性物質)を配向させる工程である。配向工程では、配向膜によって配向した液晶化合物に沿って、二色性物質が配向するものと考えられる。
 配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去できる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
(Orientation process)
The alignment step is a step of orienting the liquid crystal component (especially dichroic substance) contained in the coating film. In the alignment step, the dichroic substance is considered to be aligned along the liquid crystal compound aligned by the alignment film.
The orientation step may include drying. Components such as the solvent can be removed from the coating film by the drying treatment. The drying treatment may be performed by a method of leaving the coating film at room temperature for a predetermined time (for example, natural drying), or by a method of heating and/or blowing air.
 配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる二色性物質がより配向し、得られる光吸収異方性層の配向度がより高くなる。
 加熱処理は、製造適性などの点から、10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
The orientation step preferably includes heat treatment. As a result, the dichroic substance contained in the coating film is more oriented, and the degree of orientation of the resulting anisotropic light absorption layer is increased.
The heat treatment is preferably from 10 to 250° C., more preferably from 25 to 190° C., from the viewpoint of suitability for production. Also, the heating time is preferably 1 to 300 seconds, more preferably 1 to 60 seconds.
 配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含有される二色性物質の配向がより固定され、第1光吸収異方性層の配向度がより高くなる。冷却手段としては、特に限定されず、公知の方法により実施できる。
 以上の工程によって、本発明の光吸収異方性層を得ることができる。
The orientation step may have a cooling treatment performed after the heat treatment. The cooling process is a process of cooling the coated film after heating to about room temperature (20 to 25° C.). Thereby, the orientation of the dichroic substance contained in the coating film is more fixed, and the degree of orientation of the first light absorption anisotropic layer is further increased. A cooling means is not particularly limited, and a known method can be used.
Through the steps described above, the anisotropic light absorption layer of the present invention can be obtained.
(他の工程)
 本製造方法は、上記配向工程後に、第1光吸収異方性層を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
 硬化工程は、例えば、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
 硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
 また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって光吸収異方性層の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
(Other processes)
This production method may include a step of curing the first light absorption anisotropic layer (hereinafter also referred to as a “curing step”) after the alignment step.
The curing step is performed, for example, by heating and/or light irradiation (exposure). Among these, the curing step is preferably carried out by light irradiation.
Various light sources such as infrared light, visible light, and ultraviolet light can be used as the light source for curing, but ultraviolet light is preferred. Further, ultraviolet rays may be irradiated while being heated during curing, or ultraviolet rays may be irradiated through a filter that transmits only specific wavelengths.
Also, the exposure may be performed in a nitrogen atmosphere. When the anisotropic light absorption layer is cured by radical polymerization, it is preferable to perform the exposure in a nitrogen atmosphere because the inhibition of polymerization by oxygen is reduced.
<他の部材>
 視角制御システムは、上述した偏光子および第1光吸収異方性層以外の他の部材を含んでいてもよい。
<Other members>
The viewing angle control system may include members other than the polarizer and the first light absorption anisotropic layer described above.
(第2光吸収異方性層)
 視角制御システムは、厚み方向に平行な吸収軸を有する第2光吸収異方性層をさらに含んでいてもよい。第2光吸収異方性層を含むことにより、視角制御性がより向上する。
 第2光吸収異方性層においては、吸収軸が厚み方向に平行となっている。なお、上述したように、平行は厳密な意味での平行を意味するのではなく、平行から±5°の範囲を意味する。よって、第2光吸収異方性層においては、吸収軸と厚み方向とのなす角度が5°以下の範囲である。
(Second light absorption anisotropic layer)
The viewing angle control system may further include a second optical absorption anisotropic layer having an absorption axis parallel to the thickness direction. By including the second light absorption anisotropic layer, the viewing angle controllability is further improved.
In the second light absorption anisotropic layer, the absorption axis is parallel to the thickness direction. As described above, parallel does not mean parallel in a strict sense, but means a range of ±5° from parallel. Therefore, in the second light absorption anisotropic layer, the angle formed by the absorption axis and the thickness direction is in the range of 5° or less.
 第2光吸収異方性層は、第1光吸収異方性層と同様に、二色性物質を含むことが好ましい。二色性物質の種類は、上述した通りである。
 また、第2光吸収異方性層は、第1光吸収異方性層と同様に、液晶化合物を含むことが好ましい。液晶化合物の種類は、上述した通りである。
 第2光吸収異方性層の好適態様としては、二色性物質を厚み方向に垂直配向させた層であることが好ましい。上記のような好適態様は、垂直配向させた液晶化合物中に二色性物質を加えることにより、形成できる。
The second light absorption anisotropic layer preferably contains a dichroic substance like the first light absorption anisotropic layer. The types of dichroic substances are as described above.
Moreover, the second light absorption anisotropic layer preferably contains a liquid crystal compound, like the first light absorption anisotropic layer. The types of liquid crystal compounds are as described above.
A preferred embodiment of the second light absorption anisotropic layer is a layer in which a dichroic substance is vertically aligned in the thickness direction. The preferred mode as described above can be formed by adding a dichroic substance to the vertically aligned liquid crystal compound.
 第2光吸収異方性層の形成方法は特に制限されず、公知の方法が挙げられる。なかでも、二色性物質および液晶化合物を含む第2光吸収異方性層形成用組成物を用いる方法が好ましい。 A method for forming the second light absorption anisotropic layer is not particularly limited, and known methods can be used. Among them, a method using a composition for forming the second light absorption anisotropic layer containing a dichroic substance and a liquid crystal compound is preferable.
 なお、本発明は、第1光学異方性層と第2光学異方性層とを含む積層体にも関する。
 上記積層体は、上述した偏光子と組み合わせることにより、視角制御システムを構成できる。
The present invention also relates to a laminate including a first optically anisotropic layer and a second optically anisotropic layer.
By combining the laminate with the polarizer described above, a viewing angle control system can be constructed.
(透明基材フィルム)
 視角制御システムは、透明基材フィルムを含んでいてもよい。
 透明基材フィルムは、第1光吸収異方性層を形成する基材として用いてもよいし、第1光吸収異方性層を保護するフィルムとして用いてもよい。透明基材フィルムが、位相差層を兼ねてもよい。
 透明基材フィルムとしては、公知の透明樹脂フィルム、透明樹脂板、および、透明樹脂シートなどを用いることができ、特に限定はない。
 透明樹脂フィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレンテレフタレートフィルム、ポリエーテルスルホンフィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、シクロオレフィン系ポリマーフィルム(シクロオレフィン系ポリマーを用いたポリマーフィルム)、ポリカーボネート系ポリマーフィルム、ポリスチレン系ポリマーフィルム、または、アクリル系ポリマーフィルムが好ましい。アクリル系ポリマーフィルムとしては、ラクトン環単位、無水マレイン酸単位、および、グルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含むことが好ましい。
 透明基材フィルムの厚さは、20~100μmが好ましい。
(Transparent substrate film)
The viewing angle control system may include a transparent substrate film.
The transparent substrate film may be used as a substrate for forming the first light absorption anisotropic layer, or may be used as a film for protecting the first light absorption anisotropic layer. The transparent substrate film may also serve as the retardation layer.
As the transparent substrate film, known transparent resin films, transparent resin plates, transparent resin sheets, and the like can be used, and there is no particular limitation.
Examples of transparent resin films include cellulose acylate films (e.g., cellulose triacetate film (refractive index: 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyethylene terephthalate film, and polyethersulfone. Film, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (meth)acrylonitrile film, cycloolefin polymer film (using cycloolefin polymer polymer film), polycarbonate polymer film, polystyrene polymer film, or acrylic polymer film. The acrylic polymer film preferably contains an acrylic polymer containing at least one unit selected from lactone ring units, maleic anhydride units, and glutaric anhydride units.
The thickness of the transparent substrate film is preferably 20-100 μm.
(配向膜)
 視角制御システムは、透明基材フィルムと第1光吸収異方性層との間に、配向膜を含んでいてもよい。
 配向膜は、配向膜上において二色性物質を所望の配向状態とすることができるのであれば、どのような層でもよく、上述した第1光吸収異方性層の形成の際に使用される配向膜が挙げられる。
(Alignment film)
The viewing angle control system may include an alignment film between the transparent substrate film and the first light absorption anisotropic layer.
The alignment film may be any layer as long as the dichroic substance can be in the desired alignment state on the alignment film, and is used in forming the above-described first light absorption anisotropic layer. oriented film.
(その他の部材)
 視角制御システムは、上述した部材以外に、粘着層、接着層、屈折率調整層、および、バリア層などを含んでいてもよい。
(Other members)
The viewing angle control system may include an adhesive layer, an adhesive layer, a refractive index adjustment layer, a barrier layer, and the like, in addition to the members described above.
<画像表示装置>
 本発明の視角制御システムは、任意の画像表示装置に対して使用できる。つまり、本発明は、上記視角制御システムを含む画像表示装置にも関する。
 画像表示装置としては、特に限定されず、例えば、液晶表示装置、自発光型表示装置(有機EL(electroluminescence)表示装置、および、マイクロLED(light emitting diode)表示装置)などが挙げられる。画像表示装置中の表示パネルとしては、液晶セルを含む表示パネル、自発光型表示装置の表示パネルなどが挙げられ、これらの表示パネル上に視角制御システムが配置される。
 液晶表示装置は、通常、液晶セルとバックライトを有し、液晶セルの視認側、およびバックライト側の両方の面に、それぞれ偏光子が設置されている。本発明の視角制御システムは、液晶表示装置の視認側またはバックライト側のいずれかの面に適用することができるし、両方の面に適用することもできる。液晶表示装置への適用は、液晶表示装置のいずれかの面、または、両方の面の偏光子を、本発明の視角制御システムに置き換えることで実現できる。つまり、液晶セルの両側に設けられる偏光子として、本発明の視角制御システムに含まれる偏光子を用いることができる。
 本発明の視角制御システムを有機EL表示装置に対して適用する場合には、有機EL表示装置の視認側に視角制御システムを配置し、かつ、本発明の視角制御システム中の偏光子が第1光吸収異方性層よりも有機EL表示装置に近い側に配置されることが好ましい。また、偏光子と有機EL表示装置の間に、λ/4板を配置することが好ましい。
 なお、画像表示装置中の視角制御システムにおいて、偏光子に対して第1光吸収異方性層が視認側に配置されることが好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
<Image display device>
The viewing angle control system of the present invention can be used for any image display device. That is, the present invention also relates to an image display device including the viewing angle control system.
The image display device is not particularly limited, and examples thereof include a liquid crystal display device, a self-luminous display device (organic EL (electroluminescence) display device, and a micro LED (light emitting diode) display device), and the like. Display panels in image display devices include display panels including liquid crystal cells, display panels of self-luminous display devices, and the like, and a viewing angle control system is arranged on these display panels.
A liquid crystal display usually has a liquid crystal cell and a backlight, and polarizers are provided on both the viewing side and the backlight side of the liquid crystal cell. The viewing angle control system of the present invention can be applied to either the viewing side or the backlight side of the liquid crystal display device, or can be applied to both sides. Application to a liquid crystal display device can be realized by replacing the polarizers on either or both surfaces of the liquid crystal display device with the viewing angle control system of the present invention. That is, the polarizers included in the viewing angle control system of the present invention can be used as the polarizers provided on both sides of the liquid crystal cell.
When the viewing angle control system of the present invention is applied to an organic EL display device, the viewing angle control system is arranged on the viewing side of the organic EL display device, and the polarizer in the viewing angle control system of the present invention is the first It is preferably arranged closer to the organic EL display device than the light absorption anisotropic layer. Further, it is preferable to place a λ/4 plate between the polarizer and the organic EL display device.
In addition, in the viewing angle control system in the image display device, it is preferable that the first light absorption anisotropic layer is arranged on the viewing side with respect to the polarizer.
The liquid crystal cell constituting the liquid crystal display device will be described in detail below.
(液晶セル)
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、または、TN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および、特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光子の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および、特開平10-307291号公報などに開示されている。
(liquid crystal cell)
Liquid crystal cells used in liquid crystal display devices are preferably in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, or TN (Twisted Nematic) mode. , but not limited to these.
In the TN mode liquid crystal cell, the rod-like liquid crystalline molecules are substantially horizontally aligned when no voltage is applied, and are twisted at an angle of 60 to 120°. A TN mode liquid crystal cell is most widely used as a color TFT (Thin Film Transistor) liquid crystal display device, and is described in many documents.
In the VA mode liquid crystal cell, the rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied. VA mode liquid crystal cells include (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied and substantially horizontally aligned when voltage is applied (Japanese Unexamined Patent Application Publication No. 2-2002). 176625), and (2) a liquid crystal cell in which the VA mode is multi-domained (MVA mode) for widening the viewing angle (SID97, Digest of tech. Papers (preliminary collection) 28 (1997) 845). ), (3) A liquid crystal cell in a mode (n-ASM mode) in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is performed when voltage is applied (Proceedings of the Japan Liquid Crystal Forum 58-59 (1998)) and (4) Survival mode liquid crystal cells (presented at LCD International 98). Moreover, any of PVA (Patterned Vertical Alignment) type, optical alignment type, and PSA (Polymer-Sustained Alignment) type may be used. Details of these modes are described in Japanese Unexamined Patent Application Publication No. 2006-215326 and Japanese National Publication of International Patent Application No. 2008-538819.
In the IPS mode liquid crystal cell, rod-like liquid crystal molecules are oriented substantially parallel to the substrate, and the liquid crystal molecules respond planarly by applying an electric field parallel to the substrate surface. In the IPS mode, a black display is obtained when no electric field is applied, and the absorption axes of the pair of upper and lower polarizers are perpendicular to each other. A method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in Japanese Patent Application Laid-Open Nos. 10-54982, 11-202323 and 9-292522. JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
 以下に実施例と比較例とを挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す具体例により制限的に解釈されるべきものではない。 The features of the present invention will be described more specifically below with examples and comparative examples. Materials, usage amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being restricted by the specific examples shown below.
<配向膜付き透明支持体1の作製>
 セルロースアシレートフィルム(厚み40μmのTAC基材;TG40 富士フイルム社)の表面をアルカリ液で鹸化し、その上にワイヤーバーで下記配向膜形成用塗布液1を塗布した。塗膜が形成されたセルロースアシレートフィルムを60℃の温風で60秒間、さらに100℃の温風で120秒間乾燥し、配向膜PA1を形成し、配向膜付き透明支持体1を得た。
 配向膜PA1の膜厚は0.5μmであった。
<Preparation of transparent support 1 with alignment film>
The surface of a cellulose acylate film (TAC substrate having a thickness of 40 μm; TG40, Fuji Film Co., Ltd.) was saponified with an alkaline solution, and the following coating solution 1 for forming an alignment film was applied thereon with a wire bar. The cellulose acylate film on which the coating film was formed was dried with hot air at 60° C. for 60 seconds and further with hot air at 100° C. for 120 seconds to form an alignment film PA1, thereby obtaining a transparent support 1 with an alignment film.
The film thickness of the alignment film PA1 was 0.5 μm.
―――――――――――――――――――――――――――――――――
(配向膜形成用塗布液1)
―――――――――――――――――――――――――――――――――
・下記の変性ポリビニルアルコール          3.80質量部
・開始剤Irg2959               0.20質量部
・水                          70質量部
・メタノール                      30質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Coating liquid 1 for forming alignment film)
―――――――――――――――――――――――――――――――――
・The following modified polyvinyl alcohol 3.80 parts by mass ・Initiator Irg2959 0.20 parts by mass ・Water 70 parts by mass ・Methanol 30 parts by mass ―――――――――――――――――――― ―――――――――――――
 変性ポリビニルアルコール  Modified polyvinyl alcohol
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<光吸収異方性層P1の形成>
 得られた配向膜PA1上に、下記の光吸収異方性層形成用組成物1をワイヤーバーで連続的に塗布し、塗布膜P1を形成した。
 次いで、塗布膜P1を140℃で30秒間加熱し、その後、室温(23℃)になるまで冷却した。
 次いで、塗布膜P1を80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で塗布膜P1を2秒間照射することにより、配向膜PA1上に光吸収異方性層P1を作製し、光吸収異方性フィルムP1を得た。
 光吸収異方性層P1の膜厚は3μm、配向度は0.96であった。
 配向度の測定方法は、以下の通りである。
(配向度の評価)
 光吸収異方性層P1において、吸収軸の方向と平行になるように、光吸収異方性層P1の薄片を、ミクロトームを用いて切削し、AxoScan OPMF-1(オプトサイエンス社製)を用い、波長550nmにおいて、薄片のミューラーマトリックスを計測した。得られたミューラーマトリックスより、薄片の二色比Dを算出し、さらに、下記の式によって、配向度Sを算出した。
 S=(D-1)/(D+2)
<Formation of light absorption anisotropic layer P1>
On the obtained alignment film PA1, the following composition 1 for forming a light absorption anisotropic layer was continuously applied with a wire bar to form a coating film P1.
Next, the coating film P1 was heated at 140° C. for 30 seconds and then cooled to room temperature (23° C.).
Then, the coating film P1 was heated at 80° C. for 60 seconds and cooled to room temperature again.
After that, the coating film P1 is irradiated for 2 seconds under irradiation conditions of an illuminance of 200 mW/cm 2 using an LED lamp (center wavelength 365 nm), thereby forming a light absorption anisotropic layer P1 on the alignment film PA1, and absorbing light. An anisotropic film P1 was obtained.
The film thickness of the light absorption anisotropic layer P1 was 3 μm, and the degree of orientation was 0.96.
The method for measuring the degree of orientation is as follows.
(Evaluation of degree of orientation)
In the light absorption anisotropic layer P1, a thin piece of the light absorption anisotropic layer P1 was cut using a microtome so as to be parallel to the direction of the absorption axis, and AxoScan OPMF-1 (manufactured by Optoscience) was used. , at a wavelength of 550 nm, the Mueller matrix of the flakes was measured. From the obtained Mueller matrix, the dichroic ratio D of the flake was calculated, and the degree of orientation S was calculated by the following formula.
S = (D-1)/(D+2)
―――――――――――――――――――――――――――――――――
(光吸収異方性層形成用組成物1)
―――――――――――――――――――――――――――――――――
・下記二色性物質D-1              7.976質量部
・下記二色性物質D-2              2.991質量部
・下記二色性物質D-3             12.562質量部
・下記高分子液晶化合物P-1          63.809質量部
・下記低分子液晶化合物M-1           8.973質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  0.798質量部
・下記化合物E-1                1.196質量部
・下記化合物E-2                1.196質量部
・下記界面活性剤F-1              0.199質量部
・下記界面活性剤F-2              0.299質量部
・シクロペンタノン                937.2質量部
・テトラヒドロフラン               937.2質量部
・ベンジルアルコール                19.9質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
(Composition 1 for forming light absorption anisotropic layer)
―――――――――――――――――――――――――――――――――
・The following dichroic substance D-1 7.976 parts by mass ・The following dichroic substance D-2 2.991 parts by mass ・The following dichroic substance D-3 12.562 parts by mass ・The following polymer liquid crystal compound P- 1 63.809 parts by mass, the following low molecular weight liquid crystal compound M-1 8.973 parts by mass, polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 0.798 parts by mass, the following compound E-1 1.196 parts by mass, below Compound E-2 1.196 parts by mass Surfactant F-1 below 0.199 parts by mass Surfactant F-2 below 0.299 parts by mass Cyclopentanone 937.2 parts by mass Tetrahydrofuran 937.2 parts by mass part benzyl alcohol 19.9 parts by mass ――――――――――――――――――――――――――――――――
 二色性物質D-1 Dichroic substance D-1
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 二色性物質D-2 Dichroic substance D-2
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 二色性物質D-3 Dichroic substance D-3
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 高分子液晶化合物P-1  Polymer liquid crystal compound P-1
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 低分子液晶化合物M-1  Low molecular liquid crystal compound M-1
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 化合物E-1  Compound E-1
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 化合物E-2  Compound E-2
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 界面活性剤F-1  Surfactant F-1
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 界面活性剤F-2 "Surfactant F-2"
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<光吸収異方性層P2の形成>
 上述の配向膜付き透明支持体1の配向膜をラビング処理し、下記の光吸収異方性層形成用組成物P2をワイヤーバーで塗布し、塗布膜P2を形成した。
 次いで、塗布膜P2を120℃で30秒間加熱し、塗布膜P2を室温(23℃)になるまで冷却した。
 次いで、塗布膜P2を80℃で60秒間加熱し、再び室温になるまで冷却した。
 その後、LED灯(中心波長365nm)を用いて照度200mW/cmの照射条件で塗布膜P2を1秒間照射することにより、配向膜付き透明支持体1上に光吸収異方性層P2を作製し、光吸収異方性フィルムP2を得た。
 光吸収異方性層P2の膜厚は1.4μm、表面エネルギーは26.5mN/mであった。
<Formation of light absorption anisotropic layer P2>
The alignment film of the alignment film-attached transparent support 1 was subjected to a rubbing treatment, and the following composition P2 for forming a light absorption anisotropic layer was applied with a wire bar to form a coating film P2.
Next, the coating film P2 was heated at 120° C. for 30 seconds, and cooled to room temperature (23° C.).
Next, the coating film P2 was heated at 80° C. for 60 seconds and cooled to room temperature again.
Thereafter, the coating film P2 is irradiated for 1 second under irradiation conditions of an illuminance of 200 mW/cm 2 using an LED lamp (central wavelength of 365 nm) to form a light absorption anisotropic layer P2 on the transparent support 1 with the alignment film. Then, a light-absorbing anisotropic film P2 was obtained.
The film thickness of the light absorption anisotropic layer P2 was 1.4 μm, and the surface energy was 26.5 mN/m.
―――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成物P2の組成
―――――――――――――――――――――――――――――――――
・上記二色性物質D-1              7.356質量部
・上記二色性物質D-2              3.308質量部
・上記二色性物質D-3              11.02質量部
・上記高分子液晶化合物P-1           43.29質量部
・上記低分子液晶化合物M-1           31.75質量部
・重合開始剤
 IRGACUREOXE-02(BASF社製)  3.175質量部
・下記界面活性剤F-3             0.1027質量部
・シクロペンタノン                514.4質量部
・テトラヒドロフラン               514.4質量部
―――――――――――――――――――――――――――――――――
―――――――――――――――――――――――――――――――――
Composition of Composition P2 for Forming Light-Absorbing Anisotropic Layer――――――――――――――――――――――――――――――――
· The dichroic substance D-1 7.356 parts by mass · The dichroic substance D-2 3.308 parts by mass · The dichroic substance D-3 11.02 parts by mass · The polymer liquid crystal compound P- 1 43.29 parts by mass 31.75 parts by mass of the low molecular liquid crystal compound M-1 Polymerization initiator IRGACUREOXE-02 (manufactured by BASF) 3.175 parts by mass 0.1027 parts by mass of the following surfactant F-3・Cyclopentanone 514.4 parts by mass ・Tetrahydrofuran 514.4 parts by mass ――――――――――――――――――――――――――――――――――
 界面活性剤F-3  Surfactant F-3
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<光吸収異方性層P3の形成>
 上述の配向膜付き透明支持体1の配向膜上に、下記の光吸収異方性層形成用組成物P3を#4のワイヤーバーで連続的に塗布し、塗布層P3を形成した。
 次いで、塗布層P3を120℃で60秒間加熱し、塗布層P3を室温(23℃)になるまで冷却した。
 その後、高圧水銀灯を用いて照度28mW/cmの照射条件で60秒間照射することにより、配向膜付き透明支持体1上に光吸収異方性層P3を作製し、光吸収異方性フィルムP3を得た。
 光吸収異方性層P3の膜厚は0.7μmであった。
<Formation of light absorption anisotropic layer P3>
On the alignment film of the alignment film-attached transparent support 1, the following composition P3 for forming an anisotropic light absorption layer was continuously applied with a #4 wire bar to form a coating layer P3.
Next, the coating layer P3 was heated at 120° C. for 60 seconds and cooled to room temperature (23° C.).
Thereafter, a light absorption anisotropic layer P3 was produced on the transparent support 1 with the orientation film by irradiating for 60 seconds under irradiation conditions of an illuminance of 28 mW/cm 2 using a high-pressure mercury lamp. got
The film thickness of the light absorption anisotropic layer P3 was 0.7 μm.
――――――――――――――――――――――――――――――――
光吸収異方性層形成用組成液P3
――――――――――――――――――――――――――――――――
・下記二色性アゾ色素化合物D6           2.7質量部
・下記二色性アゾ色素化合物D7           2.7質量部
・下記二色性アゾ色素化合物D8           2.7質量部
・下記液晶性化合物M4              75.5質量部
・重合開始剤IRGACURE819(BASF社製) 0.8質量部
・下記界面改良剤F-4               0.6質量部
・シクロペンタノン               274.5質量部
・テトラヒドロフラン              640.5質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition liquid P3 for forming light absorption anisotropic layer
――――――――――――――――――――――――――――――――
Dichroic azo dye compound D6 below 2.7 parts by mass Dichroic azo dye compound D7 below 2.7 parts by mass Dichroic azo dye compound D8 below 2.7 parts by mass Liquid crystalline compound M4 below 75. 5 parts by mass Polymerization initiator IRGACURE819 (manufactured by BASF) 0.8 parts by mass The following interface improver F-4 0.6 parts by mass Cyclopentanone 274.5 parts by mass Tetrahydrofuran 640.5 parts by mass --- ―――――――――――――――――――――――――――――
 二色性アゾ色素化合物D6 Dichroic azo dye compound D6
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 二色性アゾ色素化合物D7 Dichroic azo dye compound D7
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 二色性アゾ色素化合物D8 Dichroic azo dye compound D8
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 液晶化合物M4(化合物A/化合物B=75/25で混合) Liquid crystal compound M4 (compound A/compound B = 75/25 mixed)
 (化合物A) (Compound A)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (化合物B) (Compound B)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 界面改良剤F-4  Interface improver F-4
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<光吸収異方性層の配向角度の測定>
 作製した光吸収異方性フィルムP1は、Axomerics社製 ポラリメータAxoScan OPMF-1を用いて、サンプル台上に光吸収異方性フィルムP1を水平方向に設置し、このフィルムに対してP偏光を入射する方位角および極角を種々変化させながら透過率を測定し、光吸収異方性フィルムP1中の光吸収異方性層P1の透過率中心軸の方位角および極角を調べた。
 なお、光吸収異方性フィルムP2およびP3に関しても、同様の測定を行った。
 さらに、透過率中心軸とフィルム法線を包含する平面に平行に、ミクロトームにより、光吸収異方性層から厚み2μmの評価サンプルである切片を採取する。より具体的には、光吸収異方性層フィルム(上記光吸収異方性フィルムP2およびP3)から配向膜付き透明支持体1を剥離して得られる光吸収異方性層を包埋樹脂によって包埋処理して、図3に示すように、得られた第1包埋樹脂層22、光吸収異方性層24、および、第2包埋樹脂層26をこの順に有するサンプル20から、厚み2μmの評価サンプルである切片28を採取する。
 なお、上記では、配向膜付き透明支持体1を剥離して光吸収異方性層の評価サンプルを得たが、支持体や偏光子など各種機材が接着された状態で切削してもよい。
 次に、図4のように偏光顕微鏡の回転台上に切片28を設置して、偏光顕微鏡の直線偏光子をセットし、検光子を取り外した状態で、切片28を矢印の方向に回転させながら、切片28の下方向から入射する直線偏光(図4中の矢印)に対して、光吸収異方性層の断面が最も消光する、切片の方位角(切片を回転させる角度)を求めた。このとき、切片の吸収軸と、偏光顕微鏡の偏光子の吸収軸とが直交していると推定され、これにより、吸収軸の光吸収異方性層表面の法線方向に対する傾きが求められる。
 光吸収異方性フィルムP1中の光吸収異方性層P1においては、支持体側から空気側にかけて、吸収軸が、光吸収異方性層P1の法線方向に配向していた。すなわち、二色性物質が垂直配向していた。また、光吸収異方性フィルムP3中の光吸収異方性層P3も同様であった。
 また、光吸収異方性フィルムP2中の光吸収異方性層P2においては、支持体側界面近傍における吸収軸が光吸収異方性層表面の法線となす角θAは80°であった。言い換えれば、支持体側界面付近における二色性物質の長軸方向が光吸収異方性層表面の法線となす角は80°であった。さらに、光吸収異方性層P2の空気側界面近傍における吸収軸が光吸収異方性層の法線となす角θBは50°であった。言い換えれば、空気側界面付近における二色性物質の長軸方向が光吸収異方性層表面の法線となす角は50°であった。支持体側界面近傍から空気側界面近傍に向かって、吸収軸の光吸収異方性層表面の法線方向に対する傾斜角が、連続的に変化していた。つまり、支持体側界面から空気側界面まで、光吸収異方性層表面の法線方向に対して傾いている吸収軸を含む領域が無数に存在していた。各領域の吸収軸の光吸収異方性層表面へ正射影した方向は、いずれも平行であった。
 すなわち、光吸収異方性層P2においては液晶化合物が支持体側から空気外にかけてハイブリッド配向しており、二色性物質も支持体側から空気側にかけてハイブリッド配向していた。
<Measurement of Orientation Angle of Light Absorption Anisotropic Layer>
The prepared light absorption anisotropic film P1 was prepared by placing the light absorption anisotropic film P1 horizontally on a sample table using a polarimeter AxoScan OPMF-1 manufactured by Axomerics, and P-polarized light was incident on this film. The transmittance was measured while variously changing the azimuth angle and polar angle, and the azimuth angle and polar angle of the transmittance central axis of the light absorption anisotropic layer P1 in the light absorption anisotropic film P1 were investigated.
Similar measurements were also performed for the light-absorbing anisotropic films P2 and P3.
Furthermore, a section, which is an evaluation sample with a thickness of 2 μm, is taken from the light absorption anisotropic layer with a microtome parallel to a plane including the transmittance center axis and the film normal line. More specifically, the light absorption anisotropic layer obtained by peeling the orientation film-attached transparent support 1 from the light absorption anisotropic layer film (the light absorption anisotropic films P2 and P3) is coated with an embedding resin. From the sample 20 having the first embedding resin layer 22, the light absorption anisotropic layer 24, and the second embedding resin layer 26 in this order, as shown in FIG. A section 28, which is a 2 μm evaluation sample, is taken.
In the above, the evaluation sample of the light absorption anisotropic layer was obtained by peeling off the transparent support 1 with the alignment film, but it may be cut in a state in which various materials such as a support and a polarizer are adhered.
Next, as shown in FIG. 4, the section 28 is placed on the rotating table of the polarizing microscope, the linear polarizer of the polarizing microscope is set, and with the analyzer removed, the section 28 is rotated in the direction of the arrow. , the azimuth angle of the intercept (the angle at which the intercept is rotated) at which the cross section of the light absorption anisotropic layer exhibits the highest extinction with respect to the linearly polarized light incident from below the intercept (arrow in FIG. 4). At this time, it is assumed that the absorption axis of the intercept is perpendicular to the absorption axis of the polarizer of the polarizing microscope, and from this, the inclination of the absorption axis to the normal direction of the surface of the light absorption anisotropic layer is obtained.
In the light absorption anisotropic layer P1 in the light absorption anisotropic film P1, the absorption axis was oriented in the normal direction of the light absorption anisotropic layer P1 from the support side to the air side. That is, the dichroic substance was vertically aligned. The same was true for the anisotropic light absorption layer P3 in the anisotropic light absorption film P3.
In the anisotropic light absorption layer P2 in the anisotropic light absorption film P2, the angle θA between the absorption axis near the interface on the support side and the normal to the surface of the anisotropic light absorption layer was 80°. In other words, the angle formed by the long axis direction of the dichroic substance near the interface on the support side and the normal to the surface of the light absorption anisotropic layer was 80°. Further, the angle θB between the absorption axis near the air-side interface of the anisotropic light absorption layer P2 and the normal to the anisotropic light absorption layer was 50°. In other words, the angle formed by the long axis direction of the dichroic substance near the air-side interface and the normal to the surface of the light absorption anisotropic layer was 50°. The inclination angle of the absorption axis with respect to the normal direction of the surface of the anisotropic light absorption layer changed continuously from the vicinity of the interface on the support side toward the vicinity of the interface on the air side. In other words, there were countless regions including absorption axes inclined with respect to the normal direction of the surface of the light absorption anisotropic layer from the interface on the support side to the interface on the air side. The orthogonal projection of the absorption axis of each region onto the surface of the light absorption anisotropic layer was parallel.
That is, in the light absorption anisotropic layer P2, the liquid crystal compound was hybrid-oriented from the support side to the outside of the air, and the dichroic substance was also hybrid-oriented from the support side to the air side.
<実施例1>
 IPSモードの液晶表示装置であるiPad Air(登録商標)(Apple社製)を分解し、液晶セルを取り出した。液晶セルの視認側偏光子の上に、作製した光吸収異方性フィルムP1を、支持体が液晶セルの側になるように貼合した。さらに、その上に、作製した光吸収異方性フィルムP2を、支持体が液晶セルの側になるように、かつ、視認側偏光子の吸収軸と、作製した光吸収異方性フィルムP2中の光吸収異方性層P2の面内方向において直線偏光に対する透過率が最も低い方位とが平行になるように、貼合した。
 このようにして、視認側偏光子と光吸収異方性層P2とを含む視角制御システムを有する画像表示装置を作製した。
 なお、iPad Air(登録商標)(Apple社製)中の視認側偏光子は、面内方向に吸収軸を有していた。
<Example 1>
An IPS mode liquid crystal display device, iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out. The prepared light-absorbing anisotropic film P1 was laminated on the viewing side polarizer of the liquid crystal cell so that the support was on the liquid crystal cell side. Furthermore, the prepared light-absorbing anisotropic film P2 is placed thereon so that the support is on the liquid crystal cell side, and the absorption axis of the polarizer on the viewing side and the prepared light-absorbing anisotropic film P2 It was laminated so that the direction of the lowest transmittance for linearly polarized light was parallel to the in-plane direction of the light absorption anisotropic layer P2.
In this manner, an image display device having a viewing angle control system including the viewer side polarizer and the light absorption anisotropic layer P2 was produced.
Note that the viewer-side polarizer in the iPad Air (registered trademark) (manufactured by Apple Inc.) had an absorption axis in the in-plane direction.
<実施例2>
 IPSモードの液晶表示装置であるiPad Air(登録商標)(Apple社製)を分解し、液晶セルを取り出した。液晶セルの視認側偏光子の上に、作製した光吸収異方性フィルムP2を、支持体が液晶セルの側になるように、かつ、視認側偏光子の吸収軸と、光吸収異方性フィルムP2の面内方向において直線偏光に対する透過率が最も低い方位(以下、「特定方位D1」ともいう。)とが平行になるように、貼合した。
 さらに、その上に、作製した光吸収異方性フィルムP1を、支持体が液晶セルの側になるように貼合した。
 次いで、その上に、2枚目の光吸収異方性フィルムP2を、支持体が視認側になるように、かつ、視認側偏光子の吸収軸と、2枚目の光吸収異方性フィルムP2の面内方向において直線偏光に対する透過率が最も低い方位(以下、「特定方位D2」ともいう。)とが平行になるように、貼合した。なお、1枚目の光吸収異方性フィルムP2と2枚目の光吸収異方性フィルムP2との貼合状態について説明するために、図5において、1枚目の光吸収異方性フィルムP2と2枚目の光吸収異方性フィルムP2とを含む貼合物を特定方位D1(または、特定方位D2)にて切断した断面図を示す。図5においては、光吸収異方性フィルムP1は省略している。図5においては、1枚目の光吸収異方性フィルムP1中の支持体30Aと光吸収異方性32A、および、2枚目の光吸収異方性フィルムP1中の支持体30Bと光吸収異方性層32Bのみが示されており、さらに、光吸収異方性層32Aおよび32Bの対向する界面付近に存在する二色性物質34が示されている。なお、図5中、光吸収異方性層32Aおよび32Bの対向する界面付近以外の領域に存在する二色性物質は省略してある。図5に示すように、光吸収異方性層32Aおよび32Bの積層方向(図5中の紙面の上下方向)に対して、光吸収異方性層32A中の光吸収異方性層32B側の表面付近の二色性物質32の長軸方向は反時計回りに回転した場所に位置するのに対して、光吸収異方性層32Aおよび32Bの積層方向(図5中の紙面の上下方向)に対して、光吸収異方性層32B中の光吸収異方性層32A側の表面付近の二色性物質32の長軸方向は時計回りに回転した場所に位置しており、両者の二色性物質の光吸収異方性層32Aおよび32Bの積層方向に対する回転方向は逆である。つまり、光吸収異方性層32A中の二色性物質32の位置、および、光吸収異方性層32B中の二色性物質32の位置は、断面図において、線対称のようになっている。
 このようにして、視認側偏光子および光吸収異方性層P2を含む視角制御システムを有する画像表示装置を作製した。
<Example 2>
An IPS mode liquid crystal display device, iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out. On the viewing side polarizer of the liquid crystal cell, the prepared light absorption anisotropic film P2 is placed so that the support is on the liquid crystal cell side, and the absorption axis of the viewing side polarizer and the light absorption anisotropy The film P2 was laminated so that the direction having the lowest transmittance for linearly polarized light (hereinafter also referred to as "specific direction D1") was parallel to the in-plane direction of the film P2.
Furthermore, the prepared light-absorbing anisotropic film P1 was laminated thereon so that the support was on the side of the liquid crystal cell.
Next, a second light-absorbing anisotropic film P2 is placed thereon so that the support is on the viewing side, and the absorption axis of the polarizer on the viewing side and the second light-absorbing anisotropic film They were laminated so that the direction with the lowest transmittance for linearly polarized light (hereinafter also referred to as “specific direction D2”) was parallel to the in-plane direction of P2. In order to explain the lamination state of the first light-absorbing anisotropic film P2 and the second light-absorbing anisotropic film P2, in FIG. The cross-sectional view which cut|disconnected the laminated body containing P2 and the light absorption anisotropic film P2 of the 2nd sheet in the specific direction D1 (or specific direction D2) is shown. In FIG. 5, the light absorption anisotropic film P1 is omitted. In FIG. 5, the support 30A and the light absorption anisotropy 32A in the first light absorption anisotropic film P1, and the support 30B and the light absorption in the second light absorption anisotropic film P1 Only the anisotropic layer 32B is shown, and also the dichroic material 34 present near the opposing interfaces of the light absorbing anisotropic layers 32A and 32B. In FIG. 5, the dichroic substance present in regions other than near the interface between the light absorption anisotropic layers 32A and 32B is omitted. As shown in FIG. 5, the light absorption anisotropic layer 32B side in the light absorption anisotropic layer 32A with respect to the stacking direction of the light absorption anisotropic layers 32A and 32B (vertical direction of the paper surface in FIG. 5) The long axis direction of the dichroic material 32 near the surface of the is located in a place rotated counterclockwise, whereas the lamination direction of the light absorption anisotropic layers 32A and 32B (vertical direction of the paper surface in FIG. 5) ), the long axis direction of the dichroic substance 32 near the surface of the anisotropic light absorption layer 32A in the anisotropic light absorption layer 32B is positioned at a position rotated clockwise, and The direction of rotation of the light absorption anisotropic layers 32A and 32B of the dichroic material is opposite to the stacking direction. That is, the position of the dichroic substance 32 in the light absorption anisotropic layer 32A and the position of the dichroic substance 32 in the light absorption anisotropic layer 32B are line symmetrical in the cross-sectional view. there is
In this manner, an image display device having a viewing angle control system including the viewer side polarizer and the light absorption anisotropic layer P2 was produced.
<実施例3>
 光吸収異方性フィルムP1を、光吸収異方性フィルムP3にかえた以外は、実施例1と同様にして、実施例3の画像表示装置を作製した。
<Example 3>
An image display device of Example 3 was produced in the same manner as in Example 1, except that the light-absorbing anisotropic film P1 was changed to the light-absorbing anisotropic film P3.
<比較例1>
 IPSモードの液晶表示装置であるiPad Air(登録商標)(Apple社製)を分解し、液晶セルを取り出した。液晶セルの視認側偏光子の上に、作製した光吸収異方性フィルムP1を、支持体が液晶セルの側になるように貼合した。このようにして、比較例1の画像表示装置を作製した。
 比較例1の画像表示装置には、本発明の視角制御システムは含まれていない。
<Comparative Example 1>
An IPS mode liquid crystal display device, iPad Air (registered trademark) (manufactured by Apple Inc.), was disassembled and the liquid crystal cell was taken out. The prepared light-absorbing anisotropic film P1 was laminated on the viewing side polarizer of the liquid crystal cell so that the support was on the liquid crystal cell side. Thus, an image display device of Comparative Example 1 was produced.
The image display device of Comparative Example 1 does not include the viewing angle control system of the present invention.
<性能の評価>
(画像の窓ガラスへの映り込みの評価)
 図6に示すように、上記の手順により作製した各実施例および比較例の画像表示装置40を、ディスプレイ面40Aが地面に対して垂直、かつ、画像表示装置40の視認側偏光子の吸収軸の方位が、地面に対して垂直になるように立てた状態で固定した。さらに、図6に示すように、厚み2mmのガラス板42を、ディスプレイの画面および地面に対して垂直になる角度で設置した。さらに室内を暗室にして、ディスプレイ面40Aにサンプル画像を表示してガラス板42への画像の映り込みを目視にて官能評価した。
 AA: ガラス板への映り込みが視認されない
 A: ガラス板への映り込みがほとんど視認されない
 B: ガラス板への映り込みが少し視認される
 C: ガラス板への映り込みが視認される
 D: ガラス板への映り込みが強く視認される
<Performance evaluation>
(Evaluation of Reflection of Image on Window Glass)
As shown in FIG. 6, the image display device 40 of each example and comparative example manufactured by the above procedure is arranged such that the display surface 40A is perpendicular to the ground and the absorption axis of the polarizer on the viewing side of the image display device 40 It was fixed in a state in which the direction of was vertical to the ground. Further, as shown in FIG. 6, a glass plate 42 having a thickness of 2 mm was placed at an angle perpendicular to the screen of the display and the ground. Furthermore, the room was made into a dark room, a sample image was displayed on the display surface 40A, and reflection of the image on the glass plate 42 was visually evaluated sensorily.
AA: No reflection on the glass plate is visible A: Almost no reflection on the glass plate is visible B: Some reflection on the glass plate is visible C: Reflection on the glass plate is visible D: Reflection on the glass plate is strongly visible
(正面透過率評価)
 各実施例および比較例の画像表示装置のディスプレイ面にサンプル画像を表示して正面方向の輝度を、分光放射計 SR-UL1R(トプコンテクノハウス製)を用いて測定し、以下の基準に従って、評価した。Aのように、比較例1の画像表示装置と同程度の略輝度が観測される場合、視角制御システムの正面方向の透過率に優れるといえる。
 A:比較例1の画像表示装置の輝度と比較して、略同じ輝度を示した。
 B:比較例1の画像表示装置の輝度と比較して、明らかに劣る輝度を示した。
(Front transmittance evaluation)
A sample image is displayed on the display surface of the image display device of each example and comparative example, and the luminance in the front direction is measured using a spectroradiometer SR-UL1R (manufactured by Topcon Technohouse), and evaluated according to the following criteria. did. When approximately the same brightness as that of the image display device of Comparative Example 1 is observed as in A, it can be said that the viewing angle control system has excellent transmittance in the front direction.
A: Compared with the luminance of the image display device of Comparative Example 1, substantially the same luminance was exhibited.
B: Compared with the brightness of the image display device of Comparative Example 1, the brightness was clearly inferior.
 表1中、「第1光吸収異方性層」欄の「有無」欄においては、視角制御システムが第1光吸収異方性層を含む場合を「有り」、含まない場合を「無し」とする。
 表1中、「第1光吸収異方性層」欄の「層数」欄においては、視角制御システムに含まれる第1光吸収異方性層の層数を表す。
 表1中、「第2光吸収異方性層」欄の「有無」欄においては、視角制御システムが第2光吸収異方性層を含む場合を「有り」、含まない場合を「無し」とする。
In Table 1, in the "presence/absence" column of the "first light absorption anisotropic layer" column, "yes" indicates that the viewing angle control system includes the first light absorption anisotropic layer, and "no" indicates that it does not. and
In Table 1, the column "number of layers" in the column "first light absorption anisotropic layer" indicates the number of layers of the first light absorption anisotropic layer included in the viewing angle control system.
In Table 1, in the "presence/absence" column of the "second light absorption anisotropic layer" column, "yes" indicates that the viewing angle control system includes the second light absorption anisotropic layer, and "no" indicates that it does not. and
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表1に示すように、本発明の視角制御システムは所望の効果を示した。特に、実施例においては、ディスプレイ面から斜め方向に配置されたガラス板への映り込みが抑制されていた。つまり、映り込みが抑制されている特定の方位角でよりディスプレイ面が視認しづらくなり、視角制御性がより高かった。 As shown in Table 1, the viewing angle control system of the present invention exhibited the desired effect. In particular, in the example, reflection from the display surface onto the glass plate arranged in an oblique direction was suppressed. In other words, the display surface becomes more difficult to see at a specific azimuth angle where the reflection is suppressed, and the viewing angle controllability is higher.
 10  視角制御システム
 12  偏光子
 14  第1光吸収異方性層
 16  二色性物質
 20  サンプル
 22  第1包埋樹脂層
 24  光吸収異方性層
 26  第2包埋樹脂層
 28  切片
 30A、30B  支持体
 32A、32B  光吸収異方性層
 34  二色性物質
 40  画像表示装置
 40A  ディスプレイ面
 42  ガラス板
 
REFERENCE SIGNS LIST 10 viewing angle control system 12 polarizer 14 first light absorption anisotropic layer 16 dichroic substance 20 sample 22 first embedding resin layer 24 light absorption anisotropic layer 26 second embedding resin layer 28 section 30A, 30B support Body 32A, 32B Light absorption anisotropic layer 34 Dichroic substance 40 Image display device 40A Display surface 42 Glass plate

Claims (11)

  1.  偏光子と、第1光吸収異方性層とを有し、
     前記偏光子は、面内方向に吸収軸を有し、
     前記第1光吸収異方性層の面内方向において直線偏光に対する透過率が最も低い方位と、前記偏光子の吸収軸とのなす角度が0°以上45°未満であり、
     前記第1光吸収異方性層が、厚み方向に沿って、前記第1光吸収異方性層表面の法線方向に対して傾いている吸収軸を有する複数の領域を有し、
     前記複数の領域において、前記吸収軸の前記第1光吸収異方性層表面の法線方向に対する傾斜角が互いに異なる、視角制御システム。
    Having a polarizer and a first light absorption anisotropic layer,
    The polarizer has an absorption axis in the in-plane direction,
    The angle formed by the azimuth with the lowest transmittance for linearly polarized light in the in-plane direction of the first light absorption anisotropic layer and the absorption axis of the polarizer is 0° or more and less than 45°,
    The first light absorption anisotropic layer has a plurality of regions along the thickness direction, each having an absorption axis tilted with respect to the normal direction of the surface of the first light absorption anisotropic layer,
    The viewing angle control system, wherein the plurality of regions have different angles of inclination of the absorption axis with respect to a normal direction of the surface of the first light absorption anisotropic layer.
  2.  前記複数の領域におけるそれぞれの吸収軸の前記第1光吸収異方性層表面の法線方向に対する傾斜角が、厚み方向に沿って、連続的に変化している、請求項1に記載の視角制御システム。 2. The viewing angle according to claim 1, wherein the inclination angles of the absorption axes of the plurality of regions with respect to the normal direction of the surface of the first light absorption anisotropic layer continuously change along the thickness direction. control system.
  3.  前記第1光吸収異方性層が、液晶化合物および二色性物質を含む、請求項1または2に記載の視角制御システム。 The viewing angle control system according to claim 1 or 2, wherein the first light absorption anisotropic layer contains a liquid crystal compound and a dichroic substance.
  4.  厚み方向に平行な吸収軸を有する第2光吸収異方性層をさらに有する、請求項1~3のいずれか1項に記載の視角制御システム。 The viewing angle control system according to any one of claims 1 to 3, further comprising a second light absorption anisotropic layer having an absorption axis parallel to the thickness direction.
  5.  請求項1~4のいずれか1項に記載の視角制御システムを含む、画像表示装置。 An image display device including the viewing angle control system according to any one of claims 1 to 4.
  6.  液晶セルと、前記液晶セル上に配置された前記視角制御システムとを含む、請求項5に記載の画像表示装置。 The image display device according to claim 5, comprising a liquid crystal cell and said viewing angle control system arranged on said liquid crystal cell.
  7.  自発光型表示装置と、前記自発光型表示装置の視認側に配置された前記視角制御システムとを含む、請求項5に記載の画像表示装置。 6. The image display device according to claim 5, comprising a self-luminous display device and the viewing angle control system arranged on the viewing side of the self-luminous display device.
  8.  光吸収異方性層であって、
     厚み方向に沿って、前記光吸収異方性層表面の法線方向に対して傾いている吸収軸を有する複数の領域を有し、
     前記複数の領域において、前記吸収軸の前記光吸収異方性層表面の法線方向に対する傾斜角が互いに異なる、光吸収異方性層。
    A light absorption anisotropic layer,
    along the thickness direction, having a plurality of regions having absorption axes inclined with respect to the normal direction of the surface of the light absorption anisotropic layer;
    The anisotropic light absorption layer, wherein the angles of inclination of the absorption axes with respect to the normal direction of the surface of the anisotropic light absorption layer are different in the plurality of regions.
  9.  前記複数の領域におけるそれぞれの吸収軸の前記光吸収異方性層表面の法線方向に対する傾斜角が、厚み方向に沿って、連続的に変化している、請求項8に記載の光吸収異方性層。 9. The optical absorption anisotropic layer according to claim 8, wherein the inclination angles of the absorption axes of the plurality of regions with respect to the normal direction of the surface of the optical absorption anisotropic layer continuously change along the thickness direction. tropic layer.
  10.  前記光吸収異方性層が、液晶化合物および二色性物質を含む、請求項8または9に記載の光吸収異方性層。 The anisotropic light absorption layer according to claim 8 or 9, wherein the anisotropic light absorption layer contains a liquid crystal compound and a dichroic substance.
  11.  請求項8~10のいずれか1項に記載の光吸収異方性層と、
     厚み方向に平行な吸収軸を有する光吸収異方性層と、を有する、積層体。
    A light absorption anisotropic layer according to any one of claims 8 to 10,
    and a light absorption anisotropic layer having an absorption axis parallel to the thickness direction.
PCT/JP2022/009847 2021-03-26 2022-03-08 Viewing angle control system, image display device, optically anisotropic layer, and laminate WO2022202268A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508930A JPWO2022202268A1 (en) 2021-03-26 2022-03-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053420 2021-03-26
JP2021-053420 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202268A1 true WO2022202268A1 (en) 2022-09-29

Family

ID=83397032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009847 WO2022202268A1 (en) 2021-03-26 2022-03-08 Viewing angle control system, image display device, optically anisotropic layer, and laminate

Country Status (2)

Country Link
JP (1) JPWO2022202268A1 (en)
WO (1) WO2022202268A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201633A (en) * 2000-01-18 2001-07-27 Sanyo Electric Co Ltd Polarizing plate and liquid crystal display device using the same
US6429915B1 (en) * 2000-09-11 2002-08-06 Santa Barbara Photonics, Inc. Tilted polarizers for liquid crystal displays
JP2007233162A (en) * 2006-03-02 2007-09-13 Fujifilm Corp Polarizing plate having novel orientation and liquid crystal display
JP2016027387A (en) * 2014-06-25 2016-02-18 住友化学株式会社 Light absorption anisotropic film, three-dimensional light absorption anisotropic film, and manufacturing method of the same
JP2020516946A (en) * 2017-04-20 2020-06-11 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
WO2021054099A1 (en) * 2019-09-20 2021-03-25 富士フイルム株式会社 Optical filter, optical device, and head-mounted display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201633A (en) * 2000-01-18 2001-07-27 Sanyo Electric Co Ltd Polarizing plate and liquid crystal display device using the same
US6429915B1 (en) * 2000-09-11 2002-08-06 Santa Barbara Photonics, Inc. Tilted polarizers for liquid crystal displays
JP2007233162A (en) * 2006-03-02 2007-09-13 Fujifilm Corp Polarizing plate having novel orientation and liquid crystal display
JP2016027387A (en) * 2014-06-25 2016-02-18 住友化学株式会社 Light absorption anisotropic film, three-dimensional light absorption anisotropic film, and manufacturing method of the same
JP2020516946A (en) * 2017-04-20 2020-06-11 エルジー・ケム・リミテッド Antireflection optical filter and organic light emitting device
WO2021054099A1 (en) * 2019-09-20 2021-03-25 富士フイルム株式会社 Optical filter, optical device, and head-mounted display

Also Published As

Publication number Publication date
JPWO2022202268A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6896890B2 (en) Light absorption anisotropic film, optical laminate and image display device
US10216041B2 (en) Optical film, manufacturing method thereof and display device
JP7402332B2 (en) Light absorption anisotropic film, laminate and image display device
JP6808372B2 (en) Optical film, its manufacturing method and display device
WO2021111861A1 (en) Layered body, optical device, and display device
JP7428785B2 (en) liquid crystal display device
US20230118336A1 (en) Viewing angle control system and image display device
WO2021002333A1 (en) Liquid crystal composition, liquid crystal layer, laminate, and image display device
CN113227850A (en) Light-absorbing anisotropic film, laminate, and image display device
CN115524776A (en) Optical laminate, viewing angle control system, and image display device
WO2019225468A1 (en) Polarizer and image display device
CN116635778A (en) Light absorbing anisotropic film, viewing angle control system and image display device
US20230418094A1 (en) Optical film, viewing angle control system, and image display device
WO2022202268A1 (en) Viewing angle control system, image display device, optically anisotropic layer, and laminate
US20220389319A1 (en) Liquid crystal composition, light absorption anisotropic film, laminate, and image display device
WO2022270199A1 (en) Light absorption anisotropic film, optical film, and image display device
WO2022176803A1 (en) Optically anisoropic film, optical film and display device
WO2022270222A1 (en) Image projection system
WO2022270466A1 (en) Optical film, method for manufacturing light absorption anisotropic layer, and image display device
WO2022054556A1 (en) Polarizing plate and organic electroluminescence display device
WO2018198434A1 (en) Liquid crystal alignment film and method of manufacturing same
WO2021111859A1 (en) Method for producing light absorption anisotropic film
WO2022181414A1 (en) Laminate, antireflection system, and image display device
TW202403363A (en) Circular polarizing plate and image display device including a polarizer, a retardation layer, and a liquid crystal alignment film
WO2022239685A1 (en) Light-absorption anisotropic layer, optical film, viewing angle control system, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508930

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775062

Country of ref document: EP

Kind code of ref document: A1